Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf.h"
   4#include "perf-sys.h"
   5
   6#include "util/cpumap.h"
   7#include "util/evlist.h"
   8#include "util/evsel.h"
   9#include "util/evsel_fprintf.h"
  10#include "util/symbol.h"
  11#include "util/thread.h"
  12#include "util/header.h"
  13#include "util/session.h"
  14#include "util/tool.h"
  15#include "util/cloexec.h"
  16#include "util/thread_map.h"
  17#include "util/color.h"
  18#include "util/stat.h"
  19#include "util/string2.h"
  20#include "util/callchain.h"
  21#include "util/time-utils.h"
  22
  23#include <subcmd/pager.h>
  24#include <subcmd/parse-options.h>
  25#include "util/trace-event.h"
  26
  27#include "util/debug.h"
  28#include "util/event.h"
  29
  30#include <linux/kernel.h>
  31#include <linux/log2.h>
  32#include <linux/zalloc.h>
  33#include <sys/prctl.h>
  34#include <sys/resource.h>
  35#include <inttypes.h>
  36
  37#include <errno.h>
  38#include <semaphore.h>
  39#include <pthread.h>
  40#include <math.h>
  41#include <api/fs/fs.h>
  42#include <perf/cpumap.h>
  43#include <linux/time64.h>
  44#include <linux/err.h>
  45
  46#include <linux/ctype.h>
 
 
 
 
 
  47
  48#define PR_SET_NAME		15               /* Set process name */
  49#define MAX_CPUS		4096
 
 
 
 
  50#define COMM_LEN		20
  51#define SYM_LEN			129
  52#define MAX_PID			1024000
 
 
 
  53
  54struct sched_atom;
  55
  56struct task_desc {
  57	unsigned long		nr;
  58	unsigned long		pid;
  59	char			comm[COMM_LEN];
  60
  61	unsigned long		nr_events;
  62	unsigned long		curr_event;
  63	struct sched_atom	**atoms;
  64
  65	pthread_t		thread;
  66	sem_t			sleep_sem;
  67
  68	sem_t			ready_for_work;
  69	sem_t			work_done_sem;
  70
  71	u64			cpu_usage;
  72};
  73
  74enum sched_event_type {
  75	SCHED_EVENT_RUN,
  76	SCHED_EVENT_SLEEP,
  77	SCHED_EVENT_WAKEUP,
  78	SCHED_EVENT_MIGRATION,
  79};
  80
  81struct sched_atom {
  82	enum sched_event_type	type;
  83	int			specific_wait;
  84	u64			timestamp;
  85	u64			duration;
  86	unsigned long		nr;
  87	sem_t			*wait_sem;
  88	struct task_desc	*wakee;
  89};
  90
  91#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  92
  93/* task state bitmask, copied from include/linux/sched.h */
  94#define TASK_RUNNING		0
  95#define TASK_INTERRUPTIBLE	1
  96#define TASK_UNINTERRUPTIBLE	2
  97#define __TASK_STOPPED		4
  98#define __TASK_TRACED		8
  99/* in tsk->exit_state */
 100#define EXIT_DEAD		16
 101#define EXIT_ZOMBIE		32
 102#define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
 103/* in tsk->state again */
 104#define TASK_DEAD		64
 105#define TASK_WAKEKILL		128
 106#define TASK_WAKING		256
 107#define TASK_PARKED		512
 108
 109enum thread_state {
 110	THREAD_SLEEPING = 0,
 111	THREAD_WAIT_CPU,
 112	THREAD_SCHED_IN,
 113	THREAD_IGNORE
 114};
 115
 116struct work_atom {
 117	struct list_head	list;
 118	enum thread_state	state;
 119	u64			sched_out_time;
 120	u64			wake_up_time;
 121	u64			sched_in_time;
 122	u64			runtime;
 123};
 124
 125struct work_atoms {
 126	struct list_head	work_list;
 127	struct thread		*thread;
 128	struct rb_node		node;
 129	u64			max_lat;
 130	u64			max_lat_at;
 131	u64			total_lat;
 132	u64			nb_atoms;
 133	u64			total_runtime;
 134	int			num_merged;
 135};
 136
 137typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 138
 139struct perf_sched;
 140
 141struct trace_sched_handler {
 142	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
 143			    struct perf_sample *sample, struct machine *machine);
 144
 145	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
 146			     struct perf_sample *sample, struct machine *machine);
 147
 148	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
 149			    struct perf_sample *sample, struct machine *machine);
 150
 151	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 152	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 153			  struct machine *machine);
 154
 155	int (*migrate_task_event)(struct perf_sched *sched,
 156				  struct evsel *evsel,
 157				  struct perf_sample *sample,
 158				  struct machine *machine);
 159};
 160
 161#define COLOR_PIDS PERF_COLOR_BLUE
 162#define COLOR_CPUS PERF_COLOR_BG_RED
 163
 164struct perf_sched_map {
 165	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 166	int			*comp_cpus;
 167	bool			 comp;
 168	struct perf_thread_map *color_pids;
 169	const char		*color_pids_str;
 170	struct perf_cpu_map	*color_cpus;
 171	const char		*color_cpus_str;
 172	struct perf_cpu_map	*cpus;
 173	const char		*cpus_str;
 174};
 175
 176struct perf_sched {
 177	struct perf_tool tool;
 178	const char	 *sort_order;
 179	unsigned long	 nr_tasks;
 180	struct task_desc **pid_to_task;
 181	struct task_desc **tasks;
 182	const struct trace_sched_handler *tp_handler;
 183	pthread_mutex_t	 start_work_mutex;
 184	pthread_mutex_t	 work_done_wait_mutex;
 185	int		 profile_cpu;
 186/*
 187 * Track the current task - that way we can know whether there's any
 188 * weird events, such as a task being switched away that is not current.
 189 */
 190	int		 max_cpu;
 191	u32		 curr_pid[MAX_CPUS];
 192	struct thread	 *curr_thread[MAX_CPUS];
 193	char		 next_shortname1;
 194	char		 next_shortname2;
 195	unsigned int	 replay_repeat;
 196	unsigned long	 nr_run_events;
 197	unsigned long	 nr_sleep_events;
 198	unsigned long	 nr_wakeup_events;
 199	unsigned long	 nr_sleep_corrections;
 200	unsigned long	 nr_run_events_optimized;
 201	unsigned long	 targetless_wakeups;
 202	unsigned long	 multitarget_wakeups;
 203	unsigned long	 nr_runs;
 204	unsigned long	 nr_timestamps;
 205	unsigned long	 nr_unordered_timestamps;
 206	unsigned long	 nr_context_switch_bugs;
 207	unsigned long	 nr_events;
 208	unsigned long	 nr_lost_chunks;
 209	unsigned long	 nr_lost_events;
 210	u64		 run_measurement_overhead;
 211	u64		 sleep_measurement_overhead;
 212	u64		 start_time;
 213	u64		 cpu_usage;
 214	u64		 runavg_cpu_usage;
 215	u64		 parent_cpu_usage;
 216	u64		 runavg_parent_cpu_usage;
 217	u64		 sum_runtime;
 218	u64		 sum_fluct;
 219	u64		 run_avg;
 220	u64		 all_runtime;
 221	u64		 all_count;
 222	u64		 cpu_last_switched[MAX_CPUS];
 223	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 224	struct list_head sort_list, cmp_pid;
 225	bool force;
 226	bool skip_merge;
 227	struct perf_sched_map map;
 228
 229	/* options for timehist command */
 230	bool		summary;
 231	bool		summary_only;
 232	bool		idle_hist;
 233	bool		show_callchain;
 234	unsigned int	max_stack;
 235	bool		show_cpu_visual;
 236	bool		show_wakeups;
 237	bool		show_next;
 238	bool		show_migrations;
 239	bool		show_state;
 240	u64		skipped_samples;
 241	const char	*time_str;
 242	struct perf_time_interval ptime;
 243	struct perf_time_interval hist_time;
 244};
 245
 246/* per thread run time data */
 247struct thread_runtime {
 248	u64 last_time;      /* time of previous sched in/out event */
 249	u64 dt_run;         /* run time */
 250	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 251	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 252	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 253	u64 dt_delay;       /* time between wakeup and sched-in */
 254	u64 ready_to_run;   /* time of wakeup */
 255
 256	struct stats run_stats;
 257	u64 total_run_time;
 258	u64 total_sleep_time;
 259	u64 total_iowait_time;
 260	u64 total_preempt_time;
 261	u64 total_delay_time;
 262
 263	int last_state;
 264
 265	char shortname[3];
 266	bool comm_changed;
 267
 268	u64 migrations;
 269};
 270
 271/* per event run time data */
 272struct evsel_runtime {
 273	u64 *last_time; /* time this event was last seen per cpu */
 274	u32 ncpu;       /* highest cpu slot allocated */
 275};
 276
 277/* per cpu idle time data */
 278struct idle_thread_runtime {
 279	struct thread_runtime	tr;
 280	struct thread		*last_thread;
 281	struct rb_root_cached	sorted_root;
 282	struct callchain_root	callchain;
 283	struct callchain_cursor	cursor;
 284};
 285
 286/* track idle times per cpu */
 287static struct thread **idle_threads;
 288static int idle_max_cpu;
 289static char idle_comm[] = "<idle>";
 290
 291static u64 get_nsecs(void)
 292{
 293	struct timespec ts;
 294
 295	clock_gettime(CLOCK_MONOTONIC, &ts);
 296
 297	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 298}
 299
 300static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 301{
 302	u64 T0 = get_nsecs(), T1;
 303
 304	do {
 305		T1 = get_nsecs();
 306	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 307}
 308
 309static void sleep_nsecs(u64 nsecs)
 310{
 311	struct timespec ts;
 312
 313	ts.tv_nsec = nsecs % 999999999;
 314	ts.tv_sec = nsecs / 999999999;
 315
 316	nanosleep(&ts, NULL);
 317}
 318
 319static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 320{
 321	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 322	int i;
 323
 324	for (i = 0; i < 10; i++) {
 325		T0 = get_nsecs();
 326		burn_nsecs(sched, 0);
 327		T1 = get_nsecs();
 328		delta = T1-T0;
 329		min_delta = min(min_delta, delta);
 330	}
 331	sched->run_measurement_overhead = min_delta;
 332
 333	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 334}
 335
 336static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 337{
 338	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 339	int i;
 340
 341	for (i = 0; i < 10; i++) {
 342		T0 = get_nsecs();
 343		sleep_nsecs(10000);
 344		T1 = get_nsecs();
 345		delta = T1-T0;
 346		min_delta = min(min_delta, delta);
 347	}
 348	min_delta -= 10000;
 349	sched->sleep_measurement_overhead = min_delta;
 350
 351	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 352}
 353
 354static struct sched_atom *
 355get_new_event(struct task_desc *task, u64 timestamp)
 356{
 357	struct sched_atom *event = zalloc(sizeof(*event));
 358	unsigned long idx = task->nr_events;
 359	size_t size;
 360
 361	event->timestamp = timestamp;
 362	event->nr = idx;
 363
 364	task->nr_events++;
 365	size = sizeof(struct sched_atom *) * task->nr_events;
 366	task->atoms = realloc(task->atoms, size);
 367	BUG_ON(!task->atoms);
 368
 369	task->atoms[idx] = event;
 370
 371	return event;
 372}
 373
 374static struct sched_atom *last_event(struct task_desc *task)
 375{
 376	if (!task->nr_events)
 377		return NULL;
 378
 379	return task->atoms[task->nr_events - 1];
 380}
 381
 382static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 383				u64 timestamp, u64 duration)
 384{
 385	struct sched_atom *event, *curr_event = last_event(task);
 386
 387	/*
 388	 * optimize an existing RUN event by merging this one
 389	 * to it:
 390	 */
 391	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 392		sched->nr_run_events_optimized++;
 393		curr_event->duration += duration;
 394		return;
 395	}
 396
 397	event = get_new_event(task, timestamp);
 398
 399	event->type = SCHED_EVENT_RUN;
 400	event->duration = duration;
 401
 402	sched->nr_run_events++;
 403}
 404
 405static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 406				   u64 timestamp, struct task_desc *wakee)
 
 407{
 408	struct sched_atom *event, *wakee_event;
 409
 410	event = get_new_event(task, timestamp);
 411	event->type = SCHED_EVENT_WAKEUP;
 412	event->wakee = wakee;
 413
 414	wakee_event = last_event(wakee);
 415	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 416		sched->targetless_wakeups++;
 417		return;
 418	}
 419	if (wakee_event->wait_sem) {
 420		sched->multitarget_wakeups++;
 421		return;
 422	}
 423
 424	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 425	sem_init(wakee_event->wait_sem, 0, 0);
 426	wakee_event->specific_wait = 1;
 427	event->wait_sem = wakee_event->wait_sem;
 428
 429	sched->nr_wakeup_events++;
 430}
 431
 432static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 433				  u64 timestamp, u64 task_state __maybe_unused)
 
 434{
 435	struct sched_atom *event = get_new_event(task, timestamp);
 436
 437	event->type = SCHED_EVENT_SLEEP;
 438
 439	sched->nr_sleep_events++;
 440}
 441
 442static struct task_desc *register_pid(struct perf_sched *sched,
 443				      unsigned long pid, const char *comm)
 444{
 445	struct task_desc *task;
 446	static int pid_max;
 447
 448	if (sched->pid_to_task == NULL) {
 449		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 450			pid_max = MAX_PID;
 451		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 452	}
 453	if (pid >= (unsigned long)pid_max) {
 454		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 455			sizeof(struct task_desc *))) == NULL);
 456		while (pid >= (unsigned long)pid_max)
 457			sched->pid_to_task[pid_max++] = NULL;
 458	}
 459
 460	task = sched->pid_to_task[pid];
 461
 462	if (task)
 463		return task;
 464
 465	task = zalloc(sizeof(*task));
 466	task->pid = pid;
 467	task->nr = sched->nr_tasks;
 468	strcpy(task->comm, comm);
 469	/*
 470	 * every task starts in sleeping state - this gets ignored
 471	 * if there's no wakeup pointing to this sleep state:
 472	 */
 473	add_sched_event_sleep(sched, task, 0, 0);
 474
 475	sched->pid_to_task[pid] = task;
 476	sched->nr_tasks++;
 477	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 478	BUG_ON(!sched->tasks);
 479	sched->tasks[task->nr] = task;
 480
 481	if (verbose > 0)
 482		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 483
 484	return task;
 485}
 486
 487
 488static void print_task_traces(struct perf_sched *sched)
 489{
 490	struct task_desc *task;
 491	unsigned long i;
 492
 493	for (i = 0; i < sched->nr_tasks; i++) {
 494		task = sched->tasks[i];
 495		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 496			task->nr, task->comm, task->pid, task->nr_events);
 497	}
 498}
 499
 500static void add_cross_task_wakeups(struct perf_sched *sched)
 501{
 502	struct task_desc *task1, *task2;
 503	unsigned long i, j;
 504
 505	for (i = 0; i < sched->nr_tasks; i++) {
 506		task1 = sched->tasks[i];
 507		j = i + 1;
 508		if (j == sched->nr_tasks)
 509			j = 0;
 510		task2 = sched->tasks[j];
 511		add_sched_event_wakeup(sched, task1, 0, task2);
 512	}
 513}
 514
 515static void perf_sched__process_event(struct perf_sched *sched,
 516				      struct sched_atom *atom)
 517{
 518	int ret = 0;
 519
 520	switch (atom->type) {
 521		case SCHED_EVENT_RUN:
 522			burn_nsecs(sched, atom->duration);
 523			break;
 524		case SCHED_EVENT_SLEEP:
 525			if (atom->wait_sem)
 526				ret = sem_wait(atom->wait_sem);
 527			BUG_ON(ret);
 528			break;
 529		case SCHED_EVENT_WAKEUP:
 530			if (atom->wait_sem)
 531				ret = sem_post(atom->wait_sem);
 532			BUG_ON(ret);
 533			break;
 534		case SCHED_EVENT_MIGRATION:
 535			break;
 536		default:
 537			BUG_ON(1);
 538	}
 539}
 540
 541static u64 get_cpu_usage_nsec_parent(void)
 542{
 543	struct rusage ru;
 544	u64 sum;
 545	int err;
 546
 547	err = getrusage(RUSAGE_SELF, &ru);
 548	BUG_ON(err);
 549
 550	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 551	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 552
 553	return sum;
 554}
 555
 556static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 557{
 558	struct perf_event_attr attr;
 559	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 560	int fd;
 561	struct rlimit limit;
 562	bool need_privilege = false;
 563
 564	memset(&attr, 0, sizeof(attr));
 565
 566	attr.type = PERF_TYPE_SOFTWARE;
 567	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 568
 569force_again:
 570	fd = sys_perf_event_open(&attr, 0, -1, -1,
 571				 perf_event_open_cloexec_flag());
 572
 573	if (fd < 0) {
 574		if (errno == EMFILE) {
 575			if (sched->force) {
 576				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 577				limit.rlim_cur += sched->nr_tasks - cur_task;
 578				if (limit.rlim_cur > limit.rlim_max) {
 579					limit.rlim_max = limit.rlim_cur;
 580					need_privilege = true;
 581				}
 582				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 583					if (need_privilege && errno == EPERM)
 584						strcpy(info, "Need privilege\n");
 585				} else
 586					goto force_again;
 587			} else
 588				strcpy(info, "Have a try with -f option\n");
 589		}
 590		pr_err("Error: sys_perf_event_open() syscall returned "
 591		       "with %d (%s)\n%s", fd,
 592		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 593		exit(EXIT_FAILURE);
 594	}
 595	return fd;
 596}
 597
 598static u64 get_cpu_usage_nsec_self(int fd)
 599{
 600	u64 runtime;
 601	int ret;
 602
 603	ret = read(fd, &runtime, sizeof(runtime));
 604	BUG_ON(ret != sizeof(runtime));
 605
 606	return runtime;
 607}
 608
 609struct sched_thread_parms {
 610	struct task_desc  *task;
 611	struct perf_sched *sched;
 612	int fd;
 613};
 614
 615static void *thread_func(void *ctx)
 616{
 617	struct sched_thread_parms *parms = ctx;
 618	struct task_desc *this_task = parms->task;
 619	struct perf_sched *sched = parms->sched;
 620	u64 cpu_usage_0, cpu_usage_1;
 621	unsigned long i, ret;
 622	char comm2[22];
 623	int fd = parms->fd;
 624
 625	zfree(&parms);
 626
 627	sprintf(comm2, ":%s", this_task->comm);
 628	prctl(PR_SET_NAME, comm2);
 629	if (fd < 0)
 630		return NULL;
 631again:
 632	ret = sem_post(&this_task->ready_for_work);
 633	BUG_ON(ret);
 634	ret = pthread_mutex_lock(&sched->start_work_mutex);
 635	BUG_ON(ret);
 636	ret = pthread_mutex_unlock(&sched->start_work_mutex);
 637	BUG_ON(ret);
 638
 639	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 640
 641	for (i = 0; i < this_task->nr_events; i++) {
 642		this_task->curr_event = i;
 643		perf_sched__process_event(sched, this_task->atoms[i]);
 644	}
 645
 646	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 647	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 648	ret = sem_post(&this_task->work_done_sem);
 649	BUG_ON(ret);
 650
 651	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 652	BUG_ON(ret);
 653	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 654	BUG_ON(ret);
 655
 656	goto again;
 657}
 658
 659static void create_tasks(struct perf_sched *sched)
 660{
 661	struct task_desc *task;
 662	pthread_attr_t attr;
 663	unsigned long i;
 664	int err;
 665
 666	err = pthread_attr_init(&attr);
 667	BUG_ON(err);
 668	err = pthread_attr_setstacksize(&attr,
 669			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 670	BUG_ON(err);
 671	err = pthread_mutex_lock(&sched->start_work_mutex);
 672	BUG_ON(err);
 673	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 674	BUG_ON(err);
 675	for (i = 0; i < sched->nr_tasks; i++) {
 676		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 677		BUG_ON(parms == NULL);
 678		parms->task = task = sched->tasks[i];
 679		parms->sched = sched;
 680		parms->fd = self_open_counters(sched, i);
 681		sem_init(&task->sleep_sem, 0, 0);
 682		sem_init(&task->ready_for_work, 0, 0);
 683		sem_init(&task->work_done_sem, 0, 0);
 684		task->curr_event = 0;
 685		err = pthread_create(&task->thread, &attr, thread_func, parms);
 686		BUG_ON(err);
 687	}
 688}
 689
 690static void wait_for_tasks(struct perf_sched *sched)
 691{
 692	u64 cpu_usage_0, cpu_usage_1;
 693	struct task_desc *task;
 694	unsigned long i, ret;
 695
 696	sched->start_time = get_nsecs();
 697	sched->cpu_usage = 0;
 698	pthread_mutex_unlock(&sched->work_done_wait_mutex);
 699
 700	for (i = 0; i < sched->nr_tasks; i++) {
 701		task = sched->tasks[i];
 702		ret = sem_wait(&task->ready_for_work);
 703		BUG_ON(ret);
 704		sem_init(&task->ready_for_work, 0, 0);
 705	}
 706	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 707	BUG_ON(ret);
 708
 709	cpu_usage_0 = get_cpu_usage_nsec_parent();
 710
 711	pthread_mutex_unlock(&sched->start_work_mutex);
 712
 713	for (i = 0; i < sched->nr_tasks; i++) {
 714		task = sched->tasks[i];
 715		ret = sem_wait(&task->work_done_sem);
 716		BUG_ON(ret);
 717		sem_init(&task->work_done_sem, 0, 0);
 718		sched->cpu_usage += task->cpu_usage;
 719		task->cpu_usage = 0;
 720	}
 721
 722	cpu_usage_1 = get_cpu_usage_nsec_parent();
 723	if (!sched->runavg_cpu_usage)
 724		sched->runavg_cpu_usage = sched->cpu_usage;
 725	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 726
 727	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 728	if (!sched->runavg_parent_cpu_usage)
 729		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 730	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 731					 sched->parent_cpu_usage)/sched->replay_repeat;
 732
 733	ret = pthread_mutex_lock(&sched->start_work_mutex);
 734	BUG_ON(ret);
 735
 736	for (i = 0; i < sched->nr_tasks; i++) {
 737		task = sched->tasks[i];
 738		sem_init(&task->sleep_sem, 0, 0);
 739		task->curr_event = 0;
 740	}
 741}
 742
 743static void run_one_test(struct perf_sched *sched)
 744{
 745	u64 T0, T1, delta, avg_delta, fluct;
 746
 747	T0 = get_nsecs();
 748	wait_for_tasks(sched);
 749	T1 = get_nsecs();
 750
 751	delta = T1 - T0;
 752	sched->sum_runtime += delta;
 753	sched->nr_runs++;
 754
 755	avg_delta = sched->sum_runtime / sched->nr_runs;
 756	if (delta < avg_delta)
 757		fluct = avg_delta - delta;
 758	else
 759		fluct = delta - avg_delta;
 760	sched->sum_fluct += fluct;
 761	if (!sched->run_avg)
 762		sched->run_avg = delta;
 763	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 764
 765	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 
 766
 767	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 
 768
 769	printf("cpu: %0.2f / %0.2f",
 770		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 771
 772#if 0
 773	/*
 774	 * rusage statistics done by the parent, these are less
 775	 * accurate than the sched->sum_exec_runtime based statistics:
 776	 */
 777	printf(" [%0.2f / %0.2f]",
 778		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 779		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 780#endif
 781
 782	printf("\n");
 783
 784	if (sched->nr_sleep_corrections)
 785		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 786	sched->nr_sleep_corrections = 0;
 787}
 788
 789static void test_calibrations(struct perf_sched *sched)
 790{
 791	u64 T0, T1;
 792
 793	T0 = get_nsecs();
 794	burn_nsecs(sched, NSEC_PER_MSEC);
 795	T1 = get_nsecs();
 796
 797	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 798
 799	T0 = get_nsecs();
 800	sleep_nsecs(NSEC_PER_MSEC);
 801	T1 = get_nsecs();
 802
 803	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 804}
 805
 806static int
 807replay_wakeup_event(struct perf_sched *sched,
 808		    struct evsel *evsel, struct perf_sample *sample,
 809		    struct machine *machine __maybe_unused)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810{
 811	const char *comm = perf_evsel__strval(evsel, sample, "comm");
 812	const u32 pid	 = perf_evsel__intval(evsel, sample, "pid");
 813	struct task_desc *waker, *wakee;
 814
 815	if (verbose > 0) {
 816		printf("sched_wakeup event %p\n", evsel);
 817
 818		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 
 
 
 819	}
 820
 821	waker = register_pid(sched, sample->tid, "<unknown>");
 822	wakee = register_pid(sched, pid, comm);
 823
 824	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 825	return 0;
 826}
 827
 828static int replay_switch_event(struct perf_sched *sched,
 829			       struct evsel *evsel,
 830			       struct perf_sample *sample,
 831			       struct machine *machine __maybe_unused)
 832{
 833	const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
 834		   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
 835	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 836		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 837	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 838	struct task_desc *prev, __maybe_unused *next;
 839	u64 timestamp0, timestamp = sample->time;
 840	int cpu = sample->cpu;
 841	s64 delta;
 842
 843	if (verbose > 0)
 844		printf("sched_switch event %p\n", evsel);
 845
 846	if (cpu >= MAX_CPUS || cpu < 0)
 847		return 0;
 848
 849	timestamp0 = sched->cpu_last_switched[cpu];
 850	if (timestamp0)
 851		delta = timestamp - timestamp0;
 852	else
 853		delta = 0;
 854
 855	if (delta < 0) {
 856		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 857		return -1;
 858	}
 859
 860	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 861		 prev_comm, prev_pid, next_comm, next_pid, delta);
 862
 863	prev = register_pid(sched, prev_pid, prev_comm);
 864	next = register_pid(sched, next_pid, next_comm);
 
 
 
 
 865
 866	sched->cpu_last_switched[cpu] = timestamp;
 
 867
 868	add_sched_event_run(sched, prev, timestamp, delta);
 869	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 870
 871	return 0;
 
 872}
 873
 874static int replay_fork_event(struct perf_sched *sched,
 875			     union perf_event *event,
 876			     struct machine *machine)
 877{
 878	struct thread *child, *parent;
 879
 880	child = machine__findnew_thread(machine, event->fork.pid,
 881					event->fork.tid);
 882	parent = machine__findnew_thread(machine, event->fork.ppid,
 883					 event->fork.ptid);
 884
 885	if (child == NULL || parent == NULL) {
 886		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 887				 child, parent);
 888		goto out_put;
 889	}
 890
 891	if (verbose > 0) {
 892		printf("fork event\n");
 893		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 894		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 895	}
 896
 897	register_pid(sched, parent->tid, thread__comm_str(parent));
 898	register_pid(sched, child->tid, thread__comm_str(child));
 899out_put:
 900	thread__put(child);
 901	thread__put(parent);
 902	return 0;
 903}
 904
 905struct sort_dimension {
 906	const char		*name;
 907	sort_fn_t		cmp;
 908	struct list_head	list;
 909};
 910
 911/*
 912 * handle runtime stats saved per thread
 913 */
 914static struct thread_runtime *thread__init_runtime(struct thread *thread)
 915{
 916	struct thread_runtime *r;
 917
 918	r = zalloc(sizeof(struct thread_runtime));
 919	if (!r)
 920		return NULL;
 921
 922	init_stats(&r->run_stats);
 923	thread__set_priv(thread, r);
 924
 925	return r;
 926}
 927
 928static struct thread_runtime *thread__get_runtime(struct thread *thread)
 929{
 930	struct thread_runtime *tr;
 931
 932	tr = thread__priv(thread);
 933	if (tr == NULL) {
 934		tr = thread__init_runtime(thread);
 935		if (tr == NULL)
 936			pr_debug("Failed to malloc memory for runtime data.\n");
 937	}
 938
 939	return tr;
 940}
 941
 942static int
 943thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 944{
 945	struct sort_dimension *sort;
 946	int ret = 0;
 947
 948	BUG_ON(list_empty(list));
 949
 950	list_for_each_entry(sort, list, list) {
 951		ret = sort->cmp(l, r);
 952		if (ret)
 953			return ret;
 954	}
 955
 956	return ret;
 957}
 958
 959static struct work_atoms *
 960thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 961			 struct list_head *sort_list)
 962{
 963	struct rb_node *node = root->rb_root.rb_node;
 964	struct work_atoms key = { .thread = thread };
 965
 966	while (node) {
 967		struct work_atoms *atoms;
 968		int cmp;
 969
 970		atoms = container_of(node, struct work_atoms, node);
 971
 972		cmp = thread_lat_cmp(sort_list, &key, atoms);
 973		if (cmp > 0)
 974			node = node->rb_left;
 975		else if (cmp < 0)
 976			node = node->rb_right;
 977		else {
 978			BUG_ON(thread != atoms->thread);
 979			return atoms;
 980		}
 981	}
 982	return NULL;
 983}
 984
 985static void
 986__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
 987			 struct list_head *sort_list)
 988{
 989	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
 990	bool leftmost = true;
 991
 992	while (*new) {
 993		struct work_atoms *this;
 994		int cmp;
 995
 996		this = container_of(*new, struct work_atoms, node);
 997		parent = *new;
 998
 999		cmp = thread_lat_cmp(sort_list, data, this);
1000
1001		if (cmp > 0)
1002			new = &((*new)->rb_left);
1003		else {
1004			new = &((*new)->rb_right);
1005			leftmost = false;
1006		}
1007	}
1008
1009	rb_link_node(&data->node, parent, new);
1010	rb_insert_color_cached(&data->node, root, leftmost);
1011}
1012
1013static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1014{
1015	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1016	if (!atoms) {
1017		pr_err("No memory at %s\n", __func__);
1018		return -1;
1019	}
1020
1021	atoms->thread = thread__get(thread);
1022	INIT_LIST_HEAD(&atoms->work_list);
1023	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1024	return 0;
1025}
1026
1027static char sched_out_state(u64 prev_state)
 
 
 
 
 
 
 
 
 
 
 
1028{
1029	const char *str = TASK_STATE_TO_CHAR_STR;
1030
1031	return str[prev_state];
1032}
1033
1034static int
1035add_sched_out_event(struct work_atoms *atoms,
1036		    char run_state,
1037		    u64 timestamp)
1038{
1039	struct work_atom *atom = zalloc(sizeof(*atom));
1040	if (!atom) {
1041		pr_err("Non memory at %s", __func__);
1042		return -1;
1043	}
1044
1045	atom->sched_out_time = timestamp;
1046
1047	if (run_state == 'R') {
1048		atom->state = THREAD_WAIT_CPU;
1049		atom->wake_up_time = atom->sched_out_time;
1050	}
1051
1052	list_add_tail(&atom->list, &atoms->work_list);
1053	return 0;
1054}
1055
1056static void
1057add_runtime_event(struct work_atoms *atoms, u64 delta,
1058		  u64 timestamp __maybe_unused)
1059{
1060	struct work_atom *atom;
1061
1062	BUG_ON(list_empty(&atoms->work_list));
1063
1064	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1065
1066	atom->runtime += delta;
1067	atoms->total_runtime += delta;
1068}
1069
1070static void
1071add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1072{
1073	struct work_atom *atom;
1074	u64 delta;
1075
1076	if (list_empty(&atoms->work_list))
1077		return;
1078
1079	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1080
1081	if (atom->state != THREAD_WAIT_CPU)
1082		return;
1083
1084	if (timestamp < atom->wake_up_time) {
1085		atom->state = THREAD_IGNORE;
1086		return;
1087	}
1088
1089	atom->state = THREAD_SCHED_IN;
1090	atom->sched_in_time = timestamp;
1091
1092	delta = atom->sched_in_time - atom->wake_up_time;
1093	atoms->total_lat += delta;
1094	if (delta > atoms->max_lat) {
1095		atoms->max_lat = delta;
1096		atoms->max_lat_at = timestamp;
1097	}
1098	atoms->nb_atoms++;
1099}
1100
1101static int latency_switch_event(struct perf_sched *sched,
1102				struct evsel *evsel,
1103				struct perf_sample *sample,
1104				struct machine *machine)
 
 
 
1105{
1106	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1107		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1108	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1109	struct work_atoms *out_events, *in_events;
1110	struct thread *sched_out, *sched_in;
1111	u64 timestamp0, timestamp = sample->time;
1112	int cpu = sample->cpu, err = -1;
1113	s64 delta;
1114
1115	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1116
1117	timestamp0 = sched->cpu_last_switched[cpu];
1118	sched->cpu_last_switched[cpu] = timestamp;
1119	if (timestamp0)
1120		delta = timestamp - timestamp0;
1121	else
1122		delta = 0;
1123
1124	if (delta < 0) {
1125		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1126		return -1;
1127	}
1128
1129	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1130	sched_in = machine__findnew_thread(machine, -1, next_pid);
1131	if (sched_out == NULL || sched_in == NULL)
1132		goto out_put;
1133
1134	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
 
 
 
1135	if (!out_events) {
1136		if (thread_atoms_insert(sched, sched_out))
1137			goto out_put;
1138		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1139		if (!out_events) {
1140			pr_err("out-event: Internal tree error");
1141			goto out_put;
1142		}
1143	}
1144	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1145		return -1;
1146
1147	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1148	if (!in_events) {
1149		if (thread_atoms_insert(sched, sched_in))
1150			goto out_put;
1151		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1152		if (!in_events) {
1153			pr_err("in-event: Internal tree error");
1154			goto out_put;
1155		}
1156		/*
1157		 * Take came in we have not heard about yet,
1158		 * add in an initial atom in runnable state:
1159		 */
1160		if (add_sched_out_event(in_events, 'R', timestamp))
1161			goto out_put;
1162	}
1163	add_sched_in_event(in_events, timestamp);
1164	err = 0;
1165out_put:
1166	thread__put(sched_out);
1167	thread__put(sched_in);
1168	return err;
1169}
1170
1171static int latency_runtime_event(struct perf_sched *sched,
1172				 struct evsel *evsel,
1173				 struct perf_sample *sample,
1174				 struct machine *machine)
1175{
1176	const u32 pid	   = perf_evsel__intval(evsel, sample, "pid");
1177	const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1178	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1179	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1180	u64 timestamp = sample->time;
1181	int cpu = sample->cpu, err = -1;
1182
1183	if (thread == NULL)
1184		return -1;
 
 
 
 
 
 
 
 
1185
1186	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1187	if (!atoms) {
1188		if (thread_atoms_insert(sched, thread))
1189			goto out_put;
1190		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1191		if (!atoms) {
1192			pr_err("in-event: Internal tree error");
1193			goto out_put;
1194		}
1195		if (add_sched_out_event(atoms, 'R', timestamp))
1196			goto out_put;
1197	}
1198
1199	add_runtime_event(atoms, runtime, timestamp);
1200	err = 0;
1201out_put:
1202	thread__put(thread);
1203	return err;
1204}
1205
1206static int latency_wakeup_event(struct perf_sched *sched,
1207				struct evsel *evsel,
1208				struct perf_sample *sample,
1209				struct machine *machine)
 
 
 
1210{
1211	const u32 pid	  = perf_evsel__intval(evsel, sample, "pid");
1212	struct work_atoms *atoms;
1213	struct work_atom *atom;
1214	struct thread *wakee;
1215	u64 timestamp = sample->time;
1216	int err = -1;
1217
1218	wakee = machine__findnew_thread(machine, -1, pid);
1219	if (wakee == NULL)
1220		return -1;
1221	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
 
 
1222	if (!atoms) {
1223		if (thread_atoms_insert(sched, wakee))
1224			goto out_put;
1225		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1226		if (!atoms) {
1227			pr_err("wakeup-event: Internal tree error");
1228			goto out_put;
1229		}
1230		if (add_sched_out_event(atoms, 'S', timestamp))
1231			goto out_put;
1232	}
1233
1234	BUG_ON(list_empty(&atoms->work_list));
1235
1236	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1237
1238	/*
1239	 * As we do not guarantee the wakeup event happens when
1240	 * task is out of run queue, also may happen when task is
1241	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1242	 * then we should not set the ->wake_up_time when wake up a
1243	 * task which is on run queue.
1244	 *
1245	 * You WILL be missing events if you've recorded only
1246	 * one CPU, or are only looking at only one, so don't
1247	 * skip in this case.
1248	 */
1249	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1250		goto out_ok;
1251
1252	sched->nr_timestamps++;
1253	if (atom->sched_out_time > timestamp) {
1254		sched->nr_unordered_timestamps++;
1255		goto out_ok;
1256	}
1257
1258	atom->state = THREAD_WAIT_CPU;
1259	atom->wake_up_time = timestamp;
1260out_ok:
1261	err = 0;
1262out_put:
1263	thread__put(wakee);
1264	return err;
1265}
1266
1267static int latency_migrate_task_event(struct perf_sched *sched,
1268				      struct evsel *evsel,
1269				      struct perf_sample *sample,
1270				      struct machine *machine)
 
 
 
1271{
1272	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1273	u64 timestamp = sample->time;
1274	struct work_atoms *atoms;
1275	struct work_atom *atom;
1276	struct thread *migrant;
1277	int err = -1;
1278
1279	/*
1280	 * Only need to worry about migration when profiling one CPU.
1281	 */
1282	if (sched->profile_cpu == -1)
1283		return 0;
1284
1285	migrant = machine__findnew_thread(machine, -1, pid);
1286	if (migrant == NULL)
1287		return -1;
1288	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1289	if (!atoms) {
1290		if (thread_atoms_insert(sched, migrant))
1291			goto out_put;
1292		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1293		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1294		if (!atoms) {
1295			pr_err("migration-event: Internal tree error");
1296			goto out_put;
1297		}
1298		if (add_sched_out_event(atoms, 'R', timestamp))
1299			goto out_put;
1300	}
1301
1302	BUG_ON(list_empty(&atoms->work_list));
1303
1304	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1305	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1306
1307	sched->nr_timestamps++;
1308
1309	if (atom->sched_out_time > timestamp)
1310		sched->nr_unordered_timestamps++;
1311	err = 0;
1312out_put:
1313	thread__put(migrant);
1314	return err;
1315}
1316
1317static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
 
 
 
 
 
 
 
 
1318{
1319	int i;
1320	int ret;
1321	u64 avg;
1322	char max_lat_at[32];
1323
1324	if (!work_list->nb_atoms)
1325		return;
1326	/*
1327	 * Ignore idle threads:
1328	 */
1329	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1330		return;
1331
1332	sched->all_runtime += work_list->total_runtime;
1333	sched->all_count   += work_list->nb_atoms;
1334
1335	if (work_list->num_merged > 1)
1336		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1337	else
1338		ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1339
1340	for (i = 0; i < 24 - ret; i++)
1341		printf(" ");
1342
1343	avg = work_list->total_lat / work_list->nb_atoms;
1344	timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1345
1346	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1347	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1348		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1349		 (double)work_list->max_lat / NSEC_PER_MSEC,
1350		 max_lat_at);
1351}
1352
1353static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1354{
1355	if (l->thread == r->thread)
1356		return 0;
1357	if (l->thread->tid < r->thread->tid)
1358		return -1;
1359	if (l->thread->tid > r->thread->tid)
1360		return 1;
1361	return (int)(l->thread - r->thread);
 
1362}
1363
 
 
 
 
 
1364static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1365{
1366	u64 avgl, avgr;
1367
1368	if (!l->nb_atoms)
1369		return -1;
1370
1371	if (!r->nb_atoms)
1372		return 1;
1373
1374	avgl = l->total_lat / l->nb_atoms;
1375	avgr = r->total_lat / r->nb_atoms;
1376
1377	if (avgl < avgr)
1378		return -1;
1379	if (avgl > avgr)
1380		return 1;
1381
1382	return 0;
1383}
1384
 
 
 
 
 
1385static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1386{
1387	if (l->max_lat < r->max_lat)
1388		return -1;
1389	if (l->max_lat > r->max_lat)
1390		return 1;
1391
1392	return 0;
1393}
1394
 
 
 
 
 
1395static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1396{
1397	if (l->nb_atoms < r->nb_atoms)
1398		return -1;
1399	if (l->nb_atoms > r->nb_atoms)
1400		return 1;
1401
1402	return 0;
1403}
1404
 
 
 
 
 
1405static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1406{
1407	if (l->total_runtime < r->total_runtime)
1408		return -1;
1409	if (l->total_runtime > r->total_runtime)
1410		return 1;
1411
1412	return 0;
1413}
1414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1415static int sort_dimension__add(const char *tok, struct list_head *list)
1416{
1417	size_t i;
1418	static struct sort_dimension avg_sort_dimension = {
1419		.name = "avg",
1420		.cmp  = avg_cmp,
1421	};
1422	static struct sort_dimension max_sort_dimension = {
1423		.name = "max",
1424		.cmp  = max_cmp,
1425	};
1426	static struct sort_dimension pid_sort_dimension = {
1427		.name = "pid",
1428		.cmp  = pid_cmp,
1429	};
1430	static struct sort_dimension runtime_sort_dimension = {
1431		.name = "runtime",
1432		.cmp  = runtime_cmp,
1433	};
1434	static struct sort_dimension switch_sort_dimension = {
1435		.name = "switch",
1436		.cmp  = switch_cmp,
1437	};
1438	struct sort_dimension *available_sorts[] = {
1439		&pid_sort_dimension,
1440		&avg_sort_dimension,
1441		&max_sort_dimension,
1442		&switch_sort_dimension,
1443		&runtime_sort_dimension,
1444	};
1445
1446	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1447		if (!strcmp(available_sorts[i]->name, tok)) {
1448			list_add_tail(&available_sorts[i]->list, list);
1449
1450			return 0;
1451		}
1452	}
1453
1454	return -1;
1455}
1456
1457static void perf_sched__sort_lat(struct perf_sched *sched)
 
 
1458{
1459	struct rb_node *node;
1460	struct rb_root_cached *root = &sched->atom_root;
1461again:
1462	for (;;) {
1463		struct work_atoms *data;
1464		node = rb_first_cached(root);
1465		if (!node)
1466			break;
1467
1468		rb_erase_cached(node, root);
1469		data = rb_entry(node, struct work_atoms, node);
1470		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1471	}
1472	if (root == &sched->atom_root) {
1473		root = &sched->merged_atom_root;
1474		goto again;
1475	}
1476}
1477
1478static int process_sched_wakeup_event(struct perf_tool *tool,
1479				      struct evsel *evsel,
1480				      struct perf_sample *sample,
1481				      struct machine *machine)
1482{
1483	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1484
1485	if (sched->tp_handler->wakeup_event)
1486		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1487
1488	return 0;
1489}
1490
1491union map_priv {
1492	void	*ptr;
1493	bool	 color;
1494};
1495
1496static bool thread__has_color(struct thread *thread)
1497{
1498	union map_priv priv = {
1499		.ptr = thread__priv(thread),
1500	};
1501
1502	return priv.color;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1503}
1504
1505static struct thread*
1506map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1507{
1508	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1509	union map_priv priv = {
1510		.color = false,
1511	};
1512
1513	if (!sched->map.color_pids || !thread || thread__priv(thread))
1514		return thread;
1515
1516	if (thread_map__has(sched->map.color_pids, tid))
1517		priv.color = true;
1518
1519	thread__set_priv(thread, priv.ptr);
1520	return thread;
1521}
1522
1523static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1524			    struct perf_sample *sample, struct machine *machine)
 
 
 
 
 
1525{
1526	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1527	struct thread *sched_in;
1528	struct thread_runtime *tr;
1529	int new_shortname;
1530	u64 timestamp0, timestamp = sample->time;
1531	s64 delta;
1532	int i, this_cpu = sample->cpu;
1533	int cpus_nr;
1534	bool new_cpu = false;
1535	const char *color = PERF_COLOR_NORMAL;
1536	char stimestamp[32];
1537
1538	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1539
1540	if (this_cpu > sched->max_cpu)
1541		sched->max_cpu = this_cpu;
1542
1543	if (sched->map.comp) {
1544		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1545		if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1546			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1547			new_cpu = true;
1548		}
1549	} else
1550		cpus_nr = sched->max_cpu;
1551
1552	timestamp0 = sched->cpu_last_switched[this_cpu];
1553	sched->cpu_last_switched[this_cpu] = timestamp;
1554	if (timestamp0)
1555		delta = timestamp - timestamp0;
1556	else
1557		delta = 0;
1558
1559	if (delta < 0) {
1560		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1561		return -1;
1562	}
1563
1564	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1565	if (sched_in == NULL)
1566		return -1;
1567
1568	tr = thread__get_runtime(sched_in);
1569	if (tr == NULL) {
1570		thread__put(sched_in);
1571		return -1;
1572	}
1573
1574	sched->curr_thread[this_cpu] = thread__get(sched_in);
1575
1576	printf("  ");
1577
1578	new_shortname = 0;
1579	if (!tr->shortname[0]) {
1580		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1581			/*
1582			 * Don't allocate a letter-number for swapper:0
1583			 * as a shortname. Instead, we use '.' for it.
1584			 */
1585			tr->shortname[0] = '.';
1586			tr->shortname[1] = ' ';
1587		} else {
1588			tr->shortname[0] = sched->next_shortname1;
1589			tr->shortname[1] = sched->next_shortname2;
1590
1591			if (sched->next_shortname1 < 'Z') {
1592				sched->next_shortname1++;
 
 
 
 
1593			} else {
1594				sched->next_shortname1 = 'A';
1595				if (sched->next_shortname2 < '9')
1596					sched->next_shortname2++;
1597				else
1598					sched->next_shortname2 = '0';
1599			}
1600		}
1601		new_shortname = 1;
1602	}
1603
1604	for (i = 0; i < cpus_nr; i++) {
1605		int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1606		struct thread *curr_thread = sched->curr_thread[cpu];
1607		struct thread_runtime *curr_tr;
1608		const char *pid_color = color;
1609		const char *cpu_color = color;
1610
1611		if (curr_thread && thread__has_color(curr_thread))
1612			pid_color = COLOR_PIDS;
1613
1614		if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1615			continue;
1616
1617		if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1618			cpu_color = COLOR_CPUS;
1619
1620		if (cpu != this_cpu)
1621			color_fprintf(stdout, color, " ");
1622		else
1623			color_fprintf(stdout, cpu_color, "*");
1624
1625		if (sched->curr_thread[cpu]) {
1626			curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1627			if (curr_tr == NULL) {
1628				thread__put(sched_in);
1629				return -1;
1630			}
1631			color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1632		} else
1633			color_fprintf(stdout, color, "   ");
1634	}
1635
1636	if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1637		goto out;
1638
1639	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1640	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1641	if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1642		const char *pid_color = color;
1643
1644		if (thread__has_color(sched_in))
1645			pid_color = COLOR_PIDS;
1646
1647		color_fprintf(stdout, pid_color, "%s => %s:%d",
1648		       tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1649		tr->comm_changed = false;
1650	}
1651
1652	if (sched->map.comp && new_cpu)
1653		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1654
1655out:
1656	color_fprintf(stdout, color, "\n");
1657
1658	thread__put(sched_in);
1659
1660	return 0;
1661}
1662
1663static int process_sched_switch_event(struct perf_tool *tool,
1664				      struct evsel *evsel,
1665				      struct perf_sample *sample,
1666				      struct machine *machine)
1667{
1668	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1669	int this_cpu = sample->cpu, err = 0;
1670	u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1671	    next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1672
1673	if (sched->curr_pid[this_cpu] != (u32)-1) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1674		/*
1675		 * Are we trying to switch away a PID that is
1676		 * not current?
1677		 */
1678		if (sched->curr_pid[this_cpu] != prev_pid)
1679			sched->nr_context_switch_bugs++;
1680	}
 
 
 
1681
1682	if (sched->tp_handler->switch_event)
1683		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1684
1685	sched->curr_pid[this_cpu] = next_pid;
1686	return err;
1687}
1688
1689static int process_sched_runtime_event(struct perf_tool *tool,
1690				       struct evsel *evsel,
1691				       struct perf_sample *sample,
1692				       struct machine *machine)
1693{
1694	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1695
1696	if (sched->tp_handler->runtime_event)
1697		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
 
 
 
 
1698
1699	return 0;
 
1700}
1701
1702static int perf_sched__process_fork_event(struct perf_tool *tool,
1703					  union perf_event *event,
1704					  struct perf_sample *sample,
1705					  struct machine *machine)
1706{
1707	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1708
1709	/* run the fork event through the perf machineruy */
1710	perf_event__process_fork(tool, event, sample, machine);
1711
1712	/* and then run additional processing needed for this command */
1713	if (sched->tp_handler->fork_event)
1714		return sched->tp_handler->fork_event(sched, event, machine);
1715
1716	return 0;
 
 
 
 
1717}
1718
1719static int process_sched_migrate_task_event(struct perf_tool *tool,
1720					    struct evsel *evsel,
1721					    struct perf_sample *sample,
1722					    struct machine *machine)
 
1723{
1724	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1725
1726	if (sched->tp_handler->migrate_task_event)
1727		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1728
1729	return 0;
1730}
1731
1732typedef int (*tracepoint_handler)(struct perf_tool *tool,
1733				  struct evsel *evsel,
1734				  struct perf_sample *sample,
1735				  struct machine *machine);
1736
1737static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1738						 union perf_event *event __maybe_unused,
1739						 struct perf_sample *sample,
1740						 struct evsel *evsel,
1741						 struct machine *machine)
1742{
1743	int err = 0;
1744
1745	if (evsel->handler != NULL) {
1746		tracepoint_handler f = evsel->handler;
1747		err = f(tool, evsel, sample, machine);
1748	}
1749
1750	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1751}
1752
1753static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1754				    union perf_event *event,
1755				    struct perf_sample *sample,
1756				    struct machine *machine)
1757{
1758	struct thread *thread;
1759	struct thread_runtime *tr;
1760	int err;
1761
1762	err = perf_event__process_comm(tool, event, sample, machine);
1763	if (err)
1764		return err;
1765
1766	thread = machine__find_thread(machine, sample->pid, sample->tid);
1767	if (!thread) {
1768		pr_err("Internal error: can't find thread\n");
1769		return -1;
1770	}
1771
1772	tr = thread__get_runtime(thread);
1773	if (tr == NULL) {
1774		thread__put(thread);
1775		return -1;
1776	}
1777
1778	tr->comm_changed = true;
1779	thread__put(thread);
1780
1781	return 0;
1782}
1783
1784static int perf_sched__read_events(struct perf_sched *sched)
1785{
1786	const struct evsel_str_handler handlers[] = {
1787		{ "sched:sched_switch",	      process_sched_switch_event, },
1788		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1789		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1790		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1791		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1792	};
1793	struct perf_session *session;
1794	struct perf_data data = {
1795		.path  = input_name,
1796		.mode  = PERF_DATA_MODE_READ,
1797		.force = sched->force,
1798	};
1799	int rc = -1;
1800
1801	session = perf_session__new(&data, false, &sched->tool);
1802	if (IS_ERR(session)) {
1803		pr_debug("Error creating perf session");
1804		return PTR_ERR(session);
1805	}
1806
1807	symbol__init(&session->header.env);
1808
1809	if (perf_session__set_tracepoints_handlers(session, handlers))
1810		goto out_delete;
1811
1812	if (perf_session__has_traces(session, "record -R")) {
1813		int err = perf_session__process_events(session);
1814		if (err) {
1815			pr_err("Failed to process events, error %d", err);
1816			goto out_delete;
1817		}
1818
1819		sched->nr_events      = session->evlist->stats.nr_events[0];
1820		sched->nr_lost_events = session->evlist->stats.total_lost;
1821		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1822	}
1823
1824	rc = 0;
1825out_delete:
1826	perf_session__delete(session);
1827	return rc;
1828}
1829
1830/*
1831 * scheduling times are printed as msec.usec
1832 */
1833static inline void print_sched_time(unsigned long long nsecs, int width)
1834{
1835	unsigned long msecs;
1836	unsigned long usecs;
1837
1838	msecs  = nsecs / NSEC_PER_MSEC;
1839	nsecs -= msecs * NSEC_PER_MSEC;
1840	usecs  = nsecs / NSEC_PER_USEC;
1841	printf("%*lu.%03lu ", width, msecs, usecs);
1842}
1843
1844/*
1845 * returns runtime data for event, allocating memory for it the
1846 * first time it is used.
1847 */
1848static struct evsel_runtime *perf_evsel__get_runtime(struct evsel *evsel)
1849{
1850	struct evsel_runtime *r = evsel->priv;
1851
1852	if (r == NULL) {
1853		r = zalloc(sizeof(struct evsel_runtime));
1854		evsel->priv = r;
1855	}
1856
1857	return r;
1858}
1859
1860/*
1861 * save last time event was seen per cpu
1862 */
1863static void perf_evsel__save_time(struct evsel *evsel,
1864				  u64 timestamp, u32 cpu)
1865{
1866	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1867
1868	if (r == NULL)
1869		return;
1870
1871	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1872		int i, n = __roundup_pow_of_two(cpu+1);
1873		void *p = r->last_time;
1874
1875		p = realloc(r->last_time, n * sizeof(u64));
1876		if (!p)
1877			return;
1878
1879		r->last_time = p;
1880		for (i = r->ncpu; i < n; ++i)
1881			r->last_time[i] = (u64) 0;
1882
1883		r->ncpu = n;
1884	}
1885
1886	r->last_time[cpu] = timestamp;
1887}
1888
1889/* returns last time this event was seen on the given cpu */
1890static u64 perf_evsel__get_time(struct evsel *evsel, u32 cpu)
1891{
1892	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1893
1894	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1895		return 0;
1896
1897	return r->last_time[cpu];
1898}
1899
1900static int comm_width = 30;
1901
1902static char *timehist_get_commstr(struct thread *thread)
1903{
1904	static char str[32];
1905	const char *comm = thread__comm_str(thread);
1906	pid_t tid = thread->tid;
1907	pid_t pid = thread->pid_;
1908	int n;
1909
1910	if (pid == 0)
1911		n = scnprintf(str, sizeof(str), "%s", comm);
1912
1913	else if (tid != pid)
1914		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1915
1916	else
1917		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1918
1919	if (n > comm_width)
1920		comm_width = n;
1921
1922	return str;
1923}
1924
1925static void timehist_header(struct perf_sched *sched)
1926{
1927	u32 ncpus = sched->max_cpu + 1;
1928	u32 i, j;
1929
1930	printf("%15s %6s ", "time", "cpu");
1931
1932	if (sched->show_cpu_visual) {
1933		printf(" ");
1934		for (i = 0, j = 0; i < ncpus; ++i) {
1935			printf("%x", j++);
1936			if (j > 15)
1937				j = 0;
1938		}
1939		printf(" ");
1940	}
1941
1942	printf(" %-*s  %9s  %9s  %9s", comm_width,
1943		"task name", "wait time", "sch delay", "run time");
1944
1945	if (sched->show_state)
1946		printf("  %s", "state");
1947
1948	printf("\n");
1949
1950	/*
1951	 * units row
1952	 */
1953	printf("%15s %-6s ", "", "");
1954
1955	if (sched->show_cpu_visual)
1956		printf(" %*s ", ncpus, "");
1957
1958	printf(" %-*s  %9s  %9s  %9s", comm_width,
1959	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
1960
1961	if (sched->show_state)
1962		printf("  %5s", "");
1963
1964	printf("\n");
1965
1966	/*
1967	 * separator
1968	 */
1969	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1970
1971	if (sched->show_cpu_visual)
1972		printf(" %.*s ", ncpus, graph_dotted_line);
1973
1974	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1975		graph_dotted_line, graph_dotted_line, graph_dotted_line,
1976		graph_dotted_line);
1977
1978	if (sched->show_state)
1979		printf("  %.5s", graph_dotted_line);
1980
1981	printf("\n");
1982}
1983
1984static char task_state_char(struct thread *thread, int state)
1985{
1986	static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1987	unsigned bit = state ? ffs(state) : 0;
1988
1989	/* 'I' for idle */
1990	if (thread->tid == 0)
1991		return 'I';
1992
1993	return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1994}
1995
1996static void timehist_print_sample(struct perf_sched *sched,
1997				  struct evsel *evsel,
1998				  struct perf_sample *sample,
1999				  struct addr_location *al,
2000				  struct thread *thread,
2001				  u64 t, int state)
2002{
2003	struct thread_runtime *tr = thread__priv(thread);
2004	const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
2005	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
2006	u32 max_cpus = sched->max_cpu + 1;
2007	char tstr[64];
2008	char nstr[30];
2009	u64 wait_time;
2010
2011	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2012	printf("%15s [%04d] ", tstr, sample->cpu);
2013
2014	if (sched->show_cpu_visual) {
2015		u32 i;
2016		char c;
2017
2018		printf(" ");
2019		for (i = 0; i < max_cpus; ++i) {
2020			/* flag idle times with 'i'; others are sched events */
2021			if (i == sample->cpu)
2022				c = (thread->tid == 0) ? 'i' : 's';
2023			else
2024				c = ' ';
2025			printf("%c", c);
2026		}
2027		printf(" ");
2028	}
2029
2030	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2031
2032	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2033	print_sched_time(wait_time, 6);
2034
2035	print_sched_time(tr->dt_delay, 6);
2036	print_sched_time(tr->dt_run, 6);
2037
2038	if (sched->show_state)
2039		printf(" %5c ", task_state_char(thread, state));
2040
2041	if (sched->show_next) {
2042		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2043		printf(" %-*s", comm_width, nstr);
2044	}
2045
2046	if (sched->show_wakeups && !sched->show_next)
2047		printf("  %-*s", comm_width, "");
2048
2049	if (thread->tid == 0)
2050		goto out;
2051
2052	if (sched->show_callchain)
2053		printf("  ");
2054
2055	sample__fprintf_sym(sample, al, 0,
2056			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2057			    EVSEL__PRINT_CALLCHAIN_ARROW |
2058			    EVSEL__PRINT_SKIP_IGNORED,
2059			    &callchain_cursor, symbol_conf.bt_stop_list,  stdout);
2060
2061out:
2062	printf("\n");
2063}
2064
2065/*
2066 * Explanation of delta-time stats:
2067 *
2068 *            t = time of current schedule out event
2069 *        tprev = time of previous sched out event
2070 *                also time of schedule-in event for current task
2071 *    last_time = time of last sched change event for current task
2072 *                (i.e, time process was last scheduled out)
2073 * ready_to_run = time of wakeup for current task
2074 *
2075 * -----|------------|------------|------------|------
2076 *    last         ready        tprev          t
2077 *    time         to run
2078 *
2079 *      |-------- dt_wait --------|
2080 *                   |- dt_delay -|-- dt_run --|
2081 *
2082 *   dt_run = run time of current task
2083 *  dt_wait = time between last schedule out event for task and tprev
2084 *            represents time spent off the cpu
2085 * dt_delay = time between wakeup and schedule-in of task
2086 */
2087
2088static void timehist_update_runtime_stats(struct thread_runtime *r,
2089					 u64 t, u64 tprev)
2090{
2091	r->dt_delay   = 0;
2092	r->dt_sleep   = 0;
2093	r->dt_iowait  = 0;
2094	r->dt_preempt = 0;
2095	r->dt_run     = 0;
2096
2097	if (tprev) {
2098		r->dt_run = t - tprev;
2099		if (r->ready_to_run) {
2100			if (r->ready_to_run > tprev)
2101				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2102			else
2103				r->dt_delay = tprev - r->ready_to_run;
2104		}
2105
2106		if (r->last_time > tprev)
2107			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2108		else if (r->last_time) {
2109			u64 dt_wait = tprev - r->last_time;
2110
2111			if (r->last_state == TASK_RUNNING)
2112				r->dt_preempt = dt_wait;
2113			else if (r->last_state == TASK_UNINTERRUPTIBLE)
2114				r->dt_iowait = dt_wait;
2115			else
2116				r->dt_sleep = dt_wait;
2117		}
2118	}
2119
2120	update_stats(&r->run_stats, r->dt_run);
2121
2122	r->total_run_time     += r->dt_run;
2123	r->total_delay_time   += r->dt_delay;
2124	r->total_sleep_time   += r->dt_sleep;
2125	r->total_iowait_time  += r->dt_iowait;
2126	r->total_preempt_time += r->dt_preempt;
2127}
2128
2129static bool is_idle_sample(struct perf_sample *sample,
2130			   struct evsel *evsel)
2131{
2132	/* pid 0 == swapper == idle task */
2133	if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2134		return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2135
2136	return sample->pid == 0;
2137}
2138
2139static void save_task_callchain(struct perf_sched *sched,
2140				struct perf_sample *sample,
2141				struct evsel *evsel,
2142				struct machine *machine)
2143{
2144	struct callchain_cursor *cursor = &callchain_cursor;
2145	struct thread *thread;
2146
2147	/* want main thread for process - has maps */
2148	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2149	if (thread == NULL) {
2150		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2151		return;
2152	}
2153
2154	if (!sched->show_callchain || sample->callchain == NULL)
2155		return;
2156
2157	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2158				      NULL, NULL, sched->max_stack + 2) != 0) {
2159		if (verbose > 0)
2160			pr_err("Failed to resolve callchain. Skipping\n");
2161
2162		return;
2163	}
2164
2165	callchain_cursor_commit(cursor);
2166
2167	while (true) {
2168		struct callchain_cursor_node *node;
2169		struct symbol *sym;
2170
2171		node = callchain_cursor_current(cursor);
2172		if (node == NULL)
2173			break;
2174
2175		sym = node->sym;
2176		if (sym) {
2177			if (!strcmp(sym->name, "schedule") ||
2178			    !strcmp(sym->name, "__schedule") ||
2179			    !strcmp(sym->name, "preempt_schedule"))
2180				sym->ignore = 1;
2181		}
2182
2183		callchain_cursor_advance(cursor);
2184	}
2185}
2186
2187static int init_idle_thread(struct thread *thread)
2188{
2189	struct idle_thread_runtime *itr;
2190
2191	thread__set_comm(thread, idle_comm, 0);
2192
2193	itr = zalloc(sizeof(*itr));
2194	if (itr == NULL)
2195		return -ENOMEM;
2196
2197	init_stats(&itr->tr.run_stats);
2198	callchain_init(&itr->callchain);
2199	callchain_cursor_reset(&itr->cursor);
2200	thread__set_priv(thread, itr);
2201
2202	return 0;
2203}
2204
2205/*
2206 * Track idle stats per cpu by maintaining a local thread
2207 * struct for the idle task on each cpu.
2208 */
2209static int init_idle_threads(int ncpu)
2210{
2211	int i, ret;
2212
2213	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2214	if (!idle_threads)
2215		return -ENOMEM;
2216
2217	idle_max_cpu = ncpu;
2218
2219	/* allocate the actual thread struct if needed */
2220	for (i = 0; i < ncpu; ++i) {
2221		idle_threads[i] = thread__new(0, 0);
2222		if (idle_threads[i] == NULL)
2223			return -ENOMEM;
2224
2225		ret = init_idle_thread(idle_threads[i]);
2226		if (ret < 0)
2227			return ret;
2228	}
2229
2230	return 0;
2231}
2232
2233static void free_idle_threads(void)
2234{
2235	int i;
2236
2237	if (idle_threads == NULL)
2238		return;
2239
2240	for (i = 0; i < idle_max_cpu; ++i) {
2241		if ((idle_threads[i]))
2242			thread__delete(idle_threads[i]);
2243	}
2244
2245	free(idle_threads);
2246}
2247
2248static struct thread *get_idle_thread(int cpu)
2249{
2250	/*
2251	 * expand/allocate array of pointers to local thread
2252	 * structs if needed
2253	 */
2254	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2255		int i, j = __roundup_pow_of_two(cpu+1);
2256		void *p;
2257
2258		p = realloc(idle_threads, j * sizeof(struct thread *));
2259		if (!p)
2260			return NULL;
2261
2262		idle_threads = (struct thread **) p;
2263		for (i = idle_max_cpu; i < j; ++i)
2264			idle_threads[i] = NULL;
2265
2266		idle_max_cpu = j;
2267	}
2268
2269	/* allocate a new thread struct if needed */
2270	if (idle_threads[cpu] == NULL) {
2271		idle_threads[cpu] = thread__new(0, 0);
2272
2273		if (idle_threads[cpu]) {
2274			if (init_idle_thread(idle_threads[cpu]) < 0)
2275				return NULL;
2276		}
2277	}
2278
2279	return idle_threads[cpu];
2280}
2281
2282static void save_idle_callchain(struct perf_sched *sched,
2283				struct idle_thread_runtime *itr,
2284				struct perf_sample *sample)
2285{
2286	if (!sched->show_callchain || sample->callchain == NULL)
2287		return;
2288
2289	callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2290}
2291
2292static struct thread *timehist_get_thread(struct perf_sched *sched,
2293					  struct perf_sample *sample,
2294					  struct machine *machine,
2295					  struct evsel *evsel)
2296{
2297	struct thread *thread;
2298
2299	if (is_idle_sample(sample, evsel)) {
2300		thread = get_idle_thread(sample->cpu);
2301		if (thread == NULL)
2302			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2303
2304	} else {
2305		/* there were samples with tid 0 but non-zero pid */
2306		thread = machine__findnew_thread(machine, sample->pid,
2307						 sample->tid ?: sample->pid);
2308		if (thread == NULL) {
2309			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2310				 sample->tid);
2311		}
2312
2313		save_task_callchain(sched, sample, evsel, machine);
2314		if (sched->idle_hist) {
2315			struct thread *idle;
2316			struct idle_thread_runtime *itr;
2317
2318			idle = get_idle_thread(sample->cpu);
2319			if (idle == NULL) {
2320				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2321				return NULL;
2322			}
2323
2324			itr = thread__priv(idle);
2325			if (itr == NULL)
2326				return NULL;
2327
2328			itr->last_thread = thread;
2329
2330			/* copy task callchain when entering to idle */
2331			if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2332				save_idle_callchain(sched, itr, sample);
2333		}
2334	}
2335
2336	return thread;
2337}
2338
2339static bool timehist_skip_sample(struct perf_sched *sched,
2340				 struct thread *thread,
2341				 struct evsel *evsel,
2342				 struct perf_sample *sample)
2343{
2344	bool rc = false;
2345
2346	if (thread__is_filtered(thread)) {
2347		rc = true;
2348		sched->skipped_samples++;
2349	}
2350
2351	if (sched->idle_hist) {
2352		if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2353			rc = true;
2354		else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2355			 perf_evsel__intval(evsel, sample, "next_pid") != 0)
2356			rc = true;
2357	}
2358
2359	return rc;
2360}
2361
2362static void timehist_print_wakeup_event(struct perf_sched *sched,
2363					struct evsel *evsel,
2364					struct perf_sample *sample,
2365					struct machine *machine,
2366					struct thread *awakened)
2367{
2368	struct thread *thread;
2369	char tstr[64];
2370
2371	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2372	if (thread == NULL)
2373		return;
2374
2375	/* show wakeup unless both awakee and awaker are filtered */
2376	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2377	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2378		return;
2379	}
2380
2381	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2382	printf("%15s [%04d] ", tstr, sample->cpu);
2383	if (sched->show_cpu_visual)
2384		printf(" %*s ", sched->max_cpu + 1, "");
2385
2386	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2387
2388	/* dt spacer */
2389	printf("  %9s  %9s  %9s ", "", "", "");
2390
2391	printf("awakened: %s", timehist_get_commstr(awakened));
2392
2393	printf("\n");
2394}
2395
2396static int timehist_sched_wakeup_event(struct perf_tool *tool,
2397				       union perf_event *event __maybe_unused,
2398				       struct evsel *evsel,
2399				       struct perf_sample *sample,
2400				       struct machine *machine)
2401{
2402	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2403	struct thread *thread;
2404	struct thread_runtime *tr = NULL;
2405	/* want pid of awakened task not pid in sample */
2406	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2407
2408	thread = machine__findnew_thread(machine, 0, pid);
2409	if (thread == NULL)
2410		return -1;
2411
2412	tr = thread__get_runtime(thread);
2413	if (tr == NULL)
2414		return -1;
2415
2416	if (tr->ready_to_run == 0)
2417		tr->ready_to_run = sample->time;
2418
2419	/* show wakeups if requested */
2420	if (sched->show_wakeups &&
2421	    !perf_time__skip_sample(&sched->ptime, sample->time))
2422		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2423
2424	return 0;
2425}
2426
2427static void timehist_print_migration_event(struct perf_sched *sched,
2428					struct evsel *evsel,
2429					struct perf_sample *sample,
2430					struct machine *machine,
2431					struct thread *migrated)
2432{
2433	struct thread *thread;
2434	char tstr[64];
2435	u32 max_cpus = sched->max_cpu + 1;
2436	u32 ocpu, dcpu;
2437
2438	if (sched->summary_only)
2439		return;
2440
2441	max_cpus = sched->max_cpu + 1;
2442	ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2443	dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2444
2445	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2446	if (thread == NULL)
2447		return;
2448
2449	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2450	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2451		return;
2452	}
2453
2454	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2455	printf("%15s [%04d] ", tstr, sample->cpu);
2456
2457	if (sched->show_cpu_visual) {
2458		u32 i;
2459		char c;
2460
2461		printf("  ");
2462		for (i = 0; i < max_cpus; ++i) {
2463			c = (i == sample->cpu) ? 'm' : ' ';
2464			printf("%c", c);
2465		}
2466		printf("  ");
2467	}
2468
2469	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2470
2471	/* dt spacer */
2472	printf("  %9s  %9s  %9s ", "", "", "");
2473
2474	printf("migrated: %s", timehist_get_commstr(migrated));
2475	printf(" cpu %d => %d", ocpu, dcpu);
2476
2477	printf("\n");
2478}
2479
2480static int timehist_migrate_task_event(struct perf_tool *tool,
2481				       union perf_event *event __maybe_unused,
2482				       struct evsel *evsel,
2483				       struct perf_sample *sample,
2484				       struct machine *machine)
2485{
2486	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2487	struct thread *thread;
2488	struct thread_runtime *tr = NULL;
2489	/* want pid of migrated task not pid in sample */
2490	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2491
2492	thread = machine__findnew_thread(machine, 0, pid);
2493	if (thread == NULL)
2494		return -1;
2495
2496	tr = thread__get_runtime(thread);
2497	if (tr == NULL)
2498		return -1;
2499
2500	tr->migrations++;
2501
2502	/* show migrations if requested */
2503	timehist_print_migration_event(sched, evsel, sample, machine, thread);
2504
2505	return 0;
2506}
2507
2508static int timehist_sched_change_event(struct perf_tool *tool,
2509				       union perf_event *event,
2510				       struct evsel *evsel,
2511				       struct perf_sample *sample,
2512				       struct machine *machine)
2513{
2514	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2515	struct perf_time_interval *ptime = &sched->ptime;
2516	struct addr_location al;
2517	struct thread *thread;
2518	struct thread_runtime *tr = NULL;
2519	u64 tprev, t = sample->time;
2520	int rc = 0;
2521	int state = perf_evsel__intval(evsel, sample, "prev_state");
2522
2523
2524	if (machine__resolve(machine, &al, sample) < 0) {
2525		pr_err("problem processing %d event. skipping it\n",
2526		       event->header.type);
2527		rc = -1;
2528		goto out;
2529	}
2530
2531	thread = timehist_get_thread(sched, sample, machine, evsel);
2532	if (thread == NULL) {
2533		rc = -1;
2534		goto out;
2535	}
2536
2537	if (timehist_skip_sample(sched, thread, evsel, sample))
2538		goto out;
2539
2540	tr = thread__get_runtime(thread);
2541	if (tr == NULL) {
2542		rc = -1;
2543		goto out;
2544	}
2545
2546	tprev = perf_evsel__get_time(evsel, sample->cpu);
2547
2548	/*
2549	 * If start time given:
2550	 * - sample time is under window user cares about - skip sample
2551	 * - tprev is under window user cares about  - reset to start of window
2552	 */
2553	if (ptime->start && ptime->start > t)
2554		goto out;
2555
2556	if (tprev && ptime->start > tprev)
2557		tprev = ptime->start;
2558
2559	/*
2560	 * If end time given:
2561	 * - previous sched event is out of window - we are done
2562	 * - sample time is beyond window user cares about - reset it
2563	 *   to close out stats for time window interest
2564	 */
2565	if (ptime->end) {
2566		if (tprev > ptime->end)
2567			goto out;
2568
2569		if (t > ptime->end)
2570			t = ptime->end;
2571	}
2572
2573	if (!sched->idle_hist || thread->tid == 0) {
2574		timehist_update_runtime_stats(tr, t, tprev);
2575
2576		if (sched->idle_hist) {
2577			struct idle_thread_runtime *itr = (void *)tr;
2578			struct thread_runtime *last_tr;
2579
2580			BUG_ON(thread->tid != 0);
2581
2582			if (itr->last_thread == NULL)
2583				goto out;
2584
2585			/* add current idle time as last thread's runtime */
2586			last_tr = thread__get_runtime(itr->last_thread);
2587			if (last_tr == NULL)
2588				goto out;
2589
2590			timehist_update_runtime_stats(last_tr, t, tprev);
2591			/*
2592			 * remove delta time of last thread as it's not updated
2593			 * and otherwise it will show an invalid value next
2594			 * time.  we only care total run time and run stat.
2595			 */
2596			last_tr->dt_run = 0;
2597			last_tr->dt_delay = 0;
2598			last_tr->dt_sleep = 0;
2599			last_tr->dt_iowait = 0;
2600			last_tr->dt_preempt = 0;
2601
2602			if (itr->cursor.nr)
2603				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2604
2605			itr->last_thread = NULL;
2606		}
2607	}
2608
2609	if (!sched->summary_only)
2610		timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2611
2612out:
2613	if (sched->hist_time.start == 0 && t >= ptime->start)
2614		sched->hist_time.start = t;
2615	if (ptime->end == 0 || t <= ptime->end)
2616		sched->hist_time.end = t;
2617
2618	if (tr) {
2619		/* time of this sched_switch event becomes last time task seen */
2620		tr->last_time = sample->time;
2621
2622		/* last state is used to determine where to account wait time */
2623		tr->last_state = state;
2624
2625		/* sched out event for task so reset ready to run time */
2626		tr->ready_to_run = 0;
2627	}
2628
2629	perf_evsel__save_time(evsel, sample->time, sample->cpu);
2630
2631	return rc;
2632}
2633
2634static int timehist_sched_switch_event(struct perf_tool *tool,
2635			     union perf_event *event,
2636			     struct evsel *evsel,
2637			     struct perf_sample *sample,
2638			     struct machine *machine __maybe_unused)
2639{
2640	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2641}
2642
2643static int process_lost(struct perf_tool *tool __maybe_unused,
2644			union perf_event *event,
2645			struct perf_sample *sample,
2646			struct machine *machine __maybe_unused)
2647{
2648	char tstr[64];
2649
2650	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2651	printf("%15s ", tstr);
2652	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2653
2654	return 0;
2655}
2656
2657
2658static void print_thread_runtime(struct thread *t,
2659				 struct thread_runtime *r)
2660{
2661	double mean = avg_stats(&r->run_stats);
2662	float stddev;
2663
2664	printf("%*s   %5d  %9" PRIu64 " ",
2665	       comm_width, timehist_get_commstr(t), t->ppid,
2666	       (u64) r->run_stats.n);
2667
2668	print_sched_time(r->total_run_time, 8);
2669	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2670	print_sched_time(r->run_stats.min, 6);
2671	printf(" ");
2672	print_sched_time((u64) mean, 6);
2673	printf(" ");
2674	print_sched_time(r->run_stats.max, 6);
2675	printf("  ");
2676	printf("%5.2f", stddev);
2677	printf("   %5" PRIu64, r->migrations);
2678	printf("\n");
2679}
2680
2681static void print_thread_waittime(struct thread *t,
2682				  struct thread_runtime *r)
2683{
2684	printf("%*s   %5d  %9" PRIu64 " ",
2685	       comm_width, timehist_get_commstr(t), t->ppid,
2686	       (u64) r->run_stats.n);
2687
2688	print_sched_time(r->total_run_time, 8);
2689	print_sched_time(r->total_sleep_time, 6);
2690	printf(" ");
2691	print_sched_time(r->total_iowait_time, 6);
2692	printf(" ");
2693	print_sched_time(r->total_preempt_time, 6);
2694	printf(" ");
2695	print_sched_time(r->total_delay_time, 6);
2696	printf("\n");
2697}
2698
2699struct total_run_stats {
2700	struct perf_sched *sched;
2701	u64  sched_count;
2702	u64  task_count;
2703	u64  total_run_time;
2704};
2705
2706static int __show_thread_runtime(struct thread *t, void *priv)
2707{
2708	struct total_run_stats *stats = priv;
2709	struct thread_runtime *r;
2710
2711	if (thread__is_filtered(t))
2712		return 0;
2713
2714	r = thread__priv(t);
2715	if (r && r->run_stats.n) {
2716		stats->task_count++;
2717		stats->sched_count += r->run_stats.n;
2718		stats->total_run_time += r->total_run_time;
2719
2720		if (stats->sched->show_state)
2721			print_thread_waittime(t, r);
2722		else
2723			print_thread_runtime(t, r);
2724	}
2725
2726	return 0;
2727}
2728
2729static int show_thread_runtime(struct thread *t, void *priv)
2730{
2731	if (t->dead)
2732		return 0;
2733
2734	return __show_thread_runtime(t, priv);
2735}
2736
2737static int show_deadthread_runtime(struct thread *t, void *priv)
2738{
2739	if (!t->dead)
2740		return 0;
2741
2742	return __show_thread_runtime(t, priv);
2743}
2744
2745static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2746{
2747	const char *sep = " <- ";
2748	struct callchain_list *chain;
2749	size_t ret = 0;
2750	char bf[1024];
2751	bool first;
2752
2753	if (node == NULL)
2754		return 0;
2755
2756	ret = callchain__fprintf_folded(fp, node->parent);
2757	first = (ret == 0);
2758
2759	list_for_each_entry(chain, &node->val, list) {
2760		if (chain->ip >= PERF_CONTEXT_MAX)
2761			continue;
2762		if (chain->ms.sym && chain->ms.sym->ignore)
2763			continue;
2764		ret += fprintf(fp, "%s%s", first ? "" : sep,
2765			       callchain_list__sym_name(chain, bf, sizeof(bf),
2766							false));
2767		first = false;
2768	}
2769
2770	return ret;
2771}
2772
2773static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2774{
2775	size_t ret = 0;
2776	FILE *fp = stdout;
2777	struct callchain_node *chain;
2778	struct rb_node *rb_node = rb_first_cached(root);
2779
2780	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2781	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2782	       graph_dotted_line);
2783
2784	while (rb_node) {
2785		chain = rb_entry(rb_node, struct callchain_node, rb_node);
2786		rb_node = rb_next(rb_node);
2787
2788		ret += fprintf(fp, "  ");
2789		print_sched_time(chain->hit, 12);
2790		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2791		ret += fprintf(fp, " %8d  ", chain->count);
2792		ret += callchain__fprintf_folded(fp, chain);
2793		ret += fprintf(fp, "\n");
2794	}
2795
2796	return ret;
2797}
2798
2799static void timehist_print_summary(struct perf_sched *sched,
2800				   struct perf_session *session)
2801{
2802	struct machine *m = &session->machines.host;
2803	struct total_run_stats totals;
2804	u64 task_count;
2805	struct thread *t;
2806	struct thread_runtime *r;
2807	int i;
2808	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2809
2810	memset(&totals, 0, sizeof(totals));
2811	totals.sched = sched;
2812
2813	if (sched->idle_hist) {
2814		printf("\nIdle-time summary\n");
2815		printf("%*s  parent  sched-out  ", comm_width, "comm");
2816		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2817	} else if (sched->show_state) {
2818		printf("\nWait-time summary\n");
2819		printf("%*s  parent   sched-in  ", comm_width, "comm");
2820		printf("   run-time      sleep      iowait     preempt       delay\n");
2821	} else {
2822		printf("\nRuntime summary\n");
2823		printf("%*s  parent   sched-in  ", comm_width, "comm");
2824		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2825	}
2826	printf("%*s            (count)  ", comm_width, "");
2827	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2828	       sched->show_state ? "(msec)" : "%");
2829	printf("%.117s\n", graph_dotted_line);
2830
2831	machine__for_each_thread(m, show_thread_runtime, &totals);
2832	task_count = totals.task_count;
2833	if (!task_count)
2834		printf("<no still running tasks>\n");
2835
2836	printf("\nTerminated tasks:\n");
2837	machine__for_each_thread(m, show_deadthread_runtime, &totals);
2838	if (task_count == totals.task_count)
2839		printf("<no terminated tasks>\n");
2840
2841	/* CPU idle stats not tracked when samples were skipped */
2842	if (sched->skipped_samples && !sched->idle_hist)
2843		return;
2844
2845	printf("\nIdle stats:\n");
2846	for (i = 0; i < idle_max_cpu; ++i) {
2847		t = idle_threads[i];
2848		if (!t)
2849			continue;
2850
2851		r = thread__priv(t);
2852		if (r && r->run_stats.n) {
2853			totals.sched_count += r->run_stats.n;
2854			printf("    CPU %2d idle for ", i);
2855			print_sched_time(r->total_run_time, 6);
2856			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2857		} else
2858			printf("    CPU %2d idle entire time window\n", i);
2859	}
2860
2861	if (sched->idle_hist && sched->show_callchain) {
2862		callchain_param.mode  = CHAIN_FOLDED;
2863		callchain_param.value = CCVAL_PERIOD;
2864
2865		callchain_register_param(&callchain_param);
2866
2867		printf("\nIdle stats by callchain:\n");
2868		for (i = 0; i < idle_max_cpu; ++i) {
2869			struct idle_thread_runtime *itr;
2870
2871			t = idle_threads[i];
2872			if (!t)
2873				continue;
2874
2875			itr = thread__priv(t);
2876			if (itr == NULL)
2877				continue;
2878
2879			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2880					     0, &callchain_param);
2881
2882			printf("  CPU %2d:", i);
2883			print_sched_time(itr->tr.total_run_time, 6);
2884			printf(" msec\n");
2885			timehist_print_idlehist_callchain(&itr->sorted_root);
2886			printf("\n");
2887		}
2888	}
2889
2890	printf("\n"
2891	       "    Total number of unique tasks: %" PRIu64 "\n"
2892	       "Total number of context switches: %" PRIu64 "\n",
2893	       totals.task_count, totals.sched_count);
2894
2895	printf("           Total run time (msec): ");
2896	print_sched_time(totals.total_run_time, 2);
2897	printf("\n");
2898
2899	printf("    Total scheduling time (msec): ");
2900	print_sched_time(hist_time, 2);
2901	printf(" (x %d)\n", sched->max_cpu);
2902}
2903
2904typedef int (*sched_handler)(struct perf_tool *tool,
2905			  union perf_event *event,
2906			  struct evsel *evsel,
2907			  struct perf_sample *sample,
2908			  struct machine *machine);
2909
2910static int perf_timehist__process_sample(struct perf_tool *tool,
2911					 union perf_event *event,
2912					 struct perf_sample *sample,
2913					 struct evsel *evsel,
2914					 struct machine *machine)
2915{
2916	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2917	int err = 0;
2918	int this_cpu = sample->cpu;
2919
2920	if (this_cpu > sched->max_cpu)
2921		sched->max_cpu = this_cpu;
2922
2923	if (evsel->handler != NULL) {
2924		sched_handler f = evsel->handler;
2925
2926		err = f(tool, event, evsel, sample, machine);
2927	}
2928
2929	return err;
2930}
2931
2932static int timehist_check_attr(struct perf_sched *sched,
2933			       struct evlist *evlist)
2934{
2935	struct evsel *evsel;
2936	struct evsel_runtime *er;
2937
2938	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2939		er = perf_evsel__get_runtime(evsel);
2940		if (er == NULL) {
2941			pr_err("Failed to allocate memory for evsel runtime data\n");
2942			return -1;
2943		}
2944
2945		if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2946			pr_info("Samples do not have callchains.\n");
2947			sched->show_callchain = 0;
2948			symbol_conf.use_callchain = 0;
2949		}
2950	}
2951
2952	return 0;
2953}
2954
2955static int perf_sched__timehist(struct perf_sched *sched)
2956{
2957	const struct evsel_str_handler handlers[] = {
2958		{ "sched:sched_switch",       timehist_sched_switch_event, },
2959		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
2960		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2961	};
2962	const struct evsel_str_handler migrate_handlers[] = {
2963		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
2964	};
2965	struct perf_data data = {
2966		.path  = input_name,
2967		.mode  = PERF_DATA_MODE_READ,
2968		.force = sched->force,
2969	};
2970
2971	struct perf_session *session;
2972	struct evlist *evlist;
2973	int err = -1;
2974
2975	/*
2976	 * event handlers for timehist option
2977	 */
2978	sched->tool.sample	 = perf_timehist__process_sample;
2979	sched->tool.mmap	 = perf_event__process_mmap;
2980	sched->tool.comm	 = perf_event__process_comm;
2981	sched->tool.exit	 = perf_event__process_exit;
2982	sched->tool.fork	 = perf_event__process_fork;
2983	sched->tool.lost	 = process_lost;
2984	sched->tool.attr	 = perf_event__process_attr;
2985	sched->tool.tracing_data = perf_event__process_tracing_data;
2986	sched->tool.build_id	 = perf_event__process_build_id;
2987
2988	sched->tool.ordered_events = true;
2989	sched->tool.ordering_requires_timestamps = true;
2990
2991	symbol_conf.use_callchain = sched->show_callchain;
2992
2993	session = perf_session__new(&data, false, &sched->tool);
2994	if (IS_ERR(session))
2995		return PTR_ERR(session);
2996
2997	evlist = session->evlist;
2998
2999	symbol__init(&session->header.env);
3000
3001	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3002		pr_err("Invalid time string\n");
3003		return -EINVAL;
3004	}
3005
3006	if (timehist_check_attr(sched, evlist) != 0)
3007		goto out;
3008
3009	setup_pager();
3010
3011	/* setup per-evsel handlers */
3012	if (perf_session__set_tracepoints_handlers(session, handlers))
3013		goto out;
3014
3015	/* sched_switch event at a minimum needs to exist */
3016	if (!perf_evlist__find_tracepoint_by_name(session->evlist,
3017						  "sched:sched_switch")) {
3018		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3019		goto out;
3020	}
3021
3022	if (sched->show_migrations &&
3023	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
3024		goto out;
3025
3026	/* pre-allocate struct for per-CPU idle stats */
3027	sched->max_cpu = session->header.env.nr_cpus_online;
3028	if (sched->max_cpu == 0)
3029		sched->max_cpu = 4;
3030	if (init_idle_threads(sched->max_cpu))
3031		goto out;
3032
3033	/* summary_only implies summary option, but don't overwrite summary if set */
3034	if (sched->summary_only)
3035		sched->summary = sched->summary_only;
3036
3037	if (!sched->summary_only)
3038		timehist_header(sched);
3039
3040	err = perf_session__process_events(session);
3041	if (err) {
3042		pr_err("Failed to process events, error %d", err);
3043		goto out;
3044	}
3045
3046	sched->nr_events      = evlist->stats.nr_events[0];
3047	sched->nr_lost_events = evlist->stats.total_lost;
3048	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3049
3050	if (sched->summary)
3051		timehist_print_summary(sched, session);
3052
3053out:
3054	free_idle_threads();
3055	perf_session__delete(session);
3056
3057	return err;
3058}
3059
3060
3061static void print_bad_events(struct perf_sched *sched)
3062{
3063	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3064		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3065			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3066			sched->nr_unordered_timestamps, sched->nr_timestamps);
3067	}
3068	if (sched->nr_lost_events && sched->nr_events) {
3069		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3070			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3071			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3072	}
3073	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3074		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3075			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3076			sched->nr_context_switch_bugs, sched->nr_timestamps);
3077		if (sched->nr_lost_events)
3078			printf(" (due to lost events?)");
3079		printf("\n");
3080	}
3081}
3082
3083static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3084{
3085	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3086	struct work_atoms *this;
3087	const char *comm = thread__comm_str(data->thread), *this_comm;
3088	bool leftmost = true;
3089
3090	while (*new) {
3091		int cmp;
3092
3093		this = container_of(*new, struct work_atoms, node);
3094		parent = *new;
3095
3096		this_comm = thread__comm_str(this->thread);
3097		cmp = strcmp(comm, this_comm);
3098		if (cmp > 0) {
3099			new = &((*new)->rb_left);
3100		} else if (cmp < 0) {
3101			new = &((*new)->rb_right);
3102			leftmost = false;
3103		} else {
3104			this->num_merged++;
3105			this->total_runtime += data->total_runtime;
3106			this->nb_atoms += data->nb_atoms;
3107			this->total_lat += data->total_lat;
3108			list_splice(&data->work_list, &this->work_list);
3109			if (this->max_lat < data->max_lat) {
3110				this->max_lat = data->max_lat;
3111				this->max_lat_at = data->max_lat_at;
3112			}
3113			zfree(&data);
3114			return;
3115		}
3116	}
3117
3118	data->num_merged++;
3119	rb_link_node(&data->node, parent, new);
3120	rb_insert_color_cached(&data->node, root, leftmost);
3121}
3122
3123static void perf_sched__merge_lat(struct perf_sched *sched)
3124{
3125	struct work_atoms *data;
3126	struct rb_node *node;
3127
3128	if (sched->skip_merge)
3129		return;
3130
3131	while ((node = rb_first_cached(&sched->atom_root))) {
3132		rb_erase_cached(node, &sched->atom_root);
3133		data = rb_entry(node, struct work_atoms, node);
3134		__merge_work_atoms(&sched->merged_atom_root, data);
3135	}
3136}
3137
3138static int perf_sched__lat(struct perf_sched *sched)
3139{
3140	struct rb_node *next;
 
3141
3142	setup_pager();
 
 
3143
3144	if (perf_sched__read_events(sched))
3145		return -1;
3146
3147	perf_sched__merge_lat(sched);
3148	perf_sched__sort_lat(sched);
3149
3150	printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3151	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
3152	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3153
3154	next = rb_first_cached(&sched->sorted_atom_root);
3155
3156	while (next) {
3157		struct work_atoms *work_list;
3158
3159		work_list = rb_entry(next, struct work_atoms, node);
3160		output_lat_thread(sched, work_list);
3161		next = rb_next(next);
3162		thread__zput(work_list->thread);
3163	}
3164
3165	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3166	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3167		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3168
3169	printf(" ---------------------------------------------------\n");
3170
3171	print_bad_events(sched);
3172	printf("\n");
3173
3174	return 0;
3175}
3176
3177static int setup_map_cpus(struct perf_sched *sched)
3178{
3179	struct perf_cpu_map *map;
3180
3181	sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3182
3183	if (sched->map.comp) {
3184		sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3185		if (!sched->map.comp_cpus)
3186			return -1;
3187	}
3188
3189	if (!sched->map.cpus_str)
3190		return 0;
3191
3192	map = perf_cpu_map__new(sched->map.cpus_str);
3193	if (!map) {
3194		pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3195		return -1;
3196	}
3197
3198	sched->map.cpus = map;
3199	return 0;
3200}
3201
3202static int setup_color_pids(struct perf_sched *sched)
3203{
3204	struct perf_thread_map *map;
3205
3206	if (!sched->map.color_pids_str)
3207		return 0;
3208
3209	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3210	if (!map) {
3211		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3212		return -1;
3213	}
3214
3215	sched->map.color_pids = map;
3216	return 0;
3217}
3218
3219static int setup_color_cpus(struct perf_sched *sched)
3220{
3221	struct perf_cpu_map *map;
3222
3223	if (!sched->map.color_cpus_str)
3224		return 0;
3225
3226	map = perf_cpu_map__new(sched->map.color_cpus_str);
3227	if (!map) {
3228		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3229		return -1;
3230	}
3231
3232	sched->map.color_cpus = map;
3233	return 0;
3234}
3235
3236static int perf_sched__map(struct perf_sched *sched)
3237{
3238	if (setup_map_cpus(sched))
3239		return -1;
3240
3241	if (setup_color_pids(sched))
3242		return -1;
 
 
 
 
 
 
 
 
 
3243
3244	if (setup_color_cpus(sched))
3245		return -1;
3246
3247	setup_pager();
3248	if (perf_sched__read_events(sched))
3249		return -1;
3250	print_bad_events(sched);
3251	return 0;
3252}
3253
3254static int perf_sched__replay(struct perf_sched *sched)
3255{
3256	unsigned long i;
3257
3258	calibrate_run_measurement_overhead(sched);
3259	calibrate_sleep_measurement_overhead(sched);
3260
3261	test_calibrations(sched);
 
 
 
3262
3263	if (perf_sched__read_events(sched))
3264		return -1;
 
 
 
 
 
 
 
3265
3266	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3267	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3268	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3269
3270	if (sched->targetless_wakeups)
3271		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3272	if (sched->multitarget_wakeups)
3273		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3274	if (sched->nr_run_events_optimized)
3275		printf("run atoms optimized: %ld\n",
3276			sched->nr_run_events_optimized);
3277
3278	print_task_traces(sched);
3279	add_cross_task_wakeups(sched);
 
 
 
 
 
 
 
 
 
3280
3281	create_tasks(sched);
3282	printf("------------------------------------------------------------\n");
3283	for (i = 0; i < sched->replay_repeat; i++)
3284		run_one_test(sched);
3285
3286	return 0;
3287}
 
 
 
 
 
 
 
3288
3289static void setup_sorting(struct perf_sched *sched, const struct option *options,
3290			  const char * const usage_msg[])
3291{
3292	char *tmp, *tok, *str = strdup(sched->sort_order);
3293
3294	for (tok = strtok_r(str, ", ", &tmp);
3295			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3296		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3297			usage_with_options_msg(usage_msg, options,
3298					"Unknown --sort key: `%s'", tok);
3299		}
3300	}
3301
3302	free(str);
3303
3304	sort_dimension__add("pid", &sched->cmp_pid);
3305}
3306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3307static int __cmd_record(int argc, const char **argv)
3308{
3309	unsigned int rec_argc, i, j;
3310	const char **rec_argv;
3311	const char * const record_args[] = {
3312		"record",
3313		"-a",
3314		"-R",
3315		"-m", "1024",
3316		"-c", "1",
3317		"-e", "sched:sched_switch",
3318		"-e", "sched:sched_stat_wait",
3319		"-e", "sched:sched_stat_sleep",
3320		"-e", "sched:sched_stat_iowait",
3321		"-e", "sched:sched_stat_runtime",
3322		"-e", "sched:sched_process_fork",
3323		"-e", "sched:sched_wakeup",
3324		"-e", "sched:sched_wakeup_new",
3325		"-e", "sched:sched_migrate_task",
3326	};
3327
3328	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3329	rec_argv = calloc(rec_argc + 1, sizeof(char *));
3330
3331	if (rec_argv == NULL)
3332		return -ENOMEM;
3333
3334	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3335		rec_argv[i] = strdup(record_args[i]);
3336
3337	for (j = 1; j < (unsigned int)argc; j++, i++)
3338		rec_argv[i] = argv[j];
3339
3340	BUG_ON(i != rec_argc);
3341
3342	return cmd_record(i, rec_argv);
3343}
3344
3345int cmd_sched(int argc, const char **argv)
3346{
3347	static const char default_sort_order[] = "avg, max, switch, runtime";
3348	struct perf_sched sched = {
3349		.tool = {
3350			.sample		 = perf_sched__process_tracepoint_sample,
3351			.comm		 = perf_sched__process_comm,
3352			.namespaces	 = perf_event__process_namespaces,
3353			.lost		 = perf_event__process_lost,
3354			.fork		 = perf_sched__process_fork_event,
3355			.ordered_events = true,
3356		},
3357		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3358		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
3359		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3360		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3361		.sort_order	      = default_sort_order,
3362		.replay_repeat	      = 10,
3363		.profile_cpu	      = -1,
3364		.next_shortname1      = 'A',
3365		.next_shortname2      = '0',
3366		.skip_merge           = 0,
3367		.show_callchain	      = 1,
3368		.max_stack            = 5,
3369	};
3370	const struct option sched_options[] = {
3371	OPT_STRING('i', "input", &input_name, "file",
3372		    "input file name"),
3373	OPT_INCR('v', "verbose", &verbose,
3374		    "be more verbose (show symbol address, etc)"),
3375	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3376		    "dump raw trace in ASCII"),
3377	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3378	OPT_END()
3379	};
3380	const struct option latency_options[] = {
3381	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3382		   "sort by key(s): runtime, switch, avg, max"),
3383	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3384		    "CPU to profile on"),
3385	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3386		    "latency stats per pid instead of per comm"),
3387	OPT_PARENT(sched_options)
3388	};
3389	const struct option replay_options[] = {
3390	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3391		     "repeat the workload replay N times (-1: infinite)"),
3392	OPT_PARENT(sched_options)
3393	};
3394	const struct option map_options[] = {
3395	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3396		    "map output in compact mode"),
3397	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3398		   "highlight given pids in map"),
3399	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3400                    "highlight given CPUs in map"),
3401	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3402                    "display given CPUs in map"),
3403	OPT_PARENT(sched_options)
3404	};
3405	const struct option timehist_options[] = {
3406	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3407		   "file", "vmlinux pathname"),
3408	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3409		   "file", "kallsyms pathname"),
3410	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3411		    "Display call chains if present (default on)"),
3412	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3413		   "Maximum number of functions to display backtrace."),
3414	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3415		    "Look for files with symbols relative to this directory"),
3416	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3417		    "Show only syscall summary with statistics"),
3418	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3419		    "Show all syscalls and summary with statistics"),
3420	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3421	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3422	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3423	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3424	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3425	OPT_STRING(0, "time", &sched.time_str, "str",
3426		   "Time span for analysis (start,stop)"),
3427	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3428	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3429		   "analyze events only for given process id(s)"),
3430	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3431		   "analyze events only for given thread id(s)"),
3432	OPT_PARENT(sched_options)
3433	};
3434
3435	const char * const latency_usage[] = {
3436		"perf sched latency [<options>]",
3437		NULL
3438	};
3439	const char * const replay_usage[] = {
3440		"perf sched replay [<options>]",
3441		NULL
3442	};
3443	const char * const map_usage[] = {
3444		"perf sched map [<options>]",
3445		NULL
3446	};
3447	const char * const timehist_usage[] = {
3448		"perf sched timehist [<options>]",
3449		NULL
3450	};
3451	const char *const sched_subcommands[] = { "record", "latency", "map",
3452						  "replay", "script",
3453						  "timehist", NULL };
3454	const char *sched_usage[] = {
3455		NULL,
3456		NULL
3457	};
3458	struct trace_sched_handler lat_ops  = {
3459		.wakeup_event	    = latency_wakeup_event,
3460		.switch_event	    = latency_switch_event,
3461		.runtime_event	    = latency_runtime_event,
3462		.migrate_task_event = latency_migrate_task_event,
3463	};
3464	struct trace_sched_handler map_ops  = {
3465		.switch_event	    = map_switch_event,
3466	};
3467	struct trace_sched_handler replay_ops  = {
3468		.wakeup_event	    = replay_wakeup_event,
3469		.switch_event	    = replay_switch_event,
3470		.fork_event	    = replay_fork_event,
3471	};
3472	unsigned int i;
3473
3474	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3475		sched.curr_pid[i] = -1;
3476
3477	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3478					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3479	if (!argc)
3480		usage_with_options(sched_usage, sched_options);
3481
3482	/*
3483	 * Aliased to 'perf script' for now:
3484	 */
3485	if (!strcmp(argv[0], "script"))
3486		return cmd_script(argc, argv);
3487
 
3488	if (!strncmp(argv[0], "rec", 3)) {
3489		return __cmd_record(argc, argv);
3490	} else if (!strncmp(argv[0], "lat", 3)) {
3491		sched.tp_handler = &lat_ops;
3492		if (argc > 1) {
3493			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3494			if (argc)
3495				usage_with_options(latency_usage, latency_options);
3496		}
3497		setup_sorting(&sched, latency_options, latency_usage);
3498		return perf_sched__lat(&sched);
3499	} else if (!strcmp(argv[0], "map")) {
3500		if (argc) {
3501			argc = parse_options(argc, argv, map_options, map_usage, 0);
3502			if (argc)
3503				usage_with_options(map_usage, map_options);
3504		}
3505		sched.tp_handler = &map_ops;
3506		setup_sorting(&sched, latency_options, latency_usage);
3507		return perf_sched__map(&sched);
3508	} else if (!strncmp(argv[0], "rep", 3)) {
3509		sched.tp_handler = &replay_ops;
3510		if (argc) {
3511			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3512			if (argc)
3513				usage_with_options(replay_usage, replay_options);
3514		}
3515		return perf_sched__replay(&sched);
3516	} else if (!strcmp(argv[0], "timehist")) {
3517		if (argc) {
3518			argc = parse_options(argc, argv, timehist_options,
3519					     timehist_usage, 0);
3520			if (argc)
3521				usage_with_options(timehist_usage, timehist_options);
3522		}
3523		if ((sched.show_wakeups || sched.show_next) &&
3524		    sched.summary_only) {
3525			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3526			parse_options_usage(timehist_usage, timehist_options, "s", true);
3527			if (sched.show_wakeups)
3528				parse_options_usage(NULL, timehist_options, "w", true);
3529			if (sched.show_next)
3530				parse_options_usage(NULL, timehist_options, "n", true);
3531			return -EINVAL;
3532		}
3533
3534		return perf_sched__timehist(&sched);
3535	} else {
3536		usage_with_options(sched_usage, sched_options);
3537	}
3538
3539	return 0;
3540}
v3.1
 
   1#include "builtin.h"
   2#include "perf.h"
 
   3
   4#include "util/util.h"
   5#include "util/cache.h"
 
 
   6#include "util/symbol.h"
   7#include "util/thread.h"
   8#include "util/header.h"
   9#include "util/session.h"
 
 
 
 
 
 
 
 
  10
  11#include "util/parse-options.h"
 
  12#include "util/trace-event.h"
  13
  14#include "util/debug.h"
 
  15
 
 
 
  16#include <sys/prctl.h>
 
 
  17
 
  18#include <semaphore.h>
  19#include <pthread.h>
  20#include <math.h>
 
 
 
 
  21
  22static char			const *input_name = "perf.data";
  23
  24static char			default_sort_order[] = "avg, max, switch, runtime";
  25static const char		*sort_order = default_sort_order;
  26
  27static int			profile_cpu = -1;
  28
  29#define PR_SET_NAME		15               /* Set process name */
  30#define MAX_CPUS		4096
  31
  32static u64			run_measurement_overhead;
  33static u64			sleep_measurement_overhead;
  34
  35#define COMM_LEN		20
  36#define SYM_LEN			129
  37
  38#define MAX_PID			65536
  39
  40static unsigned long		nr_tasks;
  41
  42struct sched_atom;
  43
  44struct task_desc {
  45	unsigned long		nr;
  46	unsigned long		pid;
  47	char			comm[COMM_LEN];
  48
  49	unsigned long		nr_events;
  50	unsigned long		curr_event;
  51	struct sched_atom	**atoms;
  52
  53	pthread_t		thread;
  54	sem_t			sleep_sem;
  55
  56	sem_t			ready_for_work;
  57	sem_t			work_done_sem;
  58
  59	u64			cpu_usage;
  60};
  61
  62enum sched_event_type {
  63	SCHED_EVENT_RUN,
  64	SCHED_EVENT_SLEEP,
  65	SCHED_EVENT_WAKEUP,
  66	SCHED_EVENT_MIGRATION,
  67};
  68
  69struct sched_atom {
  70	enum sched_event_type	type;
  71	int			specific_wait;
  72	u64			timestamp;
  73	u64			duration;
  74	unsigned long		nr;
  75	sem_t			*wait_sem;
  76	struct task_desc	*wakee;
  77};
  78
  79static struct task_desc		*pid_to_task[MAX_PID];
  80
  81static struct task_desc		**tasks;
  82
  83static pthread_mutex_t		start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
  84static u64			start_time;
  85
  86static pthread_mutex_t		work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
  87
  88static unsigned long		nr_run_events;
  89static unsigned long		nr_sleep_events;
  90static unsigned long		nr_wakeup_events;
  91
  92static unsigned long		nr_sleep_corrections;
  93static unsigned long		nr_run_events_optimized;
  94
  95static unsigned long		targetless_wakeups;
  96static unsigned long		multitarget_wakeups;
  97
  98static u64			cpu_usage;
  99static u64			runavg_cpu_usage;
 100static u64			parent_cpu_usage;
 101static u64			runavg_parent_cpu_usage;
 102
 103static unsigned long		nr_runs;
 104static u64			sum_runtime;
 105static u64			sum_fluct;
 106static u64			run_avg;
 107
 108static unsigned int		replay_repeat = 10;
 109static unsigned long		nr_timestamps;
 110static unsigned long		nr_unordered_timestamps;
 111static unsigned long		nr_state_machine_bugs;
 112static unsigned long		nr_context_switch_bugs;
 113static unsigned long		nr_events;
 114static unsigned long		nr_lost_chunks;
 115static unsigned long		nr_lost_events;
 116
 117#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
 118
 119enum thread_state {
 120	THREAD_SLEEPING = 0,
 121	THREAD_WAIT_CPU,
 122	THREAD_SCHED_IN,
 123	THREAD_IGNORE
 124};
 125
 126struct work_atom {
 127	struct list_head	list;
 128	enum thread_state	state;
 129	u64			sched_out_time;
 130	u64			wake_up_time;
 131	u64			sched_in_time;
 132	u64			runtime;
 133};
 134
 135struct work_atoms {
 136	struct list_head	work_list;
 137	struct thread		*thread;
 138	struct rb_node		node;
 139	u64			max_lat;
 140	u64			max_lat_at;
 141	u64			total_lat;
 142	u64			nb_atoms;
 143	u64			total_runtime;
 
 144};
 145
 146typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 147
 148static struct rb_root		atom_root, sorted_atom_root;
 
 
 
 
 
 
 
 149
 150static u64			all_runtime;
 151static u64			all_count;
 152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 153
 154static u64 get_nsecs(void)
 155{
 156	struct timespec ts;
 157
 158	clock_gettime(CLOCK_MONOTONIC, &ts);
 159
 160	return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
 161}
 162
 163static void burn_nsecs(u64 nsecs)
 164{
 165	u64 T0 = get_nsecs(), T1;
 166
 167	do {
 168		T1 = get_nsecs();
 169	} while (T1 + run_measurement_overhead < T0 + nsecs);
 170}
 171
 172static void sleep_nsecs(u64 nsecs)
 173{
 174	struct timespec ts;
 175
 176	ts.tv_nsec = nsecs % 999999999;
 177	ts.tv_sec = nsecs / 999999999;
 178
 179	nanosleep(&ts, NULL);
 180}
 181
 182static void calibrate_run_measurement_overhead(void)
 183{
 184	u64 T0, T1, delta, min_delta = 1000000000ULL;
 185	int i;
 186
 187	for (i = 0; i < 10; i++) {
 188		T0 = get_nsecs();
 189		burn_nsecs(0);
 190		T1 = get_nsecs();
 191		delta = T1-T0;
 192		min_delta = min(min_delta, delta);
 193	}
 194	run_measurement_overhead = min_delta;
 195
 196	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 197}
 198
 199static void calibrate_sleep_measurement_overhead(void)
 200{
 201	u64 T0, T1, delta, min_delta = 1000000000ULL;
 202	int i;
 203
 204	for (i = 0; i < 10; i++) {
 205		T0 = get_nsecs();
 206		sleep_nsecs(10000);
 207		T1 = get_nsecs();
 208		delta = T1-T0;
 209		min_delta = min(min_delta, delta);
 210	}
 211	min_delta -= 10000;
 212	sleep_measurement_overhead = min_delta;
 213
 214	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 215}
 216
 217static struct sched_atom *
 218get_new_event(struct task_desc *task, u64 timestamp)
 219{
 220	struct sched_atom *event = zalloc(sizeof(*event));
 221	unsigned long idx = task->nr_events;
 222	size_t size;
 223
 224	event->timestamp = timestamp;
 225	event->nr = idx;
 226
 227	task->nr_events++;
 228	size = sizeof(struct sched_atom *) * task->nr_events;
 229	task->atoms = realloc(task->atoms, size);
 230	BUG_ON(!task->atoms);
 231
 232	task->atoms[idx] = event;
 233
 234	return event;
 235}
 236
 237static struct sched_atom *last_event(struct task_desc *task)
 238{
 239	if (!task->nr_events)
 240		return NULL;
 241
 242	return task->atoms[task->nr_events - 1];
 243}
 244
 245static void
 246add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
 247{
 248	struct sched_atom *event, *curr_event = last_event(task);
 249
 250	/*
 251	 * optimize an existing RUN event by merging this one
 252	 * to it:
 253	 */
 254	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 255		nr_run_events_optimized++;
 256		curr_event->duration += duration;
 257		return;
 258	}
 259
 260	event = get_new_event(task, timestamp);
 261
 262	event->type = SCHED_EVENT_RUN;
 263	event->duration = duration;
 264
 265	nr_run_events++;
 266}
 267
 268static void
 269add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
 270		       struct task_desc *wakee)
 271{
 272	struct sched_atom *event, *wakee_event;
 273
 274	event = get_new_event(task, timestamp);
 275	event->type = SCHED_EVENT_WAKEUP;
 276	event->wakee = wakee;
 277
 278	wakee_event = last_event(wakee);
 279	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 280		targetless_wakeups++;
 281		return;
 282	}
 283	if (wakee_event->wait_sem) {
 284		multitarget_wakeups++;
 285		return;
 286	}
 287
 288	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 289	sem_init(wakee_event->wait_sem, 0, 0);
 290	wakee_event->specific_wait = 1;
 291	event->wait_sem = wakee_event->wait_sem;
 292
 293	nr_wakeup_events++;
 294}
 295
 296static void
 297add_sched_event_sleep(struct task_desc *task, u64 timestamp,
 298		      u64 task_state __used)
 299{
 300	struct sched_atom *event = get_new_event(task, timestamp);
 301
 302	event->type = SCHED_EVENT_SLEEP;
 303
 304	nr_sleep_events++;
 305}
 306
 307static struct task_desc *register_pid(unsigned long pid, const char *comm)
 
 308{
 309	struct task_desc *task;
 
 310
 311	BUG_ON(pid >= MAX_PID);
 
 
 
 
 
 
 
 
 
 
 312
 313	task = pid_to_task[pid];
 314
 315	if (task)
 316		return task;
 317
 318	task = zalloc(sizeof(*task));
 319	task->pid = pid;
 320	task->nr = nr_tasks;
 321	strcpy(task->comm, comm);
 322	/*
 323	 * every task starts in sleeping state - this gets ignored
 324	 * if there's no wakeup pointing to this sleep state:
 325	 */
 326	add_sched_event_sleep(task, 0, 0);
 327
 328	pid_to_task[pid] = task;
 329	nr_tasks++;
 330	tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
 331	BUG_ON(!tasks);
 332	tasks[task->nr] = task;
 333
 334	if (verbose)
 335		printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
 336
 337	return task;
 338}
 339
 340
 341static void print_task_traces(void)
 342{
 343	struct task_desc *task;
 344	unsigned long i;
 345
 346	for (i = 0; i < nr_tasks; i++) {
 347		task = tasks[i];
 348		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 349			task->nr, task->comm, task->pid, task->nr_events);
 350	}
 351}
 352
 353static void add_cross_task_wakeups(void)
 354{
 355	struct task_desc *task1, *task2;
 356	unsigned long i, j;
 357
 358	for (i = 0; i < nr_tasks; i++) {
 359		task1 = tasks[i];
 360		j = i + 1;
 361		if (j == nr_tasks)
 362			j = 0;
 363		task2 = tasks[j];
 364		add_sched_event_wakeup(task1, 0, task2);
 365	}
 366}
 367
 368static void
 369process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
 370{
 371	int ret = 0;
 372
 373	switch (atom->type) {
 374		case SCHED_EVENT_RUN:
 375			burn_nsecs(atom->duration);
 376			break;
 377		case SCHED_EVENT_SLEEP:
 378			if (atom->wait_sem)
 379				ret = sem_wait(atom->wait_sem);
 380			BUG_ON(ret);
 381			break;
 382		case SCHED_EVENT_WAKEUP:
 383			if (atom->wait_sem)
 384				ret = sem_post(atom->wait_sem);
 385			BUG_ON(ret);
 386			break;
 387		case SCHED_EVENT_MIGRATION:
 388			break;
 389		default:
 390			BUG_ON(1);
 391	}
 392}
 393
 394static u64 get_cpu_usage_nsec_parent(void)
 395{
 396	struct rusage ru;
 397	u64 sum;
 398	int err;
 399
 400	err = getrusage(RUSAGE_SELF, &ru);
 401	BUG_ON(err);
 402
 403	sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
 404	sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
 405
 406	return sum;
 407}
 408
 409static int self_open_counters(void)
 410{
 411	struct perf_event_attr attr;
 
 412	int fd;
 
 
 413
 414	memset(&attr, 0, sizeof(attr));
 415
 416	attr.type = PERF_TYPE_SOFTWARE;
 417	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 418
 419	fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
 420
 421	if (fd < 0)
 422		die("Error: sys_perf_event_open() syscall returned"
 423		    "with %d (%s)\n", fd, strerror(errno));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424	return fd;
 425}
 426
 427static u64 get_cpu_usage_nsec_self(int fd)
 428{
 429	u64 runtime;
 430	int ret;
 431
 432	ret = read(fd, &runtime, sizeof(runtime));
 433	BUG_ON(ret != sizeof(runtime));
 434
 435	return runtime;
 436}
 437
 
 
 
 
 
 
 438static void *thread_func(void *ctx)
 439{
 440	struct task_desc *this_task = ctx;
 
 
 441	u64 cpu_usage_0, cpu_usage_1;
 442	unsigned long i, ret;
 443	char comm2[22];
 444	int fd;
 
 
 445
 446	sprintf(comm2, ":%s", this_task->comm);
 447	prctl(PR_SET_NAME, comm2);
 448	fd = self_open_counters();
 449
 450again:
 451	ret = sem_post(&this_task->ready_for_work);
 452	BUG_ON(ret);
 453	ret = pthread_mutex_lock(&start_work_mutex);
 454	BUG_ON(ret);
 455	ret = pthread_mutex_unlock(&start_work_mutex);
 456	BUG_ON(ret);
 457
 458	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 459
 460	for (i = 0; i < this_task->nr_events; i++) {
 461		this_task->curr_event = i;
 462		process_sched_event(this_task, this_task->atoms[i]);
 463	}
 464
 465	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 466	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 467	ret = sem_post(&this_task->work_done_sem);
 468	BUG_ON(ret);
 469
 470	ret = pthread_mutex_lock(&work_done_wait_mutex);
 471	BUG_ON(ret);
 472	ret = pthread_mutex_unlock(&work_done_wait_mutex);
 473	BUG_ON(ret);
 474
 475	goto again;
 476}
 477
 478static void create_tasks(void)
 479{
 480	struct task_desc *task;
 481	pthread_attr_t attr;
 482	unsigned long i;
 483	int err;
 484
 485	err = pthread_attr_init(&attr);
 486	BUG_ON(err);
 487	err = pthread_attr_setstacksize(&attr,
 488			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 489	BUG_ON(err);
 490	err = pthread_mutex_lock(&start_work_mutex);
 491	BUG_ON(err);
 492	err = pthread_mutex_lock(&work_done_wait_mutex);
 493	BUG_ON(err);
 494	for (i = 0; i < nr_tasks; i++) {
 495		task = tasks[i];
 
 
 
 
 496		sem_init(&task->sleep_sem, 0, 0);
 497		sem_init(&task->ready_for_work, 0, 0);
 498		sem_init(&task->work_done_sem, 0, 0);
 499		task->curr_event = 0;
 500		err = pthread_create(&task->thread, &attr, thread_func, task);
 501		BUG_ON(err);
 502	}
 503}
 504
 505static void wait_for_tasks(void)
 506{
 507	u64 cpu_usage_0, cpu_usage_1;
 508	struct task_desc *task;
 509	unsigned long i, ret;
 510
 511	start_time = get_nsecs();
 512	cpu_usage = 0;
 513	pthread_mutex_unlock(&work_done_wait_mutex);
 514
 515	for (i = 0; i < nr_tasks; i++) {
 516		task = tasks[i];
 517		ret = sem_wait(&task->ready_for_work);
 518		BUG_ON(ret);
 519		sem_init(&task->ready_for_work, 0, 0);
 520	}
 521	ret = pthread_mutex_lock(&work_done_wait_mutex);
 522	BUG_ON(ret);
 523
 524	cpu_usage_0 = get_cpu_usage_nsec_parent();
 525
 526	pthread_mutex_unlock(&start_work_mutex);
 527
 528	for (i = 0; i < nr_tasks; i++) {
 529		task = tasks[i];
 530		ret = sem_wait(&task->work_done_sem);
 531		BUG_ON(ret);
 532		sem_init(&task->work_done_sem, 0, 0);
 533		cpu_usage += task->cpu_usage;
 534		task->cpu_usage = 0;
 535	}
 536
 537	cpu_usage_1 = get_cpu_usage_nsec_parent();
 538	if (!runavg_cpu_usage)
 539		runavg_cpu_usage = cpu_usage;
 540	runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
 541
 542	parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 543	if (!runavg_parent_cpu_usage)
 544		runavg_parent_cpu_usage = parent_cpu_usage;
 545	runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
 546				   parent_cpu_usage)/10;
 547
 548	ret = pthread_mutex_lock(&start_work_mutex);
 549	BUG_ON(ret);
 550
 551	for (i = 0; i < nr_tasks; i++) {
 552		task = tasks[i];
 553		sem_init(&task->sleep_sem, 0, 0);
 554		task->curr_event = 0;
 555	}
 556}
 557
 558static void run_one_test(void)
 559{
 560	u64 T0, T1, delta, avg_delta, fluct;
 561
 562	T0 = get_nsecs();
 563	wait_for_tasks();
 564	T1 = get_nsecs();
 565
 566	delta = T1 - T0;
 567	sum_runtime += delta;
 568	nr_runs++;
 569
 570	avg_delta = sum_runtime / nr_runs;
 571	if (delta < avg_delta)
 572		fluct = avg_delta - delta;
 573	else
 574		fluct = delta - avg_delta;
 575	sum_fluct += fluct;
 576	if (!run_avg)
 577		run_avg = delta;
 578	run_avg = (run_avg*9 + delta)/10;
 579
 580	printf("#%-3ld: %0.3f, ",
 581		nr_runs, (double)delta/1000000.0);
 582
 583	printf("ravg: %0.2f, ",
 584		(double)run_avg/1e6);
 585
 586	printf("cpu: %0.2f / %0.2f",
 587		(double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
 588
 589#if 0
 590	/*
 591	 * rusage statistics done by the parent, these are less
 592	 * accurate than the sum_exec_runtime based statistics:
 593	 */
 594	printf(" [%0.2f / %0.2f]",
 595		(double)parent_cpu_usage/1e6,
 596		(double)runavg_parent_cpu_usage/1e6);
 597#endif
 598
 599	printf("\n");
 600
 601	if (nr_sleep_corrections)
 602		printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
 603	nr_sleep_corrections = 0;
 604}
 605
 606static void test_calibrations(void)
 607{
 608	u64 T0, T1;
 609
 610	T0 = get_nsecs();
 611	burn_nsecs(1e6);
 612	T1 = get_nsecs();
 613
 614	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 615
 616	T0 = get_nsecs();
 617	sleep_nsecs(1e6);
 618	T1 = get_nsecs();
 619
 620	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 621}
 622
 623#define FILL_FIELD(ptr, field, event, data)	\
 624	ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
 625
 626#define FILL_ARRAY(ptr, array, event, data)			\
 627do {								\
 628	void *__array = raw_field_ptr(event, #array, data);	\
 629	memcpy(ptr.array, __array, sizeof(ptr.array));	\
 630} while(0)
 631
 632#define FILL_COMMON_FIELDS(ptr, event, data)			\
 633do {								\
 634	FILL_FIELD(ptr, common_type, event, data);		\
 635	FILL_FIELD(ptr, common_flags, event, data);		\
 636	FILL_FIELD(ptr, common_preempt_count, event, data);	\
 637	FILL_FIELD(ptr, common_pid, event, data);		\
 638	FILL_FIELD(ptr, common_tgid, event, data);		\
 639} while (0)
 640
 641
 642
 643struct trace_switch_event {
 644	u32 size;
 645
 646	u16 common_type;
 647	u8 common_flags;
 648	u8 common_preempt_count;
 649	u32 common_pid;
 650	u32 common_tgid;
 651
 652	char prev_comm[16];
 653	u32 prev_pid;
 654	u32 prev_prio;
 655	u64 prev_state;
 656	char next_comm[16];
 657	u32 next_pid;
 658	u32 next_prio;
 659};
 660
 661struct trace_runtime_event {
 662	u32 size;
 663
 664	u16 common_type;
 665	u8 common_flags;
 666	u8 common_preempt_count;
 667	u32 common_pid;
 668	u32 common_tgid;
 669
 670	char comm[16];
 671	u32 pid;
 672	u64 runtime;
 673	u64 vruntime;
 674};
 675
 676struct trace_wakeup_event {
 677	u32 size;
 678
 679	u16 common_type;
 680	u8 common_flags;
 681	u8 common_preempt_count;
 682	u32 common_pid;
 683	u32 common_tgid;
 684
 685	char comm[16];
 686	u32 pid;
 687
 688	u32 prio;
 689	u32 success;
 690	u32 cpu;
 691};
 692
 693struct trace_fork_event {
 694	u32 size;
 695
 696	u16 common_type;
 697	u8 common_flags;
 698	u8 common_preempt_count;
 699	u32 common_pid;
 700	u32 common_tgid;
 701
 702	char parent_comm[16];
 703	u32 parent_pid;
 704	char child_comm[16];
 705	u32 child_pid;
 706};
 707
 708struct trace_migrate_task_event {
 709	u32 size;
 710
 711	u16 common_type;
 712	u8 common_flags;
 713	u8 common_preempt_count;
 714	u32 common_pid;
 715	u32 common_tgid;
 716
 717	char comm[16];
 718	u32 pid;
 719
 720	u32 prio;
 721	u32 cpu;
 722};
 723
 724struct trace_sched_handler {
 725	void (*switch_event)(struct trace_switch_event *,
 726			     struct perf_session *,
 727			     struct event *,
 728			     int cpu,
 729			     u64 timestamp,
 730			     struct thread *thread);
 731
 732	void (*runtime_event)(struct trace_runtime_event *,
 733			      struct perf_session *,
 734			      struct event *,
 735			      int cpu,
 736			      u64 timestamp,
 737			      struct thread *thread);
 738
 739	void (*wakeup_event)(struct trace_wakeup_event *,
 740			     struct perf_session *,
 741			     struct event *,
 742			     int cpu,
 743			     u64 timestamp,
 744			     struct thread *thread);
 745
 746	void (*fork_event)(struct trace_fork_event *,
 747			   struct event *,
 748			   int cpu,
 749			   u64 timestamp,
 750			   struct thread *thread);
 751
 752	void (*migrate_task_event)(struct trace_migrate_task_event *,
 753			   struct perf_session *session,
 754			   struct event *,
 755			   int cpu,
 756			   u64 timestamp,
 757			   struct thread *thread);
 758};
 759
 760
 761static void
 762replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
 763		    struct perf_session *session __used,
 764		    struct event *event,
 765		    int cpu __used,
 766		    u64 timestamp __used,
 767		    struct thread *thread __used)
 768{
 
 
 769	struct task_desc *waker, *wakee;
 770
 771	if (verbose) {
 772		printf("sched_wakeup event %p\n", event);
 773
 774		printf(" ... pid %d woke up %s/%d\n",
 775			wakeup_event->common_pid,
 776			wakeup_event->comm,
 777			wakeup_event->pid);
 778	}
 779
 780	waker = register_pid(wakeup_event->common_pid, "<unknown>");
 781	wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
 782
 783	add_sched_event_wakeup(waker, timestamp, wakee);
 
 784}
 785
 786static u64 cpu_last_switched[MAX_CPUS];
 787
 788static void
 789replay_switch_event(struct trace_switch_event *switch_event,
 790		    struct perf_session *session __used,
 791		    struct event *event,
 792		    int cpu,
 793		    u64 timestamp,
 794		    struct thread *thread __used)
 795{
 796	struct task_desc *prev, __used *next;
 797	u64 timestamp0;
 
 798	s64 delta;
 799
 800	if (verbose)
 801		printf("sched_switch event %p\n", event);
 802
 803	if (cpu >= MAX_CPUS || cpu < 0)
 804		return;
 805
 806	timestamp0 = cpu_last_switched[cpu];
 807	if (timestamp0)
 808		delta = timestamp - timestamp0;
 809	else
 810		delta = 0;
 811
 812	if (delta < 0)
 813		die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 
 
 
 
 
 814
 815	if (verbose) {
 816		printf(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 817			switch_event->prev_comm, switch_event->prev_pid,
 818			switch_event->next_comm, switch_event->next_pid,
 819			delta);
 820	}
 821
 822	prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
 823	next = register_pid(switch_event->next_pid, switch_event->next_comm);
 824
 825	cpu_last_switched[cpu] = timestamp;
 
 826
 827	add_sched_event_run(prev, timestamp, delta);
 828	add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
 829}
 830
 831
 832static void
 833replay_fork_event(struct trace_fork_event *fork_event,
 834		  struct event *event,
 835		  int cpu __used,
 836		  u64 timestamp __used,
 837		  struct thread *thread __used)
 838{
 839	if (verbose) {
 840		printf("sched_fork event %p\n", event);
 841		printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
 842		printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
 843	}
 844	register_pid(fork_event->parent_pid, fork_event->parent_comm);
 845	register_pid(fork_event->child_pid, fork_event->child_comm);
 846}
 847
 848static struct trace_sched_handler replay_ops  = {
 849	.wakeup_event		= replay_wakeup_event,
 850	.switch_event		= replay_switch_event,
 851	.fork_event		= replay_fork_event,
 852};
 
 
 
 
 
 
 
 
 853
 854struct sort_dimension {
 855	const char		*name;
 856	sort_fn_t		cmp;
 857	struct list_head	list;
 858};
 859
 860static LIST_HEAD(cmp_pid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861
 862static int
 863thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 864{
 865	struct sort_dimension *sort;
 866	int ret = 0;
 867
 868	BUG_ON(list_empty(list));
 869
 870	list_for_each_entry(sort, list, list) {
 871		ret = sort->cmp(l, r);
 872		if (ret)
 873			return ret;
 874	}
 875
 876	return ret;
 877}
 878
 879static struct work_atoms *
 880thread_atoms_search(struct rb_root *root, struct thread *thread,
 881			 struct list_head *sort_list)
 882{
 883	struct rb_node *node = root->rb_node;
 884	struct work_atoms key = { .thread = thread };
 885
 886	while (node) {
 887		struct work_atoms *atoms;
 888		int cmp;
 889
 890		atoms = container_of(node, struct work_atoms, node);
 891
 892		cmp = thread_lat_cmp(sort_list, &key, atoms);
 893		if (cmp > 0)
 894			node = node->rb_left;
 895		else if (cmp < 0)
 896			node = node->rb_right;
 897		else {
 898			BUG_ON(thread != atoms->thread);
 899			return atoms;
 900		}
 901	}
 902	return NULL;
 903}
 904
 905static void
 906__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
 907			 struct list_head *sort_list)
 908{
 909	struct rb_node **new = &(root->rb_node), *parent = NULL;
 
 910
 911	while (*new) {
 912		struct work_atoms *this;
 913		int cmp;
 914
 915		this = container_of(*new, struct work_atoms, node);
 916		parent = *new;
 917
 918		cmp = thread_lat_cmp(sort_list, data, this);
 919
 920		if (cmp > 0)
 921			new = &((*new)->rb_left);
 922		else
 923			new = &((*new)->rb_right);
 
 
 924	}
 925
 926	rb_link_node(&data->node, parent, new);
 927	rb_insert_color(&data->node, root);
 928}
 929
 930static void thread_atoms_insert(struct thread *thread)
 931{
 932	struct work_atoms *atoms = zalloc(sizeof(*atoms));
 933	if (!atoms)
 934		die("No memory");
 
 
 935
 936	atoms->thread = thread;
 937	INIT_LIST_HEAD(&atoms->work_list);
 938	__thread_latency_insert(&atom_root, atoms, &cmp_pid);
 
 939}
 940
 941static void
 942latency_fork_event(struct trace_fork_event *fork_event __used,
 943		   struct event *event __used,
 944		   int cpu __used,
 945		   u64 timestamp __used,
 946		   struct thread *thread __used)
 947{
 948	/* should insert the newcomer */
 949}
 950
 951__used
 952static char sched_out_state(struct trace_switch_event *switch_event)
 953{
 954	const char *str = TASK_STATE_TO_CHAR_STR;
 955
 956	return str[switch_event->prev_state];
 957}
 958
 959static void
 960add_sched_out_event(struct work_atoms *atoms,
 961		    char run_state,
 962		    u64 timestamp)
 963{
 964	struct work_atom *atom = zalloc(sizeof(*atom));
 965	if (!atom)
 966		die("Non memory");
 
 
 967
 968	atom->sched_out_time = timestamp;
 969
 970	if (run_state == 'R') {
 971		atom->state = THREAD_WAIT_CPU;
 972		atom->wake_up_time = atom->sched_out_time;
 973	}
 974
 975	list_add_tail(&atom->list, &atoms->work_list);
 
 976}
 977
 978static void
 979add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
 
 980{
 981	struct work_atom *atom;
 982
 983	BUG_ON(list_empty(&atoms->work_list));
 984
 985	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 986
 987	atom->runtime += delta;
 988	atoms->total_runtime += delta;
 989}
 990
 991static void
 992add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
 993{
 994	struct work_atom *atom;
 995	u64 delta;
 996
 997	if (list_empty(&atoms->work_list))
 998		return;
 999
1000	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1001
1002	if (atom->state != THREAD_WAIT_CPU)
1003		return;
1004
1005	if (timestamp < atom->wake_up_time) {
1006		atom->state = THREAD_IGNORE;
1007		return;
1008	}
1009
1010	atom->state = THREAD_SCHED_IN;
1011	atom->sched_in_time = timestamp;
1012
1013	delta = atom->sched_in_time - atom->wake_up_time;
1014	atoms->total_lat += delta;
1015	if (delta > atoms->max_lat) {
1016		atoms->max_lat = delta;
1017		atoms->max_lat_at = timestamp;
1018	}
1019	atoms->nb_atoms++;
1020}
1021
1022static void
1023latency_switch_event(struct trace_switch_event *switch_event,
1024		     struct perf_session *session,
1025		     struct event *event __used,
1026		     int cpu,
1027		     u64 timestamp,
1028		     struct thread *thread __used)
1029{
 
 
 
1030	struct work_atoms *out_events, *in_events;
1031	struct thread *sched_out, *sched_in;
1032	u64 timestamp0;
 
1033	s64 delta;
1034
1035	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1036
1037	timestamp0 = cpu_last_switched[cpu];
1038	cpu_last_switched[cpu] = timestamp;
1039	if (timestamp0)
1040		delta = timestamp - timestamp0;
1041	else
1042		delta = 0;
1043
1044	if (delta < 0)
1045		die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 
 
1046
 
 
 
 
1047
1048	sched_out = perf_session__findnew(session, switch_event->prev_pid);
1049	sched_in = perf_session__findnew(session, switch_event->next_pid);
1050
1051	out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1052	if (!out_events) {
1053		thread_atoms_insert(sched_out);
1054		out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1055		if (!out_events)
1056			die("out-event: Internal tree error");
 
 
 
1057	}
1058	add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
 
1059
1060	in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1061	if (!in_events) {
1062		thread_atoms_insert(sched_in);
1063		in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1064		if (!in_events)
1065			die("in-event: Internal tree error");
 
 
 
1066		/*
1067		 * Take came in we have not heard about yet,
1068		 * add in an initial atom in runnable state:
1069		 */
1070		add_sched_out_event(in_events, 'R', timestamp);
 
1071	}
1072	add_sched_in_event(in_events, timestamp);
1073}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074
1075static void
1076latency_runtime_event(struct trace_runtime_event *runtime_event,
1077		     struct perf_session *session,
1078		     struct event *event __used,
1079		     int cpu,
1080		     u64 timestamp,
1081		     struct thread *this_thread __used)
1082{
1083	struct thread *thread = perf_session__findnew(session, runtime_event->pid);
1084	struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1085
1086	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1087	if (!atoms) {
1088		thread_atoms_insert(thread);
1089		atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1090		if (!atoms)
1091			die("in-event: Internal tree error");
1092		add_sched_out_event(atoms, 'R', timestamp);
 
 
 
 
1093	}
1094
1095	add_runtime_event(atoms, runtime_event->runtime, timestamp);
 
 
 
 
1096}
1097
1098static void
1099latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1100		     struct perf_session *session,
1101		     struct event *__event __used,
1102		     int cpu __used,
1103		     u64 timestamp,
1104		     struct thread *thread __used)
1105{
 
1106	struct work_atoms *atoms;
1107	struct work_atom *atom;
1108	struct thread *wakee;
 
 
1109
1110	/* Note for later, it may be interesting to observe the failing cases */
1111	if (!wakeup_event->success)
1112		return;
1113
1114	wakee = perf_session__findnew(session, wakeup_event->pid);
1115	atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1116	if (!atoms) {
1117		thread_atoms_insert(wakee);
1118		atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1119		if (!atoms)
1120			die("wakeup-event: Internal tree error");
1121		add_sched_out_event(atoms, 'S', timestamp);
 
 
 
 
1122	}
1123
1124	BUG_ON(list_empty(&atoms->work_list));
1125
1126	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1127
1128	/*
 
 
 
 
 
 
1129	 * You WILL be missing events if you've recorded only
1130	 * one CPU, or are only looking at only one, so don't
1131	 * make useless noise.
1132	 */
1133	if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1134		nr_state_machine_bugs++;
1135
1136	nr_timestamps++;
1137	if (atom->sched_out_time > timestamp) {
1138		nr_unordered_timestamps++;
1139		return;
1140	}
1141
1142	atom->state = THREAD_WAIT_CPU;
1143	atom->wake_up_time = timestamp;
 
 
 
 
 
1144}
1145
1146static void
1147latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1148		     struct perf_session *session,
1149		     struct event *__event __used,
1150		     int cpu __used,
1151		     u64 timestamp,
1152		     struct thread *thread __used)
1153{
 
 
1154	struct work_atoms *atoms;
1155	struct work_atom *atom;
1156	struct thread *migrant;
 
1157
1158	/*
1159	 * Only need to worry about migration when profiling one CPU.
1160	 */
1161	if (profile_cpu == -1)
1162		return;
1163
1164	migrant = perf_session__findnew(session, migrate_task_event->pid);
1165	atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
 
 
1166	if (!atoms) {
1167		thread_atoms_insert(migrant);
1168		register_pid(migrant->pid, migrant->comm);
1169		atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1170		if (!atoms)
1171			die("migration-event: Internal tree error");
1172		add_sched_out_event(atoms, 'R', timestamp);
 
 
 
 
1173	}
1174
1175	BUG_ON(list_empty(&atoms->work_list));
1176
1177	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1178	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1179
1180	nr_timestamps++;
1181
1182	if (atom->sched_out_time > timestamp)
1183		nr_unordered_timestamps++;
 
 
 
 
1184}
1185
1186static struct trace_sched_handler lat_ops  = {
1187	.wakeup_event		= latency_wakeup_event,
1188	.switch_event		= latency_switch_event,
1189	.runtime_event		= latency_runtime_event,
1190	.fork_event		= latency_fork_event,
1191	.migrate_task_event	= latency_migrate_task_event,
1192};
1193
1194static void output_lat_thread(struct work_atoms *work_list)
1195{
1196	int i;
1197	int ret;
1198	u64 avg;
 
1199
1200	if (!work_list->nb_atoms)
1201		return;
1202	/*
1203	 * Ignore idle threads:
1204	 */
1205	if (!strcmp(work_list->thread->comm, "swapper"))
1206		return;
1207
1208	all_runtime += work_list->total_runtime;
1209	all_count += work_list->nb_atoms;
1210
1211	ret = printf("  %s:%d ", work_list->thread->comm, work_list->thread->pid);
 
 
 
1212
1213	for (i = 0; i < 24 - ret; i++)
1214		printf(" ");
1215
1216	avg = work_list->total_lat / work_list->nb_atoms;
 
1217
1218	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1219	      (double)work_list->total_runtime / 1e6,
1220		 work_list->nb_atoms, (double)avg / 1e6,
1221		 (double)work_list->max_lat / 1e6,
1222		 (double)work_list->max_lat_at / 1e9);
1223}
1224
1225static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1226{
1227	if (l->thread->pid < r->thread->pid)
 
 
1228		return -1;
1229	if (l->thread->pid > r->thread->pid)
1230		return 1;
1231
1232	return 0;
1233}
1234
1235static struct sort_dimension pid_sort_dimension = {
1236	.name			= "pid",
1237	.cmp			= pid_cmp,
1238};
1239
1240static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1241{
1242	u64 avgl, avgr;
1243
1244	if (!l->nb_atoms)
1245		return -1;
1246
1247	if (!r->nb_atoms)
1248		return 1;
1249
1250	avgl = l->total_lat / l->nb_atoms;
1251	avgr = r->total_lat / r->nb_atoms;
1252
1253	if (avgl < avgr)
1254		return -1;
1255	if (avgl > avgr)
1256		return 1;
1257
1258	return 0;
1259}
1260
1261static struct sort_dimension avg_sort_dimension = {
1262	.name			= "avg",
1263	.cmp			= avg_cmp,
1264};
1265
1266static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1267{
1268	if (l->max_lat < r->max_lat)
1269		return -1;
1270	if (l->max_lat > r->max_lat)
1271		return 1;
1272
1273	return 0;
1274}
1275
1276static struct sort_dimension max_sort_dimension = {
1277	.name			= "max",
1278	.cmp			= max_cmp,
1279};
1280
1281static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1282{
1283	if (l->nb_atoms < r->nb_atoms)
1284		return -1;
1285	if (l->nb_atoms > r->nb_atoms)
1286		return 1;
1287
1288	return 0;
1289}
1290
1291static struct sort_dimension switch_sort_dimension = {
1292	.name			= "switch",
1293	.cmp			= switch_cmp,
1294};
1295
1296static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1297{
1298	if (l->total_runtime < r->total_runtime)
1299		return -1;
1300	if (l->total_runtime > r->total_runtime)
1301		return 1;
1302
1303	return 0;
1304}
1305
1306static struct sort_dimension runtime_sort_dimension = {
1307	.name			= "runtime",
1308	.cmp			= runtime_cmp,
1309};
1310
1311static struct sort_dimension *available_sorts[] = {
1312	&pid_sort_dimension,
1313	&avg_sort_dimension,
1314	&max_sort_dimension,
1315	&switch_sort_dimension,
1316	&runtime_sort_dimension,
1317};
1318
1319#define NB_AVAILABLE_SORTS	(int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1320
1321static LIST_HEAD(sort_list);
1322
1323static int sort_dimension__add(const char *tok, struct list_head *list)
1324{
1325	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1326
1327	for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1328		if (!strcmp(available_sorts[i]->name, tok)) {
1329			list_add_tail(&available_sorts[i]->list, list);
1330
1331			return 0;
1332		}
1333	}
1334
1335	return -1;
1336}
1337
1338static void setup_sorting(void);
1339
1340static void sort_lat(void)
1341{
1342	struct rb_node *node;
1343
 
1344	for (;;) {
1345		struct work_atoms *data;
1346		node = rb_first(&atom_root);
1347		if (!node)
1348			break;
1349
1350		rb_erase(node, &atom_root);
1351		data = rb_entry(node, struct work_atoms, node);
1352		__thread_latency_insert(&sorted_atom_root, data, &sort_list);
 
 
 
 
1353	}
1354}
1355
1356static struct trace_sched_handler *trace_handler;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1357
1358static void
1359process_sched_wakeup_event(void *data, struct perf_session *session,
1360			   struct event *event,
1361			   int cpu __used,
1362			   u64 timestamp __used,
1363			   struct thread *thread __used)
1364{
1365	struct trace_wakeup_event wakeup_event;
1366
1367	FILL_COMMON_FIELDS(wakeup_event, event, data);
1368
1369	FILL_ARRAY(wakeup_event, comm, event, data);
1370	FILL_FIELD(wakeup_event, pid, event, data);
1371	FILL_FIELD(wakeup_event, prio, event, data);
1372	FILL_FIELD(wakeup_event, success, event, data);
1373	FILL_FIELD(wakeup_event, cpu, event, data);
1374
1375	if (trace_handler->wakeup_event)
1376		trace_handler->wakeup_event(&wakeup_event, session, event,
1377					    cpu, timestamp, thread);
1378}
1379
1380/*
1381 * Track the current task - that way we can know whether there's any
1382 * weird events, such as a task being switched away that is not current.
1383 */
1384static int max_cpu;
 
 
1385
1386static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
 
1387
1388static struct thread *curr_thread[MAX_CPUS];
 
1389
1390static char next_shortname1 = 'A';
1391static char next_shortname2 = '0';
 
1392
1393static void
1394map_switch_event(struct trace_switch_event *switch_event,
1395		 struct perf_session *session,
1396		 struct event *event __used,
1397		 int this_cpu,
1398		 u64 timestamp,
1399		 struct thread *thread __used)
1400{
1401	struct thread *sched_out __used, *sched_in;
 
 
1402	int new_shortname;
1403	u64 timestamp0;
1404	s64 delta;
1405	int cpu;
 
 
 
 
1406
1407	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1408
1409	if (this_cpu > max_cpu)
1410		max_cpu = this_cpu;
 
 
 
 
 
 
 
 
 
1411
1412	timestamp0 = cpu_last_switched[this_cpu];
1413	cpu_last_switched[this_cpu] = timestamp;
1414	if (timestamp0)
1415		delta = timestamp - timestamp0;
1416	else
1417		delta = 0;
1418
1419	if (delta < 0)
1420		die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 
 
1421
 
 
 
1422
1423	sched_out = perf_session__findnew(session, switch_event->prev_pid);
1424	sched_in = perf_session__findnew(session, switch_event->next_pid);
 
 
 
1425
1426	curr_thread[this_cpu] = sched_in;
1427
1428	printf("  ");
1429
1430	new_shortname = 0;
1431	if (!sched_in->shortname[0]) {
1432		sched_in->shortname[0] = next_shortname1;
1433		sched_in->shortname[1] = next_shortname2;
 
 
 
 
 
 
 
 
1434
1435		if (next_shortname1 < 'Z') {
1436			next_shortname1++;
1437		} else {
1438			next_shortname1='A';
1439			if (next_shortname2 < '9') {
1440				next_shortname2++;
1441			} else {
1442				next_shortname2='0';
 
 
 
 
1443			}
1444		}
1445		new_shortname = 1;
1446	}
1447
1448	for (cpu = 0; cpu <= max_cpu; cpu++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1449		if (cpu != this_cpu)
1450			printf(" ");
1451		else
1452			printf("*");
1453
1454		if (curr_thread[cpu]) {
1455			if (curr_thread[cpu]->pid)
1456				printf("%2s ", curr_thread[cpu]->shortname);
1457			else
1458				printf(".  ");
 
 
1459		} else
1460			printf("   ");
1461	}
1462
1463	printf("  %12.6f secs ", (double)timestamp/1e9);
1464	if (new_shortname) {
1465		printf("%s => %s:%d\n",
1466			sched_in->shortname, sched_in->comm, sched_in->pid);
1467	} else {
1468		printf("\n");
 
 
 
 
 
 
 
 
1469	}
 
 
 
 
 
 
 
 
 
 
1470}
1471
 
 
 
 
 
 
 
 
 
1472
1473static void
1474process_sched_switch_event(void *data, struct perf_session *session,
1475			   struct event *event,
1476			   int this_cpu,
1477			   u64 timestamp __used,
1478			   struct thread *thread __used)
1479{
1480	struct trace_switch_event switch_event;
1481
1482	FILL_COMMON_FIELDS(switch_event, event, data);
1483
1484	FILL_ARRAY(switch_event, prev_comm, event, data);
1485	FILL_FIELD(switch_event, prev_pid, event, data);
1486	FILL_FIELD(switch_event, prev_prio, event, data);
1487	FILL_FIELD(switch_event, prev_state, event, data);
1488	FILL_ARRAY(switch_event, next_comm, event, data);
1489	FILL_FIELD(switch_event, next_pid, event, data);
1490	FILL_FIELD(switch_event, next_prio, event, data);
1491
1492	if (curr_pid[this_cpu] != (u32)-1) {
1493		/*
1494		 * Are we trying to switch away a PID that is
1495		 * not current?
1496		 */
1497		if (curr_pid[this_cpu] != switch_event.prev_pid)
1498			nr_context_switch_bugs++;
1499	}
1500	if (trace_handler->switch_event)
1501		trace_handler->switch_event(&switch_event, session, event,
1502					    this_cpu, timestamp, thread);
1503
1504	curr_pid[this_cpu] = switch_event.next_pid;
 
 
 
 
1505}
1506
1507static void
1508process_sched_runtime_event(void *data, struct perf_session *session,
1509			   struct event *event,
1510			   int cpu __used,
1511			   u64 timestamp __used,
1512			   struct thread *thread __used)
1513{
1514	struct trace_runtime_event runtime_event;
1515
1516	FILL_ARRAY(runtime_event, comm, event, data);
1517	FILL_FIELD(runtime_event, pid, event, data);
1518	FILL_FIELD(runtime_event, runtime, event, data);
1519	FILL_FIELD(runtime_event, vruntime, event, data);
1520
1521	if (trace_handler->runtime_event)
1522		trace_handler->runtime_event(&runtime_event, session, event, cpu, timestamp, thread);
1523}
1524
1525static void
1526process_sched_fork_event(void *data,
1527			 struct event *event,
1528			 int cpu __used,
1529			 u64 timestamp __used,
1530			 struct thread *thread __used)
1531{
1532	struct trace_fork_event fork_event;
1533
1534	FILL_COMMON_FIELDS(fork_event, event, data);
1535
1536	FILL_ARRAY(fork_event, parent_comm, event, data);
1537	FILL_FIELD(fork_event, parent_pid, event, data);
1538	FILL_ARRAY(fork_event, child_comm, event, data);
1539	FILL_FIELD(fork_event, child_pid, event, data);
1540
1541	if (trace_handler->fork_event)
1542		trace_handler->fork_event(&fork_event, event,
1543					  cpu, timestamp, thread);
1544}
1545
1546static void
1547process_sched_exit_event(struct event *event,
1548			 int cpu __used,
1549			 u64 timestamp __used,
1550			 struct thread *thread __used)
1551{
1552	if (verbose)
1553		printf("sched_exit event %p\n", event);
 
 
 
 
1554}
1555
1556static void
1557process_sched_migrate_task_event(void *data, struct perf_session *session,
1558			   struct event *event,
1559			   int cpu __used,
1560			   u64 timestamp __used,
1561			   struct thread *thread __used)
1562{
1563	struct trace_migrate_task_event migrate_task_event;
1564
1565	FILL_COMMON_FIELDS(migrate_task_event, event, data);
1566
1567	FILL_ARRAY(migrate_task_event, comm, event, data);
1568	FILL_FIELD(migrate_task_event, pid, event, data);
1569	FILL_FIELD(migrate_task_event, prio, event, data);
1570	FILL_FIELD(migrate_task_event, cpu, event, data);
1571
1572	if (trace_handler->migrate_task_event)
1573		trace_handler->migrate_task_event(&migrate_task_event, session,
1574						 event, cpu, timestamp, thread);
1575}
1576
1577static void process_raw_event(union perf_event *raw_event __used,
1578			      struct perf_session *session, void *data, int cpu,
1579			      u64 timestamp, struct thread *thread)
1580{
1581	struct event *event;
1582	int type;
1583
1584
1585	type = trace_parse_common_type(data);
1586	event = trace_find_event(type);
1587
1588	if (!strcmp(event->name, "sched_switch"))
1589		process_sched_switch_event(data, session, event, cpu, timestamp, thread);
1590	if (!strcmp(event->name, "sched_stat_runtime"))
1591		process_sched_runtime_event(data, session, event, cpu, timestamp, thread);
1592	if (!strcmp(event->name, "sched_wakeup"))
1593		process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1594	if (!strcmp(event->name, "sched_wakeup_new"))
1595		process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1596	if (!strcmp(event->name, "sched_process_fork"))
1597		process_sched_fork_event(data, event, cpu, timestamp, thread);
1598	if (!strcmp(event->name, "sched_process_exit"))
1599		process_sched_exit_event(event, cpu, timestamp, thread);
1600	if (!strcmp(event->name, "sched_migrate_task"))
1601		process_sched_migrate_task_event(data, session, event, cpu, timestamp, thread);
1602}
1603
1604static int process_sample_event(union perf_event *event,
1605				struct perf_sample *sample,
1606				struct perf_evsel *evsel __used,
1607				struct perf_session *session)
1608{
1609	struct thread *thread;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1610
1611	if (!(session->sample_type & PERF_SAMPLE_RAW))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1612		return 0;
1613
1614	thread = perf_session__findnew(session, sample->pid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1615	if (thread == NULL) {
1616		pr_debug("problem processing %d event, skipping it.\n",
1617			 event->header.type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1618		return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1619	}
1620
1621	dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
 
1622
1623	if (profile_cpu != -1 && profile_cpu != (int)sample->cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1624		return 0;
1625
1626	process_raw_event(event, session, sample->raw_data, sample->cpu,
1627			  sample->time, thread);
 
 
 
 
 
 
 
 
 
1628
1629	return 0;
1630}
1631
1632static struct perf_event_ops event_ops = {
1633	.sample			= process_sample_event,
1634	.comm			= perf_event__process_comm,
1635	.lost			= perf_event__process_lost,
1636	.fork			= perf_event__process_task,
1637	.ordered_samples	= true,
1638};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1639
1640static void read_events(bool destroy, struct perf_session **psession)
1641{
1642	int err = -EINVAL;
1643	struct perf_session *session = perf_session__new(input_name, O_RDONLY,
1644							 0, false, &event_ops);
1645	if (session == NULL)
1646		die("No Memory");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1647
1648	if (perf_session__has_traces(session, "record -R")) {
1649		err = perf_session__process_events(session, &event_ops);
1650		if (err)
1651			die("Failed to process events, error %d", err);
 
 
 
 
 
 
 
 
1652
1653		nr_events      = session->hists.stats.nr_events[0];
1654		nr_lost_events = session->hists.stats.total_lost;
1655		nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1656	}
1657
1658	if (destroy)
1659		perf_session__delete(session);
1660
1661	if (psession)
1662		*psession = session;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1663}
1664
1665static void print_bad_events(void)
 
1666{
1667	if (nr_unordered_timestamps && nr_timestamps) {
1668		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1669			(double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1670			nr_unordered_timestamps, nr_timestamps);
1671	}
1672	if (nr_lost_events && nr_events) {
1673		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1674			(double)nr_lost_events/(double)nr_events*100.0,
1675			nr_lost_events, nr_events, nr_lost_chunks);
1676	}
1677	if (nr_state_machine_bugs && nr_timestamps) {
1678		printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1679			(double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1680			nr_state_machine_bugs, nr_timestamps);
1681		if (nr_lost_events)
1682			printf(" (due to lost events?)");
1683		printf("\n");
1684	}
1685	if (nr_context_switch_bugs && nr_timestamps) {
1686		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1687			(double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1688			nr_context_switch_bugs, nr_timestamps);
1689		if (nr_lost_events)
1690			printf(" (due to lost events?)");
1691		printf("\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692	}
1693}
1694
1695static void __cmd_lat(void)
1696{
1697	struct rb_node *next;
1698	struct perf_session *session;
1699
1700	setup_pager();
1701	read_events(false, &session);
1702	sort_lat();
1703
1704	printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1705	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at     |\n");
1706	printf(" ---------------------------------------------------------------------------------------------------------------\n");
 
 
 
 
 
 
1707
1708	next = rb_first(&sorted_atom_root);
1709
1710	while (next) {
1711		struct work_atoms *work_list;
1712
1713		work_list = rb_entry(next, struct work_atoms, node);
1714		output_lat_thread(work_list);
1715		next = rb_next(next);
 
1716	}
1717
1718	printf(" -----------------------------------------------------------------------------------------\n");
1719	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1720		(double)all_runtime/1e6, all_count);
1721
1722	printf(" ---------------------------------------------------\n");
1723
1724	print_bad_events();
1725	printf("\n");
1726
1727	perf_session__delete(session);
1728}
1729
1730static struct trace_sched_handler map_ops  = {
1731	.wakeup_event		= NULL,
1732	.switch_event		= map_switch_event,
1733	.runtime_event		= NULL,
1734	.fork_event		= NULL,
1735};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1736
1737static void __cmd_map(void)
1738{
1739	max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1740
1741	setup_pager();
1742	read_events(true, NULL);
1743	print_bad_events();
 
 
 
 
 
 
 
 
1744}
1745
1746static void __cmd_replay(void)
1747{
1748	unsigned long i;
 
 
 
1749
1750	calibrate_run_measurement_overhead();
1751	calibrate_sleep_measurement_overhead();
 
 
 
1752
1753	test_calibrations();
 
 
1754
1755	read_events(true, NULL);
 
 
 
1756
1757	printf("nr_run_events:        %ld\n", nr_run_events);
1758	printf("nr_sleep_events:      %ld\n", nr_sleep_events);
1759	printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
1760
1761	if (targetless_wakeups)
1762		printf("target-less wakeups:  %ld\n", targetless_wakeups);
1763	if (multitarget_wakeups)
1764		printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1765	if (nr_run_events_optimized)
1766		printf("run atoms optimized: %ld\n",
1767			nr_run_events_optimized);
1768
1769	print_task_traces();
1770	add_cross_task_wakeups();
1771
1772	create_tasks();
1773	printf("------------------------------------------------------------\n");
1774	for (i = 0; i < replay_repeat; i++)
1775		run_one_test();
 
1776}
1777
 
 
 
 
 
 
1778
1779static const char * const sched_usage[] = {
1780	"perf sched [<options>] {record|latency|map|replay|script}",
1781	NULL
1782};
1783
1784static const struct option sched_options[] = {
1785	OPT_STRING('i', "input", &input_name, "file",
1786		    "input file name"),
1787	OPT_INCR('v', "verbose", &verbose,
1788		    "be more verbose (show symbol address, etc)"),
1789	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1790		    "dump raw trace in ASCII"),
1791	OPT_END()
1792};
1793
1794static const char * const latency_usage[] = {
1795	"perf sched latency [<options>]",
1796	NULL
1797};
 
 
 
 
 
 
 
1798
1799static const struct option latency_options[] = {
1800	OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1801		   "sort by key(s): runtime, switch, avg, max"),
1802	OPT_INCR('v', "verbose", &verbose,
1803		    "be more verbose (show symbol address, etc)"),
1804	OPT_INTEGER('C', "CPU", &profile_cpu,
1805		    "CPU to profile on"),
1806	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1807		    "dump raw trace in ASCII"),
1808	OPT_END()
1809};
1810
1811static const char * const replay_usage[] = {
1812	"perf sched replay [<options>]",
1813	NULL
1814};
1815
1816static const struct option replay_options[] = {
1817	OPT_UINTEGER('r', "repeat", &replay_repeat,
1818		     "repeat the workload replay N times (-1: infinite)"),
1819	OPT_INCR('v', "verbose", &verbose,
1820		    "be more verbose (show symbol address, etc)"),
1821	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1822		    "dump raw trace in ASCII"),
1823	OPT_END()
1824};
1825
1826static void setup_sorting(void)
 
1827{
1828	char *tmp, *tok, *str = strdup(sort_order);
1829
1830	for (tok = strtok_r(str, ", ", &tmp);
1831			tok; tok = strtok_r(NULL, ", ", &tmp)) {
1832		if (sort_dimension__add(tok, &sort_list) < 0) {
1833			error("Unknown --sort key: `%s'", tok);
1834			usage_with_options(latency_usage, latency_options);
1835		}
1836	}
1837
1838	free(str);
1839
1840	sort_dimension__add("pid", &cmp_pid);
1841}
1842
1843static const char *record_args[] = {
1844	"record",
1845	"-a",
1846	"-R",
1847	"-f",
1848	"-m", "1024",
1849	"-c", "1",
1850	"-e", "sched:sched_switch",
1851	"-e", "sched:sched_stat_wait",
1852	"-e", "sched:sched_stat_sleep",
1853	"-e", "sched:sched_stat_iowait",
1854	"-e", "sched:sched_stat_runtime",
1855	"-e", "sched:sched_process_exit",
1856	"-e", "sched:sched_process_fork",
1857	"-e", "sched:sched_wakeup",
1858	"-e", "sched:sched_migrate_task",
1859};
1860
1861static int __cmd_record(int argc, const char **argv)
1862{
1863	unsigned int rec_argc, i, j;
1864	const char **rec_argv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1865
1866	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1867	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1868
1869	if (rec_argv == NULL)
1870		return -ENOMEM;
1871
1872	for (i = 0; i < ARRAY_SIZE(record_args); i++)
1873		rec_argv[i] = strdup(record_args[i]);
1874
1875	for (j = 1; j < (unsigned int)argc; j++, i++)
1876		rec_argv[i] = argv[j];
1877
1878	BUG_ON(i != rec_argc);
1879
1880	return cmd_record(i, rec_argv, NULL);
1881}
1882
1883int cmd_sched(int argc, const char **argv, const char *prefix __used)
1884{
1885	argc = parse_options(argc, argv, sched_options, sched_usage,
1886			     PARSE_OPT_STOP_AT_NON_OPTION);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1887	if (!argc)
1888		usage_with_options(sched_usage, sched_options);
1889
1890	/*
1891	 * Aliased to 'perf script' for now:
1892	 */
1893	if (!strcmp(argv[0], "script"))
1894		return cmd_script(argc, argv, prefix);
1895
1896	symbol__init();
1897	if (!strncmp(argv[0], "rec", 3)) {
1898		return __cmd_record(argc, argv);
1899	} else if (!strncmp(argv[0], "lat", 3)) {
1900		trace_handler = &lat_ops;
1901		if (argc > 1) {
1902			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1903			if (argc)
1904				usage_with_options(latency_usage, latency_options);
1905		}
1906		setup_sorting();
1907		__cmd_lat();
1908	} else if (!strcmp(argv[0], "map")) {
1909		trace_handler = &map_ops;
1910		setup_sorting();
1911		__cmd_map();
 
 
 
 
 
1912	} else if (!strncmp(argv[0], "rep", 3)) {
1913		trace_handler = &replay_ops;
1914		if (argc) {
1915			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1916			if (argc)
1917				usage_with_options(replay_usage, replay_options);
1918		}
1919		__cmd_replay();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1920	} else {
1921		usage_with_options(sched_usage, sched_options);
1922	}
1923
1924	return 0;
1925}