Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * This file contains common routines for dealing with free of page tables
  4 * Along with common page table handling code
  5 *
  6 *  Derived from arch/powerpc/mm/tlb_64.c:
  7 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  8 *
  9 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
 10 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
 11 *    Copyright (C) 1996 Paul Mackerras
 12 *
 13 *  Derived from "arch/i386/mm/init.c"
 14 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 15 *
 16 *  Dave Engebretsen <engebret@us.ibm.com>
 17 *      Rework for PPC64 port.
 18 */
 19
 20#include <linux/kernel.h>
 21#include <linux/gfp.h>
 22#include <linux/mm.h>
 23#include <linux/percpu.h>
 24#include <linux/hardirq.h>
 25#include <linux/hugetlb.h>
 26#include <asm/pgalloc.h>
 27#include <asm/tlbflush.h>
 28#include <asm/tlb.h>
 29#include <asm/hugetlb.h>
 
 
 
 
 
 
 
 
 
 30
 31static inline int is_exec_fault(void)
 32{
 33	return current->thread.regs && TRAP(current->thread.regs) == 0x400;
 34}
 35
 36/* We only try to do i/d cache coherency on stuff that looks like
 37 * reasonably "normal" PTEs. We currently require a PTE to be present
 38 * and we avoid _PAGE_SPECIAL and cache inhibited pte. We also only do that
 39 * on userspace PTEs
 40 */
 41static inline int pte_looks_normal(pte_t pte)
 42{
 43
 44	if (pte_present(pte) && !pte_special(pte)) {
 45		if (pte_ci(pte))
 46			return 0;
 47		if (pte_user(pte))
 48			return 1;
 49	}
 50	return 0;
 51}
 52
 53static struct page *maybe_pte_to_page(pte_t pte)
 54{
 55	unsigned long pfn = pte_pfn(pte);
 56	struct page *page;
 57
 58	if (unlikely(!pfn_valid(pfn)))
 59		return NULL;
 60	page = pfn_to_page(pfn);
 61	if (PageReserved(page))
 62		return NULL;
 63	return page;
 64}
 65
 66#ifdef CONFIG_PPC_BOOK3S
 67
 68/* Server-style MMU handles coherency when hashing if HW exec permission
 69 * is supposed per page (currently 64-bit only). If not, then, we always
 70 * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
 71 * support falls into the same category.
 72 */
 73
 74static pte_t set_pte_filter_hash(pte_t pte)
 75{
 76	if (radix_enabled())
 77		return pte;
 78
 79	pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
 80	if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
 81				       cpu_has_feature(CPU_FTR_NOEXECUTE))) {
 82		struct page *pg = maybe_pte_to_page(pte);
 83		if (!pg)
 84			return pte;
 85		if (!test_bit(PG_arch_1, &pg->flags)) {
 86			flush_dcache_icache_page(pg);
 87			set_bit(PG_arch_1, &pg->flags);
 88		}
 89	}
 90	return pte;
 91}
 92
 93#else /* CONFIG_PPC_BOOK3S */
 94
 95static pte_t set_pte_filter_hash(pte_t pte) { return pte; }
 96
 97#endif /* CONFIG_PPC_BOOK3S */
 98
 99/* Embedded type MMU with HW exec support. This is a bit more complicated
100 * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
101 * instead we "filter out" the exec permission for non clean pages.
 
 
102 */
103static pte_t set_pte_filter(pte_t pte)
104{
105	struct page *pg;
 
 
 
106
107	if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
108		return set_pte_filter_hash(pte);
109
110	/* No exec permission in the first place, move on */
111	if (!pte_exec(pte) || !pte_looks_normal(pte))
112		return pte;
113
114	/* If you set _PAGE_EXEC on weird pages you're on your own */
115	pg = maybe_pte_to_page(pte);
116	if (unlikely(!pg))
117		return pte;
118
119	/* If the page clean, we move on */
120	if (test_bit(PG_arch_1, &pg->flags))
121		return pte;
122
123	/* If it's an exec fault, we flush the cache and make it clean */
124	if (is_exec_fault()) {
125		flush_dcache_icache_page(pg);
126		set_bit(PG_arch_1, &pg->flags);
127		return pte;
128	}
129
130	/* Else, we filter out _PAGE_EXEC */
131	return pte_exprotect(pte);
132}
133
134static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
135				     int dirty)
136{
137	struct page *pg;
 
 
 
138
139	if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
140		return pte;
141
142	/* So here, we only care about exec faults, as we use them
143	 * to recover lost _PAGE_EXEC and perform I$/D$ coherency
144	 * if necessary. Also if _PAGE_EXEC is already set, same deal,
145	 * we just bail out
146	 */
147	if (dirty || pte_exec(pte) || !is_exec_fault())
148		return pte;
149
150#ifdef CONFIG_DEBUG_VM
151	/* So this is an exec fault, _PAGE_EXEC is not set. If it was
152	 * an error we would have bailed out earlier in do_page_fault()
153	 * but let's make sure of it
154	 */
155	if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
156		return pte;
157#endif /* CONFIG_DEBUG_VM */
158
159	/* If you set _PAGE_EXEC on weird pages you're on your own */
160	pg = maybe_pte_to_page(pte);
161	if (unlikely(!pg))
162		goto bail;
163
164	/* If the page is already clean, we move on */
165	if (test_bit(PG_arch_1, &pg->flags))
166		goto bail;
167
168	/* Clean the page and set PG_arch_1 */
169	flush_dcache_icache_page(pg);
170	set_bit(PG_arch_1, &pg->flags);
171
172 bail:
173	return pte_mkexec(pte);
174}
175
176/*
177 * set_pte stores a linux PTE into the linux page table.
178 */
179void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
180		pte_t pte)
181{
182	/*
183	 * Make sure hardware valid bit is not set. We don't do
184	 * tlb flush for this update.
185	 */
186	VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
187
188	/* Add the pte bit when trying to set a pte */
189	pte = pte_mkpte(pte);
190
191	/* Note: mm->context.id might not yet have been assigned as
192	 * this context might not have been activated yet when this
193	 * is called.
 
 
 
 
 
 
 
 
 
194	 */
195	pte = set_pte_filter(pte);
 
 
 
 
 
 
196
197	/* Perform the setting of the PTE */
198	__set_pte_at(mm, addr, ptep, pte, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199}
200
201/*
202 * This is called when relaxing access to a PTE. It's also called in the page
203 * fault path when we don't hit any of the major fault cases, ie, a minor
204 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
205 * handled those two for us, we additionally deal with missing execute
206 * permission here on some processors
207 */
208int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
209			  pte_t *ptep, pte_t entry, int dirty)
210{
211	int changed;
212	entry = set_access_flags_filter(entry, vma, dirty);
213	changed = !pte_same(*(ptep), entry);
214	if (changed) {
215		assert_pte_locked(vma->vm_mm, address);
216		__ptep_set_access_flags(vma, ptep, entry,
217					address, mmu_virtual_psize);
218	}
219	return changed;
220}
221
222#ifdef CONFIG_HUGETLB_PAGE
223int huge_ptep_set_access_flags(struct vm_area_struct *vma,
224			       unsigned long addr, pte_t *ptep,
225			       pte_t pte, int dirty)
226{
227#ifdef HUGETLB_NEED_PRELOAD
228	/*
229	 * The "return 1" forces a call of update_mmu_cache, which will write a
230	 * TLB entry.  Without this, platforms that don't do a write of the TLB
231	 * entry in the TLB miss handler asm will fault ad infinitum.
232	 */
233	ptep_set_access_flags(vma, addr, ptep, pte, dirty);
234	return 1;
235#else
236	int changed, psize;
237
238	pte = set_access_flags_filter(pte, vma, dirty);
239	changed = !pte_same(*(ptep), pte);
240	if (changed) {
241
242#ifdef CONFIG_PPC_BOOK3S_64
243		struct hstate *h = hstate_vma(vma);
244
245		psize = hstate_get_psize(h);
246#ifdef CONFIG_DEBUG_VM
247		assert_spin_locked(huge_pte_lockptr(h, vma->vm_mm, ptep));
248#endif
249
250#else
251		/*
252		 * Not used on non book3s64 platforms. But 8xx
253		 * can possibly use tsize derived from hstate.
 
254		 */
255		psize = 0;
256#endif
257		__ptep_set_access_flags(vma, ptep, pte, addr, psize);
258	}
259	return changed;
260#endif
261}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262#endif /* CONFIG_HUGETLB_PAGE */
263
264#ifdef CONFIG_DEBUG_VM
265void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
266{
267	pgd_t *pgd;
 
268	pud_t *pud;
269	pmd_t *pmd;
 
 
270
271	if (mm == &init_mm)
272		return;
273	pgd = mm->pgd + pgd_index(addr);
274	BUG_ON(pgd_none(*pgd));
275	pud = pud_offset(pgd, addr);
 
 
276	BUG_ON(pud_none(*pud));
277	pmd = pmd_offset(pud, addr);
278	/*
279	 * khugepaged to collapse normal pages to hugepage, first set
280	 * pmd to none to force page fault/gup to take mmap_sem. After
281	 * pmd is set to none, we do a pte_clear which does this assertion
282	 * so if we find pmd none, return.
283	 */
284	if (pmd_none(*pmd))
285		return;
286	BUG_ON(!pmd_present(*pmd));
287	assert_spin_locked(pte_lockptr(mm, pmd));
 
 
288}
289#endif /* CONFIG_DEBUG_VM */
290
291unsigned long vmalloc_to_phys(void *va)
292{
293	unsigned long pfn = vmalloc_to_pfn(va);
294
295	BUG_ON(!pfn);
296	return __pa(pfn_to_kaddr(pfn)) + offset_in_page(va);
297}
298EXPORT_SYMBOL_GPL(vmalloc_to_phys);
299
300/*
301 * We have 4 cases for pgds and pmds:
302 * (1) invalid (all zeroes)
303 * (2) pointer to next table, as normal; bottom 6 bits == 0
304 * (3) leaf pte for huge page _PAGE_PTE set
305 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
306 *
307 * So long as we atomically load page table pointers we are safe against teardown,
308 * we can follow the address down to the the page and take a ref on it.
309 * This function need to be called with interrupts disabled. We use this variant
310 * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
311 */
312pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
313			bool *is_thp, unsigned *hpage_shift)
314{
315	pgd_t pgd, *pgdp;
 
 
316	pud_t pud, *pudp;
 
317	pmd_t pmd, *pmdp;
318	pte_t *ret_pte;
319	hugepd_t *hpdp = NULL;
320	unsigned pdshift = PGDIR_SHIFT;
321
322	if (hpage_shift)
323		*hpage_shift = 0;
324
325	if (is_thp)
326		*is_thp = false;
327
328	pgdp = pgdir + pgd_index(ea);
329	pgd  = READ_ONCE(*pgdp);
330	/*
331	 * Always operate on the local stack value. This make sure the
332	 * value don't get updated by a parallel THP split/collapse,
333	 * page fault or a page unmap. The return pte_t * is still not
334	 * stable. So should be checked there for above conditions.
 
 
 
 
335	 */
336	if (pgd_none(pgd))
 
 
 
 
 
 
337		return NULL;
338
339	if (pgd_is_leaf(pgd)) {
340		ret_pte = (pte_t *)pgdp;
341		goto out;
342	}
343
344	if (is_hugepd(__hugepd(pgd_val(pgd)))) {
345		hpdp = (hugepd_t *)&pgd;
346		goto out_huge;
347	}
348
349	/*
350	 * Even if we end up with an unmap, the pgtable will not
351	 * be freed, because we do an rcu free and here we are
352	 * irq disabled
353	 */
354	pdshift = PUD_SHIFT;
355	pudp = pud_offset(&pgd, ea);
356	pud  = READ_ONCE(*pudp);
357
358	if (pud_none(pud))
359		return NULL;
360
361	if (pud_is_leaf(pud)) {
362		ret_pte = (pte_t *)pudp;
363		goto out;
364	}
365
366	if (is_hugepd(__hugepd(pud_val(pud)))) {
367		hpdp = (hugepd_t *)&pud;
368		goto out_huge;
369	}
370
371	pdshift = PMD_SHIFT;
372	pmdp = pmd_offset(&pud, ea);
 
 
 
 
373	pmd  = READ_ONCE(*pmdp);
374
375	/*
376	 * A hugepage collapse is captured by this condition, see
377	 * pmdp_collapse_flush.
378	 */
379	if (pmd_none(pmd))
380		return NULL;
381
382#ifdef CONFIG_PPC_BOOK3S_64
383	/*
384	 * A hugepage split is captured by this condition, see
385	 * pmdp_invalidate.
386	 *
387	 * Huge page modification can be caught here too.
388	 */
389	if (pmd_is_serializing(pmd))
390		return NULL;
391#endif
392
393	if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
394		if (is_thp)
395			*is_thp = true;
396		ret_pte = (pte_t *)pmdp;
397		goto out;
398	}
399
400	if (pmd_is_leaf(pmd)) {
401		ret_pte = (pte_t *)pmdp;
402		goto out;
403	}
404
405	if (is_hugepd(__hugepd(pmd_val(pmd)))) {
406		hpdp = (hugepd_t *)&pmd;
407		goto out_huge;
408	}
409
410	return pte_offset_kernel(&pmd, ea);
411
412out_huge:
413	if (!hpdp)
414		return NULL;
415
416	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
417	pdshift = hugepd_shift(*hpdp);
418out:
419	if (hpage_shift)
420		*hpage_shift = pdshift;
421	return ret_pte;
422}
423EXPORT_SYMBOL_GPL(__find_linux_pte);
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * This file contains common routines for dealing with free of page tables
  4 * Along with common page table handling code
  5 *
  6 *  Derived from arch/powerpc/mm/tlb_64.c:
  7 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  8 *
  9 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
 10 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
 11 *    Copyright (C) 1996 Paul Mackerras
 12 *
 13 *  Derived from "arch/i386/mm/init.c"
 14 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 15 *
 16 *  Dave Engebretsen <engebret@us.ibm.com>
 17 *      Rework for PPC64 port.
 18 */
 19
 20#include <linux/kernel.h>
 21#include <linux/gfp.h>
 22#include <linux/mm.h>
 23#include <linux/percpu.h>
 24#include <linux/hardirq.h>
 25#include <linux/hugetlb.h>
 
 26#include <asm/tlbflush.h>
 27#include <asm/tlb.h>
 28#include <asm/hugetlb.h>
 29#include <asm/pte-walk.h>
 30
 31#ifdef CONFIG_PPC64
 32#define PGD_ALIGN (sizeof(pgd_t) * MAX_PTRS_PER_PGD)
 33#else
 34#define PGD_ALIGN PAGE_SIZE
 35#endif
 36
 37pgd_t swapper_pg_dir[MAX_PTRS_PER_PGD] __section(".bss..page_aligned") __aligned(PGD_ALIGN);
 38
 39static inline int is_exec_fault(void)
 40{
 41	return current->thread.regs && TRAP(current->thread.regs) == 0x400;
 42}
 43
 44/* We only try to do i/d cache coherency on stuff that looks like
 45 * reasonably "normal" PTEs. We currently require a PTE to be present
 46 * and we avoid _PAGE_SPECIAL and cache inhibited pte. We also only do that
 47 * on userspace PTEs
 48 */
 49static inline int pte_looks_normal(pte_t pte, unsigned long addr)
 50{
 51
 52	if (pte_present(pte) && !pte_special(pte)) {
 53		if (pte_ci(pte))
 54			return 0;
 55		if (!is_kernel_addr(addr))
 56			return 1;
 57	}
 58	return 0;
 59}
 60
 61static struct folio *maybe_pte_to_folio(pte_t pte)
 62{
 63	unsigned long pfn = pte_pfn(pte);
 64	struct page *page;
 65
 66	if (unlikely(!pfn_valid(pfn)))
 67		return NULL;
 68	page = pfn_to_page(pfn);
 69	if (PageReserved(page))
 70		return NULL;
 71	return page_folio(page);
 72}
 73
 74#ifdef CONFIG_PPC_BOOK3S
 75
 76/* Server-style MMU handles coherency when hashing if HW exec permission
 77 * is supposed per page (currently 64-bit only). If not, then, we always
 78 * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
 79 * support falls into the same category.
 80 */
 81
 82static pte_t set_pte_filter_hash(pte_t pte, unsigned long addr)
 83{
 
 
 
 84	pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
 85	if (pte_looks_normal(pte, addr) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
 86					     cpu_has_feature(CPU_FTR_NOEXECUTE))) {
 87		struct folio *folio = maybe_pte_to_folio(pte);
 88		if (!folio)
 89			return pte;
 90		if (!test_bit(PG_dcache_clean, &folio->flags)) {
 91			flush_dcache_icache_folio(folio);
 92			set_bit(PG_dcache_clean, &folio->flags);
 93		}
 94	}
 95	return pte;
 96}
 97
 98#else /* CONFIG_PPC_BOOK3S */
 99
100static pte_t set_pte_filter_hash(pte_t pte, unsigned long addr) { return pte; }
101
102#endif /* CONFIG_PPC_BOOK3S */
103
104/* Embedded type MMU with HW exec support. This is a bit more complicated
105 * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
106 * instead we "filter out" the exec permission for non clean pages.
107 *
108 * This is also called once for the folio. So only work with folio->flags here.
109 */
110static inline pte_t set_pte_filter(pte_t pte, unsigned long addr)
111{
112	struct folio *folio;
113
114	if (radix_enabled())
115		return pte;
116
117	if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
118		return set_pte_filter_hash(pte, addr);
119
120	/* No exec permission in the first place, move on */
121	if (!pte_exec(pte) || !pte_looks_normal(pte, addr))
122		return pte;
123
124	/* If you set _PAGE_EXEC on weird pages you're on your own */
125	folio = maybe_pte_to_folio(pte);
126	if (unlikely(!folio))
127		return pte;
128
129	/* If the page clean, we move on */
130	if (test_bit(PG_dcache_clean, &folio->flags))
131		return pte;
132
133	/* If it's an exec fault, we flush the cache and make it clean */
134	if (is_exec_fault()) {
135		flush_dcache_icache_folio(folio);
136		set_bit(PG_dcache_clean, &folio->flags);
137		return pte;
138	}
139
140	/* Else, we filter out _PAGE_EXEC */
141	return pte_exprotect(pte);
142}
143
144static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
145				     int dirty)
146{
147	struct folio *folio;
148
149	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64))
150		return pte;
151
152	if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
153		return pte;
154
155	/* So here, we only care about exec faults, as we use them
156	 * to recover lost _PAGE_EXEC and perform I$/D$ coherency
157	 * if necessary. Also if _PAGE_EXEC is already set, same deal,
158	 * we just bail out
159	 */
160	if (dirty || pte_exec(pte) || !is_exec_fault())
161		return pte;
162
163#ifdef CONFIG_DEBUG_VM
164	/* So this is an exec fault, _PAGE_EXEC is not set. If it was
165	 * an error we would have bailed out earlier in do_page_fault()
166	 * but let's make sure of it
167	 */
168	if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
169		return pte;
170#endif /* CONFIG_DEBUG_VM */
171
172	/* If you set _PAGE_EXEC on weird pages you're on your own */
173	folio = maybe_pte_to_folio(pte);
174	if (unlikely(!folio))
175		goto bail;
176
177	/* If the page is already clean, we move on */
178	if (test_bit(PG_dcache_clean, &folio->flags))
179		goto bail;
180
181	/* Clean the page and set PG_dcache_clean */
182	flush_dcache_icache_folio(folio);
183	set_bit(PG_dcache_clean, &folio->flags);
184
185 bail:
186	return pte_mkexec(pte);
187}
188
189/*
190 * set_pte stores a linux PTE into the linux page table.
191 */
192void set_ptes(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
193		pte_t pte, unsigned int nr)
194{
 
 
 
 
 
 
 
 
195
196	/* Note: mm->context.id might not yet have been assigned as
197	 * this context might not have been activated yet when this
198	 * is called. Filter the pte value and use the filtered value
199	 * to setup all the ptes in the range.
200	 */
201	pte = set_pte_filter(pte, addr);
202
203	/*
204	 * We don't need to call arch_enter/leave_lazy_mmu_mode()
205	 * because we expect set_ptes to be only be used on not present
206	 * and not hw_valid ptes. Hence there is no translation cache flush
207	 * involved that need to be batched.
208	 */
209	for (;;) {
210
211		/*
212		 * Make sure hardware valid bit is not set. We don't do
213		 * tlb flush for this update.
214		 */
215		VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
216
217		/* Perform the setting of the PTE */
218		__set_pte_at(mm, addr, ptep, pte, 0);
219		if (--nr == 0)
220			break;
221		ptep++;
222		addr += PAGE_SIZE;
223		pte = pte_next_pfn(pte);
224	}
225}
226
227void unmap_kernel_page(unsigned long va)
228{
229	pmd_t *pmdp = pmd_off_k(va);
230	pte_t *ptep = pte_offset_kernel(pmdp, va);
231
232	pte_clear(&init_mm, va, ptep);
233	flush_tlb_kernel_range(va, va + PAGE_SIZE);
234}
235
236/*
237 * This is called when relaxing access to a PTE. It's also called in the page
238 * fault path when we don't hit any of the major fault cases, ie, a minor
239 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
240 * handled those two for us, we additionally deal with missing execute
241 * permission here on some processors
242 */
243int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
244			  pte_t *ptep, pte_t entry, int dirty)
245{
246	int changed;
247	entry = set_access_flags_filter(entry, vma, dirty);
248	changed = !pte_same(*(ptep), entry);
249	if (changed) {
250		assert_pte_locked(vma->vm_mm, address);
251		__ptep_set_access_flags(vma, ptep, entry,
252					address, mmu_virtual_psize);
253	}
254	return changed;
255}
256
257#ifdef CONFIG_HUGETLB_PAGE
258int huge_ptep_set_access_flags(struct vm_area_struct *vma,
259			       unsigned long addr, pte_t *ptep,
260			       pte_t pte, int dirty)
261{
262#ifdef HUGETLB_NEED_PRELOAD
263	/*
264	 * The "return 1" forces a call of update_mmu_cache, which will write a
265	 * TLB entry.  Without this, platforms that don't do a write of the TLB
266	 * entry in the TLB miss handler asm will fault ad infinitum.
267	 */
268	ptep_set_access_flags(vma, addr, ptep, pte, dirty);
269	return 1;
270#else
271	int changed, psize;
272
273	pte = set_access_flags_filter(pte, vma, dirty);
274	changed = !pte_same(*(ptep), pte);
275	if (changed) {
276
277#ifdef CONFIG_PPC_BOOK3S_64
278		struct hstate *h = hstate_vma(vma);
279
280		psize = hstate_get_psize(h);
281#ifdef CONFIG_DEBUG_VM
282		assert_spin_locked(huge_pte_lockptr(h, vma->vm_mm, ptep));
283#endif
284
285#else
286		/*
287		 * Not used on non book3s64 platforms.
288		 * 8xx compares it with mmu_virtual_psize to
289		 * know if it is a huge page or not.
290		 */
291		psize = MMU_PAGE_COUNT;
292#endif
293		__ptep_set_access_flags(vma, ptep, pte, addr, psize);
294	}
295	return changed;
296#endif
297}
298
299#if defined(CONFIG_PPC_8xx)
300
301#if defined(CONFIG_SPLIT_PTE_PTLOCKS) || defined(CONFIG_SPLIT_PMD_PTLOCKS)
302/* We need the same lock to protect the PMD table and the two PTE tables. */
303#error "8M hugetlb folios are incompatible with split page table locks"
304#endif
305
306static void __set_huge_pte_at(pmd_t *pmd, pte_t *ptep, pte_basic_t val)
307{
308	pte_basic_t *entry = (pte_basic_t *)ptep;
309	int num, i;
310
311	/*
312	 * Make sure hardware valid bit is not set. We don't do
313	 * tlb flush for this update.
314	 */
315	VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
316
317	num = number_of_cells_per_pte(pmd, val, 1);
318
319	for (i = 0; i < num; i++, entry++, val += SZ_4K)
320		*entry = val;
321}
322
323void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
324		     pte_t pte, unsigned long sz)
325{
326	pmd_t *pmdp = pmd_off(mm, addr);
327
328	pte = set_pte_filter(pte, addr);
329
330	if (sz == SZ_8M) { /* Flag both PMD entries as 8M and fill both page tables */
331		*pmdp = __pmd(pmd_val(*pmdp) | _PMD_PAGE_8M);
332		*(pmdp + 1) = __pmd(pmd_val(*(pmdp + 1)) | _PMD_PAGE_8M);
333
334		__set_huge_pte_at(pmdp, pte_offset_kernel(pmdp, 0), pte_val(pte));
335		__set_huge_pte_at(pmdp, pte_offset_kernel(pmdp + 1, 0), pte_val(pte) + SZ_4M);
336	} else {
337		__set_huge_pte_at(pmdp, ptep, pte_val(pte));
338	}
339}
340#else
341void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
342		     pte_t pte, unsigned long sz)
343{
344	unsigned long pdsize;
345	int i;
346
347	pte = set_pte_filter(pte, addr);
348
349	/*
350	 * Make sure hardware valid bit is not set. We don't do
351	 * tlb flush for this update.
352	 */
353	VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
354
355	if (sz < PMD_SIZE)
356		pdsize = PAGE_SIZE;
357	else if (sz < PUD_SIZE)
358		pdsize = PMD_SIZE;
359	else if (sz < P4D_SIZE)
360		pdsize = PUD_SIZE;
361	else if (sz < PGDIR_SIZE)
362		pdsize = P4D_SIZE;
363	else
364		pdsize = PGDIR_SIZE;
365
366	for (i = 0; i < sz / pdsize; i++, ptep++, addr += pdsize) {
367		__set_pte_at(mm, addr, ptep, pte, 0);
368		pte = __pte(pte_val(pte) + ((unsigned long long)pdsize / PAGE_SIZE << PFN_PTE_SHIFT));
369	}
370}
371#endif
372#endif /* CONFIG_HUGETLB_PAGE */
373
374#ifdef CONFIG_DEBUG_VM
375void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
376{
377	pgd_t *pgd;
378	p4d_t *p4d;
379	pud_t *pud;
380	pmd_t *pmd;
381	pte_t *pte;
382	spinlock_t *ptl;
383
384	if (mm == &init_mm)
385		return;
386	pgd = mm->pgd + pgd_index(addr);
387	BUG_ON(pgd_none(*pgd));
388	p4d = p4d_offset(pgd, addr);
389	BUG_ON(p4d_none(*p4d));
390	pud = pud_offset(p4d, addr);
391	BUG_ON(pud_none(*pud));
392	pmd = pmd_offset(pud, addr);
393	/*
394	 * khugepaged to collapse normal pages to hugepage, first set
395	 * pmd to none to force page fault/gup to take mmap_lock. After
396	 * pmd is set to none, we do a pte_clear which does this assertion
397	 * so if we find pmd none, return.
398	 */
399	if (pmd_none(*pmd))
400		return;
401	pte = pte_offset_map_ro_nolock(mm, pmd, addr, &ptl);
402	BUG_ON(!pte);
403	assert_spin_locked(ptl);
404	pte_unmap(pte);
405}
406#endif /* CONFIG_DEBUG_VM */
407
408unsigned long vmalloc_to_phys(void *va)
409{
410	unsigned long pfn = vmalloc_to_pfn(va);
411
412	BUG_ON(!pfn);
413	return __pa(pfn_to_kaddr(pfn)) + offset_in_page(va);
414}
415EXPORT_SYMBOL_GPL(vmalloc_to_phys);
416
417/*
418 * We have 3 cases for pgds and pmds:
419 * (1) invalid (all zeroes)
420 * (2) pointer to next table, as normal; bottom 6 bits == 0
421 * (3) leaf pte for huge page _PAGE_PTE set
 
422 *
423 * So long as we atomically load page table pointers we are safe against teardown,
424 * we can follow the address down to the page and take a ref on it.
425 * This function need to be called with interrupts disabled. We use this variant
426 * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
427 */
428pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
429			bool *is_thp, unsigned *hpage_shift)
430{
431	pgd_t *pgdp;
432#ifdef CONFIG_PPC64
433	p4d_t p4d, *p4dp;
434	pud_t pud, *pudp;
435#endif
436	pmd_t pmd, *pmdp;
437	pte_t *ret_pte;
438	unsigned pdshift;
 
439
440	if (hpage_shift)
441		*hpage_shift = 0;
442
443	if (is_thp)
444		*is_thp = false;
445
 
 
446	/*
447	 * Always operate on the local stack value. This make sure the
448	 * value don't get updated by a parallel THP split/collapse,
449	 * page fault or a page unmap. The return pte_t * is still not
450	 * stable. So should be checked there for above conditions.
451	 * Top level is an exception because it is folded into p4d.
452	 *
453	 * On PPC32, P4D/PUD/PMD are folded into PGD so go straight to
454	 * PMD level.
455	 */
456	pgdp = pgdir + pgd_index(ea);
457#ifdef CONFIG_PPC64
458	p4dp = p4d_offset(pgdp, ea);
459	p4d  = READ_ONCE(*p4dp);
460	pdshift = P4D_SHIFT;
461
462	if (p4d_none(p4d))
463		return NULL;
464
465	if (p4d_leaf(p4d)) {
466		ret_pte = (pte_t *)p4dp;
467		goto out;
468	}
469
 
 
 
 
 
470	/*
471	 * Even if we end up with an unmap, the pgtable will not
472	 * be freed, because we do an rcu free and here we are
473	 * irq disabled
474	 */
475	pdshift = PUD_SHIFT;
476	pudp = pud_offset(&p4d, ea);
477	pud  = READ_ONCE(*pudp);
478
479	if (pud_none(pud))
480		return NULL;
481
482	if (pud_leaf(pud)) {
483		ret_pte = (pte_t *)pudp;
484		goto out;
485	}
486
 
 
 
 
 
 
487	pmdp = pmd_offset(&pud, ea);
488#else
489	pmdp = pmd_offset(pud_offset(p4d_offset(pgdp, ea), ea), ea);
490#endif
491	pdshift = PMD_SHIFT;
492	pmd  = READ_ONCE(*pmdp);
493
494	/*
495	 * A hugepage collapse is captured by this condition, see
496	 * pmdp_collapse_flush.
497	 */
498	if (pmd_none(pmd))
499		return NULL;
500
501#ifdef CONFIG_PPC_BOOK3S_64
502	/*
503	 * A hugepage split is captured by this condition, see
504	 * pmdp_invalidate.
505	 *
506	 * Huge page modification can be caught here too.
507	 */
508	if (pmd_is_serializing(pmd))
509		return NULL;
510#endif
511
512	if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
513		if (is_thp)
514			*is_thp = true;
515		ret_pte = (pte_t *)pmdp;
516		goto out;
517	}
518
519	if (pmd_leaf(pmd)) {
520		ret_pte = (pte_t *)pmdp;
521		goto out;
522	}
523
 
 
 
 
 
524	return pte_offset_kernel(&pmd, ea);
525
 
 
 
 
 
 
526out:
527	if (hpage_shift)
528		*hpage_shift = pdshift;
529	return ret_pte;
530}
531EXPORT_SYMBOL_GPL(__find_linux_pte);
532
533/* Note due to the way vm flags are laid out, the bits are XWR */
534const pgprot_t protection_map[16] = {
535	[VM_NONE]					= PAGE_NONE,
536	[VM_READ]					= PAGE_READONLY,
537	[VM_WRITE]					= PAGE_COPY,
538	[VM_WRITE | VM_READ]				= PAGE_COPY,
539	[VM_EXEC]					= PAGE_EXECONLY_X,
540	[VM_EXEC | VM_READ]				= PAGE_READONLY_X,
541	[VM_EXEC | VM_WRITE]				= PAGE_COPY_X,
542	[VM_EXEC | VM_WRITE | VM_READ]			= PAGE_COPY_X,
543	[VM_SHARED]					= PAGE_NONE,
544	[VM_SHARED | VM_READ]				= PAGE_READONLY,
545	[VM_SHARED | VM_WRITE]				= PAGE_SHARED,
546	[VM_SHARED | VM_WRITE | VM_READ]		= PAGE_SHARED,
547	[VM_SHARED | VM_EXEC]				= PAGE_EXECONLY_X,
548	[VM_SHARED | VM_EXEC | VM_READ]			= PAGE_READONLY_X,
549	[VM_SHARED | VM_EXEC | VM_WRITE]		= PAGE_SHARED_X,
550	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= PAGE_SHARED_X
551};
552
553#ifndef CONFIG_PPC_BOOK3S_64
554DECLARE_VM_GET_PAGE_PROT
555#endif