Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * This file contains common routines for dealing with free of page tables
4 * Along with common page table handling code
5 *
6 * Derived from arch/powerpc/mm/tlb_64.c:
7 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
8 *
9 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
10 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
11 * Copyright (C) 1996 Paul Mackerras
12 *
13 * Derived from "arch/i386/mm/init.c"
14 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
15 *
16 * Dave Engebretsen <engebret@us.ibm.com>
17 * Rework for PPC64 port.
18 */
19
20#include <linux/kernel.h>
21#include <linux/gfp.h>
22#include <linux/mm.h>
23#include <linux/percpu.h>
24#include <linux/hardirq.h>
25#include <linux/hugetlb.h>
26#include <asm/pgalloc.h>
27#include <asm/tlbflush.h>
28#include <asm/tlb.h>
29#include <asm/hugetlb.h>
30
31static inline int is_exec_fault(void)
32{
33 return current->thread.regs && TRAP(current->thread.regs) == 0x400;
34}
35
36/* We only try to do i/d cache coherency on stuff that looks like
37 * reasonably "normal" PTEs. We currently require a PTE to be present
38 * and we avoid _PAGE_SPECIAL and cache inhibited pte. We also only do that
39 * on userspace PTEs
40 */
41static inline int pte_looks_normal(pte_t pte)
42{
43
44 if (pte_present(pte) && !pte_special(pte)) {
45 if (pte_ci(pte))
46 return 0;
47 if (pte_user(pte))
48 return 1;
49 }
50 return 0;
51}
52
53static struct page *maybe_pte_to_page(pte_t pte)
54{
55 unsigned long pfn = pte_pfn(pte);
56 struct page *page;
57
58 if (unlikely(!pfn_valid(pfn)))
59 return NULL;
60 page = pfn_to_page(pfn);
61 if (PageReserved(page))
62 return NULL;
63 return page;
64}
65
66#ifdef CONFIG_PPC_BOOK3S
67
68/* Server-style MMU handles coherency when hashing if HW exec permission
69 * is supposed per page (currently 64-bit only). If not, then, we always
70 * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
71 * support falls into the same category.
72 */
73
74static pte_t set_pte_filter_hash(pte_t pte)
75{
76 if (radix_enabled())
77 return pte;
78
79 pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
80 if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
81 cpu_has_feature(CPU_FTR_NOEXECUTE))) {
82 struct page *pg = maybe_pte_to_page(pte);
83 if (!pg)
84 return pte;
85 if (!test_bit(PG_arch_1, &pg->flags)) {
86 flush_dcache_icache_page(pg);
87 set_bit(PG_arch_1, &pg->flags);
88 }
89 }
90 return pte;
91}
92
93#else /* CONFIG_PPC_BOOK3S */
94
95static pte_t set_pte_filter_hash(pte_t pte) { return pte; }
96
97#endif /* CONFIG_PPC_BOOK3S */
98
99/* Embedded type MMU with HW exec support. This is a bit more complicated
100 * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
101 * instead we "filter out" the exec permission for non clean pages.
102 */
103static pte_t set_pte_filter(pte_t pte)
104{
105 struct page *pg;
106
107 if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
108 return set_pte_filter_hash(pte);
109
110 /* No exec permission in the first place, move on */
111 if (!pte_exec(pte) || !pte_looks_normal(pte))
112 return pte;
113
114 /* If you set _PAGE_EXEC on weird pages you're on your own */
115 pg = maybe_pte_to_page(pte);
116 if (unlikely(!pg))
117 return pte;
118
119 /* If the page clean, we move on */
120 if (test_bit(PG_arch_1, &pg->flags))
121 return pte;
122
123 /* If it's an exec fault, we flush the cache and make it clean */
124 if (is_exec_fault()) {
125 flush_dcache_icache_page(pg);
126 set_bit(PG_arch_1, &pg->flags);
127 return pte;
128 }
129
130 /* Else, we filter out _PAGE_EXEC */
131 return pte_exprotect(pte);
132}
133
134static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
135 int dirty)
136{
137 struct page *pg;
138
139 if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
140 return pte;
141
142 /* So here, we only care about exec faults, as we use them
143 * to recover lost _PAGE_EXEC and perform I$/D$ coherency
144 * if necessary. Also if _PAGE_EXEC is already set, same deal,
145 * we just bail out
146 */
147 if (dirty || pte_exec(pte) || !is_exec_fault())
148 return pte;
149
150#ifdef CONFIG_DEBUG_VM
151 /* So this is an exec fault, _PAGE_EXEC is not set. If it was
152 * an error we would have bailed out earlier in do_page_fault()
153 * but let's make sure of it
154 */
155 if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
156 return pte;
157#endif /* CONFIG_DEBUG_VM */
158
159 /* If you set _PAGE_EXEC on weird pages you're on your own */
160 pg = maybe_pte_to_page(pte);
161 if (unlikely(!pg))
162 goto bail;
163
164 /* If the page is already clean, we move on */
165 if (test_bit(PG_arch_1, &pg->flags))
166 goto bail;
167
168 /* Clean the page and set PG_arch_1 */
169 flush_dcache_icache_page(pg);
170 set_bit(PG_arch_1, &pg->flags);
171
172 bail:
173 return pte_mkexec(pte);
174}
175
176/*
177 * set_pte stores a linux PTE into the linux page table.
178 */
179void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
180 pte_t pte)
181{
182 /*
183 * Make sure hardware valid bit is not set. We don't do
184 * tlb flush for this update.
185 */
186 VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
187
188 /* Add the pte bit when trying to set a pte */
189 pte = pte_mkpte(pte);
190
191 /* Note: mm->context.id might not yet have been assigned as
192 * this context might not have been activated yet when this
193 * is called.
194 */
195 pte = set_pte_filter(pte);
196
197 /* Perform the setting of the PTE */
198 __set_pte_at(mm, addr, ptep, pte, 0);
199}
200
201/*
202 * This is called when relaxing access to a PTE. It's also called in the page
203 * fault path when we don't hit any of the major fault cases, ie, a minor
204 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
205 * handled those two for us, we additionally deal with missing execute
206 * permission here on some processors
207 */
208int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
209 pte_t *ptep, pte_t entry, int dirty)
210{
211 int changed;
212 entry = set_access_flags_filter(entry, vma, dirty);
213 changed = !pte_same(*(ptep), entry);
214 if (changed) {
215 assert_pte_locked(vma->vm_mm, address);
216 __ptep_set_access_flags(vma, ptep, entry,
217 address, mmu_virtual_psize);
218 }
219 return changed;
220}
221
222#ifdef CONFIG_HUGETLB_PAGE
223int huge_ptep_set_access_flags(struct vm_area_struct *vma,
224 unsigned long addr, pte_t *ptep,
225 pte_t pte, int dirty)
226{
227#ifdef HUGETLB_NEED_PRELOAD
228 /*
229 * The "return 1" forces a call of update_mmu_cache, which will write a
230 * TLB entry. Without this, platforms that don't do a write of the TLB
231 * entry in the TLB miss handler asm will fault ad infinitum.
232 */
233 ptep_set_access_flags(vma, addr, ptep, pte, dirty);
234 return 1;
235#else
236 int changed, psize;
237
238 pte = set_access_flags_filter(pte, vma, dirty);
239 changed = !pte_same(*(ptep), pte);
240 if (changed) {
241
242#ifdef CONFIG_PPC_BOOK3S_64
243 struct hstate *h = hstate_vma(vma);
244
245 psize = hstate_get_psize(h);
246#ifdef CONFIG_DEBUG_VM
247 assert_spin_locked(huge_pte_lockptr(h, vma->vm_mm, ptep));
248#endif
249
250#else
251 /*
252 * Not used on non book3s64 platforms. But 8xx
253 * can possibly use tsize derived from hstate.
254 */
255 psize = 0;
256#endif
257 __ptep_set_access_flags(vma, ptep, pte, addr, psize);
258 }
259 return changed;
260#endif
261}
262#endif /* CONFIG_HUGETLB_PAGE */
263
264#ifdef CONFIG_DEBUG_VM
265void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
266{
267 pgd_t *pgd;
268 pud_t *pud;
269 pmd_t *pmd;
270
271 if (mm == &init_mm)
272 return;
273 pgd = mm->pgd + pgd_index(addr);
274 BUG_ON(pgd_none(*pgd));
275 pud = pud_offset(pgd, addr);
276 BUG_ON(pud_none(*pud));
277 pmd = pmd_offset(pud, addr);
278 /*
279 * khugepaged to collapse normal pages to hugepage, first set
280 * pmd to none to force page fault/gup to take mmap_sem. After
281 * pmd is set to none, we do a pte_clear which does this assertion
282 * so if we find pmd none, return.
283 */
284 if (pmd_none(*pmd))
285 return;
286 BUG_ON(!pmd_present(*pmd));
287 assert_spin_locked(pte_lockptr(mm, pmd));
288}
289#endif /* CONFIG_DEBUG_VM */
290
291unsigned long vmalloc_to_phys(void *va)
292{
293 unsigned long pfn = vmalloc_to_pfn(va);
294
295 BUG_ON(!pfn);
296 return __pa(pfn_to_kaddr(pfn)) + offset_in_page(va);
297}
298EXPORT_SYMBOL_GPL(vmalloc_to_phys);
299
300/*
301 * We have 4 cases for pgds and pmds:
302 * (1) invalid (all zeroes)
303 * (2) pointer to next table, as normal; bottom 6 bits == 0
304 * (3) leaf pte for huge page _PAGE_PTE set
305 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
306 *
307 * So long as we atomically load page table pointers we are safe against teardown,
308 * we can follow the address down to the the page and take a ref on it.
309 * This function need to be called with interrupts disabled. We use this variant
310 * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
311 */
312pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
313 bool *is_thp, unsigned *hpage_shift)
314{
315 pgd_t pgd, *pgdp;
316 pud_t pud, *pudp;
317 pmd_t pmd, *pmdp;
318 pte_t *ret_pte;
319 hugepd_t *hpdp = NULL;
320 unsigned pdshift = PGDIR_SHIFT;
321
322 if (hpage_shift)
323 *hpage_shift = 0;
324
325 if (is_thp)
326 *is_thp = false;
327
328 pgdp = pgdir + pgd_index(ea);
329 pgd = READ_ONCE(*pgdp);
330 /*
331 * Always operate on the local stack value. This make sure the
332 * value don't get updated by a parallel THP split/collapse,
333 * page fault or a page unmap. The return pte_t * is still not
334 * stable. So should be checked there for above conditions.
335 */
336 if (pgd_none(pgd))
337 return NULL;
338
339 if (pgd_is_leaf(pgd)) {
340 ret_pte = (pte_t *)pgdp;
341 goto out;
342 }
343
344 if (is_hugepd(__hugepd(pgd_val(pgd)))) {
345 hpdp = (hugepd_t *)&pgd;
346 goto out_huge;
347 }
348
349 /*
350 * Even if we end up with an unmap, the pgtable will not
351 * be freed, because we do an rcu free and here we are
352 * irq disabled
353 */
354 pdshift = PUD_SHIFT;
355 pudp = pud_offset(&pgd, ea);
356 pud = READ_ONCE(*pudp);
357
358 if (pud_none(pud))
359 return NULL;
360
361 if (pud_is_leaf(pud)) {
362 ret_pte = (pte_t *)pudp;
363 goto out;
364 }
365
366 if (is_hugepd(__hugepd(pud_val(pud)))) {
367 hpdp = (hugepd_t *)&pud;
368 goto out_huge;
369 }
370
371 pdshift = PMD_SHIFT;
372 pmdp = pmd_offset(&pud, ea);
373 pmd = READ_ONCE(*pmdp);
374
375 /*
376 * A hugepage collapse is captured by this condition, see
377 * pmdp_collapse_flush.
378 */
379 if (pmd_none(pmd))
380 return NULL;
381
382#ifdef CONFIG_PPC_BOOK3S_64
383 /*
384 * A hugepage split is captured by this condition, see
385 * pmdp_invalidate.
386 *
387 * Huge page modification can be caught here too.
388 */
389 if (pmd_is_serializing(pmd))
390 return NULL;
391#endif
392
393 if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
394 if (is_thp)
395 *is_thp = true;
396 ret_pte = (pte_t *)pmdp;
397 goto out;
398 }
399
400 if (pmd_is_leaf(pmd)) {
401 ret_pte = (pte_t *)pmdp;
402 goto out;
403 }
404
405 if (is_hugepd(__hugepd(pmd_val(pmd)))) {
406 hpdp = (hugepd_t *)&pmd;
407 goto out_huge;
408 }
409
410 return pte_offset_kernel(&pmd, ea);
411
412out_huge:
413 if (!hpdp)
414 return NULL;
415
416 ret_pte = hugepte_offset(*hpdp, ea, pdshift);
417 pdshift = hugepd_shift(*hpdp);
418out:
419 if (hpage_shift)
420 *hpage_shift = pdshift;
421 return ret_pte;
422}
423EXPORT_SYMBOL_GPL(__find_linux_pte);
1/*
2 * This file contains common routines for dealing with free of page tables
3 * Along with common page table handling code
4 *
5 * Derived from arch/powerpc/mm/tlb_64.c:
6 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
7 *
8 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
9 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
10 * Copyright (C) 1996 Paul Mackerras
11 *
12 * Derived from "arch/i386/mm/init.c"
13 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
14 *
15 * Dave Engebretsen <engebret@us.ibm.com>
16 * Rework for PPC64 port.
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24#include <linux/kernel.h>
25#include <linux/gfp.h>
26#include <linux/mm.h>
27#include <linux/percpu.h>
28#include <linux/hardirq.h>
29#include <linux/hugetlb.h>
30#include <asm/pgalloc.h>
31#include <asm/tlbflush.h>
32#include <asm/tlb.h>
33
34static inline int is_exec_fault(void)
35{
36 return current->thread.regs && TRAP(current->thread.regs) == 0x400;
37}
38
39/* We only try to do i/d cache coherency on stuff that looks like
40 * reasonably "normal" PTEs. We currently require a PTE to be present
41 * and we avoid _PAGE_SPECIAL and cache inhibited pte. We also only do that
42 * on userspace PTEs
43 */
44static inline int pte_looks_normal(pte_t pte)
45{
46
47#if defined(CONFIG_PPC_BOOK3S_64)
48 if ((pte_val(pte) & (_PAGE_PRESENT | _PAGE_SPECIAL)) == _PAGE_PRESENT) {
49 if (pte_ci(pte))
50 return 0;
51 if (pte_user(pte))
52 return 1;
53 }
54 return 0;
55#else
56 return (pte_val(pte) &
57 (_PAGE_PRESENT | _PAGE_SPECIAL | _PAGE_NO_CACHE | _PAGE_USER |
58 _PAGE_PRIVILEGED)) ==
59 (_PAGE_PRESENT | _PAGE_USER);
60#endif
61}
62
63static struct page *maybe_pte_to_page(pte_t pte)
64{
65 unsigned long pfn = pte_pfn(pte);
66 struct page *page;
67
68 if (unlikely(!pfn_valid(pfn)))
69 return NULL;
70 page = pfn_to_page(pfn);
71 if (PageReserved(page))
72 return NULL;
73 return page;
74}
75
76#if defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0
77
78/* Server-style MMU handles coherency when hashing if HW exec permission
79 * is supposed per page (currently 64-bit only). If not, then, we always
80 * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
81 * support falls into the same category.
82 */
83
84static pte_t set_pte_filter(pte_t pte)
85{
86 if (radix_enabled())
87 return pte;
88
89 pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
90 if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
91 cpu_has_feature(CPU_FTR_NOEXECUTE))) {
92 struct page *pg = maybe_pte_to_page(pte);
93 if (!pg)
94 return pte;
95 if (!test_bit(PG_arch_1, &pg->flags)) {
96 flush_dcache_icache_page(pg);
97 set_bit(PG_arch_1, &pg->flags);
98 }
99 }
100 return pte;
101}
102
103static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
104 int dirty)
105{
106 return pte;
107}
108
109#else /* defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0 */
110
111/* Embedded type MMU with HW exec support. This is a bit more complicated
112 * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
113 * instead we "filter out" the exec permission for non clean pages.
114 */
115static pte_t set_pte_filter(pte_t pte)
116{
117 struct page *pg;
118
119 /* No exec permission in the first place, move on */
120 if (!(pte_val(pte) & _PAGE_EXEC) || !pte_looks_normal(pte))
121 return pte;
122
123 /* If you set _PAGE_EXEC on weird pages you're on your own */
124 pg = maybe_pte_to_page(pte);
125 if (unlikely(!pg))
126 return pte;
127
128 /* If the page clean, we move on */
129 if (test_bit(PG_arch_1, &pg->flags))
130 return pte;
131
132 /* If it's an exec fault, we flush the cache and make it clean */
133 if (is_exec_fault()) {
134 flush_dcache_icache_page(pg);
135 set_bit(PG_arch_1, &pg->flags);
136 return pte;
137 }
138
139 /* Else, we filter out _PAGE_EXEC */
140 return __pte(pte_val(pte) & ~_PAGE_EXEC);
141}
142
143static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
144 int dirty)
145{
146 struct page *pg;
147
148 /* So here, we only care about exec faults, as we use them
149 * to recover lost _PAGE_EXEC and perform I$/D$ coherency
150 * if necessary. Also if _PAGE_EXEC is already set, same deal,
151 * we just bail out
152 */
153 if (dirty || (pte_val(pte) & _PAGE_EXEC) || !is_exec_fault())
154 return pte;
155
156#ifdef CONFIG_DEBUG_VM
157 /* So this is an exec fault, _PAGE_EXEC is not set. If it was
158 * an error we would have bailed out earlier in do_page_fault()
159 * but let's make sure of it
160 */
161 if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
162 return pte;
163#endif /* CONFIG_DEBUG_VM */
164
165 /* If you set _PAGE_EXEC on weird pages you're on your own */
166 pg = maybe_pte_to_page(pte);
167 if (unlikely(!pg))
168 goto bail;
169
170 /* If the page is already clean, we move on */
171 if (test_bit(PG_arch_1, &pg->flags))
172 goto bail;
173
174 /* Clean the page and set PG_arch_1 */
175 flush_dcache_icache_page(pg);
176 set_bit(PG_arch_1, &pg->flags);
177
178 bail:
179 return __pte(pte_val(pte) | _PAGE_EXEC);
180}
181
182#endif /* !(defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0) */
183
184/*
185 * set_pte stores a linux PTE into the linux page table.
186 */
187void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
188 pte_t pte)
189{
190 /*
191 * When handling numa faults, we already have the pte marked
192 * _PAGE_PRESENT, but we can be sure that it is not in hpte.
193 * Hence we can use set_pte_at for them.
194 */
195 VM_WARN_ON(pte_present(*ptep) && !pte_protnone(*ptep));
196
197 /* Add the pte bit when trying to set a pte */
198 pte = __pte(pte_val(pte) | _PAGE_PTE);
199
200 /* Note: mm->context.id might not yet have been assigned as
201 * this context might not have been activated yet when this
202 * is called.
203 */
204 pte = set_pte_filter(pte);
205
206 /* Perform the setting of the PTE */
207 __set_pte_at(mm, addr, ptep, pte, 0);
208}
209
210/*
211 * This is called when relaxing access to a PTE. It's also called in the page
212 * fault path when we don't hit any of the major fault cases, ie, a minor
213 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
214 * handled those two for us, we additionally deal with missing execute
215 * permission here on some processors
216 */
217int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
218 pte_t *ptep, pte_t entry, int dirty)
219{
220 int changed;
221 entry = set_access_flags_filter(entry, vma, dirty);
222 changed = !pte_same(*(ptep), entry);
223 if (changed) {
224 if (!is_vm_hugetlb_page(vma))
225 assert_pte_locked(vma->vm_mm, address);
226 __ptep_set_access_flags(vma->vm_mm, ptep, entry, address);
227 flush_tlb_page(vma, address);
228 }
229 return changed;
230}
231
232#ifdef CONFIG_DEBUG_VM
233void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
234{
235 pgd_t *pgd;
236 pud_t *pud;
237 pmd_t *pmd;
238
239 if (mm == &init_mm)
240 return;
241 pgd = mm->pgd + pgd_index(addr);
242 BUG_ON(pgd_none(*pgd));
243 pud = pud_offset(pgd, addr);
244 BUG_ON(pud_none(*pud));
245 pmd = pmd_offset(pud, addr);
246 /*
247 * khugepaged to collapse normal pages to hugepage, first set
248 * pmd to none to force page fault/gup to take mmap_sem. After
249 * pmd is set to none, we do a pte_clear which does this assertion
250 * so if we find pmd none, return.
251 */
252 if (pmd_none(*pmd))
253 return;
254 BUG_ON(!pmd_present(*pmd));
255 assert_spin_locked(pte_lockptr(mm, pmd));
256}
257#endif /* CONFIG_DEBUG_VM */
258
259unsigned long vmalloc_to_phys(void *va)
260{
261 unsigned long pfn = vmalloc_to_pfn(va);
262
263 BUG_ON(!pfn);
264 return __pa(pfn_to_kaddr(pfn)) + offset_in_page(va);
265}
266EXPORT_SYMBOL_GPL(vmalloc_to_phys);