Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * This file contains common routines for dealing with free of page tables
  4 * Along with common page table handling code
  5 *
  6 *  Derived from arch/powerpc/mm/tlb_64.c:
  7 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  8 *
  9 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
 10 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
 11 *    Copyright (C) 1996 Paul Mackerras
 12 *
 13 *  Derived from "arch/i386/mm/init.c"
 14 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 15 *
 16 *  Dave Engebretsen <engebret@us.ibm.com>
 17 *      Rework for PPC64 port.
 
 
 
 
 
 18 */
 19
 20#include <linux/kernel.h>
 21#include <linux/gfp.h>
 22#include <linux/mm.h>
 
 23#include <linux/percpu.h>
 24#include <linux/hardirq.h>
 25#include <linux/hugetlb.h>
 26#include <asm/pgalloc.h>
 27#include <asm/tlbflush.h>
 28#include <asm/tlb.h>
 29#include <asm/hugetlb.h>
 
 30
 31static inline int is_exec_fault(void)
 32{
 33	return current->thread.regs && TRAP(current->thread.regs) == 0x400;
 34}
 35
 36/* We only try to do i/d cache coherency on stuff that looks like
 37 * reasonably "normal" PTEs. We currently require a PTE to be present
 38 * and we avoid _PAGE_SPECIAL and cache inhibited pte. We also only do that
 39 * on userspace PTEs
 40 */
 41static inline int pte_looks_normal(pte_t pte)
 42{
 43
 44	if (pte_present(pte) && !pte_special(pte)) {
 45		if (pte_ci(pte))
 46			return 0;
 47		if (pte_user(pte))
 48			return 1;
 49	}
 50	return 0;
 51}
 52
 53static struct page *maybe_pte_to_page(pte_t pte)
 54{
 55	unsigned long pfn = pte_pfn(pte);
 56	struct page *page;
 57
 58	if (unlikely(!pfn_valid(pfn)))
 59		return NULL;
 60	page = pfn_to_page(pfn);
 61	if (PageReserved(page))
 62		return NULL;
 63	return page;
 64}
 65
 66#ifdef CONFIG_PPC_BOOK3S
 67
 68/* Server-style MMU handles coherency when hashing if HW exec permission
 69 * is supposed per page (currently 64-bit only). If not, then, we always
 70 * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
 71 * support falls into the same category.
 72 */
 73
 74static pte_t set_pte_filter_hash(pte_t pte)
 75{
 76	if (radix_enabled())
 77		return pte;
 78
 79	pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
 80	if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
 81				       cpu_has_feature(CPU_FTR_NOEXECUTE))) {
 82		struct page *pg = maybe_pte_to_page(pte);
 83		if (!pg)
 84			return pte;
 85		if (!test_bit(PG_arch_1, &pg->flags)) {
 
 
 
 
 
 
 
 
 
 
 
 86			flush_dcache_icache_page(pg);
 87			set_bit(PG_arch_1, &pg->flags);
 88		}
 89	}
 90	return pte;
 91}
 92
 93#else /* CONFIG_PPC_BOOK3S */
 94
 95static pte_t set_pte_filter_hash(pte_t pte) { return pte; }
 
 
 96
 97#endif /* CONFIG_PPC_BOOK3S */
 98
 99/* Embedded type MMU with HW exec support. This is a bit more complicated
100 * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
101 * instead we "filter out" the exec permission for non clean pages.
102 */
103static pte_t set_pte_filter(pte_t pte)
104{
105	struct page *pg;
106
107	if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
108		return set_pte_filter_hash(pte);
109
110	/* No exec permission in the first place, move on */
111	if (!pte_exec(pte) || !pte_looks_normal(pte))
112		return pte;
113
114	/* If you set _PAGE_EXEC on weird pages you're on your own */
115	pg = maybe_pte_to_page(pte);
116	if (unlikely(!pg))
117		return pte;
118
119	/* If the page clean, we move on */
120	if (test_bit(PG_arch_1, &pg->flags))
121		return pte;
122
123	/* If it's an exec fault, we flush the cache and make it clean */
124	if (is_exec_fault()) {
125		flush_dcache_icache_page(pg);
126		set_bit(PG_arch_1, &pg->flags);
127		return pte;
128	}
129
130	/* Else, we filter out _PAGE_EXEC */
131	return pte_exprotect(pte);
132}
133
134static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
135				     int dirty)
136{
137	struct page *pg;
138
139	if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
140		return pte;
141
142	/* So here, we only care about exec faults, as we use them
143	 * to recover lost _PAGE_EXEC and perform I$/D$ coherency
144	 * if necessary. Also if _PAGE_EXEC is already set, same deal,
145	 * we just bail out
146	 */
147	if (dirty || pte_exec(pte) || !is_exec_fault())
148		return pte;
149
150#ifdef CONFIG_DEBUG_VM
151	/* So this is an exec fault, _PAGE_EXEC is not set. If it was
152	 * an error we would have bailed out earlier in do_page_fault()
153	 * but let's make sure of it
154	 */
155	if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
156		return pte;
157#endif /* CONFIG_DEBUG_VM */
158
159	/* If you set _PAGE_EXEC on weird pages you're on your own */
160	pg = maybe_pte_to_page(pte);
161	if (unlikely(!pg))
162		goto bail;
163
164	/* If the page is already clean, we move on */
165	if (test_bit(PG_arch_1, &pg->flags))
166		goto bail;
167
168	/* Clean the page and set PG_arch_1 */
169	flush_dcache_icache_page(pg);
170	set_bit(PG_arch_1, &pg->flags);
171
172 bail:
173	return pte_mkexec(pte);
174}
175
 
 
176/*
177 * set_pte stores a linux PTE into the linux page table.
178 */
179void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
180		pte_t pte)
181{
182	/*
183	 * Make sure hardware valid bit is not set. We don't do
184	 * tlb flush for this update.
185	 */
186	VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
187
188	/* Add the pte bit when trying to set a pte */
189	pte = pte_mkpte(pte);
190
191	/* Note: mm->context.id might not yet have been assigned as
192	 * this context might not have been activated yet when this
193	 * is called.
194	 */
195	pte = set_pte_filter(pte);
196
197	/* Perform the setting of the PTE */
198	__set_pte_at(mm, addr, ptep, pte, 0);
199}
200
201/*
202 * This is called when relaxing access to a PTE. It's also called in the page
203 * fault path when we don't hit any of the major fault cases, ie, a minor
204 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
205 * handled those two for us, we additionally deal with missing execute
206 * permission here on some processors
207 */
208int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
209			  pte_t *ptep, pte_t entry, int dirty)
210{
211	int changed;
212	entry = set_access_flags_filter(entry, vma, dirty);
213	changed = !pte_same(*(ptep), entry);
214	if (changed) {
215		assert_pte_locked(vma->vm_mm, address);
216		__ptep_set_access_flags(vma, ptep, entry,
217					address, mmu_virtual_psize);
 
218	}
219	return changed;
220}
221
222#ifdef CONFIG_HUGETLB_PAGE
223int huge_ptep_set_access_flags(struct vm_area_struct *vma,
224			       unsigned long addr, pte_t *ptep,
225			       pte_t pte, int dirty)
226{
227#ifdef HUGETLB_NEED_PRELOAD
228	/*
229	 * The "return 1" forces a call of update_mmu_cache, which will write a
230	 * TLB entry.  Without this, platforms that don't do a write of the TLB
231	 * entry in the TLB miss handler asm will fault ad infinitum.
232	 */
233	ptep_set_access_flags(vma, addr, ptep, pte, dirty);
234	return 1;
235#else
236	int changed, psize;
237
238	pte = set_access_flags_filter(pte, vma, dirty);
239	changed = !pte_same(*(ptep), pte);
240	if (changed) {
241
242#ifdef CONFIG_PPC_BOOK3S_64
243		struct hstate *h = hstate_vma(vma);
244
245		psize = hstate_get_psize(h);
246#ifdef CONFIG_DEBUG_VM
247		assert_spin_locked(huge_pte_lockptr(h, vma->vm_mm, ptep));
248#endif
249
250#else
251		/*
252		 * Not used on non book3s64 platforms. But 8xx
253		 * can possibly use tsize derived from hstate.
254		 */
255		psize = 0;
256#endif
257		__ptep_set_access_flags(vma, ptep, pte, addr, psize);
258	}
259	return changed;
260#endif
261}
262#endif /* CONFIG_HUGETLB_PAGE */
263
264#ifdef CONFIG_DEBUG_VM
265void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
266{
267	pgd_t *pgd;
268	pud_t *pud;
269	pmd_t *pmd;
270
271	if (mm == &init_mm)
272		return;
273	pgd = mm->pgd + pgd_index(addr);
274	BUG_ON(pgd_none(*pgd));
275	pud = pud_offset(pgd, addr);
276	BUG_ON(pud_none(*pud));
277	pmd = pmd_offset(pud, addr);
278	/*
279	 * khugepaged to collapse normal pages to hugepage, first set
280	 * pmd to none to force page fault/gup to take mmap_sem. After
281	 * pmd is set to none, we do a pte_clear which does this assertion
282	 * so if we find pmd none, return.
283	 */
284	if (pmd_none(*pmd))
285		return;
286	BUG_ON(!pmd_present(*pmd));
287	assert_spin_locked(pte_lockptr(mm, pmd));
288}
289#endif /* CONFIG_DEBUG_VM */
290
291unsigned long vmalloc_to_phys(void *va)
292{
293	unsigned long pfn = vmalloc_to_pfn(va);
294
295	BUG_ON(!pfn);
296	return __pa(pfn_to_kaddr(pfn)) + offset_in_page(va);
297}
298EXPORT_SYMBOL_GPL(vmalloc_to_phys);
299
300/*
301 * We have 4 cases for pgds and pmds:
302 * (1) invalid (all zeroes)
303 * (2) pointer to next table, as normal; bottom 6 bits == 0
304 * (3) leaf pte for huge page _PAGE_PTE set
305 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
306 *
307 * So long as we atomically load page table pointers we are safe against teardown,
308 * we can follow the address down to the the page and take a ref on it.
309 * This function need to be called with interrupts disabled. We use this variant
310 * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
311 */
312pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
313			bool *is_thp, unsigned *hpage_shift)
314{
315	pgd_t pgd, *pgdp;
316	pud_t pud, *pudp;
317	pmd_t pmd, *pmdp;
318	pte_t *ret_pte;
319	hugepd_t *hpdp = NULL;
320	unsigned pdshift = PGDIR_SHIFT;
321
322	if (hpage_shift)
323		*hpage_shift = 0;
324
325	if (is_thp)
326		*is_thp = false;
327
328	pgdp = pgdir + pgd_index(ea);
329	pgd  = READ_ONCE(*pgdp);
330	/*
331	 * Always operate on the local stack value. This make sure the
332	 * value don't get updated by a parallel THP split/collapse,
333	 * page fault or a page unmap. The return pte_t * is still not
334	 * stable. So should be checked there for above conditions.
335	 */
336	if (pgd_none(pgd))
337		return NULL;
338
339	if (pgd_is_leaf(pgd)) {
340		ret_pte = (pte_t *)pgdp;
341		goto out;
342	}
343
344	if (is_hugepd(__hugepd(pgd_val(pgd)))) {
345		hpdp = (hugepd_t *)&pgd;
346		goto out_huge;
347	}
348
349	/*
350	 * Even if we end up with an unmap, the pgtable will not
351	 * be freed, because we do an rcu free and here we are
352	 * irq disabled
353	 */
354	pdshift = PUD_SHIFT;
355	pudp = pud_offset(&pgd, ea);
356	pud  = READ_ONCE(*pudp);
357
358	if (pud_none(pud))
359		return NULL;
360
361	if (pud_is_leaf(pud)) {
362		ret_pte = (pte_t *)pudp;
363		goto out;
364	}
365
366	if (is_hugepd(__hugepd(pud_val(pud)))) {
367		hpdp = (hugepd_t *)&pud;
368		goto out_huge;
369	}
370
371	pdshift = PMD_SHIFT;
372	pmdp = pmd_offset(&pud, ea);
373	pmd  = READ_ONCE(*pmdp);
374
375	/*
376	 * A hugepage collapse is captured by this condition, see
377	 * pmdp_collapse_flush.
378	 */
379	if (pmd_none(pmd))
380		return NULL;
381
382#ifdef CONFIG_PPC_BOOK3S_64
383	/*
384	 * A hugepage split is captured by this condition, see
385	 * pmdp_invalidate.
386	 *
387	 * Huge page modification can be caught here too.
388	 */
389	if (pmd_is_serializing(pmd))
390		return NULL;
391#endif
392
393	if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
394		if (is_thp)
395			*is_thp = true;
396		ret_pte = (pte_t *)pmdp;
397		goto out;
398	}
399
400	if (pmd_is_leaf(pmd)) {
401		ret_pte = (pte_t *)pmdp;
402		goto out;
403	}
404
405	if (is_hugepd(__hugepd(pmd_val(pmd)))) {
406		hpdp = (hugepd_t *)&pmd;
407		goto out_huge;
408	}
409
410	return pte_offset_kernel(&pmd, ea);
411
412out_huge:
413	if (!hpdp)
414		return NULL;
415
416	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
417	pdshift = hugepd_shift(*hpdp);
418out:
419	if (hpage_shift)
420		*hpage_shift = pdshift;
421	return ret_pte;
422}
423EXPORT_SYMBOL_GPL(__find_linux_pte);
v3.1
 
  1/*
  2 * This file contains common routines for dealing with free of page tables
  3 * Along with common page table handling code
  4 *
  5 *  Derived from arch/powerpc/mm/tlb_64.c:
  6 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  7 *
  8 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  9 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
 10 *    Copyright (C) 1996 Paul Mackerras
 11 *
 12 *  Derived from "arch/i386/mm/init.c"
 13 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 14 *
 15 *  Dave Engebretsen <engebret@us.ibm.com>
 16 *      Rework for PPC64 port.
 17 *
 18 *  This program is free software; you can redistribute it and/or
 19 *  modify it under the terms of the GNU General Public License
 20 *  as published by the Free Software Foundation; either version
 21 *  2 of the License, or (at your option) any later version.
 22 */
 23
 24#include <linux/kernel.h>
 25#include <linux/gfp.h>
 26#include <linux/mm.h>
 27#include <linux/init.h>
 28#include <linux/percpu.h>
 29#include <linux/hardirq.h>
 
 30#include <asm/pgalloc.h>
 31#include <asm/tlbflush.h>
 32#include <asm/tlb.h>
 33
 34#include "mmu_decl.h"
 35
 36static inline int is_exec_fault(void)
 37{
 38	return current->thread.regs && TRAP(current->thread.regs) == 0x400;
 39}
 40
 41/* We only try to do i/d cache coherency on stuff that looks like
 42 * reasonably "normal" PTEs. We currently require a PTE to be present
 43 * and we avoid _PAGE_SPECIAL and _PAGE_NO_CACHE. We also only do that
 44 * on userspace PTEs
 45 */
 46static inline int pte_looks_normal(pte_t pte)
 47{
 48	return (pte_val(pte) &
 49	    (_PAGE_PRESENT | _PAGE_SPECIAL | _PAGE_NO_CACHE | _PAGE_USER)) ==
 50	    (_PAGE_PRESENT | _PAGE_USER);
 
 
 
 
 
 51}
 52
 53struct page * maybe_pte_to_page(pte_t pte)
 54{
 55	unsigned long pfn = pte_pfn(pte);
 56	struct page *page;
 57
 58	if (unlikely(!pfn_valid(pfn)))
 59		return NULL;
 60	page = pfn_to_page(pfn);
 61	if (PageReserved(page))
 62		return NULL;
 63	return page;
 64}
 65
 66#if defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0
 67
 68/* Server-style MMU handles coherency when hashing if HW exec permission
 69 * is supposed per page (currently 64-bit only). If not, then, we always
 70 * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
 71 * support falls into the same category.
 72 */
 73
 74static pte_t set_pte_filter(pte_t pte, unsigned long addr)
 75{
 
 
 
 76	pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
 77	if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
 78				       cpu_has_feature(CPU_FTR_NOEXECUTE))) {
 79		struct page *pg = maybe_pte_to_page(pte);
 80		if (!pg)
 81			return pte;
 82		if (!test_bit(PG_arch_1, &pg->flags)) {
 83#ifdef CONFIG_8xx
 84			/* On 8xx, cache control instructions (particularly
 85			 * "dcbst" from flush_dcache_icache) fault as write
 86			 * operation if there is an unpopulated TLB entry
 87			 * for the address in question. To workaround that,
 88			 * we invalidate the TLB here, thus avoiding dcbst
 89			 * misbehaviour.
 90			 */
 91			/* 8xx doesn't care about PID, size or ind args */
 92			_tlbil_va(addr, 0, 0, 0);
 93#endif /* CONFIG_8xx */
 94			flush_dcache_icache_page(pg);
 95			set_bit(PG_arch_1, &pg->flags);
 96		}
 97	}
 98	return pte;
 99}
100
101static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
102				     int dirty)
103{
104	return pte;
105}
106
107#else /* defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0 */
108
109/* Embedded type MMU with HW exec support. This is a bit more complicated
110 * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
111 * instead we "filter out" the exec permission for non clean pages.
112 */
113static pte_t set_pte_filter(pte_t pte, unsigned long addr)
114{
115	struct page *pg;
116
 
 
 
117	/* No exec permission in the first place, move on */
118	if (!(pte_val(pte) & _PAGE_EXEC) || !pte_looks_normal(pte))
119		return pte;
120
121	/* If you set _PAGE_EXEC on weird pages you're on your own */
122	pg = maybe_pte_to_page(pte);
123	if (unlikely(!pg))
124		return pte;
125
126	/* If the page clean, we move on */
127	if (test_bit(PG_arch_1, &pg->flags))
128		return pte;
129
130	/* If it's an exec fault, we flush the cache and make it clean */
131	if (is_exec_fault()) {
132		flush_dcache_icache_page(pg);
133		set_bit(PG_arch_1, &pg->flags);
134		return pte;
135	}
136
137	/* Else, we filter out _PAGE_EXEC */
138	return __pte(pte_val(pte) & ~_PAGE_EXEC);
139}
140
141static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
142				     int dirty)
143{
144	struct page *pg;
145
 
 
 
146	/* So here, we only care about exec faults, as we use them
147	 * to recover lost _PAGE_EXEC and perform I$/D$ coherency
148	 * if necessary. Also if _PAGE_EXEC is already set, same deal,
149	 * we just bail out
150	 */
151	if (dirty || (pte_val(pte) & _PAGE_EXEC) || !is_exec_fault())
152		return pte;
153
154#ifdef CONFIG_DEBUG_VM
155	/* So this is an exec fault, _PAGE_EXEC is not set. If it was
156	 * an error we would have bailed out earlier in do_page_fault()
157	 * but let's make sure of it
158	 */
159	if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
160		return pte;
161#endif /* CONFIG_DEBUG_VM */
162
163	/* If you set _PAGE_EXEC on weird pages you're on your own */
164	pg = maybe_pte_to_page(pte);
165	if (unlikely(!pg))
166		goto bail;
167
168	/* If the page is already clean, we move on */
169	if (test_bit(PG_arch_1, &pg->flags))
170		goto bail;
171
172	/* Clean the page and set PG_arch_1 */
173	flush_dcache_icache_page(pg);
174	set_bit(PG_arch_1, &pg->flags);
175
176 bail:
177	return __pte(pte_val(pte) | _PAGE_EXEC);
178}
179
180#endif /* !(defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0) */
181
182/*
183 * set_pte stores a linux PTE into the linux page table.
184 */
185void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
186		pte_t pte)
187{
188#ifdef CONFIG_DEBUG_VM
189	WARN_ON(pte_present(*ptep));
190#endif
 
 
 
 
 
 
191	/* Note: mm->context.id might not yet have been assigned as
192	 * this context might not have been activated yet when this
193	 * is called.
194	 */
195	pte = set_pte_filter(pte, addr);
196
197	/* Perform the setting of the PTE */
198	__set_pte_at(mm, addr, ptep, pte, 0);
199}
200
201/*
202 * This is called when relaxing access to a PTE. It's also called in the page
203 * fault path when we don't hit any of the major fault cases, ie, a minor
204 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
205 * handled those two for us, we additionally deal with missing execute
206 * permission here on some processors
207 */
208int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
209			  pte_t *ptep, pte_t entry, int dirty)
210{
211	int changed;
212	entry = set_access_flags_filter(entry, vma, dirty);
213	changed = !pte_same(*(ptep), entry);
214	if (changed) {
215		if (!(vma->vm_flags & VM_HUGETLB))
216			assert_pte_locked(vma->vm_mm, address);
217		__ptep_set_access_flags(ptep, entry);
218		flush_tlb_page_nohash(vma, address);
219	}
220	return changed;
221}
222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223#ifdef CONFIG_DEBUG_VM
224void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
225{
226	pgd_t *pgd;
227	pud_t *pud;
228	pmd_t *pmd;
229
230	if (mm == &init_mm)
231		return;
232	pgd = mm->pgd + pgd_index(addr);
233	BUG_ON(pgd_none(*pgd));
234	pud = pud_offset(pgd, addr);
235	BUG_ON(pud_none(*pud));
236	pmd = pmd_offset(pud, addr);
 
 
 
 
 
 
 
 
237	BUG_ON(!pmd_present(*pmd));
238	assert_spin_locked(pte_lockptr(mm, pmd));
239}
240#endif /* CONFIG_DEBUG_VM */
241