Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * This file contains common routines for dealing with free of page tables
4 * Along with common page table handling code
5 *
6 * Derived from arch/powerpc/mm/tlb_64.c:
7 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
8 *
9 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
10 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
11 * Copyright (C) 1996 Paul Mackerras
12 *
13 * Derived from "arch/i386/mm/init.c"
14 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
15 *
16 * Dave Engebretsen <engebret@us.ibm.com>
17 * Rework for PPC64 port.
18 */
19
20#include <linux/kernel.h>
21#include <linux/gfp.h>
22#include <linux/mm.h>
23#include <linux/percpu.h>
24#include <linux/hardirq.h>
25#include <linux/hugetlb.h>
26#include <asm/pgalloc.h>
27#include <asm/tlbflush.h>
28#include <asm/tlb.h>
29#include <asm/hugetlb.h>
30
31static inline int is_exec_fault(void)
32{
33 return current->thread.regs && TRAP(current->thread.regs) == 0x400;
34}
35
36/* We only try to do i/d cache coherency on stuff that looks like
37 * reasonably "normal" PTEs. We currently require a PTE to be present
38 * and we avoid _PAGE_SPECIAL and cache inhibited pte. We also only do that
39 * on userspace PTEs
40 */
41static inline int pte_looks_normal(pte_t pte)
42{
43
44 if (pte_present(pte) && !pte_special(pte)) {
45 if (pte_ci(pte))
46 return 0;
47 if (pte_user(pte))
48 return 1;
49 }
50 return 0;
51}
52
53static struct page *maybe_pte_to_page(pte_t pte)
54{
55 unsigned long pfn = pte_pfn(pte);
56 struct page *page;
57
58 if (unlikely(!pfn_valid(pfn)))
59 return NULL;
60 page = pfn_to_page(pfn);
61 if (PageReserved(page))
62 return NULL;
63 return page;
64}
65
66#ifdef CONFIG_PPC_BOOK3S
67
68/* Server-style MMU handles coherency when hashing if HW exec permission
69 * is supposed per page (currently 64-bit only). If not, then, we always
70 * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
71 * support falls into the same category.
72 */
73
74static pte_t set_pte_filter_hash(pte_t pte)
75{
76 if (radix_enabled())
77 return pte;
78
79 pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
80 if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
81 cpu_has_feature(CPU_FTR_NOEXECUTE))) {
82 struct page *pg = maybe_pte_to_page(pte);
83 if (!pg)
84 return pte;
85 if (!test_bit(PG_arch_1, &pg->flags)) {
86 flush_dcache_icache_page(pg);
87 set_bit(PG_arch_1, &pg->flags);
88 }
89 }
90 return pte;
91}
92
93#else /* CONFIG_PPC_BOOK3S */
94
95static pte_t set_pte_filter_hash(pte_t pte) { return pte; }
96
97#endif /* CONFIG_PPC_BOOK3S */
98
99/* Embedded type MMU with HW exec support. This is a bit more complicated
100 * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
101 * instead we "filter out" the exec permission for non clean pages.
102 */
103static pte_t set_pte_filter(pte_t pte)
104{
105 struct page *pg;
106
107 if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
108 return set_pte_filter_hash(pte);
109
110 /* No exec permission in the first place, move on */
111 if (!pte_exec(pte) || !pte_looks_normal(pte))
112 return pte;
113
114 /* If you set _PAGE_EXEC on weird pages you're on your own */
115 pg = maybe_pte_to_page(pte);
116 if (unlikely(!pg))
117 return pte;
118
119 /* If the page clean, we move on */
120 if (test_bit(PG_arch_1, &pg->flags))
121 return pte;
122
123 /* If it's an exec fault, we flush the cache and make it clean */
124 if (is_exec_fault()) {
125 flush_dcache_icache_page(pg);
126 set_bit(PG_arch_1, &pg->flags);
127 return pte;
128 }
129
130 /* Else, we filter out _PAGE_EXEC */
131 return pte_exprotect(pte);
132}
133
134static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
135 int dirty)
136{
137 struct page *pg;
138
139 if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
140 return pte;
141
142 /* So here, we only care about exec faults, as we use them
143 * to recover lost _PAGE_EXEC and perform I$/D$ coherency
144 * if necessary. Also if _PAGE_EXEC is already set, same deal,
145 * we just bail out
146 */
147 if (dirty || pte_exec(pte) || !is_exec_fault())
148 return pte;
149
150#ifdef CONFIG_DEBUG_VM
151 /* So this is an exec fault, _PAGE_EXEC is not set. If it was
152 * an error we would have bailed out earlier in do_page_fault()
153 * but let's make sure of it
154 */
155 if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
156 return pte;
157#endif /* CONFIG_DEBUG_VM */
158
159 /* If you set _PAGE_EXEC on weird pages you're on your own */
160 pg = maybe_pte_to_page(pte);
161 if (unlikely(!pg))
162 goto bail;
163
164 /* If the page is already clean, we move on */
165 if (test_bit(PG_arch_1, &pg->flags))
166 goto bail;
167
168 /* Clean the page and set PG_arch_1 */
169 flush_dcache_icache_page(pg);
170 set_bit(PG_arch_1, &pg->flags);
171
172 bail:
173 return pte_mkexec(pte);
174}
175
176/*
177 * set_pte stores a linux PTE into the linux page table.
178 */
179void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
180 pte_t pte)
181{
182 /*
183 * Make sure hardware valid bit is not set. We don't do
184 * tlb flush for this update.
185 */
186 VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
187
188 /* Add the pte bit when trying to set a pte */
189 pte = pte_mkpte(pte);
190
191 /* Note: mm->context.id might not yet have been assigned as
192 * this context might not have been activated yet when this
193 * is called.
194 */
195 pte = set_pte_filter(pte);
196
197 /* Perform the setting of the PTE */
198 __set_pte_at(mm, addr, ptep, pte, 0);
199}
200
201/*
202 * This is called when relaxing access to a PTE. It's also called in the page
203 * fault path when we don't hit any of the major fault cases, ie, a minor
204 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
205 * handled those two for us, we additionally deal with missing execute
206 * permission here on some processors
207 */
208int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
209 pte_t *ptep, pte_t entry, int dirty)
210{
211 int changed;
212 entry = set_access_flags_filter(entry, vma, dirty);
213 changed = !pte_same(*(ptep), entry);
214 if (changed) {
215 assert_pte_locked(vma->vm_mm, address);
216 __ptep_set_access_flags(vma, ptep, entry,
217 address, mmu_virtual_psize);
218 }
219 return changed;
220}
221
222#ifdef CONFIG_HUGETLB_PAGE
223int huge_ptep_set_access_flags(struct vm_area_struct *vma,
224 unsigned long addr, pte_t *ptep,
225 pte_t pte, int dirty)
226{
227#ifdef HUGETLB_NEED_PRELOAD
228 /*
229 * The "return 1" forces a call of update_mmu_cache, which will write a
230 * TLB entry. Without this, platforms that don't do a write of the TLB
231 * entry in the TLB miss handler asm will fault ad infinitum.
232 */
233 ptep_set_access_flags(vma, addr, ptep, pte, dirty);
234 return 1;
235#else
236 int changed, psize;
237
238 pte = set_access_flags_filter(pte, vma, dirty);
239 changed = !pte_same(*(ptep), pte);
240 if (changed) {
241
242#ifdef CONFIG_PPC_BOOK3S_64
243 struct hstate *h = hstate_vma(vma);
244
245 psize = hstate_get_psize(h);
246#ifdef CONFIG_DEBUG_VM
247 assert_spin_locked(huge_pte_lockptr(h, vma->vm_mm, ptep));
248#endif
249
250#else
251 /*
252 * Not used on non book3s64 platforms. But 8xx
253 * can possibly use tsize derived from hstate.
254 */
255 psize = 0;
256#endif
257 __ptep_set_access_flags(vma, ptep, pte, addr, psize);
258 }
259 return changed;
260#endif
261}
262#endif /* CONFIG_HUGETLB_PAGE */
263
264#ifdef CONFIG_DEBUG_VM
265void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
266{
267 pgd_t *pgd;
268 pud_t *pud;
269 pmd_t *pmd;
270
271 if (mm == &init_mm)
272 return;
273 pgd = mm->pgd + pgd_index(addr);
274 BUG_ON(pgd_none(*pgd));
275 pud = pud_offset(pgd, addr);
276 BUG_ON(pud_none(*pud));
277 pmd = pmd_offset(pud, addr);
278 /*
279 * khugepaged to collapse normal pages to hugepage, first set
280 * pmd to none to force page fault/gup to take mmap_sem. After
281 * pmd is set to none, we do a pte_clear which does this assertion
282 * so if we find pmd none, return.
283 */
284 if (pmd_none(*pmd))
285 return;
286 BUG_ON(!pmd_present(*pmd));
287 assert_spin_locked(pte_lockptr(mm, pmd));
288}
289#endif /* CONFIG_DEBUG_VM */
290
291unsigned long vmalloc_to_phys(void *va)
292{
293 unsigned long pfn = vmalloc_to_pfn(va);
294
295 BUG_ON(!pfn);
296 return __pa(pfn_to_kaddr(pfn)) + offset_in_page(va);
297}
298EXPORT_SYMBOL_GPL(vmalloc_to_phys);
299
300/*
301 * We have 4 cases for pgds and pmds:
302 * (1) invalid (all zeroes)
303 * (2) pointer to next table, as normal; bottom 6 bits == 0
304 * (3) leaf pte for huge page _PAGE_PTE set
305 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
306 *
307 * So long as we atomically load page table pointers we are safe against teardown,
308 * we can follow the address down to the the page and take a ref on it.
309 * This function need to be called with interrupts disabled. We use this variant
310 * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
311 */
312pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
313 bool *is_thp, unsigned *hpage_shift)
314{
315 pgd_t pgd, *pgdp;
316 pud_t pud, *pudp;
317 pmd_t pmd, *pmdp;
318 pte_t *ret_pte;
319 hugepd_t *hpdp = NULL;
320 unsigned pdshift = PGDIR_SHIFT;
321
322 if (hpage_shift)
323 *hpage_shift = 0;
324
325 if (is_thp)
326 *is_thp = false;
327
328 pgdp = pgdir + pgd_index(ea);
329 pgd = READ_ONCE(*pgdp);
330 /*
331 * Always operate on the local stack value. This make sure the
332 * value don't get updated by a parallel THP split/collapse,
333 * page fault or a page unmap. The return pte_t * is still not
334 * stable. So should be checked there for above conditions.
335 */
336 if (pgd_none(pgd))
337 return NULL;
338
339 if (pgd_is_leaf(pgd)) {
340 ret_pte = (pte_t *)pgdp;
341 goto out;
342 }
343
344 if (is_hugepd(__hugepd(pgd_val(pgd)))) {
345 hpdp = (hugepd_t *)&pgd;
346 goto out_huge;
347 }
348
349 /*
350 * Even if we end up with an unmap, the pgtable will not
351 * be freed, because we do an rcu free and here we are
352 * irq disabled
353 */
354 pdshift = PUD_SHIFT;
355 pudp = pud_offset(&pgd, ea);
356 pud = READ_ONCE(*pudp);
357
358 if (pud_none(pud))
359 return NULL;
360
361 if (pud_is_leaf(pud)) {
362 ret_pte = (pte_t *)pudp;
363 goto out;
364 }
365
366 if (is_hugepd(__hugepd(pud_val(pud)))) {
367 hpdp = (hugepd_t *)&pud;
368 goto out_huge;
369 }
370
371 pdshift = PMD_SHIFT;
372 pmdp = pmd_offset(&pud, ea);
373 pmd = READ_ONCE(*pmdp);
374
375 /*
376 * A hugepage collapse is captured by this condition, see
377 * pmdp_collapse_flush.
378 */
379 if (pmd_none(pmd))
380 return NULL;
381
382#ifdef CONFIG_PPC_BOOK3S_64
383 /*
384 * A hugepage split is captured by this condition, see
385 * pmdp_invalidate.
386 *
387 * Huge page modification can be caught here too.
388 */
389 if (pmd_is_serializing(pmd))
390 return NULL;
391#endif
392
393 if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
394 if (is_thp)
395 *is_thp = true;
396 ret_pte = (pte_t *)pmdp;
397 goto out;
398 }
399
400 if (pmd_is_leaf(pmd)) {
401 ret_pte = (pte_t *)pmdp;
402 goto out;
403 }
404
405 if (is_hugepd(__hugepd(pmd_val(pmd)))) {
406 hpdp = (hugepd_t *)&pmd;
407 goto out_huge;
408 }
409
410 return pte_offset_kernel(&pmd, ea);
411
412out_huge:
413 if (!hpdp)
414 return NULL;
415
416 ret_pte = hugepte_offset(*hpdp, ea, pdshift);
417 pdshift = hugepd_shift(*hpdp);
418out:
419 if (hpage_shift)
420 *hpage_shift = pdshift;
421 return ret_pte;
422}
423EXPORT_SYMBOL_GPL(__find_linux_pte);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * This file contains common routines for dealing with free of page tables
4 * Along with common page table handling code
5 *
6 * Derived from arch/powerpc/mm/tlb_64.c:
7 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
8 *
9 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
10 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
11 * Copyright (C) 1996 Paul Mackerras
12 *
13 * Derived from "arch/i386/mm/init.c"
14 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
15 *
16 * Dave Engebretsen <engebret@us.ibm.com>
17 * Rework for PPC64 port.
18 */
19
20#include <linux/kernel.h>
21#include <linux/gfp.h>
22#include <linux/mm.h>
23#include <linux/percpu.h>
24#include <linux/hardirq.h>
25#include <linux/hugetlb.h>
26#include <asm/tlbflush.h>
27#include <asm/tlb.h>
28#include <asm/hugetlb.h>
29
30static inline int is_exec_fault(void)
31{
32 return current->thread.regs && TRAP(current->thread.regs) == 0x400;
33}
34
35/* We only try to do i/d cache coherency on stuff that looks like
36 * reasonably "normal" PTEs. We currently require a PTE to be present
37 * and we avoid _PAGE_SPECIAL and cache inhibited pte. We also only do that
38 * on userspace PTEs
39 */
40static inline int pte_looks_normal(pte_t pte)
41{
42
43 if (pte_present(pte) && !pte_special(pte)) {
44 if (pte_ci(pte))
45 return 0;
46 if (pte_user(pte))
47 return 1;
48 }
49 return 0;
50}
51
52static struct page *maybe_pte_to_page(pte_t pte)
53{
54 unsigned long pfn = pte_pfn(pte);
55 struct page *page;
56
57 if (unlikely(!pfn_valid(pfn)))
58 return NULL;
59 page = pfn_to_page(pfn);
60 if (PageReserved(page))
61 return NULL;
62 return page;
63}
64
65#ifdef CONFIG_PPC_BOOK3S
66
67/* Server-style MMU handles coherency when hashing if HW exec permission
68 * is supposed per page (currently 64-bit only). If not, then, we always
69 * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
70 * support falls into the same category.
71 */
72
73static pte_t set_pte_filter_hash(pte_t pte)
74{
75 if (radix_enabled())
76 return pte;
77
78 pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
79 if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
80 cpu_has_feature(CPU_FTR_NOEXECUTE))) {
81 struct page *pg = maybe_pte_to_page(pte);
82 if (!pg)
83 return pte;
84 if (!test_bit(PG_arch_1, &pg->flags)) {
85 flush_dcache_icache_page(pg);
86 set_bit(PG_arch_1, &pg->flags);
87 }
88 }
89 return pte;
90}
91
92#else /* CONFIG_PPC_BOOK3S */
93
94static pte_t set_pte_filter_hash(pte_t pte) { return pte; }
95
96#endif /* CONFIG_PPC_BOOK3S */
97
98/* Embedded type MMU with HW exec support. This is a bit more complicated
99 * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
100 * instead we "filter out" the exec permission for non clean pages.
101 */
102static inline pte_t set_pte_filter(pte_t pte)
103{
104 struct page *pg;
105
106 if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
107 return set_pte_filter_hash(pte);
108
109 /* No exec permission in the first place, move on */
110 if (!pte_exec(pte) || !pte_looks_normal(pte))
111 return pte;
112
113 /* If you set _PAGE_EXEC on weird pages you're on your own */
114 pg = maybe_pte_to_page(pte);
115 if (unlikely(!pg))
116 return pte;
117
118 /* If the page clean, we move on */
119 if (test_bit(PG_arch_1, &pg->flags))
120 return pte;
121
122 /* If it's an exec fault, we flush the cache and make it clean */
123 if (is_exec_fault()) {
124 flush_dcache_icache_page(pg);
125 set_bit(PG_arch_1, &pg->flags);
126 return pte;
127 }
128
129 /* Else, we filter out _PAGE_EXEC */
130 return pte_exprotect(pte);
131}
132
133static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
134 int dirty)
135{
136 struct page *pg;
137
138 if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
139 return pte;
140
141 /* So here, we only care about exec faults, as we use them
142 * to recover lost _PAGE_EXEC and perform I$/D$ coherency
143 * if necessary. Also if _PAGE_EXEC is already set, same deal,
144 * we just bail out
145 */
146 if (dirty || pte_exec(pte) || !is_exec_fault())
147 return pte;
148
149#ifdef CONFIG_DEBUG_VM
150 /* So this is an exec fault, _PAGE_EXEC is not set. If it was
151 * an error we would have bailed out earlier in do_page_fault()
152 * but let's make sure of it
153 */
154 if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
155 return pte;
156#endif /* CONFIG_DEBUG_VM */
157
158 /* If you set _PAGE_EXEC on weird pages you're on your own */
159 pg = maybe_pte_to_page(pte);
160 if (unlikely(!pg))
161 goto bail;
162
163 /* If the page is already clean, we move on */
164 if (test_bit(PG_arch_1, &pg->flags))
165 goto bail;
166
167 /* Clean the page and set PG_arch_1 */
168 flush_dcache_icache_page(pg);
169 set_bit(PG_arch_1, &pg->flags);
170
171 bail:
172 return pte_mkexec(pte);
173}
174
175/*
176 * set_pte stores a linux PTE into the linux page table.
177 */
178void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
179 pte_t pte)
180{
181 /*
182 * Make sure hardware valid bit is not set. We don't do
183 * tlb flush for this update.
184 */
185 VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
186
187 /* Add the pte bit when trying to set a pte */
188 pte = pte_mkpte(pte);
189
190 /* Note: mm->context.id might not yet have been assigned as
191 * this context might not have been activated yet when this
192 * is called.
193 */
194 pte = set_pte_filter(pte);
195
196 /* Perform the setting of the PTE */
197 __set_pte_at(mm, addr, ptep, pte, 0);
198}
199
200/*
201 * This is called when relaxing access to a PTE. It's also called in the page
202 * fault path when we don't hit any of the major fault cases, ie, a minor
203 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
204 * handled those two for us, we additionally deal with missing execute
205 * permission here on some processors
206 */
207int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
208 pte_t *ptep, pte_t entry, int dirty)
209{
210 int changed;
211 entry = set_access_flags_filter(entry, vma, dirty);
212 changed = !pte_same(*(ptep), entry);
213 if (changed) {
214 assert_pte_locked(vma->vm_mm, address);
215 __ptep_set_access_flags(vma, ptep, entry,
216 address, mmu_virtual_psize);
217 }
218 return changed;
219}
220
221#ifdef CONFIG_HUGETLB_PAGE
222int huge_ptep_set_access_flags(struct vm_area_struct *vma,
223 unsigned long addr, pte_t *ptep,
224 pte_t pte, int dirty)
225{
226#ifdef HUGETLB_NEED_PRELOAD
227 /*
228 * The "return 1" forces a call of update_mmu_cache, which will write a
229 * TLB entry. Without this, platforms that don't do a write of the TLB
230 * entry in the TLB miss handler asm will fault ad infinitum.
231 */
232 ptep_set_access_flags(vma, addr, ptep, pte, dirty);
233 return 1;
234#else
235 int changed, psize;
236
237 pte = set_access_flags_filter(pte, vma, dirty);
238 changed = !pte_same(*(ptep), pte);
239 if (changed) {
240
241#ifdef CONFIG_PPC_BOOK3S_64
242 struct hstate *h = hstate_vma(vma);
243
244 psize = hstate_get_psize(h);
245#ifdef CONFIG_DEBUG_VM
246 assert_spin_locked(huge_pte_lockptr(h, vma->vm_mm, ptep));
247#endif
248
249#else
250 /*
251 * Not used on non book3s64 platforms.
252 * 8xx compares it with mmu_virtual_psize to
253 * know if it is a huge page or not.
254 */
255 psize = MMU_PAGE_COUNT;
256#endif
257 __ptep_set_access_flags(vma, ptep, pte, addr, psize);
258 }
259 return changed;
260#endif
261}
262
263#if defined(CONFIG_PPC_8xx)
264void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte)
265{
266 pmd_t *pmd = pmd_off(mm, addr);
267 pte_basic_t val;
268 pte_basic_t *entry = &ptep->pte;
269 int num = is_hugepd(*((hugepd_t *)pmd)) ? 1 : SZ_512K / SZ_4K;
270 int i;
271
272 /*
273 * Make sure hardware valid bit is not set. We don't do
274 * tlb flush for this update.
275 */
276 VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
277
278 pte = pte_mkpte(pte);
279
280 pte = set_pte_filter(pte);
281
282 val = pte_val(pte);
283 for (i = 0; i < num; i++, entry++, val += SZ_4K)
284 *entry = val;
285}
286#endif
287#endif /* CONFIG_HUGETLB_PAGE */
288
289#ifdef CONFIG_DEBUG_VM
290void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
291{
292 pgd_t *pgd;
293 p4d_t *p4d;
294 pud_t *pud;
295 pmd_t *pmd;
296
297 if (mm == &init_mm)
298 return;
299 pgd = mm->pgd + pgd_index(addr);
300 BUG_ON(pgd_none(*pgd));
301 p4d = p4d_offset(pgd, addr);
302 BUG_ON(p4d_none(*p4d));
303 pud = pud_offset(p4d, addr);
304 BUG_ON(pud_none(*pud));
305 pmd = pmd_offset(pud, addr);
306 /*
307 * khugepaged to collapse normal pages to hugepage, first set
308 * pmd to none to force page fault/gup to take mmap_lock. After
309 * pmd is set to none, we do a pte_clear which does this assertion
310 * so if we find pmd none, return.
311 */
312 if (pmd_none(*pmd))
313 return;
314 BUG_ON(!pmd_present(*pmd));
315 assert_spin_locked(pte_lockptr(mm, pmd));
316}
317#endif /* CONFIG_DEBUG_VM */
318
319unsigned long vmalloc_to_phys(void *va)
320{
321 unsigned long pfn = vmalloc_to_pfn(va);
322
323 BUG_ON(!pfn);
324 return __pa(pfn_to_kaddr(pfn)) + offset_in_page(va);
325}
326EXPORT_SYMBOL_GPL(vmalloc_to_phys);
327
328/*
329 * We have 4 cases for pgds and pmds:
330 * (1) invalid (all zeroes)
331 * (2) pointer to next table, as normal; bottom 6 bits == 0
332 * (3) leaf pte for huge page _PAGE_PTE set
333 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
334 *
335 * So long as we atomically load page table pointers we are safe against teardown,
336 * we can follow the address down to the the page and take a ref on it.
337 * This function need to be called with interrupts disabled. We use this variant
338 * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
339 */
340pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
341 bool *is_thp, unsigned *hpage_shift)
342{
343 pgd_t *pgdp;
344 p4d_t p4d, *p4dp;
345 pud_t pud, *pudp;
346 pmd_t pmd, *pmdp;
347 pte_t *ret_pte;
348 hugepd_t *hpdp = NULL;
349 unsigned pdshift;
350
351 if (hpage_shift)
352 *hpage_shift = 0;
353
354 if (is_thp)
355 *is_thp = false;
356
357 /*
358 * Always operate on the local stack value. This make sure the
359 * value don't get updated by a parallel THP split/collapse,
360 * page fault or a page unmap. The return pte_t * is still not
361 * stable. So should be checked there for above conditions.
362 * Top level is an exception because it is folded into p4d.
363 */
364 pgdp = pgdir + pgd_index(ea);
365 p4dp = p4d_offset(pgdp, ea);
366 p4d = READ_ONCE(*p4dp);
367 pdshift = P4D_SHIFT;
368
369 if (p4d_none(p4d))
370 return NULL;
371
372 if (p4d_is_leaf(p4d)) {
373 ret_pte = (pte_t *)p4dp;
374 goto out;
375 }
376
377 if (is_hugepd(__hugepd(p4d_val(p4d)))) {
378 hpdp = (hugepd_t *)&p4d;
379 goto out_huge;
380 }
381
382 /*
383 * Even if we end up with an unmap, the pgtable will not
384 * be freed, because we do an rcu free and here we are
385 * irq disabled
386 */
387 pdshift = PUD_SHIFT;
388 pudp = pud_offset(&p4d, ea);
389 pud = READ_ONCE(*pudp);
390
391 if (pud_none(pud))
392 return NULL;
393
394 if (pud_is_leaf(pud)) {
395 ret_pte = (pte_t *)pudp;
396 goto out;
397 }
398
399 if (is_hugepd(__hugepd(pud_val(pud)))) {
400 hpdp = (hugepd_t *)&pud;
401 goto out_huge;
402 }
403
404 pdshift = PMD_SHIFT;
405 pmdp = pmd_offset(&pud, ea);
406 pmd = READ_ONCE(*pmdp);
407
408 /*
409 * A hugepage collapse is captured by this condition, see
410 * pmdp_collapse_flush.
411 */
412 if (pmd_none(pmd))
413 return NULL;
414
415#ifdef CONFIG_PPC_BOOK3S_64
416 /*
417 * A hugepage split is captured by this condition, see
418 * pmdp_invalidate.
419 *
420 * Huge page modification can be caught here too.
421 */
422 if (pmd_is_serializing(pmd))
423 return NULL;
424#endif
425
426 if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
427 if (is_thp)
428 *is_thp = true;
429 ret_pte = (pte_t *)pmdp;
430 goto out;
431 }
432
433 if (pmd_is_leaf(pmd)) {
434 ret_pte = (pte_t *)pmdp;
435 goto out;
436 }
437
438 if (is_hugepd(__hugepd(pmd_val(pmd)))) {
439 hpdp = (hugepd_t *)&pmd;
440 goto out_huge;
441 }
442
443 return pte_offset_kernel(&pmd, ea);
444
445out_huge:
446 if (!hpdp)
447 return NULL;
448
449 ret_pte = hugepte_offset(*hpdp, ea, pdshift);
450 pdshift = hugepd_shift(*hpdp);
451out:
452 if (hpage_shift)
453 *hpage_shift = pdshift;
454 return ret_pte;
455}
456EXPORT_SYMBOL_GPL(__find_linux_pte);