Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/node.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8/* start node id of a node block dedicated to the given node id */
9#define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
10
11/* node block offset on the NAT area dedicated to the given start node id */
12#define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
13
14/* # of pages to perform synchronous readahead before building free nids */
15#define FREE_NID_PAGES 8
16#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
17
18#define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
19
20/* maximum readahead size for node during getting data blocks */
21#define MAX_RA_NODE 128
22
23/* control the memory footprint threshold (10MB per 1GB ram) */
24#define DEF_RAM_THRESHOLD 1
25
26/* control dirty nats ratio threshold (default: 10% over max nid count) */
27#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
28/* control total # of nats */
29#define DEF_NAT_CACHE_THRESHOLD 100000
30
31/* vector size for gang look-up from nat cache that consists of radix tree */
32#define NATVEC_SIZE 64
33#define SETVEC_SIZE 32
34
35/* return value for read_node_page */
36#define LOCKED_PAGE 1
37
38/* For flag in struct node_info */
39enum {
40 IS_CHECKPOINTED, /* is it checkpointed before? */
41 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
42 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
43 IS_DIRTY, /* this nat entry is dirty? */
44 IS_PREALLOC, /* nat entry is preallocated */
45};
46
47/*
48 * For node information
49 */
50struct node_info {
51 nid_t nid; /* node id */
52 nid_t ino; /* inode number of the node's owner */
53 block_t blk_addr; /* block address of the node */
54 unsigned char version; /* version of the node */
55 unsigned char flag; /* for node information bits */
56};
57
58struct nat_entry {
59 struct list_head list; /* for clean or dirty nat list */
60 struct node_info ni; /* in-memory node information */
61};
62
63#define nat_get_nid(nat) ((nat)->ni.nid)
64#define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
65#define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
66#define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
67#define nat_get_ino(nat) ((nat)->ni.ino)
68#define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
69#define nat_get_version(nat) ((nat)->ni.version)
70#define nat_set_version(nat, v) ((nat)->ni.version = (v))
71
72#define inc_node_version(version) (++(version))
73
74static inline void copy_node_info(struct node_info *dst,
75 struct node_info *src)
76{
77 dst->nid = src->nid;
78 dst->ino = src->ino;
79 dst->blk_addr = src->blk_addr;
80 dst->version = src->version;
81 /* should not copy flag here */
82}
83
84static inline void set_nat_flag(struct nat_entry *ne,
85 unsigned int type, bool set)
86{
87 unsigned char mask = 0x01 << type;
88 if (set)
89 ne->ni.flag |= mask;
90 else
91 ne->ni.flag &= ~mask;
92}
93
94static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
95{
96 unsigned char mask = 0x01 << type;
97 return ne->ni.flag & mask;
98}
99
100static inline void nat_reset_flag(struct nat_entry *ne)
101{
102 /* these states can be set only after checkpoint was done */
103 set_nat_flag(ne, IS_CHECKPOINTED, true);
104 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
105 set_nat_flag(ne, HAS_LAST_FSYNC, true);
106}
107
108static inline void node_info_from_raw_nat(struct node_info *ni,
109 struct f2fs_nat_entry *raw_ne)
110{
111 ni->ino = le32_to_cpu(raw_ne->ino);
112 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
113 ni->version = raw_ne->version;
114}
115
116static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
117 struct node_info *ni)
118{
119 raw_ne->ino = cpu_to_le32(ni->ino);
120 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
121 raw_ne->version = ni->version;
122}
123
124static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
125{
126 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
127 NM_I(sbi)->dirty_nats_ratio / 100;
128}
129
130static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
131{
132 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
133}
134
135static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi)
136{
137 return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8;
138}
139
140enum mem_type {
141 FREE_NIDS, /* indicates the free nid list */
142 NAT_ENTRIES, /* indicates the cached nat entry */
143 DIRTY_DENTS, /* indicates dirty dentry pages */
144 INO_ENTRIES, /* indicates inode entries */
145 EXTENT_CACHE, /* indicates extent cache */
146 INMEM_PAGES, /* indicates inmemory pages */
147 BASE_CHECK, /* check kernel status */
148};
149
150struct nat_entry_set {
151 struct list_head set_list; /* link with other nat sets */
152 struct list_head entry_list; /* link with dirty nat entries */
153 nid_t set; /* set number*/
154 unsigned int entry_cnt; /* the # of nat entries in set */
155};
156
157struct free_nid {
158 struct list_head list; /* for free node id list */
159 nid_t nid; /* node id */
160 int state; /* in use or not: FREE_NID or PREALLOC_NID */
161};
162
163static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
164{
165 struct f2fs_nm_info *nm_i = NM_I(sbi);
166 struct free_nid *fnid;
167
168 spin_lock(&nm_i->nid_list_lock);
169 if (nm_i->nid_cnt[FREE_NID] <= 0) {
170 spin_unlock(&nm_i->nid_list_lock);
171 return;
172 }
173 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
174 *nid = fnid->nid;
175 spin_unlock(&nm_i->nid_list_lock);
176}
177
178/*
179 * inline functions
180 */
181static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
182{
183 struct f2fs_nm_info *nm_i = NM_I(sbi);
184
185#ifdef CONFIG_F2FS_CHECK_FS
186 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
187 nm_i->bitmap_size))
188 f2fs_bug_on(sbi, 1);
189#endif
190 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
191}
192
193static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
194{
195 struct f2fs_nm_info *nm_i = NM_I(sbi);
196 pgoff_t block_off;
197 pgoff_t block_addr;
198
199 /*
200 * block_off = segment_off * 512 + off_in_segment
201 * OLD = (segment_off * 512) * 2 + off_in_segment
202 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
203 */
204 block_off = NAT_BLOCK_OFFSET(start);
205
206 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
207 (block_off << 1) -
208 (block_off & (sbi->blocks_per_seg - 1)));
209
210 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
211 block_addr += sbi->blocks_per_seg;
212
213 return block_addr;
214}
215
216static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
217 pgoff_t block_addr)
218{
219 struct f2fs_nm_info *nm_i = NM_I(sbi);
220
221 block_addr -= nm_i->nat_blkaddr;
222 block_addr ^= 1 << sbi->log_blocks_per_seg;
223 return block_addr + nm_i->nat_blkaddr;
224}
225
226static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
227{
228 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
229
230 f2fs_change_bit(block_off, nm_i->nat_bitmap);
231#ifdef CONFIG_F2FS_CHECK_FS
232 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
233#endif
234}
235
236static inline nid_t ino_of_node(struct page *node_page)
237{
238 struct f2fs_node *rn = F2FS_NODE(node_page);
239 return le32_to_cpu(rn->footer.ino);
240}
241
242static inline nid_t nid_of_node(struct page *node_page)
243{
244 struct f2fs_node *rn = F2FS_NODE(node_page);
245 return le32_to_cpu(rn->footer.nid);
246}
247
248static inline unsigned int ofs_of_node(struct page *node_page)
249{
250 struct f2fs_node *rn = F2FS_NODE(node_page);
251 unsigned flag = le32_to_cpu(rn->footer.flag);
252 return flag >> OFFSET_BIT_SHIFT;
253}
254
255static inline __u64 cpver_of_node(struct page *node_page)
256{
257 struct f2fs_node *rn = F2FS_NODE(node_page);
258 return le64_to_cpu(rn->footer.cp_ver);
259}
260
261static inline block_t next_blkaddr_of_node(struct page *node_page)
262{
263 struct f2fs_node *rn = F2FS_NODE(node_page);
264 return le32_to_cpu(rn->footer.next_blkaddr);
265}
266
267static inline void fill_node_footer(struct page *page, nid_t nid,
268 nid_t ino, unsigned int ofs, bool reset)
269{
270 struct f2fs_node *rn = F2FS_NODE(page);
271 unsigned int old_flag = 0;
272
273 if (reset)
274 memset(rn, 0, sizeof(*rn));
275 else
276 old_flag = le32_to_cpu(rn->footer.flag);
277
278 rn->footer.nid = cpu_to_le32(nid);
279 rn->footer.ino = cpu_to_le32(ino);
280
281 /* should remain old flag bits such as COLD_BIT_SHIFT */
282 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
283 (old_flag & OFFSET_BIT_MASK));
284}
285
286static inline void copy_node_footer(struct page *dst, struct page *src)
287{
288 struct f2fs_node *src_rn = F2FS_NODE(src);
289 struct f2fs_node *dst_rn = F2FS_NODE(dst);
290 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
291}
292
293static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
294{
295 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
296 struct f2fs_node *rn = F2FS_NODE(page);
297 __u64 cp_ver = cur_cp_version(ckpt);
298
299 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
300 cp_ver |= (cur_cp_crc(ckpt) << 32);
301
302 rn->footer.cp_ver = cpu_to_le64(cp_ver);
303 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
304}
305
306static inline bool is_recoverable_dnode(struct page *page)
307{
308 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
309 __u64 cp_ver = cur_cp_version(ckpt);
310
311 /* Don't care crc part, if fsck.f2fs sets it. */
312 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
313 return (cp_ver << 32) == (cpver_of_node(page) << 32);
314
315 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
316 cp_ver |= (cur_cp_crc(ckpt) << 32);
317
318 return cp_ver == cpver_of_node(page);
319}
320
321/*
322 * f2fs assigns the following node offsets described as (num).
323 * N = NIDS_PER_BLOCK
324 *
325 * Inode block (0)
326 * |- direct node (1)
327 * |- direct node (2)
328 * |- indirect node (3)
329 * | `- direct node (4 => 4 + N - 1)
330 * |- indirect node (4 + N)
331 * | `- direct node (5 + N => 5 + 2N - 1)
332 * `- double indirect node (5 + 2N)
333 * `- indirect node (6 + 2N)
334 * `- direct node
335 * ......
336 * `- indirect node ((6 + 2N) + x(N + 1))
337 * `- direct node
338 * ......
339 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
340 * `- direct node
341 */
342static inline bool IS_DNODE(struct page *node_page)
343{
344 unsigned int ofs = ofs_of_node(node_page);
345
346 if (f2fs_has_xattr_block(ofs))
347 return true;
348
349 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
350 ofs == 5 + 2 * NIDS_PER_BLOCK)
351 return false;
352 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
353 ofs -= 6 + 2 * NIDS_PER_BLOCK;
354 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
355 return false;
356 }
357 return true;
358}
359
360static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
361{
362 struct f2fs_node *rn = F2FS_NODE(p);
363
364 f2fs_wait_on_page_writeback(p, NODE, true, true);
365
366 if (i)
367 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
368 else
369 rn->in.nid[off] = cpu_to_le32(nid);
370 return set_page_dirty(p);
371}
372
373static inline nid_t get_nid(struct page *p, int off, bool i)
374{
375 struct f2fs_node *rn = F2FS_NODE(p);
376
377 if (i)
378 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
379 return le32_to_cpu(rn->in.nid[off]);
380}
381
382/*
383 * Coldness identification:
384 * - Mark cold files in f2fs_inode_info
385 * - Mark cold node blocks in their node footer
386 * - Mark cold data pages in page cache
387 */
388static inline int is_cold_data(struct page *page)
389{
390 return PageChecked(page);
391}
392
393static inline void set_cold_data(struct page *page)
394{
395 SetPageChecked(page);
396}
397
398static inline void clear_cold_data(struct page *page)
399{
400 ClearPageChecked(page);
401}
402
403static inline int is_node(struct page *page, int type)
404{
405 struct f2fs_node *rn = F2FS_NODE(page);
406 return le32_to_cpu(rn->footer.flag) & (1 << type);
407}
408
409#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
410#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
411#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
412
413static inline int is_inline_node(struct page *page)
414{
415 return PageChecked(page);
416}
417
418static inline void set_inline_node(struct page *page)
419{
420 SetPageChecked(page);
421}
422
423static inline void clear_inline_node(struct page *page)
424{
425 ClearPageChecked(page);
426}
427
428static inline void set_cold_node(struct page *page, bool is_dir)
429{
430 struct f2fs_node *rn = F2FS_NODE(page);
431 unsigned int flag = le32_to_cpu(rn->footer.flag);
432
433 if (is_dir)
434 flag &= ~(0x1 << COLD_BIT_SHIFT);
435 else
436 flag |= (0x1 << COLD_BIT_SHIFT);
437 rn->footer.flag = cpu_to_le32(flag);
438}
439
440static inline void set_mark(struct page *page, int mark, int type)
441{
442 struct f2fs_node *rn = F2FS_NODE(page);
443 unsigned int flag = le32_to_cpu(rn->footer.flag);
444 if (mark)
445 flag |= (0x1 << type);
446 else
447 flag &= ~(0x1 << type);
448 rn->footer.flag = cpu_to_le32(flag);
449
450#ifdef CONFIG_F2FS_CHECK_FS
451 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
452#endif
453}
454#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
455#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * fs/f2fs/node.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8/* start node id of a node block dedicated to the given node id */
9#define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
10
11/* node block offset on the NAT area dedicated to the given start node id */
12#define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
13
14/* # of pages to perform synchronous readahead before building free nids */
15#define FREE_NID_PAGES 8
16#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
17
18/* size of free nid batch when shrinking */
19#define SHRINK_NID_BATCH_SIZE 8
20
21#define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
22
23/* maximum readahead size for node during getting data blocks */
24#define MAX_RA_NODE 128
25
26/* control the memory footprint threshold (10MB per 1GB ram) */
27#define DEF_RAM_THRESHOLD 1
28
29/* control dirty nats ratio threshold (default: 10% over max nid count) */
30#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31/* control total # of nats */
32#define DEF_NAT_CACHE_THRESHOLD 100000
33
34/* control total # of node writes used for roll-fowrad recovery */
35#define DEF_RF_NODE_BLOCKS 0
36
37/* vector size for gang look-up from nat cache that consists of radix tree */
38#define NAT_VEC_SIZE 32
39
40/* return value for read_node_page */
41#define LOCKED_PAGE 1
42
43/* check pinned file's alignment status of physical blocks */
44#define FILE_NOT_ALIGNED 1
45
46/* For flag in struct node_info */
47enum {
48 IS_CHECKPOINTED, /* is it checkpointed before? */
49 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
50 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
51 IS_DIRTY, /* this nat entry is dirty? */
52 IS_PREALLOC, /* nat entry is preallocated */
53};
54
55/*
56 * For node information
57 */
58struct node_info {
59 nid_t nid; /* node id */
60 nid_t ino; /* inode number of the node's owner */
61 block_t blk_addr; /* block address of the node */
62 unsigned char version; /* version of the node */
63 unsigned char flag; /* for node information bits */
64};
65
66struct nat_entry {
67 struct list_head list; /* for clean or dirty nat list */
68 struct node_info ni; /* in-memory node information */
69};
70
71#define nat_get_nid(nat) ((nat)->ni.nid)
72#define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
73#define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
74#define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
75#define nat_get_ino(nat) ((nat)->ni.ino)
76#define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
77#define nat_get_version(nat) ((nat)->ni.version)
78#define nat_set_version(nat, v) ((nat)->ni.version = (v))
79
80#define inc_node_version(version) (++(version))
81
82static inline void copy_node_info(struct node_info *dst,
83 struct node_info *src)
84{
85 dst->nid = src->nid;
86 dst->ino = src->ino;
87 dst->blk_addr = src->blk_addr;
88 dst->version = src->version;
89 /* should not copy flag here */
90}
91
92static inline void set_nat_flag(struct nat_entry *ne,
93 unsigned int type, bool set)
94{
95 if (set)
96 ne->ni.flag |= BIT(type);
97 else
98 ne->ni.flag &= ~BIT(type);
99}
100
101static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
102{
103 return ne->ni.flag & BIT(type);
104}
105
106static inline void nat_reset_flag(struct nat_entry *ne)
107{
108 /* these states can be set only after checkpoint was done */
109 set_nat_flag(ne, IS_CHECKPOINTED, true);
110 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
111 set_nat_flag(ne, HAS_LAST_FSYNC, true);
112}
113
114static inline void node_info_from_raw_nat(struct node_info *ni,
115 struct f2fs_nat_entry *raw_ne)
116{
117 ni->ino = le32_to_cpu(raw_ne->ino);
118 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
119 ni->version = raw_ne->version;
120}
121
122static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
123 struct node_info *ni)
124{
125 raw_ne->ino = cpu_to_le32(ni->ino);
126 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
127 raw_ne->version = ni->version;
128}
129
130static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
131{
132 return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
133 NM_I(sbi)->dirty_nats_ratio / 100;
134}
135
136static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
137{
138 return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
139}
140
141enum mem_type {
142 FREE_NIDS, /* indicates the free nid list */
143 NAT_ENTRIES, /* indicates the cached nat entry */
144 DIRTY_DENTS, /* indicates dirty dentry pages */
145 INO_ENTRIES, /* indicates inode entries */
146 READ_EXTENT_CACHE, /* indicates read extent cache */
147 AGE_EXTENT_CACHE, /* indicates age extent cache */
148 DISCARD_CACHE, /* indicates memory of cached discard cmds */
149 COMPRESS_PAGE, /* indicates memory of cached compressed pages */
150 BASE_CHECK, /* check kernel status */
151};
152
153struct nat_entry_set {
154 struct list_head set_list; /* link with other nat sets */
155 struct list_head entry_list; /* link with dirty nat entries */
156 nid_t set; /* set number*/
157 unsigned int entry_cnt; /* the # of nat entries in set */
158};
159
160struct free_nid {
161 struct list_head list; /* for free node id list */
162 nid_t nid; /* node id */
163 int state; /* in use or not: FREE_NID or PREALLOC_NID */
164};
165
166static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
167{
168 struct f2fs_nm_info *nm_i = NM_I(sbi);
169 struct free_nid *fnid;
170
171 spin_lock(&nm_i->nid_list_lock);
172 if (nm_i->nid_cnt[FREE_NID] <= 0) {
173 spin_unlock(&nm_i->nid_list_lock);
174 return;
175 }
176 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
177 *nid = fnid->nid;
178 spin_unlock(&nm_i->nid_list_lock);
179}
180
181/*
182 * inline functions
183 */
184static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
185{
186 struct f2fs_nm_info *nm_i = NM_I(sbi);
187
188#ifdef CONFIG_F2FS_CHECK_FS
189 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
190 nm_i->bitmap_size))
191 f2fs_bug_on(sbi, 1);
192#endif
193 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
194}
195
196static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
197{
198 struct f2fs_nm_info *nm_i = NM_I(sbi);
199 pgoff_t block_off;
200 pgoff_t block_addr;
201
202 /*
203 * block_off = segment_off * 512 + off_in_segment
204 * OLD = (segment_off * 512) * 2 + off_in_segment
205 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
206 */
207 block_off = NAT_BLOCK_OFFSET(start);
208
209 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
210 (block_off << 1) -
211 (block_off & (BLKS_PER_SEG(sbi) - 1)));
212
213 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
214 block_addr += BLKS_PER_SEG(sbi);
215
216 return block_addr;
217}
218
219static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
220 pgoff_t block_addr)
221{
222 struct f2fs_nm_info *nm_i = NM_I(sbi);
223
224 block_addr -= nm_i->nat_blkaddr;
225 block_addr ^= BIT(sbi->log_blocks_per_seg);
226 return block_addr + nm_i->nat_blkaddr;
227}
228
229static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
230{
231 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
232
233 f2fs_change_bit(block_off, nm_i->nat_bitmap);
234#ifdef CONFIG_F2FS_CHECK_FS
235 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
236#endif
237}
238
239static inline nid_t ino_of_node(struct page *node_page)
240{
241 struct f2fs_node *rn = F2FS_NODE(node_page);
242 return le32_to_cpu(rn->footer.ino);
243}
244
245static inline nid_t nid_of_node(struct page *node_page)
246{
247 struct f2fs_node *rn = F2FS_NODE(node_page);
248 return le32_to_cpu(rn->footer.nid);
249}
250
251static inline unsigned int ofs_of_node(struct page *node_page)
252{
253 struct f2fs_node *rn = F2FS_NODE(node_page);
254 unsigned flag = le32_to_cpu(rn->footer.flag);
255 return flag >> OFFSET_BIT_SHIFT;
256}
257
258static inline __u64 cpver_of_node(struct page *node_page)
259{
260 struct f2fs_node *rn = F2FS_NODE(node_page);
261 return le64_to_cpu(rn->footer.cp_ver);
262}
263
264static inline block_t next_blkaddr_of_node(struct page *node_page)
265{
266 struct f2fs_node *rn = F2FS_NODE(node_page);
267 return le32_to_cpu(rn->footer.next_blkaddr);
268}
269
270static inline void fill_node_footer(struct page *page, nid_t nid,
271 nid_t ino, unsigned int ofs, bool reset)
272{
273 struct f2fs_node *rn = F2FS_NODE(page);
274 unsigned int old_flag = 0;
275
276 if (reset)
277 memset(rn, 0, sizeof(*rn));
278 else
279 old_flag = le32_to_cpu(rn->footer.flag);
280
281 rn->footer.nid = cpu_to_le32(nid);
282 rn->footer.ino = cpu_to_le32(ino);
283
284 /* should remain old flag bits such as COLD_BIT_SHIFT */
285 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
286 (old_flag & OFFSET_BIT_MASK));
287}
288
289static inline void copy_node_footer(struct page *dst, struct page *src)
290{
291 struct f2fs_node *src_rn = F2FS_NODE(src);
292 struct f2fs_node *dst_rn = F2FS_NODE(dst);
293 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
294}
295
296static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
297{
298 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
299 struct f2fs_node *rn = F2FS_NODE(page);
300 __u64 cp_ver = cur_cp_version(ckpt);
301
302 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
303 cp_ver |= (cur_cp_crc(ckpt) << 32);
304
305 rn->footer.cp_ver = cpu_to_le64(cp_ver);
306 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
307}
308
309static inline bool is_recoverable_dnode(struct page *page)
310{
311 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
312 __u64 cp_ver = cur_cp_version(ckpt);
313
314 /* Don't care crc part, if fsck.f2fs sets it. */
315 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
316 return (cp_ver << 32) == (cpver_of_node(page) << 32);
317
318 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
319 cp_ver |= (cur_cp_crc(ckpt) << 32);
320
321 return cp_ver == cpver_of_node(page);
322}
323
324/*
325 * f2fs assigns the following node offsets described as (num).
326 * N = NIDS_PER_BLOCK
327 *
328 * Inode block (0)
329 * |- direct node (1)
330 * |- direct node (2)
331 * |- indirect node (3)
332 * | `- direct node (4 => 4 + N - 1)
333 * |- indirect node (4 + N)
334 * | `- direct node (5 + N => 5 + 2N - 1)
335 * `- double indirect node (5 + 2N)
336 * `- indirect node (6 + 2N)
337 * `- direct node
338 * ......
339 * `- indirect node ((6 + 2N) + x(N + 1))
340 * `- direct node
341 * ......
342 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
343 * `- direct node
344 */
345static inline bool IS_DNODE(struct page *node_page)
346{
347 unsigned int ofs = ofs_of_node(node_page);
348
349 if (f2fs_has_xattr_block(ofs))
350 return true;
351
352 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
353 ofs == 5 + 2 * NIDS_PER_BLOCK)
354 return false;
355 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
356 ofs -= 6 + 2 * NIDS_PER_BLOCK;
357 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
358 return false;
359 }
360 return true;
361}
362
363static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
364{
365 struct f2fs_node *rn = F2FS_NODE(p);
366
367 f2fs_wait_on_page_writeback(p, NODE, true, true);
368
369 if (i)
370 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
371 else
372 rn->in.nid[off] = cpu_to_le32(nid);
373 return set_page_dirty(p);
374}
375
376static inline nid_t get_nid(struct page *p, int off, bool i)
377{
378 struct f2fs_node *rn = F2FS_NODE(p);
379
380 if (i)
381 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
382 return le32_to_cpu(rn->in.nid[off]);
383}
384
385/*
386 * Coldness identification:
387 * - Mark cold files in f2fs_inode_info
388 * - Mark cold node blocks in their node footer
389 * - Mark cold data pages in page cache
390 */
391
392static inline int is_node(struct page *page, int type)
393{
394 struct f2fs_node *rn = F2FS_NODE(page);
395 return le32_to_cpu(rn->footer.flag) & BIT(type);
396}
397
398#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
399#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
400#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
401
402static inline void set_cold_node(struct page *page, bool is_dir)
403{
404 struct f2fs_node *rn = F2FS_NODE(page);
405 unsigned int flag = le32_to_cpu(rn->footer.flag);
406
407 if (is_dir)
408 flag &= ~BIT(COLD_BIT_SHIFT);
409 else
410 flag |= BIT(COLD_BIT_SHIFT);
411 rn->footer.flag = cpu_to_le32(flag);
412}
413
414static inline void set_mark(struct page *page, int mark, int type)
415{
416 struct f2fs_node *rn = F2FS_NODE(page);
417 unsigned int flag = le32_to_cpu(rn->footer.flag);
418 if (mark)
419 flag |= BIT(type);
420 else
421 flag &= ~BIT(type);
422 rn->footer.flag = cpu_to_le32(flag);
423
424#ifdef CONFIG_F2FS_CHECK_FS
425 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
426#endif
427}
428#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
429#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)