Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/node.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8/* start node id of a node block dedicated to the given node id */
9#define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
10
11/* node block offset on the NAT area dedicated to the given start node id */
12#define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
13
14/* # of pages to perform synchronous readahead before building free nids */
15#define FREE_NID_PAGES 8
16#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
17
18#define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
19
20/* maximum readahead size for node during getting data blocks */
21#define MAX_RA_NODE 128
22
23/* control the memory footprint threshold (10MB per 1GB ram) */
24#define DEF_RAM_THRESHOLD 1
25
26/* control dirty nats ratio threshold (default: 10% over max nid count) */
27#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
28/* control total # of nats */
29#define DEF_NAT_CACHE_THRESHOLD 100000
30
31/* vector size for gang look-up from nat cache that consists of radix tree */
32#define NATVEC_SIZE 64
33#define SETVEC_SIZE 32
34
35/* return value for read_node_page */
36#define LOCKED_PAGE 1
37
38/* For flag in struct node_info */
39enum {
40 IS_CHECKPOINTED, /* is it checkpointed before? */
41 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
42 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
43 IS_DIRTY, /* this nat entry is dirty? */
44 IS_PREALLOC, /* nat entry is preallocated */
45};
46
47/*
48 * For node information
49 */
50struct node_info {
51 nid_t nid; /* node id */
52 nid_t ino; /* inode number of the node's owner */
53 block_t blk_addr; /* block address of the node */
54 unsigned char version; /* version of the node */
55 unsigned char flag; /* for node information bits */
56};
57
58struct nat_entry {
59 struct list_head list; /* for clean or dirty nat list */
60 struct node_info ni; /* in-memory node information */
61};
62
63#define nat_get_nid(nat) ((nat)->ni.nid)
64#define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
65#define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
66#define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
67#define nat_get_ino(nat) ((nat)->ni.ino)
68#define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
69#define nat_get_version(nat) ((nat)->ni.version)
70#define nat_set_version(nat, v) ((nat)->ni.version = (v))
71
72#define inc_node_version(version) (++(version))
73
74static inline void copy_node_info(struct node_info *dst,
75 struct node_info *src)
76{
77 dst->nid = src->nid;
78 dst->ino = src->ino;
79 dst->blk_addr = src->blk_addr;
80 dst->version = src->version;
81 /* should not copy flag here */
82}
83
84static inline void set_nat_flag(struct nat_entry *ne,
85 unsigned int type, bool set)
86{
87 unsigned char mask = 0x01 << type;
88 if (set)
89 ne->ni.flag |= mask;
90 else
91 ne->ni.flag &= ~mask;
92}
93
94static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
95{
96 unsigned char mask = 0x01 << type;
97 return ne->ni.flag & mask;
98}
99
100static inline void nat_reset_flag(struct nat_entry *ne)
101{
102 /* these states can be set only after checkpoint was done */
103 set_nat_flag(ne, IS_CHECKPOINTED, true);
104 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
105 set_nat_flag(ne, HAS_LAST_FSYNC, true);
106}
107
108static inline void node_info_from_raw_nat(struct node_info *ni,
109 struct f2fs_nat_entry *raw_ne)
110{
111 ni->ino = le32_to_cpu(raw_ne->ino);
112 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
113 ni->version = raw_ne->version;
114}
115
116static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
117 struct node_info *ni)
118{
119 raw_ne->ino = cpu_to_le32(ni->ino);
120 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
121 raw_ne->version = ni->version;
122}
123
124static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
125{
126 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
127 NM_I(sbi)->dirty_nats_ratio / 100;
128}
129
130static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
131{
132 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
133}
134
135static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi)
136{
137 return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8;
138}
139
140enum mem_type {
141 FREE_NIDS, /* indicates the free nid list */
142 NAT_ENTRIES, /* indicates the cached nat entry */
143 DIRTY_DENTS, /* indicates dirty dentry pages */
144 INO_ENTRIES, /* indicates inode entries */
145 EXTENT_CACHE, /* indicates extent cache */
146 INMEM_PAGES, /* indicates inmemory pages */
147 BASE_CHECK, /* check kernel status */
148};
149
150struct nat_entry_set {
151 struct list_head set_list; /* link with other nat sets */
152 struct list_head entry_list; /* link with dirty nat entries */
153 nid_t set; /* set number*/
154 unsigned int entry_cnt; /* the # of nat entries in set */
155};
156
157struct free_nid {
158 struct list_head list; /* for free node id list */
159 nid_t nid; /* node id */
160 int state; /* in use or not: FREE_NID or PREALLOC_NID */
161};
162
163static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
164{
165 struct f2fs_nm_info *nm_i = NM_I(sbi);
166 struct free_nid *fnid;
167
168 spin_lock(&nm_i->nid_list_lock);
169 if (nm_i->nid_cnt[FREE_NID] <= 0) {
170 spin_unlock(&nm_i->nid_list_lock);
171 return;
172 }
173 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
174 *nid = fnid->nid;
175 spin_unlock(&nm_i->nid_list_lock);
176}
177
178/*
179 * inline functions
180 */
181static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
182{
183 struct f2fs_nm_info *nm_i = NM_I(sbi);
184
185#ifdef CONFIG_F2FS_CHECK_FS
186 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
187 nm_i->bitmap_size))
188 f2fs_bug_on(sbi, 1);
189#endif
190 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
191}
192
193static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
194{
195 struct f2fs_nm_info *nm_i = NM_I(sbi);
196 pgoff_t block_off;
197 pgoff_t block_addr;
198
199 /*
200 * block_off = segment_off * 512 + off_in_segment
201 * OLD = (segment_off * 512) * 2 + off_in_segment
202 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
203 */
204 block_off = NAT_BLOCK_OFFSET(start);
205
206 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
207 (block_off << 1) -
208 (block_off & (sbi->blocks_per_seg - 1)));
209
210 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
211 block_addr += sbi->blocks_per_seg;
212
213 return block_addr;
214}
215
216static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
217 pgoff_t block_addr)
218{
219 struct f2fs_nm_info *nm_i = NM_I(sbi);
220
221 block_addr -= nm_i->nat_blkaddr;
222 block_addr ^= 1 << sbi->log_blocks_per_seg;
223 return block_addr + nm_i->nat_blkaddr;
224}
225
226static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
227{
228 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
229
230 f2fs_change_bit(block_off, nm_i->nat_bitmap);
231#ifdef CONFIG_F2FS_CHECK_FS
232 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
233#endif
234}
235
236static inline nid_t ino_of_node(struct page *node_page)
237{
238 struct f2fs_node *rn = F2FS_NODE(node_page);
239 return le32_to_cpu(rn->footer.ino);
240}
241
242static inline nid_t nid_of_node(struct page *node_page)
243{
244 struct f2fs_node *rn = F2FS_NODE(node_page);
245 return le32_to_cpu(rn->footer.nid);
246}
247
248static inline unsigned int ofs_of_node(struct page *node_page)
249{
250 struct f2fs_node *rn = F2FS_NODE(node_page);
251 unsigned flag = le32_to_cpu(rn->footer.flag);
252 return flag >> OFFSET_BIT_SHIFT;
253}
254
255static inline __u64 cpver_of_node(struct page *node_page)
256{
257 struct f2fs_node *rn = F2FS_NODE(node_page);
258 return le64_to_cpu(rn->footer.cp_ver);
259}
260
261static inline block_t next_blkaddr_of_node(struct page *node_page)
262{
263 struct f2fs_node *rn = F2FS_NODE(node_page);
264 return le32_to_cpu(rn->footer.next_blkaddr);
265}
266
267static inline void fill_node_footer(struct page *page, nid_t nid,
268 nid_t ino, unsigned int ofs, bool reset)
269{
270 struct f2fs_node *rn = F2FS_NODE(page);
271 unsigned int old_flag = 0;
272
273 if (reset)
274 memset(rn, 0, sizeof(*rn));
275 else
276 old_flag = le32_to_cpu(rn->footer.flag);
277
278 rn->footer.nid = cpu_to_le32(nid);
279 rn->footer.ino = cpu_to_le32(ino);
280
281 /* should remain old flag bits such as COLD_BIT_SHIFT */
282 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
283 (old_flag & OFFSET_BIT_MASK));
284}
285
286static inline void copy_node_footer(struct page *dst, struct page *src)
287{
288 struct f2fs_node *src_rn = F2FS_NODE(src);
289 struct f2fs_node *dst_rn = F2FS_NODE(dst);
290 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
291}
292
293static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
294{
295 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
296 struct f2fs_node *rn = F2FS_NODE(page);
297 __u64 cp_ver = cur_cp_version(ckpt);
298
299 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
300 cp_ver |= (cur_cp_crc(ckpt) << 32);
301
302 rn->footer.cp_ver = cpu_to_le64(cp_ver);
303 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
304}
305
306static inline bool is_recoverable_dnode(struct page *page)
307{
308 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
309 __u64 cp_ver = cur_cp_version(ckpt);
310
311 /* Don't care crc part, if fsck.f2fs sets it. */
312 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
313 return (cp_ver << 32) == (cpver_of_node(page) << 32);
314
315 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
316 cp_ver |= (cur_cp_crc(ckpt) << 32);
317
318 return cp_ver == cpver_of_node(page);
319}
320
321/*
322 * f2fs assigns the following node offsets described as (num).
323 * N = NIDS_PER_BLOCK
324 *
325 * Inode block (0)
326 * |- direct node (1)
327 * |- direct node (2)
328 * |- indirect node (3)
329 * | `- direct node (4 => 4 + N - 1)
330 * |- indirect node (4 + N)
331 * | `- direct node (5 + N => 5 + 2N - 1)
332 * `- double indirect node (5 + 2N)
333 * `- indirect node (6 + 2N)
334 * `- direct node
335 * ......
336 * `- indirect node ((6 + 2N) + x(N + 1))
337 * `- direct node
338 * ......
339 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
340 * `- direct node
341 */
342static inline bool IS_DNODE(struct page *node_page)
343{
344 unsigned int ofs = ofs_of_node(node_page);
345
346 if (f2fs_has_xattr_block(ofs))
347 return true;
348
349 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
350 ofs == 5 + 2 * NIDS_PER_BLOCK)
351 return false;
352 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
353 ofs -= 6 + 2 * NIDS_PER_BLOCK;
354 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
355 return false;
356 }
357 return true;
358}
359
360static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
361{
362 struct f2fs_node *rn = F2FS_NODE(p);
363
364 f2fs_wait_on_page_writeback(p, NODE, true, true);
365
366 if (i)
367 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
368 else
369 rn->in.nid[off] = cpu_to_le32(nid);
370 return set_page_dirty(p);
371}
372
373static inline nid_t get_nid(struct page *p, int off, bool i)
374{
375 struct f2fs_node *rn = F2FS_NODE(p);
376
377 if (i)
378 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
379 return le32_to_cpu(rn->in.nid[off]);
380}
381
382/*
383 * Coldness identification:
384 * - Mark cold files in f2fs_inode_info
385 * - Mark cold node blocks in their node footer
386 * - Mark cold data pages in page cache
387 */
388static inline int is_cold_data(struct page *page)
389{
390 return PageChecked(page);
391}
392
393static inline void set_cold_data(struct page *page)
394{
395 SetPageChecked(page);
396}
397
398static inline void clear_cold_data(struct page *page)
399{
400 ClearPageChecked(page);
401}
402
403static inline int is_node(struct page *page, int type)
404{
405 struct f2fs_node *rn = F2FS_NODE(page);
406 return le32_to_cpu(rn->footer.flag) & (1 << type);
407}
408
409#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
410#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
411#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
412
413static inline int is_inline_node(struct page *page)
414{
415 return PageChecked(page);
416}
417
418static inline void set_inline_node(struct page *page)
419{
420 SetPageChecked(page);
421}
422
423static inline void clear_inline_node(struct page *page)
424{
425 ClearPageChecked(page);
426}
427
428static inline void set_cold_node(struct page *page, bool is_dir)
429{
430 struct f2fs_node *rn = F2FS_NODE(page);
431 unsigned int flag = le32_to_cpu(rn->footer.flag);
432
433 if (is_dir)
434 flag &= ~(0x1 << COLD_BIT_SHIFT);
435 else
436 flag |= (0x1 << COLD_BIT_SHIFT);
437 rn->footer.flag = cpu_to_le32(flag);
438}
439
440static inline void set_mark(struct page *page, int mark, int type)
441{
442 struct f2fs_node *rn = F2FS_NODE(page);
443 unsigned int flag = le32_to_cpu(rn->footer.flag);
444 if (mark)
445 flag |= (0x1 << type);
446 else
447 flag &= ~(0x1 << type);
448 rn->footer.flag = cpu_to_le32(flag);
449
450#ifdef CONFIG_F2FS_CHECK_FS
451 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
452#endif
453}
454#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
455#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)
1/*
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11/* start node id of a node block dedicated to the given node id */
12#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14/* node block offset on the NAT area dedicated to the given start node id */
15#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16
17/* # of pages to perform readahead before building free nids */
18#define FREE_NID_PAGES 4
19
20/* maximum readahead size for node during getting data blocks */
21#define MAX_RA_NODE 128
22
23/* control the memory footprint threshold (10MB per 1GB ram) */
24#define DEF_RAM_THRESHOLD 10
25
26/* vector size for gang look-up from nat cache that consists of radix tree */
27#define NATVEC_SIZE 64
28
29/* return value for read_node_page */
30#define LOCKED_PAGE 1
31
32/*
33 * For node information
34 */
35struct node_info {
36 nid_t nid; /* node id */
37 nid_t ino; /* inode number of the node's owner */
38 block_t blk_addr; /* block address of the node */
39 unsigned char version; /* version of the node */
40};
41
42struct nat_entry {
43 struct list_head list; /* for clean or dirty nat list */
44 bool checkpointed; /* whether it is checkpointed or not */
45 bool fsync_done; /* whether the latest node has fsync mark */
46 struct node_info ni; /* in-memory node information */
47};
48
49#define nat_get_nid(nat) (nat->ni.nid)
50#define nat_set_nid(nat, n) (nat->ni.nid = n)
51#define nat_get_blkaddr(nat) (nat->ni.blk_addr)
52#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
53#define nat_get_ino(nat) (nat->ni.ino)
54#define nat_set_ino(nat, i) (nat->ni.ino = i)
55#define nat_get_version(nat) (nat->ni.version)
56#define nat_set_version(nat, v) (nat->ni.version = v)
57
58#define __set_nat_cache_dirty(nm_i, ne) \
59 do { \
60 ne->checkpointed = false; \
61 list_move_tail(&ne->list, &nm_i->dirty_nat_entries); \
62 } while (0);
63#define __clear_nat_cache_dirty(nm_i, ne) \
64 do { \
65 ne->checkpointed = true; \
66 list_move_tail(&ne->list, &nm_i->nat_entries); \
67 } while (0);
68#define inc_node_version(version) (++version)
69
70static inline void node_info_from_raw_nat(struct node_info *ni,
71 struct f2fs_nat_entry *raw_ne)
72{
73 ni->ino = le32_to_cpu(raw_ne->ino);
74 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
75 ni->version = raw_ne->version;
76}
77
78enum nid_type {
79 FREE_NIDS, /* indicates the free nid list */
80 NAT_ENTRIES /* indicates the cached nat entry */
81};
82
83/*
84 * For free nid mangement
85 */
86enum nid_state {
87 NID_NEW, /* newly added to free nid list */
88 NID_ALLOC /* it is allocated */
89};
90
91struct free_nid {
92 struct list_head list; /* for free node id list */
93 nid_t nid; /* node id */
94 int state; /* in use or not: NID_NEW or NID_ALLOC */
95};
96
97static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
98{
99 struct f2fs_nm_info *nm_i = NM_I(sbi);
100 struct free_nid *fnid;
101
102 if (nm_i->fcnt <= 0)
103 return -1;
104 spin_lock(&nm_i->free_nid_list_lock);
105 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
106 *nid = fnid->nid;
107 spin_unlock(&nm_i->free_nid_list_lock);
108 return 0;
109}
110
111/*
112 * inline functions
113 */
114static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
115{
116 struct f2fs_nm_info *nm_i = NM_I(sbi);
117 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
118}
119
120static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
121{
122 struct f2fs_nm_info *nm_i = NM_I(sbi);
123 pgoff_t block_off;
124 pgoff_t block_addr;
125 int seg_off;
126
127 block_off = NAT_BLOCK_OFFSET(start);
128 seg_off = block_off >> sbi->log_blocks_per_seg;
129
130 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
131 (seg_off << sbi->log_blocks_per_seg << 1) +
132 (block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
133
134 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
135 block_addr += sbi->blocks_per_seg;
136
137 return block_addr;
138}
139
140static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
141 pgoff_t block_addr)
142{
143 struct f2fs_nm_info *nm_i = NM_I(sbi);
144
145 block_addr -= nm_i->nat_blkaddr;
146 if ((block_addr >> sbi->log_blocks_per_seg) % 2)
147 block_addr -= sbi->blocks_per_seg;
148 else
149 block_addr += sbi->blocks_per_seg;
150
151 return block_addr + nm_i->nat_blkaddr;
152}
153
154static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
155{
156 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
157
158 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
159 f2fs_clear_bit(block_off, nm_i->nat_bitmap);
160 else
161 f2fs_set_bit(block_off, nm_i->nat_bitmap);
162}
163
164static inline void fill_node_footer(struct page *page, nid_t nid,
165 nid_t ino, unsigned int ofs, bool reset)
166{
167 struct f2fs_node *rn = F2FS_NODE(page);
168 if (reset)
169 memset(rn, 0, sizeof(*rn));
170 rn->footer.nid = cpu_to_le32(nid);
171 rn->footer.ino = cpu_to_le32(ino);
172 rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
173}
174
175static inline void copy_node_footer(struct page *dst, struct page *src)
176{
177 struct f2fs_node *src_rn = F2FS_NODE(src);
178 struct f2fs_node *dst_rn = F2FS_NODE(dst);
179 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
180}
181
182static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
183{
184 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
185 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
186 struct f2fs_node *rn = F2FS_NODE(page);
187
188 rn->footer.cp_ver = ckpt->checkpoint_ver;
189 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
190}
191
192static inline nid_t ino_of_node(struct page *node_page)
193{
194 struct f2fs_node *rn = F2FS_NODE(node_page);
195 return le32_to_cpu(rn->footer.ino);
196}
197
198static inline nid_t nid_of_node(struct page *node_page)
199{
200 struct f2fs_node *rn = F2FS_NODE(node_page);
201 return le32_to_cpu(rn->footer.nid);
202}
203
204static inline unsigned int ofs_of_node(struct page *node_page)
205{
206 struct f2fs_node *rn = F2FS_NODE(node_page);
207 unsigned flag = le32_to_cpu(rn->footer.flag);
208 return flag >> OFFSET_BIT_SHIFT;
209}
210
211static inline unsigned long long cpver_of_node(struct page *node_page)
212{
213 struct f2fs_node *rn = F2FS_NODE(node_page);
214 return le64_to_cpu(rn->footer.cp_ver);
215}
216
217static inline block_t next_blkaddr_of_node(struct page *node_page)
218{
219 struct f2fs_node *rn = F2FS_NODE(node_page);
220 return le32_to_cpu(rn->footer.next_blkaddr);
221}
222
223/*
224 * f2fs assigns the following node offsets described as (num).
225 * N = NIDS_PER_BLOCK
226 *
227 * Inode block (0)
228 * |- direct node (1)
229 * |- direct node (2)
230 * |- indirect node (3)
231 * | `- direct node (4 => 4 + N - 1)
232 * |- indirect node (4 + N)
233 * | `- direct node (5 + N => 5 + 2N - 1)
234 * `- double indirect node (5 + 2N)
235 * `- indirect node (6 + 2N)
236 * `- direct node
237 * ......
238 * `- indirect node ((6 + 2N) + x(N + 1))
239 * `- direct node
240 * ......
241 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
242 * `- direct node
243 */
244static inline bool IS_DNODE(struct page *node_page)
245{
246 unsigned int ofs = ofs_of_node(node_page);
247
248 if (f2fs_has_xattr_block(ofs))
249 return false;
250
251 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
252 ofs == 5 + 2 * NIDS_PER_BLOCK)
253 return false;
254 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
255 ofs -= 6 + 2 * NIDS_PER_BLOCK;
256 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
257 return false;
258 }
259 return true;
260}
261
262static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
263{
264 struct f2fs_node *rn = F2FS_NODE(p);
265
266 wait_on_page_writeback(p);
267
268 if (i)
269 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
270 else
271 rn->in.nid[off] = cpu_to_le32(nid);
272 set_page_dirty(p);
273}
274
275static inline nid_t get_nid(struct page *p, int off, bool i)
276{
277 struct f2fs_node *rn = F2FS_NODE(p);
278
279 if (i)
280 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
281 return le32_to_cpu(rn->in.nid[off]);
282}
283
284/*
285 * Coldness identification:
286 * - Mark cold files in f2fs_inode_info
287 * - Mark cold node blocks in their node footer
288 * - Mark cold data pages in page cache
289 */
290static inline int is_file(struct inode *inode, int type)
291{
292 return F2FS_I(inode)->i_advise & type;
293}
294
295static inline void set_file(struct inode *inode, int type)
296{
297 F2FS_I(inode)->i_advise |= type;
298}
299
300static inline void clear_file(struct inode *inode, int type)
301{
302 F2FS_I(inode)->i_advise &= ~type;
303}
304
305#define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
306#define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
307#define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
308#define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
309#define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
310#define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
311
312static inline int is_cold_data(struct page *page)
313{
314 return PageChecked(page);
315}
316
317static inline void set_cold_data(struct page *page)
318{
319 SetPageChecked(page);
320}
321
322static inline void clear_cold_data(struct page *page)
323{
324 ClearPageChecked(page);
325}
326
327static inline int is_node(struct page *page, int type)
328{
329 struct f2fs_node *rn = F2FS_NODE(page);
330 return le32_to_cpu(rn->footer.flag) & (1 << type);
331}
332
333#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
334#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
335#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
336
337static inline void set_cold_node(struct inode *inode, struct page *page)
338{
339 struct f2fs_node *rn = F2FS_NODE(page);
340 unsigned int flag = le32_to_cpu(rn->footer.flag);
341
342 if (S_ISDIR(inode->i_mode))
343 flag &= ~(0x1 << COLD_BIT_SHIFT);
344 else
345 flag |= (0x1 << COLD_BIT_SHIFT);
346 rn->footer.flag = cpu_to_le32(flag);
347}
348
349static inline void set_mark(struct page *page, int mark, int type)
350{
351 struct f2fs_node *rn = F2FS_NODE(page);
352 unsigned int flag = le32_to_cpu(rn->footer.flag);
353 if (mark)
354 flag |= (0x1 << type);
355 else
356 flag &= ~(0x1 << type);
357 rn->footer.flag = cpu_to_le32(flag);
358}
359#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
360#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)