Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * fs/f2fs/node.h
  4 *
  5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6 *             http://www.samsung.com/
  7 */
  8/* start node id of a node block dedicated to the given node id */
  9#define	START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
 10
 11/* node block offset on the NAT area dedicated to the given start node id */
 12#define	NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
 13
 14/* # of pages to perform synchronous readahead before building free nids */
 15#define FREE_NID_PAGES	8
 16#define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
 17
 
 
 
 18#define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
 19
 20/* maximum readahead size for node during getting data blocks */
 21#define MAX_RA_NODE		128
 22
 23/* control the memory footprint threshold (10MB per 1GB ram) */
 24#define DEF_RAM_THRESHOLD	1
 25
 26/* control dirty nats ratio threshold (default: 10% over max nid count) */
 27#define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
 28/* control total # of nats */
 29#define DEF_NAT_CACHE_THRESHOLD			100000
 30
 31/* vector size for gang look-up from nat cache that consists of radix tree */
 32#define NATVEC_SIZE	64
 33#define SETVEC_SIZE	32
 34
 35/* return value for read_node_page */
 36#define LOCKED_PAGE	1
 37
 
 
 
 38/* For flag in struct node_info */
 39enum {
 40	IS_CHECKPOINTED,	/* is it checkpointed before? */
 41	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
 42	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
 43	IS_DIRTY,		/* this nat entry is dirty? */
 44	IS_PREALLOC,		/* nat entry is preallocated */
 45};
 46
 47/*
 48 * For node information
 49 */
 50struct node_info {
 51	nid_t nid;		/* node id */
 52	nid_t ino;		/* inode number of the node's owner */
 53	block_t	blk_addr;	/* block address of the node */
 54	unsigned char version;	/* version of the node */
 55	unsigned char flag;	/* for node information bits */
 56};
 57
 58struct nat_entry {
 59	struct list_head list;	/* for clean or dirty nat list */
 60	struct node_info ni;	/* in-memory node information */
 61};
 62
 63#define nat_get_nid(nat)		((nat)->ni.nid)
 64#define nat_set_nid(nat, n)		((nat)->ni.nid = (n))
 65#define nat_get_blkaddr(nat)		((nat)->ni.blk_addr)
 66#define nat_set_blkaddr(nat, b)		((nat)->ni.blk_addr = (b))
 67#define nat_get_ino(nat)		((nat)->ni.ino)
 68#define nat_set_ino(nat, i)		((nat)->ni.ino = (i))
 69#define nat_get_version(nat)		((nat)->ni.version)
 70#define nat_set_version(nat, v)		((nat)->ni.version = (v))
 71
 72#define inc_node_version(version)	(++(version))
 73
 74static inline void copy_node_info(struct node_info *dst,
 75						struct node_info *src)
 76{
 77	dst->nid = src->nid;
 78	dst->ino = src->ino;
 79	dst->blk_addr = src->blk_addr;
 80	dst->version = src->version;
 81	/* should not copy flag here */
 82}
 83
 84static inline void set_nat_flag(struct nat_entry *ne,
 85				unsigned int type, bool set)
 86{
 87	unsigned char mask = 0x01 << type;
 88	if (set)
 89		ne->ni.flag |= mask;
 90	else
 91		ne->ni.flag &= ~mask;
 92}
 93
 94static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
 95{
 96	unsigned char mask = 0x01 << type;
 97	return ne->ni.flag & mask;
 98}
 99
100static inline void nat_reset_flag(struct nat_entry *ne)
101{
102	/* these states can be set only after checkpoint was done */
103	set_nat_flag(ne, IS_CHECKPOINTED, true);
104	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
105	set_nat_flag(ne, HAS_LAST_FSYNC, true);
106}
107
108static inline void node_info_from_raw_nat(struct node_info *ni,
109						struct f2fs_nat_entry *raw_ne)
110{
111	ni->ino = le32_to_cpu(raw_ne->ino);
112	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
113	ni->version = raw_ne->version;
114}
115
116static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
117						struct node_info *ni)
118{
119	raw_ne->ino = cpu_to_le32(ni->ino);
120	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
121	raw_ne->version = ni->version;
122}
123
124static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
125{
126	return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
127					NM_I(sbi)->dirty_nats_ratio / 100;
128}
129
130static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
131{
132	return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
133}
134
135static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi)
136{
137	return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8;
138}
139
140enum mem_type {
141	FREE_NIDS,	/* indicates the free nid list */
142	NAT_ENTRIES,	/* indicates the cached nat entry */
143	DIRTY_DENTS,	/* indicates dirty dentry pages */
144	INO_ENTRIES,	/* indicates inode entries */
145	EXTENT_CACHE,	/* indicates extent cache */
146	INMEM_PAGES,	/* indicates inmemory pages */
 
 
147	BASE_CHECK,	/* check kernel status */
148};
149
150struct nat_entry_set {
151	struct list_head set_list;	/* link with other nat sets */
152	struct list_head entry_list;	/* link with dirty nat entries */
153	nid_t set;			/* set number*/
154	unsigned int entry_cnt;		/* the # of nat entries in set */
155};
156
157struct free_nid {
158	struct list_head list;	/* for free node id list */
159	nid_t nid;		/* node id */
160	int state;		/* in use or not: FREE_NID or PREALLOC_NID */
161};
162
163static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
164{
165	struct f2fs_nm_info *nm_i = NM_I(sbi);
166	struct free_nid *fnid;
167
168	spin_lock(&nm_i->nid_list_lock);
169	if (nm_i->nid_cnt[FREE_NID] <= 0) {
170		spin_unlock(&nm_i->nid_list_lock);
171		return;
172	}
173	fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
174	*nid = fnid->nid;
175	spin_unlock(&nm_i->nid_list_lock);
176}
177
178/*
179 * inline functions
180 */
181static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
182{
183	struct f2fs_nm_info *nm_i = NM_I(sbi);
184
185#ifdef CONFIG_F2FS_CHECK_FS
186	if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
187						nm_i->bitmap_size))
188		f2fs_bug_on(sbi, 1);
189#endif
190	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
191}
192
193static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
194{
195	struct f2fs_nm_info *nm_i = NM_I(sbi);
196	pgoff_t block_off;
197	pgoff_t block_addr;
198
199	/*
200	 * block_off = segment_off * 512 + off_in_segment
201	 * OLD = (segment_off * 512) * 2 + off_in_segment
202	 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
203	 */
204	block_off = NAT_BLOCK_OFFSET(start);
205
206	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
207		(block_off << 1) -
208		(block_off & (sbi->blocks_per_seg - 1)));
209
210	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
211		block_addr += sbi->blocks_per_seg;
212
213	return block_addr;
214}
215
216static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
217						pgoff_t block_addr)
218{
219	struct f2fs_nm_info *nm_i = NM_I(sbi);
220
221	block_addr -= nm_i->nat_blkaddr;
222	block_addr ^= 1 << sbi->log_blocks_per_seg;
223	return block_addr + nm_i->nat_blkaddr;
224}
225
226static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
227{
228	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
229
230	f2fs_change_bit(block_off, nm_i->nat_bitmap);
231#ifdef CONFIG_F2FS_CHECK_FS
232	f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
233#endif
234}
235
236static inline nid_t ino_of_node(struct page *node_page)
237{
238	struct f2fs_node *rn = F2FS_NODE(node_page);
239	return le32_to_cpu(rn->footer.ino);
240}
241
242static inline nid_t nid_of_node(struct page *node_page)
243{
244	struct f2fs_node *rn = F2FS_NODE(node_page);
245	return le32_to_cpu(rn->footer.nid);
246}
247
248static inline unsigned int ofs_of_node(struct page *node_page)
249{
250	struct f2fs_node *rn = F2FS_NODE(node_page);
251	unsigned flag = le32_to_cpu(rn->footer.flag);
252	return flag >> OFFSET_BIT_SHIFT;
253}
254
255static inline __u64 cpver_of_node(struct page *node_page)
256{
257	struct f2fs_node *rn = F2FS_NODE(node_page);
258	return le64_to_cpu(rn->footer.cp_ver);
259}
260
261static inline block_t next_blkaddr_of_node(struct page *node_page)
262{
263	struct f2fs_node *rn = F2FS_NODE(node_page);
264	return le32_to_cpu(rn->footer.next_blkaddr);
265}
266
267static inline void fill_node_footer(struct page *page, nid_t nid,
268				nid_t ino, unsigned int ofs, bool reset)
269{
270	struct f2fs_node *rn = F2FS_NODE(page);
271	unsigned int old_flag = 0;
272
273	if (reset)
274		memset(rn, 0, sizeof(*rn));
275	else
276		old_flag = le32_to_cpu(rn->footer.flag);
277
278	rn->footer.nid = cpu_to_le32(nid);
279	rn->footer.ino = cpu_to_le32(ino);
280
281	/* should remain old flag bits such as COLD_BIT_SHIFT */
282	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
283					(old_flag & OFFSET_BIT_MASK));
284}
285
286static inline void copy_node_footer(struct page *dst, struct page *src)
287{
288	struct f2fs_node *src_rn = F2FS_NODE(src);
289	struct f2fs_node *dst_rn = F2FS_NODE(dst);
290	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
291}
292
293static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
294{
295	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
296	struct f2fs_node *rn = F2FS_NODE(page);
297	__u64 cp_ver = cur_cp_version(ckpt);
298
299	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
300		cp_ver |= (cur_cp_crc(ckpt) << 32);
301
302	rn->footer.cp_ver = cpu_to_le64(cp_ver);
303	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
304}
305
306static inline bool is_recoverable_dnode(struct page *page)
307{
308	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
309	__u64 cp_ver = cur_cp_version(ckpt);
310
311	/* Don't care crc part, if fsck.f2fs sets it. */
312	if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
313		return (cp_ver << 32) == (cpver_of_node(page) << 32);
314
315	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
316		cp_ver |= (cur_cp_crc(ckpt) << 32);
317
318	return cp_ver == cpver_of_node(page);
319}
320
321/*
322 * f2fs assigns the following node offsets described as (num).
323 * N = NIDS_PER_BLOCK
324 *
325 *  Inode block (0)
326 *    |- direct node (1)
327 *    |- direct node (2)
328 *    |- indirect node (3)
329 *    |            `- direct node (4 => 4 + N - 1)
330 *    |- indirect node (4 + N)
331 *    |            `- direct node (5 + N => 5 + 2N - 1)
332 *    `- double indirect node (5 + 2N)
333 *                 `- indirect node (6 + 2N)
334 *                       `- direct node
335 *                 ......
336 *                 `- indirect node ((6 + 2N) + x(N + 1))
337 *                       `- direct node
338 *                 ......
339 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
340 *                       `- direct node
341 */
342static inline bool IS_DNODE(struct page *node_page)
343{
344	unsigned int ofs = ofs_of_node(node_page);
345
346	if (f2fs_has_xattr_block(ofs))
347		return true;
348
349	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
350			ofs == 5 + 2 * NIDS_PER_BLOCK)
351		return false;
352	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
353		ofs -= 6 + 2 * NIDS_PER_BLOCK;
354		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
355			return false;
356	}
357	return true;
358}
359
360static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
361{
362	struct f2fs_node *rn = F2FS_NODE(p);
363
364	f2fs_wait_on_page_writeback(p, NODE, true, true);
365
366	if (i)
367		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
368	else
369		rn->in.nid[off] = cpu_to_le32(nid);
370	return set_page_dirty(p);
371}
372
373static inline nid_t get_nid(struct page *p, int off, bool i)
374{
375	struct f2fs_node *rn = F2FS_NODE(p);
376
377	if (i)
378		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
379	return le32_to_cpu(rn->in.nid[off]);
380}
381
382/*
383 * Coldness identification:
384 *  - Mark cold files in f2fs_inode_info
385 *  - Mark cold node blocks in their node footer
386 *  - Mark cold data pages in page cache
387 */
388static inline int is_cold_data(struct page *page)
389{
390	return PageChecked(page);
391}
392
393static inline void set_cold_data(struct page *page)
394{
395	SetPageChecked(page);
396}
397
398static inline void clear_cold_data(struct page *page)
399{
400	ClearPageChecked(page);
401}
402
403static inline int is_node(struct page *page, int type)
404{
405	struct f2fs_node *rn = F2FS_NODE(page);
406	return le32_to_cpu(rn->footer.flag) & (1 << type);
407}
408
409#define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
410#define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
411#define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
412
413static inline int is_inline_node(struct page *page)
414{
415	return PageChecked(page);
416}
417
418static inline void set_inline_node(struct page *page)
419{
420	SetPageChecked(page);
421}
422
423static inline void clear_inline_node(struct page *page)
424{
425	ClearPageChecked(page);
426}
427
428static inline void set_cold_node(struct page *page, bool is_dir)
429{
430	struct f2fs_node *rn = F2FS_NODE(page);
431	unsigned int flag = le32_to_cpu(rn->footer.flag);
432
433	if (is_dir)
434		flag &= ~(0x1 << COLD_BIT_SHIFT);
435	else
436		flag |= (0x1 << COLD_BIT_SHIFT);
437	rn->footer.flag = cpu_to_le32(flag);
438}
439
440static inline void set_mark(struct page *page, int mark, int type)
441{
442	struct f2fs_node *rn = F2FS_NODE(page);
443	unsigned int flag = le32_to_cpu(rn->footer.flag);
444	if (mark)
445		flag |= (0x1 << type);
446	else
447		flag &= ~(0x1 << type);
448	rn->footer.flag = cpu_to_le32(flag);
449
450#ifdef CONFIG_F2FS_CHECK_FS
451	f2fs_inode_chksum_set(F2FS_P_SB(page), page);
452#endif
453}
454#define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
455#define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fs/f2fs/node.h
  4 *
  5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6 *             http://www.samsung.com/
  7 */
  8/* start node id of a node block dedicated to the given node id */
  9#define	START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
 10
 11/* node block offset on the NAT area dedicated to the given start node id */
 12#define	NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
 13
 14/* # of pages to perform synchronous readahead before building free nids */
 15#define FREE_NID_PAGES	8
 16#define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
 17
 18/* size of free nid batch when shrinking */
 19#define SHRINK_NID_BATCH_SIZE	8
 20
 21#define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
 22
 23/* maximum readahead size for node during getting data blocks */
 24#define MAX_RA_NODE		128
 25
 26/* control the memory footprint threshold (10MB per 1GB ram) */
 27#define DEF_RAM_THRESHOLD	1
 28
 29/* control dirty nats ratio threshold (default: 10% over max nid count) */
 30#define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
 31/* control total # of nats */
 32#define DEF_NAT_CACHE_THRESHOLD			100000
 33
 34/* vector size for gang look-up from nat cache that consists of radix tree */
 35#define NATVEC_SIZE	64
 36#define SETVEC_SIZE	32
 37
 38/* return value for read_node_page */
 39#define LOCKED_PAGE	1
 40
 41/* check pinned file's alignment status of physical blocks */
 42#define FILE_NOT_ALIGNED	1
 43
 44/* For flag in struct node_info */
 45enum {
 46	IS_CHECKPOINTED,	/* is it checkpointed before? */
 47	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
 48	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
 49	IS_DIRTY,		/* this nat entry is dirty? */
 50	IS_PREALLOC,		/* nat entry is preallocated */
 51};
 52
 53/*
 54 * For node information
 55 */
 56struct node_info {
 57	nid_t nid;		/* node id */
 58	nid_t ino;		/* inode number of the node's owner */
 59	block_t	blk_addr;	/* block address of the node */
 60	unsigned char version;	/* version of the node */
 61	unsigned char flag;	/* for node information bits */
 62};
 63
 64struct nat_entry {
 65	struct list_head list;	/* for clean or dirty nat list */
 66	struct node_info ni;	/* in-memory node information */
 67};
 68
 69#define nat_get_nid(nat)		((nat)->ni.nid)
 70#define nat_set_nid(nat, n)		((nat)->ni.nid = (n))
 71#define nat_get_blkaddr(nat)		((nat)->ni.blk_addr)
 72#define nat_set_blkaddr(nat, b)		((nat)->ni.blk_addr = (b))
 73#define nat_get_ino(nat)		((nat)->ni.ino)
 74#define nat_set_ino(nat, i)		((nat)->ni.ino = (i))
 75#define nat_get_version(nat)		((nat)->ni.version)
 76#define nat_set_version(nat, v)		((nat)->ni.version = (v))
 77
 78#define inc_node_version(version)	(++(version))
 79
 80static inline void copy_node_info(struct node_info *dst,
 81						struct node_info *src)
 82{
 83	dst->nid = src->nid;
 84	dst->ino = src->ino;
 85	dst->blk_addr = src->blk_addr;
 86	dst->version = src->version;
 87	/* should not copy flag here */
 88}
 89
 90static inline void set_nat_flag(struct nat_entry *ne,
 91				unsigned int type, bool set)
 92{
 93	unsigned char mask = 0x01 << type;
 94	if (set)
 95		ne->ni.flag |= mask;
 96	else
 97		ne->ni.flag &= ~mask;
 98}
 99
100static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
101{
102	unsigned char mask = 0x01 << type;
103	return ne->ni.flag & mask;
104}
105
106static inline void nat_reset_flag(struct nat_entry *ne)
107{
108	/* these states can be set only after checkpoint was done */
109	set_nat_flag(ne, IS_CHECKPOINTED, true);
110	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
111	set_nat_flag(ne, HAS_LAST_FSYNC, true);
112}
113
114static inline void node_info_from_raw_nat(struct node_info *ni,
115						struct f2fs_nat_entry *raw_ne)
116{
117	ni->ino = le32_to_cpu(raw_ne->ino);
118	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
119	ni->version = raw_ne->version;
120}
121
122static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
123						struct node_info *ni)
124{
125	raw_ne->ino = cpu_to_le32(ni->ino);
126	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
127	raw_ne->version = ni->version;
128}
129
130static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
131{
132	return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
133					NM_I(sbi)->dirty_nats_ratio / 100;
134}
135
136static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
137{
138	return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
139}
140
141static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi)
142{
143	return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8;
144}
145
146enum mem_type {
147	FREE_NIDS,	/* indicates the free nid list */
148	NAT_ENTRIES,	/* indicates the cached nat entry */
149	DIRTY_DENTS,	/* indicates dirty dentry pages */
150	INO_ENTRIES,	/* indicates inode entries */
151	EXTENT_CACHE,	/* indicates extent cache */
152	INMEM_PAGES,	/* indicates inmemory pages */
153	DISCARD_CACHE,	/* indicates memory of cached discard cmds */
154	COMPRESS_PAGE,	/* indicates memory of cached compressed pages */
155	BASE_CHECK,	/* check kernel status */
156};
157
158struct nat_entry_set {
159	struct list_head set_list;	/* link with other nat sets */
160	struct list_head entry_list;	/* link with dirty nat entries */
161	nid_t set;			/* set number*/
162	unsigned int entry_cnt;		/* the # of nat entries in set */
163};
164
165struct free_nid {
166	struct list_head list;	/* for free node id list */
167	nid_t nid;		/* node id */
168	int state;		/* in use or not: FREE_NID or PREALLOC_NID */
169};
170
171static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
172{
173	struct f2fs_nm_info *nm_i = NM_I(sbi);
174	struct free_nid *fnid;
175
176	spin_lock(&nm_i->nid_list_lock);
177	if (nm_i->nid_cnt[FREE_NID] <= 0) {
178		spin_unlock(&nm_i->nid_list_lock);
179		return;
180	}
181	fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
182	*nid = fnid->nid;
183	spin_unlock(&nm_i->nid_list_lock);
184}
185
186/*
187 * inline functions
188 */
189static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
190{
191	struct f2fs_nm_info *nm_i = NM_I(sbi);
192
193#ifdef CONFIG_F2FS_CHECK_FS
194	if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
195						nm_i->bitmap_size))
196		f2fs_bug_on(sbi, 1);
197#endif
198	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
199}
200
201static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
202{
203	struct f2fs_nm_info *nm_i = NM_I(sbi);
204	pgoff_t block_off;
205	pgoff_t block_addr;
206
207	/*
208	 * block_off = segment_off * 512 + off_in_segment
209	 * OLD = (segment_off * 512) * 2 + off_in_segment
210	 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
211	 */
212	block_off = NAT_BLOCK_OFFSET(start);
213
214	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
215		(block_off << 1) -
216		(block_off & (sbi->blocks_per_seg - 1)));
217
218	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
219		block_addr += sbi->blocks_per_seg;
220
221	return block_addr;
222}
223
224static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
225						pgoff_t block_addr)
226{
227	struct f2fs_nm_info *nm_i = NM_I(sbi);
228
229	block_addr -= nm_i->nat_blkaddr;
230	block_addr ^= 1 << sbi->log_blocks_per_seg;
231	return block_addr + nm_i->nat_blkaddr;
232}
233
234static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
235{
236	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
237
238	f2fs_change_bit(block_off, nm_i->nat_bitmap);
239#ifdef CONFIG_F2FS_CHECK_FS
240	f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
241#endif
242}
243
244static inline nid_t ino_of_node(struct page *node_page)
245{
246	struct f2fs_node *rn = F2FS_NODE(node_page);
247	return le32_to_cpu(rn->footer.ino);
248}
249
250static inline nid_t nid_of_node(struct page *node_page)
251{
252	struct f2fs_node *rn = F2FS_NODE(node_page);
253	return le32_to_cpu(rn->footer.nid);
254}
255
256static inline unsigned int ofs_of_node(struct page *node_page)
257{
258	struct f2fs_node *rn = F2FS_NODE(node_page);
259	unsigned flag = le32_to_cpu(rn->footer.flag);
260	return flag >> OFFSET_BIT_SHIFT;
261}
262
263static inline __u64 cpver_of_node(struct page *node_page)
264{
265	struct f2fs_node *rn = F2FS_NODE(node_page);
266	return le64_to_cpu(rn->footer.cp_ver);
267}
268
269static inline block_t next_blkaddr_of_node(struct page *node_page)
270{
271	struct f2fs_node *rn = F2FS_NODE(node_page);
272	return le32_to_cpu(rn->footer.next_blkaddr);
273}
274
275static inline void fill_node_footer(struct page *page, nid_t nid,
276				nid_t ino, unsigned int ofs, bool reset)
277{
278	struct f2fs_node *rn = F2FS_NODE(page);
279	unsigned int old_flag = 0;
280
281	if (reset)
282		memset(rn, 0, sizeof(*rn));
283	else
284		old_flag = le32_to_cpu(rn->footer.flag);
285
286	rn->footer.nid = cpu_to_le32(nid);
287	rn->footer.ino = cpu_to_le32(ino);
288
289	/* should remain old flag bits such as COLD_BIT_SHIFT */
290	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
291					(old_flag & OFFSET_BIT_MASK));
292}
293
294static inline void copy_node_footer(struct page *dst, struct page *src)
295{
296	struct f2fs_node *src_rn = F2FS_NODE(src);
297	struct f2fs_node *dst_rn = F2FS_NODE(dst);
298	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
299}
300
301static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
302{
303	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
304	struct f2fs_node *rn = F2FS_NODE(page);
305	__u64 cp_ver = cur_cp_version(ckpt);
306
307	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
308		cp_ver |= (cur_cp_crc(ckpt) << 32);
309
310	rn->footer.cp_ver = cpu_to_le64(cp_ver);
311	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
312}
313
314static inline bool is_recoverable_dnode(struct page *page)
315{
316	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
317	__u64 cp_ver = cur_cp_version(ckpt);
318
319	/* Don't care crc part, if fsck.f2fs sets it. */
320	if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
321		return (cp_ver << 32) == (cpver_of_node(page) << 32);
322
323	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
324		cp_ver |= (cur_cp_crc(ckpt) << 32);
325
326	return cp_ver == cpver_of_node(page);
327}
328
329/*
330 * f2fs assigns the following node offsets described as (num).
331 * N = NIDS_PER_BLOCK
332 *
333 *  Inode block (0)
334 *    |- direct node (1)
335 *    |- direct node (2)
336 *    |- indirect node (3)
337 *    |            `- direct node (4 => 4 + N - 1)
338 *    |- indirect node (4 + N)
339 *    |            `- direct node (5 + N => 5 + 2N - 1)
340 *    `- double indirect node (5 + 2N)
341 *                 `- indirect node (6 + 2N)
342 *                       `- direct node
343 *                 ......
344 *                 `- indirect node ((6 + 2N) + x(N + 1))
345 *                       `- direct node
346 *                 ......
347 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
348 *                       `- direct node
349 */
350static inline bool IS_DNODE(struct page *node_page)
351{
352	unsigned int ofs = ofs_of_node(node_page);
353
354	if (f2fs_has_xattr_block(ofs))
355		return true;
356
357	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
358			ofs == 5 + 2 * NIDS_PER_BLOCK)
359		return false;
360	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
361		ofs -= 6 + 2 * NIDS_PER_BLOCK;
362		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
363			return false;
364	}
365	return true;
366}
367
368static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
369{
370	struct f2fs_node *rn = F2FS_NODE(p);
371
372	f2fs_wait_on_page_writeback(p, NODE, true, true);
373
374	if (i)
375		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
376	else
377		rn->in.nid[off] = cpu_to_le32(nid);
378	return set_page_dirty(p);
379}
380
381static inline nid_t get_nid(struct page *p, int off, bool i)
382{
383	struct f2fs_node *rn = F2FS_NODE(p);
384
385	if (i)
386		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
387	return le32_to_cpu(rn->in.nid[off]);
388}
389
390/*
391 * Coldness identification:
392 *  - Mark cold files in f2fs_inode_info
393 *  - Mark cold node blocks in their node footer
394 *  - Mark cold data pages in page cache
395 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
396
397static inline int is_node(struct page *page, int type)
398{
399	struct f2fs_node *rn = F2FS_NODE(page);
400	return le32_to_cpu(rn->footer.flag) & (1 << type);
401}
402
403#define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
404#define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
405#define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
406
407static inline void set_cold_node(struct page *page, bool is_dir)
408{
409	struct f2fs_node *rn = F2FS_NODE(page);
410	unsigned int flag = le32_to_cpu(rn->footer.flag);
411
412	if (is_dir)
413		flag &= ~(0x1 << COLD_BIT_SHIFT);
414	else
415		flag |= (0x1 << COLD_BIT_SHIFT);
416	rn->footer.flag = cpu_to_le32(flag);
417}
418
419static inline void set_mark(struct page *page, int mark, int type)
420{
421	struct f2fs_node *rn = F2FS_NODE(page);
422	unsigned int flag = le32_to_cpu(rn->footer.flag);
423	if (mark)
424		flag |= (0x1 << type);
425	else
426		flag &= ~(0x1 << type);
427	rn->footer.flag = cpu_to_le32(flag);
428
429#ifdef CONFIG_F2FS_CHECK_FS
430	f2fs_inode_chksum_set(F2FS_P_SB(page), page);
431#endif
432}
433#define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
434#define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)