Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/node.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8/* start node id of a node block dedicated to the given node id */
9#define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
10
11/* node block offset on the NAT area dedicated to the given start node id */
12#define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
13
14/* # of pages to perform synchronous readahead before building free nids */
15#define FREE_NID_PAGES 8
16#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
17
18#define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
19
20/* maximum readahead size for node during getting data blocks */
21#define MAX_RA_NODE 128
22
23/* control the memory footprint threshold (10MB per 1GB ram) */
24#define DEF_RAM_THRESHOLD 1
25
26/* control dirty nats ratio threshold (default: 10% over max nid count) */
27#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
28/* control total # of nats */
29#define DEF_NAT_CACHE_THRESHOLD 100000
30
31/* vector size for gang look-up from nat cache that consists of radix tree */
32#define NATVEC_SIZE 64
33#define SETVEC_SIZE 32
34
35/* return value for read_node_page */
36#define LOCKED_PAGE 1
37
38/* For flag in struct node_info */
39enum {
40 IS_CHECKPOINTED, /* is it checkpointed before? */
41 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
42 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
43 IS_DIRTY, /* this nat entry is dirty? */
44 IS_PREALLOC, /* nat entry is preallocated */
45};
46
47/*
48 * For node information
49 */
50struct node_info {
51 nid_t nid; /* node id */
52 nid_t ino; /* inode number of the node's owner */
53 block_t blk_addr; /* block address of the node */
54 unsigned char version; /* version of the node */
55 unsigned char flag; /* for node information bits */
56};
57
58struct nat_entry {
59 struct list_head list; /* for clean or dirty nat list */
60 struct node_info ni; /* in-memory node information */
61};
62
63#define nat_get_nid(nat) ((nat)->ni.nid)
64#define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
65#define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
66#define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
67#define nat_get_ino(nat) ((nat)->ni.ino)
68#define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
69#define nat_get_version(nat) ((nat)->ni.version)
70#define nat_set_version(nat, v) ((nat)->ni.version = (v))
71
72#define inc_node_version(version) (++(version))
73
74static inline void copy_node_info(struct node_info *dst,
75 struct node_info *src)
76{
77 dst->nid = src->nid;
78 dst->ino = src->ino;
79 dst->blk_addr = src->blk_addr;
80 dst->version = src->version;
81 /* should not copy flag here */
82}
83
84static inline void set_nat_flag(struct nat_entry *ne,
85 unsigned int type, bool set)
86{
87 unsigned char mask = 0x01 << type;
88 if (set)
89 ne->ni.flag |= mask;
90 else
91 ne->ni.flag &= ~mask;
92}
93
94static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
95{
96 unsigned char mask = 0x01 << type;
97 return ne->ni.flag & mask;
98}
99
100static inline void nat_reset_flag(struct nat_entry *ne)
101{
102 /* these states can be set only after checkpoint was done */
103 set_nat_flag(ne, IS_CHECKPOINTED, true);
104 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
105 set_nat_flag(ne, HAS_LAST_FSYNC, true);
106}
107
108static inline void node_info_from_raw_nat(struct node_info *ni,
109 struct f2fs_nat_entry *raw_ne)
110{
111 ni->ino = le32_to_cpu(raw_ne->ino);
112 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
113 ni->version = raw_ne->version;
114}
115
116static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
117 struct node_info *ni)
118{
119 raw_ne->ino = cpu_to_le32(ni->ino);
120 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
121 raw_ne->version = ni->version;
122}
123
124static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
125{
126 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
127 NM_I(sbi)->dirty_nats_ratio / 100;
128}
129
130static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
131{
132 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
133}
134
135static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi)
136{
137 return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8;
138}
139
140enum mem_type {
141 FREE_NIDS, /* indicates the free nid list */
142 NAT_ENTRIES, /* indicates the cached nat entry */
143 DIRTY_DENTS, /* indicates dirty dentry pages */
144 INO_ENTRIES, /* indicates inode entries */
145 EXTENT_CACHE, /* indicates extent cache */
146 INMEM_PAGES, /* indicates inmemory pages */
147 BASE_CHECK, /* check kernel status */
148};
149
150struct nat_entry_set {
151 struct list_head set_list; /* link with other nat sets */
152 struct list_head entry_list; /* link with dirty nat entries */
153 nid_t set; /* set number*/
154 unsigned int entry_cnt; /* the # of nat entries in set */
155};
156
157struct free_nid {
158 struct list_head list; /* for free node id list */
159 nid_t nid; /* node id */
160 int state; /* in use or not: FREE_NID or PREALLOC_NID */
161};
162
163static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
164{
165 struct f2fs_nm_info *nm_i = NM_I(sbi);
166 struct free_nid *fnid;
167
168 spin_lock(&nm_i->nid_list_lock);
169 if (nm_i->nid_cnt[FREE_NID] <= 0) {
170 spin_unlock(&nm_i->nid_list_lock);
171 return;
172 }
173 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
174 *nid = fnid->nid;
175 spin_unlock(&nm_i->nid_list_lock);
176}
177
178/*
179 * inline functions
180 */
181static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
182{
183 struct f2fs_nm_info *nm_i = NM_I(sbi);
184
185#ifdef CONFIG_F2FS_CHECK_FS
186 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
187 nm_i->bitmap_size))
188 f2fs_bug_on(sbi, 1);
189#endif
190 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
191}
192
193static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
194{
195 struct f2fs_nm_info *nm_i = NM_I(sbi);
196 pgoff_t block_off;
197 pgoff_t block_addr;
198
199 /*
200 * block_off = segment_off * 512 + off_in_segment
201 * OLD = (segment_off * 512) * 2 + off_in_segment
202 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
203 */
204 block_off = NAT_BLOCK_OFFSET(start);
205
206 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
207 (block_off << 1) -
208 (block_off & (sbi->blocks_per_seg - 1)));
209
210 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
211 block_addr += sbi->blocks_per_seg;
212
213 return block_addr;
214}
215
216static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
217 pgoff_t block_addr)
218{
219 struct f2fs_nm_info *nm_i = NM_I(sbi);
220
221 block_addr -= nm_i->nat_blkaddr;
222 block_addr ^= 1 << sbi->log_blocks_per_seg;
223 return block_addr + nm_i->nat_blkaddr;
224}
225
226static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
227{
228 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
229
230 f2fs_change_bit(block_off, nm_i->nat_bitmap);
231#ifdef CONFIG_F2FS_CHECK_FS
232 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
233#endif
234}
235
236static inline nid_t ino_of_node(struct page *node_page)
237{
238 struct f2fs_node *rn = F2FS_NODE(node_page);
239 return le32_to_cpu(rn->footer.ino);
240}
241
242static inline nid_t nid_of_node(struct page *node_page)
243{
244 struct f2fs_node *rn = F2FS_NODE(node_page);
245 return le32_to_cpu(rn->footer.nid);
246}
247
248static inline unsigned int ofs_of_node(struct page *node_page)
249{
250 struct f2fs_node *rn = F2FS_NODE(node_page);
251 unsigned flag = le32_to_cpu(rn->footer.flag);
252 return flag >> OFFSET_BIT_SHIFT;
253}
254
255static inline __u64 cpver_of_node(struct page *node_page)
256{
257 struct f2fs_node *rn = F2FS_NODE(node_page);
258 return le64_to_cpu(rn->footer.cp_ver);
259}
260
261static inline block_t next_blkaddr_of_node(struct page *node_page)
262{
263 struct f2fs_node *rn = F2FS_NODE(node_page);
264 return le32_to_cpu(rn->footer.next_blkaddr);
265}
266
267static inline void fill_node_footer(struct page *page, nid_t nid,
268 nid_t ino, unsigned int ofs, bool reset)
269{
270 struct f2fs_node *rn = F2FS_NODE(page);
271 unsigned int old_flag = 0;
272
273 if (reset)
274 memset(rn, 0, sizeof(*rn));
275 else
276 old_flag = le32_to_cpu(rn->footer.flag);
277
278 rn->footer.nid = cpu_to_le32(nid);
279 rn->footer.ino = cpu_to_le32(ino);
280
281 /* should remain old flag bits such as COLD_BIT_SHIFT */
282 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
283 (old_flag & OFFSET_BIT_MASK));
284}
285
286static inline void copy_node_footer(struct page *dst, struct page *src)
287{
288 struct f2fs_node *src_rn = F2FS_NODE(src);
289 struct f2fs_node *dst_rn = F2FS_NODE(dst);
290 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
291}
292
293static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
294{
295 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
296 struct f2fs_node *rn = F2FS_NODE(page);
297 __u64 cp_ver = cur_cp_version(ckpt);
298
299 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
300 cp_ver |= (cur_cp_crc(ckpt) << 32);
301
302 rn->footer.cp_ver = cpu_to_le64(cp_ver);
303 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
304}
305
306static inline bool is_recoverable_dnode(struct page *page)
307{
308 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
309 __u64 cp_ver = cur_cp_version(ckpt);
310
311 /* Don't care crc part, if fsck.f2fs sets it. */
312 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
313 return (cp_ver << 32) == (cpver_of_node(page) << 32);
314
315 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
316 cp_ver |= (cur_cp_crc(ckpt) << 32);
317
318 return cp_ver == cpver_of_node(page);
319}
320
321/*
322 * f2fs assigns the following node offsets described as (num).
323 * N = NIDS_PER_BLOCK
324 *
325 * Inode block (0)
326 * |- direct node (1)
327 * |- direct node (2)
328 * |- indirect node (3)
329 * | `- direct node (4 => 4 + N - 1)
330 * |- indirect node (4 + N)
331 * | `- direct node (5 + N => 5 + 2N - 1)
332 * `- double indirect node (5 + 2N)
333 * `- indirect node (6 + 2N)
334 * `- direct node
335 * ......
336 * `- indirect node ((6 + 2N) + x(N + 1))
337 * `- direct node
338 * ......
339 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
340 * `- direct node
341 */
342static inline bool IS_DNODE(struct page *node_page)
343{
344 unsigned int ofs = ofs_of_node(node_page);
345
346 if (f2fs_has_xattr_block(ofs))
347 return true;
348
349 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
350 ofs == 5 + 2 * NIDS_PER_BLOCK)
351 return false;
352 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
353 ofs -= 6 + 2 * NIDS_PER_BLOCK;
354 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
355 return false;
356 }
357 return true;
358}
359
360static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
361{
362 struct f2fs_node *rn = F2FS_NODE(p);
363
364 f2fs_wait_on_page_writeback(p, NODE, true, true);
365
366 if (i)
367 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
368 else
369 rn->in.nid[off] = cpu_to_le32(nid);
370 return set_page_dirty(p);
371}
372
373static inline nid_t get_nid(struct page *p, int off, bool i)
374{
375 struct f2fs_node *rn = F2FS_NODE(p);
376
377 if (i)
378 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
379 return le32_to_cpu(rn->in.nid[off]);
380}
381
382/*
383 * Coldness identification:
384 * - Mark cold files in f2fs_inode_info
385 * - Mark cold node blocks in their node footer
386 * - Mark cold data pages in page cache
387 */
388static inline int is_cold_data(struct page *page)
389{
390 return PageChecked(page);
391}
392
393static inline void set_cold_data(struct page *page)
394{
395 SetPageChecked(page);
396}
397
398static inline void clear_cold_data(struct page *page)
399{
400 ClearPageChecked(page);
401}
402
403static inline int is_node(struct page *page, int type)
404{
405 struct f2fs_node *rn = F2FS_NODE(page);
406 return le32_to_cpu(rn->footer.flag) & (1 << type);
407}
408
409#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
410#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
411#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
412
413static inline int is_inline_node(struct page *page)
414{
415 return PageChecked(page);
416}
417
418static inline void set_inline_node(struct page *page)
419{
420 SetPageChecked(page);
421}
422
423static inline void clear_inline_node(struct page *page)
424{
425 ClearPageChecked(page);
426}
427
428static inline void set_cold_node(struct page *page, bool is_dir)
429{
430 struct f2fs_node *rn = F2FS_NODE(page);
431 unsigned int flag = le32_to_cpu(rn->footer.flag);
432
433 if (is_dir)
434 flag &= ~(0x1 << COLD_BIT_SHIFT);
435 else
436 flag |= (0x1 << COLD_BIT_SHIFT);
437 rn->footer.flag = cpu_to_le32(flag);
438}
439
440static inline void set_mark(struct page *page, int mark, int type)
441{
442 struct f2fs_node *rn = F2FS_NODE(page);
443 unsigned int flag = le32_to_cpu(rn->footer.flag);
444 if (mark)
445 flag |= (0x1 << type);
446 else
447 flag &= ~(0x1 << type);
448 rn->footer.flag = cpu_to_le32(flag);
449
450#ifdef CONFIG_F2FS_CHECK_FS
451 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
452#endif
453}
454#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
455#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)
1/*
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11/* start node id of a node block dedicated to the given node id */
12#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14/* node block offset on the NAT area dedicated to the given start node id */
15#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16
17/* # of pages to perform synchronous readahead before building free nids */
18#define FREE_NID_PAGES 8
19#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
20
21#define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
22
23/* maximum readahead size for node during getting data blocks */
24#define MAX_RA_NODE 128
25
26/* control the memory footprint threshold (10MB per 1GB ram) */
27#define DEF_RAM_THRESHOLD 1
28
29/* control dirty nats ratio threshold (default: 10% over max nid count) */
30#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31/* control total # of nats */
32#define DEF_NAT_CACHE_THRESHOLD 100000
33
34/* vector size for gang look-up from nat cache that consists of radix tree */
35#define NATVEC_SIZE 64
36#define SETVEC_SIZE 32
37
38/* return value for read_node_page */
39#define LOCKED_PAGE 1
40
41/* For flag in struct node_info */
42enum {
43 IS_CHECKPOINTED, /* is it checkpointed before? */
44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
46 IS_DIRTY, /* this nat entry is dirty? */
47};
48
49/*
50 * For node information
51 */
52struct node_info {
53 nid_t nid; /* node id */
54 nid_t ino; /* inode number of the node's owner */
55 block_t blk_addr; /* block address of the node */
56 unsigned char version; /* version of the node */
57 unsigned char flag; /* for node information bits */
58};
59
60struct nat_entry {
61 struct list_head list; /* for clean or dirty nat list */
62 struct node_info ni; /* in-memory node information */
63};
64
65#define nat_get_nid(nat) (nat->ni.nid)
66#define nat_set_nid(nat, n) (nat->ni.nid = n)
67#define nat_get_blkaddr(nat) (nat->ni.blk_addr)
68#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
69#define nat_get_ino(nat) (nat->ni.ino)
70#define nat_set_ino(nat, i) (nat->ni.ino = i)
71#define nat_get_version(nat) (nat->ni.version)
72#define nat_set_version(nat, v) (nat->ni.version = v)
73
74#define inc_node_version(version) (++version)
75
76static inline void copy_node_info(struct node_info *dst,
77 struct node_info *src)
78{
79 dst->nid = src->nid;
80 dst->ino = src->ino;
81 dst->blk_addr = src->blk_addr;
82 dst->version = src->version;
83 /* should not copy flag here */
84}
85
86static inline void set_nat_flag(struct nat_entry *ne,
87 unsigned int type, bool set)
88{
89 unsigned char mask = 0x01 << type;
90 if (set)
91 ne->ni.flag |= mask;
92 else
93 ne->ni.flag &= ~mask;
94}
95
96static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
97{
98 unsigned char mask = 0x01 << type;
99 return ne->ni.flag & mask;
100}
101
102static inline void nat_reset_flag(struct nat_entry *ne)
103{
104 /* these states can be set only after checkpoint was done */
105 set_nat_flag(ne, IS_CHECKPOINTED, true);
106 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
107 set_nat_flag(ne, HAS_LAST_FSYNC, true);
108}
109
110static inline void node_info_from_raw_nat(struct node_info *ni,
111 struct f2fs_nat_entry *raw_ne)
112{
113 ni->ino = le32_to_cpu(raw_ne->ino);
114 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
115 ni->version = raw_ne->version;
116}
117
118static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
119 struct node_info *ni)
120{
121 raw_ne->ino = cpu_to_le32(ni->ino);
122 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
123 raw_ne->version = ni->version;
124}
125
126static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
127{
128 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
129 NM_I(sbi)->dirty_nats_ratio / 100;
130}
131
132static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
133{
134 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
135}
136
137enum mem_type {
138 FREE_NIDS, /* indicates the free nid list */
139 NAT_ENTRIES, /* indicates the cached nat entry */
140 DIRTY_DENTS, /* indicates dirty dentry pages */
141 INO_ENTRIES, /* indicates inode entries */
142 EXTENT_CACHE, /* indicates extent cache */
143 BASE_CHECK, /* check kernel status */
144};
145
146struct nat_entry_set {
147 struct list_head set_list; /* link with other nat sets */
148 struct list_head entry_list; /* link with dirty nat entries */
149 nid_t set; /* set number*/
150 unsigned int entry_cnt; /* the # of nat entries in set */
151};
152
153/*
154 * For free nid mangement
155 */
156enum nid_state {
157 NID_NEW, /* newly added to free nid list */
158 NID_ALLOC /* it is allocated */
159};
160
161struct free_nid {
162 struct list_head list; /* for free node id list */
163 nid_t nid; /* node id */
164 int state; /* in use or not: NID_NEW or NID_ALLOC */
165};
166
167static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
168{
169 struct f2fs_nm_info *nm_i = NM_I(sbi);
170 struct free_nid *fnid;
171
172 spin_lock(&nm_i->nid_list_lock);
173 if (nm_i->nid_cnt[FREE_NID_LIST] <= 0) {
174 spin_unlock(&nm_i->nid_list_lock);
175 return;
176 }
177 fnid = list_entry(nm_i->nid_list[FREE_NID_LIST].next,
178 struct free_nid, list);
179 *nid = fnid->nid;
180 spin_unlock(&nm_i->nid_list_lock);
181}
182
183/*
184 * inline functions
185 */
186static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
187{
188 struct f2fs_nm_info *nm_i = NM_I(sbi);
189 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
190}
191
192static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
193{
194 struct f2fs_nm_info *nm_i = NM_I(sbi);
195 pgoff_t block_off;
196 pgoff_t block_addr;
197 int seg_off;
198
199 block_off = NAT_BLOCK_OFFSET(start);
200 seg_off = block_off >> sbi->log_blocks_per_seg;
201
202 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
203 (seg_off << sbi->log_blocks_per_seg << 1) +
204 (block_off & (sbi->blocks_per_seg - 1)));
205
206 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
207 block_addr += sbi->blocks_per_seg;
208
209 return block_addr;
210}
211
212static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
213 pgoff_t block_addr)
214{
215 struct f2fs_nm_info *nm_i = NM_I(sbi);
216
217 block_addr -= nm_i->nat_blkaddr;
218 if ((block_addr >> sbi->log_blocks_per_seg) % 2)
219 block_addr -= sbi->blocks_per_seg;
220 else
221 block_addr += sbi->blocks_per_seg;
222
223 return block_addr + nm_i->nat_blkaddr;
224}
225
226static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
227{
228 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
229
230 f2fs_change_bit(block_off, nm_i->nat_bitmap);
231}
232
233static inline nid_t ino_of_node(struct page *node_page)
234{
235 struct f2fs_node *rn = F2FS_NODE(node_page);
236 return le32_to_cpu(rn->footer.ino);
237}
238
239static inline nid_t nid_of_node(struct page *node_page)
240{
241 struct f2fs_node *rn = F2FS_NODE(node_page);
242 return le32_to_cpu(rn->footer.nid);
243}
244
245static inline unsigned int ofs_of_node(struct page *node_page)
246{
247 struct f2fs_node *rn = F2FS_NODE(node_page);
248 unsigned flag = le32_to_cpu(rn->footer.flag);
249 return flag >> OFFSET_BIT_SHIFT;
250}
251
252static inline __u64 cpver_of_node(struct page *node_page)
253{
254 struct f2fs_node *rn = F2FS_NODE(node_page);
255 return le64_to_cpu(rn->footer.cp_ver);
256}
257
258static inline block_t next_blkaddr_of_node(struct page *node_page)
259{
260 struct f2fs_node *rn = F2FS_NODE(node_page);
261 return le32_to_cpu(rn->footer.next_blkaddr);
262}
263
264static inline void fill_node_footer(struct page *page, nid_t nid,
265 nid_t ino, unsigned int ofs, bool reset)
266{
267 struct f2fs_node *rn = F2FS_NODE(page);
268 unsigned int old_flag = 0;
269
270 if (reset)
271 memset(rn, 0, sizeof(*rn));
272 else
273 old_flag = le32_to_cpu(rn->footer.flag);
274
275 rn->footer.nid = cpu_to_le32(nid);
276 rn->footer.ino = cpu_to_le32(ino);
277
278 /* should remain old flag bits such as COLD_BIT_SHIFT */
279 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
280 (old_flag & OFFSET_BIT_MASK));
281}
282
283static inline void copy_node_footer(struct page *dst, struct page *src)
284{
285 struct f2fs_node *src_rn = F2FS_NODE(src);
286 struct f2fs_node *dst_rn = F2FS_NODE(dst);
287 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
288}
289
290static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
291{
292 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
293 struct f2fs_node *rn = F2FS_NODE(page);
294 size_t crc_offset = le32_to_cpu(ckpt->checksum_offset);
295 __u64 cp_ver = le64_to_cpu(ckpt->checkpoint_ver);
296
297 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) {
298 __u64 crc = le32_to_cpu(*((__le32 *)
299 ((unsigned char *)ckpt + crc_offset)));
300 cp_ver |= (crc << 32);
301 }
302 rn->footer.cp_ver = cpu_to_le64(cp_ver);
303 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
304}
305
306static inline bool is_recoverable_dnode(struct page *page)
307{
308 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
309 size_t crc_offset = le32_to_cpu(ckpt->checksum_offset);
310 __u64 cp_ver = cur_cp_version(ckpt);
311
312 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) {
313 __u64 crc = le32_to_cpu(*((__le32 *)
314 ((unsigned char *)ckpt + crc_offset)));
315 cp_ver |= (crc << 32);
316 }
317 return cp_ver == cpver_of_node(page);
318}
319
320/*
321 * f2fs assigns the following node offsets described as (num).
322 * N = NIDS_PER_BLOCK
323 *
324 * Inode block (0)
325 * |- direct node (1)
326 * |- direct node (2)
327 * |- indirect node (3)
328 * | `- direct node (4 => 4 + N - 1)
329 * |- indirect node (4 + N)
330 * | `- direct node (5 + N => 5 + 2N - 1)
331 * `- double indirect node (5 + 2N)
332 * `- indirect node (6 + 2N)
333 * `- direct node
334 * ......
335 * `- indirect node ((6 + 2N) + x(N + 1))
336 * `- direct node
337 * ......
338 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
339 * `- direct node
340 */
341static inline bool IS_DNODE(struct page *node_page)
342{
343 unsigned int ofs = ofs_of_node(node_page);
344
345 if (f2fs_has_xattr_block(ofs))
346 return false;
347
348 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
349 ofs == 5 + 2 * NIDS_PER_BLOCK)
350 return false;
351 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
352 ofs -= 6 + 2 * NIDS_PER_BLOCK;
353 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
354 return false;
355 }
356 return true;
357}
358
359static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
360{
361 struct f2fs_node *rn = F2FS_NODE(p);
362
363 f2fs_wait_on_page_writeback(p, NODE, true);
364
365 if (i)
366 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
367 else
368 rn->in.nid[off] = cpu_to_le32(nid);
369 return set_page_dirty(p);
370}
371
372static inline nid_t get_nid(struct page *p, int off, bool i)
373{
374 struct f2fs_node *rn = F2FS_NODE(p);
375
376 if (i)
377 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
378 return le32_to_cpu(rn->in.nid[off]);
379}
380
381/*
382 * Coldness identification:
383 * - Mark cold files in f2fs_inode_info
384 * - Mark cold node blocks in their node footer
385 * - Mark cold data pages in page cache
386 */
387static inline int is_cold_data(struct page *page)
388{
389 return PageChecked(page);
390}
391
392static inline void set_cold_data(struct page *page)
393{
394 SetPageChecked(page);
395}
396
397static inline void clear_cold_data(struct page *page)
398{
399 ClearPageChecked(page);
400}
401
402static inline int is_node(struct page *page, int type)
403{
404 struct f2fs_node *rn = F2FS_NODE(page);
405 return le32_to_cpu(rn->footer.flag) & (1 << type);
406}
407
408#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
409#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
410#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
411
412static inline int is_inline_node(struct page *page)
413{
414 return PageChecked(page);
415}
416
417static inline void set_inline_node(struct page *page)
418{
419 SetPageChecked(page);
420}
421
422static inline void clear_inline_node(struct page *page)
423{
424 ClearPageChecked(page);
425}
426
427static inline void set_cold_node(struct inode *inode, struct page *page)
428{
429 struct f2fs_node *rn = F2FS_NODE(page);
430 unsigned int flag = le32_to_cpu(rn->footer.flag);
431
432 if (S_ISDIR(inode->i_mode))
433 flag &= ~(0x1 << COLD_BIT_SHIFT);
434 else
435 flag |= (0x1 << COLD_BIT_SHIFT);
436 rn->footer.flag = cpu_to_le32(flag);
437}
438
439static inline void set_mark(struct page *page, int mark, int type)
440{
441 struct f2fs_node *rn = F2FS_NODE(page);
442 unsigned int flag = le32_to_cpu(rn->footer.flag);
443 if (mark)
444 flag |= (0x1 << type);
445 else
446 flag &= ~(0x1 << type);
447 rn->footer.flag = cpu_to_le32(flag);
448}
449#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
450#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)