Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * fs/f2fs/node.h
  4 *
  5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6 *             http://www.samsung.com/
 
 
 
 
  7 */
  8/* start node id of a node block dedicated to the given node id */
  9#define	START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
 10
 11/* node block offset on the NAT area dedicated to the given start node id */
 12#define	NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
 13
 14/* # of pages to perform synchronous readahead before building free nids */
 15#define FREE_NID_PAGES	8
 16#define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
 17
 18#define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
 19
 20/* maximum readahead size for node during getting data blocks */
 21#define MAX_RA_NODE		128
 22
 23/* control the memory footprint threshold (10MB per 1GB ram) */
 24#define DEF_RAM_THRESHOLD	1
 25
 26/* control dirty nats ratio threshold (default: 10% over max nid count) */
 27#define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
 28/* control total # of nats */
 29#define DEF_NAT_CACHE_THRESHOLD			100000
 30
 31/* vector size for gang look-up from nat cache that consists of radix tree */
 32#define NATVEC_SIZE	64
 33#define SETVEC_SIZE	32
 34
 35/* return value for read_node_page */
 36#define LOCKED_PAGE	1
 37
 38/* For flag in struct node_info */
 39enum {
 40	IS_CHECKPOINTED,	/* is it checkpointed before? */
 41	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
 42	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
 43	IS_DIRTY,		/* this nat entry is dirty? */
 44	IS_PREALLOC,		/* nat entry is preallocated */
 45};
 46
 47/*
 48 * For node information
 49 */
 50struct node_info {
 51	nid_t nid;		/* node id */
 52	nid_t ino;		/* inode number of the node's owner */
 53	block_t	blk_addr;	/* block address of the node */
 54	unsigned char version;	/* version of the node */
 55	unsigned char flag;	/* for node information bits */
 56};
 57
 58struct nat_entry {
 59	struct list_head list;	/* for clean or dirty nat list */
 60	struct node_info ni;	/* in-memory node information */
 61};
 62
 63#define nat_get_nid(nat)		((nat)->ni.nid)
 64#define nat_set_nid(nat, n)		((nat)->ni.nid = (n))
 65#define nat_get_blkaddr(nat)		((nat)->ni.blk_addr)
 66#define nat_set_blkaddr(nat, b)		((nat)->ni.blk_addr = (b))
 67#define nat_get_ino(nat)		((nat)->ni.ino)
 68#define nat_set_ino(nat, i)		((nat)->ni.ino = (i))
 69#define nat_get_version(nat)		((nat)->ni.version)
 70#define nat_set_version(nat, v)		((nat)->ni.version = (v))
 71
 72#define inc_node_version(version)	(++(version))
 73
 74static inline void copy_node_info(struct node_info *dst,
 75						struct node_info *src)
 76{
 77	dst->nid = src->nid;
 78	dst->ino = src->ino;
 79	dst->blk_addr = src->blk_addr;
 80	dst->version = src->version;
 81	/* should not copy flag here */
 82}
 83
 84static inline void set_nat_flag(struct nat_entry *ne,
 85				unsigned int type, bool set)
 86{
 87	unsigned char mask = 0x01 << type;
 88	if (set)
 89		ne->ni.flag |= mask;
 90	else
 91		ne->ni.flag &= ~mask;
 92}
 93
 94static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
 95{
 96	unsigned char mask = 0x01 << type;
 97	return ne->ni.flag & mask;
 98}
 99
100static inline void nat_reset_flag(struct nat_entry *ne)
101{
102	/* these states can be set only after checkpoint was done */
103	set_nat_flag(ne, IS_CHECKPOINTED, true);
104	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
105	set_nat_flag(ne, HAS_LAST_FSYNC, true);
106}
107
108static inline void node_info_from_raw_nat(struct node_info *ni,
109						struct f2fs_nat_entry *raw_ne)
110{
111	ni->ino = le32_to_cpu(raw_ne->ino);
112	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
113	ni->version = raw_ne->version;
114}
115
116static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
117						struct node_info *ni)
118{
119	raw_ne->ino = cpu_to_le32(ni->ino);
120	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
121	raw_ne->version = ni->version;
122}
123
124static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
125{
126	return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
127					NM_I(sbi)->dirty_nats_ratio / 100;
128}
129
130static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
131{
132	return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
133}
134
135static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi)
136{
137	return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8;
138}
139
140enum mem_type {
141	FREE_NIDS,	/* indicates the free nid list */
142	NAT_ENTRIES,	/* indicates the cached nat entry */
143	DIRTY_DENTS,	/* indicates dirty dentry pages */
144	INO_ENTRIES,	/* indicates inode entries */
145	EXTENT_CACHE,	/* indicates extent cache */
146	INMEM_PAGES,	/* indicates inmemory pages */
147	BASE_CHECK,	/* check kernel status */
148};
149
150struct nat_entry_set {
151	struct list_head set_list;	/* link with other nat sets */
152	struct list_head entry_list;	/* link with dirty nat entries */
153	nid_t set;			/* set number*/
154	unsigned int entry_cnt;		/* the # of nat entries in set */
155};
156
 
 
 
 
 
 
 
 
157struct free_nid {
158	struct list_head list;	/* for free node id list */
159	nid_t nid;		/* node id */
160	int state;		/* in use or not: FREE_NID or PREALLOC_NID */
161};
162
163static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
164{
165	struct f2fs_nm_info *nm_i = NM_I(sbi);
166	struct free_nid *fnid;
167
168	spin_lock(&nm_i->nid_list_lock);
169	if (nm_i->nid_cnt[FREE_NID] <= 0) {
170		spin_unlock(&nm_i->nid_list_lock);
171		return;
172	}
173	fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
 
174	*nid = fnid->nid;
175	spin_unlock(&nm_i->nid_list_lock);
176}
177
178/*
179 * inline functions
180 */
181static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
182{
183	struct f2fs_nm_info *nm_i = NM_I(sbi);
184
185#ifdef CONFIG_F2FS_CHECK_FS
186	if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
187						nm_i->bitmap_size))
188		f2fs_bug_on(sbi, 1);
189#endif
190	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
191}
192
193static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
194{
195	struct f2fs_nm_info *nm_i = NM_I(sbi);
196	pgoff_t block_off;
197	pgoff_t block_addr;
 
198
199	/*
200	 * block_off = segment_off * 512 + off_in_segment
201	 * OLD = (segment_off * 512) * 2 + off_in_segment
202	 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
203	 */
204	block_off = NAT_BLOCK_OFFSET(start);
 
205
206	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
207		(block_off << 1) -
208		(block_off & (sbi->blocks_per_seg - 1)));
209
210	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
211		block_addr += sbi->blocks_per_seg;
212
213	return block_addr;
214}
215
216static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
217						pgoff_t block_addr)
218{
219	struct f2fs_nm_info *nm_i = NM_I(sbi);
220
221	block_addr -= nm_i->nat_blkaddr;
222	block_addr ^= 1 << sbi->log_blocks_per_seg;
 
 
 
 
223	return block_addr + nm_i->nat_blkaddr;
224}
225
226static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
227{
228	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
229
230	f2fs_change_bit(block_off, nm_i->nat_bitmap);
231#ifdef CONFIG_F2FS_CHECK_FS
232	f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
233#endif
234}
235
236static inline nid_t ino_of_node(struct page *node_page)
237{
238	struct f2fs_node *rn = F2FS_NODE(node_page);
239	return le32_to_cpu(rn->footer.ino);
240}
241
242static inline nid_t nid_of_node(struct page *node_page)
243{
244	struct f2fs_node *rn = F2FS_NODE(node_page);
245	return le32_to_cpu(rn->footer.nid);
246}
247
248static inline unsigned int ofs_of_node(struct page *node_page)
249{
250	struct f2fs_node *rn = F2FS_NODE(node_page);
251	unsigned flag = le32_to_cpu(rn->footer.flag);
252	return flag >> OFFSET_BIT_SHIFT;
253}
254
255static inline __u64 cpver_of_node(struct page *node_page)
256{
257	struct f2fs_node *rn = F2FS_NODE(node_page);
258	return le64_to_cpu(rn->footer.cp_ver);
259}
260
261static inline block_t next_blkaddr_of_node(struct page *node_page)
262{
263	struct f2fs_node *rn = F2FS_NODE(node_page);
264	return le32_to_cpu(rn->footer.next_blkaddr);
265}
266
267static inline void fill_node_footer(struct page *page, nid_t nid,
268				nid_t ino, unsigned int ofs, bool reset)
269{
270	struct f2fs_node *rn = F2FS_NODE(page);
271	unsigned int old_flag = 0;
272
273	if (reset)
274		memset(rn, 0, sizeof(*rn));
275	else
276		old_flag = le32_to_cpu(rn->footer.flag);
277
278	rn->footer.nid = cpu_to_le32(nid);
279	rn->footer.ino = cpu_to_le32(ino);
280
281	/* should remain old flag bits such as COLD_BIT_SHIFT */
282	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
283					(old_flag & OFFSET_BIT_MASK));
284}
285
286static inline void copy_node_footer(struct page *dst, struct page *src)
287{
288	struct f2fs_node *src_rn = F2FS_NODE(src);
289	struct f2fs_node *dst_rn = F2FS_NODE(dst);
290	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
291}
292
293static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
294{
295	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
296	struct f2fs_node *rn = F2FS_NODE(page);
297	__u64 cp_ver = cur_cp_version(ckpt);
298
299	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
300		cp_ver |= (cur_cp_crc(ckpt) << 32);
301
 
 
 
 
 
302	rn->footer.cp_ver = cpu_to_le64(cp_ver);
303	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
304}
305
306static inline bool is_recoverable_dnode(struct page *page)
307{
308	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
 
309	__u64 cp_ver = cur_cp_version(ckpt);
310
311	/* Don't care crc part, if fsck.f2fs sets it. */
312	if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
313		return (cp_ver << 32) == (cpver_of_node(page) << 32);
314
315	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
316		cp_ver |= (cur_cp_crc(ckpt) << 32);
317
318	return cp_ver == cpver_of_node(page);
319}
320
321/*
322 * f2fs assigns the following node offsets described as (num).
323 * N = NIDS_PER_BLOCK
324 *
325 *  Inode block (0)
326 *    |- direct node (1)
327 *    |- direct node (2)
328 *    |- indirect node (3)
329 *    |            `- direct node (4 => 4 + N - 1)
330 *    |- indirect node (4 + N)
331 *    |            `- direct node (5 + N => 5 + 2N - 1)
332 *    `- double indirect node (5 + 2N)
333 *                 `- indirect node (6 + 2N)
334 *                       `- direct node
335 *                 ......
336 *                 `- indirect node ((6 + 2N) + x(N + 1))
337 *                       `- direct node
338 *                 ......
339 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
340 *                       `- direct node
341 */
342static inline bool IS_DNODE(struct page *node_page)
343{
344	unsigned int ofs = ofs_of_node(node_page);
345
346	if (f2fs_has_xattr_block(ofs))
347		return true;
348
349	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
350			ofs == 5 + 2 * NIDS_PER_BLOCK)
351		return false;
352	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
353		ofs -= 6 + 2 * NIDS_PER_BLOCK;
354		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
355			return false;
356	}
357	return true;
358}
359
360static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
361{
362	struct f2fs_node *rn = F2FS_NODE(p);
363
364	f2fs_wait_on_page_writeback(p, NODE, true, true);
365
366	if (i)
367		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
368	else
369		rn->in.nid[off] = cpu_to_le32(nid);
370	return set_page_dirty(p);
371}
372
373static inline nid_t get_nid(struct page *p, int off, bool i)
374{
375	struct f2fs_node *rn = F2FS_NODE(p);
376
377	if (i)
378		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
379	return le32_to_cpu(rn->in.nid[off]);
380}
381
382/*
383 * Coldness identification:
384 *  - Mark cold files in f2fs_inode_info
385 *  - Mark cold node blocks in their node footer
386 *  - Mark cold data pages in page cache
387 */
388static inline int is_cold_data(struct page *page)
389{
390	return PageChecked(page);
391}
392
393static inline void set_cold_data(struct page *page)
394{
395	SetPageChecked(page);
396}
397
398static inline void clear_cold_data(struct page *page)
399{
400	ClearPageChecked(page);
401}
402
403static inline int is_node(struct page *page, int type)
404{
405	struct f2fs_node *rn = F2FS_NODE(page);
406	return le32_to_cpu(rn->footer.flag) & (1 << type);
407}
408
409#define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
410#define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
411#define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
412
413static inline int is_inline_node(struct page *page)
414{
415	return PageChecked(page);
416}
417
418static inline void set_inline_node(struct page *page)
419{
420	SetPageChecked(page);
421}
422
423static inline void clear_inline_node(struct page *page)
424{
425	ClearPageChecked(page);
426}
427
428static inline void set_cold_node(struct page *page, bool is_dir)
429{
430	struct f2fs_node *rn = F2FS_NODE(page);
431	unsigned int flag = le32_to_cpu(rn->footer.flag);
432
433	if (is_dir)
434		flag &= ~(0x1 << COLD_BIT_SHIFT);
435	else
436		flag |= (0x1 << COLD_BIT_SHIFT);
437	rn->footer.flag = cpu_to_le32(flag);
438}
439
440static inline void set_mark(struct page *page, int mark, int type)
441{
442	struct f2fs_node *rn = F2FS_NODE(page);
443	unsigned int flag = le32_to_cpu(rn->footer.flag);
444	if (mark)
445		flag |= (0x1 << type);
446	else
447		flag &= ~(0x1 << type);
448	rn->footer.flag = cpu_to_le32(flag);
449
450#ifdef CONFIG_F2FS_CHECK_FS
451	f2fs_inode_chksum_set(F2FS_P_SB(page), page);
452#endif
453}
454#define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
455#define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)
v4.10.11
 
  1/*
  2 * fs/f2fs/node.h
  3 *
  4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5 *             http://www.samsung.com/
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11/* start node id of a node block dedicated to the given node id */
 12#define	START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
 13
 14/* node block offset on the NAT area dedicated to the given start node id */
 15#define	NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
 16
 17/* # of pages to perform synchronous readahead before building free nids */
 18#define FREE_NID_PAGES	8
 19#define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
 20
 21#define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
 22
 23/* maximum readahead size for node during getting data blocks */
 24#define MAX_RA_NODE		128
 25
 26/* control the memory footprint threshold (10MB per 1GB ram) */
 27#define DEF_RAM_THRESHOLD	1
 28
 29/* control dirty nats ratio threshold (default: 10% over max nid count) */
 30#define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
 31/* control total # of nats */
 32#define DEF_NAT_CACHE_THRESHOLD			100000
 33
 34/* vector size for gang look-up from nat cache that consists of radix tree */
 35#define NATVEC_SIZE	64
 36#define SETVEC_SIZE	32
 37
 38/* return value for read_node_page */
 39#define LOCKED_PAGE	1
 40
 41/* For flag in struct node_info */
 42enum {
 43	IS_CHECKPOINTED,	/* is it checkpointed before? */
 44	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
 45	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
 46	IS_DIRTY,		/* this nat entry is dirty? */
 
 47};
 48
 49/*
 50 * For node information
 51 */
 52struct node_info {
 53	nid_t nid;		/* node id */
 54	nid_t ino;		/* inode number of the node's owner */
 55	block_t	blk_addr;	/* block address of the node */
 56	unsigned char version;	/* version of the node */
 57	unsigned char flag;	/* for node information bits */
 58};
 59
 60struct nat_entry {
 61	struct list_head list;	/* for clean or dirty nat list */
 62	struct node_info ni;	/* in-memory node information */
 63};
 64
 65#define nat_get_nid(nat)		(nat->ni.nid)
 66#define nat_set_nid(nat, n)		(nat->ni.nid = n)
 67#define nat_get_blkaddr(nat)		(nat->ni.blk_addr)
 68#define nat_set_blkaddr(nat, b)		(nat->ni.blk_addr = b)
 69#define nat_get_ino(nat)		(nat->ni.ino)
 70#define nat_set_ino(nat, i)		(nat->ni.ino = i)
 71#define nat_get_version(nat)		(nat->ni.version)
 72#define nat_set_version(nat, v)		(nat->ni.version = v)
 73
 74#define inc_node_version(version)	(++version)
 75
 76static inline void copy_node_info(struct node_info *dst,
 77						struct node_info *src)
 78{
 79	dst->nid = src->nid;
 80	dst->ino = src->ino;
 81	dst->blk_addr = src->blk_addr;
 82	dst->version = src->version;
 83	/* should not copy flag here */
 84}
 85
 86static inline void set_nat_flag(struct nat_entry *ne,
 87				unsigned int type, bool set)
 88{
 89	unsigned char mask = 0x01 << type;
 90	if (set)
 91		ne->ni.flag |= mask;
 92	else
 93		ne->ni.flag &= ~mask;
 94}
 95
 96static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
 97{
 98	unsigned char mask = 0x01 << type;
 99	return ne->ni.flag & mask;
100}
101
102static inline void nat_reset_flag(struct nat_entry *ne)
103{
104	/* these states can be set only after checkpoint was done */
105	set_nat_flag(ne, IS_CHECKPOINTED, true);
106	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
107	set_nat_flag(ne, HAS_LAST_FSYNC, true);
108}
109
110static inline void node_info_from_raw_nat(struct node_info *ni,
111						struct f2fs_nat_entry *raw_ne)
112{
113	ni->ino = le32_to_cpu(raw_ne->ino);
114	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
115	ni->version = raw_ne->version;
116}
117
118static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
119						struct node_info *ni)
120{
121	raw_ne->ino = cpu_to_le32(ni->ino);
122	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
123	raw_ne->version = ni->version;
124}
125
126static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
127{
128	return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
129					NM_I(sbi)->dirty_nats_ratio / 100;
130}
131
132static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
133{
134	return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
135}
136
 
 
 
 
 
137enum mem_type {
138	FREE_NIDS,	/* indicates the free nid list */
139	NAT_ENTRIES,	/* indicates the cached nat entry */
140	DIRTY_DENTS,	/* indicates dirty dentry pages */
141	INO_ENTRIES,	/* indicates inode entries */
142	EXTENT_CACHE,	/* indicates extent cache */
 
143	BASE_CHECK,	/* check kernel status */
144};
145
146struct nat_entry_set {
147	struct list_head set_list;	/* link with other nat sets */
148	struct list_head entry_list;	/* link with dirty nat entries */
149	nid_t set;			/* set number*/
150	unsigned int entry_cnt;		/* the # of nat entries in set */
151};
152
153/*
154 * For free nid mangement
155 */
156enum nid_state {
157	NID_NEW,	/* newly added to free nid list */
158	NID_ALLOC	/* it is allocated */
159};
160
161struct free_nid {
162	struct list_head list;	/* for free node id list */
163	nid_t nid;		/* node id */
164	int state;		/* in use or not: NID_NEW or NID_ALLOC */
165};
166
167static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
168{
169	struct f2fs_nm_info *nm_i = NM_I(sbi);
170	struct free_nid *fnid;
171
172	spin_lock(&nm_i->nid_list_lock);
173	if (nm_i->nid_cnt[FREE_NID_LIST] <= 0) {
174		spin_unlock(&nm_i->nid_list_lock);
175		return;
176	}
177	fnid = list_entry(nm_i->nid_list[FREE_NID_LIST].next,
178						struct free_nid, list);
179	*nid = fnid->nid;
180	spin_unlock(&nm_i->nid_list_lock);
181}
182
183/*
184 * inline functions
185 */
186static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
187{
188	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
 
 
 
 
 
189	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
190}
191
192static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
193{
194	struct f2fs_nm_info *nm_i = NM_I(sbi);
195	pgoff_t block_off;
196	pgoff_t block_addr;
197	int seg_off;
198
 
 
 
 
 
199	block_off = NAT_BLOCK_OFFSET(start);
200	seg_off = block_off >> sbi->log_blocks_per_seg;
201
202	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
203		(seg_off << sbi->log_blocks_per_seg << 1) +
204		(block_off & (sbi->blocks_per_seg - 1)));
205
206	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
207		block_addr += sbi->blocks_per_seg;
208
209	return block_addr;
210}
211
212static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
213						pgoff_t block_addr)
214{
215	struct f2fs_nm_info *nm_i = NM_I(sbi);
216
217	block_addr -= nm_i->nat_blkaddr;
218	if ((block_addr >> sbi->log_blocks_per_seg) % 2)
219		block_addr -= sbi->blocks_per_seg;
220	else
221		block_addr += sbi->blocks_per_seg;
222
223	return block_addr + nm_i->nat_blkaddr;
224}
225
226static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
227{
228	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
229
230	f2fs_change_bit(block_off, nm_i->nat_bitmap);
 
 
 
231}
232
233static inline nid_t ino_of_node(struct page *node_page)
234{
235	struct f2fs_node *rn = F2FS_NODE(node_page);
236	return le32_to_cpu(rn->footer.ino);
237}
238
239static inline nid_t nid_of_node(struct page *node_page)
240{
241	struct f2fs_node *rn = F2FS_NODE(node_page);
242	return le32_to_cpu(rn->footer.nid);
243}
244
245static inline unsigned int ofs_of_node(struct page *node_page)
246{
247	struct f2fs_node *rn = F2FS_NODE(node_page);
248	unsigned flag = le32_to_cpu(rn->footer.flag);
249	return flag >> OFFSET_BIT_SHIFT;
250}
251
252static inline __u64 cpver_of_node(struct page *node_page)
253{
254	struct f2fs_node *rn = F2FS_NODE(node_page);
255	return le64_to_cpu(rn->footer.cp_ver);
256}
257
258static inline block_t next_blkaddr_of_node(struct page *node_page)
259{
260	struct f2fs_node *rn = F2FS_NODE(node_page);
261	return le32_to_cpu(rn->footer.next_blkaddr);
262}
263
264static inline void fill_node_footer(struct page *page, nid_t nid,
265				nid_t ino, unsigned int ofs, bool reset)
266{
267	struct f2fs_node *rn = F2FS_NODE(page);
268	unsigned int old_flag = 0;
269
270	if (reset)
271		memset(rn, 0, sizeof(*rn));
272	else
273		old_flag = le32_to_cpu(rn->footer.flag);
274
275	rn->footer.nid = cpu_to_le32(nid);
276	rn->footer.ino = cpu_to_le32(ino);
277
278	/* should remain old flag bits such as COLD_BIT_SHIFT */
279	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
280					(old_flag & OFFSET_BIT_MASK));
281}
282
283static inline void copy_node_footer(struct page *dst, struct page *src)
284{
285	struct f2fs_node *src_rn = F2FS_NODE(src);
286	struct f2fs_node *dst_rn = F2FS_NODE(dst);
287	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
288}
289
290static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
291{
292	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
293	struct f2fs_node *rn = F2FS_NODE(page);
294	size_t crc_offset = le32_to_cpu(ckpt->checksum_offset);
295	__u64 cp_ver = le64_to_cpu(ckpt->checkpoint_ver);
 
 
296
297	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) {
298		__u64 crc = le32_to_cpu(*((__le32 *)
299				((unsigned char *)ckpt + crc_offset)));
300		cp_ver |= (crc << 32);
301	}
302	rn->footer.cp_ver = cpu_to_le64(cp_ver);
303	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
304}
305
306static inline bool is_recoverable_dnode(struct page *page)
307{
308	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
309	size_t crc_offset = le32_to_cpu(ckpt->checksum_offset);
310	__u64 cp_ver = cur_cp_version(ckpt);
311
312	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) {
313		__u64 crc = le32_to_cpu(*((__le32 *)
314				((unsigned char *)ckpt + crc_offset)));
315		cp_ver |= (crc << 32);
316	}
 
 
317	return cp_ver == cpver_of_node(page);
318}
319
320/*
321 * f2fs assigns the following node offsets described as (num).
322 * N = NIDS_PER_BLOCK
323 *
324 *  Inode block (0)
325 *    |- direct node (1)
326 *    |- direct node (2)
327 *    |- indirect node (3)
328 *    |            `- direct node (4 => 4 + N - 1)
329 *    |- indirect node (4 + N)
330 *    |            `- direct node (5 + N => 5 + 2N - 1)
331 *    `- double indirect node (5 + 2N)
332 *                 `- indirect node (6 + 2N)
333 *                       `- direct node
334 *                 ......
335 *                 `- indirect node ((6 + 2N) + x(N + 1))
336 *                       `- direct node
337 *                 ......
338 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
339 *                       `- direct node
340 */
341static inline bool IS_DNODE(struct page *node_page)
342{
343	unsigned int ofs = ofs_of_node(node_page);
344
345	if (f2fs_has_xattr_block(ofs))
346		return false;
347
348	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
349			ofs == 5 + 2 * NIDS_PER_BLOCK)
350		return false;
351	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
352		ofs -= 6 + 2 * NIDS_PER_BLOCK;
353		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
354			return false;
355	}
356	return true;
357}
358
359static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
360{
361	struct f2fs_node *rn = F2FS_NODE(p);
362
363	f2fs_wait_on_page_writeback(p, NODE, true);
364
365	if (i)
366		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
367	else
368		rn->in.nid[off] = cpu_to_le32(nid);
369	return set_page_dirty(p);
370}
371
372static inline nid_t get_nid(struct page *p, int off, bool i)
373{
374	struct f2fs_node *rn = F2FS_NODE(p);
375
376	if (i)
377		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
378	return le32_to_cpu(rn->in.nid[off]);
379}
380
381/*
382 * Coldness identification:
383 *  - Mark cold files in f2fs_inode_info
384 *  - Mark cold node blocks in their node footer
385 *  - Mark cold data pages in page cache
386 */
387static inline int is_cold_data(struct page *page)
388{
389	return PageChecked(page);
390}
391
392static inline void set_cold_data(struct page *page)
393{
394	SetPageChecked(page);
395}
396
397static inline void clear_cold_data(struct page *page)
398{
399	ClearPageChecked(page);
400}
401
402static inline int is_node(struct page *page, int type)
403{
404	struct f2fs_node *rn = F2FS_NODE(page);
405	return le32_to_cpu(rn->footer.flag) & (1 << type);
406}
407
408#define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
409#define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
410#define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
411
412static inline int is_inline_node(struct page *page)
413{
414	return PageChecked(page);
415}
416
417static inline void set_inline_node(struct page *page)
418{
419	SetPageChecked(page);
420}
421
422static inline void clear_inline_node(struct page *page)
423{
424	ClearPageChecked(page);
425}
426
427static inline void set_cold_node(struct inode *inode, struct page *page)
428{
429	struct f2fs_node *rn = F2FS_NODE(page);
430	unsigned int flag = le32_to_cpu(rn->footer.flag);
431
432	if (S_ISDIR(inode->i_mode))
433		flag &= ~(0x1 << COLD_BIT_SHIFT);
434	else
435		flag |= (0x1 << COLD_BIT_SHIFT);
436	rn->footer.flag = cpu_to_le32(flag);
437}
438
439static inline void set_mark(struct page *page, int mark, int type)
440{
441	struct f2fs_node *rn = F2FS_NODE(page);
442	unsigned int flag = le32_to_cpu(rn->footer.flag);
443	if (mark)
444		flag |= (0x1 << type);
445	else
446		flag &= ~(0x1 << type);
447	rn->footer.flag = cpu_to_le32(flag);
 
 
 
 
448}
449#define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
450#define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)