Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/signal.h>
   8#include <linux/pagemap.h>
   9#include <linux/writeback.h>
  10#include <linux/blkdev.h>
  11#include <linux/sort.h>
  12#include <linux/rcupdate.h>
  13#include <linux/kthread.h>
  14#include <linux/slab.h>
  15#include <linux/ratelimit.h>
  16#include <linux/percpu_counter.h>
  17#include <linux/lockdep.h>
  18#include <linux/crc32c.h>
  19#include "misc.h"
  20#include "tree-log.h"
 
  21#include "disk-io.h"
  22#include "print-tree.h"
  23#include "volumes.h"
  24#include "raid56.h"
  25#include "locking.h"
  26#include "free-space-cache.h"
  27#include "free-space-tree.h"
  28#include "sysfs.h"
  29#include "qgroup.h"
  30#include "ref-verify.h"
  31#include "space-info.h"
  32#include "block-rsv.h"
  33#include "delalloc-space.h"
  34#include "block-group.h"
 
 
 
 
 
 
 
 
  35
  36#undef SCRAMBLE_DELAYED_REFS
  37
  38
  39static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  40			       struct btrfs_delayed_ref_node *node, u64 parent,
  41			       u64 root_objectid, u64 owner_objectid,
  42			       u64 owner_offset, int refs_to_drop,
  43			       struct btrfs_delayed_extent_op *extra_op);
  44static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  45				    struct extent_buffer *leaf,
  46				    struct btrfs_extent_item *ei);
  47static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  48				      u64 parent, u64 root_objectid,
  49				      u64 flags, u64 owner, u64 offset,
  50				      struct btrfs_key *ins, int ref_mod);
  51static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  52				     struct btrfs_delayed_ref_node *node,
  53				     struct btrfs_delayed_extent_op *extent_op);
  54static int find_next_key(struct btrfs_path *path, int level,
  55			 struct btrfs_key *key);
  56
  57static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
  58{
  59	return (cache->flags & bits) == bits;
  60}
  61
  62int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
  63			      u64 start, u64 num_bytes)
  64{
  65	u64 end = start + num_bytes - 1;
  66	set_extent_bits(&fs_info->freed_extents[0],
  67			start, end, EXTENT_UPTODATE);
  68	set_extent_bits(&fs_info->freed_extents[1],
  69			start, end, EXTENT_UPTODATE);
  70	return 0;
  71}
  72
  73void btrfs_free_excluded_extents(struct btrfs_block_group_cache *cache)
  74{
  75	struct btrfs_fs_info *fs_info = cache->fs_info;
  76	u64 start, end;
  77
  78	start = cache->key.objectid;
  79	end = start + cache->key.offset - 1;
  80
  81	clear_extent_bits(&fs_info->freed_extents[0],
  82			  start, end, EXTENT_UPTODATE);
  83	clear_extent_bits(&fs_info->freed_extents[1],
  84			  start, end, EXTENT_UPTODATE);
  85}
  86
  87static u64 generic_ref_to_space_flags(struct btrfs_ref *ref)
  88{
  89	if (ref->type == BTRFS_REF_METADATA) {
  90		if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
  91			return BTRFS_BLOCK_GROUP_SYSTEM;
  92		else
  93			return BTRFS_BLOCK_GROUP_METADATA;
  94	}
  95	return BTRFS_BLOCK_GROUP_DATA;
  96}
  97
  98static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
  99			     struct btrfs_ref *ref)
 100{
 101	struct btrfs_space_info *space_info;
 102	u64 flags = generic_ref_to_space_flags(ref);
 103
 104	space_info = btrfs_find_space_info(fs_info, flags);
 105	ASSERT(space_info);
 106	percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len,
 107		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
 108}
 109
 110static void sub_pinned_bytes(struct btrfs_fs_info *fs_info,
 111			     struct btrfs_ref *ref)
 112{
 113	struct btrfs_space_info *space_info;
 114	u64 flags = generic_ref_to_space_flags(ref);
 115
 116	space_info = btrfs_find_space_info(fs_info, flags);
 117	ASSERT(space_info);
 118	percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len,
 119		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
 120}
 121
 122/* simple helper to search for an existing data extent at a given offset */
 123int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
 124{
 
 125	int ret;
 126	struct btrfs_key key;
 127	struct btrfs_path *path;
 128
 129	path = btrfs_alloc_path();
 130	if (!path)
 131		return -ENOMEM;
 132
 133	key.objectid = start;
 134	key.offset = len;
 135	key.type = BTRFS_EXTENT_ITEM_KEY;
 136	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
 137	btrfs_free_path(path);
 138	return ret;
 139}
 140
 141/*
 142 * helper function to lookup reference count and flags of a tree block.
 143 *
 144 * the head node for delayed ref is used to store the sum of all the
 145 * reference count modifications queued up in the rbtree. the head
 146 * node may also store the extent flags to set. This way you can check
 147 * to see what the reference count and extent flags would be if all of
 148 * the delayed refs are not processed.
 149 */
 150int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
 151			     struct btrfs_fs_info *fs_info, u64 bytenr,
 152			     u64 offset, int metadata, u64 *refs, u64 *flags)
 
 153{
 
 154	struct btrfs_delayed_ref_head *head;
 155	struct btrfs_delayed_ref_root *delayed_refs;
 156	struct btrfs_path *path;
 157	struct btrfs_extent_item *ei;
 158	struct extent_buffer *leaf;
 159	struct btrfs_key key;
 160	u32 item_size;
 161	u64 num_refs;
 162	u64 extent_flags;
 
 163	int ret;
 164
 165	/*
 166	 * If we don't have skinny metadata, don't bother doing anything
 167	 * different
 168	 */
 169	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
 170		offset = fs_info->nodesize;
 171		metadata = 0;
 172	}
 173
 174	path = btrfs_alloc_path();
 175	if (!path)
 176		return -ENOMEM;
 177
 178	if (!trans) {
 179		path->skip_locking = 1;
 180		path->search_commit_root = 1;
 181	}
 182
 183search_again:
 184	key.objectid = bytenr;
 185	key.offset = offset;
 186	if (metadata)
 187		key.type = BTRFS_METADATA_ITEM_KEY;
 188	else
 189		key.type = BTRFS_EXTENT_ITEM_KEY;
 190
 191	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
 
 192	if (ret < 0)
 193		goto out_free;
 194
 195	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
 196		if (path->slots[0]) {
 197			path->slots[0]--;
 198			btrfs_item_key_to_cpu(path->nodes[0], &key,
 199					      path->slots[0]);
 200			if (key.objectid == bytenr &&
 201			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 202			    key.offset == fs_info->nodesize)
 203				ret = 0;
 204		}
 205	}
 206
 207	if (ret == 0) {
 208		leaf = path->nodes[0];
 209		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 210		if (item_size >= sizeof(*ei)) {
 211			ei = btrfs_item_ptr(leaf, path->slots[0],
 212					    struct btrfs_extent_item);
 213			num_refs = btrfs_extent_refs(leaf, ei);
 214			extent_flags = btrfs_extent_flags(leaf, ei);
 215		} else {
 216			ret = -EINVAL;
 217			btrfs_print_v0_err(fs_info);
 218			if (trans)
 219				btrfs_abort_transaction(trans, ret);
 220			else
 221				btrfs_handle_fs_error(fs_info, ret, NULL);
 222
 
 
 
 
 
 
 223			goto out_free;
 224		}
 225
 226		BUG_ON(num_refs == 0);
 
 
 
 
 
 
 
 
 
 
 
 227	} else {
 228		num_refs = 0;
 229		extent_flags = 0;
 230		ret = 0;
 231	}
 232
 233	if (!trans)
 234		goto out;
 235
 236	delayed_refs = &trans->transaction->delayed_refs;
 237	spin_lock(&delayed_refs->lock);
 238	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
 239	if (head) {
 240		if (!mutex_trylock(&head->mutex)) {
 241			refcount_inc(&head->refs);
 242			spin_unlock(&delayed_refs->lock);
 243
 244			btrfs_release_path(path);
 245
 246			/*
 247			 * Mutex was contended, block until it's released and try
 248			 * again
 249			 */
 250			mutex_lock(&head->mutex);
 251			mutex_unlock(&head->mutex);
 252			btrfs_put_delayed_ref_head(head);
 253			goto search_again;
 254		}
 255		spin_lock(&head->lock);
 256		if (head->extent_op && head->extent_op->update_flags)
 257			extent_flags |= head->extent_op->flags_to_set;
 258		else
 259			BUG_ON(num_refs == 0);
 260
 261		num_refs += head->ref_mod;
 262		spin_unlock(&head->lock);
 263		mutex_unlock(&head->mutex);
 264	}
 265	spin_unlock(&delayed_refs->lock);
 266out:
 267	WARN_ON(num_refs == 0);
 268	if (refs)
 269		*refs = num_refs;
 270	if (flags)
 271		*flags = extent_flags;
 
 
 272out_free:
 273	btrfs_free_path(path);
 274	return ret;
 275}
 276
 277/*
 278 * Back reference rules.  Back refs have three main goals:
 279 *
 280 * 1) differentiate between all holders of references to an extent so that
 281 *    when a reference is dropped we can make sure it was a valid reference
 282 *    before freeing the extent.
 283 *
 284 * 2) Provide enough information to quickly find the holders of an extent
 285 *    if we notice a given block is corrupted or bad.
 286 *
 287 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
 288 *    maintenance.  This is actually the same as #2, but with a slightly
 289 *    different use case.
 290 *
 291 * There are two kinds of back refs. The implicit back refs is optimized
 292 * for pointers in non-shared tree blocks. For a given pointer in a block,
 293 * back refs of this kind provide information about the block's owner tree
 294 * and the pointer's key. These information allow us to find the block by
 295 * b-tree searching. The full back refs is for pointers in tree blocks not
 296 * referenced by their owner trees. The location of tree block is recorded
 297 * in the back refs. Actually the full back refs is generic, and can be
 298 * used in all cases the implicit back refs is used. The major shortcoming
 299 * of the full back refs is its overhead. Every time a tree block gets
 300 * COWed, we have to update back refs entry for all pointers in it.
 301 *
 302 * For a newly allocated tree block, we use implicit back refs for
 303 * pointers in it. This means most tree related operations only involve
 304 * implicit back refs. For a tree block created in old transaction, the
 305 * only way to drop a reference to it is COW it. So we can detect the
 306 * event that tree block loses its owner tree's reference and do the
 307 * back refs conversion.
 308 *
 309 * When a tree block is COWed through a tree, there are four cases:
 310 *
 311 * The reference count of the block is one and the tree is the block's
 312 * owner tree. Nothing to do in this case.
 313 *
 314 * The reference count of the block is one and the tree is not the
 315 * block's owner tree. In this case, full back refs is used for pointers
 316 * in the block. Remove these full back refs, add implicit back refs for
 317 * every pointers in the new block.
 318 *
 319 * The reference count of the block is greater than one and the tree is
 320 * the block's owner tree. In this case, implicit back refs is used for
 321 * pointers in the block. Add full back refs for every pointers in the
 322 * block, increase lower level extents' reference counts. The original
 323 * implicit back refs are entailed to the new block.
 324 *
 325 * The reference count of the block is greater than one and the tree is
 326 * not the block's owner tree. Add implicit back refs for every pointer in
 327 * the new block, increase lower level extents' reference count.
 328 *
 329 * Back Reference Key composing:
 330 *
 331 * The key objectid corresponds to the first byte in the extent,
 332 * The key type is used to differentiate between types of back refs.
 333 * There are different meanings of the key offset for different types
 334 * of back refs.
 335 *
 336 * File extents can be referenced by:
 337 *
 338 * - multiple snapshots, subvolumes, or different generations in one subvol
 339 * - different files inside a single subvolume
 340 * - different offsets inside a file (bookend extents in file.c)
 341 *
 342 * The extent ref structure for the implicit back refs has fields for:
 343 *
 344 * - Objectid of the subvolume root
 345 * - objectid of the file holding the reference
 346 * - original offset in the file
 347 * - how many bookend extents
 348 *
 349 * The key offset for the implicit back refs is hash of the first
 350 * three fields.
 351 *
 352 * The extent ref structure for the full back refs has field for:
 353 *
 354 * - number of pointers in the tree leaf
 355 *
 356 * The key offset for the implicit back refs is the first byte of
 357 * the tree leaf
 358 *
 359 * When a file extent is allocated, The implicit back refs is used.
 360 * the fields are filled in:
 361 *
 362 *     (root_key.objectid, inode objectid, offset in file, 1)
 363 *
 364 * When a file extent is removed file truncation, we find the
 365 * corresponding implicit back refs and check the following fields:
 366 *
 367 *     (btrfs_header_owner(leaf), inode objectid, offset in file)
 368 *
 369 * Btree extents can be referenced by:
 370 *
 371 * - Different subvolumes
 372 *
 373 * Both the implicit back refs and the full back refs for tree blocks
 374 * only consist of key. The key offset for the implicit back refs is
 375 * objectid of block's owner tree. The key offset for the full back refs
 376 * is the first byte of parent block.
 377 *
 378 * When implicit back refs is used, information about the lowest key and
 379 * level of the tree block are required. These information are stored in
 380 * tree block info structure.
 381 */
 382
 383/*
 384 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
 385 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
 386 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
 387 */
 388int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
 389				     struct btrfs_extent_inline_ref *iref,
 390				     enum btrfs_inline_ref_type is_data)
 391{
 
 392	int type = btrfs_extent_inline_ref_type(eb, iref);
 393	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
 394
 
 
 
 
 
 395	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
 396	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
 397	    type == BTRFS_SHARED_DATA_REF_KEY ||
 398	    type == BTRFS_EXTENT_DATA_REF_KEY) {
 399		if (is_data == BTRFS_REF_TYPE_BLOCK) {
 400			if (type == BTRFS_TREE_BLOCK_REF_KEY)
 401				return type;
 402			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
 403				ASSERT(eb->fs_info);
 404				/*
 405				 * Every shared one has parent tree
 406				 * block, which must be aligned to
 407				 * nodesize.
 408				 */
 409				if (offset &&
 410				    IS_ALIGNED(offset, eb->fs_info->nodesize))
 411					return type;
 412			}
 413		} else if (is_data == BTRFS_REF_TYPE_DATA) {
 414			if (type == BTRFS_EXTENT_DATA_REF_KEY)
 415				return type;
 416			if (type == BTRFS_SHARED_DATA_REF_KEY) {
 417				ASSERT(eb->fs_info);
 418				/*
 419				 * Every shared one has parent tree
 420				 * block, which must be aligned to
 421				 * nodesize.
 422				 */
 423				if (offset &&
 424				    IS_ALIGNED(offset, eb->fs_info->nodesize))
 425					return type;
 426			}
 427		} else {
 428			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
 429			return type;
 430		}
 431	}
 432
 433	btrfs_print_leaf((struct extent_buffer *)eb);
 434	btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
 435		  eb->start, type);
 436	WARN_ON(1);
 
 
 
 
 437
 438	return BTRFS_REF_TYPE_INVALID;
 439}
 440
 441u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
 442{
 443	u32 high_crc = ~(u32)0;
 444	u32 low_crc = ~(u32)0;
 445	__le64 lenum;
 446
 447	lenum = cpu_to_le64(root_objectid);
 448	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
 449	lenum = cpu_to_le64(owner);
 450	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
 451	lenum = cpu_to_le64(offset);
 452	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
 453
 454	return ((u64)high_crc << 31) ^ (u64)low_crc;
 455}
 456
 457static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
 458				     struct btrfs_extent_data_ref *ref)
 459{
 460	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
 461				    btrfs_extent_data_ref_objectid(leaf, ref),
 462				    btrfs_extent_data_ref_offset(leaf, ref));
 463}
 464
 465static int match_extent_data_ref(struct extent_buffer *leaf,
 466				 struct btrfs_extent_data_ref *ref,
 467				 u64 root_objectid, u64 owner, u64 offset)
 468{
 469	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
 470	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
 471	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
 472		return 0;
 473	return 1;
 474}
 475
 476static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
 477					   struct btrfs_path *path,
 478					   u64 bytenr, u64 parent,
 479					   u64 root_objectid,
 480					   u64 owner, u64 offset)
 481{
 482	struct btrfs_root *root = trans->fs_info->extent_root;
 483	struct btrfs_key key;
 484	struct btrfs_extent_data_ref *ref;
 485	struct extent_buffer *leaf;
 486	u32 nritems;
 487	int ret;
 488	int recow;
 489	int err = -ENOENT;
 490
 491	key.objectid = bytenr;
 492	if (parent) {
 493		key.type = BTRFS_SHARED_DATA_REF_KEY;
 494		key.offset = parent;
 495	} else {
 496		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 497		key.offset = hash_extent_data_ref(root_objectid,
 498						  owner, offset);
 499	}
 500again:
 501	recow = 0;
 502	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 503	if (ret < 0) {
 504		err = ret;
 505		goto fail;
 506	}
 507
 508	if (parent) {
 509		if (!ret)
 510			return 0;
 511		goto fail;
 512	}
 513
 
 514	leaf = path->nodes[0];
 515	nritems = btrfs_header_nritems(leaf);
 516	while (1) {
 517		if (path->slots[0] >= nritems) {
 518			ret = btrfs_next_leaf(root, path);
 519			if (ret < 0)
 520				err = ret;
 521			if (ret)
 522				goto fail;
 
 523
 524			leaf = path->nodes[0];
 525			nritems = btrfs_header_nritems(leaf);
 526			recow = 1;
 527		}
 528
 529		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 530		if (key.objectid != bytenr ||
 531		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
 532			goto fail;
 533
 534		ref = btrfs_item_ptr(leaf, path->slots[0],
 535				     struct btrfs_extent_data_ref);
 536
 537		if (match_extent_data_ref(leaf, ref, root_objectid,
 538					  owner, offset)) {
 539			if (recow) {
 540				btrfs_release_path(path);
 541				goto again;
 542			}
 543			err = 0;
 544			break;
 545		}
 546		path->slots[0]++;
 547	}
 548fail:
 549	return err;
 550}
 551
 552static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
 553					   struct btrfs_path *path,
 554					   u64 bytenr, u64 parent,
 555					   u64 root_objectid, u64 owner,
 556					   u64 offset, int refs_to_add)
 557{
 558	struct btrfs_root *root = trans->fs_info->extent_root;
 559	struct btrfs_key key;
 560	struct extent_buffer *leaf;
 
 
 561	u32 size;
 562	u32 num_refs;
 563	int ret;
 564
 565	key.objectid = bytenr;
 566	if (parent) {
 567		key.type = BTRFS_SHARED_DATA_REF_KEY;
 568		key.offset = parent;
 569		size = sizeof(struct btrfs_shared_data_ref);
 570	} else {
 571		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 572		key.offset = hash_extent_data_ref(root_objectid,
 573						  owner, offset);
 574		size = sizeof(struct btrfs_extent_data_ref);
 575	}
 576
 577	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
 578	if (ret && ret != -EEXIST)
 579		goto fail;
 580
 581	leaf = path->nodes[0];
 582	if (parent) {
 583		struct btrfs_shared_data_ref *ref;
 584		ref = btrfs_item_ptr(leaf, path->slots[0],
 585				     struct btrfs_shared_data_ref);
 586		if (ret == 0) {
 587			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
 588		} else {
 589			num_refs = btrfs_shared_data_ref_count(leaf, ref);
 590			num_refs += refs_to_add;
 591			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
 592		}
 593	} else {
 594		struct btrfs_extent_data_ref *ref;
 595		while (ret == -EEXIST) {
 596			ref = btrfs_item_ptr(leaf, path->slots[0],
 597					     struct btrfs_extent_data_ref);
 598			if (match_extent_data_ref(leaf, ref, root_objectid,
 599						  owner, offset))
 600				break;
 601			btrfs_release_path(path);
 602			key.offset++;
 603			ret = btrfs_insert_empty_item(trans, root, path, &key,
 604						      size);
 605			if (ret && ret != -EEXIST)
 606				goto fail;
 607
 608			leaf = path->nodes[0];
 609		}
 610		ref = btrfs_item_ptr(leaf, path->slots[0],
 611				     struct btrfs_extent_data_ref);
 612		if (ret == 0) {
 613			btrfs_set_extent_data_ref_root(leaf, ref,
 614						       root_objectid);
 615			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
 616			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
 617			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
 618		} else {
 619			num_refs = btrfs_extent_data_ref_count(leaf, ref);
 620			num_refs += refs_to_add;
 621			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
 622		}
 623	}
 624	btrfs_mark_buffer_dirty(leaf);
 625	ret = 0;
 626fail:
 627	btrfs_release_path(path);
 628	return ret;
 629}
 630
 631static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
 
 632					   struct btrfs_path *path,
 633					   int refs_to_drop, int *last_ref)
 634{
 635	struct btrfs_key key;
 636	struct btrfs_extent_data_ref *ref1 = NULL;
 637	struct btrfs_shared_data_ref *ref2 = NULL;
 638	struct extent_buffer *leaf;
 639	u32 num_refs = 0;
 640	int ret = 0;
 641
 642	leaf = path->nodes[0];
 643	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 644
 645	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 646		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 647				      struct btrfs_extent_data_ref);
 648		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 649	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 650		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 651				      struct btrfs_shared_data_ref);
 652		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 653	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
 654		btrfs_print_v0_err(trans->fs_info);
 655		btrfs_abort_transaction(trans, -EINVAL);
 656		return -EINVAL;
 657	} else {
 658		BUG();
 
 
 
 
 659	}
 660
 661	BUG_ON(num_refs < refs_to_drop);
 662	num_refs -= refs_to_drop;
 663
 664	if (num_refs == 0) {
 665		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
 666		*last_ref = 1;
 667	} else {
 668		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
 669			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
 670		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
 671			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
 672		btrfs_mark_buffer_dirty(leaf);
 673	}
 674	return ret;
 675}
 676
 677static noinline u32 extent_data_ref_count(struct btrfs_path *path,
 678					  struct btrfs_extent_inline_ref *iref)
 679{
 680	struct btrfs_key key;
 681	struct extent_buffer *leaf;
 682	struct btrfs_extent_data_ref *ref1;
 683	struct btrfs_shared_data_ref *ref2;
 684	u32 num_refs = 0;
 685	int type;
 686
 687	leaf = path->nodes[0];
 688	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 689
 690	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
 691	if (iref) {
 692		/*
 693		 * If type is invalid, we should have bailed out earlier than
 694		 * this call.
 695		 */
 696		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
 697		ASSERT(type != BTRFS_REF_TYPE_INVALID);
 698		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 699			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
 700			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 701		} else {
 702			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
 703			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 704		}
 705	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 706		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 707				      struct btrfs_extent_data_ref);
 708		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 709	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 710		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 711				      struct btrfs_shared_data_ref);
 712		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 713	} else {
 714		WARN_ON(1);
 715	}
 716	return num_refs;
 717}
 718
 719static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
 720					  struct btrfs_path *path,
 721					  u64 bytenr, u64 parent,
 722					  u64 root_objectid)
 723{
 724	struct btrfs_root *root = trans->fs_info->extent_root;
 725	struct btrfs_key key;
 726	int ret;
 727
 728	key.objectid = bytenr;
 729	if (parent) {
 730		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 731		key.offset = parent;
 732	} else {
 733		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 734		key.offset = root_objectid;
 735	}
 736
 737	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 738	if (ret > 0)
 739		ret = -ENOENT;
 740	return ret;
 741}
 742
 743static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
 744					  struct btrfs_path *path,
 745					  u64 bytenr, u64 parent,
 746					  u64 root_objectid)
 747{
 
 748	struct btrfs_key key;
 749	int ret;
 750
 751	key.objectid = bytenr;
 752	if (parent) {
 753		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 754		key.offset = parent;
 755	} else {
 756		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 757		key.offset = root_objectid;
 758	}
 759
 760	ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
 761				      path, &key, 0);
 762	btrfs_release_path(path);
 763	return ret;
 764}
 765
 766static inline int extent_ref_type(u64 parent, u64 owner)
 767{
 768	int type;
 769	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 770		if (parent > 0)
 771			type = BTRFS_SHARED_BLOCK_REF_KEY;
 772		else
 773			type = BTRFS_TREE_BLOCK_REF_KEY;
 774	} else {
 775		if (parent > 0)
 776			type = BTRFS_SHARED_DATA_REF_KEY;
 777		else
 778			type = BTRFS_EXTENT_DATA_REF_KEY;
 779	}
 780	return type;
 781}
 782
 783static int find_next_key(struct btrfs_path *path, int level,
 784			 struct btrfs_key *key)
 785
 786{
 787	for (; level < BTRFS_MAX_LEVEL; level++) {
 788		if (!path->nodes[level])
 789			break;
 790		if (path->slots[level] + 1 >=
 791		    btrfs_header_nritems(path->nodes[level]))
 792			continue;
 793		if (level == 0)
 794			btrfs_item_key_to_cpu(path->nodes[level], key,
 795					      path->slots[level] + 1);
 796		else
 797			btrfs_node_key_to_cpu(path->nodes[level], key,
 798					      path->slots[level] + 1);
 799		return 0;
 800	}
 801	return 1;
 802}
 803
 804/*
 805 * look for inline back ref. if back ref is found, *ref_ret is set
 806 * to the address of inline back ref, and 0 is returned.
 807 *
 808 * if back ref isn't found, *ref_ret is set to the address where it
 809 * should be inserted, and -ENOENT is returned.
 810 *
 811 * if insert is true and there are too many inline back refs, the path
 812 * points to the extent item, and -EAGAIN is returned.
 813 *
 814 * NOTE: inline back refs are ordered in the same way that back ref
 815 *	 items in the tree are ordered.
 816 */
 817static noinline_for_stack
 818int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
 819				 struct btrfs_path *path,
 820				 struct btrfs_extent_inline_ref **ref_ret,
 821				 u64 bytenr, u64 num_bytes,
 822				 u64 parent, u64 root_objectid,
 823				 u64 owner, u64 offset, int insert)
 824{
 825	struct btrfs_fs_info *fs_info = trans->fs_info;
 826	struct btrfs_root *root = fs_info->extent_root;
 827	struct btrfs_key key;
 828	struct extent_buffer *leaf;
 829	struct btrfs_extent_item *ei;
 830	struct btrfs_extent_inline_ref *iref;
 831	u64 flags;
 832	u64 item_size;
 833	unsigned long ptr;
 834	unsigned long end;
 835	int extra_size;
 836	int type;
 837	int want;
 838	int ret;
 839	int err = 0;
 840	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 841	int needed;
 842
 843	key.objectid = bytenr;
 844	key.type = BTRFS_EXTENT_ITEM_KEY;
 845	key.offset = num_bytes;
 846
 847	want = extent_ref_type(parent, owner);
 848	if (insert) {
 849		extra_size = btrfs_extent_inline_ref_size(want);
 850		path->keep_locks = 1;
 851	} else
 852		extra_size = -1;
 853
 854	/*
 855	 * Owner is our level, so we can just add one to get the level for the
 856	 * block we are interested in.
 857	 */
 858	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
 859		key.type = BTRFS_METADATA_ITEM_KEY;
 860		key.offset = owner;
 861	}
 862
 863again:
 864	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
 865	if (ret < 0) {
 866		err = ret;
 867		goto out;
 868	}
 869
 870	/*
 871	 * We may be a newly converted file system which still has the old fat
 872	 * extent entries for metadata, so try and see if we have one of those.
 873	 */
 874	if (ret > 0 && skinny_metadata) {
 875		skinny_metadata = false;
 876		if (path->slots[0]) {
 877			path->slots[0]--;
 878			btrfs_item_key_to_cpu(path->nodes[0], &key,
 879					      path->slots[0]);
 880			if (key.objectid == bytenr &&
 881			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 882			    key.offset == num_bytes)
 883				ret = 0;
 884		}
 885		if (ret) {
 886			key.objectid = bytenr;
 887			key.type = BTRFS_EXTENT_ITEM_KEY;
 888			key.offset = num_bytes;
 889			btrfs_release_path(path);
 890			goto again;
 891		}
 892	}
 893
 894	if (ret && !insert) {
 895		err = -ENOENT;
 896		goto out;
 897	} else if (WARN_ON(ret)) {
 898		err = -EIO;
 
 
 
 
 
 899		goto out;
 900	}
 901
 902	leaf = path->nodes[0];
 903	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 904	if (unlikely(item_size < sizeof(*ei))) {
 905		err = -EINVAL;
 906		btrfs_print_v0_err(fs_info);
 907		btrfs_abort_transaction(trans, err);
 
 
 908		goto out;
 909	}
 910
 911	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 912	flags = btrfs_extent_flags(leaf, ei);
 913
 914	ptr = (unsigned long)(ei + 1);
 915	end = (unsigned long)ei + item_size;
 916
 917	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
 918		ptr += sizeof(struct btrfs_tree_block_info);
 919		BUG_ON(ptr > end);
 920	}
 921
 922	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
 923		needed = BTRFS_REF_TYPE_DATA;
 924	else
 925		needed = BTRFS_REF_TYPE_BLOCK;
 926
 927	err = -ENOENT;
 928	while (1) {
 929		if (ptr >= end) {
 930			WARN_ON(ptr > end);
 931			break;
 932		}
 933		iref = (struct btrfs_extent_inline_ref *)ptr;
 934		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
 
 
 
 
 
 935		if (type == BTRFS_REF_TYPE_INVALID) {
 936			err = -EUCLEAN;
 937			goto out;
 938		}
 939
 940		if (want < type)
 941			break;
 942		if (want > type) {
 943			ptr += btrfs_extent_inline_ref_size(type);
 944			continue;
 945		}
 946
 947		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 948			struct btrfs_extent_data_ref *dref;
 949			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 950			if (match_extent_data_ref(leaf, dref, root_objectid,
 951						  owner, offset)) {
 952				err = 0;
 953				break;
 954			}
 955			if (hash_extent_data_ref_item(leaf, dref) <
 956			    hash_extent_data_ref(root_objectid, owner, offset))
 957				break;
 958		} else {
 959			u64 ref_offset;
 960			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
 961			if (parent > 0) {
 962				if (parent == ref_offset) {
 963					err = 0;
 964					break;
 965				}
 966				if (ref_offset < parent)
 967					break;
 968			} else {
 969				if (root_objectid == ref_offset) {
 970					err = 0;
 971					break;
 972				}
 973				if (ref_offset < root_objectid)
 974					break;
 975			}
 976		}
 977		ptr += btrfs_extent_inline_ref_size(type);
 978	}
 979	if (err == -ENOENT && insert) {
 
 
 
 
 
 
 
 
 
 
 980		if (item_size + extra_size >=
 981		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
 982			err = -EAGAIN;
 983			goto out;
 984		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985		/*
 986		 * To add new inline back ref, we have to make sure
 987		 * there is no corresponding back ref item.
 988		 * For simplicity, we just do not add new inline back
 989		 * ref if there is any kind of item for this block
 990		 */
 991		if (find_next_key(path, 0, &key) == 0 &&
 992		    key.objectid == bytenr &&
 993		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
 994			err = -EAGAIN;
 995			goto out;
 996		}
 997	}
 
 998	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
 999out:
1000	if (insert) {
1001		path->keep_locks = 0;
1002		btrfs_unlock_up_safe(path, 1);
1003	}
1004	return err;
 
 
1005}
1006
1007/*
1008 * helper to add new inline back ref
1009 */
1010static noinline_for_stack
1011void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1012				 struct btrfs_path *path,
1013				 struct btrfs_extent_inline_ref *iref,
1014				 u64 parent, u64 root_objectid,
1015				 u64 owner, u64 offset, int refs_to_add,
1016				 struct btrfs_delayed_extent_op *extent_op)
1017{
1018	struct extent_buffer *leaf;
1019	struct btrfs_extent_item *ei;
1020	unsigned long ptr;
1021	unsigned long end;
1022	unsigned long item_offset;
1023	u64 refs;
1024	int size;
1025	int type;
1026
1027	leaf = path->nodes[0];
1028	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1029	item_offset = (unsigned long)iref - (unsigned long)ei;
1030
1031	type = extent_ref_type(parent, owner);
1032	size = btrfs_extent_inline_ref_size(type);
1033
1034	btrfs_extend_item(path, size);
1035
1036	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1037	refs = btrfs_extent_refs(leaf, ei);
1038	refs += refs_to_add;
1039	btrfs_set_extent_refs(leaf, ei, refs);
1040	if (extent_op)
1041		__run_delayed_extent_op(extent_op, leaf, ei);
1042
1043	ptr = (unsigned long)ei + item_offset;
1044	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1045	if (ptr < end - size)
1046		memmove_extent_buffer(leaf, ptr + size, ptr,
1047				      end - size - ptr);
1048
1049	iref = (struct btrfs_extent_inline_ref *)ptr;
1050	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1051	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1052		struct btrfs_extent_data_ref *dref;
1053		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1054		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1055		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1056		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1057		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1058	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1059		struct btrfs_shared_data_ref *sref;
1060		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1061		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1062		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1063	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1064		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1065	} else {
1066		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1067	}
1068	btrfs_mark_buffer_dirty(leaf);
1069}
1070
1071static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1072				 struct btrfs_path *path,
1073				 struct btrfs_extent_inline_ref **ref_ret,
1074				 u64 bytenr, u64 num_bytes, u64 parent,
1075				 u64 root_objectid, u64 owner, u64 offset)
1076{
1077	int ret;
1078
1079	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1080					   num_bytes, parent, root_objectid,
1081					   owner, offset, 0);
1082	if (ret != -ENOENT)
1083		return ret;
1084
1085	btrfs_release_path(path);
1086	*ref_ret = NULL;
1087
1088	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1089		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1090					    root_objectid);
1091	} else {
1092		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1093					     root_objectid, owner, offset);
1094	}
1095	return ret;
1096}
1097
1098/*
1099 * helper to update/remove inline back ref
1100 */
1101static noinline_for_stack
1102void update_inline_extent_backref(struct btrfs_path *path,
 
1103				  struct btrfs_extent_inline_ref *iref,
1104				  int refs_to_mod,
1105				  struct btrfs_delayed_extent_op *extent_op,
1106				  int *last_ref)
1107{
1108	struct extent_buffer *leaf = path->nodes[0];
 
1109	struct btrfs_extent_item *ei;
1110	struct btrfs_extent_data_ref *dref = NULL;
1111	struct btrfs_shared_data_ref *sref = NULL;
1112	unsigned long ptr;
1113	unsigned long end;
1114	u32 item_size;
1115	int size;
1116	int type;
1117	u64 refs;
1118
1119	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120	refs = btrfs_extent_refs(leaf, ei);
1121	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122	refs += refs_to_mod;
1123	btrfs_set_extent_refs(leaf, ei, refs);
1124	if (extent_op)
1125		__run_delayed_extent_op(extent_op, leaf, ei);
1126
 
1127	/*
1128	 * If type is invalid, we should have bailed out after
1129	 * lookup_inline_extent_backref().
1130	 */
1131	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1132	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1133
1134	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1135		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1136		refs = btrfs_extent_data_ref_count(leaf, dref);
1137	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1138		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1139		refs = btrfs_shared_data_ref_count(leaf, sref);
1140	} else {
1141		refs = 1;
1142		BUG_ON(refs_to_mod != -1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1143	}
1144
1145	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1146	refs += refs_to_mod;
1147
1148	if (refs > 0) {
1149		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1150			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1151		else
1152			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1153	} else {
1154		*last_ref = 1;
1155		size =  btrfs_extent_inline_ref_size(type);
1156		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1157		ptr = (unsigned long)iref;
1158		end = (unsigned long)ei + item_size;
1159		if (ptr + size < end)
1160			memmove_extent_buffer(leaf, ptr, ptr + size,
1161					      end - ptr - size);
1162		item_size -= size;
1163		btrfs_truncate_item(path, item_size, 1);
1164	}
1165	btrfs_mark_buffer_dirty(leaf);
 
1166}
1167
1168static noinline_for_stack
1169int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1170				 struct btrfs_path *path,
1171				 u64 bytenr, u64 num_bytes, u64 parent,
1172				 u64 root_objectid, u64 owner,
1173				 u64 offset, int refs_to_add,
1174				 struct btrfs_delayed_extent_op *extent_op)
1175{
1176	struct btrfs_extent_inline_ref *iref;
1177	int ret;
1178
1179	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1180					   num_bytes, parent, root_objectid,
1181					   owner, offset, 1);
1182	if (ret == 0) {
1183		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1184		update_inline_extent_backref(path, iref, refs_to_add,
1185					     extent_op, NULL);
 
 
 
 
 
 
 
 
 
 
1186	} else if (ret == -ENOENT) {
1187		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1188					    root_objectid, owner, offset,
1189					    refs_to_add, extent_op);
1190		ret = 0;
1191	}
1192	return ret;
1193}
1194
1195static int insert_extent_backref(struct btrfs_trans_handle *trans,
1196				 struct btrfs_path *path,
1197				 u64 bytenr, u64 parent, u64 root_objectid,
1198				 u64 owner, u64 offset, int refs_to_add)
1199{
1200	int ret;
1201	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1202		BUG_ON(refs_to_add != 1);
1203		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1204					    root_objectid);
1205	} else {
1206		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1207					     root_objectid, owner, offset,
1208					     refs_to_add);
1209	}
1210	return ret;
1211}
1212
1213static int remove_extent_backref(struct btrfs_trans_handle *trans,
 
1214				 struct btrfs_path *path,
1215				 struct btrfs_extent_inline_ref *iref,
1216				 int refs_to_drop, int is_data, int *last_ref)
1217{
1218	int ret = 0;
1219
1220	BUG_ON(!is_data && refs_to_drop != 1);
1221	if (iref) {
1222		update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1223					     last_ref);
1224	} else if (is_data) {
1225		ret = remove_extent_data_ref(trans, path, refs_to_drop,
1226					     last_ref);
1227	} else {
1228		*last_ref = 1;
1229		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1230	}
1231	return ret;
1232}
1233
1234static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1235			       u64 *discarded_bytes)
1236{
1237	int j, ret = 0;
1238	u64 bytes_left, end;
1239	u64 aligned_start = ALIGN(start, 1 << 9);
1240
1241	if (WARN_ON(start != aligned_start)) {
 
1242		len -= aligned_start - start;
1243		len = round_down(len, 1 << 9);
1244		start = aligned_start;
1245	}
1246
1247	*discarded_bytes = 0;
1248
1249	if (!len)
1250		return 0;
1251
1252	end = start + len;
1253	bytes_left = len;
1254
1255	/* Skip any superblocks on this device. */
1256	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1257		u64 sb_start = btrfs_sb_offset(j);
1258		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1259		u64 size = sb_start - start;
1260
1261		if (!in_range(sb_start, start, bytes_left) &&
1262		    !in_range(sb_end, start, bytes_left) &&
1263		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1264			continue;
1265
1266		/*
1267		 * Superblock spans beginning of range.  Adjust start and
1268		 * try again.
1269		 */
1270		if (sb_start <= start) {
1271			start += sb_end - start;
1272			if (start > end) {
1273				bytes_left = 0;
1274				break;
1275			}
1276			bytes_left = end - start;
1277			continue;
1278		}
1279
1280		if (size) {
1281			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1282						   GFP_NOFS, 0);
 
1283			if (!ret)
1284				*discarded_bytes += size;
1285			else if (ret != -EOPNOTSUPP)
1286				return ret;
1287		}
1288
1289		start = sb_end;
1290		if (start > end) {
1291			bytes_left = 0;
1292			break;
1293		}
1294		bytes_left = end - start;
1295	}
1296
1297	if (bytes_left) {
1298		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1299					   GFP_NOFS, 0);
1300		if (!ret)
1301			*discarded_bytes += bytes_left;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1302	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303	return ret;
1304}
1305
1306int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1307			 u64 num_bytes, u64 *actual_bytes)
1308{
1309	int ret;
1310	u64 discarded_bytes = 0;
1311	struct btrfs_bio *bbio = NULL;
1312
1313
1314	/*
1315	 * Avoid races with device replace and make sure our bbio has devices
1316	 * associated to its stripes that don't go away while we are discarding.
1317	 */
1318	btrfs_bio_counter_inc_blocked(fs_info);
1319	/* Tell the block device(s) that the sectors can be discarded */
1320	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1321			      &bbio, 0);
1322	/* Error condition is -ENOMEM */
1323	if (!ret) {
1324		struct btrfs_bio_stripe *stripe = bbio->stripes;
1325		int i;
1326
 
 
 
 
 
 
 
 
1327
1328		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
 
1329			u64 bytes;
1330			struct request_queue *req_q;
1331
1332			if (!stripe->dev->bdev) {
1333				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1334				continue;
1335			}
1336			req_q = bdev_get_queue(stripe->dev->bdev);
1337			if (!blk_queue_discard(req_q))
 
1338				continue;
1339
1340			ret = btrfs_issue_discard(stripe->dev->bdev,
1341						  stripe->physical,
1342						  stripe->length,
1343						  &bytes);
1344			if (!ret)
 
 
 
 
 
1345				discarded_bytes += bytes;
1346			else if (ret != -EOPNOTSUPP)
1347				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1348
1349			/*
1350			 * Just in case we get back EOPNOTSUPP for some reason,
1351			 * just ignore the return value so we don't screw up
1352			 * people calling discard_extent.
1353			 */
1354			ret = 0;
1355		}
1356		btrfs_put_bbio(bbio);
 
 
 
1357	}
1358	btrfs_bio_counter_dec(fs_info);
1359
1360	if (actual_bytes)
1361		*actual_bytes = discarded_bytes;
1362
1363
1364	if (ret == -EOPNOTSUPP)
1365		ret = 0;
1366	return ret;
1367}
1368
1369/* Can return -ENOMEM */
1370int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1371			 struct btrfs_ref *generic_ref)
1372{
1373	struct btrfs_fs_info *fs_info = trans->fs_info;
1374	int old_ref_mod, new_ref_mod;
1375	int ret;
1376
1377	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1378	       generic_ref->action);
1379	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1380	       generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1381
1382	if (generic_ref->type == BTRFS_REF_METADATA)
1383		ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
1384				NULL, &old_ref_mod, &new_ref_mod);
1385	else
1386		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
1387						 &old_ref_mod, &new_ref_mod);
1388
1389	btrfs_ref_tree_mod(fs_info, generic_ref);
1390
1391	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
1392		sub_pinned_bytes(fs_info, generic_ref);
1393
1394	return ret;
1395}
1396
1397/*
1398 * __btrfs_inc_extent_ref - insert backreference for a given extent
 
 
 
1399 *
1400 * @trans:	    Handle of transaction
1401 *
1402 * @node:	    The delayed ref node used to get the bytenr/length for
1403 *		    extent whose references are incremented.
1404 *
1405 * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1406 *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1407 *		    bytenr of the parent block. Since new extents are always
1408 *		    created with indirect references, this will only be the case
1409 *		    when relocating a shared extent. In that case, root_objectid
1410 *		    will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1411 *		    be 0
1412 *
1413 * @root_objectid:  The id of the root where this modification has originated,
1414 *		    this can be either one of the well-known metadata trees or
1415 *		    the subvolume id which references this extent.
1416 *
1417 * @owner:	    For data extents it is the inode number of the owning file.
1418 *		    For metadata extents this parameter holds the level in the
1419 *		    tree of the extent.
1420 *
1421 * @offset:	    For metadata extents the offset is ignored and is currently
1422 *		    always passed as 0. For data extents it is the fileoffset
1423 *		    this extent belongs to.
1424 *
1425 * @refs_to_add     Number of references to add
1426 *
1427 * @extent_op       Pointer to a structure, holding information necessary when
1428 *                  updating a tree block's flags
1429 *
1430 */
1431static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1432				  struct btrfs_delayed_ref_node *node,
1433				  u64 parent, u64 root_objectid,
1434				  u64 owner, u64 offset, int refs_to_add,
1435				  struct btrfs_delayed_extent_op *extent_op)
1436{
1437	struct btrfs_path *path;
1438	struct extent_buffer *leaf;
1439	struct btrfs_extent_item *item;
1440	struct btrfs_key key;
1441	u64 bytenr = node->bytenr;
1442	u64 num_bytes = node->num_bytes;
 
 
1443	u64 refs;
 
1444	int ret;
1445
1446	path = btrfs_alloc_path();
1447	if (!path)
1448		return -ENOMEM;
1449
1450	path->reada = READA_FORWARD;
1451	path->leave_spinning = 1;
1452	/* this will setup the path even if it fails to insert the back ref */
1453	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1454					   parent, root_objectid, owner,
1455					   offset, refs_to_add, extent_op);
1456	if ((ret < 0 && ret != -EAGAIN) || !ret)
1457		goto out;
1458
1459	/*
1460	 * Ok we had -EAGAIN which means we didn't have space to insert and
1461	 * inline extent ref, so just update the reference count and add a
1462	 * normal backref.
1463	 */
1464	leaf = path->nodes[0];
1465	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1466	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1467	refs = btrfs_extent_refs(leaf, item);
1468	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1469	if (extent_op)
1470		__run_delayed_extent_op(extent_op, leaf, item);
1471
1472	btrfs_mark_buffer_dirty(leaf);
1473	btrfs_release_path(path);
1474
1475	path->reada = READA_FORWARD;
1476	path->leave_spinning = 1;
1477	/* now insert the actual backref */
1478	ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
1479				    owner, offset, refs_to_add);
 
 
 
1480	if (ret)
1481		btrfs_abort_transaction(trans, ret);
1482out:
1483	btrfs_free_path(path);
1484	return ret;
1485}
1486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1487static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
 
1488				struct btrfs_delayed_ref_node *node,
1489				struct btrfs_delayed_extent_op *extent_op,
1490				int insert_reserved)
1491{
1492	int ret = 0;
1493	struct btrfs_delayed_data_ref *ref;
1494	struct btrfs_key ins;
1495	u64 parent = 0;
1496	u64 ref_root = 0;
1497	u64 flags = 0;
1498
1499	ins.objectid = node->bytenr;
1500	ins.offset = node->num_bytes;
1501	ins.type = BTRFS_EXTENT_ITEM_KEY;
1502
1503	ref = btrfs_delayed_node_to_data_ref(node);
1504	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1505
1506	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1507		parent = ref->parent;
1508	ref_root = ref->root;
1509
1510	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
 
 
 
 
 
 
 
 
 
 
 
1511		if (extent_op)
1512			flags |= extent_op->flags_to_set;
1513		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1514						 flags, ref->objectid,
1515						 ref->offset, &ins,
1516						 node->ref_mod);
 
 
 
 
 
 
 
 
1517	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1518		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1519					     ref->objectid, ref->offset,
1520					     node->ref_mod, extent_op);
1521	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1522		ret = __btrfs_free_extent(trans, node, parent,
1523					  ref_root, ref->objectid,
1524					  ref->offset, node->ref_mod,
1525					  extent_op);
1526	} else {
1527		BUG();
1528	}
1529	return ret;
1530}
1531
1532static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1533				    struct extent_buffer *leaf,
1534				    struct btrfs_extent_item *ei)
1535{
1536	u64 flags = btrfs_extent_flags(leaf, ei);
1537	if (extent_op->update_flags) {
1538		flags |= extent_op->flags_to_set;
1539		btrfs_set_extent_flags(leaf, ei, flags);
1540	}
1541
1542	if (extent_op->update_key) {
1543		struct btrfs_tree_block_info *bi;
1544		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1545		bi = (struct btrfs_tree_block_info *)(ei + 1);
1546		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1547	}
1548}
1549
1550static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1551				 struct btrfs_delayed_ref_head *head,
1552				 struct btrfs_delayed_extent_op *extent_op)
1553{
1554	struct btrfs_fs_info *fs_info = trans->fs_info;
 
1555	struct btrfs_key key;
1556	struct btrfs_path *path;
1557	struct btrfs_extent_item *ei;
1558	struct extent_buffer *leaf;
1559	u32 item_size;
1560	int ret;
1561	int err = 0;
1562	int metadata = !extent_op->is_data;
1563
1564	if (trans->aborted)
1565		return 0;
1566
1567	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1568		metadata = 0;
1569
1570	path = btrfs_alloc_path();
1571	if (!path)
1572		return -ENOMEM;
1573
1574	key.objectid = head->bytenr;
1575
1576	if (metadata) {
1577		key.type = BTRFS_METADATA_ITEM_KEY;
1578		key.offset = extent_op->level;
1579	} else {
1580		key.type = BTRFS_EXTENT_ITEM_KEY;
1581		key.offset = head->num_bytes;
1582	}
1583
 
1584again:
1585	path->reada = READA_FORWARD;
1586	path->leave_spinning = 1;
1587	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1588	if (ret < 0) {
1589		err = ret;
1590		goto out;
1591	}
1592	if (ret > 0) {
1593		if (metadata) {
1594			if (path->slots[0] > 0) {
1595				path->slots[0]--;
1596				btrfs_item_key_to_cpu(path->nodes[0], &key,
1597						      path->slots[0]);
1598				if (key.objectid == head->bytenr &&
1599				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1600				    key.offset == head->num_bytes)
1601					ret = 0;
1602			}
1603			if (ret > 0) {
1604				btrfs_release_path(path);
1605				metadata = 0;
1606
1607				key.objectid = head->bytenr;
1608				key.offset = head->num_bytes;
1609				key.type = BTRFS_EXTENT_ITEM_KEY;
1610				goto again;
1611			}
1612		} else {
1613			err = -EIO;
 
 
 
1614			goto out;
1615		}
1616	}
1617
1618	leaf = path->nodes[0];
1619	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1620
1621	if (unlikely(item_size < sizeof(*ei))) {
1622		err = -EINVAL;
1623		btrfs_print_v0_err(fs_info);
1624		btrfs_abort_transaction(trans, err);
 
 
1625		goto out;
1626	}
1627
1628	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1629	__run_delayed_extent_op(extent_op, leaf, ei);
1630
1631	btrfs_mark_buffer_dirty(leaf);
1632out:
1633	btrfs_free_path(path);
1634	return err;
1635}
1636
1637static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
 
1638				struct btrfs_delayed_ref_node *node,
1639				struct btrfs_delayed_extent_op *extent_op,
1640				int insert_reserved)
1641{
1642	int ret = 0;
1643	struct btrfs_delayed_tree_ref *ref;
1644	u64 parent = 0;
1645	u64 ref_root = 0;
1646
1647	ref = btrfs_delayed_node_to_tree_ref(node);
1648	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1649
1650	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1651		parent = ref->parent;
1652	ref_root = ref->root;
1653
1654	if (node->ref_mod != 1) {
1655		btrfs_err(trans->fs_info,
1656	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1657			  node->bytenr, node->ref_mod, node->action, ref_root,
1658			  parent);
1659		return -EIO;
1660	}
1661	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1662		BUG_ON(!extent_op || !extent_op->update_flags);
 
 
 
 
 
 
 
1663		ret = alloc_reserved_tree_block(trans, node, extent_op);
 
 
1664	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1665		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1666					     ref->level, 0, 1, extent_op);
1667	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1668		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1669					  ref->level, 0, 1, extent_op);
1670	} else {
1671		BUG();
1672	}
1673	return ret;
1674}
1675
1676/* helper function to actually process a single delayed ref entry */
1677static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
 
1678			       struct btrfs_delayed_ref_node *node,
1679			       struct btrfs_delayed_extent_op *extent_op,
1680			       int insert_reserved)
1681{
1682	int ret = 0;
1683
1684	if (trans->aborted) {
1685		if (insert_reserved)
1686			btrfs_pin_extent(trans->fs_info, node->bytenr,
1687					 node->num_bytes, 1);
 
1688		return 0;
1689	}
1690
1691	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1692	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1693		ret = run_delayed_tree_ref(trans, node, extent_op,
1694					   insert_reserved);
1695	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1696		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1697		ret = run_delayed_data_ref(trans, node, extent_op,
1698					   insert_reserved);
 
 
1699	else
1700		BUG();
1701	if (ret && insert_reserved)
1702		btrfs_pin_extent(trans->fs_info, node->bytenr,
1703				 node->num_bytes, 1);
 
 
 
 
1704	return ret;
1705}
1706
1707static inline struct btrfs_delayed_ref_node *
1708select_delayed_ref(struct btrfs_delayed_ref_head *head)
1709{
1710	struct btrfs_delayed_ref_node *ref;
1711
1712	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1713		return NULL;
1714
1715	/*
1716	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1717	 * This is to prevent a ref count from going down to zero, which deletes
1718	 * the extent item from the extent tree, when there still are references
1719	 * to add, which would fail because they would not find the extent item.
1720	 */
1721	if (!list_empty(&head->ref_add_list))
1722		return list_first_entry(&head->ref_add_list,
1723				struct btrfs_delayed_ref_node, add_list);
1724
1725	ref = rb_entry(rb_first_cached(&head->ref_tree),
1726		       struct btrfs_delayed_ref_node, ref_node);
1727	ASSERT(list_empty(&ref->add_list));
1728	return ref;
1729}
1730
1731static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1732				      struct btrfs_delayed_ref_head *head)
1733{
1734	spin_lock(&delayed_refs->lock);
1735	head->processing = 0;
1736	delayed_refs->num_heads_ready++;
1737	spin_unlock(&delayed_refs->lock);
1738	btrfs_delayed_ref_unlock(head);
1739}
1740
1741static struct btrfs_delayed_extent_op *cleanup_extent_op(
1742				struct btrfs_delayed_ref_head *head)
1743{
1744	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1745
1746	if (!extent_op)
1747		return NULL;
1748
1749	if (head->must_insert_reserved) {
1750		head->extent_op = NULL;
1751		btrfs_free_delayed_extent_op(extent_op);
1752		return NULL;
1753	}
1754	return extent_op;
1755}
1756
1757static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1758				     struct btrfs_delayed_ref_head *head)
1759{
1760	struct btrfs_delayed_extent_op *extent_op;
1761	int ret;
1762
1763	extent_op = cleanup_extent_op(head);
1764	if (!extent_op)
1765		return 0;
1766	head->extent_op = NULL;
1767	spin_unlock(&head->lock);
1768	ret = run_delayed_extent_op(trans, head, extent_op);
1769	btrfs_free_delayed_extent_op(extent_op);
1770	return ret ? ret : 1;
1771}
1772
1773void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1774				  struct btrfs_delayed_ref_root *delayed_refs,
1775				  struct btrfs_delayed_ref_head *head)
1776{
1777	int nr_items = 1;	/* Dropping this ref head update. */
1778
1779	if (head->total_ref_mod < 0) {
1780		struct btrfs_space_info *space_info;
1781		u64 flags;
1782
1783		if (head->is_data)
1784			flags = BTRFS_BLOCK_GROUP_DATA;
1785		else if (head->is_system)
1786			flags = BTRFS_BLOCK_GROUP_SYSTEM;
1787		else
1788			flags = BTRFS_BLOCK_GROUP_METADATA;
1789		space_info = btrfs_find_space_info(fs_info, flags);
1790		ASSERT(space_info);
1791		percpu_counter_add_batch(&space_info->total_bytes_pinned,
1792				   -head->num_bytes,
1793				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
1794
1795		/*
1796		 * We had csum deletions accounted for in our delayed refs rsv,
1797		 * we need to drop the csum leaves for this update from our
1798		 * delayed_refs_rsv.
1799		 */
1800		if (head->is_data) {
1801			spin_lock(&delayed_refs->lock);
1802			delayed_refs->pending_csums -= head->num_bytes;
1803			spin_unlock(&delayed_refs->lock);
1804			nr_items += btrfs_csum_bytes_to_leaves(fs_info,
1805				head->num_bytes);
1806		}
1807	}
 
 
 
1808
1809	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1810}
1811
1812static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1813			    struct btrfs_delayed_ref_head *head)
 
1814{
1815
1816	struct btrfs_fs_info *fs_info = trans->fs_info;
1817	struct btrfs_delayed_ref_root *delayed_refs;
1818	int ret;
1819
1820	delayed_refs = &trans->transaction->delayed_refs;
1821
1822	ret = run_and_cleanup_extent_op(trans, head);
1823	if (ret < 0) {
1824		unselect_delayed_ref_head(delayed_refs, head);
1825		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1826		return ret;
1827	} else if (ret) {
1828		return ret;
1829	}
1830
1831	/*
1832	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1833	 * and then re-check to make sure nobody got added.
1834	 */
1835	spin_unlock(&head->lock);
1836	spin_lock(&delayed_refs->lock);
1837	spin_lock(&head->lock);
1838	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1839		spin_unlock(&head->lock);
1840		spin_unlock(&delayed_refs->lock);
1841		return 1;
1842	}
1843	btrfs_delete_ref_head(delayed_refs, head);
1844	spin_unlock(&head->lock);
1845	spin_unlock(&delayed_refs->lock);
1846
1847	if (head->must_insert_reserved) {
1848		btrfs_pin_extent(fs_info, head->bytenr,
1849				 head->num_bytes, 1);
1850		if (head->is_data) {
1851			ret = btrfs_del_csums(trans, fs_info, head->bytenr,
 
 
 
1852					      head->num_bytes);
1853		}
1854	}
1855
1856	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1857
1858	trace_run_delayed_ref_head(fs_info, head, 0);
1859	btrfs_delayed_ref_unlock(head);
1860	btrfs_put_delayed_ref_head(head);
1861	return 0;
1862}
1863
1864static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1865					struct btrfs_trans_handle *trans)
1866{
1867	struct btrfs_delayed_ref_root *delayed_refs =
1868		&trans->transaction->delayed_refs;
1869	struct btrfs_delayed_ref_head *head = NULL;
1870	int ret;
1871
1872	spin_lock(&delayed_refs->lock);
1873	head = btrfs_select_ref_head(delayed_refs);
1874	if (!head) {
1875		spin_unlock(&delayed_refs->lock);
1876		return head;
1877	}
1878
1879	/*
1880	 * Grab the lock that says we are going to process all the refs for
1881	 * this head
1882	 */
1883	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1884	spin_unlock(&delayed_refs->lock);
1885
1886	/*
1887	 * We may have dropped the spin lock to get the head mutex lock, and
1888	 * that might have given someone else time to free the head.  If that's
1889	 * true, it has been removed from our list and we can move on.
1890	 */
1891	if (ret == -EAGAIN)
1892		head = ERR_PTR(-EAGAIN);
1893
1894	return head;
1895}
1896
1897static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1898				    struct btrfs_delayed_ref_head *locked_ref,
1899				    unsigned long *run_refs)
1900{
1901	struct btrfs_fs_info *fs_info = trans->fs_info;
1902	struct btrfs_delayed_ref_root *delayed_refs;
1903	struct btrfs_delayed_extent_op *extent_op;
1904	struct btrfs_delayed_ref_node *ref;
1905	int must_insert_reserved = 0;
1906	int ret;
1907
1908	delayed_refs = &trans->transaction->delayed_refs;
1909
1910	lockdep_assert_held(&locked_ref->mutex);
1911	lockdep_assert_held(&locked_ref->lock);
1912
1913	while ((ref = select_delayed_ref(locked_ref))) {
1914		if (ref->seq &&
1915		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1916			spin_unlock(&locked_ref->lock);
1917			unselect_delayed_ref_head(delayed_refs, locked_ref);
1918			return -EAGAIN;
1919		}
1920
1921		(*run_refs)++;
1922		ref->in_tree = 0;
1923		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1924		RB_CLEAR_NODE(&ref->ref_node);
1925		if (!list_empty(&ref->add_list))
1926			list_del(&ref->add_list);
1927		/*
1928		 * When we play the delayed ref, also correct the ref_mod on
1929		 * head
1930		 */
1931		switch (ref->action) {
1932		case BTRFS_ADD_DELAYED_REF:
1933		case BTRFS_ADD_DELAYED_EXTENT:
1934			locked_ref->ref_mod -= ref->ref_mod;
1935			break;
1936		case BTRFS_DROP_DELAYED_REF:
1937			locked_ref->ref_mod += ref->ref_mod;
1938			break;
1939		default:
1940			WARN_ON(1);
1941		}
1942		atomic_dec(&delayed_refs->num_entries);
1943
1944		/*
1945		 * Record the must_insert_reserved flag before we drop the
1946		 * spin lock.
1947		 */
1948		must_insert_reserved = locked_ref->must_insert_reserved;
1949		locked_ref->must_insert_reserved = 0;
 
 
 
 
 
 
1950
1951		extent_op = locked_ref->extent_op;
1952		locked_ref->extent_op = NULL;
1953		spin_unlock(&locked_ref->lock);
1954
1955		ret = run_one_delayed_ref(trans, ref, extent_op,
1956					  must_insert_reserved);
 
 
1957
1958		btrfs_free_delayed_extent_op(extent_op);
1959		if (ret) {
1960			unselect_delayed_ref_head(delayed_refs, locked_ref);
1961			btrfs_put_delayed_ref(ref);
1962			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1963				    ret);
1964			return ret;
1965		}
1966
1967		btrfs_put_delayed_ref(ref);
1968		cond_resched();
1969
1970		spin_lock(&locked_ref->lock);
1971		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1972	}
1973
1974	return 0;
1975}
1976
1977/*
1978 * Returns 0 on success or if called with an already aborted transaction.
1979 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1980 */
1981static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1982					     unsigned long nr)
1983{
1984	struct btrfs_fs_info *fs_info = trans->fs_info;
1985	struct btrfs_delayed_ref_root *delayed_refs;
1986	struct btrfs_delayed_ref_head *locked_ref = NULL;
1987	ktime_t start = ktime_get();
1988	int ret;
1989	unsigned long count = 0;
1990	unsigned long actual_count = 0;
 
1991
1992	delayed_refs = &trans->transaction->delayed_refs;
 
 
 
 
 
1993	do {
1994		if (!locked_ref) {
1995			locked_ref = btrfs_obtain_ref_head(trans);
1996			if (IS_ERR_OR_NULL(locked_ref)) {
1997				if (PTR_ERR(locked_ref) == -EAGAIN) {
1998					continue;
1999				} else {
2000					break;
2001				}
2002			}
2003			count++;
2004		}
2005		/*
2006		 * We need to try and merge add/drops of the same ref since we
2007		 * can run into issues with relocate dropping the implicit ref
2008		 * and then it being added back again before the drop can
2009		 * finish.  If we merged anything we need to re-loop so we can
2010		 * get a good ref.
2011		 * Or we can get node references of the same type that weren't
2012		 * merged when created due to bumps in the tree mod seq, and
2013		 * we need to merge them to prevent adding an inline extent
2014		 * backref before dropping it (triggering a BUG_ON at
2015		 * insert_inline_extent_backref()).
2016		 */
2017		spin_lock(&locked_ref->lock);
2018		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2019
2020		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2021						      &actual_count);
2022		if (ret < 0 && ret != -EAGAIN) {
2023			/*
2024			 * Error, btrfs_run_delayed_refs_for_head already
2025			 * unlocked everything so just bail out
2026			 */
2027			return ret;
2028		} else if (!ret) {
2029			/*
2030			 * Success, perform the usual cleanup of a processed
2031			 * head
2032			 */
2033			ret = cleanup_ref_head(trans, locked_ref);
2034			if (ret > 0 ) {
2035				/* We dropped our lock, we need to loop. */
2036				ret = 0;
2037				continue;
2038			} else if (ret) {
2039				return ret;
2040			}
2041		}
2042
2043		/*
2044		 * Either success case or btrfs_run_delayed_refs_for_head
2045		 * returned -EAGAIN, meaning we need to select another head
2046		 */
2047
2048		locked_ref = NULL;
2049		cond_resched();
2050	} while ((nr != -1 && count < nr) || locked_ref);
 
 
2051
2052	/*
2053	 * We don't want to include ref heads since we can have empty ref heads
2054	 * and those will drastically skew our runtime down since we just do
2055	 * accounting, no actual extent tree updates.
2056	 */
2057	if (actual_count > 0) {
2058		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2059		u64 avg;
2060
2061		/*
2062		 * We weigh the current average higher than our current runtime
2063		 * to avoid large swings in the average.
2064		 */
2065		spin_lock(&delayed_refs->lock);
2066		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2067		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2068		spin_unlock(&delayed_refs->lock);
2069	}
2070	return 0;
2071}
2072
2073#ifdef SCRAMBLE_DELAYED_REFS
2074/*
2075 * Normally delayed refs get processed in ascending bytenr order. This
2076 * correlates in most cases to the order added. To expose dependencies on this
2077 * order, we start to process the tree in the middle instead of the beginning
2078 */
2079static u64 find_middle(struct rb_root *root)
2080{
2081	struct rb_node *n = root->rb_node;
2082	struct btrfs_delayed_ref_node *entry;
2083	int alt = 1;
2084	u64 middle;
2085	u64 first = 0, last = 0;
2086
2087	n = rb_first(root);
2088	if (n) {
2089		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2090		first = entry->bytenr;
2091	}
2092	n = rb_last(root);
2093	if (n) {
2094		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2095		last = entry->bytenr;
2096	}
2097	n = root->rb_node;
2098
2099	while (n) {
2100		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2101		WARN_ON(!entry->in_tree);
2102
2103		middle = entry->bytenr;
2104
2105		if (alt)
2106			n = n->rb_left;
2107		else
2108			n = n->rb_right;
2109
2110		alt = 1 - alt;
2111	}
2112	return middle;
2113}
2114#endif
2115
2116static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2117{
2118	u64 num_bytes;
2119
2120	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2121			     sizeof(struct btrfs_extent_inline_ref));
2122	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2123		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2124
2125	/*
2126	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2127	 * closer to what we're really going to want to use.
2128	 */
2129	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2130}
2131
2132/*
2133 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2134 * would require to store the csums for that many bytes.
2135 */
2136u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2137{
2138	u64 csum_size;
2139	u64 num_csums_per_leaf;
2140	u64 num_csums;
2141
2142	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2143	num_csums_per_leaf = div64_u64(csum_size,
2144			(u64)btrfs_super_csum_size(fs_info->super_copy));
2145	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2146	num_csums += num_csums_per_leaf - 1;
2147	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2148	return num_csums;
2149}
2150
2151/*
2152 * this starts processing the delayed reference count updates and
2153 * extent insertions we have queued up so far.  count can be
2154 * 0, which means to process everything in the tree at the start
2155 * of the run (but not newly added entries), or it can be some target
2156 * number you'd like to process.
 
 
 
 
 
2157 *
2158 * Returns 0 on success or if called with an aborted transaction
2159 * Returns <0 on error and aborts the transaction
2160 */
2161int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2162			   unsigned long count)
2163{
2164	struct btrfs_fs_info *fs_info = trans->fs_info;
2165	struct rb_node *node;
2166	struct btrfs_delayed_ref_root *delayed_refs;
2167	struct btrfs_delayed_ref_head *head;
2168	int ret;
2169	int run_all = count == (unsigned long)-1;
2170
2171	/* We'll clean this up in btrfs_cleanup_transaction */
2172	if (trans->aborted)
2173		return 0;
2174
2175	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2176		return 0;
2177
2178	delayed_refs = &trans->transaction->delayed_refs;
2179	if (count == 0)
2180		count = atomic_read(&delayed_refs->num_entries) * 2;
2181
2182again:
2183#ifdef SCRAMBLE_DELAYED_REFS
2184	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2185#endif
2186	ret = __btrfs_run_delayed_refs(trans, count);
2187	if (ret < 0) {
2188		btrfs_abort_transaction(trans, ret);
2189		return ret;
2190	}
2191
2192	if (run_all) {
2193		btrfs_create_pending_block_groups(trans);
2194
2195		spin_lock(&delayed_refs->lock);
2196		node = rb_first_cached(&delayed_refs->href_root);
2197		if (!node) {
2198			spin_unlock(&delayed_refs->lock);
2199			goto out;
2200		}
2201		head = rb_entry(node, struct btrfs_delayed_ref_head,
2202				href_node);
2203		refcount_inc(&head->refs);
2204		spin_unlock(&delayed_refs->lock);
2205
2206		/* Mutex was contended, block until it's released and retry. */
2207		mutex_lock(&head->mutex);
2208		mutex_unlock(&head->mutex);
2209
2210		btrfs_put_delayed_ref_head(head);
2211		cond_resched();
2212		goto again;
2213	}
2214out:
2215	return 0;
2216}
2217
2218int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2219				u64 bytenr, u64 num_bytes, u64 flags,
2220				int level, int is_data)
2221{
2222	struct btrfs_delayed_extent_op *extent_op;
2223	int ret;
2224
2225	extent_op = btrfs_alloc_delayed_extent_op();
2226	if (!extent_op)
2227		return -ENOMEM;
2228
2229	extent_op->flags_to_set = flags;
2230	extent_op->update_flags = true;
2231	extent_op->update_key = false;
2232	extent_op->is_data = is_data ? true : false;
2233	extent_op->level = level;
2234
2235	ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
 
2236	if (ret)
2237		btrfs_free_delayed_extent_op(extent_op);
2238	return ret;
2239}
2240
2241static noinline int check_delayed_ref(struct btrfs_root *root,
2242				      struct btrfs_path *path,
2243				      u64 objectid, u64 offset, u64 bytenr)
2244{
2245	struct btrfs_delayed_ref_head *head;
2246	struct btrfs_delayed_ref_node *ref;
2247	struct btrfs_delayed_data_ref *data_ref;
2248	struct btrfs_delayed_ref_root *delayed_refs;
2249	struct btrfs_transaction *cur_trans;
2250	struct rb_node *node;
2251	int ret = 0;
2252
2253	spin_lock(&root->fs_info->trans_lock);
2254	cur_trans = root->fs_info->running_transaction;
2255	if (cur_trans)
2256		refcount_inc(&cur_trans->use_count);
2257	spin_unlock(&root->fs_info->trans_lock);
2258	if (!cur_trans)
2259		return 0;
2260
2261	delayed_refs = &cur_trans->delayed_refs;
2262	spin_lock(&delayed_refs->lock);
2263	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2264	if (!head) {
2265		spin_unlock(&delayed_refs->lock);
2266		btrfs_put_transaction(cur_trans);
2267		return 0;
2268	}
2269
2270	if (!mutex_trylock(&head->mutex)) {
 
 
 
 
 
 
2271		refcount_inc(&head->refs);
2272		spin_unlock(&delayed_refs->lock);
2273
2274		btrfs_release_path(path);
2275
2276		/*
2277		 * Mutex was contended, block until it's released and let
2278		 * caller try again
2279		 */
2280		mutex_lock(&head->mutex);
2281		mutex_unlock(&head->mutex);
2282		btrfs_put_delayed_ref_head(head);
2283		btrfs_put_transaction(cur_trans);
2284		return -EAGAIN;
2285	}
2286	spin_unlock(&delayed_refs->lock);
2287
2288	spin_lock(&head->lock);
2289	/*
2290	 * XXX: We should replace this with a proper search function in the
2291	 * future.
2292	 */
2293	for (node = rb_first_cached(&head->ref_tree); node;
2294	     node = rb_next(node)) {
 
 
 
2295		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2296		/* If it's a shared ref we know a cross reference exists */
2297		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2298			ret = 1;
2299			break;
2300		}
2301
2302		data_ref = btrfs_delayed_node_to_data_ref(ref);
 
2303
2304		/*
2305		 * If our ref doesn't match the one we're currently looking at
2306		 * then we have a cross reference.
2307		 */
2308		if (data_ref->root != root->root_key.objectid ||
2309		    data_ref->objectid != objectid ||
2310		    data_ref->offset != offset) {
2311			ret = 1;
2312			break;
2313		}
2314	}
2315	spin_unlock(&head->lock);
2316	mutex_unlock(&head->mutex);
2317	btrfs_put_transaction(cur_trans);
2318	return ret;
2319}
2320
2321static noinline int check_committed_ref(struct btrfs_root *root,
2322					struct btrfs_path *path,
2323					u64 objectid, u64 offset, u64 bytenr)
 
2324{
2325	struct btrfs_fs_info *fs_info = root->fs_info;
2326	struct btrfs_root *extent_root = fs_info->extent_root;
2327	struct extent_buffer *leaf;
2328	struct btrfs_extent_data_ref *ref;
2329	struct btrfs_extent_inline_ref *iref;
2330	struct btrfs_extent_item *ei;
2331	struct btrfs_key key;
2332	u32 item_size;
 
2333	int type;
2334	int ret;
2335
2336	key.objectid = bytenr;
2337	key.offset = (u64)-1;
2338	key.type = BTRFS_EXTENT_ITEM_KEY;
2339
2340	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2341	if (ret < 0)
2342		goto out;
2343	BUG_ON(ret == 0); /* Corruption */
 
 
 
 
 
 
 
2344
2345	ret = -ENOENT;
2346	if (path->slots[0] == 0)
2347		goto out;
2348
2349	path->slots[0]--;
2350	leaf = path->nodes[0];
2351	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2352
2353	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2354		goto out;
2355
2356	ret = 1;
2357	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2358	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 
2359
2360	/* If extent item has more than 1 inline ref then it's shared */
2361	if (item_size != sizeof(*ei) +
2362	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2363		goto out;
2364
2365	/* If extent created before last snapshot => it's definitely shared */
2366	if (btrfs_extent_generation(leaf, ei) <=
2367	    btrfs_root_last_snapshot(&root->root_item))
 
 
 
 
 
 
 
2368		goto out;
2369
2370	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
 
 
 
 
 
 
 
2371
2372	/* If this extent has SHARED_DATA_REF then it's shared */
2373	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2374	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2375		goto out;
2376
2377	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2378	if (btrfs_extent_refs(leaf, ei) !=
2379	    btrfs_extent_data_ref_count(leaf, ref) ||
2380	    btrfs_extent_data_ref_root(leaf, ref) !=
2381	    root->root_key.objectid ||
2382	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2383	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2384		goto out;
2385
2386	ret = 0;
2387out:
2388	return ret;
2389}
2390
2391int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2392			  u64 bytenr)
2393{
2394	struct btrfs_path *path;
2395	int ret;
2396
2397	path = btrfs_alloc_path();
2398	if (!path)
2399		return -ENOMEM;
2400
2401	do {
2402		ret = check_committed_ref(root, path, objectid,
2403					  offset, bytenr);
2404		if (ret && ret != -ENOENT)
2405			goto out;
2406
2407		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2408	} while (ret == -EAGAIN);
2409
2410out:
2411	btrfs_free_path(path);
2412	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2413		WARN_ON(ret > 0);
2414	return ret;
2415}
2416
2417static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2418			   struct btrfs_root *root,
2419			   struct extent_buffer *buf,
2420			   int full_backref, int inc)
2421{
2422	struct btrfs_fs_info *fs_info = root->fs_info;
2423	u64 bytenr;
2424	u64 num_bytes;
2425	u64 parent;
2426	u64 ref_root;
2427	u32 nritems;
2428	struct btrfs_key key;
2429	struct btrfs_file_extent_item *fi;
2430	struct btrfs_ref generic_ref = { 0 };
2431	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2432	int i;
2433	int action;
2434	int level;
2435	int ret = 0;
2436
2437	if (btrfs_is_testing(fs_info))
2438		return 0;
2439
2440	ref_root = btrfs_header_owner(buf);
2441	nritems = btrfs_header_nritems(buf);
2442	level = btrfs_header_level(buf);
2443
2444	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
2445		return 0;
2446
2447	if (full_backref)
2448		parent = buf->start;
2449	else
2450		parent = 0;
2451	if (inc)
2452		action = BTRFS_ADD_DELAYED_REF;
2453	else
2454		action = BTRFS_DROP_DELAYED_REF;
2455
2456	for (i = 0; i < nritems; i++) {
 
 
 
 
 
 
2457		if (level == 0) {
2458			btrfs_item_key_to_cpu(buf, &key, i);
2459			if (key.type != BTRFS_EXTENT_DATA_KEY)
2460				continue;
2461			fi = btrfs_item_ptr(buf, i,
2462					    struct btrfs_file_extent_item);
2463			if (btrfs_file_extent_type(buf, fi) ==
2464			    BTRFS_FILE_EXTENT_INLINE)
2465				continue;
2466			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2467			if (bytenr == 0)
2468				continue;
2469
2470			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
 
 
2471			key.offset -= btrfs_file_extent_offset(buf, fi);
2472			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2473					       num_bytes, parent);
2474			generic_ref.real_root = root->root_key.objectid;
2475			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2476					    key.offset);
2477			generic_ref.skip_qgroup = for_reloc;
2478			if (inc)
2479				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2480			else
2481				ret = btrfs_free_extent(trans, &generic_ref);
2482			if (ret)
2483				goto fail;
2484		} else {
2485			bytenr = btrfs_node_blockptr(buf, i);
2486			num_bytes = fs_info->nodesize;
2487			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2488					       num_bytes, parent);
2489			generic_ref.real_root = root->root_key.objectid;
2490			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
2491			generic_ref.skip_qgroup = for_reloc;
2492			if (inc)
2493				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2494			else
2495				ret = btrfs_free_extent(trans, &generic_ref);
2496			if (ret)
2497				goto fail;
2498		}
2499	}
2500	return 0;
2501fail:
2502	return ret;
2503}
2504
2505int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2506		  struct extent_buffer *buf, int full_backref)
2507{
2508	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2509}
2510
2511int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2512		  struct extent_buffer *buf, int full_backref)
2513{
2514	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2515}
2516
2517int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
2518{
2519	struct btrfs_block_group_cache *block_group;
2520	int readonly = 0;
2521
2522	block_group = btrfs_lookup_block_group(fs_info, bytenr);
2523	if (!block_group || block_group->ro)
2524		readonly = 1;
2525	if (block_group)
2526		btrfs_put_block_group(block_group);
2527	return readonly;
2528}
2529
2530static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2531{
2532	struct btrfs_fs_info *fs_info = root->fs_info;
2533	u64 flags;
2534	u64 ret;
2535
2536	if (data)
2537		flags = BTRFS_BLOCK_GROUP_DATA;
2538	else if (root == fs_info->chunk_root)
2539		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2540	else
2541		flags = BTRFS_BLOCK_GROUP_METADATA;
2542
2543	ret = btrfs_get_alloc_profile(fs_info, flags);
2544	return ret;
2545}
2546
2547static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2548{
2549	struct btrfs_block_group_cache *cache;
2550	u64 bytenr;
2551
2552	spin_lock(&fs_info->block_group_cache_lock);
2553	bytenr = fs_info->first_logical_byte;
2554	spin_unlock(&fs_info->block_group_cache_lock);
 
 
2555
2556	if (bytenr < (u64)-1)
2557		return bytenr;
2558
2559	cache = btrfs_lookup_first_block_group(fs_info, search_start);
2560	if (!cache)
2561		return 0;
2562
2563	bytenr = cache->key.objectid;
2564	btrfs_put_block_group(cache);
2565
2566	return bytenr;
2567}
2568
2569static int pin_down_extent(struct btrfs_block_group_cache *cache,
 
2570			   u64 bytenr, u64 num_bytes, int reserved)
2571{
2572	struct btrfs_fs_info *fs_info = cache->fs_info;
2573
2574	spin_lock(&cache->space_info->lock);
2575	spin_lock(&cache->lock);
2576	cache->pinned += num_bytes;
2577	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2578					     num_bytes);
2579	if (reserved) {
2580		cache->reserved -= num_bytes;
2581		cache->space_info->bytes_reserved -= num_bytes;
2582	}
2583	spin_unlock(&cache->lock);
2584	spin_unlock(&cache->space_info->lock);
2585
2586	percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
2587		    num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2588	set_extent_dirty(fs_info->pinned_extents, bytenr,
2589			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2590	return 0;
2591}
2592
2593/*
2594 * this function must be called within transaction
2595 */
2596int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
2597		     u64 bytenr, u64 num_bytes, int reserved)
2598{
2599	struct btrfs_block_group_cache *cache;
2600
2601	cache = btrfs_lookup_block_group(fs_info, bytenr);
2602	BUG_ON(!cache); /* Logic error */
2603
2604	pin_down_extent(cache, bytenr, num_bytes, reserved);
2605
2606	btrfs_put_block_group(cache);
2607	return 0;
2608}
2609
2610/*
2611 * this function must be called within transaction
2612 */
2613int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
2614				    u64 bytenr, u64 num_bytes)
2615{
2616	struct btrfs_block_group_cache *cache;
2617	int ret;
2618
2619	cache = btrfs_lookup_block_group(fs_info, bytenr);
2620	if (!cache)
2621		return -EINVAL;
2622
2623	/*
2624	 * pull in the free space cache (if any) so that our pin
2625	 * removes the free space from the cache.  We have load_only set
2626	 * to one because the slow code to read in the free extents does check
2627	 * the pinned extents.
2628	 */
2629	btrfs_cache_block_group(cache, 1);
 
 
2630
2631	pin_down_extent(cache, bytenr, num_bytes, 0);
2632
2633	/* remove us from the free space cache (if we're there at all) */
2634	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
 
2635	btrfs_put_block_group(cache);
2636	return ret;
2637}
2638
2639static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2640				   u64 start, u64 num_bytes)
2641{
2642	int ret;
2643	struct btrfs_block_group_cache *block_group;
2644	struct btrfs_caching_control *caching_ctl;
2645
2646	block_group = btrfs_lookup_block_group(fs_info, start);
2647	if (!block_group)
2648		return -EINVAL;
2649
2650	btrfs_cache_block_group(block_group, 0);
2651	caching_ctl = btrfs_get_caching_control(block_group);
2652
2653	if (!caching_ctl) {
2654		/* Logic error */
2655		BUG_ON(!btrfs_block_group_cache_done(block_group));
2656		ret = btrfs_remove_free_space(block_group, start, num_bytes);
2657	} else {
2658		mutex_lock(&caching_ctl->mutex);
2659
2660		if (start >= caching_ctl->progress) {
2661			ret = btrfs_add_excluded_extent(fs_info, start,
2662							num_bytes);
2663		} else if (start + num_bytes <= caching_ctl->progress) {
2664			ret = btrfs_remove_free_space(block_group,
2665						      start, num_bytes);
2666		} else {
2667			num_bytes = caching_ctl->progress - start;
2668			ret = btrfs_remove_free_space(block_group,
2669						      start, num_bytes);
2670			if (ret)
2671				goto out_lock;
2672
2673			num_bytes = (start + num_bytes) -
2674				caching_ctl->progress;
2675			start = caching_ctl->progress;
2676			ret = btrfs_add_excluded_extent(fs_info, start,
2677							num_bytes);
2678		}
2679out_lock:
2680		mutex_unlock(&caching_ctl->mutex);
2681		btrfs_put_caching_control(caching_ctl);
2682	}
2683	btrfs_put_block_group(block_group);
2684	return ret;
2685}
2686
2687int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2688{
2689	struct btrfs_fs_info *fs_info = eb->fs_info;
2690	struct btrfs_file_extent_item *item;
2691	struct btrfs_key key;
2692	int found_type;
2693	int i;
2694	int ret = 0;
2695
2696	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2697		return 0;
2698
2699	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2700		btrfs_item_key_to_cpu(eb, &key, i);
2701		if (key.type != BTRFS_EXTENT_DATA_KEY)
2702			continue;
2703		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2704		found_type = btrfs_file_extent_type(eb, item);
2705		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2706			continue;
2707		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2708			continue;
2709		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2710		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2711		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2712		if (ret)
2713			break;
2714	}
2715
2716	return ret;
2717}
2718
2719static void
2720btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
2721{
2722	atomic_inc(&bg->reservations);
2723}
2724
2725void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
2726{
2727	struct btrfs_caching_control *next;
2728	struct btrfs_caching_control *caching_ctl;
2729	struct btrfs_block_group_cache *cache;
2730
2731	down_write(&fs_info->commit_root_sem);
2732
2733	list_for_each_entry_safe(caching_ctl, next,
2734				 &fs_info->caching_block_groups, list) {
2735		cache = caching_ctl->block_group;
2736		if (btrfs_block_group_cache_done(cache)) {
2737			cache->last_byte_to_unpin = (u64)-1;
2738			list_del_init(&caching_ctl->list);
2739			btrfs_put_caching_control(caching_ctl);
2740		} else {
2741			cache->last_byte_to_unpin = caching_ctl->progress;
2742		}
2743	}
2744
2745	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
2746		fs_info->pinned_extents = &fs_info->freed_extents[1];
2747	else
2748		fs_info->pinned_extents = &fs_info->freed_extents[0];
2749
2750	up_write(&fs_info->commit_root_sem);
2751
2752	btrfs_update_global_block_rsv(fs_info);
2753}
2754
2755/*
2756 * Returns the free cluster for the given space info and sets empty_cluster to
2757 * what it should be based on the mount options.
2758 */
2759static struct btrfs_free_cluster *
2760fetch_cluster_info(struct btrfs_fs_info *fs_info,
2761		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2762{
2763	struct btrfs_free_cluster *ret = NULL;
2764
2765	*empty_cluster = 0;
2766	if (btrfs_mixed_space_info(space_info))
2767		return ret;
2768
2769	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2770		ret = &fs_info->meta_alloc_cluster;
2771		if (btrfs_test_opt(fs_info, SSD))
2772			*empty_cluster = SZ_2M;
2773		else
2774			*empty_cluster = SZ_64K;
2775	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2776		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2777		*empty_cluster = SZ_2M;
2778		ret = &fs_info->data_alloc_cluster;
2779	}
2780
2781	return ret;
2782}
2783
2784static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2785			      u64 start, u64 end,
2786			      const bool return_free_space)
2787{
2788	struct btrfs_block_group_cache *cache = NULL;
2789	struct btrfs_space_info *space_info;
2790	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2791	struct btrfs_free_cluster *cluster = NULL;
2792	u64 len;
2793	u64 total_unpinned = 0;
2794	u64 empty_cluster = 0;
2795	bool readonly;
 
2796
2797	while (start <= end) {
2798		readonly = false;
2799		if (!cache ||
2800		    start >= cache->key.objectid + cache->key.offset) {
2801			if (cache)
2802				btrfs_put_block_group(cache);
2803			total_unpinned = 0;
2804			cache = btrfs_lookup_block_group(fs_info, start);
2805			BUG_ON(!cache); /* Logic error */
 
 
 
 
2806
2807			cluster = fetch_cluster_info(fs_info,
2808						     cache->space_info,
2809						     &empty_cluster);
2810			empty_cluster <<= 1;
2811		}
2812
2813		len = cache->key.objectid + cache->key.offset - start;
2814		len = min(len, end + 1 - start);
2815
2816		if (start < cache->last_byte_to_unpin) {
2817			len = min(len, cache->last_byte_to_unpin - start);
2818			if (return_free_space)
2819				btrfs_add_free_space(cache, start, len);
2820		}
2821
2822		start += len;
2823		total_unpinned += len;
2824		space_info = cache->space_info;
2825
2826		/*
2827		 * If this space cluster has been marked as fragmented and we've
2828		 * unpinned enough in this block group to potentially allow a
2829		 * cluster to be created inside of it go ahead and clear the
2830		 * fragmented check.
2831		 */
2832		if (cluster && cluster->fragmented &&
2833		    total_unpinned > empty_cluster) {
2834			spin_lock(&cluster->lock);
2835			cluster->fragmented = 0;
2836			spin_unlock(&cluster->lock);
2837		}
2838
2839		spin_lock(&space_info->lock);
2840		spin_lock(&cache->lock);
2841		cache->pinned -= len;
2842		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2843		space_info->max_extent_size = 0;
2844		percpu_counter_add_batch(&space_info->total_bytes_pinned,
2845			    -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2846		if (cache->ro) {
2847			space_info->bytes_readonly += len;
2848			readonly = true;
 
 
 
 
 
2849		}
2850		spin_unlock(&cache->lock);
2851		if (!readonly && return_free_space &&
2852		    global_rsv->space_info == space_info) {
2853			u64 to_add = len;
2854
2855			spin_lock(&global_rsv->lock);
2856			if (!global_rsv->full) {
2857				to_add = min(len, global_rsv->size -
2858					     global_rsv->reserved);
 
2859				global_rsv->reserved += to_add;
2860				btrfs_space_info_update_bytes_may_use(fs_info,
2861						space_info, to_add);
2862				if (global_rsv->reserved >= global_rsv->size)
2863					global_rsv->full = 1;
2864				len -= to_add;
2865			}
2866			spin_unlock(&global_rsv->lock);
2867			/* Add to any tickets we may have */
2868			if (len)
2869				btrfs_try_granting_tickets(fs_info,
2870							   space_info);
2871		}
 
 
 
2872		spin_unlock(&space_info->lock);
2873	}
2874
2875	if (cache)
2876		btrfs_put_block_group(cache);
2877	return 0;
 
2878}
2879
2880int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2881{
2882	struct btrfs_fs_info *fs_info = trans->fs_info;
2883	struct btrfs_block_group_cache *block_group, *tmp;
2884	struct list_head *deleted_bgs;
2885	struct extent_io_tree *unpin;
2886	u64 start;
2887	u64 end;
2888	int ret;
2889
2890	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
2891		unpin = &fs_info->freed_extents[1];
2892	else
2893		unpin = &fs_info->freed_extents[0];
2894
2895	while (!trans->aborted) {
2896		struct extent_state *cached_state = NULL;
2897
2898		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2899		ret = find_first_extent_bit(unpin, 0, &start, &end,
2900					    EXTENT_DIRTY, &cached_state);
2901		if (ret) {
2902			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2903			break;
2904		}
2905
2906		if (btrfs_test_opt(fs_info, DISCARD))
2907			ret = btrfs_discard_extent(fs_info, start,
2908						   end + 1 - start, NULL);
2909
2910		clear_extent_dirty(unpin, start, end, &cached_state);
2911		unpin_extent_range(fs_info, start, end, true);
 
2912		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2913		free_extent_state(cached_state);
2914		cond_resched();
2915	}
2916
 
 
 
 
 
2917	/*
2918	 * Transaction is finished.  We don't need the lock anymore.  We
2919	 * do need to clean up the block groups in case of a transaction
2920	 * abort.
2921	 */
2922	deleted_bgs = &trans->transaction->deleted_bgs;
2923	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2924		u64 trimmed = 0;
2925
2926		ret = -EROFS;
2927		if (!trans->aborted)
2928			ret = btrfs_discard_extent(fs_info,
2929						   block_group->key.objectid,
2930						   block_group->key.offset,
2931						   &trimmed);
2932
2933		list_del_init(&block_group->bg_list);
2934		btrfs_put_block_group_trimming(block_group);
2935		btrfs_put_block_group(block_group);
2936
2937		if (ret) {
2938			const char *errstr = btrfs_decode_error(ret);
2939			btrfs_warn(fs_info,
2940			   "discard failed while removing blockgroup: errno=%d %s",
2941				   ret, errstr);
2942		}
2943	}
2944
2945	return 0;
2946}
2947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2948static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2949			       struct btrfs_delayed_ref_node *node, u64 parent,
2950			       u64 root_objectid, u64 owner_objectid,
2951			       u64 owner_offset, int refs_to_drop,
2952			       struct btrfs_delayed_extent_op *extent_op)
2953{
2954	struct btrfs_fs_info *info = trans->fs_info;
2955	struct btrfs_key key;
2956	struct btrfs_path *path;
2957	struct btrfs_root *extent_root = info->extent_root;
2958	struct extent_buffer *leaf;
2959	struct btrfs_extent_item *ei;
2960	struct btrfs_extent_inline_ref *iref;
2961	int ret;
2962	int is_data;
2963	int extent_slot = 0;
2964	int found_extent = 0;
2965	int num_to_del = 1;
 
2966	u32 item_size;
2967	u64 refs;
2968	u64 bytenr = node->bytenr;
2969	u64 num_bytes = node->num_bytes;
2970	int last_ref = 0;
 
2971	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
 
 
 
 
2972
2973	path = btrfs_alloc_path();
2974	if (!path)
2975		return -ENOMEM;
2976
2977	path->reada = READA_FORWARD;
2978	path->leave_spinning = 1;
2979
2980	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2981	BUG_ON(!is_data && refs_to_drop != 1);
 
 
 
 
 
 
 
 
2982
2983	if (is_data)
2984		skinny_metadata = false;
2985
2986	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2987				    parent, root_objectid, owner_objectid,
2988				    owner_offset);
2989	if (ret == 0) {
 
 
 
 
 
 
 
2990		extent_slot = path->slots[0];
2991		while (extent_slot >= 0) {
2992			btrfs_item_key_to_cpu(path->nodes[0], &key,
2993					      extent_slot);
2994			if (key.objectid != bytenr)
2995				break;
2996			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2997			    key.offset == num_bytes) {
2998				found_extent = 1;
2999				break;
3000			}
3001			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3002			    key.offset == owner_objectid) {
3003				found_extent = 1;
3004				break;
3005			}
 
 
3006			if (path->slots[0] - extent_slot > 5)
3007				break;
3008			extent_slot--;
3009		}
3010
3011		if (!found_extent) {
3012			BUG_ON(iref);
3013			ret = remove_extent_backref(trans, path, NULL,
3014						    refs_to_drop,
3015						    is_data, &last_ref);
 
 
 
 
 
 
3016			if (ret) {
3017				btrfs_abort_transaction(trans, ret);
3018				goto out;
3019			}
3020			btrfs_release_path(path);
3021			path->leave_spinning = 1;
3022
 
3023			key.objectid = bytenr;
3024			key.type = BTRFS_EXTENT_ITEM_KEY;
3025			key.offset = num_bytes;
3026
3027			if (!is_data && skinny_metadata) {
3028				key.type = BTRFS_METADATA_ITEM_KEY;
3029				key.offset = owner_objectid;
3030			}
3031
3032			ret = btrfs_search_slot(trans, extent_root,
3033						&key, path, -1, 1);
3034			if (ret > 0 && skinny_metadata && path->slots[0]) {
3035				/*
3036				 * Couldn't find our skinny metadata item,
3037				 * see if we have ye olde extent item.
3038				 */
3039				path->slots[0]--;
3040				btrfs_item_key_to_cpu(path->nodes[0], &key,
3041						      path->slots[0]);
3042				if (key.objectid == bytenr &&
3043				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3044				    key.offset == num_bytes)
3045					ret = 0;
3046			}
3047
3048			if (ret > 0 && skinny_metadata) {
3049				skinny_metadata = false;
3050				key.objectid = bytenr;
3051				key.type = BTRFS_EXTENT_ITEM_KEY;
3052				key.offset = num_bytes;
3053				btrfs_release_path(path);
3054				ret = btrfs_search_slot(trans, extent_root,
3055							&key, path, -1, 1);
3056			}
3057
3058			if (ret) {
3059				btrfs_err(info,
3060					  "umm, got %d back from search, was looking for %llu",
3061					  ret, bytenr);
3062				if (ret > 0)
3063					btrfs_print_leaf(path->nodes[0]);
 
 
 
3064			}
3065			if (ret < 0) {
3066				btrfs_abort_transaction(trans, ret);
3067				goto out;
3068			}
3069			extent_slot = path->slots[0];
3070		}
3071	} else if (WARN_ON(ret == -ENOENT)) {
3072		btrfs_print_leaf(path->nodes[0]);
3073		btrfs_err(info,
3074			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3075			bytenr, parent, root_objectid, owner_objectid,
3076			owner_offset);
3077		btrfs_abort_transaction(trans, ret);
3078		goto out;
3079	} else {
3080		btrfs_abort_transaction(trans, ret);
3081		goto out;
3082	}
3083
3084	leaf = path->nodes[0];
3085	item_size = btrfs_item_size_nr(leaf, extent_slot);
3086	if (unlikely(item_size < sizeof(*ei))) {
3087		ret = -EINVAL;
3088		btrfs_print_v0_err(info);
 
 
3089		btrfs_abort_transaction(trans, ret);
3090		goto out;
3091	}
3092	ei = btrfs_item_ptr(leaf, extent_slot,
3093			    struct btrfs_extent_item);
3094	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3095	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3096		struct btrfs_tree_block_info *bi;
3097		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
 
 
 
 
 
 
 
 
 
3098		bi = (struct btrfs_tree_block_info *)(ei + 1);
3099		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3100	}
3101
3102	refs = btrfs_extent_refs(leaf, ei);
3103	if (refs < refs_to_drop) {
3104		btrfs_err(info,
3105			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
3106			  refs_to_drop, refs, bytenr);
3107		ret = -EINVAL;
3108		btrfs_abort_transaction(trans, ret);
3109		goto out;
3110	}
3111	refs -= refs_to_drop;
3112
3113	if (refs > 0) {
3114		if (extent_op)
3115			__run_delayed_extent_op(extent_op, leaf, ei);
3116		/*
3117		 * In the case of inline back ref, reference count will
3118		 * be updated by remove_extent_backref
3119		 */
3120		if (iref) {
3121			BUG_ON(!found_extent);
 
 
 
 
 
 
3122		} else {
3123			btrfs_set_extent_refs(leaf, ei, refs);
3124			btrfs_mark_buffer_dirty(leaf);
3125		}
3126		if (found_extent) {
3127			ret = remove_extent_backref(trans, path, iref,
3128						    refs_to_drop, is_data,
3129						    &last_ref);
3130			if (ret) {
3131				btrfs_abort_transaction(trans, ret);
3132				goto out;
3133			}
3134		}
3135	} else {
 
 
 
 
 
 
 
 
 
3136		if (found_extent) {
3137			BUG_ON(is_data && refs_to_drop !=
3138			       extent_data_ref_count(path, iref));
 
 
 
 
 
 
 
3139			if (iref) {
3140				BUG_ON(path->slots[0] != extent_slot);
 
 
 
 
 
 
 
3141			} else {
3142				BUG_ON(path->slots[0] != extent_slot + 1);
 
 
 
 
 
 
 
 
 
 
 
 
3143				path->slots[0] = extent_slot;
3144				num_to_del = 2;
3145			}
3146		}
 
 
 
 
 
 
 
 
 
 
3147
3148		last_ref = 1;
3149		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3150				      num_to_del);
3151		if (ret) {
3152			btrfs_abort_transaction(trans, ret);
3153			goto out;
3154		}
3155		btrfs_release_path(path);
3156
3157		if (is_data) {
3158			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
3159			if (ret) {
3160				btrfs_abort_transaction(trans, ret);
3161				goto out;
3162			}
3163		}
3164
3165		ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3166		if (ret) {
3167			btrfs_abort_transaction(trans, ret);
3168			goto out;
3169		}
3170
3171		ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3172		if (ret) {
3173			btrfs_abort_transaction(trans, ret);
3174			goto out;
3175		}
3176	}
3177	btrfs_release_path(path);
3178
3179out:
3180	btrfs_free_path(path);
3181	return ret;
3182}
3183
3184/*
3185 * when we free an block, it is possible (and likely) that we free the last
3186 * delayed ref for that extent as well.  This searches the delayed ref tree for
3187 * a given extent, and if there are no other delayed refs to be processed, it
3188 * removes it from the tree.
3189 */
3190static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3191				      u64 bytenr)
3192{
 
3193	struct btrfs_delayed_ref_head *head;
3194	struct btrfs_delayed_ref_root *delayed_refs;
3195	int ret = 0;
3196
3197	delayed_refs = &trans->transaction->delayed_refs;
3198	spin_lock(&delayed_refs->lock);
3199	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3200	if (!head)
3201		goto out_delayed_unlock;
3202
3203	spin_lock(&head->lock);
3204	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3205		goto out;
3206
3207	if (cleanup_extent_op(head) != NULL)
3208		goto out;
3209
3210	/*
3211	 * waiting for the lock here would deadlock.  If someone else has it
3212	 * locked they are already in the process of dropping it anyway
3213	 */
3214	if (!mutex_trylock(&head->mutex))
3215		goto out;
3216
3217	btrfs_delete_ref_head(delayed_refs, head);
3218	head->processing = 0;
3219
3220	spin_unlock(&head->lock);
3221	spin_unlock(&delayed_refs->lock);
3222
3223	BUG_ON(head->extent_op);
3224	if (head->must_insert_reserved)
3225		ret = 1;
3226
3227	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3228	mutex_unlock(&head->mutex);
3229	btrfs_put_delayed_ref_head(head);
3230	return ret;
3231out:
3232	spin_unlock(&head->lock);
3233
3234out_delayed_unlock:
3235	spin_unlock(&delayed_refs->lock);
3236	return 0;
3237}
3238
3239void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3240			   struct btrfs_root *root,
3241			   struct extent_buffer *buf,
3242			   u64 parent, int last_ref)
3243{
3244	struct btrfs_fs_info *fs_info = root->fs_info;
3245	struct btrfs_ref generic_ref = { 0 };
3246	int pin = 1;
3247	int ret;
3248
3249	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3250			       buf->start, buf->len, parent);
3251	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3252			    root->root_key.objectid);
 
 
 
 
 
3253
3254	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3255		int old_ref_mod, new_ref_mod;
 
 
 
 
 
3256
 
3257		btrfs_ref_tree_mod(fs_info, &generic_ref);
3258		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
3259						 &old_ref_mod, &new_ref_mod);
3260		BUG_ON(ret); /* -ENOMEM */
3261		pin = old_ref_mod >= 0 && new_ref_mod < 0;
3262	}
3263
3264	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3265		struct btrfs_block_group_cache *cache;
3266
3267		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3268			ret = check_ref_cleanup(trans, buf->start);
3269			if (!ret)
3270				goto out;
3271		}
3272
3273		pin = 0;
3274		cache = btrfs_lookup_block_group(fs_info, buf->start);
3275
3276		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3277			pin_down_extent(cache, buf->start, buf->len, 1);
3278			btrfs_put_block_group(cache);
3279			goto out;
3280		}
3281
3282		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3283
3284		btrfs_add_free_space(cache, buf->start, buf->len);
3285		btrfs_free_reserved_bytes(cache, buf->len, 0);
3286		btrfs_put_block_group(cache);
3287		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3288	}
3289out:
3290	if (pin)
3291		add_pinned_bytes(fs_info, &generic_ref);
3292
3293	if (last_ref) {
3294		/*
3295		 * Deleting the buffer, clear the corrupt flag since it doesn't
3296		 * matter anymore.
3297		 */
3298		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3299	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3300}
3301
3302/* Can return -ENOMEM */
3303int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3304{
3305	struct btrfs_fs_info *fs_info = trans->fs_info;
3306	int old_ref_mod, new_ref_mod;
3307	int ret;
3308
3309	if (btrfs_is_testing(fs_info))
3310		return 0;
3311
3312	/*
3313	 * tree log blocks never actually go into the extent allocation
3314	 * tree, just update pinning info and exit early.
3315	 */
3316	if ((ref->type == BTRFS_REF_METADATA &&
3317	     ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3318	    (ref->type == BTRFS_REF_DATA &&
3319	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3320		/* unlocks the pinned mutex */
3321		btrfs_pin_extent(fs_info, ref->bytenr, ref->len, 1);
3322		old_ref_mod = new_ref_mod = 0;
3323		ret = 0;
3324	} else if (ref->type == BTRFS_REF_METADATA) {
3325		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
3326						 &old_ref_mod, &new_ref_mod);
3327	} else {
3328		ret = btrfs_add_delayed_data_ref(trans, ref, 0,
3329						 &old_ref_mod, &new_ref_mod);
3330	}
3331
3332	if (!((ref->type == BTRFS_REF_METADATA &&
3333	       ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3334	      (ref->type == BTRFS_REF_DATA &&
3335	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3336		btrfs_ref_tree_mod(fs_info, ref);
3337
3338	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
3339		add_pinned_bytes(fs_info, ref);
3340
3341	return ret;
3342}
3343
3344enum btrfs_loop_type {
 
 
 
 
3345	LOOP_CACHING_NOWAIT,
 
 
 
 
 
3346	LOOP_CACHING_WAIT,
 
 
 
 
 
 
 
 
 
 
3347	LOOP_ALLOC_CHUNK,
 
 
 
 
 
 
 
 
 
 
3348	LOOP_NO_EMPTY_SIZE,
3349};
3350
3351static inline void
3352btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
3353		       int delalloc)
3354{
3355	if (delalloc)
3356		down_read(&cache->data_rwsem);
3357}
3358
3359static inline void
3360btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
3361		       int delalloc)
3362{
3363	btrfs_get_block_group(cache);
3364	if (delalloc)
3365		down_read(&cache->data_rwsem);
3366}
3367
3368static struct btrfs_block_group_cache *
3369btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
3370		   struct btrfs_free_cluster *cluster,
3371		   int delalloc)
 
3372{
3373	struct btrfs_block_group_cache *used_bg = NULL;
3374
3375	spin_lock(&cluster->refill_lock);
3376	while (1) {
3377		used_bg = cluster->block_group;
3378		if (!used_bg)
3379			return NULL;
3380
3381		if (used_bg == block_group)
3382			return used_bg;
3383
3384		btrfs_get_block_group(used_bg);
3385
3386		if (!delalloc)
3387			return used_bg;
3388
3389		if (down_read_trylock(&used_bg->data_rwsem))
3390			return used_bg;
3391
3392		spin_unlock(&cluster->refill_lock);
3393
3394		/* We should only have one-level nested. */
3395		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3396
3397		spin_lock(&cluster->refill_lock);
3398		if (used_bg == cluster->block_group)
3399			return used_bg;
3400
3401		up_read(&used_bg->data_rwsem);
3402		btrfs_put_block_group(used_bg);
3403	}
3404}
3405
3406static inline void
3407btrfs_release_block_group(struct btrfs_block_group_cache *cache,
3408			 int delalloc)
3409{
3410	if (delalloc)
3411		up_read(&cache->data_rwsem);
3412	btrfs_put_block_group(cache);
3413}
3414
3415/*
3416 * Structure used internally for find_free_extent() function.  Wraps needed
3417 * parameters.
3418 */
3419struct find_free_extent_ctl {
3420	/* Basic allocation info */
3421	u64 ram_bytes;
3422	u64 num_bytes;
3423	u64 empty_size;
3424	u64 flags;
3425	int delalloc;
3426
3427	/* Where to start the search inside the bg */
3428	u64 search_start;
3429
3430	/* For clustered allocation */
3431	u64 empty_cluster;
3432
3433	bool have_caching_bg;
3434	bool orig_have_caching_bg;
3435
3436	/* RAID index, converted from flags */
3437	int index;
3438
3439	/*
3440	 * Current loop number, check find_free_extent_update_loop() for details
3441	 */
3442	int loop;
3443
3444	/*
3445	 * Whether we're refilling a cluster, if true we need to re-search
3446	 * current block group but don't try to refill the cluster again.
3447	 */
3448	bool retry_clustered;
3449
3450	/*
3451	 * Whether we're updating free space cache, if true we need to re-search
3452	 * current block group but don't try updating free space cache again.
3453	 */
3454	bool retry_unclustered;
3455
3456	/* If current block group is cached */
3457	int cached;
3458
3459	/* Max contiguous hole found */
3460	u64 max_extent_size;
3461
3462	/* Total free space from free space cache, not always contiguous */
3463	u64 total_free_space;
3464
3465	/* Found result */
3466	u64 found_offset;
3467};
3468
3469
3470/*
3471 * Helper function for find_free_extent().
3472 *
3473 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3474 * Return -EAGAIN to inform caller that we need to re-search this block group
3475 * Return >0 to inform caller that we find nothing
3476 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3477 */
3478static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
3479		struct btrfs_free_cluster *last_ptr,
3480		struct find_free_extent_ctl *ffe_ctl,
3481		struct btrfs_block_group_cache **cluster_bg_ret)
3482{
3483	struct btrfs_block_group_cache *cluster_bg;
 
3484	u64 aligned_cluster;
3485	u64 offset;
3486	int ret;
3487
3488	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3489	if (!cluster_bg)
3490		goto refill_cluster;
3491	if (cluster_bg != bg && (cluster_bg->ro ||
3492	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3493		goto release_cluster;
3494
3495	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3496			ffe_ctl->num_bytes, cluster_bg->key.objectid,
3497			&ffe_ctl->max_extent_size);
3498	if (offset) {
3499		/* We have a block, we're done */
3500		spin_unlock(&last_ptr->refill_lock);
3501		trace_btrfs_reserve_extent_cluster(cluster_bg,
3502				ffe_ctl->search_start, ffe_ctl->num_bytes);
3503		*cluster_bg_ret = cluster_bg;
3504		ffe_ctl->found_offset = offset;
3505		return 0;
3506	}
3507	WARN_ON(last_ptr->block_group != cluster_bg);
3508
3509release_cluster:
3510	/*
3511	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3512	 * lets just skip it and let the allocator find whatever block it can
3513	 * find. If we reach this point, we will have tried the cluster
3514	 * allocator plenty of times and not have found anything, so we are
3515	 * likely way too fragmented for the clustering stuff to find anything.
3516	 *
3517	 * However, if the cluster is taken from the current block group,
3518	 * release the cluster first, so that we stand a better chance of
3519	 * succeeding in the unclustered allocation.
3520	 */
3521	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3522		spin_unlock(&last_ptr->refill_lock);
3523		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3524		return -ENOENT;
3525	}
3526
3527	/* This cluster didn't work out, free it and start over */
3528	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3529
3530	if (cluster_bg != bg)
3531		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3532
3533refill_cluster:
3534	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3535		spin_unlock(&last_ptr->refill_lock);
3536		return -ENOENT;
3537	}
3538
3539	aligned_cluster = max_t(u64,
3540			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3541			bg->full_stripe_len);
3542	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3543			ffe_ctl->num_bytes, aligned_cluster);
3544	if (ret == 0) {
3545		/* Now pull our allocation out of this cluster */
3546		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3547				ffe_ctl->num_bytes, ffe_ctl->search_start,
3548				&ffe_ctl->max_extent_size);
3549		if (offset) {
3550			/* We found one, proceed */
3551			spin_unlock(&last_ptr->refill_lock);
3552			trace_btrfs_reserve_extent_cluster(bg,
3553					ffe_ctl->search_start,
3554					ffe_ctl->num_bytes);
3555			ffe_ctl->found_offset = offset;
 
3556			return 0;
3557		}
3558	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3559		   !ffe_ctl->retry_clustered) {
3560		spin_unlock(&last_ptr->refill_lock);
3561
3562		ffe_ctl->retry_clustered = true;
3563		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3564				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3565		return -EAGAIN;
3566	}
3567	/*
3568	 * At this point we either didn't find a cluster or we weren't able to
3569	 * allocate a block from our cluster.  Free the cluster we've been
3570	 * trying to use, and go to the next block group.
3571	 */
3572	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3573	spin_unlock(&last_ptr->refill_lock);
3574	return 1;
3575}
3576
3577/*
3578 * Return >0 to inform caller that we find nothing
3579 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3580 * Return -EAGAIN to inform caller that we need to re-search this block group
3581 */
3582static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg,
3583		struct btrfs_free_cluster *last_ptr,
3584		struct find_free_extent_ctl *ffe_ctl)
3585{
 
3586	u64 offset;
3587
3588	/*
3589	 * We are doing an unclustered allocation, set the fragmented flag so
3590	 * we don't bother trying to setup a cluster again until we get more
3591	 * space.
3592	 */
3593	if (unlikely(last_ptr)) {
3594		spin_lock(&last_ptr->lock);
3595		last_ptr->fragmented = 1;
3596		spin_unlock(&last_ptr->lock);
3597	}
3598	if (ffe_ctl->cached) {
3599		struct btrfs_free_space_ctl *free_space_ctl;
3600
3601		free_space_ctl = bg->free_space_ctl;
3602		spin_lock(&free_space_ctl->tree_lock);
3603		if (free_space_ctl->free_space <
3604		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3605		    ffe_ctl->empty_size) {
3606			ffe_ctl->total_free_space = max_t(u64,
3607					ffe_ctl->total_free_space,
3608					free_space_ctl->free_space);
3609			spin_unlock(&free_space_ctl->tree_lock);
3610			return 1;
3611		}
3612		spin_unlock(&free_space_ctl->tree_lock);
3613	}
3614
3615	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3616			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3617			&ffe_ctl->max_extent_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3618
3619	/*
3620	 * If we didn't find a chunk, and we haven't failed on this block group
3621	 * before, and this block group is in the middle of caching and we are
3622	 * ok with waiting, then go ahead and wait for progress to be made, and
3623	 * set @retry_unclustered to true.
3624	 *
3625	 * If @retry_unclustered is true then we've already waited on this
3626	 * block group once and should move on to the next block group.
3627	 */
3628	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3629	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3630		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3631						      ffe_ctl->empty_size);
3632		ffe_ctl->retry_unclustered = true;
3633		return -EAGAIN;
3634	} else if (!offset) {
3635		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3636	}
3637	ffe_ctl->found_offset = offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3638	return 0;
3639}
3640
 
 
 
 
 
 
 
 
 
 
 
 
 
3641/*
3642 * Return >0 means caller needs to re-search for free extent
3643 * Return 0 means we have the needed free extent.
3644 * Return <0 means we failed to locate any free extent.
3645 */
3646static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3647					struct btrfs_free_cluster *last_ptr,
3648					struct btrfs_key *ins,
3649					struct find_free_extent_ctl *ffe_ctl,
3650					int full_search, bool use_cluster)
3651{
3652	struct btrfs_root *root = fs_info->extent_root;
3653	int ret;
3654
3655	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3656	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3657		ffe_ctl->orig_have_caching_bg = true;
3658
3659	if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3660	    ffe_ctl->have_caching_bg)
3661		return 1;
3662
3663	if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3664		return 1;
3665
3666	if (ins->objectid) {
3667		if (!use_cluster && last_ptr) {
3668			spin_lock(&last_ptr->lock);
3669			last_ptr->window_start = ins->objectid;
3670			spin_unlock(&last_ptr->lock);
3671		}
3672		return 0;
3673	}
3674
3675	/*
3676	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3677	 *			caching kthreads as we move along
3678	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3679	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3680	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3681	 *		       again
3682	 */
3683	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3684		ffe_ctl->index = 0;
3685		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
3686			/*
3687			 * We want to skip the LOOP_CACHING_WAIT step if we
3688			 * don't have any uncached bgs and we've already done a
3689			 * full search through.
3690			 */
3691			if (ffe_ctl->orig_have_caching_bg || !full_search)
3692				ffe_ctl->loop = LOOP_CACHING_WAIT;
3693			else
3694				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
3695		} else {
3696			ffe_ctl->loop++;
3697		}
3698
3699		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3700			struct btrfs_trans_handle *trans;
3701			int exist = 0;
3702
 
 
 
 
 
3703			trans = current->journal_info;
3704			if (trans)
3705				exist = 1;
3706			else
3707				trans = btrfs_join_transaction(root);
3708
3709			if (IS_ERR(trans)) {
3710				ret = PTR_ERR(trans);
3711				return ret;
3712			}
3713
3714			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3715						CHUNK_ALLOC_FORCE);
3716
3717			/*
3718			 * If we can't allocate a new chunk we've already looped
3719			 * through at least once, move on to the NO_EMPTY_SIZE
3720			 * case.
3721			 */
3722			if (ret == -ENOSPC)
3723				ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3724
3725			/* Do not bail out on ENOSPC since we can do more. */
3726			if (ret < 0 && ret != -ENOSPC)
 
 
 
 
3727				btrfs_abort_transaction(trans, ret);
3728			else
3729				ret = 0;
3730			if (!exist)
3731				btrfs_end_transaction(trans);
3732			if (ret)
3733				return ret;
3734		}
3735
3736		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
 
 
 
3737			/*
3738			 * Don't loop again if we already have no empty_size and
3739			 * no empty_cluster.
3740			 */
3741			if (ffe_ctl->empty_size == 0 &&
3742			    ffe_ctl->empty_cluster == 0)
3743				return -ENOSPC;
3744			ffe_ctl->empty_size = 0;
3745			ffe_ctl->empty_cluster = 0;
3746		}
3747		return 1;
3748	}
3749	return -ENOSPC;
3750}
3751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3752/*
3753 * walks the btree of allocated extents and find a hole of a given size.
3754 * The key ins is changed to record the hole:
3755 * ins->objectid == start position
3756 * ins->flags = BTRFS_EXTENT_ITEM_KEY
3757 * ins->offset == the size of the hole.
3758 * Any available blocks before search_start are skipped.
3759 *
3760 * If there is no suitable free space, we will record the max size of
3761 * the free space extent currently.
3762 *
3763 * The overall logic and call chain:
3764 *
3765 * find_free_extent()
3766 * |- Iterate through all block groups
3767 * |  |- Get a valid block group
3768 * |  |- Try to do clustered allocation in that block group
3769 * |  |- Try to do unclustered allocation in that block group
3770 * |  |- Check if the result is valid
3771 * |  |  |- If valid, then exit
3772 * |  |- Jump to next block group
3773 * |
3774 * |- Push harder to find free extents
3775 *    |- If not found, re-iterate all block groups
3776 */
3777static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
3778				u64 ram_bytes, u64 num_bytes, u64 empty_size,
3779				u64 hint_byte, struct btrfs_key *ins,
3780				u64 flags, int delalloc)
3781{
 
3782	int ret = 0;
3783	struct btrfs_free_cluster *last_ptr = NULL;
3784	struct btrfs_block_group_cache *block_group = NULL;
3785	struct find_free_extent_ctl ffe_ctl = {0};
3786	struct btrfs_space_info *space_info;
3787	bool use_cluster = true;
3788	bool full_search = false;
3789
3790	WARN_ON(num_bytes < fs_info->sectorsize);
3791
3792	ffe_ctl.ram_bytes = ram_bytes;
3793	ffe_ctl.num_bytes = num_bytes;
3794	ffe_ctl.empty_size = empty_size;
3795	ffe_ctl.flags = flags;
3796	ffe_ctl.search_start = 0;
3797	ffe_ctl.retry_clustered = false;
3798	ffe_ctl.retry_unclustered = false;
3799	ffe_ctl.delalloc = delalloc;
3800	ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
3801	ffe_ctl.have_caching_bg = false;
3802	ffe_ctl.orig_have_caching_bg = false;
3803	ffe_ctl.found_offset = 0;
 
 
 
 
 
 
 
3804
3805	ins->type = BTRFS_EXTENT_ITEM_KEY;
3806	ins->objectid = 0;
3807	ins->offset = 0;
3808
3809	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3810
3811	space_info = btrfs_find_space_info(fs_info, flags);
3812	if (!space_info) {
3813		btrfs_err(fs_info, "No space info for %llu", flags);
3814		return -ENOSPC;
3815	}
3816
3817	/*
3818	 * If our free space is heavily fragmented we may not be able to make
3819	 * big contiguous allocations, so instead of doing the expensive search
3820	 * for free space, simply return ENOSPC with our max_extent_size so we
3821	 * can go ahead and search for a more manageable chunk.
3822	 *
3823	 * If our max_extent_size is large enough for our allocation simply
3824	 * disable clustering since we will likely not be able to find enough
3825	 * space to create a cluster and induce latency trying.
3826	 */
3827	if (unlikely(space_info->max_extent_size)) {
3828		spin_lock(&space_info->lock);
3829		if (space_info->max_extent_size &&
3830		    num_bytes > space_info->max_extent_size) {
3831			ins->offset = space_info->max_extent_size;
3832			spin_unlock(&space_info->lock);
3833			return -ENOSPC;
3834		} else if (space_info->max_extent_size) {
3835			use_cluster = false;
3836		}
3837		spin_unlock(&space_info->lock);
3838	}
3839
3840	last_ptr = fetch_cluster_info(fs_info, space_info,
3841				      &ffe_ctl.empty_cluster);
3842	if (last_ptr) {
3843		spin_lock(&last_ptr->lock);
3844		if (last_ptr->block_group)
3845			hint_byte = last_ptr->window_start;
3846		if (last_ptr->fragmented) {
3847			/*
3848			 * We still set window_start so we can keep track of the
3849			 * last place we found an allocation to try and save
3850			 * some time.
3851			 */
3852			hint_byte = last_ptr->window_start;
3853			use_cluster = false;
3854		}
3855		spin_unlock(&last_ptr->lock);
3856	}
3857
3858	ffe_ctl.search_start = max(ffe_ctl.search_start,
3859				   first_logical_byte(fs_info, 0));
3860	ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
3861	if (ffe_ctl.search_start == hint_byte) {
3862		block_group = btrfs_lookup_block_group(fs_info,
3863						       ffe_ctl.search_start);
3864		/*
3865		 * we don't want to use the block group if it doesn't match our
3866		 * allocation bits, or if its not cached.
3867		 *
3868		 * However if we are re-searching with an ideal block group
3869		 * picked out then we don't care that the block group is cached.
3870		 */
3871		if (block_group && block_group_bits(block_group, flags) &&
3872		    block_group->cached != BTRFS_CACHE_NO) {
3873			down_read(&space_info->groups_sem);
3874			if (list_empty(&block_group->list) ||
3875			    block_group->ro) {
3876				/*
3877				 * someone is removing this block group,
3878				 * we can't jump into the have_block_group
3879				 * target because our list pointers are not
3880				 * valid
3881				 */
3882				btrfs_put_block_group(block_group);
3883				up_read(&space_info->groups_sem);
3884			} else {
3885				ffe_ctl.index = btrfs_bg_flags_to_raid_index(
3886						block_group->flags);
3887				btrfs_lock_block_group(block_group, delalloc);
 
 
3888				goto have_block_group;
3889			}
3890		} else if (block_group) {
3891			btrfs_put_block_group(block_group);
3892		}
3893	}
3894search:
3895	ffe_ctl.have_caching_bg = false;
3896	if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
3897	    ffe_ctl.index == 0)
 
3898		full_search = true;
3899	down_read(&space_info->groups_sem);
3900	list_for_each_entry(block_group,
3901			    &space_info->block_groups[ffe_ctl.index], list) {
 
 
 
3902		/* If the block group is read-only, we can skip it entirely. */
3903		if (unlikely(block_group->ro))
 
 
 
 
3904			continue;
 
3905
3906		btrfs_grab_block_group(block_group, delalloc);
3907		ffe_ctl.search_start = block_group->key.objectid;
3908
3909		/*
3910		 * this can happen if we end up cycling through all the
3911		 * raid types, but we want to make sure we only allocate
3912		 * for the proper type.
3913		 */
3914		if (!block_group_bits(block_group, flags)) {
3915			u64 extra = BTRFS_BLOCK_GROUP_DUP |
3916				BTRFS_BLOCK_GROUP_RAID1_MASK |
3917				BTRFS_BLOCK_GROUP_RAID56_MASK |
3918				BTRFS_BLOCK_GROUP_RAID10;
3919
3920			/*
3921			 * if they asked for extra copies and this block group
3922			 * doesn't provide them, bail.  This does allow us to
3923			 * fill raid0 from raid1.
3924			 */
3925			if ((flags & extra) && !(block_group->flags & extra))
3926				goto loop;
3927
3928			/*
3929			 * This block group has different flags than we want.
3930			 * It's possible that we have MIXED_GROUP flag but no
3931			 * block group is mixed.  Just skip such block group.
3932			 */
3933			btrfs_release_block_group(block_group, delalloc);
3934			continue;
3935		}
3936
3937have_block_group:
3938		ffe_ctl.cached = btrfs_block_group_cache_done(block_group);
3939		if (unlikely(!ffe_ctl.cached)) {
3940			ffe_ctl.have_caching_bg = true;
3941			ret = btrfs_cache_block_group(block_group, 0);
3942			BUG_ON(ret < 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3943			ret = 0;
3944		}
3945
3946		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
 
 
3947			goto loop;
 
3948
3949		/*
3950		 * Ok we want to try and use the cluster allocator, so
3951		 * lets look there
3952		 */
3953		if (last_ptr && use_cluster) {
3954			struct btrfs_block_group_cache *cluster_bg = NULL;
3955
3956			ret = find_free_extent_clustered(block_group, last_ptr,
3957							 &ffe_ctl, &cluster_bg);
 
 
3958
3959			if (ret == 0) {
3960				if (cluster_bg && cluster_bg != block_group) {
3961					btrfs_release_block_group(block_group,
3962								  delalloc);
3963					block_group = cluster_bg;
3964				}
3965				goto checks;
3966			} else if (ret == -EAGAIN) {
3967				goto have_block_group;
3968			} else if (ret > 0) {
3969				goto loop;
3970			}
3971			/* ret == -ENOENT case falls through */
3972		}
3973
3974		ret = find_free_extent_unclustered(block_group, last_ptr,
3975						   &ffe_ctl);
3976		if (ret == -EAGAIN)
3977			goto have_block_group;
3978		else if (ret > 0)
3979			goto loop;
3980		/* ret == 0 case falls through */
3981checks:
3982		ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
3983					     fs_info->stripesize);
3984
3985		/* move on to the next group */
3986		if (ffe_ctl.search_start + num_bytes >
3987		    block_group->key.objectid + block_group->key.offset) {
3988			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
3989					     num_bytes);
 
3990			goto loop;
3991		}
3992
3993		if (ffe_ctl.found_offset < ffe_ctl.search_start)
3994			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
3995				ffe_ctl.search_start - ffe_ctl.found_offset);
3996
3997		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
3998				num_bytes, delalloc);
 
 
 
3999		if (ret == -EAGAIN) {
4000			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4001					     num_bytes);
 
4002			goto loop;
4003		}
4004		btrfs_inc_block_group_reservations(block_group);
4005
4006		/* we are all good, lets return */
4007		ins->objectid = ffe_ctl.search_start;
4008		ins->offset = num_bytes;
4009
4010		trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4011					   num_bytes);
4012		btrfs_release_block_group(block_group, delalloc);
4013		break;
4014loop:
4015		ffe_ctl.retry_clustered = false;
4016		ffe_ctl.retry_unclustered = false;
4017		BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4018		       ffe_ctl.index);
4019		btrfs_release_block_group(block_group, delalloc);
 
 
 
 
 
4020		cond_resched();
4021	}
4022	up_read(&space_info->groups_sem);
4023
4024	ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
4025					   full_search, use_cluster);
4026	if (ret > 0)
4027		goto search;
4028
4029	if (ret == -ENOSPC) {
4030		/*
4031		 * Use ffe_ctl->total_free_space as fallback if we can't find
4032		 * any contiguous hole.
4033		 */
4034		if (!ffe_ctl.max_extent_size)
4035			ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4036		spin_lock(&space_info->lock);
4037		space_info->max_extent_size = ffe_ctl.max_extent_size;
4038		spin_unlock(&space_info->lock);
4039		ins->offset = ffe_ctl.max_extent_size;
 
 
4040	}
4041	return ret;
4042}
4043
4044/*
4045 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4046 *			  hole that is at least as big as @num_bytes.
4047 *
4048 * @root           -	The root that will contain this extent
4049 *
4050 * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4051 *			is used for accounting purposes. This value differs
4052 *			from @num_bytes only in the case of compressed extents.
4053 *
4054 * @num_bytes      -	Number of bytes to allocate on-disk.
4055 *
4056 * @min_alloc_size -	Indicates the minimum amount of space that the
4057 *			allocator should try to satisfy. In some cases
4058 *			@num_bytes may be larger than what is required and if
4059 *			the filesystem is fragmented then allocation fails.
4060 *			However, the presence of @min_alloc_size gives a
4061 *			chance to try and satisfy the smaller allocation.
4062 *
4063 * @empty_size     -	A hint that you plan on doing more COW. This is the
4064 *			size in bytes the allocator should try to find free
4065 *			next to the block it returns.  This is just a hint and
4066 *			may be ignored by the allocator.
4067 *
4068 * @hint_byte      -	Hint to the allocator to start searching above the byte
4069 *			address passed. It might be ignored.
4070 *
4071 * @ins            -	This key is modified to record the found hole. It will
4072 *			have the following values:
4073 *			ins->objectid == start position
4074 *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4075 *			ins->offset == the size of the hole.
4076 *
4077 * @is_data        -	Boolean flag indicating whether an extent is
4078 *			allocated for data (true) or metadata (false)
4079 *
4080 * @delalloc       -	Boolean flag indicating whether this allocation is for
4081 *			delalloc or not. If 'true' data_rwsem of block groups
4082 *			is going to be acquired.
4083 *
4084 *
4085 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4086 * case -ENOSPC is returned then @ins->offset will contain the size of the
4087 * largest available hole the allocator managed to find.
4088 */
4089int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4090			 u64 num_bytes, u64 min_alloc_size,
4091			 u64 empty_size, u64 hint_byte,
4092			 struct btrfs_key *ins, int is_data, int delalloc)
4093{
4094	struct btrfs_fs_info *fs_info = root->fs_info;
 
4095	bool final_tried = num_bytes == min_alloc_size;
4096	u64 flags;
4097	int ret;
 
 
4098
4099	flags = get_alloc_profile_by_root(root, is_data);
4100again:
4101	WARN_ON(num_bytes < fs_info->sectorsize);
4102	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
4103			       hint_byte, ins, flags, delalloc);
 
 
 
 
 
 
 
 
 
 
4104	if (!ret && !is_data) {
4105		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4106	} else if (ret == -ENOSPC) {
4107		if (!final_tried && ins->offset) {
4108			num_bytes = min(num_bytes >> 1, ins->offset);
4109			num_bytes = round_down(num_bytes,
4110					       fs_info->sectorsize);
4111			num_bytes = max(num_bytes, min_alloc_size);
4112			ram_bytes = num_bytes;
4113			if (num_bytes == min_alloc_size)
4114				final_tried = true;
4115			goto again;
4116		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4117			struct btrfs_space_info *sinfo;
4118
4119			sinfo = btrfs_find_space_info(fs_info, flags);
4120			btrfs_err(fs_info,
4121				  "allocation failed flags %llu, wanted %llu",
4122				  flags, num_bytes);
4123			if (sinfo)
4124				btrfs_dump_space_info(fs_info, sinfo,
4125						      num_bytes, 1);
4126		}
4127	}
4128
4129	return ret;
4130}
4131
4132static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4133					u64 start, u64 len,
4134					int pin, int delalloc)
4135{
4136	struct btrfs_block_group_cache *cache;
4137	int ret = 0;
4138
4139	cache = btrfs_lookup_block_group(fs_info, start);
4140	if (!cache) {
4141		btrfs_err(fs_info, "Unable to find block group for %llu",
4142			  start);
4143		return -ENOSPC;
4144	}
4145
4146	if (pin)
4147		pin_down_extent(cache, start, len, 1);
4148	else {
4149		if (btrfs_test_opt(fs_info, DISCARD))
4150			ret = btrfs_discard_extent(fs_info, start, len, NULL);
4151		btrfs_add_free_space(cache, start, len);
4152		btrfs_free_reserved_bytes(cache, len, delalloc);
4153		trace_btrfs_reserved_extent_free(fs_info, start, len);
4154	}
4155
4156	btrfs_put_block_group(cache);
4157	return ret;
4158}
4159
4160int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4161			       u64 start, u64 len, int delalloc)
4162{
4163	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
 
 
 
 
 
 
 
 
 
 
 
 
4164}
4165
4166int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
4167				       u64 start, u64 len)
4168{
4169	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4170}
4171
4172static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4173				      u64 parent, u64 root_objectid,
4174				      u64 flags, u64 owner, u64 offset,
4175				      struct btrfs_key *ins, int ref_mod)
4176{
4177	struct btrfs_fs_info *fs_info = trans->fs_info;
 
4178	int ret;
4179	struct btrfs_extent_item *extent_item;
 
4180	struct btrfs_extent_inline_ref *iref;
4181	struct btrfs_path *path;
4182	struct extent_buffer *leaf;
4183	int type;
4184	u32 size;
 
4185
4186	if (parent > 0)
4187		type = BTRFS_SHARED_DATA_REF_KEY;
4188	else
4189		type = BTRFS_EXTENT_DATA_REF_KEY;
4190
4191	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
 
 
 
4192
4193	path = btrfs_alloc_path();
4194	if (!path)
4195		return -ENOMEM;
4196
4197	path->leave_spinning = 1;
4198	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4199				      ins, size);
4200	if (ret) {
4201		btrfs_free_path(path);
4202		return ret;
4203	}
4204
4205	leaf = path->nodes[0];
4206	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4207				     struct btrfs_extent_item);
4208	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4209	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4210	btrfs_set_extent_flags(leaf, extent_item,
4211			       flags | BTRFS_EXTENT_FLAG_DATA);
4212
4213	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
 
 
 
 
 
 
4214	btrfs_set_extent_inline_ref_type(leaf, iref, type);
 
4215	if (parent > 0) {
4216		struct btrfs_shared_data_ref *ref;
4217		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4218		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4219		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4220	} else {
4221		struct btrfs_extent_data_ref *ref;
4222		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4223		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4224		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4225		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4226		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4227	}
4228
4229	btrfs_mark_buffer_dirty(path->nodes[0]);
4230	btrfs_free_path(path);
4231
4232	ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4233	if (ret)
4234		return ret;
4235
4236	ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4237	if (ret) { /* -ENOENT, logic error */
4238		btrfs_err(fs_info, "update block group failed for %llu %llu",
4239			ins->objectid, ins->offset);
4240		BUG();
4241	}
4242	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4243	return ret;
4244}
4245
4246static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4247				     struct btrfs_delayed_ref_node *node,
4248				     struct btrfs_delayed_extent_op *extent_op)
4249{
4250	struct btrfs_fs_info *fs_info = trans->fs_info;
 
4251	int ret;
4252	struct btrfs_extent_item *extent_item;
4253	struct btrfs_key extent_key;
4254	struct btrfs_tree_block_info *block_info;
4255	struct btrfs_extent_inline_ref *iref;
4256	struct btrfs_path *path;
4257	struct extent_buffer *leaf;
4258	struct btrfs_delayed_tree_ref *ref;
4259	u32 size = sizeof(*extent_item) + sizeof(*iref);
4260	u64 num_bytes;
4261	u64 flags = extent_op->flags_to_set;
 
4262	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4263
4264	ref = btrfs_delayed_node_to_tree_ref(node);
4265
4266	extent_key.objectid = node->bytenr;
4267	if (skinny_metadata) {
4268		extent_key.offset = ref->level;
 
4269		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4270		num_bytes = fs_info->nodesize;
4271	} else {
4272		extent_key.offset = node->num_bytes;
4273		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4274		size += sizeof(*block_info);
4275		num_bytes = node->num_bytes;
4276	}
4277
4278	path = btrfs_alloc_path();
4279	if (!path)
4280		return -ENOMEM;
4281
4282	path->leave_spinning = 1;
4283	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4284				      &extent_key, size);
4285	if (ret) {
4286		btrfs_free_path(path);
4287		return ret;
4288	}
4289
4290	leaf = path->nodes[0];
4291	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4292				     struct btrfs_extent_item);
4293	btrfs_set_extent_refs(leaf, extent_item, 1);
4294	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4295	btrfs_set_extent_flags(leaf, extent_item,
4296			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4297
4298	if (skinny_metadata) {
4299		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4300	} else {
4301		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4302		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4303		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4304		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4305	}
4306
4307	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4308		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4309		btrfs_set_extent_inline_ref_type(leaf, iref,
4310						 BTRFS_SHARED_BLOCK_REF_KEY);
4311		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4312	} else {
4313		btrfs_set_extent_inline_ref_type(leaf, iref,
4314						 BTRFS_TREE_BLOCK_REF_KEY);
4315		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4316	}
4317
4318	btrfs_mark_buffer_dirty(leaf);
4319	btrfs_free_path(path);
4320
4321	ret = remove_from_free_space_tree(trans, extent_key.objectid,
4322					  num_bytes);
4323	if (ret)
4324		return ret;
4325
4326	ret = btrfs_update_block_group(trans, extent_key.objectid,
4327				       fs_info->nodesize, 1);
4328	if (ret) { /* -ENOENT, logic error */
4329		btrfs_err(fs_info, "update block group failed for %llu %llu",
4330			extent_key.objectid, extent_key.offset);
4331		BUG();
4332	}
4333
4334	trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4335					  fs_info->nodesize);
4336	return ret;
4337}
4338
4339int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4340				     struct btrfs_root *root, u64 owner,
4341				     u64 offset, u64 ram_bytes,
4342				     struct btrfs_key *ins)
4343{
4344	struct btrfs_ref generic_ref = { 0 };
4345	int ret;
 
 
 
 
 
4346
4347	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4348
4349	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4350			       ins->objectid, ins->offset, 0);
4351	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
 
4352	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4353	ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
4354					 ram_bytes, NULL, NULL);
4355	return ret;
4356}
4357
4358/*
4359 * this is used by the tree logging recovery code.  It records that
4360 * an extent has been allocated and makes sure to clear the free
4361 * space cache bits as well
4362 */
4363int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4364				   u64 root_objectid, u64 owner, u64 offset,
4365				   struct btrfs_key *ins)
4366{
4367	struct btrfs_fs_info *fs_info = trans->fs_info;
4368	int ret;
4369	struct btrfs_block_group_cache *block_group;
4370	struct btrfs_space_info *space_info;
 
 
 
 
 
 
 
4371
4372	/*
4373	 * Mixed block groups will exclude before processing the log so we only
4374	 * need to do the exclude dance if this fs isn't mixed.
4375	 */
4376	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4377		ret = __exclude_logged_extent(fs_info, ins->objectid,
4378					      ins->offset);
4379		if (ret)
4380			return ret;
4381	}
4382
4383	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4384	if (!block_group)
4385		return -EINVAL;
4386
4387	space_info = block_group->space_info;
4388	spin_lock(&space_info->lock);
4389	spin_lock(&block_group->lock);
4390	space_info->bytes_reserved += ins->offset;
4391	block_group->reserved += ins->offset;
4392	spin_unlock(&block_group->lock);
4393	spin_unlock(&space_info->lock);
4394
4395	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4396					 offset, ins, 1);
 
 
 
4397	btrfs_put_block_group(block_group);
4398	return ret;
4399}
4400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4401static struct extent_buffer *
4402btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4403		      u64 bytenr, int level, u64 owner)
 
4404{
4405	struct btrfs_fs_info *fs_info = root->fs_info;
4406	struct extent_buffer *buf;
 
4407
4408	buf = btrfs_find_create_tree_block(fs_info, bytenr);
4409	if (IS_ERR(buf))
4410		return buf;
4411
4412	/*
4413	 * Extra safety check in case the extent tree is corrupted and extent
4414	 * allocator chooses to use a tree block which is already used and
4415	 * locked.
4416	 */
4417	if (buf->lock_owner == current->pid) {
4418		btrfs_err_rl(fs_info,
4419"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4420			buf->start, btrfs_header_owner(buf), current->pid);
4421		free_extent_buffer(buf);
4422		return ERR_PTR(-EUCLEAN);
4423	}
4424
4425	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
4426	btrfs_tree_lock(buf);
4427	btrfs_clean_tree_block(buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4428	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
 
4429
4430	btrfs_set_lock_blocking_write(buf);
4431	set_extent_buffer_uptodate(buf);
4432
4433	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4434	btrfs_set_header_level(buf, level);
4435	btrfs_set_header_bytenr(buf, buf->start);
4436	btrfs_set_header_generation(buf, trans->transid);
4437	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4438	btrfs_set_header_owner(buf, owner);
4439	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4440	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4441	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4442		buf->log_index = root->log_transid % 2;
4443		/*
4444		 * we allow two log transactions at a time, use different
4445		 * EXTENT bit to differentiate dirty pages.
4446		 */
4447		if (buf->log_index == 0)
4448			set_extent_dirty(&root->dirty_log_pages, buf->start,
4449					buf->start + buf->len - 1, GFP_NOFS);
 
4450		else
4451			set_extent_new(&root->dirty_log_pages, buf->start,
4452					buf->start + buf->len - 1);
 
4453	} else {
4454		buf->log_index = -1;
4455		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4456			 buf->start + buf->len - 1, GFP_NOFS);
4457	}
4458	trans->dirty = true;
4459	/* this returns a buffer locked for blocking */
4460	return buf;
4461}
4462
4463/*
4464 * finds a free extent and does all the dirty work required for allocation
4465 * returns the tree buffer or an ERR_PTR on error.
4466 */
4467struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4468					     struct btrfs_root *root,
4469					     u64 parent, u64 root_objectid,
4470					     const struct btrfs_disk_key *key,
4471					     int level, u64 hint,
4472					     u64 empty_size)
 
 
4473{
4474	struct btrfs_fs_info *fs_info = root->fs_info;
4475	struct btrfs_key ins;
4476	struct btrfs_block_rsv *block_rsv;
4477	struct extent_buffer *buf;
4478	struct btrfs_delayed_extent_op *extent_op;
4479	struct btrfs_ref generic_ref = { 0 };
4480	u64 flags = 0;
4481	int ret;
4482	u32 blocksize = fs_info->nodesize;
4483	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 
4484
4485#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4486	if (btrfs_is_testing(fs_info)) {
4487		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4488					    level, root_objectid);
4489		if (!IS_ERR(buf))
4490			root->alloc_bytenr += blocksize;
4491		return buf;
4492	}
4493#endif
4494
4495	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4496	if (IS_ERR(block_rsv))
4497		return ERR_CAST(block_rsv);
4498
4499	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4500				   empty_size, hint, &ins, 0, 0);
4501	if (ret)
4502		goto out_unuse;
4503
4504	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4505				    root_objectid);
4506	if (IS_ERR(buf)) {
4507		ret = PTR_ERR(buf);
4508		goto out_free_reserved;
4509	}
 
4510
4511	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4512		if (parent == 0)
4513			parent = ins.objectid;
4514		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 
4515	} else
4516		BUG_ON(parent > 0);
4517
4518	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4519		extent_op = btrfs_alloc_delayed_extent_op();
4520		if (!extent_op) {
4521			ret = -ENOMEM;
4522			goto out_free_buf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4523		}
4524		if (key)
4525			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4526		else
4527			memset(&extent_op->key, 0, sizeof(extent_op->key));
4528		extent_op->flags_to_set = flags;
4529		extent_op->update_key = skinny_metadata ? false : true;
4530		extent_op->update_flags = true;
4531		extent_op->is_data = false;
4532		extent_op->level = level;
4533
4534		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4535				       ins.objectid, ins.offset, parent);
4536		generic_ref.real_root = root->root_key.objectid;
4537		btrfs_init_tree_ref(&generic_ref, level, root_objectid);
4538		btrfs_ref_tree_mod(fs_info, &generic_ref);
4539		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
4540						 extent_op, NULL, NULL);
4541		if (ret)
4542			goto out_free_delayed;
 
4543	}
4544	return buf;
4545
4546out_free_delayed:
4547	btrfs_free_delayed_extent_op(extent_op);
4548out_free_buf:
 
4549	free_extent_buffer(buf);
4550out_free_reserved:
4551	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4552out_unuse:
4553	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4554	return ERR_PTR(ret);
4555}
4556
4557struct walk_control {
4558	u64 refs[BTRFS_MAX_LEVEL];
4559	u64 flags[BTRFS_MAX_LEVEL];
4560	struct btrfs_key update_progress;
4561	struct btrfs_key drop_progress;
4562	int drop_level;
4563	int stage;
4564	int level;
4565	int shared_level;
4566	int update_ref;
4567	int keep_locks;
4568	int reada_slot;
4569	int reada_count;
4570	int restarted;
 
 
4571};
4572
 
 
 
 
 
4573#define DROP_REFERENCE	1
 
 
 
 
 
 
 
 
4574#define UPDATE_BACKREF	2
4575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4576static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4577				     struct btrfs_root *root,
4578				     struct walk_control *wc,
4579				     struct btrfs_path *path)
4580{
4581	struct btrfs_fs_info *fs_info = root->fs_info;
4582	u64 bytenr;
4583	u64 generation;
4584	u64 refs;
4585	u64 flags;
4586	u32 nritems;
4587	struct btrfs_key key;
4588	struct extent_buffer *eb;
4589	int ret;
4590	int slot;
4591	int nread = 0;
4592
4593	if (path->slots[wc->level] < wc->reada_slot) {
4594		wc->reada_count = wc->reada_count * 2 / 3;
4595		wc->reada_count = max(wc->reada_count, 2);
4596	} else {
4597		wc->reada_count = wc->reada_count * 3 / 2;
4598		wc->reada_count = min_t(int, wc->reada_count,
4599					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4600	}
4601
4602	eb = path->nodes[wc->level];
4603	nritems = btrfs_header_nritems(eb);
4604
4605	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4606		if (nread >= wc->reada_count)
4607			break;
4608
4609		cond_resched();
4610		bytenr = btrfs_node_blockptr(eb, slot);
4611		generation = btrfs_node_ptr_generation(eb, slot);
4612
4613		if (slot == path->slots[wc->level])
4614			goto reada;
4615
4616		if (wc->stage == UPDATE_BACKREF &&
4617		    generation <= root->root_key.offset)
4618			continue;
4619
4620		/* We don't lock the tree block, it's OK to be racy here */
4621		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
4622					       wc->level - 1, 1, &refs,
4623					       &flags);
4624		/* We don't care about errors in readahead. */
4625		if (ret < 0)
4626			continue;
4627		BUG_ON(refs == 0);
4628
4629		if (wc->stage == DROP_REFERENCE) {
4630			if (refs == 1)
4631				goto reada;
 
 
 
 
 
4632
4633			if (wc->level == 1 &&
4634			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4635				continue;
4636			if (!wc->update_ref ||
4637			    generation <= root->root_key.offset)
4638				continue;
4639			btrfs_node_key_to_cpu(eb, &key, slot);
4640			ret = btrfs_comp_cpu_keys(&key,
4641						  &wc->update_progress);
4642			if (ret < 0)
4643				continue;
4644		} else {
4645			if (wc->level == 1 &&
4646			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4647				continue;
4648		}
4649reada:
4650		readahead_tree_block(fs_info, bytenr);
4651		nread++;
4652	}
4653	wc->reada_slot = slot;
4654}
4655
4656/*
4657 * helper to process tree block while walking down the tree.
4658 *
4659 * when wc->stage == UPDATE_BACKREF, this function updates
4660 * back refs for pointers in the block.
4661 *
4662 * NOTE: return value 1 means we should stop walking down.
4663 */
4664static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4665				   struct btrfs_root *root,
4666				   struct btrfs_path *path,
4667				   struct walk_control *wc, int lookup_info)
4668{
4669	struct btrfs_fs_info *fs_info = root->fs_info;
4670	int level = wc->level;
4671	struct extent_buffer *eb = path->nodes[level];
4672	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4673	int ret;
4674
4675	if (wc->stage == UPDATE_BACKREF &&
4676	    btrfs_header_owner(eb) != root->root_key.objectid)
4677		return 1;
4678
4679	/*
4680	 * when reference count of tree block is 1, it won't increase
4681	 * again. once full backref flag is set, we never clear it.
4682	 */
4683	if (lookup_info &&
4684	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
4685	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
4686		BUG_ON(!path->locks[level]);
4687		ret = btrfs_lookup_extent_info(trans, fs_info,
4688					       eb->start, level, 1,
4689					       &wc->refs[level],
4690					       &wc->flags[level]);
4691		BUG_ON(ret == -ENOMEM);
4692		if (ret)
4693			return ret;
4694		BUG_ON(wc->refs[level] == 0);
 
 
 
 
4695	}
4696
4697	if (wc->stage == DROP_REFERENCE) {
4698		if (wc->refs[level] > 1)
4699			return 1;
4700
4701		if (path->locks[level] && !wc->keep_locks) {
4702			btrfs_tree_unlock_rw(eb, path->locks[level]);
4703			path->locks[level] = 0;
4704		}
4705		return 0;
4706	}
4707
4708	/* wc->stage == UPDATE_BACKREF */
4709	if (!(wc->flags[level] & flag)) {
4710		BUG_ON(!path->locks[level]);
4711		ret = btrfs_inc_ref(trans, root, eb, 1);
4712		BUG_ON(ret); /* -ENOMEM */
 
 
 
4713		ret = btrfs_dec_ref(trans, root, eb, 0);
4714		BUG_ON(ret); /* -ENOMEM */
4715		ret = btrfs_set_disk_extent_flags(trans, eb->start,
4716						  eb->len, flag,
4717						  btrfs_header_level(eb), 0);
4718		BUG_ON(ret); /* -ENOMEM */
 
 
 
 
4719		wc->flags[level] |= flag;
4720	}
4721
4722	/*
4723	 * the block is shared by multiple trees, so it's not good to
4724	 * keep the tree lock
4725	 */
4726	if (path->locks[level] && level > 0) {
4727		btrfs_tree_unlock_rw(eb, path->locks[level]);
4728		path->locks[level] = 0;
4729	}
4730	return 0;
4731}
4732
4733/*
4734 * This is used to verify a ref exists for this root to deal with a bug where we
4735 * would have a drop_progress key that hadn't been updated properly.
4736 */
4737static int check_ref_exists(struct btrfs_trans_handle *trans,
4738			    struct btrfs_root *root, u64 bytenr, u64 parent,
4739			    int level)
4740{
 
 
4741	struct btrfs_path *path;
4742	struct btrfs_extent_inline_ref *iref;
4743	int ret;
 
4744
4745	path = btrfs_alloc_path();
4746	if (!path)
4747		return -ENOMEM;
4748
4749	ret = lookup_extent_backref(trans, path, &iref, bytenr,
4750				    root->fs_info->nodesize, parent,
4751				    root->root_key.objectid, level, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4752	btrfs_free_path(path);
4753	if (ret == -ENOENT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4754		return 0;
4755	if (ret < 0)
 
 
 
 
 
 
 
 
 
 
 
 
4756		return ret;
4757	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4758}
4759
4760/*
4761 * helper to process tree block pointer.
4762 *
4763 * when wc->stage == DROP_REFERENCE, this function checks
4764 * reference count of the block pointed to. if the block
4765 * is shared and we need update back refs for the subtree
4766 * rooted at the block, this function changes wc->stage to
4767 * UPDATE_BACKREF. if the block is shared and there is no
4768 * need to update back, this function drops the reference
4769 * to the block.
4770 *
4771 * NOTE: return value 1 means we should stop walking down.
4772 */
4773static noinline int do_walk_down(struct btrfs_trans_handle *trans,
4774				 struct btrfs_root *root,
4775				 struct btrfs_path *path,
4776				 struct walk_control *wc, int *lookup_info)
4777{
4778	struct btrfs_fs_info *fs_info = root->fs_info;
4779	u64 bytenr;
4780	u64 generation;
4781	u64 parent;
4782	struct btrfs_key key;
4783	struct btrfs_key first_key;
4784	struct btrfs_ref ref = { 0 };
4785	struct extent_buffer *next;
4786	int level = wc->level;
4787	int reada = 0;
4788	int ret = 0;
4789	bool need_account = false;
4790
4791	generation = btrfs_node_ptr_generation(path->nodes[level],
4792					       path->slots[level]);
4793	/*
4794	 * if the lower level block was created before the snapshot
4795	 * was created, we know there is no need to update back refs
4796	 * for the subtree
4797	 */
4798	if (wc->stage == UPDATE_BACKREF &&
4799	    generation <= root->root_key.offset) {
4800		*lookup_info = 1;
4801		return 1;
4802	}
4803
4804	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
4805	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
4806			      path->slots[level]);
4807
4808	next = find_extent_buffer(fs_info, bytenr);
4809	if (!next) {
4810		next = btrfs_find_create_tree_block(fs_info, bytenr);
4811		if (IS_ERR(next))
4812			return PTR_ERR(next);
4813
4814		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
4815					       level - 1);
4816		reada = 1;
4817	}
4818	btrfs_tree_lock(next);
4819	btrfs_set_lock_blocking_write(next);
4820
4821	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
4822				       &wc->refs[level - 1],
4823				       &wc->flags[level - 1]);
 
4824	if (ret < 0)
4825		goto out_unlock;
4826
4827	if (unlikely(wc->refs[level - 1] == 0)) {
4828		btrfs_err(fs_info, "Missing references.");
4829		ret = -EIO;
 
4830		goto out_unlock;
4831	}
4832	*lookup_info = 0;
4833
4834	if (wc->stage == DROP_REFERENCE) {
4835		if (wc->refs[level - 1] > 1) {
4836			need_account = true;
4837			if (level == 1 &&
4838			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4839				goto skip;
4840
4841			if (!wc->update_ref ||
4842			    generation <= root->root_key.offset)
4843				goto skip;
4844
4845			btrfs_node_key_to_cpu(path->nodes[level], &key,
4846					      path->slots[level]);
4847			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
4848			if (ret < 0)
4849				goto skip;
4850
4851			wc->stage = UPDATE_BACKREF;
4852			wc->shared_level = level - 1;
4853		}
4854	} else {
4855		if (level == 1 &&
4856		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4857			goto skip;
4858	}
4859
4860	if (!btrfs_buffer_uptodate(next, generation, 0)) {
4861		btrfs_tree_unlock(next);
4862		free_extent_buffer(next);
4863		next = NULL;
4864		*lookup_info = 1;
 
 
 
4865	}
4866
4867	if (!next) {
4868		if (reada && level == 1)
4869			reada_walk_down(trans, root, wc, path);
4870		next = read_tree_block(fs_info, bytenr, generation, level - 1,
4871				       &first_key);
4872		if (IS_ERR(next)) {
4873			return PTR_ERR(next);
4874		} else if (!extent_buffer_uptodate(next)) {
4875			free_extent_buffer(next);
4876			return -EIO;
4877		}
4878		btrfs_tree_lock(next);
4879		btrfs_set_lock_blocking_write(next);
4880	}
4881
4882	level--;
4883	ASSERT(level == btrfs_header_level(next));
4884	if (level != btrfs_header_level(next)) {
4885		btrfs_err(root->fs_info, "mismatched level");
4886		ret = -EIO;
4887		goto out_unlock;
4888	}
4889	path->nodes[level] = next;
4890	path->slots[level] = 0;
4891	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
4892	wc->level = level;
4893	if (wc->level == 1)
4894		wc->reada_slot = 0;
4895	return 0;
4896skip:
 
 
 
4897	wc->refs[level - 1] = 0;
4898	wc->flags[level - 1] = 0;
4899	if (wc->stage == DROP_REFERENCE) {
4900		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
4901			parent = path->nodes[level]->start;
4902		} else {
4903			ASSERT(root->root_key.objectid ==
4904			       btrfs_header_owner(path->nodes[level]));
4905			if (root->root_key.objectid !=
4906			    btrfs_header_owner(path->nodes[level])) {
4907				btrfs_err(root->fs_info,
4908						"mismatched block owner");
4909				ret = -EIO;
4910				goto out_unlock;
4911			}
4912			parent = 0;
4913		}
4914
4915		/*
4916		 * If we had a drop_progress we need to verify the refs are set
4917		 * as expected.  If we find our ref then we know that from here
4918		 * on out everything should be correct, and we can clear the
4919		 * ->restarted flag.
4920		 */
4921		if (wc->restarted) {
4922			ret = check_ref_exists(trans, root, bytenr, parent,
4923					       level - 1);
4924			if (ret < 0)
4925				goto out_unlock;
4926			if (ret == 0)
4927				goto no_delete;
4928			ret = 0;
4929			wc->restarted = 0;
4930		}
4931
4932		/*
4933		 * Reloc tree doesn't contribute to qgroup numbers, and we have
4934		 * already accounted them at merge time (replace_path),
4935		 * thus we could skip expensive subtree trace here.
4936		 */
4937		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
4938		    need_account) {
4939			ret = btrfs_qgroup_trace_subtree(trans, next,
4940							 generation, level - 1);
4941			if (ret) {
4942				btrfs_err_rl(fs_info,
4943					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
4944					     ret);
4945			}
4946		}
4947
4948		/*
4949		 * We need to update the next key in our walk control so we can
4950		 * update the drop_progress key accordingly.  We don't care if
4951		 * find_next_key doesn't find a key because that means we're at
4952		 * the end and are going to clean up now.
4953		 */
4954		wc->drop_level = level;
4955		find_next_key(path, level, &wc->drop_progress);
4956
4957		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
4958				       fs_info->nodesize, parent);
4959		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
4960		ret = btrfs_free_extent(trans, &ref);
4961		if (ret)
4962			goto out_unlock;
4963	}
4964no_delete:
4965	*lookup_info = 1;
4966	ret = 1;
4967
4968out_unlock:
4969	btrfs_tree_unlock(next);
4970	free_extent_buffer(next);
4971
4972	return ret;
4973}
4974
4975/*
4976 * helper to process tree block while walking up the tree.
4977 *
4978 * when wc->stage == DROP_REFERENCE, this function drops
4979 * reference count on the block.
4980 *
4981 * when wc->stage == UPDATE_BACKREF, this function changes
4982 * wc->stage back to DROP_REFERENCE if we changed wc->stage
4983 * to UPDATE_BACKREF previously while processing the block.
4984 *
4985 * NOTE: return value 1 means we should stop walking up.
4986 */
4987static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
4988				 struct btrfs_root *root,
4989				 struct btrfs_path *path,
4990				 struct walk_control *wc)
4991{
4992	struct btrfs_fs_info *fs_info = root->fs_info;
4993	int ret;
4994	int level = wc->level;
4995	struct extent_buffer *eb = path->nodes[level];
4996	u64 parent = 0;
4997
4998	if (wc->stage == UPDATE_BACKREF) {
4999		BUG_ON(wc->shared_level < level);
5000		if (level < wc->shared_level)
5001			goto out;
5002
5003		ret = find_next_key(path, level + 1, &wc->update_progress);
5004		if (ret > 0)
5005			wc->update_ref = 0;
5006
5007		wc->stage = DROP_REFERENCE;
5008		wc->shared_level = -1;
5009		path->slots[level] = 0;
5010
5011		/*
5012		 * check reference count again if the block isn't locked.
5013		 * we should start walking down the tree again if reference
5014		 * count is one.
5015		 */
5016		if (!path->locks[level]) {
5017			BUG_ON(level == 0);
5018			btrfs_tree_lock(eb);
5019			btrfs_set_lock_blocking_write(eb);
5020			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5021
5022			ret = btrfs_lookup_extent_info(trans, fs_info,
5023						       eb->start, level, 1,
5024						       &wc->refs[level],
5025						       &wc->flags[level]);
 
5026			if (ret < 0) {
5027				btrfs_tree_unlock_rw(eb, path->locks[level]);
5028				path->locks[level] = 0;
5029				return ret;
5030			}
5031			BUG_ON(wc->refs[level] == 0);
 
 
 
 
 
5032			if (wc->refs[level] == 1) {
5033				btrfs_tree_unlock_rw(eb, path->locks[level]);
5034				path->locks[level] = 0;
5035				return 1;
5036			}
5037		}
5038	}
5039
5040	/* wc->stage == DROP_REFERENCE */
5041	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5042
5043	if (wc->refs[level] == 1) {
5044		if (level == 0) {
5045			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5046				ret = btrfs_dec_ref(trans, root, eb, 1);
5047			else
5048				ret = btrfs_dec_ref(trans, root, eb, 0);
5049			BUG_ON(ret); /* -ENOMEM */
5050			if (is_fstree(root->root_key.objectid)) {
 
 
 
5051				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5052				if (ret) {
5053					btrfs_err_rl(fs_info,
5054	"error %d accounting leaf items, quota is out of sync, rescan required",
5055					     ret);
5056				}
5057			}
5058		}
5059		/* make block locked assertion in btrfs_clean_tree_block happy */
5060		if (!path->locks[level] &&
5061		    btrfs_header_generation(eb) == trans->transid) {
5062			btrfs_tree_lock(eb);
5063			btrfs_set_lock_blocking_write(eb);
5064			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5065		}
5066		btrfs_clean_tree_block(eb);
5067	}
5068
5069	if (eb == root->node) {
5070		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5071			parent = eb->start;
5072		else if (root->root_key.objectid != btrfs_header_owner(eb))
5073			goto owner_mismatch;
5074	} else {
5075		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5076			parent = path->nodes[level + 1]->start;
5077		else if (root->root_key.objectid !=
5078			 btrfs_header_owner(path->nodes[level + 1]))
5079			goto owner_mismatch;
5080	}
5081
5082	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
 
 
 
5083out:
5084	wc->refs[level] = 0;
5085	wc->flags[level] = 0;
5086	return 0;
5087
5088owner_mismatch:
5089	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5090		     btrfs_header_owner(eb), root->root_key.objectid);
5091	return -EUCLEAN;
5092}
5093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5094static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5095				   struct btrfs_root *root,
5096				   struct btrfs_path *path,
5097				   struct walk_control *wc)
5098{
5099	int level = wc->level;
5100	int lookup_info = 1;
5101	int ret;
5102
 
5103	while (level >= 0) {
5104		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5105		if (ret > 0)
5106			break;
5107
5108		if (level == 0)
5109			break;
5110
5111		if (path->slots[level] >=
5112		    btrfs_header_nritems(path->nodes[level]))
5113			break;
5114
5115		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5116		if (ret > 0) {
5117			path->slots[level]++;
5118			continue;
5119		} else if (ret < 0)
5120			return ret;
5121		level = wc->level;
5122	}
5123	return 0;
5124}
5125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5126static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5127				 struct btrfs_root *root,
5128				 struct btrfs_path *path,
5129				 struct walk_control *wc, int max_level)
5130{
5131	int level = wc->level;
5132	int ret;
5133
5134	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5135	while (level < max_level && path->nodes[level]) {
5136		wc->level = level;
5137		if (path->slots[level] + 1 <
5138		    btrfs_header_nritems(path->nodes[level])) {
5139			path->slots[level]++;
5140			return 0;
5141		} else {
5142			ret = walk_up_proc(trans, root, path, wc);
5143			if (ret > 0)
5144				return 0;
5145			if (ret < 0)
5146				return ret;
5147
5148			if (path->locks[level]) {
5149				btrfs_tree_unlock_rw(path->nodes[level],
5150						     path->locks[level]);
5151				path->locks[level] = 0;
5152			}
5153			free_extent_buffer(path->nodes[level]);
5154			path->nodes[level] = NULL;
5155			level++;
5156		}
5157	}
5158	return 1;
5159}
5160
5161/*
5162 * drop a subvolume tree.
5163 *
5164 * this function traverses the tree freeing any blocks that only
5165 * referenced by the tree.
5166 *
5167 * when a shared tree block is found. this function decreases its
5168 * reference count by one. if update_ref is true, this function
5169 * also make sure backrefs for the shared block and all lower level
5170 * blocks are properly updated.
5171 *
5172 * If called with for_reloc == 0, may exit early with -EAGAIN
5173 */
5174int btrfs_drop_snapshot(struct btrfs_root *root,
5175			 struct btrfs_block_rsv *block_rsv, int update_ref,
5176			 int for_reloc)
5177{
 
5178	struct btrfs_fs_info *fs_info = root->fs_info;
5179	struct btrfs_path *path;
5180	struct btrfs_trans_handle *trans;
5181	struct btrfs_root *tree_root = fs_info->tree_root;
5182	struct btrfs_root_item *root_item = &root->root_item;
5183	struct walk_control *wc;
5184	struct btrfs_key key;
5185	int err = 0;
5186	int ret;
5187	int level;
5188	bool root_dropped = false;
 
5189
5190	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5191
5192	path = btrfs_alloc_path();
5193	if (!path) {
5194		err = -ENOMEM;
5195		goto out;
5196	}
5197
5198	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5199	if (!wc) {
5200		btrfs_free_path(path);
5201		err = -ENOMEM;
5202		goto out;
5203	}
5204
5205	trans = btrfs_start_transaction(tree_root, 0);
 
 
 
 
 
 
 
5206	if (IS_ERR(trans)) {
5207		err = PTR_ERR(trans);
5208		goto out_free;
5209	}
5210
5211	err = btrfs_run_delayed_items(trans);
5212	if (err)
5213		goto out_end_trans;
5214
5215	if (block_rsv)
5216		trans->block_rsv = block_rsv;
5217
5218	/*
5219	 * This will help us catch people modifying the fs tree while we're
5220	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5221	 * dropped as we unlock the root node and parent nodes as we walk down
5222	 * the tree, assuming nothing will change.  If something does change
5223	 * then we'll have stale information and drop references to blocks we've
5224	 * already dropped.
5225	 */
5226	set_bit(BTRFS_ROOT_DELETING, &root->state);
 
 
5227	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5228		level = btrfs_header_level(root->node);
5229		path->nodes[level] = btrfs_lock_root_node(root);
5230		btrfs_set_lock_blocking_write(path->nodes[level]);
5231		path->slots[level] = 0;
5232		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5233		memset(&wc->update_progress, 0,
5234		       sizeof(wc->update_progress));
5235	} else {
5236		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5237		memcpy(&wc->update_progress, &key,
5238		       sizeof(wc->update_progress));
5239
5240		level = root_item->drop_level;
5241		BUG_ON(level == 0);
5242		path->lowest_level = level;
5243		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5244		path->lowest_level = 0;
5245		if (ret < 0) {
5246			err = ret;
5247			goto out_end_trans;
5248		}
5249		WARN_ON(ret > 0);
 
5250
5251		/*
5252		 * unlock our path, this is safe because only this
5253		 * function is allowed to delete this snapshot
5254		 */
5255		btrfs_unlock_up_safe(path, 0);
5256
5257		level = btrfs_header_level(root->node);
5258		while (1) {
5259			btrfs_tree_lock(path->nodes[level]);
5260			btrfs_set_lock_blocking_write(path->nodes[level]);
5261			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5262
 
 
 
 
5263			ret = btrfs_lookup_extent_info(trans, fs_info,
5264						path->nodes[level]->start,
5265						level, 1, &wc->refs[level],
5266						&wc->flags[level]);
5267			if (ret < 0) {
5268				err = ret;
5269				goto out_end_trans;
5270			}
5271			BUG_ON(wc->refs[level] == 0);
5272
5273			if (level == root_item->drop_level)
5274				break;
5275
5276			btrfs_tree_unlock(path->nodes[level]);
5277			path->locks[level] = 0;
5278			WARN_ON(wc->refs[level] != 1);
5279			level--;
5280		}
5281	}
5282
5283	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5284	wc->level = level;
5285	wc->shared_level = -1;
5286	wc->stage = DROP_REFERENCE;
5287	wc->update_ref = update_ref;
5288	wc->keep_locks = 0;
5289	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5290
5291	while (1) {
5292
5293		ret = walk_down_tree(trans, root, path, wc);
5294		if (ret < 0) {
5295			err = ret;
5296			break;
5297		}
5298
5299		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5300		if (ret < 0) {
5301			err = ret;
5302			break;
5303		}
5304
5305		if (ret > 0) {
5306			BUG_ON(wc->stage != DROP_REFERENCE);
 
5307			break;
5308		}
5309
5310		if (wc->stage == DROP_REFERENCE) {
5311			wc->drop_level = wc->level;
5312			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5313					      &wc->drop_progress,
5314					      path->slots[wc->drop_level]);
5315		}
5316		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5317				      &wc->drop_progress);
5318		root_item->drop_level = wc->drop_level;
5319
5320		BUG_ON(wc->level == 0);
5321		if (btrfs_should_end_transaction(trans) ||
5322		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5323			ret = btrfs_update_root(trans, tree_root,
5324						&root->root_key,
5325						root_item);
5326			if (ret) {
5327				btrfs_abort_transaction(trans, ret);
5328				err = ret;
5329				goto out_end_trans;
5330			}
5331
 
 
 
5332			btrfs_end_transaction_throttle(trans);
5333			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5334				btrfs_debug(fs_info,
5335					    "drop snapshot early exit");
5336				err = -EAGAIN;
5337				goto out_free;
5338			}
5339
5340			trans = btrfs_start_transaction(tree_root, 0);
 
 
 
 
 
 
 
 
5341			if (IS_ERR(trans)) {
5342				err = PTR_ERR(trans);
5343				goto out_free;
5344			}
5345			if (block_rsv)
5346				trans->block_rsv = block_rsv;
5347		}
5348	}
5349	btrfs_release_path(path);
5350	if (err)
5351		goto out_end_trans;
5352
5353	ret = btrfs_del_root(trans, &root->root_key);
5354	if (ret) {
5355		btrfs_abort_transaction(trans, ret);
5356		err = ret;
5357		goto out_end_trans;
5358	}
5359
5360	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5361		ret = btrfs_find_root(tree_root, &root->root_key, path,
5362				      NULL, NULL);
5363		if (ret < 0) {
5364			btrfs_abort_transaction(trans, ret);
5365			err = ret;
5366			goto out_end_trans;
5367		} else if (ret > 0) {
5368			/* if we fail to delete the orphan item this time
 
 
5369			 * around, it'll get picked up the next time.
5370			 *
5371			 * The most common failure here is just -ENOENT.
5372			 */
5373			btrfs_del_orphan_item(trans, tree_root,
5374					      root->root_key.objectid);
5375		}
5376	}
5377
5378	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
 
 
 
 
 
 
 
 
5379		btrfs_add_dropped_root(trans, root);
5380	} else {
5381		free_extent_buffer(root->node);
5382		free_extent_buffer(root->commit_root);
5383		btrfs_put_fs_root(root);
5384	}
5385	root_dropped = true;
5386out_end_trans:
 
 
 
5387	btrfs_end_transaction_throttle(trans);
5388out_free:
5389	kfree(wc);
5390	btrfs_free_path(path);
5391out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5392	/*
5393	 * So if we need to stop dropping the snapshot for whatever reason we
5394	 * need to make sure to add it back to the dead root list so that we
5395	 * keep trying to do the work later.  This also cleans up roots if we
5396	 * don't have it in the radix (like when we recover after a power fail
5397	 * or unmount) so we don't leak memory.
5398	 */
5399	if (!for_reloc && !root_dropped)
5400		btrfs_add_dead_root(root);
5401	if (err && err != -EAGAIN)
5402		btrfs_handle_fs_error(fs_info, err, NULL);
5403	return err;
5404}
5405
5406/*
5407 * drop subtree rooted at tree block 'node'.
5408 *
5409 * NOTE: this function will unlock and release tree block 'node'
5410 * only used by relocation code
5411 */
5412int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5413			struct btrfs_root *root,
5414			struct extent_buffer *node,
5415			struct extent_buffer *parent)
5416{
5417	struct btrfs_fs_info *fs_info = root->fs_info;
5418	struct btrfs_path *path;
5419	struct walk_control *wc;
5420	int level;
5421	int parent_level;
5422	int ret = 0;
5423	int wret;
5424
5425	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5426
5427	path = btrfs_alloc_path();
5428	if (!path)
5429		return -ENOMEM;
5430
5431	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5432	if (!wc) {
5433		btrfs_free_path(path);
5434		return -ENOMEM;
5435	}
5436
5437	btrfs_assert_tree_locked(parent);
5438	parent_level = btrfs_header_level(parent);
5439	extent_buffer_get(parent);
5440	path->nodes[parent_level] = parent;
5441	path->slots[parent_level] = btrfs_header_nritems(parent);
5442
5443	btrfs_assert_tree_locked(node);
5444	level = btrfs_header_level(node);
5445	path->nodes[level] = node;
5446	path->slots[level] = 0;
5447	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5448
5449	wc->refs[parent_level] = 1;
5450	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5451	wc->level = level;
5452	wc->shared_level = -1;
5453	wc->stage = DROP_REFERENCE;
5454	wc->update_ref = 0;
5455	wc->keep_locks = 1;
5456	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5457
5458	while (1) {
5459		wret = walk_down_tree(trans, root, path, wc);
5460		if (wret < 0) {
5461			ret = wret;
5462			break;
5463		}
5464
5465		wret = walk_up_tree(trans, root, path, wc, parent_level);
5466		if (wret < 0)
5467			ret = wret;
5468		if (wret != 0)
5469			break;
 
5470	}
5471
5472	kfree(wc);
5473	btrfs_free_path(path);
5474	return ret;
5475}
5476
5477/*
5478 * helper to account the unused space of all the readonly block group in the
5479 * space_info. takes mirrors into account.
5480 */
5481u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5482{
5483	struct btrfs_block_group_cache *block_group;
5484	u64 free_bytes = 0;
5485	int factor;
5486
5487	/* It's df, we don't care if it's racy */
5488	if (list_empty(&sinfo->ro_bgs))
5489		return 0;
5490
5491	spin_lock(&sinfo->lock);
5492	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5493		spin_lock(&block_group->lock);
5494
5495		if (!block_group->ro) {
5496			spin_unlock(&block_group->lock);
5497			continue;
5498		}
5499
5500		factor = btrfs_bg_type_to_factor(block_group->flags);
5501		free_bytes += (block_group->key.offset -
5502			       btrfs_block_group_used(&block_group->item)) *
5503			       factor;
5504
5505		spin_unlock(&block_group->lock);
5506	}
5507	spin_unlock(&sinfo->lock);
5508
5509	return free_bytes;
5510}
5511
5512int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5513				   u64 start, u64 end)
5514{
5515	return unpin_extent_range(fs_info, start, end, false);
5516}
5517
5518/*
5519 * It used to be that old block groups would be left around forever.
5520 * Iterating over them would be enough to trim unused space.  Since we
5521 * now automatically remove them, we also need to iterate over unallocated
5522 * space.
5523 *
5524 * We don't want a transaction for this since the discard may take a
5525 * substantial amount of time.  We don't require that a transaction be
5526 * running, but we do need to take a running transaction into account
5527 * to ensure that we're not discarding chunks that were released or
5528 * allocated in the current transaction.
5529 *
5530 * Holding the chunks lock will prevent other threads from allocating
5531 * or releasing chunks, but it won't prevent a running transaction
5532 * from committing and releasing the memory that the pending chunks
5533 * list head uses.  For that, we need to take a reference to the
5534 * transaction and hold the commit root sem.  We only need to hold
5535 * it while performing the free space search since we have already
5536 * held back allocations.
5537 */
5538static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5539{
5540	u64 start = SZ_1M, len = 0, end = 0;
5541	int ret;
5542
5543	*trimmed = 0;
5544
5545	/* Discard not supported = nothing to do. */
5546	if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5547		return 0;
5548
5549	/* Not writable = nothing to do. */
5550	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5551		return 0;
5552
5553	/* No free space = nothing to do. */
5554	if (device->total_bytes <= device->bytes_used)
5555		return 0;
5556
5557	ret = 0;
5558
5559	while (1) {
5560		struct btrfs_fs_info *fs_info = device->fs_info;
5561		u64 bytes;
5562
5563		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5564		if (ret)
5565			break;
5566
5567		find_first_clear_extent_bit(&device->alloc_state, start,
5568					    &start, &end,
5569					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
5570
5571		/* Ensure we skip the reserved area in the first 1M */
5572		start = max_t(u64, start, SZ_1M);
 
 
 
 
 
 
 
 
 
 
 
 
 
5573
5574		/*
5575		 * If find_first_clear_extent_bit find a range that spans the
5576		 * end of the device it will set end to -1, in this case it's up
5577		 * to the caller to trim the value to the size of the device.
5578		 */
5579		end = min(end, device->total_bytes - 1);
5580
5581		len = end - start + 1;
5582
5583		/* We didn't find any extents */
5584		if (!len) {
5585			mutex_unlock(&fs_info->chunk_mutex);
5586			ret = 0;
5587			break;
5588		}
5589
5590		ret = btrfs_issue_discard(device->bdev, start, len,
5591					  &bytes);
5592		if (!ret)
5593			set_extent_bits(&device->alloc_state, start,
5594					start + bytes - 1,
5595					CHUNK_TRIMMED);
5596		mutex_unlock(&fs_info->chunk_mutex);
5597
5598		if (ret)
5599			break;
5600
5601		start += len;
5602		*trimmed += bytes;
5603
5604		if (fatal_signal_pending(current)) {
5605			ret = -ERESTARTSYS;
5606			break;
5607		}
5608
5609		cond_resched();
5610	}
5611
5612	return ret;
5613}
5614
5615/*
5616 * Trim the whole filesystem by:
5617 * 1) trimming the free space in each block group
5618 * 2) trimming the unallocated space on each device
5619 *
5620 * This will also continue trimming even if a block group or device encounters
5621 * an error.  The return value will be the last error, or 0 if nothing bad
5622 * happens.
5623 */
5624int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
5625{
5626	struct btrfs_block_group_cache *cache = NULL;
 
5627	struct btrfs_device *device;
5628	struct list_head *devices;
5629	u64 group_trimmed;
5630	u64 range_end = U64_MAX;
5631	u64 start;
5632	u64 end;
5633	u64 trimmed = 0;
5634	u64 bg_failed = 0;
5635	u64 dev_failed = 0;
5636	int bg_ret = 0;
5637	int dev_ret = 0;
5638	int ret = 0;
5639
 
 
 
5640	/*
5641	 * Check range overflow if range->len is set.
5642	 * The default range->len is U64_MAX.
5643	 */
5644	if (range->len != U64_MAX &&
5645	    check_add_overflow(range->start, range->len, &range_end))
5646		return -EINVAL;
5647
5648	cache = btrfs_lookup_first_block_group(fs_info, range->start);
5649	for (; cache; cache = btrfs_next_block_group(cache)) {
5650		if (cache->key.objectid >= range_end) {
5651			btrfs_put_block_group(cache);
5652			break;
5653		}
5654
5655		start = max(range->start, cache->key.objectid);
5656		end = min(range_end, cache->key.objectid + cache->key.offset);
5657
5658		if (end - start >= range->minlen) {
5659			if (!btrfs_block_group_cache_done(cache)) {
5660				ret = btrfs_cache_block_group(cache, 0);
5661				if (ret) {
5662					bg_failed++;
5663					bg_ret = ret;
5664					continue;
5665				}
5666				ret = btrfs_wait_block_group_cache_done(cache);
5667				if (ret) {
5668					bg_failed++;
5669					bg_ret = ret;
5670					continue;
5671				}
5672			}
5673			ret = btrfs_trim_block_group(cache,
5674						     &group_trimmed,
5675						     start,
5676						     end,
5677						     range->minlen);
5678
5679			trimmed += group_trimmed;
5680			if (ret) {
5681				bg_failed++;
5682				bg_ret = ret;
5683				continue;
5684			}
5685		}
5686	}
5687
5688	if (bg_failed)
5689		btrfs_warn(fs_info,
5690			"failed to trim %llu block group(s), last error %d",
5691			bg_failed, bg_ret);
5692	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5693	devices = &fs_info->fs_devices->devices;
5694	list_for_each_entry(device, devices, dev_list) {
 
 
 
5695		ret = btrfs_trim_free_extents(device, &group_trimmed);
 
 
5696		if (ret) {
5697			dev_failed++;
5698			dev_ret = ret;
5699			break;
5700		}
5701
5702		trimmed += group_trimmed;
5703	}
5704	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5705
5706	if (dev_failed)
5707		btrfs_warn(fs_info,
5708			"failed to trim %llu device(s), last error %d",
5709			dev_failed, dev_ret);
5710	range->len = trimmed;
5711	if (bg_ret)
5712		return bg_ret;
5713	return dev_ret;
5714}
5715
5716/*
5717 * btrfs_{start,end}_write_no_snapshotting() are similar to
5718 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
5719 * data into the page cache through nocow before the subvolume is snapshoted,
5720 * but flush the data into disk after the snapshot creation, or to prevent
5721 * operations while snapshotting is ongoing and that cause the snapshot to be
5722 * inconsistent (writes followed by expanding truncates for example).
5723 */
5724void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
5725{
5726	percpu_counter_dec(&root->subv_writers->counter);
5727	cond_wake_up(&root->subv_writers->wait);
5728}
5729
5730int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
5731{
5732	if (atomic_read(&root->will_be_snapshotted))
5733		return 0;
5734
5735	percpu_counter_inc(&root->subv_writers->counter);
5736	/*
5737	 * Make sure counter is updated before we check for snapshot creation.
5738	 */
5739	smp_mb();
5740	if (atomic_read(&root->will_be_snapshotted)) {
5741		btrfs_end_write_no_snapshotting(root);
5742		return 0;
5743	}
5744	return 1;
5745}
5746
5747void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
5748{
5749	while (true) {
5750		int ret;
5751
5752		ret = btrfs_start_write_no_snapshotting(root);
5753		if (ret)
5754			break;
5755		wait_var_event(&root->will_be_snapshotted,
5756			       !atomic_read(&root->will_be_snapshotted));
5757	}
5758}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/signal.h>
   8#include <linux/pagemap.h>
   9#include <linux/writeback.h>
  10#include <linux/blkdev.h>
  11#include <linux/sort.h>
  12#include <linux/rcupdate.h>
  13#include <linux/kthread.h>
  14#include <linux/slab.h>
  15#include <linux/ratelimit.h>
  16#include <linux/percpu_counter.h>
  17#include <linux/lockdep.h>
  18#include <linux/crc32c.h>
  19#include "ctree.h"
  20#include "extent-tree.h"
  21#include "transaction.h"
  22#include "disk-io.h"
  23#include "print-tree.h"
  24#include "volumes.h"
  25#include "raid56.h"
  26#include "locking.h"
  27#include "free-space-cache.h"
  28#include "free-space-tree.h"
 
  29#include "qgroup.h"
  30#include "ref-verify.h"
  31#include "space-info.h"
  32#include "block-rsv.h"
  33#include "discard.h"
  34#include "zoned.h"
  35#include "dev-replace.h"
  36#include "fs.h"
  37#include "accessors.h"
  38#include "root-tree.h"
  39#include "file-item.h"
  40#include "orphan.h"
  41#include "tree-checker.h"
  42#include "raid-stripe-tree.h"
  43
  44#undef SCRAMBLE_DELAYED_REFS
  45
  46
  47static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  48			       struct btrfs_delayed_ref_head *href,
  49			       struct btrfs_delayed_ref_node *node,
 
  50			       struct btrfs_delayed_extent_op *extra_op);
  51static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  52				    struct extent_buffer *leaf,
  53				    struct btrfs_extent_item *ei);
  54static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  55				      u64 parent, u64 root_objectid,
  56				      u64 flags, u64 owner, u64 offset,
  57				      struct btrfs_key *ins, int ref_mod, u64 oref_root);
  58static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  59				     struct btrfs_delayed_ref_node *node,
  60				     struct btrfs_delayed_extent_op *extent_op);
  61static int find_next_key(struct btrfs_path *path, int level,
  62			 struct btrfs_key *key);
  63
  64static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
  65{
  66	return (cache->flags & bits) == bits;
  67}
  68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69/* simple helper to search for an existing data extent at a given offset */
  70int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
  71{
  72	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
  73	int ret;
  74	struct btrfs_key key;
  75	struct btrfs_path *path;
  76
  77	path = btrfs_alloc_path();
  78	if (!path)
  79		return -ENOMEM;
  80
  81	key.objectid = start;
  82	key.offset = len;
  83	key.type = BTRFS_EXTENT_ITEM_KEY;
  84	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  85	btrfs_free_path(path);
  86	return ret;
  87}
  88
  89/*
  90 * helper function to lookup reference count and flags of a tree block.
  91 *
  92 * the head node for delayed ref is used to store the sum of all the
  93 * reference count modifications queued up in the rbtree. the head
  94 * node may also store the extent flags to set. This way you can check
  95 * to see what the reference count and extent flags would be if all of
  96 * the delayed refs are not processed.
  97 */
  98int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
  99			     struct btrfs_fs_info *fs_info, u64 bytenr,
 100			     u64 offset, int metadata, u64 *refs, u64 *flags,
 101			     u64 *owning_root)
 102{
 103	struct btrfs_root *extent_root;
 104	struct btrfs_delayed_ref_head *head;
 105	struct btrfs_delayed_ref_root *delayed_refs;
 106	struct btrfs_path *path;
 
 
 107	struct btrfs_key key;
 
 108	u64 num_refs;
 109	u64 extent_flags;
 110	u64 owner = 0;
 111	int ret;
 112
 113	/*
 114	 * If we don't have skinny metadata, don't bother doing anything
 115	 * different
 116	 */
 117	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
 118		offset = fs_info->nodesize;
 119		metadata = 0;
 120	}
 121
 122	path = btrfs_alloc_path();
 123	if (!path)
 124		return -ENOMEM;
 125
 
 
 
 
 
 126search_again:
 127	key.objectid = bytenr;
 128	key.offset = offset;
 129	if (metadata)
 130		key.type = BTRFS_METADATA_ITEM_KEY;
 131	else
 132		key.type = BTRFS_EXTENT_ITEM_KEY;
 133
 134	extent_root = btrfs_extent_root(fs_info, bytenr);
 135	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 136	if (ret < 0)
 137		goto out_free;
 138
 139	if (ret > 0 && key.type == BTRFS_METADATA_ITEM_KEY) {
 140		if (path->slots[0]) {
 141			path->slots[0]--;
 142			btrfs_item_key_to_cpu(path->nodes[0], &key,
 143					      path->slots[0]);
 144			if (key.objectid == bytenr &&
 145			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 146			    key.offset == fs_info->nodesize)
 147				ret = 0;
 148		}
 149	}
 150
 151	if (ret == 0) {
 152		struct extent_buffer *leaf = path->nodes[0];
 153		struct btrfs_extent_item *ei;
 154		const u32 item_size = btrfs_item_size(leaf, path->slots[0]);
 
 
 
 
 
 
 
 
 
 
 
 155
 156		if (unlikely(item_size < sizeof(*ei))) {
 157			ret = -EUCLEAN;
 158			btrfs_err(fs_info,
 159			"unexpected extent item size, has %u expect >= %zu",
 160				  item_size, sizeof(*ei));
 161			btrfs_abort_transaction(trans, ret);
 162			goto out_free;
 163		}
 164
 165		ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 166		num_refs = btrfs_extent_refs(leaf, ei);
 167		if (unlikely(num_refs == 0)) {
 168			ret = -EUCLEAN;
 169			btrfs_err(fs_info,
 170		"unexpected zero reference count for extent item (%llu %u %llu)",
 171				  key.objectid, key.type, key.offset);
 172			btrfs_abort_transaction(trans, ret);
 173			goto out_free;
 174		}
 175		extent_flags = btrfs_extent_flags(leaf, ei);
 176		owner = btrfs_get_extent_owner_root(fs_info, leaf, path->slots[0]);
 177	} else {
 178		num_refs = 0;
 179		extent_flags = 0;
 180		ret = 0;
 181	}
 182
 
 
 
 183	delayed_refs = &trans->transaction->delayed_refs;
 184	spin_lock(&delayed_refs->lock);
 185	head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
 186	if (head) {
 187		if (!mutex_trylock(&head->mutex)) {
 188			refcount_inc(&head->refs);
 189			spin_unlock(&delayed_refs->lock);
 190
 191			btrfs_release_path(path);
 192
 193			/*
 194			 * Mutex was contended, block until it's released and try
 195			 * again
 196			 */
 197			mutex_lock(&head->mutex);
 198			mutex_unlock(&head->mutex);
 199			btrfs_put_delayed_ref_head(head);
 200			goto search_again;
 201		}
 202		spin_lock(&head->lock);
 203		if (head->extent_op && head->extent_op->update_flags)
 204			extent_flags |= head->extent_op->flags_to_set;
 
 
 205
 206		num_refs += head->ref_mod;
 207		spin_unlock(&head->lock);
 208		mutex_unlock(&head->mutex);
 209	}
 210	spin_unlock(&delayed_refs->lock);
 211
 212	WARN_ON(num_refs == 0);
 213	if (refs)
 214		*refs = num_refs;
 215	if (flags)
 216		*flags = extent_flags;
 217	if (owning_root)
 218		*owning_root = owner;
 219out_free:
 220	btrfs_free_path(path);
 221	return ret;
 222}
 223
 224/*
 225 * Back reference rules.  Back refs have three main goals:
 226 *
 227 * 1) differentiate between all holders of references to an extent so that
 228 *    when a reference is dropped we can make sure it was a valid reference
 229 *    before freeing the extent.
 230 *
 231 * 2) Provide enough information to quickly find the holders of an extent
 232 *    if we notice a given block is corrupted or bad.
 233 *
 234 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
 235 *    maintenance.  This is actually the same as #2, but with a slightly
 236 *    different use case.
 237 *
 238 * There are two kinds of back refs. The implicit back refs is optimized
 239 * for pointers in non-shared tree blocks. For a given pointer in a block,
 240 * back refs of this kind provide information about the block's owner tree
 241 * and the pointer's key. These information allow us to find the block by
 242 * b-tree searching. The full back refs is for pointers in tree blocks not
 243 * referenced by their owner trees. The location of tree block is recorded
 244 * in the back refs. Actually the full back refs is generic, and can be
 245 * used in all cases the implicit back refs is used. The major shortcoming
 246 * of the full back refs is its overhead. Every time a tree block gets
 247 * COWed, we have to update back refs entry for all pointers in it.
 248 *
 249 * For a newly allocated tree block, we use implicit back refs for
 250 * pointers in it. This means most tree related operations only involve
 251 * implicit back refs. For a tree block created in old transaction, the
 252 * only way to drop a reference to it is COW it. So we can detect the
 253 * event that tree block loses its owner tree's reference and do the
 254 * back refs conversion.
 255 *
 256 * When a tree block is COWed through a tree, there are four cases:
 257 *
 258 * The reference count of the block is one and the tree is the block's
 259 * owner tree. Nothing to do in this case.
 260 *
 261 * The reference count of the block is one and the tree is not the
 262 * block's owner tree. In this case, full back refs is used for pointers
 263 * in the block. Remove these full back refs, add implicit back refs for
 264 * every pointers in the new block.
 265 *
 266 * The reference count of the block is greater than one and the tree is
 267 * the block's owner tree. In this case, implicit back refs is used for
 268 * pointers in the block. Add full back refs for every pointers in the
 269 * block, increase lower level extents' reference counts. The original
 270 * implicit back refs are entailed to the new block.
 271 *
 272 * The reference count of the block is greater than one and the tree is
 273 * not the block's owner tree. Add implicit back refs for every pointer in
 274 * the new block, increase lower level extents' reference count.
 275 *
 276 * Back Reference Key composing:
 277 *
 278 * The key objectid corresponds to the first byte in the extent,
 279 * The key type is used to differentiate between types of back refs.
 280 * There are different meanings of the key offset for different types
 281 * of back refs.
 282 *
 283 * File extents can be referenced by:
 284 *
 285 * - multiple snapshots, subvolumes, or different generations in one subvol
 286 * - different files inside a single subvolume
 287 * - different offsets inside a file (bookend extents in file.c)
 288 *
 289 * The extent ref structure for the implicit back refs has fields for:
 290 *
 291 * - Objectid of the subvolume root
 292 * - objectid of the file holding the reference
 293 * - original offset in the file
 294 * - how many bookend extents
 295 *
 296 * The key offset for the implicit back refs is hash of the first
 297 * three fields.
 298 *
 299 * The extent ref structure for the full back refs has field for:
 300 *
 301 * - number of pointers in the tree leaf
 302 *
 303 * The key offset for the implicit back refs is the first byte of
 304 * the tree leaf
 305 *
 306 * When a file extent is allocated, The implicit back refs is used.
 307 * the fields are filled in:
 308 *
 309 *     (root_key.objectid, inode objectid, offset in file, 1)
 310 *
 311 * When a file extent is removed file truncation, we find the
 312 * corresponding implicit back refs and check the following fields:
 313 *
 314 *     (btrfs_header_owner(leaf), inode objectid, offset in file)
 315 *
 316 * Btree extents can be referenced by:
 317 *
 318 * - Different subvolumes
 319 *
 320 * Both the implicit back refs and the full back refs for tree blocks
 321 * only consist of key. The key offset for the implicit back refs is
 322 * objectid of block's owner tree. The key offset for the full back refs
 323 * is the first byte of parent block.
 324 *
 325 * When implicit back refs is used, information about the lowest key and
 326 * level of the tree block are required. These information are stored in
 327 * tree block info structure.
 328 */
 329
 330/*
 331 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
 332 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
 333 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
 334 */
 335int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
 336				     struct btrfs_extent_inline_ref *iref,
 337				     enum btrfs_inline_ref_type is_data)
 338{
 339	struct btrfs_fs_info *fs_info = eb->fs_info;
 340	int type = btrfs_extent_inline_ref_type(eb, iref);
 341	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
 342
 343	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
 344		ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
 345		return type;
 346	}
 347
 348	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
 349	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
 350	    type == BTRFS_SHARED_DATA_REF_KEY ||
 351	    type == BTRFS_EXTENT_DATA_REF_KEY) {
 352		if (is_data == BTRFS_REF_TYPE_BLOCK) {
 353			if (type == BTRFS_TREE_BLOCK_REF_KEY)
 354				return type;
 355			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
 356				ASSERT(fs_info);
 357				/*
 358				 * Every shared one has parent tree block,
 359				 * which must be aligned to sector size.
 
 360				 */
 361				if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
 
 362					return type;
 363			}
 364		} else if (is_data == BTRFS_REF_TYPE_DATA) {
 365			if (type == BTRFS_EXTENT_DATA_REF_KEY)
 366				return type;
 367			if (type == BTRFS_SHARED_DATA_REF_KEY) {
 368				ASSERT(fs_info);
 369				/*
 370				 * Every shared one has parent tree block,
 371				 * which must be aligned to sector size.
 
 372				 */
 373				if (offset &&
 374				    IS_ALIGNED(offset, fs_info->sectorsize))
 375					return type;
 376			}
 377		} else {
 378			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
 379			return type;
 380		}
 381	}
 382
 
 
 
 383	WARN_ON(1);
 384	btrfs_print_leaf(eb);
 385	btrfs_err(fs_info,
 386		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
 387		  eb->start, (unsigned long)iref, type);
 388
 389	return BTRFS_REF_TYPE_INVALID;
 390}
 391
 392u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
 393{
 394	u32 high_crc = ~(u32)0;
 395	u32 low_crc = ~(u32)0;
 396	__le64 lenum;
 397
 398	lenum = cpu_to_le64(root_objectid);
 399	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
 400	lenum = cpu_to_le64(owner);
 401	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
 402	lenum = cpu_to_le64(offset);
 403	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
 404
 405	return ((u64)high_crc << 31) ^ (u64)low_crc;
 406}
 407
 408static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
 409				     struct btrfs_extent_data_ref *ref)
 410{
 411	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
 412				    btrfs_extent_data_ref_objectid(leaf, ref),
 413				    btrfs_extent_data_ref_offset(leaf, ref));
 414}
 415
 416static int match_extent_data_ref(struct extent_buffer *leaf,
 417				 struct btrfs_extent_data_ref *ref,
 418				 u64 root_objectid, u64 owner, u64 offset)
 419{
 420	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
 421	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
 422	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
 423		return 0;
 424	return 1;
 425}
 426
 427static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
 428					   struct btrfs_path *path,
 429					   u64 bytenr, u64 parent,
 430					   u64 root_objectid,
 431					   u64 owner, u64 offset)
 432{
 433	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
 434	struct btrfs_key key;
 435	struct btrfs_extent_data_ref *ref;
 436	struct extent_buffer *leaf;
 437	u32 nritems;
 
 438	int recow;
 439	int ret;
 440
 441	key.objectid = bytenr;
 442	if (parent) {
 443		key.type = BTRFS_SHARED_DATA_REF_KEY;
 444		key.offset = parent;
 445	} else {
 446		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 447		key.offset = hash_extent_data_ref(root_objectid,
 448						  owner, offset);
 449	}
 450again:
 451	recow = 0;
 452	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 453	if (ret < 0)
 454		return ret;
 
 
 455
 456	if (parent) {
 457		if (ret)
 458			return -ENOENT;
 459		return 0;
 460	}
 461
 462	ret = -ENOENT;
 463	leaf = path->nodes[0];
 464	nritems = btrfs_header_nritems(leaf);
 465	while (1) {
 466		if (path->slots[0] >= nritems) {
 467			ret = btrfs_next_leaf(root, path);
 468			if (ret) {
 469				if (ret > 0)
 470					return -ENOENT;
 471				return ret;
 472			}
 473
 474			leaf = path->nodes[0];
 475			nritems = btrfs_header_nritems(leaf);
 476			recow = 1;
 477		}
 478
 479		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 480		if (key.objectid != bytenr ||
 481		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
 482			goto fail;
 483
 484		ref = btrfs_item_ptr(leaf, path->slots[0],
 485				     struct btrfs_extent_data_ref);
 486
 487		if (match_extent_data_ref(leaf, ref, root_objectid,
 488					  owner, offset)) {
 489			if (recow) {
 490				btrfs_release_path(path);
 491				goto again;
 492			}
 493			ret = 0;
 494			break;
 495		}
 496		path->slots[0]++;
 497	}
 498fail:
 499	return ret;
 500}
 501
 502static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
 503					   struct btrfs_path *path,
 504					   struct btrfs_delayed_ref_node *node,
 505					   u64 bytenr)
 
 506{
 507	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
 508	struct btrfs_key key;
 509	struct extent_buffer *leaf;
 510	u64 owner = btrfs_delayed_ref_owner(node);
 511	u64 offset = btrfs_delayed_ref_offset(node);
 512	u32 size;
 513	u32 num_refs;
 514	int ret;
 515
 516	key.objectid = bytenr;
 517	if (node->parent) {
 518		key.type = BTRFS_SHARED_DATA_REF_KEY;
 519		key.offset = node->parent;
 520		size = sizeof(struct btrfs_shared_data_ref);
 521	} else {
 522		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 523		key.offset = hash_extent_data_ref(node->ref_root, owner, offset);
 
 524		size = sizeof(struct btrfs_extent_data_ref);
 525	}
 526
 527	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
 528	if (ret && ret != -EEXIST)
 529		goto fail;
 530
 531	leaf = path->nodes[0];
 532	if (node->parent) {
 533		struct btrfs_shared_data_ref *ref;
 534		ref = btrfs_item_ptr(leaf, path->slots[0],
 535				     struct btrfs_shared_data_ref);
 536		if (ret == 0) {
 537			btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod);
 538		} else {
 539			num_refs = btrfs_shared_data_ref_count(leaf, ref);
 540			num_refs += node->ref_mod;
 541			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
 542		}
 543	} else {
 544		struct btrfs_extent_data_ref *ref;
 545		while (ret == -EEXIST) {
 546			ref = btrfs_item_ptr(leaf, path->slots[0],
 547					     struct btrfs_extent_data_ref);
 548			if (match_extent_data_ref(leaf, ref, node->ref_root,
 549						  owner, offset))
 550				break;
 551			btrfs_release_path(path);
 552			key.offset++;
 553			ret = btrfs_insert_empty_item(trans, root, path, &key,
 554						      size);
 555			if (ret && ret != -EEXIST)
 556				goto fail;
 557
 558			leaf = path->nodes[0];
 559		}
 560		ref = btrfs_item_ptr(leaf, path->slots[0],
 561				     struct btrfs_extent_data_ref);
 562		if (ret == 0) {
 563			btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root);
 
 564			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
 565			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
 566			btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod);
 567		} else {
 568			num_refs = btrfs_extent_data_ref_count(leaf, ref);
 569			num_refs += node->ref_mod;
 570			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
 571		}
 572	}
 573	btrfs_mark_buffer_dirty(trans, leaf);
 574	ret = 0;
 575fail:
 576	btrfs_release_path(path);
 577	return ret;
 578}
 579
 580static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
 581					   struct btrfs_root *root,
 582					   struct btrfs_path *path,
 583					   int refs_to_drop)
 584{
 585	struct btrfs_key key;
 586	struct btrfs_extent_data_ref *ref1 = NULL;
 587	struct btrfs_shared_data_ref *ref2 = NULL;
 588	struct extent_buffer *leaf;
 589	u32 num_refs = 0;
 590	int ret = 0;
 591
 592	leaf = path->nodes[0];
 593	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 594
 595	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 596		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 597				      struct btrfs_extent_data_ref);
 598		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 599	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 600		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 601				      struct btrfs_shared_data_ref);
 602		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 
 
 
 
 603	} else {
 604		btrfs_err(trans->fs_info,
 605			  "unrecognized backref key (%llu %u %llu)",
 606			  key.objectid, key.type, key.offset);
 607		btrfs_abort_transaction(trans, -EUCLEAN);
 608		return -EUCLEAN;
 609	}
 610
 611	BUG_ON(num_refs < refs_to_drop);
 612	num_refs -= refs_to_drop;
 613
 614	if (num_refs == 0) {
 615		ret = btrfs_del_item(trans, root, path);
 
 616	} else {
 617		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
 618			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
 619		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
 620			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
 621		btrfs_mark_buffer_dirty(trans, leaf);
 622	}
 623	return ret;
 624}
 625
 626static noinline u32 extent_data_ref_count(struct btrfs_path *path,
 627					  struct btrfs_extent_inline_ref *iref)
 628{
 629	struct btrfs_key key;
 630	struct extent_buffer *leaf;
 631	struct btrfs_extent_data_ref *ref1;
 632	struct btrfs_shared_data_ref *ref2;
 633	u32 num_refs = 0;
 634	int type;
 635
 636	leaf = path->nodes[0];
 637	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 638
 
 639	if (iref) {
 640		/*
 641		 * If type is invalid, we should have bailed out earlier than
 642		 * this call.
 643		 */
 644		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
 645		ASSERT(type != BTRFS_REF_TYPE_INVALID);
 646		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 647			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
 648			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 649		} else {
 650			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
 651			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 652		}
 653	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 654		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 655				      struct btrfs_extent_data_ref);
 656		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 657	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 658		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 659				      struct btrfs_shared_data_ref);
 660		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 661	} else {
 662		WARN_ON(1);
 663	}
 664	return num_refs;
 665}
 666
 667static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
 668					  struct btrfs_path *path,
 669					  u64 bytenr, u64 parent,
 670					  u64 root_objectid)
 671{
 672	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
 673	struct btrfs_key key;
 674	int ret;
 675
 676	key.objectid = bytenr;
 677	if (parent) {
 678		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 679		key.offset = parent;
 680	} else {
 681		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 682		key.offset = root_objectid;
 683	}
 684
 685	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 686	if (ret > 0)
 687		ret = -ENOENT;
 688	return ret;
 689}
 690
 691static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
 692					  struct btrfs_path *path,
 693					  struct btrfs_delayed_ref_node *node,
 694					  u64 bytenr)
 695{
 696	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
 697	struct btrfs_key key;
 698	int ret;
 699
 700	key.objectid = bytenr;
 701	if (node->parent) {
 702		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 703		key.offset = node->parent;
 704	} else {
 705		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 706		key.offset = node->ref_root;
 707	}
 708
 709	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
 
 710	btrfs_release_path(path);
 711	return ret;
 712}
 713
 714static inline int extent_ref_type(u64 parent, u64 owner)
 715{
 716	int type;
 717	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 718		if (parent > 0)
 719			type = BTRFS_SHARED_BLOCK_REF_KEY;
 720		else
 721			type = BTRFS_TREE_BLOCK_REF_KEY;
 722	} else {
 723		if (parent > 0)
 724			type = BTRFS_SHARED_DATA_REF_KEY;
 725		else
 726			type = BTRFS_EXTENT_DATA_REF_KEY;
 727	}
 728	return type;
 729}
 730
 731static int find_next_key(struct btrfs_path *path, int level,
 732			 struct btrfs_key *key)
 733
 734{
 735	for (; level < BTRFS_MAX_LEVEL; level++) {
 736		if (!path->nodes[level])
 737			break;
 738		if (path->slots[level] + 1 >=
 739		    btrfs_header_nritems(path->nodes[level]))
 740			continue;
 741		if (level == 0)
 742			btrfs_item_key_to_cpu(path->nodes[level], key,
 743					      path->slots[level] + 1);
 744		else
 745			btrfs_node_key_to_cpu(path->nodes[level], key,
 746					      path->slots[level] + 1);
 747		return 0;
 748	}
 749	return 1;
 750}
 751
 752/*
 753 * look for inline back ref. if back ref is found, *ref_ret is set
 754 * to the address of inline back ref, and 0 is returned.
 755 *
 756 * if back ref isn't found, *ref_ret is set to the address where it
 757 * should be inserted, and -ENOENT is returned.
 758 *
 759 * if insert is true and there are too many inline back refs, the path
 760 * points to the extent item, and -EAGAIN is returned.
 761 *
 762 * NOTE: inline back refs are ordered in the same way that back ref
 763 *	 items in the tree are ordered.
 764 */
 765static noinline_for_stack
 766int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
 767				 struct btrfs_path *path,
 768				 struct btrfs_extent_inline_ref **ref_ret,
 769				 u64 bytenr, u64 num_bytes,
 770				 u64 parent, u64 root_objectid,
 771				 u64 owner, u64 offset, int insert)
 772{
 773	struct btrfs_fs_info *fs_info = trans->fs_info;
 774	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
 775	struct btrfs_key key;
 776	struct extent_buffer *leaf;
 777	struct btrfs_extent_item *ei;
 778	struct btrfs_extent_inline_ref *iref;
 779	u64 flags;
 780	u64 item_size;
 781	unsigned long ptr;
 782	unsigned long end;
 783	int extra_size;
 784	int type;
 785	int want;
 786	int ret;
 
 787	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 788	int needed;
 789
 790	key.objectid = bytenr;
 791	key.type = BTRFS_EXTENT_ITEM_KEY;
 792	key.offset = num_bytes;
 793
 794	want = extent_ref_type(parent, owner);
 795	if (insert) {
 796		extra_size = btrfs_extent_inline_ref_size(want);
 797		path->search_for_extension = 1;
 798	} else
 799		extra_size = -1;
 800
 801	/*
 802	 * Owner is our level, so we can just add one to get the level for the
 803	 * block we are interested in.
 804	 */
 805	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
 806		key.type = BTRFS_METADATA_ITEM_KEY;
 807		key.offset = owner;
 808	}
 809
 810again:
 811	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
 812	if (ret < 0)
 
 813		goto out;
 
 814
 815	/*
 816	 * We may be a newly converted file system which still has the old fat
 817	 * extent entries for metadata, so try and see if we have one of those.
 818	 */
 819	if (ret > 0 && skinny_metadata) {
 820		skinny_metadata = false;
 821		if (path->slots[0]) {
 822			path->slots[0]--;
 823			btrfs_item_key_to_cpu(path->nodes[0], &key,
 824					      path->slots[0]);
 825			if (key.objectid == bytenr &&
 826			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 827			    key.offset == num_bytes)
 828				ret = 0;
 829		}
 830		if (ret) {
 831			key.objectid = bytenr;
 832			key.type = BTRFS_EXTENT_ITEM_KEY;
 833			key.offset = num_bytes;
 834			btrfs_release_path(path);
 835			goto again;
 836		}
 837	}
 838
 839	if (ret && !insert) {
 840		ret = -ENOENT;
 841		goto out;
 842	} else if (WARN_ON(ret)) {
 843		btrfs_print_leaf(path->nodes[0]);
 844		btrfs_err(fs_info,
 845"extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
 846			  bytenr, num_bytes, parent, root_objectid, owner,
 847			  offset);
 848		ret = -EUCLEAN;
 849		goto out;
 850	}
 851
 852	leaf = path->nodes[0];
 853	item_size = btrfs_item_size(leaf, path->slots[0]);
 854	if (unlikely(item_size < sizeof(*ei))) {
 855		ret = -EUCLEAN;
 856		btrfs_err(fs_info,
 857			  "unexpected extent item size, has %llu expect >= %zu",
 858			  item_size, sizeof(*ei));
 859		btrfs_abort_transaction(trans, ret);
 860		goto out;
 861	}
 862
 863	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 864	flags = btrfs_extent_flags(leaf, ei);
 865
 866	ptr = (unsigned long)(ei + 1);
 867	end = (unsigned long)ei + item_size;
 868
 869	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
 870		ptr += sizeof(struct btrfs_tree_block_info);
 871		BUG_ON(ptr > end);
 872	}
 873
 874	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
 875		needed = BTRFS_REF_TYPE_DATA;
 876	else
 877		needed = BTRFS_REF_TYPE_BLOCK;
 878
 879	ret = -ENOENT;
 880	while (ptr < end) {
 
 
 
 
 881		iref = (struct btrfs_extent_inline_ref *)ptr;
 882		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
 883		if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
 884			ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
 885			ptr += btrfs_extent_inline_ref_size(type);
 886			continue;
 887		}
 888		if (type == BTRFS_REF_TYPE_INVALID) {
 889			ret = -EUCLEAN;
 890			goto out;
 891		}
 892
 893		if (want < type)
 894			break;
 895		if (want > type) {
 896			ptr += btrfs_extent_inline_ref_size(type);
 897			continue;
 898		}
 899
 900		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 901			struct btrfs_extent_data_ref *dref;
 902			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 903			if (match_extent_data_ref(leaf, dref, root_objectid,
 904						  owner, offset)) {
 905				ret = 0;
 906				break;
 907			}
 908			if (hash_extent_data_ref_item(leaf, dref) <
 909			    hash_extent_data_ref(root_objectid, owner, offset))
 910				break;
 911		} else {
 912			u64 ref_offset;
 913			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
 914			if (parent > 0) {
 915				if (parent == ref_offset) {
 916					ret = 0;
 917					break;
 918				}
 919				if (ref_offset < parent)
 920					break;
 921			} else {
 922				if (root_objectid == ref_offset) {
 923					ret = 0;
 924					break;
 925				}
 926				if (ref_offset < root_objectid)
 927					break;
 928			}
 929		}
 930		ptr += btrfs_extent_inline_ref_size(type);
 931	}
 932
 933	if (unlikely(ptr > end)) {
 934		ret = -EUCLEAN;
 935		btrfs_print_leaf(path->nodes[0]);
 936		btrfs_crit(fs_info,
 937"overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
 938			   path->slots[0], root_objectid, owner, offset, parent);
 939		goto out;
 940	}
 941
 942	if (ret == -ENOENT && insert) {
 943		if (item_size + extra_size >=
 944		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
 945			ret = -EAGAIN;
 946			goto out;
 947		}
 948
 949		if (path->slots[0] + 1 < btrfs_header_nritems(path->nodes[0])) {
 950			struct btrfs_key tmp_key;
 951
 952			btrfs_item_key_to_cpu(path->nodes[0], &tmp_key, path->slots[0] + 1);
 953			if (tmp_key.objectid == bytenr &&
 954			    tmp_key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
 955				ret = -EAGAIN;
 956				goto out;
 957			}
 958			goto out_no_entry;
 959		}
 960
 961		if (!path->keep_locks) {
 962			btrfs_release_path(path);
 963			path->keep_locks = 1;
 964			goto again;
 965		}
 966
 967		/*
 968		 * To add new inline back ref, we have to make sure
 969		 * there is no corresponding back ref item.
 970		 * For simplicity, we just do not add new inline back
 971		 * ref if there is any kind of item for this block
 972		 */
 973		if (find_next_key(path, 0, &key) == 0 &&
 974		    key.objectid == bytenr &&
 975		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
 976			ret = -EAGAIN;
 977			goto out;
 978		}
 979	}
 980out_no_entry:
 981	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
 982out:
 983	if (path->keep_locks) {
 984		path->keep_locks = 0;
 985		btrfs_unlock_up_safe(path, 1);
 986	}
 987	if (insert)
 988		path->search_for_extension = 0;
 989	return ret;
 990}
 991
 992/*
 993 * helper to add new inline back ref
 994 */
 995static noinline_for_stack
 996void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
 997				 struct btrfs_path *path,
 998				 struct btrfs_extent_inline_ref *iref,
 999				 u64 parent, u64 root_objectid,
1000				 u64 owner, u64 offset, int refs_to_add,
1001				 struct btrfs_delayed_extent_op *extent_op)
1002{
1003	struct extent_buffer *leaf;
1004	struct btrfs_extent_item *ei;
1005	unsigned long ptr;
1006	unsigned long end;
1007	unsigned long item_offset;
1008	u64 refs;
1009	int size;
1010	int type;
1011
1012	leaf = path->nodes[0];
1013	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1014	item_offset = (unsigned long)iref - (unsigned long)ei;
1015
1016	type = extent_ref_type(parent, owner);
1017	size = btrfs_extent_inline_ref_size(type);
1018
1019	btrfs_extend_item(trans, path, size);
1020
1021	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1022	refs = btrfs_extent_refs(leaf, ei);
1023	refs += refs_to_add;
1024	btrfs_set_extent_refs(leaf, ei, refs);
1025	if (extent_op)
1026		__run_delayed_extent_op(extent_op, leaf, ei);
1027
1028	ptr = (unsigned long)ei + item_offset;
1029	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1030	if (ptr < end - size)
1031		memmove_extent_buffer(leaf, ptr + size, ptr,
1032				      end - size - ptr);
1033
1034	iref = (struct btrfs_extent_inline_ref *)ptr;
1035	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1036	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1037		struct btrfs_extent_data_ref *dref;
1038		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1039		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1040		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1041		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1042		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1043	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1044		struct btrfs_shared_data_ref *sref;
1045		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1046		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1047		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1048	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1049		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1050	} else {
1051		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1052	}
1053	btrfs_mark_buffer_dirty(trans, leaf);
1054}
1055
1056static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1057				 struct btrfs_path *path,
1058				 struct btrfs_extent_inline_ref **ref_ret,
1059				 u64 bytenr, u64 num_bytes, u64 parent,
1060				 u64 root_objectid, u64 owner, u64 offset)
1061{
1062	int ret;
1063
1064	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1065					   num_bytes, parent, root_objectid,
1066					   owner, offset, 0);
1067	if (ret != -ENOENT)
1068		return ret;
1069
1070	btrfs_release_path(path);
1071	*ref_ret = NULL;
1072
1073	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1074		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1075					    root_objectid);
1076	} else {
1077		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1078					     root_objectid, owner, offset);
1079	}
1080	return ret;
1081}
1082
1083/*
1084 * helper to update/remove inline back ref
1085 */
1086static noinline_for_stack int update_inline_extent_backref(
1087				  struct btrfs_trans_handle *trans,
1088				  struct btrfs_path *path,
1089				  struct btrfs_extent_inline_ref *iref,
1090				  int refs_to_mod,
1091				  struct btrfs_delayed_extent_op *extent_op)
 
1092{
1093	struct extent_buffer *leaf = path->nodes[0];
1094	struct btrfs_fs_info *fs_info = leaf->fs_info;
1095	struct btrfs_extent_item *ei;
1096	struct btrfs_extent_data_ref *dref = NULL;
1097	struct btrfs_shared_data_ref *sref = NULL;
1098	unsigned long ptr;
1099	unsigned long end;
1100	u32 item_size;
1101	int size;
1102	int type;
1103	u64 refs;
1104
1105	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1106	refs = btrfs_extent_refs(leaf, ei);
1107	if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1108		struct btrfs_key key;
1109		u32 extent_size;
1110
1111		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1112		if (key.type == BTRFS_METADATA_ITEM_KEY)
1113			extent_size = fs_info->nodesize;
1114		else
1115			extent_size = key.offset;
1116		btrfs_print_leaf(leaf);
1117		btrfs_err(fs_info,
1118	"invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1119			  key.objectid, extent_size, refs_to_mod, refs);
1120		return -EUCLEAN;
1121	}
1122	refs += refs_to_mod;
1123	btrfs_set_extent_refs(leaf, ei, refs);
1124	if (extent_op)
1125		__run_delayed_extent_op(extent_op, leaf, ei);
1126
1127	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1128	/*
1129	 * Function btrfs_get_extent_inline_ref_type() has already printed
1130	 * error messages.
1131	 */
1132	if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1133		return -EUCLEAN;
1134
1135	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1136		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1137		refs = btrfs_extent_data_ref_count(leaf, dref);
1138	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1139		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1140		refs = btrfs_shared_data_ref_count(leaf, sref);
1141	} else {
1142		refs = 1;
1143		/*
1144		 * For tree blocks we can only drop one ref for it, and tree
1145		 * blocks should not have refs > 1.
1146		 *
1147		 * Furthermore if we're inserting a new inline backref, we
1148		 * won't reach this path either. That would be
1149		 * setup_inline_extent_backref().
1150		 */
1151		if (unlikely(refs_to_mod != -1)) {
1152			struct btrfs_key key;
1153
1154			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1155
1156			btrfs_print_leaf(leaf);
1157			btrfs_err(fs_info,
1158			"invalid refs_to_mod for tree block %llu, has %d expect -1",
1159				  key.objectid, refs_to_mod);
1160			return -EUCLEAN;
1161		}
1162	}
1163
1164	if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1165		struct btrfs_key key;
1166		u32 extent_size;
1167
1168		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1169		if (key.type == BTRFS_METADATA_ITEM_KEY)
1170			extent_size = fs_info->nodesize;
1171		else
1172			extent_size = key.offset;
1173		btrfs_print_leaf(leaf);
1174		btrfs_err(fs_info,
1175"invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1176			  (unsigned long)iref, key.objectid, extent_size,
1177			  refs_to_mod, refs);
1178		return -EUCLEAN;
1179	}
1180	refs += refs_to_mod;
1181
1182	if (refs > 0) {
1183		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1184			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1185		else
1186			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1187	} else {
 
1188		size =  btrfs_extent_inline_ref_size(type);
1189		item_size = btrfs_item_size(leaf, path->slots[0]);
1190		ptr = (unsigned long)iref;
1191		end = (unsigned long)ei + item_size;
1192		if (ptr + size < end)
1193			memmove_extent_buffer(leaf, ptr, ptr + size,
1194					      end - ptr - size);
1195		item_size -= size;
1196		btrfs_truncate_item(trans, path, item_size, 1);
1197	}
1198	btrfs_mark_buffer_dirty(trans, leaf);
1199	return 0;
1200}
1201
1202static noinline_for_stack
1203int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1204				 struct btrfs_path *path,
1205				 u64 bytenr, u64 num_bytes, u64 parent,
1206				 u64 root_objectid, u64 owner,
1207				 u64 offset, int refs_to_add,
1208				 struct btrfs_delayed_extent_op *extent_op)
1209{
1210	struct btrfs_extent_inline_ref *iref;
1211	int ret;
1212
1213	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1214					   num_bytes, parent, root_objectid,
1215					   owner, offset, 1);
1216	if (ret == 0) {
1217		/*
1218		 * We're adding refs to a tree block we already own, this
1219		 * should not happen at all.
1220		 */
1221		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1222			btrfs_print_leaf(path->nodes[0]);
1223			btrfs_crit(trans->fs_info,
1224"adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1225				   bytenr, num_bytes, root_objectid, path->slots[0]);
1226			return -EUCLEAN;
1227		}
1228		ret = update_inline_extent_backref(trans, path, iref,
1229						   refs_to_add, extent_op);
1230	} else if (ret == -ENOENT) {
1231		setup_inline_extent_backref(trans, path, iref, parent,
1232					    root_objectid, owner, offset,
1233					    refs_to_add, extent_op);
1234		ret = 0;
1235	}
1236	return ret;
1237}
1238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1239static int remove_extent_backref(struct btrfs_trans_handle *trans,
1240				 struct btrfs_root *root,
1241				 struct btrfs_path *path,
1242				 struct btrfs_extent_inline_ref *iref,
1243				 int refs_to_drop, int is_data)
1244{
1245	int ret = 0;
1246
1247	BUG_ON(!is_data && refs_to_drop != 1);
1248	if (iref)
1249		ret = update_inline_extent_backref(trans, path, iref,
1250						   -refs_to_drop, NULL);
1251	else if (is_data)
1252		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1253	else
1254		ret = btrfs_del_item(trans, root, path);
 
 
 
1255	return ret;
1256}
1257
1258static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1259			       u64 *discarded_bytes)
1260{
1261	int j, ret = 0;
1262	u64 bytes_left, end;
1263	u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1264
1265	/* Adjust the range to be aligned to 512B sectors if necessary. */
1266	if (start != aligned_start) {
1267		len -= aligned_start - start;
1268		len = round_down(len, 1 << SECTOR_SHIFT);
1269		start = aligned_start;
1270	}
1271
1272	*discarded_bytes = 0;
1273
1274	if (!len)
1275		return 0;
1276
1277	end = start + len;
1278	bytes_left = len;
1279
1280	/* Skip any superblocks on this device. */
1281	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1282		u64 sb_start = btrfs_sb_offset(j);
1283		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1284		u64 size = sb_start - start;
1285
1286		if (!in_range(sb_start, start, bytes_left) &&
1287		    !in_range(sb_end, start, bytes_left) &&
1288		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1289			continue;
1290
1291		/*
1292		 * Superblock spans beginning of range.  Adjust start and
1293		 * try again.
1294		 */
1295		if (sb_start <= start) {
1296			start += sb_end - start;
1297			if (start > end) {
1298				bytes_left = 0;
1299				break;
1300			}
1301			bytes_left = end - start;
1302			continue;
1303		}
1304
1305		if (size) {
1306			ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1307						   size >> SECTOR_SHIFT,
1308						   GFP_NOFS);
1309			if (!ret)
1310				*discarded_bytes += size;
1311			else if (ret != -EOPNOTSUPP)
1312				return ret;
1313		}
1314
1315		start = sb_end;
1316		if (start > end) {
1317			bytes_left = 0;
1318			break;
1319		}
1320		bytes_left = end - start;
1321	}
1322
1323	while (bytes_left) {
1324		u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left);
1325
1326		ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1327					   bytes_to_discard >> SECTOR_SHIFT,
1328					   GFP_NOFS);
1329
1330		if (ret) {
1331			if (ret != -EOPNOTSUPP)
1332				break;
1333			continue;
1334		}
1335
1336		start += bytes_to_discard;
1337		bytes_left -= bytes_to_discard;
1338		*discarded_bytes += bytes_to_discard;
1339
1340		if (btrfs_trim_interrupted()) {
1341			ret = -ERESTARTSYS;
1342			break;
1343		}
1344	}
1345
1346	return ret;
1347}
1348
1349static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1350{
1351	struct btrfs_device *dev = stripe->dev;
1352	struct btrfs_fs_info *fs_info = dev->fs_info;
1353	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1354	u64 phys = stripe->physical;
1355	u64 len = stripe->length;
1356	u64 discarded = 0;
1357	int ret = 0;
1358
1359	/* Zone reset on a zoned filesystem */
1360	if (btrfs_can_zone_reset(dev, phys, len)) {
1361		u64 src_disc;
1362
1363		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1364		if (ret)
1365			goto out;
1366
1367		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1368		    dev != dev_replace->srcdev)
1369			goto out;
1370
1371		src_disc = discarded;
1372
1373		/* Send to replace target as well */
1374		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1375					      &discarded);
1376		discarded += src_disc;
1377	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1378		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1379	} else {
1380		ret = 0;
1381		*bytes = 0;
1382	}
1383
1384out:
1385	*bytes = discarded;
1386	return ret;
1387}
1388
1389int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1390			 u64 num_bytes, u64 *actual_bytes)
1391{
1392	int ret = 0;
1393	u64 discarded_bytes = 0;
1394	u64 end = bytenr + num_bytes;
1395	u64 cur = bytenr;
1396
1397	/*
1398	 * Avoid races with device replace and make sure the devices in the
1399	 * stripes don't go away while we are discarding.
1400	 */
1401	btrfs_bio_counter_inc_blocked(fs_info);
1402	while (cur < end) {
1403		struct btrfs_discard_stripe *stripes;
1404		unsigned int num_stripes;
 
 
 
1405		int i;
1406
1407		num_bytes = end - cur;
1408		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1409		if (IS_ERR(stripes)) {
1410			ret = PTR_ERR(stripes);
1411			if (ret == -EOPNOTSUPP)
1412				ret = 0;
1413			break;
1414		}
1415
1416		for (i = 0; i < num_stripes; i++) {
1417			struct btrfs_discard_stripe *stripe = stripes + i;
1418			u64 bytes;
 
1419
1420			if (!stripe->dev->bdev) {
1421				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1422				continue;
1423			}
1424
1425			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1426					&stripe->dev->dev_state))
1427				continue;
1428
1429			ret = do_discard_extent(stripe, &bytes);
1430			if (ret) {
1431				/*
1432				 * Keep going if discard is not supported by the
1433				 * device.
1434				 */
1435				if (ret != -EOPNOTSUPP)
1436					break;
1437				ret = 0;
1438			} else {
1439				discarded_bytes += bytes;
1440			}
 
 
 
 
 
 
 
 
1441		}
1442		kfree(stripes);
1443		if (ret)
1444			break;
1445		cur += num_bytes;
1446	}
1447	btrfs_bio_counter_dec(fs_info);
 
1448	if (actual_bytes)
1449		*actual_bytes = discarded_bytes;
 
 
 
 
1450	return ret;
1451}
1452
1453/* Can return -ENOMEM */
1454int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1455			 struct btrfs_ref *generic_ref)
1456{
1457	struct btrfs_fs_info *fs_info = trans->fs_info;
 
1458	int ret;
1459
1460	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1461	       generic_ref->action);
1462	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1463	       generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID);
1464
1465	if (generic_ref->type == BTRFS_REF_METADATA)
1466		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
 
1467	else
1468		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
 
1469
1470	btrfs_ref_tree_mod(fs_info, generic_ref);
1471
 
 
 
1472	return ret;
1473}
1474
1475/*
1476 * Insert backreference for a given extent.
1477 *
1478 * The counterpart is in __btrfs_free_extent(), with examples and more details
1479 * how it works.
1480 *
1481 * @trans:	    Handle of transaction
1482 *
1483 * @node:	    The delayed ref node used to get the bytenr/length for
1484 *		    extent whose references are incremented.
1485 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1486 * @extent_op       Pointer to a structure, holding information necessary when
1487 *                  updating a tree block's flags
1488 *
1489 */
1490static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1491				  struct btrfs_delayed_ref_node *node,
 
 
1492				  struct btrfs_delayed_extent_op *extent_op)
1493{
1494	struct btrfs_path *path;
1495	struct extent_buffer *leaf;
1496	struct btrfs_extent_item *item;
1497	struct btrfs_key key;
1498	u64 bytenr = node->bytenr;
1499	u64 num_bytes = node->num_bytes;
1500	u64 owner = btrfs_delayed_ref_owner(node);
1501	u64 offset = btrfs_delayed_ref_offset(node);
1502	u64 refs;
1503	int refs_to_add = node->ref_mod;
1504	int ret;
1505
1506	path = btrfs_alloc_path();
1507	if (!path)
1508		return -ENOMEM;
1509
 
 
1510	/* this will setup the path even if it fails to insert the back ref */
1511	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1512					   node->parent, node->ref_root, owner,
1513					   offset, refs_to_add, extent_op);
1514	if ((ret < 0 && ret != -EAGAIN) || !ret)
1515		goto out;
1516
1517	/*
1518	 * Ok we had -EAGAIN which means we didn't have space to insert and
1519	 * inline extent ref, so just update the reference count and add a
1520	 * normal backref.
1521	 */
1522	leaf = path->nodes[0];
1523	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1524	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1525	refs = btrfs_extent_refs(leaf, item);
1526	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1527	if (extent_op)
1528		__run_delayed_extent_op(extent_op, leaf, item);
1529
1530	btrfs_mark_buffer_dirty(trans, leaf);
1531	btrfs_release_path(path);
1532
 
 
1533	/* now insert the actual backref */
1534	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1535		ret = insert_tree_block_ref(trans, path, node, bytenr);
1536	else
1537		ret = insert_extent_data_ref(trans, path, node, bytenr);
1538
1539	if (ret)
1540		btrfs_abort_transaction(trans, ret);
1541out:
1542	btrfs_free_path(path);
1543	return ret;
1544}
1545
1546static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info,
1547				     struct btrfs_delayed_ref_head *href)
1548{
1549	u64 root = href->owning_root;
1550
1551	/*
1552	 * Don't check must_insert_reserved, as this is called from contexts
1553	 * where it has already been unset.
1554	 */
1555	if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE ||
1556	    !href->is_data || !is_fstree(root))
1557		return;
1558
1559	btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes,
1560				  BTRFS_QGROUP_RSV_DATA);
1561}
1562
1563static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1564				struct btrfs_delayed_ref_head *href,
1565				struct btrfs_delayed_ref_node *node,
1566				struct btrfs_delayed_extent_op *extent_op,
1567				bool insert_reserved)
1568{
1569	int ret = 0;
 
 
1570	u64 parent = 0;
 
1571	u64 flags = 0;
1572
1573	trace_run_delayed_data_ref(trans->fs_info, node);
 
 
 
 
 
1574
1575	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1576		parent = node->parent;
 
1577
1578	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1579		struct btrfs_key key;
1580		struct btrfs_squota_delta delta = {
1581			.root = href->owning_root,
1582			.num_bytes = node->num_bytes,
1583			.is_data = true,
1584			.is_inc	= true,
1585			.generation = trans->transid,
1586		};
1587		u64 owner = btrfs_delayed_ref_owner(node);
1588		u64 offset = btrfs_delayed_ref_offset(node);
1589
1590		if (extent_op)
1591			flags |= extent_op->flags_to_set;
1592
1593		key.objectid = node->bytenr;
1594		key.type = BTRFS_EXTENT_ITEM_KEY;
1595		key.offset = node->num_bytes;
1596
1597		ret = alloc_reserved_file_extent(trans, parent, node->ref_root,
1598						 flags, owner, offset, &key,
1599						 node->ref_mod,
1600						 href->owning_root);
1601		free_head_ref_squota_rsv(trans->fs_info, href);
1602		if (!ret)
1603			ret = btrfs_record_squota_delta(trans->fs_info, &delta);
1604	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1605		ret = __btrfs_inc_extent_ref(trans, node, extent_op);
 
 
1606	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1607		ret = __btrfs_free_extent(trans, href, node, extent_op);
 
 
 
1608	} else {
1609		BUG();
1610	}
1611	return ret;
1612}
1613
1614static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1615				    struct extent_buffer *leaf,
1616				    struct btrfs_extent_item *ei)
1617{
1618	u64 flags = btrfs_extent_flags(leaf, ei);
1619	if (extent_op->update_flags) {
1620		flags |= extent_op->flags_to_set;
1621		btrfs_set_extent_flags(leaf, ei, flags);
1622	}
1623
1624	if (extent_op->update_key) {
1625		struct btrfs_tree_block_info *bi;
1626		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1627		bi = (struct btrfs_tree_block_info *)(ei + 1);
1628		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1629	}
1630}
1631
1632static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1633				 struct btrfs_delayed_ref_head *head,
1634				 struct btrfs_delayed_extent_op *extent_op)
1635{
1636	struct btrfs_fs_info *fs_info = trans->fs_info;
1637	struct btrfs_root *root;
1638	struct btrfs_key key;
1639	struct btrfs_path *path;
1640	struct btrfs_extent_item *ei;
1641	struct extent_buffer *leaf;
1642	u32 item_size;
1643	int ret;
1644	int metadata = 1;
 
1645
1646	if (TRANS_ABORTED(trans))
1647		return 0;
1648
1649	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1650		metadata = 0;
1651
1652	path = btrfs_alloc_path();
1653	if (!path)
1654		return -ENOMEM;
1655
1656	key.objectid = head->bytenr;
1657
1658	if (metadata) {
1659		key.type = BTRFS_METADATA_ITEM_KEY;
1660		key.offset = head->level;
1661	} else {
1662		key.type = BTRFS_EXTENT_ITEM_KEY;
1663		key.offset = head->num_bytes;
1664	}
1665
1666	root = btrfs_extent_root(fs_info, key.objectid);
1667again:
1668	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 
 
1669	if (ret < 0) {
 
1670		goto out;
1671	} else if (ret > 0) {
 
1672		if (metadata) {
1673			if (path->slots[0] > 0) {
1674				path->slots[0]--;
1675				btrfs_item_key_to_cpu(path->nodes[0], &key,
1676						      path->slots[0]);
1677				if (key.objectid == head->bytenr &&
1678				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1679				    key.offset == head->num_bytes)
1680					ret = 0;
1681			}
1682			if (ret > 0) {
1683				btrfs_release_path(path);
1684				metadata = 0;
1685
1686				key.objectid = head->bytenr;
1687				key.offset = head->num_bytes;
1688				key.type = BTRFS_EXTENT_ITEM_KEY;
1689				goto again;
1690			}
1691		} else {
1692			ret = -EUCLEAN;
1693			btrfs_err(fs_info,
1694		  "missing extent item for extent %llu num_bytes %llu level %d",
1695				  head->bytenr, head->num_bytes, head->level);
1696			goto out;
1697		}
1698	}
1699
1700	leaf = path->nodes[0];
1701	item_size = btrfs_item_size(leaf, path->slots[0]);
1702
1703	if (unlikely(item_size < sizeof(*ei))) {
1704		ret = -EUCLEAN;
1705		btrfs_err(fs_info,
1706			  "unexpected extent item size, has %u expect >= %zu",
1707			  item_size, sizeof(*ei));
1708		btrfs_abort_transaction(trans, ret);
1709		goto out;
1710	}
1711
1712	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1713	__run_delayed_extent_op(extent_op, leaf, ei);
1714
1715	btrfs_mark_buffer_dirty(trans, leaf);
1716out:
1717	btrfs_free_path(path);
1718	return ret;
1719}
1720
1721static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1722				struct btrfs_delayed_ref_head *href,
1723				struct btrfs_delayed_ref_node *node,
1724				struct btrfs_delayed_extent_op *extent_op,
1725				bool insert_reserved)
1726{
1727	int ret = 0;
1728	struct btrfs_fs_info *fs_info = trans->fs_info;
1729	u64 parent = 0;
1730	u64 ref_root = 0;
1731
1732	trace_run_delayed_tree_ref(trans->fs_info, node);
 
1733
1734	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1735		parent = node->parent;
1736	ref_root = node->ref_root;
1737
1738	if (unlikely(node->ref_mod != 1)) {
1739		btrfs_err(trans->fs_info,
1740	"btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1741			  node->bytenr, node->ref_mod, node->action, ref_root,
1742			  parent);
1743		return -EUCLEAN;
1744	}
1745	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1746		struct btrfs_squota_delta delta = {
1747			.root = href->owning_root,
1748			.num_bytes = fs_info->nodesize,
1749			.is_data = false,
1750			.is_inc = true,
1751			.generation = trans->transid,
1752		};
1753
1754		ret = alloc_reserved_tree_block(trans, node, extent_op);
1755		if (!ret)
1756			btrfs_record_squota_delta(fs_info, &delta);
1757	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1758		ret = __btrfs_inc_extent_ref(trans, node, extent_op);
 
1759	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1760		ret = __btrfs_free_extent(trans, href, node, extent_op);
 
1761	} else {
1762		BUG();
1763	}
1764	return ret;
1765}
1766
1767/* helper function to actually process a single delayed ref entry */
1768static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1769			       struct btrfs_delayed_ref_head *href,
1770			       struct btrfs_delayed_ref_node *node,
1771			       struct btrfs_delayed_extent_op *extent_op,
1772			       bool insert_reserved)
1773{
1774	int ret = 0;
1775
1776	if (TRANS_ABORTED(trans)) {
1777		if (insert_reserved) {
1778			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1779			free_head_ref_squota_rsv(trans->fs_info, href);
1780		}
1781		return 0;
1782	}
1783
1784	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1785	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1786		ret = run_delayed_tree_ref(trans, href, node, extent_op,
1787					   insert_reserved);
1788	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1789		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1790		ret = run_delayed_data_ref(trans, href, node, extent_op,
1791					   insert_reserved);
1792	else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1793		ret = 0;
1794	else
1795		BUG();
1796	if (ret && insert_reserved)
1797		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1798	if (ret < 0)
1799		btrfs_err(trans->fs_info,
1800"failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1801			  node->bytenr, node->num_bytes, node->type,
1802			  node->action, node->ref_mod, ret);
1803	return ret;
1804}
1805
1806static inline struct btrfs_delayed_ref_node *
1807select_delayed_ref(struct btrfs_delayed_ref_head *head)
1808{
1809	struct btrfs_delayed_ref_node *ref;
1810
1811	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1812		return NULL;
1813
1814	/*
1815	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1816	 * This is to prevent a ref count from going down to zero, which deletes
1817	 * the extent item from the extent tree, when there still are references
1818	 * to add, which would fail because they would not find the extent item.
1819	 */
1820	if (!list_empty(&head->ref_add_list))
1821		return list_first_entry(&head->ref_add_list,
1822				struct btrfs_delayed_ref_node, add_list);
1823
1824	ref = rb_entry(rb_first_cached(&head->ref_tree),
1825		       struct btrfs_delayed_ref_node, ref_node);
1826	ASSERT(list_empty(&ref->add_list));
1827	return ref;
1828}
1829
 
 
 
 
 
 
 
 
 
 
1830static struct btrfs_delayed_extent_op *cleanup_extent_op(
1831				struct btrfs_delayed_ref_head *head)
1832{
1833	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1834
1835	if (!extent_op)
1836		return NULL;
1837
1838	if (head->must_insert_reserved) {
1839		head->extent_op = NULL;
1840		btrfs_free_delayed_extent_op(extent_op);
1841		return NULL;
1842	}
1843	return extent_op;
1844}
1845
1846static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1847				     struct btrfs_delayed_ref_head *head)
1848{
1849	struct btrfs_delayed_extent_op *extent_op;
1850	int ret;
1851
1852	extent_op = cleanup_extent_op(head);
1853	if (!extent_op)
1854		return 0;
1855	head->extent_op = NULL;
1856	spin_unlock(&head->lock);
1857	ret = run_delayed_extent_op(trans, head, extent_op);
1858	btrfs_free_delayed_extent_op(extent_op);
1859	return ret ? ret : 1;
1860}
1861
1862u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1863				  struct btrfs_delayed_ref_root *delayed_refs,
1864				  struct btrfs_delayed_ref_head *head)
1865{
1866	u64 ret = 0;
1867
1868	/*
1869	 * We had csum deletions accounted for in our delayed refs rsv, we need
1870	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1871	 */
1872	if (head->total_ref_mod < 0 && head->is_data) {
1873		int nr_csums;
 
 
 
 
 
 
 
 
 
1874
1875		spin_lock(&delayed_refs->lock);
1876		delayed_refs->pending_csums -= head->num_bytes;
1877		spin_unlock(&delayed_refs->lock);
1878		nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1879
1880		btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums);
1881
1882		ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
 
 
 
 
1883	}
1884	/* must_insert_reserved can be set only if we didn't run the head ref. */
1885	if (head->must_insert_reserved)
1886		free_head_ref_squota_rsv(fs_info, head);
1887
1888	return ret;
1889}
1890
1891static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1892			    struct btrfs_delayed_ref_head *head,
1893			    u64 *bytes_released)
1894{
1895
1896	struct btrfs_fs_info *fs_info = trans->fs_info;
1897	struct btrfs_delayed_ref_root *delayed_refs;
1898	int ret;
1899
1900	delayed_refs = &trans->transaction->delayed_refs;
1901
1902	ret = run_and_cleanup_extent_op(trans, head);
1903	if (ret < 0) {
1904		btrfs_unselect_ref_head(delayed_refs, head);
1905		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1906		return ret;
1907	} else if (ret) {
1908		return ret;
1909	}
1910
1911	/*
1912	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1913	 * and then re-check to make sure nobody got added.
1914	 */
1915	spin_unlock(&head->lock);
1916	spin_lock(&delayed_refs->lock);
1917	spin_lock(&head->lock);
1918	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1919		spin_unlock(&head->lock);
1920		spin_unlock(&delayed_refs->lock);
1921		return 1;
1922	}
1923	btrfs_delete_ref_head(fs_info, delayed_refs, head);
1924	spin_unlock(&head->lock);
1925	spin_unlock(&delayed_refs->lock);
1926
1927	if (head->must_insert_reserved) {
1928		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
 
1929		if (head->is_data) {
1930			struct btrfs_root *csum_root;
1931
1932			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1933			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1934					      head->num_bytes);
1935		}
1936	}
1937
1938	*bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1939
1940	trace_run_delayed_ref_head(fs_info, head, 0);
1941	btrfs_delayed_ref_unlock(head);
1942	btrfs_put_delayed_ref_head(head);
1943	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1944}
1945
1946static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1947					   struct btrfs_delayed_ref_head *locked_ref,
1948					   u64 *bytes_released)
1949{
1950	struct btrfs_fs_info *fs_info = trans->fs_info;
1951	struct btrfs_delayed_ref_root *delayed_refs;
1952	struct btrfs_delayed_extent_op *extent_op;
1953	struct btrfs_delayed_ref_node *ref;
1954	bool must_insert_reserved;
1955	int ret;
1956
1957	delayed_refs = &trans->transaction->delayed_refs;
1958
1959	lockdep_assert_held(&locked_ref->mutex);
1960	lockdep_assert_held(&locked_ref->lock);
1961
1962	while ((ref = select_delayed_ref(locked_ref))) {
1963		if (ref->seq &&
1964		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1965			spin_unlock(&locked_ref->lock);
1966			btrfs_unselect_ref_head(delayed_refs, locked_ref);
1967			return -EAGAIN;
1968		}
1969
 
 
1970		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1971		RB_CLEAR_NODE(&ref->ref_node);
1972		if (!list_empty(&ref->add_list))
1973			list_del(&ref->add_list);
1974		/*
1975		 * When we play the delayed ref, also correct the ref_mod on
1976		 * head
1977		 */
1978		switch (ref->action) {
1979		case BTRFS_ADD_DELAYED_REF:
1980		case BTRFS_ADD_DELAYED_EXTENT:
1981			locked_ref->ref_mod -= ref->ref_mod;
1982			break;
1983		case BTRFS_DROP_DELAYED_REF:
1984			locked_ref->ref_mod += ref->ref_mod;
1985			break;
1986		default:
1987			WARN_ON(1);
1988		}
 
1989
1990		/*
1991		 * Record the must_insert_reserved flag before we drop the
1992		 * spin lock.
1993		 */
1994		must_insert_reserved = locked_ref->must_insert_reserved;
1995		/*
1996		 * Unsetting this on the head ref relinquishes ownership of
1997		 * the rsv_bytes, so it is critical that every possible code
1998		 * path from here forward frees all reserves including qgroup
1999		 * reserve.
2000		 */
2001		locked_ref->must_insert_reserved = false;
2002
2003		extent_op = locked_ref->extent_op;
2004		locked_ref->extent_op = NULL;
2005		spin_unlock(&locked_ref->lock);
2006
2007		ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op,
2008					  must_insert_reserved);
2009		btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
2010		*bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1);
2011
2012		btrfs_free_delayed_extent_op(extent_op);
2013		if (ret) {
2014			btrfs_unselect_ref_head(delayed_refs, locked_ref);
2015			btrfs_put_delayed_ref(ref);
 
 
2016			return ret;
2017		}
2018
2019		btrfs_put_delayed_ref(ref);
2020		cond_resched();
2021
2022		spin_lock(&locked_ref->lock);
2023		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2024	}
2025
2026	return 0;
2027}
2028
2029/*
2030 * Returns 0 on success or if called with an already aborted transaction.
2031 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2032 */
2033static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2034					     u64 min_bytes)
2035{
2036	struct btrfs_fs_info *fs_info = trans->fs_info;
2037	struct btrfs_delayed_ref_root *delayed_refs;
2038	struct btrfs_delayed_ref_head *locked_ref = NULL;
 
2039	int ret;
2040	unsigned long count = 0;
2041	unsigned long max_count = 0;
2042	u64 bytes_processed = 0;
2043
2044	delayed_refs = &trans->transaction->delayed_refs;
2045	if (min_bytes == 0) {
2046		max_count = delayed_refs->num_heads_ready;
2047		min_bytes = U64_MAX;
2048	}
2049
2050	do {
2051		if (!locked_ref) {
2052			locked_ref = btrfs_select_ref_head(fs_info, delayed_refs);
2053			if (IS_ERR_OR_NULL(locked_ref)) {
2054				if (PTR_ERR(locked_ref) == -EAGAIN) {
2055					continue;
2056				} else {
2057					break;
2058				}
2059			}
2060			count++;
2061		}
2062		/*
2063		 * We need to try and merge add/drops of the same ref since we
2064		 * can run into issues with relocate dropping the implicit ref
2065		 * and then it being added back again before the drop can
2066		 * finish.  If we merged anything we need to re-loop so we can
2067		 * get a good ref.
2068		 * Or we can get node references of the same type that weren't
2069		 * merged when created due to bumps in the tree mod seq, and
2070		 * we need to merge them to prevent adding an inline extent
2071		 * backref before dropping it (triggering a BUG_ON at
2072		 * insert_inline_extent_backref()).
2073		 */
2074		spin_lock(&locked_ref->lock);
2075		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2076
2077		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed);
 
2078		if (ret < 0 && ret != -EAGAIN) {
2079			/*
2080			 * Error, btrfs_run_delayed_refs_for_head already
2081			 * unlocked everything so just bail out
2082			 */
2083			return ret;
2084		} else if (!ret) {
2085			/*
2086			 * Success, perform the usual cleanup of a processed
2087			 * head
2088			 */
2089			ret = cleanup_ref_head(trans, locked_ref, &bytes_processed);
2090			if (ret > 0 ) {
2091				/* We dropped our lock, we need to loop. */
2092				ret = 0;
2093				continue;
2094			} else if (ret) {
2095				return ret;
2096			}
2097		}
2098
2099		/*
2100		 * Either success case or btrfs_run_delayed_refs_for_head
2101		 * returned -EAGAIN, meaning we need to select another head
2102		 */
2103
2104		locked_ref = NULL;
2105		cond_resched();
2106	} while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2107		 (max_count > 0 && count < max_count) ||
2108		 locked_ref);
2109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2110	return 0;
2111}
2112
2113#ifdef SCRAMBLE_DELAYED_REFS
2114/*
2115 * Normally delayed refs get processed in ascending bytenr order. This
2116 * correlates in most cases to the order added. To expose dependencies on this
2117 * order, we start to process the tree in the middle instead of the beginning
2118 */
2119static u64 find_middle(struct rb_root *root)
2120{
2121	struct rb_node *n = root->rb_node;
2122	struct btrfs_delayed_ref_node *entry;
2123	int alt = 1;
2124	u64 middle;
2125	u64 first = 0, last = 0;
2126
2127	n = rb_first(root);
2128	if (n) {
2129		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2130		first = entry->bytenr;
2131	}
2132	n = rb_last(root);
2133	if (n) {
2134		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2135		last = entry->bytenr;
2136	}
2137	n = root->rb_node;
2138
2139	while (n) {
2140		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2141		WARN_ON(!entry->in_tree);
2142
2143		middle = entry->bytenr;
2144
2145		if (alt)
2146			n = n->rb_left;
2147		else
2148			n = n->rb_right;
2149
2150		alt = 1 - alt;
2151	}
2152	return middle;
2153}
2154#endif
2155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2156/*
2157 * Start processing the delayed reference count updates and extent insertions
2158 * we have queued up so far.
2159 *
2160 * @trans:	Transaction handle.
2161 * @min_bytes:	How many bytes of delayed references to process. After this
2162 *		many bytes we stop processing delayed references if there are
2163 *		any more. If 0 it means to run all existing delayed references,
2164 *		but not new ones added after running all existing ones.
2165 *		Use (u64)-1 (U64_MAX) to run all existing delayed references
2166 *		plus any new ones that are added.
2167 *
2168 * Returns 0 on success or if called with an aborted transaction
2169 * Returns <0 on error and aborts the transaction
2170 */
2171int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
 
2172{
2173	struct btrfs_fs_info *fs_info = trans->fs_info;
 
2174	struct btrfs_delayed_ref_root *delayed_refs;
 
2175	int ret;
 
2176
2177	/* We'll clean this up in btrfs_cleanup_transaction */
2178	if (TRANS_ABORTED(trans))
2179		return 0;
2180
2181	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2182		return 0;
2183
2184	delayed_refs = &trans->transaction->delayed_refs;
 
 
 
2185again:
2186#ifdef SCRAMBLE_DELAYED_REFS
2187	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2188#endif
2189	ret = __btrfs_run_delayed_refs(trans, min_bytes);
2190	if (ret < 0) {
2191		btrfs_abort_transaction(trans, ret);
2192		return ret;
2193	}
2194
2195	if (min_bytes == U64_MAX) {
2196		btrfs_create_pending_block_groups(trans);
2197
2198		spin_lock(&delayed_refs->lock);
2199		if (xa_empty(&delayed_refs->head_refs)) {
 
2200			spin_unlock(&delayed_refs->lock);
2201			return 0;
2202		}
 
 
 
2203		spin_unlock(&delayed_refs->lock);
2204
 
 
 
 
 
2205		cond_resched();
2206		goto again;
2207	}
2208
2209	return 0;
2210}
2211
2212int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2213				struct extent_buffer *eb, u64 flags)
 
2214{
2215	struct btrfs_delayed_extent_op *extent_op;
2216	int ret;
2217
2218	extent_op = btrfs_alloc_delayed_extent_op();
2219	if (!extent_op)
2220		return -ENOMEM;
2221
2222	extent_op->flags_to_set = flags;
2223	extent_op->update_flags = true;
2224	extent_op->update_key = false;
 
 
2225
2226	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len,
2227					  btrfs_header_level(eb), extent_op);
2228	if (ret)
2229		btrfs_free_delayed_extent_op(extent_op);
2230	return ret;
2231}
2232
2233static noinline int check_delayed_ref(struct btrfs_root *root,
2234				      struct btrfs_path *path,
2235				      u64 objectid, u64 offset, u64 bytenr)
2236{
2237	struct btrfs_delayed_ref_head *head;
2238	struct btrfs_delayed_ref_node *ref;
 
2239	struct btrfs_delayed_ref_root *delayed_refs;
2240	struct btrfs_transaction *cur_trans;
2241	struct rb_node *node;
2242	int ret = 0;
2243
2244	spin_lock(&root->fs_info->trans_lock);
2245	cur_trans = root->fs_info->running_transaction;
2246	if (cur_trans)
2247		refcount_inc(&cur_trans->use_count);
2248	spin_unlock(&root->fs_info->trans_lock);
2249	if (!cur_trans)
2250		return 0;
2251
2252	delayed_refs = &cur_trans->delayed_refs;
2253	spin_lock(&delayed_refs->lock);
2254	head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
2255	if (!head) {
2256		spin_unlock(&delayed_refs->lock);
2257		btrfs_put_transaction(cur_trans);
2258		return 0;
2259	}
2260
2261	if (!mutex_trylock(&head->mutex)) {
2262		if (path->nowait) {
2263			spin_unlock(&delayed_refs->lock);
2264			btrfs_put_transaction(cur_trans);
2265			return -EAGAIN;
2266		}
2267
2268		refcount_inc(&head->refs);
2269		spin_unlock(&delayed_refs->lock);
2270
2271		btrfs_release_path(path);
2272
2273		/*
2274		 * Mutex was contended, block until it's released and let
2275		 * caller try again
2276		 */
2277		mutex_lock(&head->mutex);
2278		mutex_unlock(&head->mutex);
2279		btrfs_put_delayed_ref_head(head);
2280		btrfs_put_transaction(cur_trans);
2281		return -EAGAIN;
2282	}
2283	spin_unlock(&delayed_refs->lock);
2284
2285	spin_lock(&head->lock);
2286	/*
2287	 * XXX: We should replace this with a proper search function in the
2288	 * future.
2289	 */
2290	for (node = rb_first_cached(&head->ref_tree); node;
2291	     node = rb_next(node)) {
2292		u64 ref_owner;
2293		u64 ref_offset;
2294
2295		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2296		/* If it's a shared ref we know a cross reference exists */
2297		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2298			ret = 1;
2299			break;
2300		}
2301
2302		ref_owner = btrfs_delayed_ref_owner(ref);
2303		ref_offset = btrfs_delayed_ref_offset(ref);
2304
2305		/*
2306		 * If our ref doesn't match the one we're currently looking at
2307		 * then we have a cross reference.
2308		 */
2309		if (ref->ref_root != btrfs_root_id(root) ||
2310		    ref_owner != objectid || ref_offset != offset) {
 
2311			ret = 1;
2312			break;
2313		}
2314	}
2315	spin_unlock(&head->lock);
2316	mutex_unlock(&head->mutex);
2317	btrfs_put_transaction(cur_trans);
2318	return ret;
2319}
2320
2321static noinline int check_committed_ref(struct btrfs_root *root,
2322					struct btrfs_path *path,
2323					u64 objectid, u64 offset, u64 bytenr,
2324					bool strict)
2325{
2326	struct btrfs_fs_info *fs_info = root->fs_info;
2327	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2328	struct extent_buffer *leaf;
2329	struct btrfs_extent_data_ref *ref;
2330	struct btrfs_extent_inline_ref *iref;
2331	struct btrfs_extent_item *ei;
2332	struct btrfs_key key;
2333	u32 item_size;
2334	u32 expected_size;
2335	int type;
2336	int ret;
2337
2338	key.objectid = bytenr;
2339	key.offset = (u64)-1;
2340	key.type = BTRFS_EXTENT_ITEM_KEY;
2341
2342	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2343	if (ret < 0)
2344		goto out;
2345	if (ret == 0) {
2346		/*
2347		 * Key with offset -1 found, there would have to exist an extent
2348		 * item with such offset, but this is out of the valid range.
2349		 */
2350		ret = -EUCLEAN;
2351		goto out;
2352	}
2353
2354	ret = -ENOENT;
2355	if (path->slots[0] == 0)
2356		goto out;
2357
2358	path->slots[0]--;
2359	leaf = path->nodes[0];
2360	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2361
2362	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2363		goto out;
2364
2365	ret = 1;
2366	item_size = btrfs_item_size(leaf, path->slots[0]);
2367	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2368	expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2369
2370	/* No inline refs; we need to bail before checking for owner ref. */
2371	if (item_size == sizeof(*ei))
 
2372		goto out;
2373
2374	/* Check for an owner ref; skip over it to the real inline refs. */
2375	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2376	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2377	if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2378		expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2379		iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2380	}
2381
2382	/* If extent item has more than 1 inline ref then it's shared */
2383	if (item_size != expected_size)
2384		goto out;
2385
2386	/*
2387	 * If extent created before last snapshot => it's shared unless the
2388	 * snapshot has been deleted. Use the heuristic if strict is false.
2389	 */
2390	if (!strict &&
2391	    (btrfs_extent_generation(leaf, ei) <=
2392	     btrfs_root_last_snapshot(&root->root_item)))
2393		goto out;
2394
2395	/* If this extent has SHARED_DATA_REF then it's shared */
2396	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2397	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2398		goto out;
2399
2400	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2401	if (btrfs_extent_refs(leaf, ei) !=
2402	    btrfs_extent_data_ref_count(leaf, ref) ||
2403	    btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) ||
 
2404	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2405	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2406		goto out;
2407
2408	ret = 0;
2409out:
2410	return ret;
2411}
2412
2413int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2414			  u64 bytenr, bool strict, struct btrfs_path *path)
2415{
 
2416	int ret;
2417
 
 
 
 
2418	do {
2419		ret = check_committed_ref(root, path, objectid,
2420					  offset, bytenr, strict);
2421		if (ret && ret != -ENOENT)
2422			goto out;
2423
2424		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2425	} while (ret == -EAGAIN && !path->nowait);
2426
2427out:
2428	btrfs_release_path(path);
2429	if (btrfs_is_data_reloc_root(root))
2430		WARN_ON(ret > 0);
2431	return ret;
2432}
2433
2434static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2435			   struct btrfs_root *root,
2436			   struct extent_buffer *buf,
2437			   int full_backref, int inc)
2438{
2439	struct btrfs_fs_info *fs_info = root->fs_info;
 
 
2440	u64 parent;
2441	u64 ref_root;
2442	u32 nritems;
2443	struct btrfs_key key;
2444	struct btrfs_file_extent_item *fi;
 
2445	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2446	int i;
2447	int action;
2448	int level;
2449	int ret = 0;
2450
2451	if (btrfs_is_testing(fs_info))
2452		return 0;
2453
2454	ref_root = btrfs_header_owner(buf);
2455	nritems = btrfs_header_nritems(buf);
2456	level = btrfs_header_level(buf);
2457
2458	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2459		return 0;
2460
2461	if (full_backref)
2462		parent = buf->start;
2463	else
2464		parent = 0;
2465	if (inc)
2466		action = BTRFS_ADD_DELAYED_REF;
2467	else
2468		action = BTRFS_DROP_DELAYED_REF;
2469
2470	for (i = 0; i < nritems; i++) {
2471		struct btrfs_ref ref = {
2472			.action = action,
2473			.parent = parent,
2474			.ref_root = ref_root,
2475		};
2476
2477		if (level == 0) {
2478			btrfs_item_key_to_cpu(buf, &key, i);
2479			if (key.type != BTRFS_EXTENT_DATA_KEY)
2480				continue;
2481			fi = btrfs_item_ptr(buf, i,
2482					    struct btrfs_file_extent_item);
2483			if (btrfs_file_extent_type(buf, fi) ==
2484			    BTRFS_FILE_EXTENT_INLINE)
2485				continue;
2486			ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2487			if (ref.bytenr == 0)
2488				continue;
2489
2490			ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2491			ref.owning_root = ref_root;
2492
2493			key.offset -= btrfs_file_extent_offset(buf, fi);
2494			btrfs_init_data_ref(&ref, key.objectid, key.offset,
2495					    btrfs_root_id(root), for_reloc);
 
 
 
 
2496			if (inc)
2497				ret = btrfs_inc_extent_ref(trans, &ref);
2498			else
2499				ret = btrfs_free_extent(trans, &ref);
2500			if (ret)
2501				goto fail;
2502		} else {
2503			/* We don't know the owning_root, leave as 0. */
2504			ref.bytenr = btrfs_node_blockptr(buf, i);
2505			ref.num_bytes = fs_info->nodesize;
2506
2507			btrfs_init_tree_ref(&ref, level - 1,
2508					    btrfs_root_id(root), for_reloc);
 
2509			if (inc)
2510				ret = btrfs_inc_extent_ref(trans, &ref);
2511			else
2512				ret = btrfs_free_extent(trans, &ref);
2513			if (ret)
2514				goto fail;
2515		}
2516	}
2517	return 0;
2518fail:
2519	return ret;
2520}
2521
2522int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2523		  struct extent_buffer *buf, int full_backref)
2524{
2525	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2526}
2527
2528int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2529		  struct extent_buffer *buf, int full_backref)
2530{
2531	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2532}
2533
 
 
 
 
 
 
 
 
 
 
 
 
 
2534static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2535{
2536	struct btrfs_fs_info *fs_info = root->fs_info;
2537	u64 flags;
2538	u64 ret;
2539
2540	if (data)
2541		flags = BTRFS_BLOCK_GROUP_DATA;
2542	else if (root == fs_info->chunk_root)
2543		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2544	else
2545		flags = BTRFS_BLOCK_GROUP_METADATA;
2546
2547	ret = btrfs_get_alloc_profile(fs_info, flags);
2548	return ret;
2549}
2550
2551static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2552{
2553	struct rb_node *leftmost;
2554	u64 bytenr = 0;
2555
2556	read_lock(&fs_info->block_group_cache_lock);
2557	/* Get the block group with the lowest logical start address. */
2558	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2559	if (leftmost) {
2560		struct btrfs_block_group *bg;
2561
2562		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2563		bytenr = bg->start;
2564	}
2565	read_unlock(&fs_info->block_group_cache_lock);
 
 
 
 
 
2566
2567	return bytenr;
2568}
2569
2570static int pin_down_extent(struct btrfs_trans_handle *trans,
2571			   struct btrfs_block_group *cache,
2572			   u64 bytenr, u64 num_bytes, int reserved)
2573{
2574	struct btrfs_fs_info *fs_info = cache->fs_info;
2575
2576	spin_lock(&cache->space_info->lock);
2577	spin_lock(&cache->lock);
2578	cache->pinned += num_bytes;
2579	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2580					     num_bytes);
2581	if (reserved) {
2582		cache->reserved -= num_bytes;
2583		cache->space_info->bytes_reserved -= num_bytes;
2584	}
2585	spin_unlock(&cache->lock);
2586	spin_unlock(&cache->space_info->lock);
2587
2588	set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2589		       bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
 
 
2590	return 0;
2591}
2592
2593int btrfs_pin_extent(struct btrfs_trans_handle *trans,
 
 
 
2594		     u64 bytenr, u64 num_bytes, int reserved)
2595{
2596	struct btrfs_block_group *cache;
2597
2598	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2599	BUG_ON(!cache); /* Logic error */
2600
2601	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2602
2603	btrfs_put_block_group(cache);
2604	return 0;
2605}
2606
2607int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2608				    const struct extent_buffer *eb)
 
 
 
2609{
2610	struct btrfs_block_group *cache;
2611	int ret;
2612
2613	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
2614	if (!cache)
2615		return -EINVAL;
2616
2617	/*
2618	 * Fully cache the free space first so that our pin removes the free space
2619	 * from the cache.
 
 
2620	 */
2621	ret = btrfs_cache_block_group(cache, true);
2622	if (ret)
2623		goto out;
2624
2625	pin_down_extent(trans, cache, eb->start, eb->len, 0);
2626
2627	/* remove us from the free space cache (if we're there at all) */
2628	ret = btrfs_remove_free_space(cache, eb->start, eb->len);
2629out:
2630	btrfs_put_block_group(cache);
2631	return ret;
2632}
2633
2634static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2635				   u64 start, u64 num_bytes)
2636{
2637	int ret;
2638	struct btrfs_block_group *block_group;
 
2639
2640	block_group = btrfs_lookup_block_group(fs_info, start);
2641	if (!block_group)
2642		return -EINVAL;
2643
2644	ret = btrfs_cache_block_group(block_group, true);
2645	if (ret)
2646		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2647
2648	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2649out:
 
 
 
 
 
 
 
 
2650	btrfs_put_block_group(block_group);
2651	return ret;
2652}
2653
2654int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2655{
2656	struct btrfs_fs_info *fs_info = eb->fs_info;
2657	struct btrfs_file_extent_item *item;
2658	struct btrfs_key key;
2659	int found_type;
2660	int i;
2661	int ret = 0;
2662
2663	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2664		return 0;
2665
2666	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2667		btrfs_item_key_to_cpu(eb, &key, i);
2668		if (key.type != BTRFS_EXTENT_DATA_KEY)
2669			continue;
2670		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2671		found_type = btrfs_file_extent_type(eb, item);
2672		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2673			continue;
2674		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2675			continue;
2676		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2677		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2678		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2679		if (ret)
2680			break;
2681	}
2682
2683	return ret;
2684}
2685
2686static void
2687btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2688{
2689	atomic_inc(&bg->reservations);
2690}
2691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2692/*
2693 * Returns the free cluster for the given space info and sets empty_cluster to
2694 * what it should be based on the mount options.
2695 */
2696static struct btrfs_free_cluster *
2697fetch_cluster_info(struct btrfs_fs_info *fs_info,
2698		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2699{
2700	struct btrfs_free_cluster *ret = NULL;
2701
2702	*empty_cluster = 0;
2703	if (btrfs_mixed_space_info(space_info))
2704		return ret;
2705
2706	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2707		ret = &fs_info->meta_alloc_cluster;
2708		if (btrfs_test_opt(fs_info, SSD))
2709			*empty_cluster = SZ_2M;
2710		else
2711			*empty_cluster = SZ_64K;
2712	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2713		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2714		*empty_cluster = SZ_2M;
2715		ret = &fs_info->data_alloc_cluster;
2716	}
2717
2718	return ret;
2719}
2720
2721static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2722			      u64 start, u64 end,
2723			      const bool return_free_space)
2724{
2725	struct btrfs_block_group *cache = NULL;
2726	struct btrfs_space_info *space_info;
2727	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2728	struct btrfs_free_cluster *cluster = NULL;
2729	u64 len;
2730	u64 total_unpinned = 0;
2731	u64 empty_cluster = 0;
2732	bool readonly;
2733	int ret = 0;
2734
2735	while (start <= end) {
2736		readonly = false;
2737		if (!cache ||
2738		    start >= cache->start + cache->length) {
2739			if (cache)
2740				btrfs_put_block_group(cache);
2741			total_unpinned = 0;
2742			cache = btrfs_lookup_block_group(fs_info, start);
2743			if (cache == NULL) {
2744				/* Logic error, something removed the block group. */
2745				ret = -EUCLEAN;
2746				goto out;
2747			}
2748
2749			cluster = fetch_cluster_info(fs_info,
2750						     cache->space_info,
2751						     &empty_cluster);
2752			empty_cluster <<= 1;
2753		}
2754
2755		len = cache->start + cache->length - start;
2756		len = min(len, end + 1 - start);
2757
2758		if (return_free_space)
2759			btrfs_add_free_space(cache, start, len);
 
 
 
2760
2761		start += len;
2762		total_unpinned += len;
2763		space_info = cache->space_info;
2764
2765		/*
2766		 * If this space cluster has been marked as fragmented and we've
2767		 * unpinned enough in this block group to potentially allow a
2768		 * cluster to be created inside of it go ahead and clear the
2769		 * fragmented check.
2770		 */
2771		if (cluster && cluster->fragmented &&
2772		    total_unpinned > empty_cluster) {
2773			spin_lock(&cluster->lock);
2774			cluster->fragmented = 0;
2775			spin_unlock(&cluster->lock);
2776		}
2777
2778		spin_lock(&space_info->lock);
2779		spin_lock(&cache->lock);
2780		cache->pinned -= len;
2781		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2782		space_info->max_extent_size = 0;
 
 
2783		if (cache->ro) {
2784			space_info->bytes_readonly += len;
2785			readonly = true;
2786		} else if (btrfs_is_zoned(fs_info)) {
2787			/* Need reset before reusing in a zoned block group */
2788			btrfs_space_info_update_bytes_zone_unusable(fs_info, space_info,
2789								    len);
2790			readonly = true;
2791		}
2792		spin_unlock(&cache->lock);
2793		if (!readonly && return_free_space &&
2794		    global_rsv->space_info == space_info) {
 
 
2795			spin_lock(&global_rsv->lock);
2796			if (!global_rsv->full) {
2797				u64 to_add = min(len, global_rsv->size -
2798						      global_rsv->reserved);
2799
2800				global_rsv->reserved += to_add;
2801				btrfs_space_info_update_bytes_may_use(fs_info,
2802						space_info, to_add);
2803				if (global_rsv->reserved >= global_rsv->size)
2804					global_rsv->full = 1;
2805				len -= to_add;
2806			}
2807			spin_unlock(&global_rsv->lock);
 
 
 
 
2808		}
2809		/* Add to any tickets we may have */
2810		if (!readonly && return_free_space && len)
2811			btrfs_try_granting_tickets(fs_info, space_info);
2812		spin_unlock(&space_info->lock);
2813	}
2814
2815	if (cache)
2816		btrfs_put_block_group(cache);
2817out:
2818	return ret;
2819}
2820
2821int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2822{
2823	struct btrfs_fs_info *fs_info = trans->fs_info;
2824	struct btrfs_block_group *block_group, *tmp;
2825	struct list_head *deleted_bgs;
2826	struct extent_io_tree *unpin;
2827	u64 start;
2828	u64 end;
2829	int ret;
2830
2831	unpin = &trans->transaction->pinned_extents;
 
 
 
2832
2833	while (!TRANS_ABORTED(trans)) {
2834		struct extent_state *cached_state = NULL;
2835
2836		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2837		if (!find_first_extent_bit(unpin, 0, &start, &end,
2838					   EXTENT_DIRTY, &cached_state)) {
 
2839			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2840			break;
2841		}
2842
2843		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2844			ret = btrfs_discard_extent(fs_info, start,
2845						   end + 1 - start, NULL);
2846
2847		clear_extent_dirty(unpin, start, end, &cached_state);
2848		ret = unpin_extent_range(fs_info, start, end, true);
2849		BUG_ON(ret);
2850		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2851		free_extent_state(cached_state);
2852		cond_resched();
2853	}
2854
2855	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2856		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2857		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2858	}
2859
2860	/*
2861	 * Transaction is finished.  We don't need the lock anymore.  We
2862	 * do need to clean up the block groups in case of a transaction
2863	 * abort.
2864	 */
2865	deleted_bgs = &trans->transaction->deleted_bgs;
2866	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2867		u64 trimmed = 0;
2868
2869		ret = -EROFS;
2870		if (!TRANS_ABORTED(trans))
2871			ret = btrfs_discard_extent(fs_info,
2872						   block_group->start,
2873						   block_group->length,
2874						   &trimmed);
2875
2876		list_del_init(&block_group->bg_list);
2877		btrfs_unfreeze_block_group(block_group);
2878		btrfs_put_block_group(block_group);
2879
2880		if (ret) {
2881			const char *errstr = btrfs_decode_error(ret);
2882			btrfs_warn(fs_info,
2883			   "discard failed while removing blockgroup: errno=%d %s",
2884				   ret, errstr);
2885		}
2886	}
2887
2888	return 0;
2889}
2890
2891/*
2892 * Parse an extent item's inline extents looking for a simple quotas owner ref.
2893 *
2894 * @fs_info:	the btrfs_fs_info for this mount
2895 * @leaf:	a leaf in the extent tree containing the extent item
2896 * @slot:	the slot in the leaf where the extent item is found
2897 *
2898 * Returns the objectid of the root that originally allocated the extent item
2899 * if the inline owner ref is expected and present, otherwise 0.
2900 *
2901 * If an extent item has an owner ref item, it will be the first inline ref
2902 * item. Therefore the logic is to check whether there are any inline ref
2903 * items, then check the type of the first one.
2904 */
2905u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2906				struct extent_buffer *leaf, int slot)
2907{
2908	struct btrfs_extent_item *ei;
2909	struct btrfs_extent_inline_ref *iref;
2910	struct btrfs_extent_owner_ref *oref;
2911	unsigned long ptr;
2912	unsigned long end;
2913	int type;
2914
2915	if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2916		return 0;
2917
2918	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2919	ptr = (unsigned long)(ei + 1);
2920	end = (unsigned long)ei + btrfs_item_size(leaf, slot);
2921
2922	/* No inline ref items of any kind, can't check type. */
2923	if (ptr == end)
2924		return 0;
2925
2926	iref = (struct btrfs_extent_inline_ref *)ptr;
2927	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
2928
2929	/* We found an owner ref, get the root out of it. */
2930	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2931		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2932		return btrfs_extent_owner_ref_root_id(leaf, oref);
2933	}
2934
2935	/* We have inline refs, but not an owner ref. */
2936	return 0;
2937}
2938
2939static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2940				     u64 bytenr, struct btrfs_squota_delta *delta)
2941{
2942	int ret;
2943	u64 num_bytes = delta->num_bytes;
2944
2945	if (delta->is_data) {
2946		struct btrfs_root *csum_root;
2947
2948		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2949		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2950		if (ret) {
2951			btrfs_abort_transaction(trans, ret);
2952			return ret;
2953		}
2954
2955		ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes);
2956		if (ret) {
2957			btrfs_abort_transaction(trans, ret);
2958			return ret;
2959		}
2960	}
2961
2962	ret = btrfs_record_squota_delta(trans->fs_info, delta);
2963	if (ret) {
2964		btrfs_abort_transaction(trans, ret);
2965		return ret;
2966	}
2967
2968	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2969	if (ret) {
2970		btrfs_abort_transaction(trans, ret);
2971		return ret;
2972	}
2973
2974	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2975	if (ret)
2976		btrfs_abort_transaction(trans, ret);
2977
2978	return ret;
2979}
2980
2981#define abort_and_dump(trans, path, fmt, args...)	\
2982({							\
2983	btrfs_abort_transaction(trans, -EUCLEAN);	\
2984	btrfs_print_leaf(path->nodes[0]);		\
2985	btrfs_crit(trans->fs_info, fmt, ##args);	\
2986})
2987
2988/*
2989 * Drop one or more refs of @node.
2990 *
2991 * 1. Locate the extent refs.
2992 *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2993 *    Locate it, then reduce the refs number or remove the ref line completely.
2994 *
2995 * 2. Update the refs count in EXTENT/METADATA_ITEM
2996 *
2997 * Inline backref case:
2998 *
2999 * in extent tree we have:
3000 *
3001 * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3002 *		refs 2 gen 6 flags DATA
3003 *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3004 *		extent data backref root FS_TREE objectid 257 offset 0 count 1
3005 *
3006 * This function gets called with:
3007 *
3008 *    node->bytenr = 13631488
3009 *    node->num_bytes = 1048576
3010 *    root_objectid = FS_TREE
3011 *    owner_objectid = 257
3012 *    owner_offset = 0
3013 *    refs_to_drop = 1
3014 *
3015 * Then we should get some like:
3016 *
3017 * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3018 *		refs 1 gen 6 flags DATA
3019 *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3020 *
3021 * Keyed backref case:
3022 *
3023 * in extent tree we have:
3024 *
3025 *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3026 *		refs 754 gen 6 flags DATA
3027 *	[...]
3028 *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3029 *		extent data backref root FS_TREE objectid 866 offset 0 count 1
3030 *
3031 * This function get called with:
3032 *
3033 *    node->bytenr = 13631488
3034 *    node->num_bytes = 1048576
3035 *    root_objectid = FS_TREE
3036 *    owner_objectid = 866
3037 *    owner_offset = 0
3038 *    refs_to_drop = 1
3039 *
3040 * Then we should get some like:
3041 *
3042 *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3043 *		refs 753 gen 6 flags DATA
3044 *
3045 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3046 */
3047static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3048			       struct btrfs_delayed_ref_head *href,
3049			       struct btrfs_delayed_ref_node *node,
 
3050			       struct btrfs_delayed_extent_op *extent_op)
3051{
3052	struct btrfs_fs_info *info = trans->fs_info;
3053	struct btrfs_key key;
3054	struct btrfs_path *path;
3055	struct btrfs_root *extent_root;
3056	struct extent_buffer *leaf;
3057	struct btrfs_extent_item *ei;
3058	struct btrfs_extent_inline_ref *iref;
3059	int ret;
3060	int is_data;
3061	int extent_slot = 0;
3062	int found_extent = 0;
3063	int num_to_del = 1;
3064	int refs_to_drop = node->ref_mod;
3065	u32 item_size;
3066	u64 refs;
3067	u64 bytenr = node->bytenr;
3068	u64 num_bytes = node->num_bytes;
3069	u64 owner_objectid = btrfs_delayed_ref_owner(node);
3070	u64 owner_offset = btrfs_delayed_ref_offset(node);
3071	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3072	u64 delayed_ref_root = href->owning_root;
3073
3074	extent_root = btrfs_extent_root(info, bytenr);
3075	ASSERT(extent_root);
3076
3077	path = btrfs_alloc_path();
3078	if (!path)
3079		return -ENOMEM;
3080
 
 
 
3081	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3082
3083	if (!is_data && refs_to_drop != 1) {
3084		btrfs_crit(info,
3085"invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3086			   node->bytenr, refs_to_drop);
3087		ret = -EINVAL;
3088		btrfs_abort_transaction(trans, ret);
3089		goto out;
3090	}
3091
3092	if (is_data)
3093		skinny_metadata = false;
3094
3095	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3096				    node->parent, node->ref_root, owner_objectid,
3097				    owner_offset);
3098	if (ret == 0) {
3099		/*
3100		 * Either the inline backref or the SHARED_DATA_REF/
3101		 * SHARED_BLOCK_REF is found
3102		 *
3103		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3104		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3105		 */
3106		extent_slot = path->slots[0];
3107		while (extent_slot >= 0) {
3108			btrfs_item_key_to_cpu(path->nodes[0], &key,
3109					      extent_slot);
3110			if (key.objectid != bytenr)
3111				break;
3112			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3113			    key.offset == num_bytes) {
3114				found_extent = 1;
3115				break;
3116			}
3117			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3118			    key.offset == owner_objectid) {
3119				found_extent = 1;
3120				break;
3121			}
3122
3123			/* Quick path didn't find the EXTENT/METADATA_ITEM */
3124			if (path->slots[0] - extent_slot > 5)
3125				break;
3126			extent_slot--;
3127		}
3128
3129		if (!found_extent) {
3130			if (iref) {
3131				abort_and_dump(trans, path,
3132"invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3133					   path->slots[0]);
3134				ret = -EUCLEAN;
3135				goto out;
3136			}
3137			/* Must be SHARED_* item, remove the backref first */
3138			ret = remove_extent_backref(trans, extent_root, path,
3139						    NULL, refs_to_drop, is_data);
3140			if (ret) {
3141				btrfs_abort_transaction(trans, ret);
3142				goto out;
3143			}
3144			btrfs_release_path(path);
 
3145
3146			/* Slow path to locate EXTENT/METADATA_ITEM */
3147			key.objectid = bytenr;
3148			key.type = BTRFS_EXTENT_ITEM_KEY;
3149			key.offset = num_bytes;
3150
3151			if (!is_data && skinny_metadata) {
3152				key.type = BTRFS_METADATA_ITEM_KEY;
3153				key.offset = owner_objectid;
3154			}
3155
3156			ret = btrfs_search_slot(trans, extent_root,
3157						&key, path, -1, 1);
3158			if (ret > 0 && skinny_metadata && path->slots[0]) {
3159				/*
3160				 * Couldn't find our skinny metadata item,
3161				 * see if we have ye olde extent item.
3162				 */
3163				path->slots[0]--;
3164				btrfs_item_key_to_cpu(path->nodes[0], &key,
3165						      path->slots[0]);
3166				if (key.objectid == bytenr &&
3167				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3168				    key.offset == num_bytes)
3169					ret = 0;
3170			}
3171
3172			if (ret > 0 && skinny_metadata) {
3173				skinny_metadata = false;
3174				key.objectid = bytenr;
3175				key.type = BTRFS_EXTENT_ITEM_KEY;
3176				key.offset = num_bytes;
3177				btrfs_release_path(path);
3178				ret = btrfs_search_slot(trans, extent_root,
3179							&key, path, -1, 1);
3180			}
3181
3182			if (ret) {
 
 
 
3183				if (ret > 0)
3184					btrfs_print_leaf(path->nodes[0]);
3185				btrfs_err(info,
3186			"umm, got %d back from search, was looking for %llu, slot %d",
3187					  ret, bytenr, path->slots[0]);
3188			}
3189			if (ret < 0) {
3190				btrfs_abort_transaction(trans, ret);
3191				goto out;
3192			}
3193			extent_slot = path->slots[0];
3194		}
3195	} else if (WARN_ON(ret == -ENOENT)) {
3196		abort_and_dump(trans, path,
3197"unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3198			       bytenr, node->parent, node->ref_root, owner_objectid,
3199			       owner_offset, path->slots[0]);
 
 
3200		goto out;
3201	} else {
3202		btrfs_abort_transaction(trans, ret);
3203		goto out;
3204	}
3205
3206	leaf = path->nodes[0];
3207	item_size = btrfs_item_size(leaf, extent_slot);
3208	if (unlikely(item_size < sizeof(*ei))) {
3209		ret = -EUCLEAN;
3210		btrfs_err(trans->fs_info,
3211			  "unexpected extent item size, has %u expect >= %zu",
3212			  item_size, sizeof(*ei));
3213		btrfs_abort_transaction(trans, ret);
3214		goto out;
3215	}
3216	ei = btrfs_item_ptr(leaf, extent_slot,
3217			    struct btrfs_extent_item);
3218	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3219	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3220		struct btrfs_tree_block_info *bi;
3221
3222		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3223			abort_and_dump(trans, path,
3224"invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3225				       key.objectid, key.type, key.offset,
3226				       path->slots[0], owner_objectid, item_size,
3227				       sizeof(*ei) + sizeof(*bi));
3228			ret = -EUCLEAN;
3229			goto out;
3230		}
3231		bi = (struct btrfs_tree_block_info *)(ei + 1);
3232		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3233	}
3234
3235	refs = btrfs_extent_refs(leaf, ei);
3236	if (refs < refs_to_drop) {
3237		abort_and_dump(trans, path,
3238		"trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3239			       refs_to_drop, refs, bytenr, path->slots[0]);
3240		ret = -EUCLEAN;
 
3241		goto out;
3242	}
3243	refs -= refs_to_drop;
3244
3245	if (refs > 0) {
3246		if (extent_op)
3247			__run_delayed_extent_op(extent_op, leaf, ei);
3248		/*
3249		 * In the case of inline back ref, reference count will
3250		 * be updated by remove_extent_backref
3251		 */
3252		if (iref) {
3253			if (!found_extent) {
3254				abort_and_dump(trans, path,
3255"invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3256					       path->slots[0]);
3257				ret = -EUCLEAN;
3258				goto out;
3259			}
3260		} else {
3261			btrfs_set_extent_refs(leaf, ei, refs);
3262			btrfs_mark_buffer_dirty(trans, leaf);
3263		}
3264		if (found_extent) {
3265			ret = remove_extent_backref(trans, extent_root, path,
3266						    iref, refs_to_drop, is_data);
 
3267			if (ret) {
3268				btrfs_abort_transaction(trans, ret);
3269				goto out;
3270			}
3271		}
3272	} else {
3273		struct btrfs_squota_delta delta = {
3274			.root = delayed_ref_root,
3275			.num_bytes = num_bytes,
3276			.is_data = is_data,
3277			.is_inc = false,
3278			.generation = btrfs_extent_generation(leaf, ei),
3279		};
3280
3281		/* In this branch refs == 1 */
3282		if (found_extent) {
3283			if (is_data && refs_to_drop !=
3284			    extent_data_ref_count(path, iref)) {
3285				abort_and_dump(trans, path,
3286		"invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3287					       extent_data_ref_count(path, iref),
3288					       refs_to_drop, path->slots[0]);
3289				ret = -EUCLEAN;
3290				goto out;
3291			}
3292			if (iref) {
3293				if (path->slots[0] != extent_slot) {
3294					abort_and_dump(trans, path,
3295"invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3296						       key.objectid, key.type,
3297						       key.offset, path->slots[0]);
3298					ret = -EUCLEAN;
3299					goto out;
3300				}
3301			} else {
3302				/*
3303				 * No inline ref, we must be at SHARED_* item,
3304				 * And it's single ref, it must be:
3305				 * |	extent_slot	  ||extent_slot + 1|
3306				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3307				 */
3308				if (path->slots[0] != extent_slot + 1) {
3309					abort_and_dump(trans, path,
3310	"invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3311						       path->slots[0]);
3312					ret = -EUCLEAN;
3313					goto out;
3314				}
3315				path->slots[0] = extent_slot;
3316				num_to_del = 2;
3317			}
3318		}
3319		/*
3320		 * We can't infer the data owner from the delayed ref, so we need
3321		 * to try to get it from the owning ref item.
3322		 *
3323		 * If it is not present, then that extent was not written under
3324		 * simple quotas mode, so we don't need to account for its deletion.
3325		 */
3326		if (is_data)
3327			delta.root = btrfs_get_extent_owner_root(trans->fs_info,
3328								 leaf, extent_slot);
3329
 
3330		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3331				      num_to_del);
3332		if (ret) {
3333			btrfs_abort_transaction(trans, ret);
3334			goto out;
3335		}
3336		btrfs_release_path(path);
3337
3338		ret = do_free_extent_accounting(trans, bytenr, &delta);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3339	}
3340	btrfs_release_path(path);
3341
3342out:
3343	btrfs_free_path(path);
3344	return ret;
3345}
3346
3347/*
3348 * when we free an block, it is possible (and likely) that we free the last
3349 * delayed ref for that extent as well.  This searches the delayed ref tree for
3350 * a given extent, and if there are no other delayed refs to be processed, it
3351 * removes it from the tree.
3352 */
3353static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3354				      u64 bytenr)
3355{
3356	struct btrfs_fs_info *fs_info = trans->fs_info;
3357	struct btrfs_delayed_ref_head *head;
3358	struct btrfs_delayed_ref_root *delayed_refs;
3359	int ret = 0;
3360
3361	delayed_refs = &trans->transaction->delayed_refs;
3362	spin_lock(&delayed_refs->lock);
3363	head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
3364	if (!head)
3365		goto out_delayed_unlock;
3366
3367	spin_lock(&head->lock);
3368	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3369		goto out;
3370
3371	if (cleanup_extent_op(head) != NULL)
3372		goto out;
3373
3374	/*
3375	 * waiting for the lock here would deadlock.  If someone else has it
3376	 * locked they are already in the process of dropping it anyway
3377	 */
3378	if (!mutex_trylock(&head->mutex))
3379		goto out;
3380
3381	btrfs_delete_ref_head(fs_info, delayed_refs, head);
3382	head->processing = false;
3383
3384	spin_unlock(&head->lock);
3385	spin_unlock(&delayed_refs->lock);
3386
3387	BUG_ON(head->extent_op);
3388	if (head->must_insert_reserved)
3389		ret = 1;
3390
3391	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
3392	mutex_unlock(&head->mutex);
3393	btrfs_put_delayed_ref_head(head);
3394	return ret;
3395out:
3396	spin_unlock(&head->lock);
3397
3398out_delayed_unlock:
3399	spin_unlock(&delayed_refs->lock);
3400	return 0;
3401}
3402
3403int btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3404			  u64 root_id,
3405			  struct extent_buffer *buf,
3406			  u64 parent, int last_ref)
3407{
3408	struct btrfs_fs_info *fs_info = trans->fs_info;
3409	struct btrfs_block_group *bg;
 
3410	int ret;
3411
3412	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3413		struct btrfs_ref generic_ref = {
3414			.action = BTRFS_DROP_DELAYED_REF,
3415			.bytenr = buf->start,
3416			.num_bytes = buf->len,
3417			.parent = parent,
3418			.owning_root = btrfs_header_owner(buf),
3419			.ref_root = root_id,
3420		};
3421
3422		/*
3423		 * Assert that the extent buffer is not cleared due to
3424		 * EXTENT_BUFFER_ZONED_ZEROOUT. Please refer
3425		 * btrfs_clear_buffer_dirty() and btree_csum_one_bio() for
3426		 * detail.
3427		 */
3428		ASSERT(btrfs_header_bytenr(buf) != 0);
3429
3430		btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false);
3431		btrfs_ref_tree_mod(fs_info, &generic_ref);
3432		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3433		if (ret < 0)
3434			return ret;
 
3435	}
3436
3437	if (!last_ref)
3438		return 0;
 
 
 
 
 
 
3439
3440	if (btrfs_header_generation(buf) != trans->transid)
3441		goto out;
3442
3443	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3444		ret = check_ref_cleanup(trans, buf->start);
3445		if (!ret)
3446			goto out;
3447	}
3448
3449	bg = btrfs_lookup_block_group(fs_info, buf->start);
3450
3451	if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3452		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3453		btrfs_put_block_group(bg);
3454		goto out;
3455	}
 
 
 
3456
3457	/*
3458	 * If there are tree mod log users we may have recorded mod log
3459	 * operations for this node.  If we re-allocate this node we
3460	 * could replay operations on this node that happened when it
3461	 * existed in a completely different root.  For example if it
3462	 * was part of root A, then was reallocated to root B, and we
3463	 * are doing a btrfs_old_search_slot(root b), we could replay
3464	 * operations that happened when the block was part of root A,
3465	 * giving us an inconsistent view of the btree.
3466	 *
3467	 * We are safe from races here because at this point no other
3468	 * node or root points to this extent buffer, so if after this
3469	 * check a new tree mod log user joins we will not have an
3470	 * existing log of operations on this node that we have to
3471	 * contend with.
3472	 */
3473
3474	if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)
3475		     || btrfs_is_zoned(fs_info)) {
3476		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3477		btrfs_put_block_group(bg);
3478		goto out;
3479	}
3480
3481	WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3482
3483	btrfs_add_free_space(bg, buf->start, buf->len);
3484	btrfs_free_reserved_bytes(bg, buf->len, 0);
3485	btrfs_put_block_group(bg);
3486	trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3487
3488out:
3489
3490	/*
3491	 * Deleting the buffer, clear the corrupt flag since it doesn't
3492	 * matter anymore.
3493	 */
3494	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3495	return 0;
3496}
3497
3498/* Can return -ENOMEM */
3499int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3500{
3501	struct btrfs_fs_info *fs_info = trans->fs_info;
 
3502	int ret;
3503
3504	if (btrfs_is_testing(fs_info))
3505		return 0;
3506
3507	/*
3508	 * tree log blocks never actually go into the extent allocation
3509	 * tree, just update pinning info and exit early.
3510	 */
3511	if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) {
3512		btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes, 1);
 
 
 
 
 
3513		ret = 0;
3514	} else if (ref->type == BTRFS_REF_METADATA) {
3515		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
 
3516	} else {
3517		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
 
3518	}
3519
3520	if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID)
 
 
 
3521		btrfs_ref_tree_mod(fs_info, ref);
3522
 
 
 
3523	return ret;
3524}
3525
3526enum btrfs_loop_type {
3527	/*
3528	 * Start caching block groups but do not wait for progress or for them
3529	 * to be done.
3530	 */
3531	LOOP_CACHING_NOWAIT,
3532
3533	/*
3534	 * Wait for the block group free_space >= the space we're waiting for if
3535	 * the block group isn't cached.
3536	 */
3537	LOOP_CACHING_WAIT,
3538
3539	/*
3540	 * Allow allocations to happen from block groups that do not yet have a
3541	 * size classification.
3542	 */
3543	LOOP_UNSET_SIZE_CLASS,
3544
3545	/*
3546	 * Allocate a chunk and then retry the allocation.
3547	 */
3548	LOOP_ALLOC_CHUNK,
3549
3550	/*
3551	 * Ignore the size class restrictions for this allocation.
3552	 */
3553	LOOP_WRONG_SIZE_CLASS,
3554
3555	/*
3556	 * Ignore the empty size, only try to allocate the number of bytes
3557	 * needed for this allocation.
3558	 */
3559	LOOP_NO_EMPTY_SIZE,
3560};
3561
3562static inline void
3563btrfs_lock_block_group(struct btrfs_block_group *cache,
3564		       int delalloc)
3565{
3566	if (delalloc)
3567		down_read(&cache->data_rwsem);
3568}
3569
3570static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
 
3571		       int delalloc)
3572{
3573	btrfs_get_block_group(cache);
3574	if (delalloc)
3575		down_read(&cache->data_rwsem);
3576}
3577
3578static struct btrfs_block_group *btrfs_lock_cluster(
3579		   struct btrfs_block_group *block_group,
3580		   struct btrfs_free_cluster *cluster,
3581		   int delalloc)
3582	__acquires(&cluster->refill_lock)
3583{
3584	struct btrfs_block_group *used_bg = NULL;
3585
3586	spin_lock(&cluster->refill_lock);
3587	while (1) {
3588		used_bg = cluster->block_group;
3589		if (!used_bg)
3590			return NULL;
3591
3592		if (used_bg == block_group)
3593			return used_bg;
3594
3595		btrfs_get_block_group(used_bg);
3596
3597		if (!delalloc)
3598			return used_bg;
3599
3600		if (down_read_trylock(&used_bg->data_rwsem))
3601			return used_bg;
3602
3603		spin_unlock(&cluster->refill_lock);
3604
3605		/* We should only have one-level nested. */
3606		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3607
3608		spin_lock(&cluster->refill_lock);
3609		if (used_bg == cluster->block_group)
3610			return used_bg;
3611
3612		up_read(&used_bg->data_rwsem);
3613		btrfs_put_block_group(used_bg);
3614	}
3615}
3616
3617static inline void
3618btrfs_release_block_group(struct btrfs_block_group *cache,
3619			 int delalloc)
3620{
3621	if (delalloc)
3622		up_read(&cache->data_rwsem);
3623	btrfs_put_block_group(cache);
3624}
3625
3626/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3627 * Helper function for find_free_extent().
3628 *
3629 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
 
3630 * Return >0 to inform caller that we find nothing
3631 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3632 */
3633static int find_free_extent_clustered(struct btrfs_block_group *bg,
3634				      struct find_free_extent_ctl *ffe_ctl,
3635				      struct btrfs_block_group **cluster_bg_ret)
 
3636{
3637	struct btrfs_block_group *cluster_bg;
3638	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3639	u64 aligned_cluster;
3640	u64 offset;
3641	int ret;
3642
3643	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3644	if (!cluster_bg)
3645		goto refill_cluster;
3646	if (cluster_bg != bg && (cluster_bg->ro ||
3647	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3648		goto release_cluster;
3649
3650	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3651			ffe_ctl->num_bytes, cluster_bg->start,
3652			&ffe_ctl->max_extent_size);
3653	if (offset) {
3654		/* We have a block, we're done */
3655		spin_unlock(&last_ptr->refill_lock);
3656		trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
 
3657		*cluster_bg_ret = cluster_bg;
3658		ffe_ctl->found_offset = offset;
3659		return 0;
3660	}
3661	WARN_ON(last_ptr->block_group != cluster_bg);
3662
3663release_cluster:
3664	/*
3665	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3666	 * lets just skip it and let the allocator find whatever block it can
3667	 * find. If we reach this point, we will have tried the cluster
3668	 * allocator plenty of times and not have found anything, so we are
3669	 * likely way too fragmented for the clustering stuff to find anything.
3670	 *
3671	 * However, if the cluster is taken from the current block group,
3672	 * release the cluster first, so that we stand a better chance of
3673	 * succeeding in the unclustered allocation.
3674	 */
3675	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3676		spin_unlock(&last_ptr->refill_lock);
3677		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3678		return -ENOENT;
3679	}
3680
3681	/* This cluster didn't work out, free it and start over */
3682	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3683
3684	if (cluster_bg != bg)
3685		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3686
3687refill_cluster:
3688	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3689		spin_unlock(&last_ptr->refill_lock);
3690		return -ENOENT;
3691	}
3692
3693	aligned_cluster = max_t(u64,
3694			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3695			bg->full_stripe_len);
3696	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3697			ffe_ctl->num_bytes, aligned_cluster);
3698	if (ret == 0) {
3699		/* Now pull our allocation out of this cluster */
3700		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3701				ffe_ctl->num_bytes, ffe_ctl->search_start,
3702				&ffe_ctl->max_extent_size);
3703		if (offset) {
3704			/* We found one, proceed */
3705			spin_unlock(&last_ptr->refill_lock);
 
 
 
3706			ffe_ctl->found_offset = offset;
3707			trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3708			return 0;
3709		}
 
 
 
 
 
 
 
 
3710	}
3711	/*
3712	 * At this point we either didn't find a cluster or we weren't able to
3713	 * allocate a block from our cluster.  Free the cluster we've been
3714	 * trying to use, and go to the next block group.
3715	 */
3716	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3717	spin_unlock(&last_ptr->refill_lock);
3718	return 1;
3719}
3720
3721/*
3722 * Return >0 to inform caller that we find nothing
3723 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
 
3724 */
3725static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3726					struct find_free_extent_ctl *ffe_ctl)
 
3727{
3728	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3729	u64 offset;
3730
3731	/*
3732	 * We are doing an unclustered allocation, set the fragmented flag so
3733	 * we don't bother trying to setup a cluster again until we get more
3734	 * space.
3735	 */
3736	if (unlikely(last_ptr)) {
3737		spin_lock(&last_ptr->lock);
3738		last_ptr->fragmented = 1;
3739		spin_unlock(&last_ptr->lock);
3740	}
3741	if (ffe_ctl->cached) {
3742		struct btrfs_free_space_ctl *free_space_ctl;
3743
3744		free_space_ctl = bg->free_space_ctl;
3745		spin_lock(&free_space_ctl->tree_lock);
3746		if (free_space_ctl->free_space <
3747		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3748		    ffe_ctl->empty_size) {
3749			ffe_ctl->total_free_space = max_t(u64,
3750					ffe_ctl->total_free_space,
3751					free_space_ctl->free_space);
3752			spin_unlock(&free_space_ctl->tree_lock);
3753			return 1;
3754		}
3755		spin_unlock(&free_space_ctl->tree_lock);
3756	}
3757
3758	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3759			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3760			&ffe_ctl->max_extent_size);
3761	if (!offset)
3762		return 1;
3763	ffe_ctl->found_offset = offset;
3764	return 0;
3765}
3766
3767static int do_allocation_clustered(struct btrfs_block_group *block_group,
3768				   struct find_free_extent_ctl *ffe_ctl,
3769				   struct btrfs_block_group **bg_ret)
3770{
3771	int ret;
3772
3773	/* We want to try and use the cluster allocator, so lets look there */
3774	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3775		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3776		if (ret >= 0)
3777			return ret;
3778		/* ret == -ENOENT case falls through */
3779	}
3780
3781	return find_free_extent_unclustered(block_group, ffe_ctl);
3782}
3783
3784/*
3785 * Tree-log block group locking
3786 * ============================
3787 *
3788 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3789 * indicates the starting address of a block group, which is reserved only
3790 * for tree-log metadata.
3791 *
3792 * Lock nesting
3793 * ============
3794 *
3795 * space_info::lock
3796 *   block_group::lock
3797 *     fs_info::treelog_bg_lock
3798 */
3799
3800/*
3801 * Simple allocator for sequential-only block group. It only allows sequential
3802 * allocation. No need to play with trees. This function also reserves the
3803 * bytes as in btrfs_add_reserved_bytes.
3804 */
3805static int do_allocation_zoned(struct btrfs_block_group *block_group,
3806			       struct find_free_extent_ctl *ffe_ctl,
3807			       struct btrfs_block_group **bg_ret)
3808{
3809	struct btrfs_fs_info *fs_info = block_group->fs_info;
3810	struct btrfs_space_info *space_info = block_group->space_info;
3811	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3812	u64 start = block_group->start;
3813	u64 num_bytes = ffe_ctl->num_bytes;
3814	u64 avail;
3815	u64 bytenr = block_group->start;
3816	u64 log_bytenr;
3817	u64 data_reloc_bytenr;
3818	int ret = 0;
3819	bool skip = false;
3820
3821	ASSERT(btrfs_is_zoned(block_group->fs_info));
3822
3823	/*
3824	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3825	 * group, and vice versa.
 
 
 
 
 
3826	 */
3827	spin_lock(&fs_info->treelog_bg_lock);
3828	log_bytenr = fs_info->treelog_bg;
3829	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3830			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3831		skip = true;
3832	spin_unlock(&fs_info->treelog_bg_lock);
3833	if (skip)
3834		return 1;
3835
3836	/*
3837	 * Do not allow non-relocation blocks in the dedicated relocation block
3838	 * group, and vice versa.
3839	 */
3840	spin_lock(&fs_info->relocation_bg_lock);
3841	data_reloc_bytenr = fs_info->data_reloc_bg;
3842	if (data_reloc_bytenr &&
3843	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3844	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3845		skip = true;
3846	spin_unlock(&fs_info->relocation_bg_lock);
3847	if (skip)
3848		return 1;
3849
3850	/* Check RO and no space case before trying to activate it */
3851	spin_lock(&block_group->lock);
3852	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3853		ret = 1;
3854		/*
3855		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3856		 * Return the error after taking the locks.
3857		 */
3858	}
3859	spin_unlock(&block_group->lock);
3860
3861	/* Metadata block group is activated at write time. */
3862	if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3863	    !btrfs_zone_activate(block_group)) {
3864		ret = 1;
3865		/*
3866		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3867		 * Return the error after taking the locks.
3868		 */
3869	}
3870
3871	spin_lock(&space_info->lock);
3872	spin_lock(&block_group->lock);
3873	spin_lock(&fs_info->treelog_bg_lock);
3874	spin_lock(&fs_info->relocation_bg_lock);
3875
3876	if (ret)
3877		goto out;
3878
3879	ASSERT(!ffe_ctl->for_treelog ||
3880	       block_group->start == fs_info->treelog_bg ||
3881	       fs_info->treelog_bg == 0);
3882	ASSERT(!ffe_ctl->for_data_reloc ||
3883	       block_group->start == fs_info->data_reloc_bg ||
3884	       fs_info->data_reloc_bg == 0);
3885
3886	if (block_group->ro ||
3887	    (!ffe_ctl->for_data_reloc &&
3888	     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3889		ret = 1;
3890		goto out;
3891	}
3892
3893	/*
3894	 * Do not allow currently using block group to be tree-log dedicated
3895	 * block group.
3896	 */
3897	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3898	    (block_group->used || block_group->reserved)) {
3899		ret = 1;
3900		goto out;
3901	}
3902
3903	/*
3904	 * Do not allow currently used block group to be the data relocation
3905	 * dedicated block group.
3906	 */
3907	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3908	    (block_group->used || block_group->reserved)) {
3909		ret = 1;
3910		goto out;
3911	}
3912
3913	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3914	avail = block_group->zone_capacity - block_group->alloc_offset;
3915	if (avail < num_bytes) {
3916		if (ffe_ctl->max_extent_size < avail) {
3917			/*
3918			 * With sequential allocator, free space is always
3919			 * contiguous
3920			 */
3921			ffe_ctl->max_extent_size = avail;
3922			ffe_ctl->total_free_space = avail;
3923		}
3924		ret = 1;
3925		goto out;
3926	}
3927
3928	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3929		fs_info->treelog_bg = block_group->start;
3930
3931	if (ffe_ctl->for_data_reloc) {
3932		if (!fs_info->data_reloc_bg)
3933			fs_info->data_reloc_bg = block_group->start;
3934		/*
3935		 * Do not allow allocations from this block group, unless it is
3936		 * for data relocation. Compared to increasing the ->ro, setting
3937		 * the ->zoned_data_reloc_ongoing flag still allows nocow
3938		 * writers to come in. See btrfs_inc_nocow_writers().
3939		 *
3940		 * We need to disable an allocation to avoid an allocation of
3941		 * regular (non-relocation data) extent. With mix of relocation
3942		 * extents and regular extents, we can dispatch WRITE commands
3943		 * (for relocation extents) and ZONE APPEND commands (for
3944		 * regular extents) at the same time to the same zone, which
3945		 * easily break the write pointer.
3946		 *
3947		 * Also, this flag avoids this block group to be zone finished.
3948		 */
3949		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3950	}
3951
3952	ffe_ctl->found_offset = start + block_group->alloc_offset;
3953	block_group->alloc_offset += num_bytes;
3954	spin_lock(&ctl->tree_lock);
3955	ctl->free_space -= num_bytes;
3956	spin_unlock(&ctl->tree_lock);
3957
3958	/*
3959	 * We do not check if found_offset is aligned to stripesize. The
3960	 * address is anyway rewritten when using zone append writing.
3961	 */
3962
3963	ffe_ctl->search_start = ffe_ctl->found_offset;
3964
3965out:
3966	if (ret && ffe_ctl->for_treelog)
3967		fs_info->treelog_bg = 0;
3968	if (ret && ffe_ctl->for_data_reloc)
3969		fs_info->data_reloc_bg = 0;
3970	spin_unlock(&fs_info->relocation_bg_lock);
3971	spin_unlock(&fs_info->treelog_bg_lock);
3972	spin_unlock(&block_group->lock);
3973	spin_unlock(&space_info->lock);
3974	return ret;
3975}
3976
3977static int do_allocation(struct btrfs_block_group *block_group,
3978			 struct find_free_extent_ctl *ffe_ctl,
3979			 struct btrfs_block_group **bg_ret)
3980{
3981	switch (ffe_ctl->policy) {
3982	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3983		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3984	case BTRFS_EXTENT_ALLOC_ZONED:
3985		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3986	default:
3987		BUG();
3988	}
3989}
3990
3991static void release_block_group(struct btrfs_block_group *block_group,
3992				struct find_free_extent_ctl *ffe_ctl,
3993				int delalloc)
3994{
3995	switch (ffe_ctl->policy) {
3996	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3997		ffe_ctl->retry_uncached = false;
3998		break;
3999	case BTRFS_EXTENT_ALLOC_ZONED:
4000		/* Nothing to do */
4001		break;
4002	default:
4003		BUG();
4004	}
4005
4006	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4007	       ffe_ctl->index);
4008	btrfs_release_block_group(block_group, delalloc);
4009}
4010
4011static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4012				   struct btrfs_key *ins)
4013{
4014	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4015
4016	if (!ffe_ctl->use_cluster && last_ptr) {
4017		spin_lock(&last_ptr->lock);
4018		last_ptr->window_start = ins->objectid;
4019		spin_unlock(&last_ptr->lock);
4020	}
4021}
4022
4023static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4024			 struct btrfs_key *ins)
4025{
4026	switch (ffe_ctl->policy) {
4027	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4028		found_extent_clustered(ffe_ctl, ins);
4029		break;
4030	case BTRFS_EXTENT_ALLOC_ZONED:
4031		/* Nothing to do */
4032		break;
4033	default:
4034		BUG();
4035	}
4036}
4037
4038static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4039				    struct find_free_extent_ctl *ffe_ctl)
4040{
4041	/* Block group's activeness is not a requirement for METADATA block groups. */
4042	if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4043		return 0;
4044
4045	/* If we can activate new zone, just allocate a chunk and use it */
4046	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
4047		return 0;
4048
4049	/*
4050	 * We already reached the max active zones. Try to finish one block
4051	 * group to make a room for a new block group. This is only possible
4052	 * for a data block group because btrfs_zone_finish() may need to wait
4053	 * for a running transaction which can cause a deadlock for metadata
4054	 * allocation.
4055	 */
4056	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4057		int ret = btrfs_zone_finish_one_bg(fs_info);
4058
4059		if (ret == 1)
4060			return 0;
4061		else if (ret < 0)
4062			return ret;
4063	}
4064
4065	/*
4066	 * If we have enough free space left in an already active block group
4067	 * and we can't activate any other zone now, do not allow allocating a
4068	 * new chunk and let find_free_extent() retry with a smaller size.
4069	 */
4070	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4071		return -ENOSPC;
4072
4073	/*
4074	 * Even min_alloc_size is not left in any block groups. Since we cannot
4075	 * activate a new block group, allocating it may not help. Let's tell a
4076	 * caller to try again and hope it progress something by writing some
4077	 * parts of the region. That is only possible for data block groups,
4078	 * where a part of the region can be written.
4079	 */
4080	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4081		return -EAGAIN;
4082
4083	/*
4084	 * We cannot activate a new block group and no enough space left in any
4085	 * block groups. So, allocating a new block group may not help. But,
4086	 * there is nothing to do anyway, so let's go with it.
4087	 */
4088	return 0;
4089}
4090
4091static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4092			      struct find_free_extent_ctl *ffe_ctl)
4093{
4094	switch (ffe_ctl->policy) {
4095	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4096		return 0;
4097	case BTRFS_EXTENT_ALLOC_ZONED:
4098		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4099	default:
4100		BUG();
4101	}
4102}
4103
4104/*
4105 * Return >0 means caller needs to re-search for free extent
4106 * Return 0 means we have the needed free extent.
4107 * Return <0 means we failed to locate any free extent.
4108 */
4109static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
 
4110					struct btrfs_key *ins,
4111					struct find_free_extent_ctl *ffe_ctl,
4112					bool full_search)
4113{
4114	struct btrfs_root *root = fs_info->chunk_root;
4115	int ret;
4116
4117	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4118	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4119		ffe_ctl->orig_have_caching_bg = true;
4120
 
 
 
 
 
 
 
4121	if (ins->objectid) {
4122		found_extent(ffe_ctl, ins);
 
 
 
 
4123		return 0;
4124	}
4125
4126	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4127		return 1;
4128
4129	ffe_ctl->index++;
4130	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4131		return 1;
4132
4133	/* See the comments for btrfs_loop_type for an explanation of the phases. */
4134	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4135		ffe_ctl->index = 0;
4136		/*
4137		 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4138		 * any uncached bgs and we've already done a full search
4139		 * through.
4140		 */
4141		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4142		    (!ffe_ctl->orig_have_caching_bg && full_search))
 
 
 
 
4143			ffe_ctl->loop++;
4144		ffe_ctl->loop++;
4145
4146		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4147			struct btrfs_trans_handle *trans;
4148			int exist = 0;
4149
4150			/* Check if allocation policy allows to create a new chunk */
4151			ret = can_allocate_chunk(fs_info, ffe_ctl);
4152			if (ret)
4153				return ret;
4154
4155			trans = current->journal_info;
4156			if (trans)
4157				exist = 1;
4158			else
4159				trans = btrfs_join_transaction(root);
4160
4161			if (IS_ERR(trans)) {
4162				ret = PTR_ERR(trans);
4163				return ret;
4164			}
4165
4166			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4167						CHUNK_ALLOC_FORCE_FOR_EXTENT);
 
 
 
 
 
 
 
 
4168
4169			/* Do not bail out on ENOSPC since we can do more. */
4170			if (ret == -ENOSPC) {
4171				ret = 0;
4172				ffe_ctl->loop++;
4173			}
4174			else if (ret < 0)
4175				btrfs_abort_transaction(trans, ret);
4176			else
4177				ret = 0;
4178			if (!exist)
4179				btrfs_end_transaction(trans);
4180			if (ret)
4181				return ret;
4182		}
4183
4184		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4185			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4186				return -ENOSPC;
4187
4188			/*
4189			 * Don't loop again if we already have no empty_size and
4190			 * no empty_cluster.
4191			 */
4192			if (ffe_ctl->empty_size == 0 &&
4193			    ffe_ctl->empty_cluster == 0)
4194				return -ENOSPC;
4195			ffe_ctl->empty_size = 0;
4196			ffe_ctl->empty_cluster = 0;
4197		}
4198		return 1;
4199	}
4200	return -ENOSPC;
4201}
4202
4203static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4204					      struct btrfs_block_group *bg)
4205{
4206	if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4207		return true;
4208	if (!btrfs_block_group_should_use_size_class(bg))
4209		return true;
4210	if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4211		return true;
4212	if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4213	    bg->size_class == BTRFS_BG_SZ_NONE)
4214		return true;
4215	return ffe_ctl->size_class == bg->size_class;
4216}
4217
4218static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4219					struct find_free_extent_ctl *ffe_ctl,
4220					struct btrfs_space_info *space_info,
4221					struct btrfs_key *ins)
4222{
4223	/*
4224	 * If our free space is heavily fragmented we may not be able to make
4225	 * big contiguous allocations, so instead of doing the expensive search
4226	 * for free space, simply return ENOSPC with our max_extent_size so we
4227	 * can go ahead and search for a more manageable chunk.
4228	 *
4229	 * If our max_extent_size is large enough for our allocation simply
4230	 * disable clustering since we will likely not be able to find enough
4231	 * space to create a cluster and induce latency trying.
4232	 */
4233	if (space_info->max_extent_size) {
4234		spin_lock(&space_info->lock);
4235		if (space_info->max_extent_size &&
4236		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4237			ins->offset = space_info->max_extent_size;
4238			spin_unlock(&space_info->lock);
4239			return -ENOSPC;
4240		} else if (space_info->max_extent_size) {
4241			ffe_ctl->use_cluster = false;
4242		}
4243		spin_unlock(&space_info->lock);
4244	}
4245
4246	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4247					       &ffe_ctl->empty_cluster);
4248	if (ffe_ctl->last_ptr) {
4249		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4250
4251		spin_lock(&last_ptr->lock);
4252		if (last_ptr->block_group)
4253			ffe_ctl->hint_byte = last_ptr->window_start;
4254		if (last_ptr->fragmented) {
4255			/*
4256			 * We still set window_start so we can keep track of the
4257			 * last place we found an allocation to try and save
4258			 * some time.
4259			 */
4260			ffe_ctl->hint_byte = last_ptr->window_start;
4261			ffe_ctl->use_cluster = false;
4262		}
4263		spin_unlock(&last_ptr->lock);
4264	}
4265
4266	return 0;
4267}
4268
4269static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4270				    struct find_free_extent_ctl *ffe_ctl)
4271{
4272	if (ffe_ctl->for_treelog) {
4273		spin_lock(&fs_info->treelog_bg_lock);
4274		if (fs_info->treelog_bg)
4275			ffe_ctl->hint_byte = fs_info->treelog_bg;
4276		spin_unlock(&fs_info->treelog_bg_lock);
4277	} else if (ffe_ctl->for_data_reloc) {
4278		spin_lock(&fs_info->relocation_bg_lock);
4279		if (fs_info->data_reloc_bg)
4280			ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4281		spin_unlock(&fs_info->relocation_bg_lock);
4282	} else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4283		struct btrfs_block_group *block_group;
4284
4285		spin_lock(&fs_info->zone_active_bgs_lock);
4286		list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4287			/*
4288			 * No lock is OK here because avail is monotinically
4289			 * decreasing, and this is just a hint.
4290			 */
4291			u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4292
4293			if (block_group_bits(block_group, ffe_ctl->flags) &&
4294			    avail >= ffe_ctl->num_bytes) {
4295				ffe_ctl->hint_byte = block_group->start;
4296				break;
4297			}
4298		}
4299		spin_unlock(&fs_info->zone_active_bgs_lock);
4300	}
4301
4302	return 0;
4303}
4304
4305static int prepare_allocation(struct btrfs_fs_info *fs_info,
4306			      struct find_free_extent_ctl *ffe_ctl,
4307			      struct btrfs_space_info *space_info,
4308			      struct btrfs_key *ins)
4309{
4310	switch (ffe_ctl->policy) {
4311	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4312		return prepare_allocation_clustered(fs_info, ffe_ctl,
4313						    space_info, ins);
4314	case BTRFS_EXTENT_ALLOC_ZONED:
4315		return prepare_allocation_zoned(fs_info, ffe_ctl);
4316	default:
4317		BUG();
4318	}
4319}
4320
4321/*
4322 * walks the btree of allocated extents and find a hole of a given size.
4323 * The key ins is changed to record the hole:
4324 * ins->objectid == start position
4325 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4326 * ins->offset == the size of the hole.
4327 * Any available blocks before search_start are skipped.
4328 *
4329 * If there is no suitable free space, we will record the max size of
4330 * the free space extent currently.
4331 *
4332 * The overall logic and call chain:
4333 *
4334 * find_free_extent()
4335 * |- Iterate through all block groups
4336 * |  |- Get a valid block group
4337 * |  |- Try to do clustered allocation in that block group
4338 * |  |- Try to do unclustered allocation in that block group
4339 * |  |- Check if the result is valid
4340 * |  |  |- If valid, then exit
4341 * |  |- Jump to next block group
4342 * |
4343 * |- Push harder to find free extents
4344 *    |- If not found, re-iterate all block groups
4345 */
4346static noinline int find_free_extent(struct btrfs_root *root,
4347				     struct btrfs_key *ins,
4348				     struct find_free_extent_ctl *ffe_ctl)
 
4349{
4350	struct btrfs_fs_info *fs_info = root->fs_info;
4351	int ret = 0;
4352	int cache_block_group_error = 0;
4353	struct btrfs_block_group *block_group = NULL;
 
4354	struct btrfs_space_info *space_info;
 
4355	bool full_search = false;
4356
4357	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4358
4359	ffe_ctl->search_start = 0;
4360	/* For clustered allocation */
4361	ffe_ctl->empty_cluster = 0;
4362	ffe_ctl->last_ptr = NULL;
4363	ffe_ctl->use_cluster = true;
4364	ffe_ctl->have_caching_bg = false;
4365	ffe_ctl->orig_have_caching_bg = false;
4366	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4367	ffe_ctl->loop = 0;
4368	ffe_ctl->retry_uncached = false;
4369	ffe_ctl->cached = 0;
4370	ffe_ctl->max_extent_size = 0;
4371	ffe_ctl->total_free_space = 0;
4372	ffe_ctl->found_offset = 0;
4373	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4374	ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4375
4376	if (btrfs_is_zoned(fs_info))
4377		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4378
4379	ins->type = BTRFS_EXTENT_ITEM_KEY;
4380	ins->objectid = 0;
4381	ins->offset = 0;
4382
4383	trace_find_free_extent(root, ffe_ctl);
4384
4385	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4386	if (!space_info) {
4387		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4388		return -ENOSPC;
4389	}
4390
4391	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4392	if (ret < 0)
4393		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4394
4395	ffe_ctl->search_start = max(ffe_ctl->search_start,
4396				    first_logical_byte(fs_info));
4397	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4398	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4399		block_group = btrfs_lookup_block_group(fs_info,
4400						       ffe_ctl->search_start);
4401		/*
4402		 * we don't want to use the block group if it doesn't match our
4403		 * allocation bits, or if its not cached.
4404		 *
4405		 * However if we are re-searching with an ideal block group
4406		 * picked out then we don't care that the block group is cached.
4407		 */
4408		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4409		    block_group->cached != BTRFS_CACHE_NO) {
4410			down_read(&space_info->groups_sem);
4411			if (list_empty(&block_group->list) ||
4412			    block_group->ro) {
4413				/*
4414				 * someone is removing this block group,
4415				 * we can't jump into the have_block_group
4416				 * target because our list pointers are not
4417				 * valid
4418				 */
4419				btrfs_put_block_group(block_group);
4420				up_read(&space_info->groups_sem);
4421			} else {
4422				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4423							block_group->flags);
4424				btrfs_lock_block_group(block_group,
4425						       ffe_ctl->delalloc);
4426				ffe_ctl->hinted = true;
4427				goto have_block_group;
4428			}
4429		} else if (block_group) {
4430			btrfs_put_block_group(block_group);
4431		}
4432	}
4433search:
4434	trace_find_free_extent_search_loop(root, ffe_ctl);
4435	ffe_ctl->have_caching_bg = false;
4436	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4437	    ffe_ctl->index == 0)
4438		full_search = true;
4439	down_read(&space_info->groups_sem);
4440	list_for_each_entry(block_group,
4441			    &space_info->block_groups[ffe_ctl->index], list) {
4442		struct btrfs_block_group *bg_ret;
4443
4444		ffe_ctl->hinted = false;
4445		/* If the block group is read-only, we can skip it entirely. */
4446		if (unlikely(block_group->ro)) {
4447			if (ffe_ctl->for_treelog)
4448				btrfs_clear_treelog_bg(block_group);
4449			if (ffe_ctl->for_data_reloc)
4450				btrfs_clear_data_reloc_bg(block_group);
4451			continue;
4452		}
4453
4454		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4455		ffe_ctl->search_start = block_group->start;
4456
4457		/*
4458		 * this can happen if we end up cycling through all the
4459		 * raid types, but we want to make sure we only allocate
4460		 * for the proper type.
4461		 */
4462		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4463			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4464				BTRFS_BLOCK_GROUP_RAID1_MASK |
4465				BTRFS_BLOCK_GROUP_RAID56_MASK |
4466				BTRFS_BLOCK_GROUP_RAID10;
4467
4468			/*
4469			 * if they asked for extra copies and this block group
4470			 * doesn't provide them, bail.  This does allow us to
4471			 * fill raid0 from raid1.
4472			 */
4473			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4474				goto loop;
4475
4476			/*
4477			 * This block group has different flags than we want.
4478			 * It's possible that we have MIXED_GROUP flag but no
4479			 * block group is mixed.  Just skip such block group.
4480			 */
4481			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4482			continue;
4483		}
4484
4485have_block_group:
4486		trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4487		ffe_ctl->cached = btrfs_block_group_done(block_group);
4488		if (unlikely(!ffe_ctl->cached)) {
4489			ffe_ctl->have_caching_bg = true;
4490			ret = btrfs_cache_block_group(block_group, false);
4491
4492			/*
4493			 * If we get ENOMEM here or something else we want to
4494			 * try other block groups, because it may not be fatal.
4495			 * However if we can't find anything else we need to
4496			 * save our return here so that we return the actual
4497			 * error that caused problems, not ENOSPC.
4498			 */
4499			if (ret < 0) {
4500				if (!cache_block_group_error)
4501					cache_block_group_error = ret;
4502				ret = 0;
4503				goto loop;
4504			}
4505			ret = 0;
4506		}
4507
4508		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4509			if (!cache_block_group_error)
4510				cache_block_group_error = -EIO;
4511			goto loop;
4512		}
4513
4514		if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4515			goto loop;
 
 
 
 
4516
4517		bg_ret = NULL;
4518		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4519		if (ret > 0)
4520			goto loop;
4521
4522		if (bg_ret && bg_ret != block_group) {
4523			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4524			block_group = bg_ret;
 
 
 
 
 
 
 
 
 
 
4525		}
4526
4527		/* Checks */
4528		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4529						 fs_info->stripesize);
 
 
 
 
 
 
 
4530
4531		/* move on to the next group */
4532		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4533		    block_group->start + block_group->length) {
4534			btrfs_add_free_space_unused(block_group,
4535					    ffe_ctl->found_offset,
4536					    ffe_ctl->num_bytes);
4537			goto loop;
4538		}
4539
4540		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4541			btrfs_add_free_space_unused(block_group,
4542					ffe_ctl->found_offset,
4543					ffe_ctl->search_start - ffe_ctl->found_offset);
4544
4545		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4546					       ffe_ctl->num_bytes,
4547					       ffe_ctl->delalloc,
4548					       ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4549		if (ret == -EAGAIN) {
4550			btrfs_add_free_space_unused(block_group,
4551					ffe_ctl->found_offset,
4552					ffe_ctl->num_bytes);
4553			goto loop;
4554		}
4555		btrfs_inc_block_group_reservations(block_group);
4556
4557		/* we are all good, lets return */
4558		ins->objectid = ffe_ctl->search_start;
4559		ins->offset = ffe_ctl->num_bytes;
4560
4561		trace_btrfs_reserve_extent(block_group, ffe_ctl);
4562		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
 
4563		break;
4564loop:
4565		if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4566		    !ffe_ctl->retry_uncached) {
4567			ffe_ctl->retry_uncached = true;
4568			btrfs_wait_block_group_cache_progress(block_group,
4569						ffe_ctl->num_bytes +
4570						ffe_ctl->empty_cluster +
4571						ffe_ctl->empty_size);
4572			goto have_block_group;
4573		}
4574		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4575		cond_resched();
4576	}
4577	up_read(&space_info->groups_sem);
4578
4579	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
 
4580	if (ret > 0)
4581		goto search;
4582
4583	if (ret == -ENOSPC && !cache_block_group_error) {
4584		/*
4585		 * Use ffe_ctl->total_free_space as fallback if we can't find
4586		 * any contiguous hole.
4587		 */
4588		if (!ffe_ctl->max_extent_size)
4589			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4590		spin_lock(&space_info->lock);
4591		space_info->max_extent_size = ffe_ctl->max_extent_size;
4592		spin_unlock(&space_info->lock);
4593		ins->offset = ffe_ctl->max_extent_size;
4594	} else if (ret == -ENOSPC) {
4595		ret = cache_block_group_error;
4596	}
4597	return ret;
4598}
4599
4600/*
4601 * Entry point to the extent allocator. Tries to find a hole that is at least
4602 * as big as @num_bytes.
4603 *
4604 * @root           -	The root that will contain this extent
4605 *
4606 * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4607 *			is used for accounting purposes. This value differs
4608 *			from @num_bytes only in the case of compressed extents.
4609 *
4610 * @num_bytes      -	Number of bytes to allocate on-disk.
4611 *
4612 * @min_alloc_size -	Indicates the minimum amount of space that the
4613 *			allocator should try to satisfy. In some cases
4614 *			@num_bytes may be larger than what is required and if
4615 *			the filesystem is fragmented then allocation fails.
4616 *			However, the presence of @min_alloc_size gives a
4617 *			chance to try and satisfy the smaller allocation.
4618 *
4619 * @empty_size     -	A hint that you plan on doing more COW. This is the
4620 *			size in bytes the allocator should try to find free
4621 *			next to the block it returns.  This is just a hint and
4622 *			may be ignored by the allocator.
4623 *
4624 * @hint_byte      -	Hint to the allocator to start searching above the byte
4625 *			address passed. It might be ignored.
4626 *
4627 * @ins            -	This key is modified to record the found hole. It will
4628 *			have the following values:
4629 *			ins->objectid == start position
4630 *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4631 *			ins->offset == the size of the hole.
4632 *
4633 * @is_data        -	Boolean flag indicating whether an extent is
4634 *			allocated for data (true) or metadata (false)
4635 *
4636 * @delalloc       -	Boolean flag indicating whether this allocation is for
4637 *			delalloc or not. If 'true' data_rwsem of block groups
4638 *			is going to be acquired.
4639 *
4640 *
4641 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4642 * case -ENOSPC is returned then @ins->offset will contain the size of the
4643 * largest available hole the allocator managed to find.
4644 */
4645int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4646			 u64 num_bytes, u64 min_alloc_size,
4647			 u64 empty_size, u64 hint_byte,
4648			 struct btrfs_key *ins, int is_data, int delalloc)
4649{
4650	struct btrfs_fs_info *fs_info = root->fs_info;
4651	struct find_free_extent_ctl ffe_ctl = {};
4652	bool final_tried = num_bytes == min_alloc_size;
4653	u64 flags;
4654	int ret;
4655	bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
4656	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4657
4658	flags = get_alloc_profile_by_root(root, is_data);
4659again:
4660	WARN_ON(num_bytes < fs_info->sectorsize);
4661
4662	ffe_ctl.ram_bytes = ram_bytes;
4663	ffe_ctl.num_bytes = num_bytes;
4664	ffe_ctl.min_alloc_size = min_alloc_size;
4665	ffe_ctl.empty_size = empty_size;
4666	ffe_ctl.flags = flags;
4667	ffe_ctl.delalloc = delalloc;
4668	ffe_ctl.hint_byte = hint_byte;
4669	ffe_ctl.for_treelog = for_treelog;
4670	ffe_ctl.for_data_reloc = for_data_reloc;
4671
4672	ret = find_free_extent(root, ins, &ffe_ctl);
4673	if (!ret && !is_data) {
4674		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4675	} else if (ret == -ENOSPC) {
4676		if (!final_tried && ins->offset) {
4677			num_bytes = min(num_bytes >> 1, ins->offset);
4678			num_bytes = round_down(num_bytes,
4679					       fs_info->sectorsize);
4680			num_bytes = max(num_bytes, min_alloc_size);
4681			ram_bytes = num_bytes;
4682			if (num_bytes == min_alloc_size)
4683				final_tried = true;
4684			goto again;
4685		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4686			struct btrfs_space_info *sinfo;
4687
4688			sinfo = btrfs_find_space_info(fs_info, flags);
4689			btrfs_err(fs_info,
4690	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4691				  flags, num_bytes, for_treelog, for_data_reloc);
4692			if (sinfo)
4693				btrfs_dump_space_info(fs_info, sinfo,
4694						      num_bytes, 1);
4695		}
4696	}
4697
4698	return ret;
4699}
4700
4701int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4702			       u64 start, u64 len, int delalloc)
 
4703{
4704	struct btrfs_block_group *cache;
 
4705
4706	cache = btrfs_lookup_block_group(fs_info, start);
4707	if (!cache) {
4708		btrfs_err(fs_info, "Unable to find block group for %llu",
4709			  start);
4710		return -ENOSPC;
4711	}
4712
4713	btrfs_add_free_space(cache, start, len);
4714	btrfs_free_reserved_bytes(cache, len, delalloc);
4715	trace_btrfs_reserved_extent_free(fs_info, start, len);
 
 
 
 
 
 
4716
4717	btrfs_put_block_group(cache);
4718	return 0;
4719}
4720
4721int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4722			      const struct extent_buffer *eb)
4723{
4724	struct btrfs_block_group *cache;
4725	int ret = 0;
4726
4727	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
4728	if (!cache) {
4729		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4730			  eb->start);
4731		return -ENOSPC;
4732	}
4733
4734	ret = pin_down_extent(trans, cache, eb->start, eb->len, 1);
4735	btrfs_put_block_group(cache);
4736	return ret;
4737}
4738
4739static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4740				 u64 num_bytes)
4741{
4742	struct btrfs_fs_info *fs_info = trans->fs_info;
4743	int ret;
4744
4745	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4746	if (ret)
4747		return ret;
4748
4749	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4750	if (ret) {
4751		ASSERT(!ret);
4752		btrfs_err(fs_info, "update block group failed for %llu %llu",
4753			  bytenr, num_bytes);
4754		return ret;
4755	}
4756
4757	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4758	return 0;
4759}
4760
4761static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4762				      u64 parent, u64 root_objectid,
4763				      u64 flags, u64 owner, u64 offset,
4764				      struct btrfs_key *ins, int ref_mod, u64 oref_root)
4765{
4766	struct btrfs_fs_info *fs_info = trans->fs_info;
4767	struct btrfs_root *extent_root;
4768	int ret;
4769	struct btrfs_extent_item *extent_item;
4770	struct btrfs_extent_owner_ref *oref;
4771	struct btrfs_extent_inline_ref *iref;
4772	struct btrfs_path *path;
4773	struct extent_buffer *leaf;
4774	int type;
4775	u32 size;
4776	const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4777
4778	if (parent > 0)
4779		type = BTRFS_SHARED_DATA_REF_KEY;
4780	else
4781		type = BTRFS_EXTENT_DATA_REF_KEY;
4782
4783	size = sizeof(*extent_item);
4784	if (simple_quota)
4785		size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4786	size += btrfs_extent_inline_ref_size(type);
4787
4788	path = btrfs_alloc_path();
4789	if (!path)
4790		return -ENOMEM;
4791
4792	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4793	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
 
4794	if (ret) {
4795		btrfs_free_path(path);
4796		return ret;
4797	}
4798
4799	leaf = path->nodes[0];
4800	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4801				     struct btrfs_extent_item);
4802	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4803	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4804	btrfs_set_extent_flags(leaf, extent_item,
4805			       flags | BTRFS_EXTENT_FLAG_DATA);
4806
4807	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4808	if (simple_quota) {
4809		btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY);
4810		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4811		btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root);
4812		iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4813	}
4814	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4815
4816	if (parent > 0) {
4817		struct btrfs_shared_data_ref *ref;
4818		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4819		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4820		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4821	} else {
4822		struct btrfs_extent_data_ref *ref;
4823		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4824		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4825		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4826		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4827		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4828	}
4829
4830	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
4831	btrfs_free_path(path);
4832
4833	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
 
 
 
 
 
 
 
 
 
 
 
4834}
4835
4836static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4837				     struct btrfs_delayed_ref_node *node,
4838				     struct btrfs_delayed_extent_op *extent_op)
4839{
4840	struct btrfs_fs_info *fs_info = trans->fs_info;
4841	struct btrfs_root *extent_root;
4842	int ret;
4843	struct btrfs_extent_item *extent_item;
4844	struct btrfs_key extent_key;
4845	struct btrfs_tree_block_info *block_info;
4846	struct btrfs_extent_inline_ref *iref;
4847	struct btrfs_path *path;
4848	struct extent_buffer *leaf;
 
4849	u32 size = sizeof(*extent_item) + sizeof(*iref);
4850	const u64 flags = (extent_op ? extent_op->flags_to_set : 0);
4851	/* The owner of a tree block is the level. */
4852	int level = btrfs_delayed_ref_owner(node);
4853	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4854
 
 
4855	extent_key.objectid = node->bytenr;
4856	if (skinny_metadata) {
4857		/* The owner of a tree block is the level. */
4858		extent_key.offset = level;
4859		extent_key.type = BTRFS_METADATA_ITEM_KEY;
 
4860	} else {
4861		extent_key.offset = node->num_bytes;
4862		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4863		size += sizeof(*block_info);
 
4864	}
4865
4866	path = btrfs_alloc_path();
4867	if (!path)
4868		return -ENOMEM;
4869
4870	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4871	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4872				      size);
4873	if (ret) {
4874		btrfs_free_path(path);
4875		return ret;
4876	}
4877
4878	leaf = path->nodes[0];
4879	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4880				     struct btrfs_extent_item);
4881	btrfs_set_extent_refs(leaf, extent_item, 1);
4882	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4883	btrfs_set_extent_flags(leaf, extent_item,
4884			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4885
4886	if (skinny_metadata) {
4887		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4888	} else {
4889		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4890		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4891		btrfs_set_tree_block_level(leaf, block_info, level);
4892		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4893	}
4894
4895	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
 
4896		btrfs_set_extent_inline_ref_type(leaf, iref,
4897						 BTRFS_SHARED_BLOCK_REF_KEY);
4898		btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent);
4899	} else {
4900		btrfs_set_extent_inline_ref_type(leaf, iref,
4901						 BTRFS_TREE_BLOCK_REF_KEY);
4902		btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root);
4903	}
4904
4905	btrfs_mark_buffer_dirty(trans, leaf);
4906	btrfs_free_path(path);
4907
4908	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4909}
4910
4911int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4912				     struct btrfs_root *root, u64 owner,
4913				     u64 offset, u64 ram_bytes,
4914				     struct btrfs_key *ins)
4915{
4916	struct btrfs_ref generic_ref = {
4917		.action = BTRFS_ADD_DELAYED_EXTENT,
4918		.bytenr = ins->objectid,
4919		.num_bytes = ins->offset,
4920		.owning_root = btrfs_root_id(root),
4921		.ref_root = btrfs_root_id(root),
4922	};
4923
4924	ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID);
4925
4926	if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root))
4927		generic_ref.owning_root = root->relocation_src_root;
4928
4929	btrfs_init_data_ref(&generic_ref, owner, offset, 0, false);
4930	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4931
4932	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
 
4933}
4934
4935/*
4936 * this is used by the tree logging recovery code.  It records that
4937 * an extent has been allocated and makes sure to clear the free
4938 * space cache bits as well
4939 */
4940int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4941				   u64 root_objectid, u64 owner, u64 offset,
4942				   struct btrfs_key *ins)
4943{
4944	struct btrfs_fs_info *fs_info = trans->fs_info;
4945	int ret;
4946	struct btrfs_block_group *block_group;
4947	struct btrfs_space_info *space_info;
4948	struct btrfs_squota_delta delta = {
4949		.root = root_objectid,
4950		.num_bytes = ins->offset,
4951		.generation = trans->transid,
4952		.is_data = true,
4953		.is_inc = true,
4954	};
4955
4956	/*
4957	 * Mixed block groups will exclude before processing the log so we only
4958	 * need to do the exclude dance if this fs isn't mixed.
4959	 */
4960	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4961		ret = __exclude_logged_extent(fs_info, ins->objectid,
4962					      ins->offset);
4963		if (ret)
4964			return ret;
4965	}
4966
4967	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4968	if (!block_group)
4969		return -EINVAL;
4970
4971	space_info = block_group->space_info;
4972	spin_lock(&space_info->lock);
4973	spin_lock(&block_group->lock);
4974	space_info->bytes_reserved += ins->offset;
4975	block_group->reserved += ins->offset;
4976	spin_unlock(&block_group->lock);
4977	spin_unlock(&space_info->lock);
4978
4979	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4980					 offset, ins, 1, root_objectid);
4981	if (ret)
4982		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4983	ret = btrfs_record_squota_delta(fs_info, &delta);
4984	btrfs_put_block_group(block_group);
4985	return ret;
4986}
4987
4988#ifdef CONFIG_BTRFS_DEBUG
4989/*
4990 * Extra safety check in case the extent tree is corrupted and extent allocator
4991 * chooses to use a tree block which is already used and locked.
4992 */
4993static bool check_eb_lock_owner(const struct extent_buffer *eb)
4994{
4995	if (eb->lock_owner == current->pid) {
4996		btrfs_err_rl(eb->fs_info,
4997"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4998			     eb->start, btrfs_header_owner(eb), current->pid);
4999		return true;
5000	}
5001	return false;
5002}
5003#else
5004static bool check_eb_lock_owner(struct extent_buffer *eb)
5005{
5006	return false;
5007}
5008#endif
5009
5010static struct extent_buffer *
5011btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5012		      u64 bytenr, int level, u64 owner,
5013		      enum btrfs_lock_nesting nest)
5014{
5015	struct btrfs_fs_info *fs_info = root->fs_info;
5016	struct extent_buffer *buf;
5017	u64 lockdep_owner = owner;
5018
5019	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
5020	if (IS_ERR(buf))
5021		return buf;
5022
5023	if (check_eb_lock_owner(buf)) {
 
 
 
 
 
 
 
 
5024		free_extent_buffer(buf);
5025		return ERR_PTR(-EUCLEAN);
5026	}
5027
5028	/*
5029	 * The reloc trees are just snapshots, so we need them to appear to be
5030	 * just like any other fs tree WRT lockdep.
5031	 *
5032	 * The exception however is in replace_path() in relocation, where we
5033	 * hold the lock on the original fs root and then search for the reloc
5034	 * root.  At that point we need to make sure any reloc root buffers are
5035	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5036	 * lockdep happy.
5037	 */
5038	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5039	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5040		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5041
5042	/* btrfs_clear_buffer_dirty() accesses generation field. */
5043	btrfs_set_header_generation(buf, trans->transid);
5044
5045	/*
5046	 * This needs to stay, because we could allocate a freed block from an
5047	 * old tree into a new tree, so we need to make sure this new block is
5048	 * set to the appropriate level and owner.
5049	 */
5050	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
5051
5052	btrfs_tree_lock_nested(buf, nest);
5053	btrfs_clear_buffer_dirty(trans, buf);
5054	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
5055	clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags);
5056
 
5057	set_extent_buffer_uptodate(buf);
5058
5059	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
5060	btrfs_set_header_level(buf, level);
5061	btrfs_set_header_bytenr(buf, buf->start);
5062	btrfs_set_header_generation(buf, trans->transid);
5063	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
5064	btrfs_set_header_owner(buf, owner);
5065	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
5066	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
5067	if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
5068		buf->log_index = root->log_transid % 2;
5069		/*
5070		 * we allow two log transactions at a time, use different
5071		 * EXTENT bit to differentiate dirty pages.
5072		 */
5073		if (buf->log_index == 0)
5074			set_extent_bit(&root->dirty_log_pages, buf->start,
5075				       buf->start + buf->len - 1,
5076				       EXTENT_DIRTY, NULL);
5077		else
5078			set_extent_bit(&root->dirty_log_pages, buf->start,
5079				       buf->start + buf->len - 1,
5080				       EXTENT_NEW, NULL);
5081	} else {
5082		buf->log_index = -1;
5083		set_extent_bit(&trans->transaction->dirty_pages, buf->start,
5084			       buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
5085	}
 
5086	/* this returns a buffer locked for blocking */
5087	return buf;
5088}
5089
5090/*
5091 * finds a free extent and does all the dirty work required for allocation
5092 * returns the tree buffer or an ERR_PTR on error.
5093 */
5094struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5095					     struct btrfs_root *root,
5096					     u64 parent, u64 root_objectid,
5097					     const struct btrfs_disk_key *key,
5098					     int level, u64 hint,
5099					     u64 empty_size,
5100					     u64 reloc_src_root,
5101					     enum btrfs_lock_nesting nest)
5102{
5103	struct btrfs_fs_info *fs_info = root->fs_info;
5104	struct btrfs_key ins;
5105	struct btrfs_block_rsv *block_rsv;
5106	struct extent_buffer *buf;
 
 
5107	u64 flags = 0;
5108	int ret;
5109	u32 blocksize = fs_info->nodesize;
5110	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5111	u64 owning_root;
5112
5113#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5114	if (btrfs_is_testing(fs_info)) {
5115		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5116					    level, root_objectid, nest);
5117		if (!IS_ERR(buf))
5118			root->alloc_bytenr += blocksize;
5119		return buf;
5120	}
5121#endif
5122
5123	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5124	if (IS_ERR(block_rsv))
5125		return ERR_CAST(block_rsv);
5126
5127	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5128				   empty_size, hint, &ins, 0, 0);
5129	if (ret)
5130		goto out_unuse;
5131
5132	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5133				    root_objectid, nest);
5134	if (IS_ERR(buf)) {
5135		ret = PTR_ERR(buf);
5136		goto out_free_reserved;
5137	}
5138	owning_root = btrfs_header_owner(buf);
5139
5140	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5141		if (parent == 0)
5142			parent = ins.objectid;
5143		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5144		owning_root = reloc_src_root;
5145	} else
5146		BUG_ON(parent > 0);
5147
5148	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5149		struct btrfs_delayed_extent_op *extent_op;
5150		struct btrfs_ref generic_ref = {
5151			.action = BTRFS_ADD_DELAYED_EXTENT,
5152			.bytenr = ins.objectid,
5153			.num_bytes = ins.offset,
5154			.parent = parent,
5155			.owning_root = owning_root,
5156			.ref_root = root_objectid,
5157		};
5158
5159		if (!skinny_metadata || flags != 0) {
5160			extent_op = btrfs_alloc_delayed_extent_op();
5161			if (!extent_op) {
5162				ret = -ENOMEM;
5163				goto out_free_buf;
5164			}
5165			if (key)
5166				memcpy(&extent_op->key, key, sizeof(extent_op->key));
5167			else
5168				memset(&extent_op->key, 0, sizeof(extent_op->key));
5169			extent_op->flags_to_set = flags;
5170			extent_op->update_key = (skinny_metadata ? false : true);
5171			extent_op->update_flags = (flags != 0);
5172		} else {
5173			extent_op = NULL;
5174		}
5175
5176		btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false);
 
 
 
 
 
 
 
 
 
 
 
 
5177		btrfs_ref_tree_mod(fs_info, &generic_ref);
5178		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5179		if (ret) {
5180			btrfs_free_delayed_extent_op(extent_op);
5181			goto out_free_buf;
5182		}
5183	}
5184	return buf;
5185
 
 
5186out_free_buf:
5187	btrfs_tree_unlock(buf);
5188	free_extent_buffer(buf);
5189out_free_reserved:
5190	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5191out_unuse:
5192	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5193	return ERR_PTR(ret);
5194}
5195
5196struct walk_control {
5197	u64 refs[BTRFS_MAX_LEVEL];
5198	u64 flags[BTRFS_MAX_LEVEL];
5199	struct btrfs_key update_progress;
5200	struct btrfs_key drop_progress;
5201	int drop_level;
5202	int stage;
5203	int level;
5204	int shared_level;
5205	int update_ref;
5206	int keep_locks;
5207	int reada_slot;
5208	int reada_count;
5209	int restarted;
5210	/* Indicate that extent info needs to be looked up when walking the tree. */
5211	int lookup_info;
5212};
5213
5214/*
5215 * This is our normal stage.  We are traversing blocks the current snapshot owns
5216 * and we are dropping any of our references to any children we are able to, and
5217 * then freeing the block once we've processed all of the children.
5218 */
5219#define DROP_REFERENCE	1
5220
5221/*
5222 * We enter this stage when we have to walk into a child block (meaning we can't
5223 * simply drop our reference to it from our current parent node) and there are
5224 * more than one reference on it.  If we are the owner of any of the children
5225 * blocks from the current parent node then we have to do the FULL_BACKREF dance
5226 * on them in order to drop our normal ref and add the shared ref.
5227 */
5228#define UPDATE_BACKREF	2
5229
5230/*
5231 * Decide if we need to walk down into this node to adjust the references.
5232 *
5233 * @root:	the root we are currently deleting
5234 * @wc:		the walk control for this deletion
5235 * @eb:		the parent eb that we're currently visiting
5236 * @refs:	the number of refs for wc->level - 1
5237 * @flags:	the flags for wc->level - 1
5238 * @slot:	the slot in the eb that we're currently checking
5239 *
5240 * This is meant to be called when we're evaluating if a node we point to at
5241 * wc->level should be read and walked into, or if we can simply delete our
5242 * reference to it.  We return true if we should walk into the node, false if we
5243 * can skip it.
5244 *
5245 * We have assertions in here to make sure this is called correctly.  We assume
5246 * that sanity checking on the blocks read to this point has been done, so any
5247 * corrupted file systems must have been caught before calling this function.
5248 */
5249static bool visit_node_for_delete(struct btrfs_root *root, struct walk_control *wc,
5250				  struct extent_buffer *eb, u64 flags, int slot)
5251{
5252	struct btrfs_key key;
5253	u64 generation;
5254	int level = wc->level;
5255
5256	ASSERT(level > 0);
5257	ASSERT(wc->refs[level - 1] > 0);
5258
5259	/*
5260	 * The update backref stage we only want to skip if we already have
5261	 * FULL_BACKREF set, otherwise we need to read.
5262	 */
5263	if (wc->stage == UPDATE_BACKREF) {
5264		if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5265			return false;
5266		return true;
5267	}
5268
5269	/*
5270	 * We're the last ref on this block, we must walk into it and process
5271	 * any refs it's pointing at.
5272	 */
5273	if (wc->refs[level - 1] == 1)
5274		return true;
5275
5276	/*
5277	 * If we're already FULL_BACKREF then we know we can just drop our
5278	 * current reference.
5279	 */
5280	if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5281		return false;
5282
5283	/*
5284	 * This block is older than our creation generation, we can drop our
5285	 * reference to it.
5286	 */
5287	generation = btrfs_node_ptr_generation(eb, slot);
5288	if (!wc->update_ref || generation <= btrfs_root_origin_generation(root))
5289		return false;
5290
5291	/*
5292	 * This block was processed from a previous snapshot deletion run, we
5293	 * can skip it.
5294	 */
5295	btrfs_node_key_to_cpu(eb, &key, slot);
5296	if (btrfs_comp_cpu_keys(&key, &wc->update_progress) < 0)
5297		return false;
5298
5299	/* All other cases we need to wander into the node. */
5300	return true;
5301}
5302
5303static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5304				     struct btrfs_root *root,
5305				     struct walk_control *wc,
5306				     struct btrfs_path *path)
5307{
5308	struct btrfs_fs_info *fs_info = root->fs_info;
5309	u64 bytenr;
5310	u64 generation;
5311	u64 refs;
5312	u64 flags;
5313	u32 nritems;
 
5314	struct extent_buffer *eb;
5315	int ret;
5316	int slot;
5317	int nread = 0;
5318
5319	if (path->slots[wc->level] < wc->reada_slot) {
5320		wc->reada_count = wc->reada_count * 2 / 3;
5321		wc->reada_count = max(wc->reada_count, 2);
5322	} else {
5323		wc->reada_count = wc->reada_count * 3 / 2;
5324		wc->reada_count = min_t(int, wc->reada_count,
5325					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5326	}
5327
5328	eb = path->nodes[wc->level];
5329	nritems = btrfs_header_nritems(eb);
5330
5331	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5332		if (nread >= wc->reada_count)
5333			break;
5334
5335		cond_resched();
5336		bytenr = btrfs_node_blockptr(eb, slot);
5337		generation = btrfs_node_ptr_generation(eb, slot);
5338
5339		if (slot == path->slots[wc->level])
5340			goto reada;
5341
5342		if (wc->stage == UPDATE_BACKREF &&
5343		    generation <= btrfs_root_origin_generation(root))
5344			continue;
5345
5346		/* We don't lock the tree block, it's OK to be racy here */
5347		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5348					       wc->level - 1, 1, &refs,
5349					       &flags, NULL);
5350		/* We don't care about errors in readahead. */
5351		if (ret < 0)
5352			continue;
 
5353
5354		/*
5355		 * This could be racey, it's conceivable that we raced and end
5356		 * up with a bogus refs count, if that's the case just skip, if
5357		 * we are actually corrupt we will notice when we look up
5358		 * everything again with our locks.
5359		 */
5360		if (refs == 0)
5361			continue;
5362
5363		/* If we don't need to visit this node don't reada. */
5364		if (!visit_node_for_delete(root, wc, eb, flags, slot))
5365			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
5366reada:
5367		btrfs_readahead_node_child(eb, slot);
5368		nread++;
5369	}
5370	wc->reada_slot = slot;
5371}
5372
5373/*
5374 * helper to process tree block while walking down the tree.
5375 *
5376 * when wc->stage == UPDATE_BACKREF, this function updates
5377 * back refs for pointers in the block.
5378 *
5379 * NOTE: return value 1 means we should stop walking down.
5380 */
5381static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5382				   struct btrfs_root *root,
5383				   struct btrfs_path *path,
5384				   struct walk_control *wc)
5385{
5386	struct btrfs_fs_info *fs_info = root->fs_info;
5387	int level = wc->level;
5388	struct extent_buffer *eb = path->nodes[level];
5389	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5390	int ret;
5391
5392	if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root))
 
5393		return 1;
5394
5395	/*
5396	 * when reference count of tree block is 1, it won't increase
5397	 * again. once full backref flag is set, we never clear it.
5398	 */
5399	if (wc->lookup_info &&
5400	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5401	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5402		ASSERT(path->locks[level]);
5403		ret = btrfs_lookup_extent_info(trans, fs_info,
5404					       eb->start, level, 1,
5405					       &wc->refs[level],
5406					       &wc->flags[level],
5407					       NULL);
5408		if (ret)
5409			return ret;
5410		if (unlikely(wc->refs[level] == 0)) {
5411			btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5412				  eb->start);
5413			return -EUCLEAN;
5414		}
5415	}
5416
5417	if (wc->stage == DROP_REFERENCE) {
5418		if (wc->refs[level] > 1)
5419			return 1;
5420
5421		if (path->locks[level] && !wc->keep_locks) {
5422			btrfs_tree_unlock_rw(eb, path->locks[level]);
5423			path->locks[level] = 0;
5424		}
5425		return 0;
5426	}
5427
5428	/* wc->stage == UPDATE_BACKREF */
5429	if (!(wc->flags[level] & flag)) {
5430		ASSERT(path->locks[level]);
5431		ret = btrfs_inc_ref(trans, root, eb, 1);
5432		if (ret) {
5433			btrfs_abort_transaction(trans, ret);
5434			return ret;
5435		}
5436		ret = btrfs_dec_ref(trans, root, eb, 0);
5437		if (ret) {
5438			btrfs_abort_transaction(trans, ret);
5439			return ret;
5440		}
5441		ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5442		if (ret) {
5443			btrfs_abort_transaction(trans, ret);
5444			return ret;
5445		}
5446		wc->flags[level] |= flag;
5447	}
5448
5449	/*
5450	 * the block is shared by multiple trees, so it's not good to
5451	 * keep the tree lock
5452	 */
5453	if (path->locks[level] && level > 0) {
5454		btrfs_tree_unlock_rw(eb, path->locks[level]);
5455		path->locks[level] = 0;
5456	}
5457	return 0;
5458}
5459
5460/*
5461 * This is used to verify a ref exists for this root to deal with a bug where we
5462 * would have a drop_progress key that hadn't been updated properly.
5463 */
5464static int check_ref_exists(struct btrfs_trans_handle *trans,
5465			    struct btrfs_root *root, u64 bytenr, u64 parent,
5466			    int level)
5467{
5468	struct btrfs_delayed_ref_root *delayed_refs;
5469	struct btrfs_delayed_ref_head *head;
5470	struct btrfs_path *path;
5471	struct btrfs_extent_inline_ref *iref;
5472	int ret;
5473	bool exists = false;
5474
5475	path = btrfs_alloc_path();
5476	if (!path)
5477		return -ENOMEM;
5478again:
5479	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5480				    root->fs_info->nodesize, parent,
5481				    btrfs_root_id(root), level, 0);
5482	if (ret != -ENOENT) {
5483		/*
5484		 * If we get 0 then we found our reference, return 1, else
5485		 * return the error if it's not -ENOENT;
5486		 */
5487		btrfs_free_path(path);
5488		return (ret < 0 ) ? ret : 1;
5489	}
5490
5491	/*
5492	 * We could have a delayed ref with this reference, so look it up while
5493	 * we're holding the path open to make sure we don't race with the
5494	 * delayed ref running.
5495	 */
5496	delayed_refs = &trans->transaction->delayed_refs;
5497	spin_lock(&delayed_refs->lock);
5498	head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
5499	if (!head)
5500		goto out;
5501	if (!mutex_trylock(&head->mutex)) {
5502		/*
5503		 * We're contended, means that the delayed ref is running, get a
5504		 * reference and wait for the ref head to be complete and then
5505		 * try again.
5506		 */
5507		refcount_inc(&head->refs);
5508		spin_unlock(&delayed_refs->lock);
5509
5510		btrfs_release_path(path);
5511
5512		mutex_lock(&head->mutex);
5513		mutex_unlock(&head->mutex);
5514		btrfs_put_delayed_ref_head(head);
5515		goto again;
5516	}
5517
5518	exists = btrfs_find_delayed_tree_ref(head, root->root_key.objectid, parent);
5519	mutex_unlock(&head->mutex);
5520out:
5521	spin_unlock(&delayed_refs->lock);
5522	btrfs_free_path(path);
5523	return exists ? 1 : 0;
5524}
5525
5526/*
5527 * We may not have an uptodate block, so if we are going to walk down into this
5528 * block we need to drop the lock, read it off of the disk, re-lock it and
5529 * return to continue dropping the snapshot.
5530 */
5531static int check_next_block_uptodate(struct btrfs_trans_handle *trans,
5532				     struct btrfs_root *root,
5533				     struct btrfs_path *path,
5534				     struct walk_control *wc,
5535				     struct extent_buffer *next)
5536{
5537	struct btrfs_tree_parent_check check = { 0 };
5538	u64 generation;
5539	int level = wc->level;
5540	int ret;
5541
5542	btrfs_assert_tree_write_locked(next);
5543
5544	generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]);
5545
5546	if (btrfs_buffer_uptodate(next, generation, 0))
5547		return 0;
5548
5549	check.level = level - 1;
5550	check.transid = generation;
5551	check.owner_root = btrfs_root_id(root);
5552	check.has_first_key = true;
5553	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]);
5554
5555	btrfs_tree_unlock(next);
5556	if (level == 1)
5557		reada_walk_down(trans, root, wc, path);
5558	ret = btrfs_read_extent_buffer(next, &check);
5559	if (ret) {
5560		free_extent_buffer(next);
5561		return ret;
5562	}
5563	btrfs_tree_lock(next);
5564	wc->lookup_info = 1;
5565	return 0;
5566}
5567
5568/*
5569 * If we determine that we don't have to visit wc->level - 1 then we need to
5570 * determine if we can drop our reference.
5571 *
5572 * If we are UPDATE_BACKREF then we will not, we need to update our backrefs.
5573 *
5574 * If we are DROP_REFERENCE this will figure out if we need to drop our current
5575 * reference, skipping it if we dropped it from a previous incompleted drop, or
5576 * dropping it if we still have a reference to it.
5577 */
5578static int maybe_drop_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5579				struct btrfs_path *path, struct walk_control *wc,
5580				struct extent_buffer *next, u64 owner_root)
5581{
5582	struct btrfs_ref ref = {
5583		.action = BTRFS_DROP_DELAYED_REF,
5584		.bytenr = next->start,
5585		.num_bytes = root->fs_info->nodesize,
5586		.owning_root = owner_root,
5587		.ref_root = btrfs_root_id(root),
5588	};
5589	int level = wc->level;
5590	int ret;
5591
5592	/* We are UPDATE_BACKREF, we're not dropping anything. */
5593	if (wc->stage == UPDATE_BACKREF)
5594		return 0;
5595
5596	if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5597		ref.parent = path->nodes[level]->start;
5598	} else {
5599		ASSERT(btrfs_root_id(root) == btrfs_header_owner(path->nodes[level]));
5600		if (btrfs_root_id(root) != btrfs_header_owner(path->nodes[level])) {
5601			btrfs_err(root->fs_info, "mismatched block owner");
5602			return -EIO;
5603		}
5604	}
5605
5606	/*
5607	 * If we had a drop_progress we need to verify the refs are set as
5608	 * expected.  If we find our ref then we know that from here on out
5609	 * everything should be correct, and we can clear the
5610	 * ->restarted flag.
5611	 */
5612	if (wc->restarted) {
5613		ret = check_ref_exists(trans, root, next->start, ref.parent,
5614				       level - 1);
5615		if (ret <= 0)
5616			return ret;
5617		ret = 0;
5618		wc->restarted = 0;
5619	}
5620
5621	/*
5622	 * Reloc tree doesn't contribute to qgroup numbers, and we have already
5623	 * accounted them at merge time (replace_path), thus we could skip
5624	 * expensive subtree trace here.
5625	 */
5626	if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
5627	    wc->refs[level - 1] > 1) {
5628		u64 generation = btrfs_node_ptr_generation(path->nodes[level],
5629							   path->slots[level]);
5630
5631		ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1);
5632		if (ret) {
5633			btrfs_err_rl(root->fs_info,
5634"error %d accounting shared subtree, quota is out of sync, rescan required",
5635				     ret);
5636		}
5637	}
5638
5639	/*
5640	 * We need to update the next key in our walk control so we can update
5641	 * the drop_progress key accordingly.  We don't care if find_next_key
5642	 * doesn't find a key because that means we're at the end and are going
5643	 * to clean up now.
5644	 */
5645	wc->drop_level = level;
5646	find_next_key(path, level, &wc->drop_progress);
5647
5648	btrfs_init_tree_ref(&ref, level - 1, 0, false);
5649	return btrfs_free_extent(trans, &ref);
5650}
5651
5652/*
5653 * helper to process tree block pointer.
5654 *
5655 * when wc->stage == DROP_REFERENCE, this function checks
5656 * reference count of the block pointed to. if the block
5657 * is shared and we need update back refs for the subtree
5658 * rooted at the block, this function changes wc->stage to
5659 * UPDATE_BACKREF. if the block is shared and there is no
5660 * need to update back, this function drops the reference
5661 * to the block.
5662 *
5663 * NOTE: return value 1 means we should stop walking down.
5664 */
5665static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5666				 struct btrfs_root *root,
5667				 struct btrfs_path *path,
5668				 struct walk_control *wc)
5669{
5670	struct btrfs_fs_info *fs_info = root->fs_info;
5671	u64 bytenr;
5672	u64 generation;
5673	u64 owner_root = 0;
 
 
 
5674	struct extent_buffer *next;
5675	int level = wc->level;
 
5676	int ret = 0;
 
5677
5678	generation = btrfs_node_ptr_generation(path->nodes[level],
5679					       path->slots[level]);
5680	/*
5681	 * if the lower level block was created before the snapshot
5682	 * was created, we know there is no need to update back refs
5683	 * for the subtree
5684	 */
5685	if (wc->stage == UPDATE_BACKREF &&
5686	    generation <= btrfs_root_origin_generation(root)) {
5687		wc->lookup_info = 1;
5688		return 1;
5689	}
5690
5691	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
 
 
5692
5693	next = btrfs_find_create_tree_block(fs_info, bytenr, btrfs_root_id(root),
5694					    level - 1);
5695	if (IS_ERR(next))
5696		return PTR_ERR(next);
5697
 
 
 
 
 
5698	btrfs_tree_lock(next);
 
5699
5700	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5701				       &wc->refs[level - 1],
5702				       &wc->flags[level - 1],
5703				       &owner_root);
5704	if (ret < 0)
5705		goto out_unlock;
5706
5707	if (unlikely(wc->refs[level - 1] == 0)) {
5708		btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5709			  bytenr);
5710		ret = -EUCLEAN;
5711		goto out_unlock;
5712	}
5713	wc->lookup_info = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5714
5715	/* If we don't have to walk into this node skip it. */
5716	if (!visit_node_for_delete(root, wc, path->nodes[level],
5717				   wc->flags[level - 1], path->slots[level]))
5718		goto skip;
 
 
 
 
5719
5720	/*
5721	 * We have to walk down into this node, and if we're currently at the
5722	 * DROP_REFERNCE stage and this block is shared then we need to switch
5723	 * to the UPDATE_BACKREF stage in order to convert to FULL_BACKREF.
5724	 */
5725	if (wc->stage == DROP_REFERENCE && wc->refs[level - 1] > 1) {
5726		wc->stage = UPDATE_BACKREF;
5727		wc->shared_level = level - 1;
5728	}
5729
5730	ret = check_next_block_uptodate(trans, root, path, wc, next);
5731	if (ret)
5732		return ret;
 
 
 
 
 
 
 
 
 
 
 
5733
5734	level--;
5735	ASSERT(level == btrfs_header_level(next));
5736	if (level != btrfs_header_level(next)) {
5737		btrfs_err(root->fs_info, "mismatched level");
5738		ret = -EIO;
5739		goto out_unlock;
5740	}
5741	path->nodes[level] = next;
5742	path->slots[level] = 0;
5743	path->locks[level] = BTRFS_WRITE_LOCK;
5744	wc->level = level;
5745	if (wc->level == 1)
5746		wc->reada_slot = 0;
5747	return 0;
5748skip:
5749	ret = maybe_drop_reference(trans, root, path, wc, next, owner_root);
5750	if (ret)
5751		goto out_unlock;
5752	wc->refs[level - 1] = 0;
5753	wc->flags[level - 1] = 0;
5754	wc->lookup_info = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5755	ret = 1;
5756
5757out_unlock:
5758	btrfs_tree_unlock(next);
5759	free_extent_buffer(next);
5760
5761	return ret;
5762}
5763
5764/*
5765 * helper to process tree block while walking up the tree.
5766 *
5767 * when wc->stage == DROP_REFERENCE, this function drops
5768 * reference count on the block.
5769 *
5770 * when wc->stage == UPDATE_BACKREF, this function changes
5771 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5772 * to UPDATE_BACKREF previously while processing the block.
5773 *
5774 * NOTE: return value 1 means we should stop walking up.
5775 */
5776static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5777				 struct btrfs_root *root,
5778				 struct btrfs_path *path,
5779				 struct walk_control *wc)
5780{
5781	struct btrfs_fs_info *fs_info = root->fs_info;
5782	int ret = 0;
5783	int level = wc->level;
5784	struct extent_buffer *eb = path->nodes[level];
5785	u64 parent = 0;
5786
5787	if (wc->stage == UPDATE_BACKREF) {
5788		ASSERT(wc->shared_level >= level);
5789		if (level < wc->shared_level)
5790			goto out;
5791
5792		ret = find_next_key(path, level + 1, &wc->update_progress);
5793		if (ret > 0)
5794			wc->update_ref = 0;
5795
5796		wc->stage = DROP_REFERENCE;
5797		wc->shared_level = -1;
5798		path->slots[level] = 0;
5799
5800		/*
5801		 * check reference count again if the block isn't locked.
5802		 * we should start walking down the tree again if reference
5803		 * count is one.
5804		 */
5805		if (!path->locks[level]) {
5806			ASSERT(level > 0);
5807			btrfs_tree_lock(eb);
5808			path->locks[level] = BTRFS_WRITE_LOCK;
 
5809
5810			ret = btrfs_lookup_extent_info(trans, fs_info,
5811						       eb->start, level, 1,
5812						       &wc->refs[level],
5813						       &wc->flags[level],
5814						       NULL);
5815			if (ret < 0) {
5816				btrfs_tree_unlock_rw(eb, path->locks[level]);
5817				path->locks[level] = 0;
5818				return ret;
5819			}
5820			if (unlikely(wc->refs[level] == 0)) {
5821				btrfs_tree_unlock_rw(eb, path->locks[level]);
5822				btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5823					  eb->start);
5824				return -EUCLEAN;
5825			}
5826			if (wc->refs[level] == 1) {
5827				btrfs_tree_unlock_rw(eb, path->locks[level]);
5828				path->locks[level] = 0;
5829				return 1;
5830			}
5831		}
5832	}
5833
5834	/* wc->stage == DROP_REFERENCE */
5835	ASSERT(path->locks[level] || wc->refs[level] == 1);
5836
5837	if (wc->refs[level] == 1) {
5838		if (level == 0) {
5839			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5840				ret = btrfs_dec_ref(trans, root, eb, 1);
5841			else
5842				ret = btrfs_dec_ref(trans, root, eb, 0);
5843			if (ret) {
5844				btrfs_abort_transaction(trans, ret);
5845				return ret;
5846			}
5847			if (is_fstree(btrfs_root_id(root))) {
5848				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5849				if (ret) {
5850					btrfs_err_rl(fs_info,
5851	"error %d accounting leaf items, quota is out of sync, rescan required",
5852					     ret);
5853				}
5854			}
5855		}
5856		/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5857		if (!path->locks[level]) {
 
5858			btrfs_tree_lock(eb);
5859			path->locks[level] = BTRFS_WRITE_LOCK;
 
5860		}
5861		btrfs_clear_buffer_dirty(trans, eb);
5862	}
5863
5864	if (eb == root->node) {
5865		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5866			parent = eb->start;
5867		else if (btrfs_root_id(root) != btrfs_header_owner(eb))
5868			goto owner_mismatch;
5869	} else {
5870		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5871			parent = path->nodes[level + 1]->start;
5872		else if (btrfs_root_id(root) !=
5873			 btrfs_header_owner(path->nodes[level + 1]))
5874			goto owner_mismatch;
5875	}
5876
5877	ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5878				    wc->refs[level] == 1);
5879	if (ret < 0)
5880		btrfs_abort_transaction(trans, ret);
5881out:
5882	wc->refs[level] = 0;
5883	wc->flags[level] = 0;
5884	return ret;
5885
5886owner_mismatch:
5887	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5888		     btrfs_header_owner(eb), btrfs_root_id(root));
5889	return -EUCLEAN;
5890}
5891
5892/*
5893 * walk_down_tree consists of two steps.
5894 *
5895 * walk_down_proc().  Look up the reference count and reference of our current
5896 * wc->level.  At this point path->nodes[wc->level] should be populated and
5897 * uptodate, and in most cases should already be locked.  If we are in
5898 * DROP_REFERENCE and our refcount is > 1 then we've entered a shared node and
5899 * we can walk back up the tree.  If we are UPDATE_BACKREF we have to set
5900 * FULL_BACKREF on this node if it's not already set, and then do the
5901 * FULL_BACKREF conversion dance, which is to drop the root reference and add
5902 * the shared reference to all of this nodes children.
5903 *
5904 * do_walk_down().  This is where we actually start iterating on the children of
5905 * our current path->nodes[wc->level].  For DROP_REFERENCE that means dropping
5906 * our reference to the children that return false from visit_node_for_delete(),
5907 * which has various conditions where we know we can just drop our reference
5908 * without visiting the node.  For UPDATE_BACKREF we will skip any children that
5909 * visit_node_for_delete() returns false for, only walking down when necessary.
5910 * The bulk of the work for UPDATE_BACKREF occurs in the walk_up_tree() part of
5911 * snapshot deletion.
5912 */
5913static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5914				   struct btrfs_root *root,
5915				   struct btrfs_path *path,
5916				   struct walk_control *wc)
5917{
5918	int level = wc->level;
5919	int ret = 0;
 
5920
5921	wc->lookup_info = 1;
5922	while (level >= 0) {
5923		ret = walk_down_proc(trans, root, path, wc);
5924		if (ret)
5925			break;
5926
5927		if (level == 0)
5928			break;
5929
5930		if (path->slots[level] >=
5931		    btrfs_header_nritems(path->nodes[level]))
5932			break;
5933
5934		ret = do_walk_down(trans, root, path, wc);
5935		if (ret > 0) {
5936			path->slots[level]++;
5937			continue;
5938		} else if (ret < 0)
5939			break;
5940		level = wc->level;
5941	}
5942	return (ret == 1) ? 0 : ret;
5943}
5944
5945/*
5946 * walk_up_tree() is responsible for making sure we visit every slot on our
5947 * current node, and if we're at the end of that node then we call
5948 * walk_up_proc() on our current node which will do one of a few things based on
5949 * our stage.
5950 *
5951 * UPDATE_BACKREF.  If we wc->level is currently less than our wc->shared_level
5952 * then we need to walk back up the tree, and then going back down into the
5953 * other slots via walk_down_tree to update any other children from our original
5954 * wc->shared_level.  Once we're at or above our wc->shared_level we can switch
5955 * back to DROP_REFERENCE, lookup the current nodes refs and flags, and carry on.
5956 *
5957 * DROP_REFERENCE. If our refs == 1 then we're going to free this tree block.
5958 * If we're level 0 then we need to btrfs_dec_ref() on all of the data extents
5959 * in our current leaf.  After that we call btrfs_free_tree_block() on the
5960 * current node and walk up to the next node to walk down the next slot.
5961 */
5962static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5963				 struct btrfs_root *root,
5964				 struct btrfs_path *path,
5965				 struct walk_control *wc, int max_level)
5966{
5967	int level = wc->level;
5968	int ret;
5969
5970	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5971	while (level < max_level && path->nodes[level]) {
5972		wc->level = level;
5973		if (path->slots[level] + 1 <
5974		    btrfs_header_nritems(path->nodes[level])) {
5975			path->slots[level]++;
5976			return 0;
5977		} else {
5978			ret = walk_up_proc(trans, root, path, wc);
5979			if (ret > 0)
5980				return 0;
5981			if (ret < 0)
5982				return ret;
5983
5984			if (path->locks[level]) {
5985				btrfs_tree_unlock_rw(path->nodes[level],
5986						     path->locks[level]);
5987				path->locks[level] = 0;
5988			}
5989			free_extent_buffer(path->nodes[level]);
5990			path->nodes[level] = NULL;
5991			level++;
5992		}
5993	}
5994	return 1;
5995}
5996
5997/*
5998 * drop a subvolume tree.
5999 *
6000 * this function traverses the tree freeing any blocks that only
6001 * referenced by the tree.
6002 *
6003 * when a shared tree block is found. this function decreases its
6004 * reference count by one. if update_ref is true, this function
6005 * also make sure backrefs for the shared block and all lower level
6006 * blocks are properly updated.
6007 *
6008 * If called with for_reloc == 0, may exit early with -EAGAIN
6009 */
6010int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
 
 
6011{
6012	const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID);
6013	struct btrfs_fs_info *fs_info = root->fs_info;
6014	struct btrfs_path *path;
6015	struct btrfs_trans_handle *trans;
6016	struct btrfs_root *tree_root = fs_info->tree_root;
6017	struct btrfs_root_item *root_item = &root->root_item;
6018	struct walk_control *wc;
6019	struct btrfs_key key;
6020	const u64 rootid = btrfs_root_id(root);
6021	int ret = 0;
6022	int level;
6023	bool root_dropped = false;
6024	bool unfinished_drop = false;
6025
6026	btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root));
6027
6028	path = btrfs_alloc_path();
6029	if (!path) {
6030		ret = -ENOMEM;
6031		goto out;
6032	}
6033
6034	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6035	if (!wc) {
6036		btrfs_free_path(path);
6037		ret = -ENOMEM;
6038		goto out;
6039	}
6040
6041	/*
6042	 * Use join to avoid potential EINTR from transaction start. See
6043	 * wait_reserve_ticket and the whole reservation callchain.
6044	 */
6045	if (for_reloc)
6046		trans = btrfs_join_transaction(tree_root);
6047	else
6048		trans = btrfs_start_transaction(tree_root, 0);
6049	if (IS_ERR(trans)) {
6050		ret = PTR_ERR(trans);
6051		goto out_free;
6052	}
6053
6054	ret = btrfs_run_delayed_items(trans);
6055	if (ret)
6056		goto out_end_trans;
6057
 
 
 
6058	/*
6059	 * This will help us catch people modifying the fs tree while we're
6060	 * dropping it.  It is unsafe to mess with the fs tree while it's being
6061	 * dropped as we unlock the root node and parent nodes as we walk down
6062	 * the tree, assuming nothing will change.  If something does change
6063	 * then we'll have stale information and drop references to blocks we've
6064	 * already dropped.
6065	 */
6066	set_bit(BTRFS_ROOT_DELETING, &root->state);
6067	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
6068
6069	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6070		level = btrfs_header_level(root->node);
6071		path->nodes[level] = btrfs_lock_root_node(root);
 
6072		path->slots[level] = 0;
6073		path->locks[level] = BTRFS_WRITE_LOCK;
6074		memset(&wc->update_progress, 0,
6075		       sizeof(wc->update_progress));
6076	} else {
6077		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6078		memcpy(&wc->update_progress, &key,
6079		       sizeof(wc->update_progress));
6080
6081		level = btrfs_root_drop_level(root_item);
6082		BUG_ON(level == 0);
6083		path->lowest_level = level;
6084		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6085		path->lowest_level = 0;
6086		if (ret < 0)
 
6087			goto out_end_trans;
6088
6089		WARN_ON(ret > 0);
6090		ret = 0;
6091
6092		/*
6093		 * unlock our path, this is safe because only this
6094		 * function is allowed to delete this snapshot
6095		 */
6096		btrfs_unlock_up_safe(path, 0);
6097
6098		level = btrfs_header_level(root->node);
6099		while (1) {
6100			btrfs_tree_lock(path->nodes[level]);
6101			path->locks[level] = BTRFS_WRITE_LOCK;
 
6102
6103			/*
6104			 * btrfs_lookup_extent_info() returns 0 for success,
6105			 * or < 0 for error.
6106			 */
6107			ret = btrfs_lookup_extent_info(trans, fs_info,
6108						path->nodes[level]->start,
6109						level, 1, &wc->refs[level],
6110						&wc->flags[level], NULL);
6111			if (ret < 0)
 
6112				goto out_end_trans;
6113
6114			BUG_ON(wc->refs[level] == 0);
6115
6116			if (level == btrfs_root_drop_level(root_item))
6117				break;
6118
6119			btrfs_tree_unlock(path->nodes[level]);
6120			path->locks[level] = 0;
6121			WARN_ON(wc->refs[level] != 1);
6122			level--;
6123		}
6124	}
6125
6126	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
6127	wc->level = level;
6128	wc->shared_level = -1;
6129	wc->stage = DROP_REFERENCE;
6130	wc->update_ref = update_ref;
6131	wc->keep_locks = 0;
6132	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6133
6134	while (1) {
6135
6136		ret = walk_down_tree(trans, root, path, wc);
6137		if (ret < 0) {
6138			btrfs_abort_transaction(trans, ret);
6139			break;
6140		}
6141
6142		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6143		if (ret < 0) {
6144			btrfs_abort_transaction(trans, ret);
6145			break;
6146		}
6147
6148		if (ret > 0) {
6149			BUG_ON(wc->stage != DROP_REFERENCE);
6150			ret = 0;
6151			break;
6152		}
6153
6154		if (wc->stage == DROP_REFERENCE) {
6155			wc->drop_level = wc->level;
6156			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
6157					      &wc->drop_progress,
6158					      path->slots[wc->drop_level]);
6159		}
6160		btrfs_cpu_key_to_disk(&root_item->drop_progress,
6161				      &wc->drop_progress);
6162		btrfs_set_root_drop_level(root_item, wc->drop_level);
6163
6164		BUG_ON(wc->level == 0);
6165		if (btrfs_should_end_transaction(trans) ||
6166		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
6167			ret = btrfs_update_root(trans, tree_root,
6168						&root->root_key,
6169						root_item);
6170			if (ret) {
6171				btrfs_abort_transaction(trans, ret);
 
6172				goto out_end_trans;
6173			}
6174
6175			if (!is_reloc_root)
6176				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6177
6178			btrfs_end_transaction_throttle(trans);
6179			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
6180				btrfs_debug(fs_info,
6181					    "drop snapshot early exit");
6182				ret = -EAGAIN;
6183				goto out_free;
6184			}
6185
6186		       /*
6187			* Use join to avoid potential EINTR from transaction
6188			* start. See wait_reserve_ticket and the whole
6189			* reservation callchain.
6190			*/
6191			if (for_reloc)
6192				trans = btrfs_join_transaction(tree_root);
6193			else
6194				trans = btrfs_start_transaction(tree_root, 0);
6195			if (IS_ERR(trans)) {
6196				ret = PTR_ERR(trans);
6197				goto out_free;
6198			}
 
 
6199		}
6200	}
6201	btrfs_release_path(path);
6202	if (ret)
6203		goto out_end_trans;
6204
6205	ret = btrfs_del_root(trans, &root->root_key);
6206	if (ret) {
6207		btrfs_abort_transaction(trans, ret);
 
6208		goto out_end_trans;
6209	}
6210
6211	if (!is_reloc_root) {
6212		ret = btrfs_find_root(tree_root, &root->root_key, path,
6213				      NULL, NULL);
6214		if (ret < 0) {
6215			btrfs_abort_transaction(trans, ret);
 
6216			goto out_end_trans;
6217		} else if (ret > 0) {
6218			ret = 0;
6219			/*
6220			 * If we fail to delete the orphan item this time
6221			 * around, it'll get picked up the next time.
6222			 *
6223			 * The most common failure here is just -ENOENT.
6224			 */
6225			btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root));
 
6226		}
6227	}
6228
6229	/*
6230	 * This subvolume is going to be completely dropped, and won't be
6231	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
6232	 * commit transaction time.  So free it here manually.
6233	 */
6234	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6235	btrfs_qgroup_free_meta_all_pertrans(root);
6236
6237	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6238		btrfs_add_dropped_root(trans, root);
6239	else
6240		btrfs_put_root(root);
 
 
 
6241	root_dropped = true;
6242out_end_trans:
6243	if (!is_reloc_root)
6244		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6245
6246	btrfs_end_transaction_throttle(trans);
6247out_free:
6248	kfree(wc);
6249	btrfs_free_path(path);
6250out:
6251	if (!ret && root_dropped) {
6252		ret = btrfs_qgroup_cleanup_dropped_subvolume(fs_info, rootid);
6253		if (ret < 0)
6254			btrfs_warn_rl(fs_info,
6255				      "failed to cleanup qgroup 0/%llu: %d",
6256				      rootid, ret);
6257		ret = 0;
6258	}
6259	/*
6260	 * We were an unfinished drop root, check to see if there are any
6261	 * pending, and if not clear and wake up any waiters.
6262	 */
6263	if (!ret && unfinished_drop)
6264		btrfs_maybe_wake_unfinished_drop(fs_info);
6265
6266	/*
6267	 * So if we need to stop dropping the snapshot for whatever reason we
6268	 * need to make sure to add it back to the dead root list so that we
6269	 * keep trying to do the work later.  This also cleans up roots if we
6270	 * don't have it in the radix (like when we recover after a power fail
6271	 * or unmount) so we don't leak memory.
6272	 */
6273	if (!for_reloc && !root_dropped)
6274		btrfs_add_dead_root(root);
6275	return ret;
 
 
6276}
6277
6278/*
6279 * drop subtree rooted at tree block 'node'.
6280 *
6281 * NOTE: this function will unlock and release tree block 'node'
6282 * only used by relocation code
6283 */
6284int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6285			struct btrfs_root *root,
6286			struct extent_buffer *node,
6287			struct extent_buffer *parent)
6288{
6289	struct btrfs_fs_info *fs_info = root->fs_info;
6290	struct btrfs_path *path;
6291	struct walk_control *wc;
6292	int level;
6293	int parent_level;
6294	int ret = 0;
 
6295
6296	BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
6297
6298	path = btrfs_alloc_path();
6299	if (!path)
6300		return -ENOMEM;
6301
6302	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6303	if (!wc) {
6304		btrfs_free_path(path);
6305		return -ENOMEM;
6306	}
6307
6308	btrfs_assert_tree_write_locked(parent);
6309	parent_level = btrfs_header_level(parent);
6310	atomic_inc(&parent->refs);
6311	path->nodes[parent_level] = parent;
6312	path->slots[parent_level] = btrfs_header_nritems(parent);
6313
6314	btrfs_assert_tree_write_locked(node);
6315	level = btrfs_header_level(node);
6316	path->nodes[level] = node;
6317	path->slots[level] = 0;
6318	path->locks[level] = BTRFS_WRITE_LOCK;
6319
6320	wc->refs[parent_level] = 1;
6321	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6322	wc->level = level;
6323	wc->shared_level = -1;
6324	wc->stage = DROP_REFERENCE;
6325	wc->update_ref = 0;
6326	wc->keep_locks = 1;
6327	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6328
6329	while (1) {
6330		ret = walk_down_tree(trans, root, path, wc);
6331		if (ret < 0)
 
6332			break;
 
6333
6334		ret = walk_up_tree(trans, root, path, wc, parent_level);
6335		if (ret) {
6336			if (ret > 0)
6337				ret = 0;
6338			break;
6339		}
6340	}
6341
6342	kfree(wc);
6343	btrfs_free_path(path);
6344	return ret;
6345}
6346
6347/*
6348 * Unpin the extent range in an error context and don't add the space back.
6349 * Errors are not propagated further.
6350 */
6351void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6352{
6353	unpin_extent_range(fs_info, start, end, false);
6354}
6355
6356/*
6357 * It used to be that old block groups would be left around forever.
6358 * Iterating over them would be enough to trim unused space.  Since we
6359 * now automatically remove them, we also need to iterate over unallocated
6360 * space.
6361 *
6362 * We don't want a transaction for this since the discard may take a
6363 * substantial amount of time.  We don't require that a transaction be
6364 * running, but we do need to take a running transaction into account
6365 * to ensure that we're not discarding chunks that were released or
6366 * allocated in the current transaction.
6367 *
6368 * Holding the chunks lock will prevent other threads from allocating
6369 * or releasing chunks, but it won't prevent a running transaction
6370 * from committing and releasing the memory that the pending chunks
6371 * list head uses.  For that, we need to take a reference to the
6372 * transaction and hold the commit root sem.  We only need to hold
6373 * it while performing the free space search since we have already
6374 * held back allocations.
6375 */
6376static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6377{
6378	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6379	int ret;
6380
6381	*trimmed = 0;
6382
6383	/* Discard not supported = nothing to do. */
6384	if (!bdev_max_discard_sectors(device->bdev))
6385		return 0;
6386
6387	/* Not writable = nothing to do. */
6388	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6389		return 0;
6390
6391	/* No free space = nothing to do. */
6392	if (device->total_bytes <= device->bytes_used)
6393		return 0;
6394
6395	ret = 0;
6396
6397	while (1) {
6398		struct btrfs_fs_info *fs_info = device->fs_info;
6399		u64 bytes;
6400
6401		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6402		if (ret)
6403			break;
6404
6405		find_first_clear_extent_bit(&device->alloc_state, start,
6406					    &start, &end,
6407					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
6408
6409		/* Check if there are any CHUNK_* bits left */
6410		if (start > device->total_bytes) {
6411			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6412			btrfs_warn_in_rcu(fs_info,
6413"ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6414					  start, end - start + 1,
6415					  btrfs_dev_name(device),
6416					  device->total_bytes);
6417			mutex_unlock(&fs_info->chunk_mutex);
6418			ret = 0;
6419			break;
6420		}
6421
6422		/* Ensure we skip the reserved space on each device. */
6423		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6424
6425		/*
6426		 * If find_first_clear_extent_bit find a range that spans the
6427		 * end of the device it will set end to -1, in this case it's up
6428		 * to the caller to trim the value to the size of the device.
6429		 */
6430		end = min(end, device->total_bytes - 1);
6431
6432		len = end - start + 1;
6433
6434		/* We didn't find any extents */
6435		if (!len) {
6436			mutex_unlock(&fs_info->chunk_mutex);
6437			ret = 0;
6438			break;
6439		}
6440
6441		ret = btrfs_issue_discard(device->bdev, start, len,
6442					  &bytes);
6443		if (!ret)
6444			set_extent_bit(&device->alloc_state, start,
6445				       start + bytes - 1, CHUNK_TRIMMED, NULL);
 
6446		mutex_unlock(&fs_info->chunk_mutex);
6447
6448		if (ret)
6449			break;
6450
6451		start += len;
6452		*trimmed += bytes;
6453
6454		if (btrfs_trim_interrupted()) {
6455			ret = -ERESTARTSYS;
6456			break;
6457		}
6458
6459		cond_resched();
6460	}
6461
6462	return ret;
6463}
6464
6465/*
6466 * Trim the whole filesystem by:
6467 * 1) trimming the free space in each block group
6468 * 2) trimming the unallocated space on each device
6469 *
6470 * This will also continue trimming even if a block group or device encounters
6471 * an error.  The return value will be the last error, or 0 if nothing bad
6472 * happens.
6473 */
6474int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6475{
6476	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6477	struct btrfs_block_group *cache = NULL;
6478	struct btrfs_device *device;
 
6479	u64 group_trimmed;
6480	u64 range_end = U64_MAX;
6481	u64 start;
6482	u64 end;
6483	u64 trimmed = 0;
6484	u64 bg_failed = 0;
6485	u64 dev_failed = 0;
6486	int bg_ret = 0;
6487	int dev_ret = 0;
6488	int ret = 0;
6489
6490	if (range->start == U64_MAX)
6491		return -EINVAL;
6492
6493	/*
6494	 * Check range overflow if range->len is set.
6495	 * The default range->len is U64_MAX.
6496	 */
6497	if (range->len != U64_MAX &&
6498	    check_add_overflow(range->start, range->len, &range_end))
6499		return -EINVAL;
6500
6501	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6502	for (; cache; cache = btrfs_next_block_group(cache)) {
6503		if (cache->start >= range_end) {
6504			btrfs_put_block_group(cache);
6505			break;
6506		}
6507
6508		start = max(range->start, cache->start);
6509		end = min(range_end, cache->start + cache->length);
6510
6511		if (end - start >= range->minlen) {
6512			if (!btrfs_block_group_done(cache)) {
6513				ret = btrfs_cache_block_group(cache, true);
 
 
 
 
 
 
6514				if (ret) {
6515					bg_failed++;
6516					bg_ret = ret;
6517					continue;
6518				}
6519			}
6520			ret = btrfs_trim_block_group(cache,
6521						     &group_trimmed,
6522						     start,
6523						     end,
6524						     range->minlen);
6525
6526			trimmed += group_trimmed;
6527			if (ret) {
6528				bg_failed++;
6529				bg_ret = ret;
6530				continue;
6531			}
6532		}
6533	}
6534
6535	if (bg_failed)
6536		btrfs_warn(fs_info,
6537			"failed to trim %llu block group(s), last error %d",
6538			bg_failed, bg_ret);
6539
6540	mutex_lock(&fs_devices->device_list_mutex);
6541	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6542		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6543			continue;
6544
6545		ret = btrfs_trim_free_extents(device, &group_trimmed);
6546
6547		trimmed += group_trimmed;
6548		if (ret) {
6549			dev_failed++;
6550			dev_ret = ret;
6551			break;
6552		}
 
 
6553	}
6554	mutex_unlock(&fs_devices->device_list_mutex);
6555
6556	if (dev_failed)
6557		btrfs_warn(fs_info,
6558			"failed to trim %llu device(s), last error %d",
6559			dev_failed, dev_ret);
6560	range->len = trimmed;
6561	if (bg_ret)
6562		return bg_ret;
6563	return dev_ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6564}