Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/signal.h>
8#include <linux/pagemap.h>
9#include <linux/writeback.h>
10#include <linux/blkdev.h>
11#include <linux/sort.h>
12#include <linux/rcupdate.h>
13#include <linux/kthread.h>
14#include <linux/slab.h>
15#include <linux/ratelimit.h>
16#include <linux/percpu_counter.h>
17#include <linux/lockdep.h>
18#include <linux/crc32c.h>
19#include "misc.h"
20#include "tree-log.h"
21#include "disk-io.h"
22#include "print-tree.h"
23#include "volumes.h"
24#include "raid56.h"
25#include "locking.h"
26#include "free-space-cache.h"
27#include "free-space-tree.h"
28#include "sysfs.h"
29#include "qgroup.h"
30#include "ref-verify.h"
31#include "space-info.h"
32#include "block-rsv.h"
33#include "delalloc-space.h"
34#include "block-group.h"
35
36#undef SCRAMBLE_DELAYED_REFS
37
38
39static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
40 struct btrfs_delayed_ref_node *node, u64 parent,
41 u64 root_objectid, u64 owner_objectid,
42 u64 owner_offset, int refs_to_drop,
43 struct btrfs_delayed_extent_op *extra_op);
44static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
45 struct extent_buffer *leaf,
46 struct btrfs_extent_item *ei);
47static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
48 u64 parent, u64 root_objectid,
49 u64 flags, u64 owner, u64 offset,
50 struct btrfs_key *ins, int ref_mod);
51static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
52 struct btrfs_delayed_ref_node *node,
53 struct btrfs_delayed_extent_op *extent_op);
54static int find_next_key(struct btrfs_path *path, int level,
55 struct btrfs_key *key);
56
57static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
58{
59 return (cache->flags & bits) == bits;
60}
61
62int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
63 u64 start, u64 num_bytes)
64{
65 u64 end = start + num_bytes - 1;
66 set_extent_bits(&fs_info->freed_extents[0],
67 start, end, EXTENT_UPTODATE);
68 set_extent_bits(&fs_info->freed_extents[1],
69 start, end, EXTENT_UPTODATE);
70 return 0;
71}
72
73void btrfs_free_excluded_extents(struct btrfs_block_group_cache *cache)
74{
75 struct btrfs_fs_info *fs_info = cache->fs_info;
76 u64 start, end;
77
78 start = cache->key.objectid;
79 end = start + cache->key.offset - 1;
80
81 clear_extent_bits(&fs_info->freed_extents[0],
82 start, end, EXTENT_UPTODATE);
83 clear_extent_bits(&fs_info->freed_extents[1],
84 start, end, EXTENT_UPTODATE);
85}
86
87static u64 generic_ref_to_space_flags(struct btrfs_ref *ref)
88{
89 if (ref->type == BTRFS_REF_METADATA) {
90 if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
91 return BTRFS_BLOCK_GROUP_SYSTEM;
92 else
93 return BTRFS_BLOCK_GROUP_METADATA;
94 }
95 return BTRFS_BLOCK_GROUP_DATA;
96}
97
98static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
99 struct btrfs_ref *ref)
100{
101 struct btrfs_space_info *space_info;
102 u64 flags = generic_ref_to_space_flags(ref);
103
104 space_info = btrfs_find_space_info(fs_info, flags);
105 ASSERT(space_info);
106 percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len,
107 BTRFS_TOTAL_BYTES_PINNED_BATCH);
108}
109
110static void sub_pinned_bytes(struct btrfs_fs_info *fs_info,
111 struct btrfs_ref *ref)
112{
113 struct btrfs_space_info *space_info;
114 u64 flags = generic_ref_to_space_flags(ref);
115
116 space_info = btrfs_find_space_info(fs_info, flags);
117 ASSERT(space_info);
118 percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len,
119 BTRFS_TOTAL_BYTES_PINNED_BATCH);
120}
121
122/* simple helper to search for an existing data extent at a given offset */
123int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
124{
125 int ret;
126 struct btrfs_key key;
127 struct btrfs_path *path;
128
129 path = btrfs_alloc_path();
130 if (!path)
131 return -ENOMEM;
132
133 key.objectid = start;
134 key.offset = len;
135 key.type = BTRFS_EXTENT_ITEM_KEY;
136 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
137 btrfs_free_path(path);
138 return ret;
139}
140
141/*
142 * helper function to lookup reference count and flags of a tree block.
143 *
144 * the head node for delayed ref is used to store the sum of all the
145 * reference count modifications queued up in the rbtree. the head
146 * node may also store the extent flags to set. This way you can check
147 * to see what the reference count and extent flags would be if all of
148 * the delayed refs are not processed.
149 */
150int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
151 struct btrfs_fs_info *fs_info, u64 bytenr,
152 u64 offset, int metadata, u64 *refs, u64 *flags)
153{
154 struct btrfs_delayed_ref_head *head;
155 struct btrfs_delayed_ref_root *delayed_refs;
156 struct btrfs_path *path;
157 struct btrfs_extent_item *ei;
158 struct extent_buffer *leaf;
159 struct btrfs_key key;
160 u32 item_size;
161 u64 num_refs;
162 u64 extent_flags;
163 int ret;
164
165 /*
166 * If we don't have skinny metadata, don't bother doing anything
167 * different
168 */
169 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
170 offset = fs_info->nodesize;
171 metadata = 0;
172 }
173
174 path = btrfs_alloc_path();
175 if (!path)
176 return -ENOMEM;
177
178 if (!trans) {
179 path->skip_locking = 1;
180 path->search_commit_root = 1;
181 }
182
183search_again:
184 key.objectid = bytenr;
185 key.offset = offset;
186 if (metadata)
187 key.type = BTRFS_METADATA_ITEM_KEY;
188 else
189 key.type = BTRFS_EXTENT_ITEM_KEY;
190
191 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
192 if (ret < 0)
193 goto out_free;
194
195 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
196 if (path->slots[0]) {
197 path->slots[0]--;
198 btrfs_item_key_to_cpu(path->nodes[0], &key,
199 path->slots[0]);
200 if (key.objectid == bytenr &&
201 key.type == BTRFS_EXTENT_ITEM_KEY &&
202 key.offset == fs_info->nodesize)
203 ret = 0;
204 }
205 }
206
207 if (ret == 0) {
208 leaf = path->nodes[0];
209 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
210 if (item_size >= sizeof(*ei)) {
211 ei = btrfs_item_ptr(leaf, path->slots[0],
212 struct btrfs_extent_item);
213 num_refs = btrfs_extent_refs(leaf, ei);
214 extent_flags = btrfs_extent_flags(leaf, ei);
215 } else {
216 ret = -EINVAL;
217 btrfs_print_v0_err(fs_info);
218 if (trans)
219 btrfs_abort_transaction(trans, ret);
220 else
221 btrfs_handle_fs_error(fs_info, ret, NULL);
222
223 goto out_free;
224 }
225
226 BUG_ON(num_refs == 0);
227 } else {
228 num_refs = 0;
229 extent_flags = 0;
230 ret = 0;
231 }
232
233 if (!trans)
234 goto out;
235
236 delayed_refs = &trans->transaction->delayed_refs;
237 spin_lock(&delayed_refs->lock);
238 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
239 if (head) {
240 if (!mutex_trylock(&head->mutex)) {
241 refcount_inc(&head->refs);
242 spin_unlock(&delayed_refs->lock);
243
244 btrfs_release_path(path);
245
246 /*
247 * Mutex was contended, block until it's released and try
248 * again
249 */
250 mutex_lock(&head->mutex);
251 mutex_unlock(&head->mutex);
252 btrfs_put_delayed_ref_head(head);
253 goto search_again;
254 }
255 spin_lock(&head->lock);
256 if (head->extent_op && head->extent_op->update_flags)
257 extent_flags |= head->extent_op->flags_to_set;
258 else
259 BUG_ON(num_refs == 0);
260
261 num_refs += head->ref_mod;
262 spin_unlock(&head->lock);
263 mutex_unlock(&head->mutex);
264 }
265 spin_unlock(&delayed_refs->lock);
266out:
267 WARN_ON(num_refs == 0);
268 if (refs)
269 *refs = num_refs;
270 if (flags)
271 *flags = extent_flags;
272out_free:
273 btrfs_free_path(path);
274 return ret;
275}
276
277/*
278 * Back reference rules. Back refs have three main goals:
279 *
280 * 1) differentiate between all holders of references to an extent so that
281 * when a reference is dropped we can make sure it was a valid reference
282 * before freeing the extent.
283 *
284 * 2) Provide enough information to quickly find the holders of an extent
285 * if we notice a given block is corrupted or bad.
286 *
287 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
288 * maintenance. This is actually the same as #2, but with a slightly
289 * different use case.
290 *
291 * There are two kinds of back refs. The implicit back refs is optimized
292 * for pointers in non-shared tree blocks. For a given pointer in a block,
293 * back refs of this kind provide information about the block's owner tree
294 * and the pointer's key. These information allow us to find the block by
295 * b-tree searching. The full back refs is for pointers in tree blocks not
296 * referenced by their owner trees. The location of tree block is recorded
297 * in the back refs. Actually the full back refs is generic, and can be
298 * used in all cases the implicit back refs is used. The major shortcoming
299 * of the full back refs is its overhead. Every time a tree block gets
300 * COWed, we have to update back refs entry for all pointers in it.
301 *
302 * For a newly allocated tree block, we use implicit back refs for
303 * pointers in it. This means most tree related operations only involve
304 * implicit back refs. For a tree block created in old transaction, the
305 * only way to drop a reference to it is COW it. So we can detect the
306 * event that tree block loses its owner tree's reference and do the
307 * back refs conversion.
308 *
309 * When a tree block is COWed through a tree, there are four cases:
310 *
311 * The reference count of the block is one and the tree is the block's
312 * owner tree. Nothing to do in this case.
313 *
314 * The reference count of the block is one and the tree is not the
315 * block's owner tree. In this case, full back refs is used for pointers
316 * in the block. Remove these full back refs, add implicit back refs for
317 * every pointers in the new block.
318 *
319 * The reference count of the block is greater than one and the tree is
320 * the block's owner tree. In this case, implicit back refs is used for
321 * pointers in the block. Add full back refs for every pointers in the
322 * block, increase lower level extents' reference counts. The original
323 * implicit back refs are entailed to the new block.
324 *
325 * The reference count of the block is greater than one and the tree is
326 * not the block's owner tree. Add implicit back refs for every pointer in
327 * the new block, increase lower level extents' reference count.
328 *
329 * Back Reference Key composing:
330 *
331 * The key objectid corresponds to the first byte in the extent,
332 * The key type is used to differentiate between types of back refs.
333 * There are different meanings of the key offset for different types
334 * of back refs.
335 *
336 * File extents can be referenced by:
337 *
338 * - multiple snapshots, subvolumes, or different generations in one subvol
339 * - different files inside a single subvolume
340 * - different offsets inside a file (bookend extents in file.c)
341 *
342 * The extent ref structure for the implicit back refs has fields for:
343 *
344 * - Objectid of the subvolume root
345 * - objectid of the file holding the reference
346 * - original offset in the file
347 * - how many bookend extents
348 *
349 * The key offset for the implicit back refs is hash of the first
350 * three fields.
351 *
352 * The extent ref structure for the full back refs has field for:
353 *
354 * - number of pointers in the tree leaf
355 *
356 * The key offset for the implicit back refs is the first byte of
357 * the tree leaf
358 *
359 * When a file extent is allocated, The implicit back refs is used.
360 * the fields are filled in:
361 *
362 * (root_key.objectid, inode objectid, offset in file, 1)
363 *
364 * When a file extent is removed file truncation, we find the
365 * corresponding implicit back refs and check the following fields:
366 *
367 * (btrfs_header_owner(leaf), inode objectid, offset in file)
368 *
369 * Btree extents can be referenced by:
370 *
371 * - Different subvolumes
372 *
373 * Both the implicit back refs and the full back refs for tree blocks
374 * only consist of key. The key offset for the implicit back refs is
375 * objectid of block's owner tree. The key offset for the full back refs
376 * is the first byte of parent block.
377 *
378 * When implicit back refs is used, information about the lowest key and
379 * level of the tree block are required. These information are stored in
380 * tree block info structure.
381 */
382
383/*
384 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
385 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
386 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
387 */
388int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
389 struct btrfs_extent_inline_ref *iref,
390 enum btrfs_inline_ref_type is_data)
391{
392 int type = btrfs_extent_inline_ref_type(eb, iref);
393 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
394
395 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
396 type == BTRFS_SHARED_BLOCK_REF_KEY ||
397 type == BTRFS_SHARED_DATA_REF_KEY ||
398 type == BTRFS_EXTENT_DATA_REF_KEY) {
399 if (is_data == BTRFS_REF_TYPE_BLOCK) {
400 if (type == BTRFS_TREE_BLOCK_REF_KEY)
401 return type;
402 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
403 ASSERT(eb->fs_info);
404 /*
405 * Every shared one has parent tree
406 * block, which must be aligned to
407 * nodesize.
408 */
409 if (offset &&
410 IS_ALIGNED(offset, eb->fs_info->nodesize))
411 return type;
412 }
413 } else if (is_data == BTRFS_REF_TYPE_DATA) {
414 if (type == BTRFS_EXTENT_DATA_REF_KEY)
415 return type;
416 if (type == BTRFS_SHARED_DATA_REF_KEY) {
417 ASSERT(eb->fs_info);
418 /*
419 * Every shared one has parent tree
420 * block, which must be aligned to
421 * nodesize.
422 */
423 if (offset &&
424 IS_ALIGNED(offset, eb->fs_info->nodesize))
425 return type;
426 }
427 } else {
428 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
429 return type;
430 }
431 }
432
433 btrfs_print_leaf((struct extent_buffer *)eb);
434 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
435 eb->start, type);
436 WARN_ON(1);
437
438 return BTRFS_REF_TYPE_INVALID;
439}
440
441u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
442{
443 u32 high_crc = ~(u32)0;
444 u32 low_crc = ~(u32)0;
445 __le64 lenum;
446
447 lenum = cpu_to_le64(root_objectid);
448 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
449 lenum = cpu_to_le64(owner);
450 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
451 lenum = cpu_to_le64(offset);
452 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
453
454 return ((u64)high_crc << 31) ^ (u64)low_crc;
455}
456
457static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
458 struct btrfs_extent_data_ref *ref)
459{
460 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
461 btrfs_extent_data_ref_objectid(leaf, ref),
462 btrfs_extent_data_ref_offset(leaf, ref));
463}
464
465static int match_extent_data_ref(struct extent_buffer *leaf,
466 struct btrfs_extent_data_ref *ref,
467 u64 root_objectid, u64 owner, u64 offset)
468{
469 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
470 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
471 btrfs_extent_data_ref_offset(leaf, ref) != offset)
472 return 0;
473 return 1;
474}
475
476static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
477 struct btrfs_path *path,
478 u64 bytenr, u64 parent,
479 u64 root_objectid,
480 u64 owner, u64 offset)
481{
482 struct btrfs_root *root = trans->fs_info->extent_root;
483 struct btrfs_key key;
484 struct btrfs_extent_data_ref *ref;
485 struct extent_buffer *leaf;
486 u32 nritems;
487 int ret;
488 int recow;
489 int err = -ENOENT;
490
491 key.objectid = bytenr;
492 if (parent) {
493 key.type = BTRFS_SHARED_DATA_REF_KEY;
494 key.offset = parent;
495 } else {
496 key.type = BTRFS_EXTENT_DATA_REF_KEY;
497 key.offset = hash_extent_data_ref(root_objectid,
498 owner, offset);
499 }
500again:
501 recow = 0;
502 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
503 if (ret < 0) {
504 err = ret;
505 goto fail;
506 }
507
508 if (parent) {
509 if (!ret)
510 return 0;
511 goto fail;
512 }
513
514 leaf = path->nodes[0];
515 nritems = btrfs_header_nritems(leaf);
516 while (1) {
517 if (path->slots[0] >= nritems) {
518 ret = btrfs_next_leaf(root, path);
519 if (ret < 0)
520 err = ret;
521 if (ret)
522 goto fail;
523
524 leaf = path->nodes[0];
525 nritems = btrfs_header_nritems(leaf);
526 recow = 1;
527 }
528
529 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
530 if (key.objectid != bytenr ||
531 key.type != BTRFS_EXTENT_DATA_REF_KEY)
532 goto fail;
533
534 ref = btrfs_item_ptr(leaf, path->slots[0],
535 struct btrfs_extent_data_ref);
536
537 if (match_extent_data_ref(leaf, ref, root_objectid,
538 owner, offset)) {
539 if (recow) {
540 btrfs_release_path(path);
541 goto again;
542 }
543 err = 0;
544 break;
545 }
546 path->slots[0]++;
547 }
548fail:
549 return err;
550}
551
552static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
553 struct btrfs_path *path,
554 u64 bytenr, u64 parent,
555 u64 root_objectid, u64 owner,
556 u64 offset, int refs_to_add)
557{
558 struct btrfs_root *root = trans->fs_info->extent_root;
559 struct btrfs_key key;
560 struct extent_buffer *leaf;
561 u32 size;
562 u32 num_refs;
563 int ret;
564
565 key.objectid = bytenr;
566 if (parent) {
567 key.type = BTRFS_SHARED_DATA_REF_KEY;
568 key.offset = parent;
569 size = sizeof(struct btrfs_shared_data_ref);
570 } else {
571 key.type = BTRFS_EXTENT_DATA_REF_KEY;
572 key.offset = hash_extent_data_ref(root_objectid,
573 owner, offset);
574 size = sizeof(struct btrfs_extent_data_ref);
575 }
576
577 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
578 if (ret && ret != -EEXIST)
579 goto fail;
580
581 leaf = path->nodes[0];
582 if (parent) {
583 struct btrfs_shared_data_ref *ref;
584 ref = btrfs_item_ptr(leaf, path->slots[0],
585 struct btrfs_shared_data_ref);
586 if (ret == 0) {
587 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
588 } else {
589 num_refs = btrfs_shared_data_ref_count(leaf, ref);
590 num_refs += refs_to_add;
591 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
592 }
593 } else {
594 struct btrfs_extent_data_ref *ref;
595 while (ret == -EEXIST) {
596 ref = btrfs_item_ptr(leaf, path->slots[0],
597 struct btrfs_extent_data_ref);
598 if (match_extent_data_ref(leaf, ref, root_objectid,
599 owner, offset))
600 break;
601 btrfs_release_path(path);
602 key.offset++;
603 ret = btrfs_insert_empty_item(trans, root, path, &key,
604 size);
605 if (ret && ret != -EEXIST)
606 goto fail;
607
608 leaf = path->nodes[0];
609 }
610 ref = btrfs_item_ptr(leaf, path->slots[0],
611 struct btrfs_extent_data_ref);
612 if (ret == 0) {
613 btrfs_set_extent_data_ref_root(leaf, ref,
614 root_objectid);
615 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
616 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
617 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
618 } else {
619 num_refs = btrfs_extent_data_ref_count(leaf, ref);
620 num_refs += refs_to_add;
621 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
622 }
623 }
624 btrfs_mark_buffer_dirty(leaf);
625 ret = 0;
626fail:
627 btrfs_release_path(path);
628 return ret;
629}
630
631static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
632 struct btrfs_path *path,
633 int refs_to_drop, int *last_ref)
634{
635 struct btrfs_key key;
636 struct btrfs_extent_data_ref *ref1 = NULL;
637 struct btrfs_shared_data_ref *ref2 = NULL;
638 struct extent_buffer *leaf;
639 u32 num_refs = 0;
640 int ret = 0;
641
642 leaf = path->nodes[0];
643 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
644
645 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
646 ref1 = btrfs_item_ptr(leaf, path->slots[0],
647 struct btrfs_extent_data_ref);
648 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
649 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
650 ref2 = btrfs_item_ptr(leaf, path->slots[0],
651 struct btrfs_shared_data_ref);
652 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
653 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
654 btrfs_print_v0_err(trans->fs_info);
655 btrfs_abort_transaction(trans, -EINVAL);
656 return -EINVAL;
657 } else {
658 BUG();
659 }
660
661 BUG_ON(num_refs < refs_to_drop);
662 num_refs -= refs_to_drop;
663
664 if (num_refs == 0) {
665 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
666 *last_ref = 1;
667 } else {
668 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
669 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
670 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
671 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
672 btrfs_mark_buffer_dirty(leaf);
673 }
674 return ret;
675}
676
677static noinline u32 extent_data_ref_count(struct btrfs_path *path,
678 struct btrfs_extent_inline_ref *iref)
679{
680 struct btrfs_key key;
681 struct extent_buffer *leaf;
682 struct btrfs_extent_data_ref *ref1;
683 struct btrfs_shared_data_ref *ref2;
684 u32 num_refs = 0;
685 int type;
686
687 leaf = path->nodes[0];
688 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
689
690 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
691 if (iref) {
692 /*
693 * If type is invalid, we should have bailed out earlier than
694 * this call.
695 */
696 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
697 ASSERT(type != BTRFS_REF_TYPE_INVALID);
698 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
699 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
700 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
701 } else {
702 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
703 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
704 }
705 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
706 ref1 = btrfs_item_ptr(leaf, path->slots[0],
707 struct btrfs_extent_data_ref);
708 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
709 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
710 ref2 = btrfs_item_ptr(leaf, path->slots[0],
711 struct btrfs_shared_data_ref);
712 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
713 } else {
714 WARN_ON(1);
715 }
716 return num_refs;
717}
718
719static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
720 struct btrfs_path *path,
721 u64 bytenr, u64 parent,
722 u64 root_objectid)
723{
724 struct btrfs_root *root = trans->fs_info->extent_root;
725 struct btrfs_key key;
726 int ret;
727
728 key.objectid = bytenr;
729 if (parent) {
730 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
731 key.offset = parent;
732 } else {
733 key.type = BTRFS_TREE_BLOCK_REF_KEY;
734 key.offset = root_objectid;
735 }
736
737 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
738 if (ret > 0)
739 ret = -ENOENT;
740 return ret;
741}
742
743static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
744 struct btrfs_path *path,
745 u64 bytenr, u64 parent,
746 u64 root_objectid)
747{
748 struct btrfs_key key;
749 int ret;
750
751 key.objectid = bytenr;
752 if (parent) {
753 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
754 key.offset = parent;
755 } else {
756 key.type = BTRFS_TREE_BLOCK_REF_KEY;
757 key.offset = root_objectid;
758 }
759
760 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
761 path, &key, 0);
762 btrfs_release_path(path);
763 return ret;
764}
765
766static inline int extent_ref_type(u64 parent, u64 owner)
767{
768 int type;
769 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
770 if (parent > 0)
771 type = BTRFS_SHARED_BLOCK_REF_KEY;
772 else
773 type = BTRFS_TREE_BLOCK_REF_KEY;
774 } else {
775 if (parent > 0)
776 type = BTRFS_SHARED_DATA_REF_KEY;
777 else
778 type = BTRFS_EXTENT_DATA_REF_KEY;
779 }
780 return type;
781}
782
783static int find_next_key(struct btrfs_path *path, int level,
784 struct btrfs_key *key)
785
786{
787 for (; level < BTRFS_MAX_LEVEL; level++) {
788 if (!path->nodes[level])
789 break;
790 if (path->slots[level] + 1 >=
791 btrfs_header_nritems(path->nodes[level]))
792 continue;
793 if (level == 0)
794 btrfs_item_key_to_cpu(path->nodes[level], key,
795 path->slots[level] + 1);
796 else
797 btrfs_node_key_to_cpu(path->nodes[level], key,
798 path->slots[level] + 1);
799 return 0;
800 }
801 return 1;
802}
803
804/*
805 * look for inline back ref. if back ref is found, *ref_ret is set
806 * to the address of inline back ref, and 0 is returned.
807 *
808 * if back ref isn't found, *ref_ret is set to the address where it
809 * should be inserted, and -ENOENT is returned.
810 *
811 * if insert is true and there are too many inline back refs, the path
812 * points to the extent item, and -EAGAIN is returned.
813 *
814 * NOTE: inline back refs are ordered in the same way that back ref
815 * items in the tree are ordered.
816 */
817static noinline_for_stack
818int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
819 struct btrfs_path *path,
820 struct btrfs_extent_inline_ref **ref_ret,
821 u64 bytenr, u64 num_bytes,
822 u64 parent, u64 root_objectid,
823 u64 owner, u64 offset, int insert)
824{
825 struct btrfs_fs_info *fs_info = trans->fs_info;
826 struct btrfs_root *root = fs_info->extent_root;
827 struct btrfs_key key;
828 struct extent_buffer *leaf;
829 struct btrfs_extent_item *ei;
830 struct btrfs_extent_inline_ref *iref;
831 u64 flags;
832 u64 item_size;
833 unsigned long ptr;
834 unsigned long end;
835 int extra_size;
836 int type;
837 int want;
838 int ret;
839 int err = 0;
840 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
841 int needed;
842
843 key.objectid = bytenr;
844 key.type = BTRFS_EXTENT_ITEM_KEY;
845 key.offset = num_bytes;
846
847 want = extent_ref_type(parent, owner);
848 if (insert) {
849 extra_size = btrfs_extent_inline_ref_size(want);
850 path->keep_locks = 1;
851 } else
852 extra_size = -1;
853
854 /*
855 * Owner is our level, so we can just add one to get the level for the
856 * block we are interested in.
857 */
858 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
859 key.type = BTRFS_METADATA_ITEM_KEY;
860 key.offset = owner;
861 }
862
863again:
864 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
865 if (ret < 0) {
866 err = ret;
867 goto out;
868 }
869
870 /*
871 * We may be a newly converted file system which still has the old fat
872 * extent entries for metadata, so try and see if we have one of those.
873 */
874 if (ret > 0 && skinny_metadata) {
875 skinny_metadata = false;
876 if (path->slots[0]) {
877 path->slots[0]--;
878 btrfs_item_key_to_cpu(path->nodes[0], &key,
879 path->slots[0]);
880 if (key.objectid == bytenr &&
881 key.type == BTRFS_EXTENT_ITEM_KEY &&
882 key.offset == num_bytes)
883 ret = 0;
884 }
885 if (ret) {
886 key.objectid = bytenr;
887 key.type = BTRFS_EXTENT_ITEM_KEY;
888 key.offset = num_bytes;
889 btrfs_release_path(path);
890 goto again;
891 }
892 }
893
894 if (ret && !insert) {
895 err = -ENOENT;
896 goto out;
897 } else if (WARN_ON(ret)) {
898 err = -EIO;
899 goto out;
900 }
901
902 leaf = path->nodes[0];
903 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
904 if (unlikely(item_size < sizeof(*ei))) {
905 err = -EINVAL;
906 btrfs_print_v0_err(fs_info);
907 btrfs_abort_transaction(trans, err);
908 goto out;
909 }
910
911 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
912 flags = btrfs_extent_flags(leaf, ei);
913
914 ptr = (unsigned long)(ei + 1);
915 end = (unsigned long)ei + item_size;
916
917 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
918 ptr += sizeof(struct btrfs_tree_block_info);
919 BUG_ON(ptr > end);
920 }
921
922 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
923 needed = BTRFS_REF_TYPE_DATA;
924 else
925 needed = BTRFS_REF_TYPE_BLOCK;
926
927 err = -ENOENT;
928 while (1) {
929 if (ptr >= end) {
930 WARN_ON(ptr > end);
931 break;
932 }
933 iref = (struct btrfs_extent_inline_ref *)ptr;
934 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
935 if (type == BTRFS_REF_TYPE_INVALID) {
936 err = -EUCLEAN;
937 goto out;
938 }
939
940 if (want < type)
941 break;
942 if (want > type) {
943 ptr += btrfs_extent_inline_ref_size(type);
944 continue;
945 }
946
947 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
948 struct btrfs_extent_data_ref *dref;
949 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
950 if (match_extent_data_ref(leaf, dref, root_objectid,
951 owner, offset)) {
952 err = 0;
953 break;
954 }
955 if (hash_extent_data_ref_item(leaf, dref) <
956 hash_extent_data_ref(root_objectid, owner, offset))
957 break;
958 } else {
959 u64 ref_offset;
960 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
961 if (parent > 0) {
962 if (parent == ref_offset) {
963 err = 0;
964 break;
965 }
966 if (ref_offset < parent)
967 break;
968 } else {
969 if (root_objectid == ref_offset) {
970 err = 0;
971 break;
972 }
973 if (ref_offset < root_objectid)
974 break;
975 }
976 }
977 ptr += btrfs_extent_inline_ref_size(type);
978 }
979 if (err == -ENOENT && insert) {
980 if (item_size + extra_size >=
981 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
982 err = -EAGAIN;
983 goto out;
984 }
985 /*
986 * To add new inline back ref, we have to make sure
987 * there is no corresponding back ref item.
988 * For simplicity, we just do not add new inline back
989 * ref if there is any kind of item for this block
990 */
991 if (find_next_key(path, 0, &key) == 0 &&
992 key.objectid == bytenr &&
993 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
994 err = -EAGAIN;
995 goto out;
996 }
997 }
998 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
999out:
1000 if (insert) {
1001 path->keep_locks = 0;
1002 btrfs_unlock_up_safe(path, 1);
1003 }
1004 return err;
1005}
1006
1007/*
1008 * helper to add new inline back ref
1009 */
1010static noinline_for_stack
1011void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1012 struct btrfs_path *path,
1013 struct btrfs_extent_inline_ref *iref,
1014 u64 parent, u64 root_objectid,
1015 u64 owner, u64 offset, int refs_to_add,
1016 struct btrfs_delayed_extent_op *extent_op)
1017{
1018 struct extent_buffer *leaf;
1019 struct btrfs_extent_item *ei;
1020 unsigned long ptr;
1021 unsigned long end;
1022 unsigned long item_offset;
1023 u64 refs;
1024 int size;
1025 int type;
1026
1027 leaf = path->nodes[0];
1028 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1029 item_offset = (unsigned long)iref - (unsigned long)ei;
1030
1031 type = extent_ref_type(parent, owner);
1032 size = btrfs_extent_inline_ref_size(type);
1033
1034 btrfs_extend_item(path, size);
1035
1036 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1037 refs = btrfs_extent_refs(leaf, ei);
1038 refs += refs_to_add;
1039 btrfs_set_extent_refs(leaf, ei, refs);
1040 if (extent_op)
1041 __run_delayed_extent_op(extent_op, leaf, ei);
1042
1043 ptr = (unsigned long)ei + item_offset;
1044 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1045 if (ptr < end - size)
1046 memmove_extent_buffer(leaf, ptr + size, ptr,
1047 end - size - ptr);
1048
1049 iref = (struct btrfs_extent_inline_ref *)ptr;
1050 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1051 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1052 struct btrfs_extent_data_ref *dref;
1053 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1054 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1055 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1056 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1057 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1058 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1059 struct btrfs_shared_data_ref *sref;
1060 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1061 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1062 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1063 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1064 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1065 } else {
1066 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1067 }
1068 btrfs_mark_buffer_dirty(leaf);
1069}
1070
1071static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1072 struct btrfs_path *path,
1073 struct btrfs_extent_inline_ref **ref_ret,
1074 u64 bytenr, u64 num_bytes, u64 parent,
1075 u64 root_objectid, u64 owner, u64 offset)
1076{
1077 int ret;
1078
1079 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1080 num_bytes, parent, root_objectid,
1081 owner, offset, 0);
1082 if (ret != -ENOENT)
1083 return ret;
1084
1085 btrfs_release_path(path);
1086 *ref_ret = NULL;
1087
1088 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1089 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1090 root_objectid);
1091 } else {
1092 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1093 root_objectid, owner, offset);
1094 }
1095 return ret;
1096}
1097
1098/*
1099 * helper to update/remove inline back ref
1100 */
1101static noinline_for_stack
1102void update_inline_extent_backref(struct btrfs_path *path,
1103 struct btrfs_extent_inline_ref *iref,
1104 int refs_to_mod,
1105 struct btrfs_delayed_extent_op *extent_op,
1106 int *last_ref)
1107{
1108 struct extent_buffer *leaf = path->nodes[0];
1109 struct btrfs_extent_item *ei;
1110 struct btrfs_extent_data_ref *dref = NULL;
1111 struct btrfs_shared_data_ref *sref = NULL;
1112 unsigned long ptr;
1113 unsigned long end;
1114 u32 item_size;
1115 int size;
1116 int type;
1117 u64 refs;
1118
1119 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120 refs = btrfs_extent_refs(leaf, ei);
1121 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1122 refs += refs_to_mod;
1123 btrfs_set_extent_refs(leaf, ei, refs);
1124 if (extent_op)
1125 __run_delayed_extent_op(extent_op, leaf, ei);
1126
1127 /*
1128 * If type is invalid, we should have bailed out after
1129 * lookup_inline_extent_backref().
1130 */
1131 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1132 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1133
1134 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1135 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1136 refs = btrfs_extent_data_ref_count(leaf, dref);
1137 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1138 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1139 refs = btrfs_shared_data_ref_count(leaf, sref);
1140 } else {
1141 refs = 1;
1142 BUG_ON(refs_to_mod != -1);
1143 }
1144
1145 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1146 refs += refs_to_mod;
1147
1148 if (refs > 0) {
1149 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1150 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1151 else
1152 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1153 } else {
1154 *last_ref = 1;
1155 size = btrfs_extent_inline_ref_size(type);
1156 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1157 ptr = (unsigned long)iref;
1158 end = (unsigned long)ei + item_size;
1159 if (ptr + size < end)
1160 memmove_extent_buffer(leaf, ptr, ptr + size,
1161 end - ptr - size);
1162 item_size -= size;
1163 btrfs_truncate_item(path, item_size, 1);
1164 }
1165 btrfs_mark_buffer_dirty(leaf);
1166}
1167
1168static noinline_for_stack
1169int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1170 struct btrfs_path *path,
1171 u64 bytenr, u64 num_bytes, u64 parent,
1172 u64 root_objectid, u64 owner,
1173 u64 offset, int refs_to_add,
1174 struct btrfs_delayed_extent_op *extent_op)
1175{
1176 struct btrfs_extent_inline_ref *iref;
1177 int ret;
1178
1179 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1180 num_bytes, parent, root_objectid,
1181 owner, offset, 1);
1182 if (ret == 0) {
1183 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1184 update_inline_extent_backref(path, iref, refs_to_add,
1185 extent_op, NULL);
1186 } else if (ret == -ENOENT) {
1187 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1188 root_objectid, owner, offset,
1189 refs_to_add, extent_op);
1190 ret = 0;
1191 }
1192 return ret;
1193}
1194
1195static int insert_extent_backref(struct btrfs_trans_handle *trans,
1196 struct btrfs_path *path,
1197 u64 bytenr, u64 parent, u64 root_objectid,
1198 u64 owner, u64 offset, int refs_to_add)
1199{
1200 int ret;
1201 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1202 BUG_ON(refs_to_add != 1);
1203 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1204 root_objectid);
1205 } else {
1206 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1207 root_objectid, owner, offset,
1208 refs_to_add);
1209 }
1210 return ret;
1211}
1212
1213static int remove_extent_backref(struct btrfs_trans_handle *trans,
1214 struct btrfs_path *path,
1215 struct btrfs_extent_inline_ref *iref,
1216 int refs_to_drop, int is_data, int *last_ref)
1217{
1218 int ret = 0;
1219
1220 BUG_ON(!is_data && refs_to_drop != 1);
1221 if (iref) {
1222 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1223 last_ref);
1224 } else if (is_data) {
1225 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1226 last_ref);
1227 } else {
1228 *last_ref = 1;
1229 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1230 }
1231 return ret;
1232}
1233
1234static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1235 u64 *discarded_bytes)
1236{
1237 int j, ret = 0;
1238 u64 bytes_left, end;
1239 u64 aligned_start = ALIGN(start, 1 << 9);
1240
1241 if (WARN_ON(start != aligned_start)) {
1242 len -= aligned_start - start;
1243 len = round_down(len, 1 << 9);
1244 start = aligned_start;
1245 }
1246
1247 *discarded_bytes = 0;
1248
1249 if (!len)
1250 return 0;
1251
1252 end = start + len;
1253 bytes_left = len;
1254
1255 /* Skip any superblocks on this device. */
1256 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1257 u64 sb_start = btrfs_sb_offset(j);
1258 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1259 u64 size = sb_start - start;
1260
1261 if (!in_range(sb_start, start, bytes_left) &&
1262 !in_range(sb_end, start, bytes_left) &&
1263 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1264 continue;
1265
1266 /*
1267 * Superblock spans beginning of range. Adjust start and
1268 * try again.
1269 */
1270 if (sb_start <= start) {
1271 start += sb_end - start;
1272 if (start > end) {
1273 bytes_left = 0;
1274 break;
1275 }
1276 bytes_left = end - start;
1277 continue;
1278 }
1279
1280 if (size) {
1281 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1282 GFP_NOFS, 0);
1283 if (!ret)
1284 *discarded_bytes += size;
1285 else if (ret != -EOPNOTSUPP)
1286 return ret;
1287 }
1288
1289 start = sb_end;
1290 if (start > end) {
1291 bytes_left = 0;
1292 break;
1293 }
1294 bytes_left = end - start;
1295 }
1296
1297 if (bytes_left) {
1298 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1299 GFP_NOFS, 0);
1300 if (!ret)
1301 *discarded_bytes += bytes_left;
1302 }
1303 return ret;
1304}
1305
1306int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1307 u64 num_bytes, u64 *actual_bytes)
1308{
1309 int ret;
1310 u64 discarded_bytes = 0;
1311 struct btrfs_bio *bbio = NULL;
1312
1313
1314 /*
1315 * Avoid races with device replace and make sure our bbio has devices
1316 * associated to its stripes that don't go away while we are discarding.
1317 */
1318 btrfs_bio_counter_inc_blocked(fs_info);
1319 /* Tell the block device(s) that the sectors can be discarded */
1320 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1321 &bbio, 0);
1322 /* Error condition is -ENOMEM */
1323 if (!ret) {
1324 struct btrfs_bio_stripe *stripe = bbio->stripes;
1325 int i;
1326
1327
1328 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1329 u64 bytes;
1330 struct request_queue *req_q;
1331
1332 if (!stripe->dev->bdev) {
1333 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1334 continue;
1335 }
1336 req_q = bdev_get_queue(stripe->dev->bdev);
1337 if (!blk_queue_discard(req_q))
1338 continue;
1339
1340 ret = btrfs_issue_discard(stripe->dev->bdev,
1341 stripe->physical,
1342 stripe->length,
1343 &bytes);
1344 if (!ret)
1345 discarded_bytes += bytes;
1346 else if (ret != -EOPNOTSUPP)
1347 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1348
1349 /*
1350 * Just in case we get back EOPNOTSUPP for some reason,
1351 * just ignore the return value so we don't screw up
1352 * people calling discard_extent.
1353 */
1354 ret = 0;
1355 }
1356 btrfs_put_bbio(bbio);
1357 }
1358 btrfs_bio_counter_dec(fs_info);
1359
1360 if (actual_bytes)
1361 *actual_bytes = discarded_bytes;
1362
1363
1364 if (ret == -EOPNOTSUPP)
1365 ret = 0;
1366 return ret;
1367}
1368
1369/* Can return -ENOMEM */
1370int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1371 struct btrfs_ref *generic_ref)
1372{
1373 struct btrfs_fs_info *fs_info = trans->fs_info;
1374 int old_ref_mod, new_ref_mod;
1375 int ret;
1376
1377 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1378 generic_ref->action);
1379 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1380 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1381
1382 if (generic_ref->type == BTRFS_REF_METADATA)
1383 ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
1384 NULL, &old_ref_mod, &new_ref_mod);
1385 else
1386 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
1387 &old_ref_mod, &new_ref_mod);
1388
1389 btrfs_ref_tree_mod(fs_info, generic_ref);
1390
1391 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
1392 sub_pinned_bytes(fs_info, generic_ref);
1393
1394 return ret;
1395}
1396
1397/*
1398 * __btrfs_inc_extent_ref - insert backreference for a given extent
1399 *
1400 * @trans: Handle of transaction
1401 *
1402 * @node: The delayed ref node used to get the bytenr/length for
1403 * extent whose references are incremented.
1404 *
1405 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1406 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1407 * bytenr of the parent block. Since new extents are always
1408 * created with indirect references, this will only be the case
1409 * when relocating a shared extent. In that case, root_objectid
1410 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1411 * be 0
1412 *
1413 * @root_objectid: The id of the root where this modification has originated,
1414 * this can be either one of the well-known metadata trees or
1415 * the subvolume id which references this extent.
1416 *
1417 * @owner: For data extents it is the inode number of the owning file.
1418 * For metadata extents this parameter holds the level in the
1419 * tree of the extent.
1420 *
1421 * @offset: For metadata extents the offset is ignored and is currently
1422 * always passed as 0. For data extents it is the fileoffset
1423 * this extent belongs to.
1424 *
1425 * @refs_to_add Number of references to add
1426 *
1427 * @extent_op Pointer to a structure, holding information necessary when
1428 * updating a tree block's flags
1429 *
1430 */
1431static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1432 struct btrfs_delayed_ref_node *node,
1433 u64 parent, u64 root_objectid,
1434 u64 owner, u64 offset, int refs_to_add,
1435 struct btrfs_delayed_extent_op *extent_op)
1436{
1437 struct btrfs_path *path;
1438 struct extent_buffer *leaf;
1439 struct btrfs_extent_item *item;
1440 struct btrfs_key key;
1441 u64 bytenr = node->bytenr;
1442 u64 num_bytes = node->num_bytes;
1443 u64 refs;
1444 int ret;
1445
1446 path = btrfs_alloc_path();
1447 if (!path)
1448 return -ENOMEM;
1449
1450 path->reada = READA_FORWARD;
1451 path->leave_spinning = 1;
1452 /* this will setup the path even if it fails to insert the back ref */
1453 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1454 parent, root_objectid, owner,
1455 offset, refs_to_add, extent_op);
1456 if ((ret < 0 && ret != -EAGAIN) || !ret)
1457 goto out;
1458
1459 /*
1460 * Ok we had -EAGAIN which means we didn't have space to insert and
1461 * inline extent ref, so just update the reference count and add a
1462 * normal backref.
1463 */
1464 leaf = path->nodes[0];
1465 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1466 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1467 refs = btrfs_extent_refs(leaf, item);
1468 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1469 if (extent_op)
1470 __run_delayed_extent_op(extent_op, leaf, item);
1471
1472 btrfs_mark_buffer_dirty(leaf);
1473 btrfs_release_path(path);
1474
1475 path->reada = READA_FORWARD;
1476 path->leave_spinning = 1;
1477 /* now insert the actual backref */
1478 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
1479 owner, offset, refs_to_add);
1480 if (ret)
1481 btrfs_abort_transaction(trans, ret);
1482out:
1483 btrfs_free_path(path);
1484 return ret;
1485}
1486
1487static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1488 struct btrfs_delayed_ref_node *node,
1489 struct btrfs_delayed_extent_op *extent_op,
1490 int insert_reserved)
1491{
1492 int ret = 0;
1493 struct btrfs_delayed_data_ref *ref;
1494 struct btrfs_key ins;
1495 u64 parent = 0;
1496 u64 ref_root = 0;
1497 u64 flags = 0;
1498
1499 ins.objectid = node->bytenr;
1500 ins.offset = node->num_bytes;
1501 ins.type = BTRFS_EXTENT_ITEM_KEY;
1502
1503 ref = btrfs_delayed_node_to_data_ref(node);
1504 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1505
1506 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1507 parent = ref->parent;
1508 ref_root = ref->root;
1509
1510 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1511 if (extent_op)
1512 flags |= extent_op->flags_to_set;
1513 ret = alloc_reserved_file_extent(trans, parent, ref_root,
1514 flags, ref->objectid,
1515 ref->offset, &ins,
1516 node->ref_mod);
1517 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1518 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1519 ref->objectid, ref->offset,
1520 node->ref_mod, extent_op);
1521 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1522 ret = __btrfs_free_extent(trans, node, parent,
1523 ref_root, ref->objectid,
1524 ref->offset, node->ref_mod,
1525 extent_op);
1526 } else {
1527 BUG();
1528 }
1529 return ret;
1530}
1531
1532static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1533 struct extent_buffer *leaf,
1534 struct btrfs_extent_item *ei)
1535{
1536 u64 flags = btrfs_extent_flags(leaf, ei);
1537 if (extent_op->update_flags) {
1538 flags |= extent_op->flags_to_set;
1539 btrfs_set_extent_flags(leaf, ei, flags);
1540 }
1541
1542 if (extent_op->update_key) {
1543 struct btrfs_tree_block_info *bi;
1544 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1545 bi = (struct btrfs_tree_block_info *)(ei + 1);
1546 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1547 }
1548}
1549
1550static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1551 struct btrfs_delayed_ref_head *head,
1552 struct btrfs_delayed_extent_op *extent_op)
1553{
1554 struct btrfs_fs_info *fs_info = trans->fs_info;
1555 struct btrfs_key key;
1556 struct btrfs_path *path;
1557 struct btrfs_extent_item *ei;
1558 struct extent_buffer *leaf;
1559 u32 item_size;
1560 int ret;
1561 int err = 0;
1562 int metadata = !extent_op->is_data;
1563
1564 if (trans->aborted)
1565 return 0;
1566
1567 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1568 metadata = 0;
1569
1570 path = btrfs_alloc_path();
1571 if (!path)
1572 return -ENOMEM;
1573
1574 key.objectid = head->bytenr;
1575
1576 if (metadata) {
1577 key.type = BTRFS_METADATA_ITEM_KEY;
1578 key.offset = extent_op->level;
1579 } else {
1580 key.type = BTRFS_EXTENT_ITEM_KEY;
1581 key.offset = head->num_bytes;
1582 }
1583
1584again:
1585 path->reada = READA_FORWARD;
1586 path->leave_spinning = 1;
1587 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1588 if (ret < 0) {
1589 err = ret;
1590 goto out;
1591 }
1592 if (ret > 0) {
1593 if (metadata) {
1594 if (path->slots[0] > 0) {
1595 path->slots[0]--;
1596 btrfs_item_key_to_cpu(path->nodes[0], &key,
1597 path->slots[0]);
1598 if (key.objectid == head->bytenr &&
1599 key.type == BTRFS_EXTENT_ITEM_KEY &&
1600 key.offset == head->num_bytes)
1601 ret = 0;
1602 }
1603 if (ret > 0) {
1604 btrfs_release_path(path);
1605 metadata = 0;
1606
1607 key.objectid = head->bytenr;
1608 key.offset = head->num_bytes;
1609 key.type = BTRFS_EXTENT_ITEM_KEY;
1610 goto again;
1611 }
1612 } else {
1613 err = -EIO;
1614 goto out;
1615 }
1616 }
1617
1618 leaf = path->nodes[0];
1619 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1620
1621 if (unlikely(item_size < sizeof(*ei))) {
1622 err = -EINVAL;
1623 btrfs_print_v0_err(fs_info);
1624 btrfs_abort_transaction(trans, err);
1625 goto out;
1626 }
1627
1628 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1629 __run_delayed_extent_op(extent_op, leaf, ei);
1630
1631 btrfs_mark_buffer_dirty(leaf);
1632out:
1633 btrfs_free_path(path);
1634 return err;
1635}
1636
1637static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1638 struct btrfs_delayed_ref_node *node,
1639 struct btrfs_delayed_extent_op *extent_op,
1640 int insert_reserved)
1641{
1642 int ret = 0;
1643 struct btrfs_delayed_tree_ref *ref;
1644 u64 parent = 0;
1645 u64 ref_root = 0;
1646
1647 ref = btrfs_delayed_node_to_tree_ref(node);
1648 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1649
1650 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1651 parent = ref->parent;
1652 ref_root = ref->root;
1653
1654 if (node->ref_mod != 1) {
1655 btrfs_err(trans->fs_info,
1656 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1657 node->bytenr, node->ref_mod, node->action, ref_root,
1658 parent);
1659 return -EIO;
1660 }
1661 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1662 BUG_ON(!extent_op || !extent_op->update_flags);
1663 ret = alloc_reserved_tree_block(trans, node, extent_op);
1664 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1665 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1666 ref->level, 0, 1, extent_op);
1667 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1668 ret = __btrfs_free_extent(trans, node, parent, ref_root,
1669 ref->level, 0, 1, extent_op);
1670 } else {
1671 BUG();
1672 }
1673 return ret;
1674}
1675
1676/* helper function to actually process a single delayed ref entry */
1677static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1678 struct btrfs_delayed_ref_node *node,
1679 struct btrfs_delayed_extent_op *extent_op,
1680 int insert_reserved)
1681{
1682 int ret = 0;
1683
1684 if (trans->aborted) {
1685 if (insert_reserved)
1686 btrfs_pin_extent(trans->fs_info, node->bytenr,
1687 node->num_bytes, 1);
1688 return 0;
1689 }
1690
1691 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1692 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1693 ret = run_delayed_tree_ref(trans, node, extent_op,
1694 insert_reserved);
1695 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1696 node->type == BTRFS_SHARED_DATA_REF_KEY)
1697 ret = run_delayed_data_ref(trans, node, extent_op,
1698 insert_reserved);
1699 else
1700 BUG();
1701 if (ret && insert_reserved)
1702 btrfs_pin_extent(trans->fs_info, node->bytenr,
1703 node->num_bytes, 1);
1704 return ret;
1705}
1706
1707static inline struct btrfs_delayed_ref_node *
1708select_delayed_ref(struct btrfs_delayed_ref_head *head)
1709{
1710 struct btrfs_delayed_ref_node *ref;
1711
1712 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1713 return NULL;
1714
1715 /*
1716 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1717 * This is to prevent a ref count from going down to zero, which deletes
1718 * the extent item from the extent tree, when there still are references
1719 * to add, which would fail because they would not find the extent item.
1720 */
1721 if (!list_empty(&head->ref_add_list))
1722 return list_first_entry(&head->ref_add_list,
1723 struct btrfs_delayed_ref_node, add_list);
1724
1725 ref = rb_entry(rb_first_cached(&head->ref_tree),
1726 struct btrfs_delayed_ref_node, ref_node);
1727 ASSERT(list_empty(&ref->add_list));
1728 return ref;
1729}
1730
1731static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1732 struct btrfs_delayed_ref_head *head)
1733{
1734 spin_lock(&delayed_refs->lock);
1735 head->processing = 0;
1736 delayed_refs->num_heads_ready++;
1737 spin_unlock(&delayed_refs->lock);
1738 btrfs_delayed_ref_unlock(head);
1739}
1740
1741static struct btrfs_delayed_extent_op *cleanup_extent_op(
1742 struct btrfs_delayed_ref_head *head)
1743{
1744 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1745
1746 if (!extent_op)
1747 return NULL;
1748
1749 if (head->must_insert_reserved) {
1750 head->extent_op = NULL;
1751 btrfs_free_delayed_extent_op(extent_op);
1752 return NULL;
1753 }
1754 return extent_op;
1755}
1756
1757static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1758 struct btrfs_delayed_ref_head *head)
1759{
1760 struct btrfs_delayed_extent_op *extent_op;
1761 int ret;
1762
1763 extent_op = cleanup_extent_op(head);
1764 if (!extent_op)
1765 return 0;
1766 head->extent_op = NULL;
1767 spin_unlock(&head->lock);
1768 ret = run_delayed_extent_op(trans, head, extent_op);
1769 btrfs_free_delayed_extent_op(extent_op);
1770 return ret ? ret : 1;
1771}
1772
1773void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1774 struct btrfs_delayed_ref_root *delayed_refs,
1775 struct btrfs_delayed_ref_head *head)
1776{
1777 int nr_items = 1; /* Dropping this ref head update. */
1778
1779 if (head->total_ref_mod < 0) {
1780 struct btrfs_space_info *space_info;
1781 u64 flags;
1782
1783 if (head->is_data)
1784 flags = BTRFS_BLOCK_GROUP_DATA;
1785 else if (head->is_system)
1786 flags = BTRFS_BLOCK_GROUP_SYSTEM;
1787 else
1788 flags = BTRFS_BLOCK_GROUP_METADATA;
1789 space_info = btrfs_find_space_info(fs_info, flags);
1790 ASSERT(space_info);
1791 percpu_counter_add_batch(&space_info->total_bytes_pinned,
1792 -head->num_bytes,
1793 BTRFS_TOTAL_BYTES_PINNED_BATCH);
1794
1795 /*
1796 * We had csum deletions accounted for in our delayed refs rsv,
1797 * we need to drop the csum leaves for this update from our
1798 * delayed_refs_rsv.
1799 */
1800 if (head->is_data) {
1801 spin_lock(&delayed_refs->lock);
1802 delayed_refs->pending_csums -= head->num_bytes;
1803 spin_unlock(&delayed_refs->lock);
1804 nr_items += btrfs_csum_bytes_to_leaves(fs_info,
1805 head->num_bytes);
1806 }
1807 }
1808
1809 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1810}
1811
1812static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1813 struct btrfs_delayed_ref_head *head)
1814{
1815
1816 struct btrfs_fs_info *fs_info = trans->fs_info;
1817 struct btrfs_delayed_ref_root *delayed_refs;
1818 int ret;
1819
1820 delayed_refs = &trans->transaction->delayed_refs;
1821
1822 ret = run_and_cleanup_extent_op(trans, head);
1823 if (ret < 0) {
1824 unselect_delayed_ref_head(delayed_refs, head);
1825 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1826 return ret;
1827 } else if (ret) {
1828 return ret;
1829 }
1830
1831 /*
1832 * Need to drop our head ref lock and re-acquire the delayed ref lock
1833 * and then re-check to make sure nobody got added.
1834 */
1835 spin_unlock(&head->lock);
1836 spin_lock(&delayed_refs->lock);
1837 spin_lock(&head->lock);
1838 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1839 spin_unlock(&head->lock);
1840 spin_unlock(&delayed_refs->lock);
1841 return 1;
1842 }
1843 btrfs_delete_ref_head(delayed_refs, head);
1844 spin_unlock(&head->lock);
1845 spin_unlock(&delayed_refs->lock);
1846
1847 if (head->must_insert_reserved) {
1848 btrfs_pin_extent(fs_info, head->bytenr,
1849 head->num_bytes, 1);
1850 if (head->is_data) {
1851 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
1852 head->num_bytes);
1853 }
1854 }
1855
1856 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1857
1858 trace_run_delayed_ref_head(fs_info, head, 0);
1859 btrfs_delayed_ref_unlock(head);
1860 btrfs_put_delayed_ref_head(head);
1861 return 0;
1862}
1863
1864static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1865 struct btrfs_trans_handle *trans)
1866{
1867 struct btrfs_delayed_ref_root *delayed_refs =
1868 &trans->transaction->delayed_refs;
1869 struct btrfs_delayed_ref_head *head = NULL;
1870 int ret;
1871
1872 spin_lock(&delayed_refs->lock);
1873 head = btrfs_select_ref_head(delayed_refs);
1874 if (!head) {
1875 spin_unlock(&delayed_refs->lock);
1876 return head;
1877 }
1878
1879 /*
1880 * Grab the lock that says we are going to process all the refs for
1881 * this head
1882 */
1883 ret = btrfs_delayed_ref_lock(delayed_refs, head);
1884 spin_unlock(&delayed_refs->lock);
1885
1886 /*
1887 * We may have dropped the spin lock to get the head mutex lock, and
1888 * that might have given someone else time to free the head. If that's
1889 * true, it has been removed from our list and we can move on.
1890 */
1891 if (ret == -EAGAIN)
1892 head = ERR_PTR(-EAGAIN);
1893
1894 return head;
1895}
1896
1897static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1898 struct btrfs_delayed_ref_head *locked_ref,
1899 unsigned long *run_refs)
1900{
1901 struct btrfs_fs_info *fs_info = trans->fs_info;
1902 struct btrfs_delayed_ref_root *delayed_refs;
1903 struct btrfs_delayed_extent_op *extent_op;
1904 struct btrfs_delayed_ref_node *ref;
1905 int must_insert_reserved = 0;
1906 int ret;
1907
1908 delayed_refs = &trans->transaction->delayed_refs;
1909
1910 lockdep_assert_held(&locked_ref->mutex);
1911 lockdep_assert_held(&locked_ref->lock);
1912
1913 while ((ref = select_delayed_ref(locked_ref))) {
1914 if (ref->seq &&
1915 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1916 spin_unlock(&locked_ref->lock);
1917 unselect_delayed_ref_head(delayed_refs, locked_ref);
1918 return -EAGAIN;
1919 }
1920
1921 (*run_refs)++;
1922 ref->in_tree = 0;
1923 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1924 RB_CLEAR_NODE(&ref->ref_node);
1925 if (!list_empty(&ref->add_list))
1926 list_del(&ref->add_list);
1927 /*
1928 * When we play the delayed ref, also correct the ref_mod on
1929 * head
1930 */
1931 switch (ref->action) {
1932 case BTRFS_ADD_DELAYED_REF:
1933 case BTRFS_ADD_DELAYED_EXTENT:
1934 locked_ref->ref_mod -= ref->ref_mod;
1935 break;
1936 case BTRFS_DROP_DELAYED_REF:
1937 locked_ref->ref_mod += ref->ref_mod;
1938 break;
1939 default:
1940 WARN_ON(1);
1941 }
1942 atomic_dec(&delayed_refs->num_entries);
1943
1944 /*
1945 * Record the must_insert_reserved flag before we drop the
1946 * spin lock.
1947 */
1948 must_insert_reserved = locked_ref->must_insert_reserved;
1949 locked_ref->must_insert_reserved = 0;
1950
1951 extent_op = locked_ref->extent_op;
1952 locked_ref->extent_op = NULL;
1953 spin_unlock(&locked_ref->lock);
1954
1955 ret = run_one_delayed_ref(trans, ref, extent_op,
1956 must_insert_reserved);
1957
1958 btrfs_free_delayed_extent_op(extent_op);
1959 if (ret) {
1960 unselect_delayed_ref_head(delayed_refs, locked_ref);
1961 btrfs_put_delayed_ref(ref);
1962 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1963 ret);
1964 return ret;
1965 }
1966
1967 btrfs_put_delayed_ref(ref);
1968 cond_resched();
1969
1970 spin_lock(&locked_ref->lock);
1971 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1972 }
1973
1974 return 0;
1975}
1976
1977/*
1978 * Returns 0 on success or if called with an already aborted transaction.
1979 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1980 */
1981static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1982 unsigned long nr)
1983{
1984 struct btrfs_fs_info *fs_info = trans->fs_info;
1985 struct btrfs_delayed_ref_root *delayed_refs;
1986 struct btrfs_delayed_ref_head *locked_ref = NULL;
1987 ktime_t start = ktime_get();
1988 int ret;
1989 unsigned long count = 0;
1990 unsigned long actual_count = 0;
1991
1992 delayed_refs = &trans->transaction->delayed_refs;
1993 do {
1994 if (!locked_ref) {
1995 locked_ref = btrfs_obtain_ref_head(trans);
1996 if (IS_ERR_OR_NULL(locked_ref)) {
1997 if (PTR_ERR(locked_ref) == -EAGAIN) {
1998 continue;
1999 } else {
2000 break;
2001 }
2002 }
2003 count++;
2004 }
2005 /*
2006 * We need to try and merge add/drops of the same ref since we
2007 * can run into issues with relocate dropping the implicit ref
2008 * and then it being added back again before the drop can
2009 * finish. If we merged anything we need to re-loop so we can
2010 * get a good ref.
2011 * Or we can get node references of the same type that weren't
2012 * merged when created due to bumps in the tree mod seq, and
2013 * we need to merge them to prevent adding an inline extent
2014 * backref before dropping it (triggering a BUG_ON at
2015 * insert_inline_extent_backref()).
2016 */
2017 spin_lock(&locked_ref->lock);
2018 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2019
2020 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2021 &actual_count);
2022 if (ret < 0 && ret != -EAGAIN) {
2023 /*
2024 * Error, btrfs_run_delayed_refs_for_head already
2025 * unlocked everything so just bail out
2026 */
2027 return ret;
2028 } else if (!ret) {
2029 /*
2030 * Success, perform the usual cleanup of a processed
2031 * head
2032 */
2033 ret = cleanup_ref_head(trans, locked_ref);
2034 if (ret > 0 ) {
2035 /* We dropped our lock, we need to loop. */
2036 ret = 0;
2037 continue;
2038 } else if (ret) {
2039 return ret;
2040 }
2041 }
2042
2043 /*
2044 * Either success case or btrfs_run_delayed_refs_for_head
2045 * returned -EAGAIN, meaning we need to select another head
2046 */
2047
2048 locked_ref = NULL;
2049 cond_resched();
2050 } while ((nr != -1 && count < nr) || locked_ref);
2051
2052 /*
2053 * We don't want to include ref heads since we can have empty ref heads
2054 * and those will drastically skew our runtime down since we just do
2055 * accounting, no actual extent tree updates.
2056 */
2057 if (actual_count > 0) {
2058 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2059 u64 avg;
2060
2061 /*
2062 * We weigh the current average higher than our current runtime
2063 * to avoid large swings in the average.
2064 */
2065 spin_lock(&delayed_refs->lock);
2066 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2067 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2068 spin_unlock(&delayed_refs->lock);
2069 }
2070 return 0;
2071}
2072
2073#ifdef SCRAMBLE_DELAYED_REFS
2074/*
2075 * Normally delayed refs get processed in ascending bytenr order. This
2076 * correlates in most cases to the order added. To expose dependencies on this
2077 * order, we start to process the tree in the middle instead of the beginning
2078 */
2079static u64 find_middle(struct rb_root *root)
2080{
2081 struct rb_node *n = root->rb_node;
2082 struct btrfs_delayed_ref_node *entry;
2083 int alt = 1;
2084 u64 middle;
2085 u64 first = 0, last = 0;
2086
2087 n = rb_first(root);
2088 if (n) {
2089 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2090 first = entry->bytenr;
2091 }
2092 n = rb_last(root);
2093 if (n) {
2094 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2095 last = entry->bytenr;
2096 }
2097 n = root->rb_node;
2098
2099 while (n) {
2100 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2101 WARN_ON(!entry->in_tree);
2102
2103 middle = entry->bytenr;
2104
2105 if (alt)
2106 n = n->rb_left;
2107 else
2108 n = n->rb_right;
2109
2110 alt = 1 - alt;
2111 }
2112 return middle;
2113}
2114#endif
2115
2116static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2117{
2118 u64 num_bytes;
2119
2120 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2121 sizeof(struct btrfs_extent_inline_ref));
2122 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2123 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2124
2125 /*
2126 * We don't ever fill up leaves all the way so multiply by 2 just to be
2127 * closer to what we're really going to want to use.
2128 */
2129 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2130}
2131
2132/*
2133 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2134 * would require to store the csums for that many bytes.
2135 */
2136u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2137{
2138 u64 csum_size;
2139 u64 num_csums_per_leaf;
2140 u64 num_csums;
2141
2142 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2143 num_csums_per_leaf = div64_u64(csum_size,
2144 (u64)btrfs_super_csum_size(fs_info->super_copy));
2145 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2146 num_csums += num_csums_per_leaf - 1;
2147 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2148 return num_csums;
2149}
2150
2151/*
2152 * this starts processing the delayed reference count updates and
2153 * extent insertions we have queued up so far. count can be
2154 * 0, which means to process everything in the tree at the start
2155 * of the run (but not newly added entries), or it can be some target
2156 * number you'd like to process.
2157 *
2158 * Returns 0 on success or if called with an aborted transaction
2159 * Returns <0 on error and aborts the transaction
2160 */
2161int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2162 unsigned long count)
2163{
2164 struct btrfs_fs_info *fs_info = trans->fs_info;
2165 struct rb_node *node;
2166 struct btrfs_delayed_ref_root *delayed_refs;
2167 struct btrfs_delayed_ref_head *head;
2168 int ret;
2169 int run_all = count == (unsigned long)-1;
2170
2171 /* We'll clean this up in btrfs_cleanup_transaction */
2172 if (trans->aborted)
2173 return 0;
2174
2175 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2176 return 0;
2177
2178 delayed_refs = &trans->transaction->delayed_refs;
2179 if (count == 0)
2180 count = atomic_read(&delayed_refs->num_entries) * 2;
2181
2182again:
2183#ifdef SCRAMBLE_DELAYED_REFS
2184 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2185#endif
2186 ret = __btrfs_run_delayed_refs(trans, count);
2187 if (ret < 0) {
2188 btrfs_abort_transaction(trans, ret);
2189 return ret;
2190 }
2191
2192 if (run_all) {
2193 btrfs_create_pending_block_groups(trans);
2194
2195 spin_lock(&delayed_refs->lock);
2196 node = rb_first_cached(&delayed_refs->href_root);
2197 if (!node) {
2198 spin_unlock(&delayed_refs->lock);
2199 goto out;
2200 }
2201 head = rb_entry(node, struct btrfs_delayed_ref_head,
2202 href_node);
2203 refcount_inc(&head->refs);
2204 spin_unlock(&delayed_refs->lock);
2205
2206 /* Mutex was contended, block until it's released and retry. */
2207 mutex_lock(&head->mutex);
2208 mutex_unlock(&head->mutex);
2209
2210 btrfs_put_delayed_ref_head(head);
2211 cond_resched();
2212 goto again;
2213 }
2214out:
2215 return 0;
2216}
2217
2218int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2219 u64 bytenr, u64 num_bytes, u64 flags,
2220 int level, int is_data)
2221{
2222 struct btrfs_delayed_extent_op *extent_op;
2223 int ret;
2224
2225 extent_op = btrfs_alloc_delayed_extent_op();
2226 if (!extent_op)
2227 return -ENOMEM;
2228
2229 extent_op->flags_to_set = flags;
2230 extent_op->update_flags = true;
2231 extent_op->update_key = false;
2232 extent_op->is_data = is_data ? true : false;
2233 extent_op->level = level;
2234
2235 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2236 if (ret)
2237 btrfs_free_delayed_extent_op(extent_op);
2238 return ret;
2239}
2240
2241static noinline int check_delayed_ref(struct btrfs_root *root,
2242 struct btrfs_path *path,
2243 u64 objectid, u64 offset, u64 bytenr)
2244{
2245 struct btrfs_delayed_ref_head *head;
2246 struct btrfs_delayed_ref_node *ref;
2247 struct btrfs_delayed_data_ref *data_ref;
2248 struct btrfs_delayed_ref_root *delayed_refs;
2249 struct btrfs_transaction *cur_trans;
2250 struct rb_node *node;
2251 int ret = 0;
2252
2253 spin_lock(&root->fs_info->trans_lock);
2254 cur_trans = root->fs_info->running_transaction;
2255 if (cur_trans)
2256 refcount_inc(&cur_trans->use_count);
2257 spin_unlock(&root->fs_info->trans_lock);
2258 if (!cur_trans)
2259 return 0;
2260
2261 delayed_refs = &cur_trans->delayed_refs;
2262 spin_lock(&delayed_refs->lock);
2263 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2264 if (!head) {
2265 spin_unlock(&delayed_refs->lock);
2266 btrfs_put_transaction(cur_trans);
2267 return 0;
2268 }
2269
2270 if (!mutex_trylock(&head->mutex)) {
2271 refcount_inc(&head->refs);
2272 spin_unlock(&delayed_refs->lock);
2273
2274 btrfs_release_path(path);
2275
2276 /*
2277 * Mutex was contended, block until it's released and let
2278 * caller try again
2279 */
2280 mutex_lock(&head->mutex);
2281 mutex_unlock(&head->mutex);
2282 btrfs_put_delayed_ref_head(head);
2283 btrfs_put_transaction(cur_trans);
2284 return -EAGAIN;
2285 }
2286 spin_unlock(&delayed_refs->lock);
2287
2288 spin_lock(&head->lock);
2289 /*
2290 * XXX: We should replace this with a proper search function in the
2291 * future.
2292 */
2293 for (node = rb_first_cached(&head->ref_tree); node;
2294 node = rb_next(node)) {
2295 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2296 /* If it's a shared ref we know a cross reference exists */
2297 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2298 ret = 1;
2299 break;
2300 }
2301
2302 data_ref = btrfs_delayed_node_to_data_ref(ref);
2303
2304 /*
2305 * If our ref doesn't match the one we're currently looking at
2306 * then we have a cross reference.
2307 */
2308 if (data_ref->root != root->root_key.objectid ||
2309 data_ref->objectid != objectid ||
2310 data_ref->offset != offset) {
2311 ret = 1;
2312 break;
2313 }
2314 }
2315 spin_unlock(&head->lock);
2316 mutex_unlock(&head->mutex);
2317 btrfs_put_transaction(cur_trans);
2318 return ret;
2319}
2320
2321static noinline int check_committed_ref(struct btrfs_root *root,
2322 struct btrfs_path *path,
2323 u64 objectid, u64 offset, u64 bytenr)
2324{
2325 struct btrfs_fs_info *fs_info = root->fs_info;
2326 struct btrfs_root *extent_root = fs_info->extent_root;
2327 struct extent_buffer *leaf;
2328 struct btrfs_extent_data_ref *ref;
2329 struct btrfs_extent_inline_ref *iref;
2330 struct btrfs_extent_item *ei;
2331 struct btrfs_key key;
2332 u32 item_size;
2333 int type;
2334 int ret;
2335
2336 key.objectid = bytenr;
2337 key.offset = (u64)-1;
2338 key.type = BTRFS_EXTENT_ITEM_KEY;
2339
2340 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2341 if (ret < 0)
2342 goto out;
2343 BUG_ON(ret == 0); /* Corruption */
2344
2345 ret = -ENOENT;
2346 if (path->slots[0] == 0)
2347 goto out;
2348
2349 path->slots[0]--;
2350 leaf = path->nodes[0];
2351 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2352
2353 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2354 goto out;
2355
2356 ret = 1;
2357 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2358 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2359
2360 /* If extent item has more than 1 inline ref then it's shared */
2361 if (item_size != sizeof(*ei) +
2362 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2363 goto out;
2364
2365 /* If extent created before last snapshot => it's definitely shared */
2366 if (btrfs_extent_generation(leaf, ei) <=
2367 btrfs_root_last_snapshot(&root->root_item))
2368 goto out;
2369
2370 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2371
2372 /* If this extent has SHARED_DATA_REF then it's shared */
2373 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2374 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2375 goto out;
2376
2377 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2378 if (btrfs_extent_refs(leaf, ei) !=
2379 btrfs_extent_data_ref_count(leaf, ref) ||
2380 btrfs_extent_data_ref_root(leaf, ref) !=
2381 root->root_key.objectid ||
2382 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2383 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2384 goto out;
2385
2386 ret = 0;
2387out:
2388 return ret;
2389}
2390
2391int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2392 u64 bytenr)
2393{
2394 struct btrfs_path *path;
2395 int ret;
2396
2397 path = btrfs_alloc_path();
2398 if (!path)
2399 return -ENOMEM;
2400
2401 do {
2402 ret = check_committed_ref(root, path, objectid,
2403 offset, bytenr);
2404 if (ret && ret != -ENOENT)
2405 goto out;
2406
2407 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2408 } while (ret == -EAGAIN);
2409
2410out:
2411 btrfs_free_path(path);
2412 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2413 WARN_ON(ret > 0);
2414 return ret;
2415}
2416
2417static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2418 struct btrfs_root *root,
2419 struct extent_buffer *buf,
2420 int full_backref, int inc)
2421{
2422 struct btrfs_fs_info *fs_info = root->fs_info;
2423 u64 bytenr;
2424 u64 num_bytes;
2425 u64 parent;
2426 u64 ref_root;
2427 u32 nritems;
2428 struct btrfs_key key;
2429 struct btrfs_file_extent_item *fi;
2430 struct btrfs_ref generic_ref = { 0 };
2431 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2432 int i;
2433 int action;
2434 int level;
2435 int ret = 0;
2436
2437 if (btrfs_is_testing(fs_info))
2438 return 0;
2439
2440 ref_root = btrfs_header_owner(buf);
2441 nritems = btrfs_header_nritems(buf);
2442 level = btrfs_header_level(buf);
2443
2444 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
2445 return 0;
2446
2447 if (full_backref)
2448 parent = buf->start;
2449 else
2450 parent = 0;
2451 if (inc)
2452 action = BTRFS_ADD_DELAYED_REF;
2453 else
2454 action = BTRFS_DROP_DELAYED_REF;
2455
2456 for (i = 0; i < nritems; i++) {
2457 if (level == 0) {
2458 btrfs_item_key_to_cpu(buf, &key, i);
2459 if (key.type != BTRFS_EXTENT_DATA_KEY)
2460 continue;
2461 fi = btrfs_item_ptr(buf, i,
2462 struct btrfs_file_extent_item);
2463 if (btrfs_file_extent_type(buf, fi) ==
2464 BTRFS_FILE_EXTENT_INLINE)
2465 continue;
2466 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2467 if (bytenr == 0)
2468 continue;
2469
2470 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2471 key.offset -= btrfs_file_extent_offset(buf, fi);
2472 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2473 num_bytes, parent);
2474 generic_ref.real_root = root->root_key.objectid;
2475 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2476 key.offset);
2477 generic_ref.skip_qgroup = for_reloc;
2478 if (inc)
2479 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2480 else
2481 ret = btrfs_free_extent(trans, &generic_ref);
2482 if (ret)
2483 goto fail;
2484 } else {
2485 bytenr = btrfs_node_blockptr(buf, i);
2486 num_bytes = fs_info->nodesize;
2487 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2488 num_bytes, parent);
2489 generic_ref.real_root = root->root_key.objectid;
2490 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
2491 generic_ref.skip_qgroup = for_reloc;
2492 if (inc)
2493 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2494 else
2495 ret = btrfs_free_extent(trans, &generic_ref);
2496 if (ret)
2497 goto fail;
2498 }
2499 }
2500 return 0;
2501fail:
2502 return ret;
2503}
2504
2505int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2506 struct extent_buffer *buf, int full_backref)
2507{
2508 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2509}
2510
2511int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2512 struct extent_buffer *buf, int full_backref)
2513{
2514 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2515}
2516
2517int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
2518{
2519 struct btrfs_block_group_cache *block_group;
2520 int readonly = 0;
2521
2522 block_group = btrfs_lookup_block_group(fs_info, bytenr);
2523 if (!block_group || block_group->ro)
2524 readonly = 1;
2525 if (block_group)
2526 btrfs_put_block_group(block_group);
2527 return readonly;
2528}
2529
2530static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2531{
2532 struct btrfs_fs_info *fs_info = root->fs_info;
2533 u64 flags;
2534 u64 ret;
2535
2536 if (data)
2537 flags = BTRFS_BLOCK_GROUP_DATA;
2538 else if (root == fs_info->chunk_root)
2539 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2540 else
2541 flags = BTRFS_BLOCK_GROUP_METADATA;
2542
2543 ret = btrfs_get_alloc_profile(fs_info, flags);
2544 return ret;
2545}
2546
2547static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2548{
2549 struct btrfs_block_group_cache *cache;
2550 u64 bytenr;
2551
2552 spin_lock(&fs_info->block_group_cache_lock);
2553 bytenr = fs_info->first_logical_byte;
2554 spin_unlock(&fs_info->block_group_cache_lock);
2555
2556 if (bytenr < (u64)-1)
2557 return bytenr;
2558
2559 cache = btrfs_lookup_first_block_group(fs_info, search_start);
2560 if (!cache)
2561 return 0;
2562
2563 bytenr = cache->key.objectid;
2564 btrfs_put_block_group(cache);
2565
2566 return bytenr;
2567}
2568
2569static int pin_down_extent(struct btrfs_block_group_cache *cache,
2570 u64 bytenr, u64 num_bytes, int reserved)
2571{
2572 struct btrfs_fs_info *fs_info = cache->fs_info;
2573
2574 spin_lock(&cache->space_info->lock);
2575 spin_lock(&cache->lock);
2576 cache->pinned += num_bytes;
2577 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2578 num_bytes);
2579 if (reserved) {
2580 cache->reserved -= num_bytes;
2581 cache->space_info->bytes_reserved -= num_bytes;
2582 }
2583 spin_unlock(&cache->lock);
2584 spin_unlock(&cache->space_info->lock);
2585
2586 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
2587 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2588 set_extent_dirty(fs_info->pinned_extents, bytenr,
2589 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2590 return 0;
2591}
2592
2593/*
2594 * this function must be called within transaction
2595 */
2596int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
2597 u64 bytenr, u64 num_bytes, int reserved)
2598{
2599 struct btrfs_block_group_cache *cache;
2600
2601 cache = btrfs_lookup_block_group(fs_info, bytenr);
2602 BUG_ON(!cache); /* Logic error */
2603
2604 pin_down_extent(cache, bytenr, num_bytes, reserved);
2605
2606 btrfs_put_block_group(cache);
2607 return 0;
2608}
2609
2610/*
2611 * this function must be called within transaction
2612 */
2613int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
2614 u64 bytenr, u64 num_bytes)
2615{
2616 struct btrfs_block_group_cache *cache;
2617 int ret;
2618
2619 cache = btrfs_lookup_block_group(fs_info, bytenr);
2620 if (!cache)
2621 return -EINVAL;
2622
2623 /*
2624 * pull in the free space cache (if any) so that our pin
2625 * removes the free space from the cache. We have load_only set
2626 * to one because the slow code to read in the free extents does check
2627 * the pinned extents.
2628 */
2629 btrfs_cache_block_group(cache, 1);
2630
2631 pin_down_extent(cache, bytenr, num_bytes, 0);
2632
2633 /* remove us from the free space cache (if we're there at all) */
2634 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2635 btrfs_put_block_group(cache);
2636 return ret;
2637}
2638
2639static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2640 u64 start, u64 num_bytes)
2641{
2642 int ret;
2643 struct btrfs_block_group_cache *block_group;
2644 struct btrfs_caching_control *caching_ctl;
2645
2646 block_group = btrfs_lookup_block_group(fs_info, start);
2647 if (!block_group)
2648 return -EINVAL;
2649
2650 btrfs_cache_block_group(block_group, 0);
2651 caching_ctl = btrfs_get_caching_control(block_group);
2652
2653 if (!caching_ctl) {
2654 /* Logic error */
2655 BUG_ON(!btrfs_block_group_cache_done(block_group));
2656 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2657 } else {
2658 mutex_lock(&caching_ctl->mutex);
2659
2660 if (start >= caching_ctl->progress) {
2661 ret = btrfs_add_excluded_extent(fs_info, start,
2662 num_bytes);
2663 } else if (start + num_bytes <= caching_ctl->progress) {
2664 ret = btrfs_remove_free_space(block_group,
2665 start, num_bytes);
2666 } else {
2667 num_bytes = caching_ctl->progress - start;
2668 ret = btrfs_remove_free_space(block_group,
2669 start, num_bytes);
2670 if (ret)
2671 goto out_lock;
2672
2673 num_bytes = (start + num_bytes) -
2674 caching_ctl->progress;
2675 start = caching_ctl->progress;
2676 ret = btrfs_add_excluded_extent(fs_info, start,
2677 num_bytes);
2678 }
2679out_lock:
2680 mutex_unlock(&caching_ctl->mutex);
2681 btrfs_put_caching_control(caching_ctl);
2682 }
2683 btrfs_put_block_group(block_group);
2684 return ret;
2685}
2686
2687int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2688{
2689 struct btrfs_fs_info *fs_info = eb->fs_info;
2690 struct btrfs_file_extent_item *item;
2691 struct btrfs_key key;
2692 int found_type;
2693 int i;
2694 int ret = 0;
2695
2696 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2697 return 0;
2698
2699 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2700 btrfs_item_key_to_cpu(eb, &key, i);
2701 if (key.type != BTRFS_EXTENT_DATA_KEY)
2702 continue;
2703 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2704 found_type = btrfs_file_extent_type(eb, item);
2705 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2706 continue;
2707 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2708 continue;
2709 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2710 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2711 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2712 if (ret)
2713 break;
2714 }
2715
2716 return ret;
2717}
2718
2719static void
2720btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
2721{
2722 atomic_inc(&bg->reservations);
2723}
2724
2725void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
2726{
2727 struct btrfs_caching_control *next;
2728 struct btrfs_caching_control *caching_ctl;
2729 struct btrfs_block_group_cache *cache;
2730
2731 down_write(&fs_info->commit_root_sem);
2732
2733 list_for_each_entry_safe(caching_ctl, next,
2734 &fs_info->caching_block_groups, list) {
2735 cache = caching_ctl->block_group;
2736 if (btrfs_block_group_cache_done(cache)) {
2737 cache->last_byte_to_unpin = (u64)-1;
2738 list_del_init(&caching_ctl->list);
2739 btrfs_put_caching_control(caching_ctl);
2740 } else {
2741 cache->last_byte_to_unpin = caching_ctl->progress;
2742 }
2743 }
2744
2745 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
2746 fs_info->pinned_extents = &fs_info->freed_extents[1];
2747 else
2748 fs_info->pinned_extents = &fs_info->freed_extents[0];
2749
2750 up_write(&fs_info->commit_root_sem);
2751
2752 btrfs_update_global_block_rsv(fs_info);
2753}
2754
2755/*
2756 * Returns the free cluster for the given space info and sets empty_cluster to
2757 * what it should be based on the mount options.
2758 */
2759static struct btrfs_free_cluster *
2760fetch_cluster_info(struct btrfs_fs_info *fs_info,
2761 struct btrfs_space_info *space_info, u64 *empty_cluster)
2762{
2763 struct btrfs_free_cluster *ret = NULL;
2764
2765 *empty_cluster = 0;
2766 if (btrfs_mixed_space_info(space_info))
2767 return ret;
2768
2769 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2770 ret = &fs_info->meta_alloc_cluster;
2771 if (btrfs_test_opt(fs_info, SSD))
2772 *empty_cluster = SZ_2M;
2773 else
2774 *empty_cluster = SZ_64K;
2775 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2776 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2777 *empty_cluster = SZ_2M;
2778 ret = &fs_info->data_alloc_cluster;
2779 }
2780
2781 return ret;
2782}
2783
2784static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2785 u64 start, u64 end,
2786 const bool return_free_space)
2787{
2788 struct btrfs_block_group_cache *cache = NULL;
2789 struct btrfs_space_info *space_info;
2790 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2791 struct btrfs_free_cluster *cluster = NULL;
2792 u64 len;
2793 u64 total_unpinned = 0;
2794 u64 empty_cluster = 0;
2795 bool readonly;
2796
2797 while (start <= end) {
2798 readonly = false;
2799 if (!cache ||
2800 start >= cache->key.objectid + cache->key.offset) {
2801 if (cache)
2802 btrfs_put_block_group(cache);
2803 total_unpinned = 0;
2804 cache = btrfs_lookup_block_group(fs_info, start);
2805 BUG_ON(!cache); /* Logic error */
2806
2807 cluster = fetch_cluster_info(fs_info,
2808 cache->space_info,
2809 &empty_cluster);
2810 empty_cluster <<= 1;
2811 }
2812
2813 len = cache->key.objectid + cache->key.offset - start;
2814 len = min(len, end + 1 - start);
2815
2816 if (start < cache->last_byte_to_unpin) {
2817 len = min(len, cache->last_byte_to_unpin - start);
2818 if (return_free_space)
2819 btrfs_add_free_space(cache, start, len);
2820 }
2821
2822 start += len;
2823 total_unpinned += len;
2824 space_info = cache->space_info;
2825
2826 /*
2827 * If this space cluster has been marked as fragmented and we've
2828 * unpinned enough in this block group to potentially allow a
2829 * cluster to be created inside of it go ahead and clear the
2830 * fragmented check.
2831 */
2832 if (cluster && cluster->fragmented &&
2833 total_unpinned > empty_cluster) {
2834 spin_lock(&cluster->lock);
2835 cluster->fragmented = 0;
2836 spin_unlock(&cluster->lock);
2837 }
2838
2839 spin_lock(&space_info->lock);
2840 spin_lock(&cache->lock);
2841 cache->pinned -= len;
2842 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2843 space_info->max_extent_size = 0;
2844 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2845 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2846 if (cache->ro) {
2847 space_info->bytes_readonly += len;
2848 readonly = true;
2849 }
2850 spin_unlock(&cache->lock);
2851 if (!readonly && return_free_space &&
2852 global_rsv->space_info == space_info) {
2853 u64 to_add = len;
2854
2855 spin_lock(&global_rsv->lock);
2856 if (!global_rsv->full) {
2857 to_add = min(len, global_rsv->size -
2858 global_rsv->reserved);
2859 global_rsv->reserved += to_add;
2860 btrfs_space_info_update_bytes_may_use(fs_info,
2861 space_info, to_add);
2862 if (global_rsv->reserved >= global_rsv->size)
2863 global_rsv->full = 1;
2864 len -= to_add;
2865 }
2866 spin_unlock(&global_rsv->lock);
2867 /* Add to any tickets we may have */
2868 if (len)
2869 btrfs_try_granting_tickets(fs_info,
2870 space_info);
2871 }
2872 spin_unlock(&space_info->lock);
2873 }
2874
2875 if (cache)
2876 btrfs_put_block_group(cache);
2877 return 0;
2878}
2879
2880int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2881{
2882 struct btrfs_fs_info *fs_info = trans->fs_info;
2883 struct btrfs_block_group_cache *block_group, *tmp;
2884 struct list_head *deleted_bgs;
2885 struct extent_io_tree *unpin;
2886 u64 start;
2887 u64 end;
2888 int ret;
2889
2890 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
2891 unpin = &fs_info->freed_extents[1];
2892 else
2893 unpin = &fs_info->freed_extents[0];
2894
2895 while (!trans->aborted) {
2896 struct extent_state *cached_state = NULL;
2897
2898 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2899 ret = find_first_extent_bit(unpin, 0, &start, &end,
2900 EXTENT_DIRTY, &cached_state);
2901 if (ret) {
2902 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2903 break;
2904 }
2905
2906 if (btrfs_test_opt(fs_info, DISCARD))
2907 ret = btrfs_discard_extent(fs_info, start,
2908 end + 1 - start, NULL);
2909
2910 clear_extent_dirty(unpin, start, end, &cached_state);
2911 unpin_extent_range(fs_info, start, end, true);
2912 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2913 free_extent_state(cached_state);
2914 cond_resched();
2915 }
2916
2917 /*
2918 * Transaction is finished. We don't need the lock anymore. We
2919 * do need to clean up the block groups in case of a transaction
2920 * abort.
2921 */
2922 deleted_bgs = &trans->transaction->deleted_bgs;
2923 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2924 u64 trimmed = 0;
2925
2926 ret = -EROFS;
2927 if (!trans->aborted)
2928 ret = btrfs_discard_extent(fs_info,
2929 block_group->key.objectid,
2930 block_group->key.offset,
2931 &trimmed);
2932
2933 list_del_init(&block_group->bg_list);
2934 btrfs_put_block_group_trimming(block_group);
2935 btrfs_put_block_group(block_group);
2936
2937 if (ret) {
2938 const char *errstr = btrfs_decode_error(ret);
2939 btrfs_warn(fs_info,
2940 "discard failed while removing blockgroup: errno=%d %s",
2941 ret, errstr);
2942 }
2943 }
2944
2945 return 0;
2946}
2947
2948static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2949 struct btrfs_delayed_ref_node *node, u64 parent,
2950 u64 root_objectid, u64 owner_objectid,
2951 u64 owner_offset, int refs_to_drop,
2952 struct btrfs_delayed_extent_op *extent_op)
2953{
2954 struct btrfs_fs_info *info = trans->fs_info;
2955 struct btrfs_key key;
2956 struct btrfs_path *path;
2957 struct btrfs_root *extent_root = info->extent_root;
2958 struct extent_buffer *leaf;
2959 struct btrfs_extent_item *ei;
2960 struct btrfs_extent_inline_ref *iref;
2961 int ret;
2962 int is_data;
2963 int extent_slot = 0;
2964 int found_extent = 0;
2965 int num_to_del = 1;
2966 u32 item_size;
2967 u64 refs;
2968 u64 bytenr = node->bytenr;
2969 u64 num_bytes = node->num_bytes;
2970 int last_ref = 0;
2971 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2972
2973 path = btrfs_alloc_path();
2974 if (!path)
2975 return -ENOMEM;
2976
2977 path->reada = READA_FORWARD;
2978 path->leave_spinning = 1;
2979
2980 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2981 BUG_ON(!is_data && refs_to_drop != 1);
2982
2983 if (is_data)
2984 skinny_metadata = false;
2985
2986 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2987 parent, root_objectid, owner_objectid,
2988 owner_offset);
2989 if (ret == 0) {
2990 extent_slot = path->slots[0];
2991 while (extent_slot >= 0) {
2992 btrfs_item_key_to_cpu(path->nodes[0], &key,
2993 extent_slot);
2994 if (key.objectid != bytenr)
2995 break;
2996 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2997 key.offset == num_bytes) {
2998 found_extent = 1;
2999 break;
3000 }
3001 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3002 key.offset == owner_objectid) {
3003 found_extent = 1;
3004 break;
3005 }
3006 if (path->slots[0] - extent_slot > 5)
3007 break;
3008 extent_slot--;
3009 }
3010
3011 if (!found_extent) {
3012 BUG_ON(iref);
3013 ret = remove_extent_backref(trans, path, NULL,
3014 refs_to_drop,
3015 is_data, &last_ref);
3016 if (ret) {
3017 btrfs_abort_transaction(trans, ret);
3018 goto out;
3019 }
3020 btrfs_release_path(path);
3021 path->leave_spinning = 1;
3022
3023 key.objectid = bytenr;
3024 key.type = BTRFS_EXTENT_ITEM_KEY;
3025 key.offset = num_bytes;
3026
3027 if (!is_data && skinny_metadata) {
3028 key.type = BTRFS_METADATA_ITEM_KEY;
3029 key.offset = owner_objectid;
3030 }
3031
3032 ret = btrfs_search_slot(trans, extent_root,
3033 &key, path, -1, 1);
3034 if (ret > 0 && skinny_metadata && path->slots[0]) {
3035 /*
3036 * Couldn't find our skinny metadata item,
3037 * see if we have ye olde extent item.
3038 */
3039 path->slots[0]--;
3040 btrfs_item_key_to_cpu(path->nodes[0], &key,
3041 path->slots[0]);
3042 if (key.objectid == bytenr &&
3043 key.type == BTRFS_EXTENT_ITEM_KEY &&
3044 key.offset == num_bytes)
3045 ret = 0;
3046 }
3047
3048 if (ret > 0 && skinny_metadata) {
3049 skinny_metadata = false;
3050 key.objectid = bytenr;
3051 key.type = BTRFS_EXTENT_ITEM_KEY;
3052 key.offset = num_bytes;
3053 btrfs_release_path(path);
3054 ret = btrfs_search_slot(trans, extent_root,
3055 &key, path, -1, 1);
3056 }
3057
3058 if (ret) {
3059 btrfs_err(info,
3060 "umm, got %d back from search, was looking for %llu",
3061 ret, bytenr);
3062 if (ret > 0)
3063 btrfs_print_leaf(path->nodes[0]);
3064 }
3065 if (ret < 0) {
3066 btrfs_abort_transaction(trans, ret);
3067 goto out;
3068 }
3069 extent_slot = path->slots[0];
3070 }
3071 } else if (WARN_ON(ret == -ENOENT)) {
3072 btrfs_print_leaf(path->nodes[0]);
3073 btrfs_err(info,
3074 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
3075 bytenr, parent, root_objectid, owner_objectid,
3076 owner_offset);
3077 btrfs_abort_transaction(trans, ret);
3078 goto out;
3079 } else {
3080 btrfs_abort_transaction(trans, ret);
3081 goto out;
3082 }
3083
3084 leaf = path->nodes[0];
3085 item_size = btrfs_item_size_nr(leaf, extent_slot);
3086 if (unlikely(item_size < sizeof(*ei))) {
3087 ret = -EINVAL;
3088 btrfs_print_v0_err(info);
3089 btrfs_abort_transaction(trans, ret);
3090 goto out;
3091 }
3092 ei = btrfs_item_ptr(leaf, extent_slot,
3093 struct btrfs_extent_item);
3094 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3095 key.type == BTRFS_EXTENT_ITEM_KEY) {
3096 struct btrfs_tree_block_info *bi;
3097 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
3098 bi = (struct btrfs_tree_block_info *)(ei + 1);
3099 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3100 }
3101
3102 refs = btrfs_extent_refs(leaf, ei);
3103 if (refs < refs_to_drop) {
3104 btrfs_err(info,
3105 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
3106 refs_to_drop, refs, bytenr);
3107 ret = -EINVAL;
3108 btrfs_abort_transaction(trans, ret);
3109 goto out;
3110 }
3111 refs -= refs_to_drop;
3112
3113 if (refs > 0) {
3114 if (extent_op)
3115 __run_delayed_extent_op(extent_op, leaf, ei);
3116 /*
3117 * In the case of inline back ref, reference count will
3118 * be updated by remove_extent_backref
3119 */
3120 if (iref) {
3121 BUG_ON(!found_extent);
3122 } else {
3123 btrfs_set_extent_refs(leaf, ei, refs);
3124 btrfs_mark_buffer_dirty(leaf);
3125 }
3126 if (found_extent) {
3127 ret = remove_extent_backref(trans, path, iref,
3128 refs_to_drop, is_data,
3129 &last_ref);
3130 if (ret) {
3131 btrfs_abort_transaction(trans, ret);
3132 goto out;
3133 }
3134 }
3135 } else {
3136 if (found_extent) {
3137 BUG_ON(is_data && refs_to_drop !=
3138 extent_data_ref_count(path, iref));
3139 if (iref) {
3140 BUG_ON(path->slots[0] != extent_slot);
3141 } else {
3142 BUG_ON(path->slots[0] != extent_slot + 1);
3143 path->slots[0] = extent_slot;
3144 num_to_del = 2;
3145 }
3146 }
3147
3148 last_ref = 1;
3149 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3150 num_to_del);
3151 if (ret) {
3152 btrfs_abort_transaction(trans, ret);
3153 goto out;
3154 }
3155 btrfs_release_path(path);
3156
3157 if (is_data) {
3158 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
3159 if (ret) {
3160 btrfs_abort_transaction(trans, ret);
3161 goto out;
3162 }
3163 }
3164
3165 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3166 if (ret) {
3167 btrfs_abort_transaction(trans, ret);
3168 goto out;
3169 }
3170
3171 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3172 if (ret) {
3173 btrfs_abort_transaction(trans, ret);
3174 goto out;
3175 }
3176 }
3177 btrfs_release_path(path);
3178
3179out:
3180 btrfs_free_path(path);
3181 return ret;
3182}
3183
3184/*
3185 * when we free an block, it is possible (and likely) that we free the last
3186 * delayed ref for that extent as well. This searches the delayed ref tree for
3187 * a given extent, and if there are no other delayed refs to be processed, it
3188 * removes it from the tree.
3189 */
3190static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3191 u64 bytenr)
3192{
3193 struct btrfs_delayed_ref_head *head;
3194 struct btrfs_delayed_ref_root *delayed_refs;
3195 int ret = 0;
3196
3197 delayed_refs = &trans->transaction->delayed_refs;
3198 spin_lock(&delayed_refs->lock);
3199 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3200 if (!head)
3201 goto out_delayed_unlock;
3202
3203 spin_lock(&head->lock);
3204 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3205 goto out;
3206
3207 if (cleanup_extent_op(head) != NULL)
3208 goto out;
3209
3210 /*
3211 * waiting for the lock here would deadlock. If someone else has it
3212 * locked they are already in the process of dropping it anyway
3213 */
3214 if (!mutex_trylock(&head->mutex))
3215 goto out;
3216
3217 btrfs_delete_ref_head(delayed_refs, head);
3218 head->processing = 0;
3219
3220 spin_unlock(&head->lock);
3221 spin_unlock(&delayed_refs->lock);
3222
3223 BUG_ON(head->extent_op);
3224 if (head->must_insert_reserved)
3225 ret = 1;
3226
3227 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3228 mutex_unlock(&head->mutex);
3229 btrfs_put_delayed_ref_head(head);
3230 return ret;
3231out:
3232 spin_unlock(&head->lock);
3233
3234out_delayed_unlock:
3235 spin_unlock(&delayed_refs->lock);
3236 return 0;
3237}
3238
3239void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3240 struct btrfs_root *root,
3241 struct extent_buffer *buf,
3242 u64 parent, int last_ref)
3243{
3244 struct btrfs_fs_info *fs_info = root->fs_info;
3245 struct btrfs_ref generic_ref = { 0 };
3246 int pin = 1;
3247 int ret;
3248
3249 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3250 buf->start, buf->len, parent);
3251 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3252 root->root_key.objectid);
3253
3254 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3255 int old_ref_mod, new_ref_mod;
3256
3257 btrfs_ref_tree_mod(fs_info, &generic_ref);
3258 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
3259 &old_ref_mod, &new_ref_mod);
3260 BUG_ON(ret); /* -ENOMEM */
3261 pin = old_ref_mod >= 0 && new_ref_mod < 0;
3262 }
3263
3264 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3265 struct btrfs_block_group_cache *cache;
3266
3267 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3268 ret = check_ref_cleanup(trans, buf->start);
3269 if (!ret)
3270 goto out;
3271 }
3272
3273 pin = 0;
3274 cache = btrfs_lookup_block_group(fs_info, buf->start);
3275
3276 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3277 pin_down_extent(cache, buf->start, buf->len, 1);
3278 btrfs_put_block_group(cache);
3279 goto out;
3280 }
3281
3282 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3283
3284 btrfs_add_free_space(cache, buf->start, buf->len);
3285 btrfs_free_reserved_bytes(cache, buf->len, 0);
3286 btrfs_put_block_group(cache);
3287 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3288 }
3289out:
3290 if (pin)
3291 add_pinned_bytes(fs_info, &generic_ref);
3292
3293 if (last_ref) {
3294 /*
3295 * Deleting the buffer, clear the corrupt flag since it doesn't
3296 * matter anymore.
3297 */
3298 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3299 }
3300}
3301
3302/* Can return -ENOMEM */
3303int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3304{
3305 struct btrfs_fs_info *fs_info = trans->fs_info;
3306 int old_ref_mod, new_ref_mod;
3307 int ret;
3308
3309 if (btrfs_is_testing(fs_info))
3310 return 0;
3311
3312 /*
3313 * tree log blocks never actually go into the extent allocation
3314 * tree, just update pinning info and exit early.
3315 */
3316 if ((ref->type == BTRFS_REF_METADATA &&
3317 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3318 (ref->type == BTRFS_REF_DATA &&
3319 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3320 /* unlocks the pinned mutex */
3321 btrfs_pin_extent(fs_info, ref->bytenr, ref->len, 1);
3322 old_ref_mod = new_ref_mod = 0;
3323 ret = 0;
3324 } else if (ref->type == BTRFS_REF_METADATA) {
3325 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
3326 &old_ref_mod, &new_ref_mod);
3327 } else {
3328 ret = btrfs_add_delayed_data_ref(trans, ref, 0,
3329 &old_ref_mod, &new_ref_mod);
3330 }
3331
3332 if (!((ref->type == BTRFS_REF_METADATA &&
3333 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3334 (ref->type == BTRFS_REF_DATA &&
3335 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3336 btrfs_ref_tree_mod(fs_info, ref);
3337
3338 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
3339 add_pinned_bytes(fs_info, ref);
3340
3341 return ret;
3342}
3343
3344enum btrfs_loop_type {
3345 LOOP_CACHING_NOWAIT,
3346 LOOP_CACHING_WAIT,
3347 LOOP_ALLOC_CHUNK,
3348 LOOP_NO_EMPTY_SIZE,
3349};
3350
3351static inline void
3352btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
3353 int delalloc)
3354{
3355 if (delalloc)
3356 down_read(&cache->data_rwsem);
3357}
3358
3359static inline void
3360btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
3361 int delalloc)
3362{
3363 btrfs_get_block_group(cache);
3364 if (delalloc)
3365 down_read(&cache->data_rwsem);
3366}
3367
3368static struct btrfs_block_group_cache *
3369btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
3370 struct btrfs_free_cluster *cluster,
3371 int delalloc)
3372{
3373 struct btrfs_block_group_cache *used_bg = NULL;
3374
3375 spin_lock(&cluster->refill_lock);
3376 while (1) {
3377 used_bg = cluster->block_group;
3378 if (!used_bg)
3379 return NULL;
3380
3381 if (used_bg == block_group)
3382 return used_bg;
3383
3384 btrfs_get_block_group(used_bg);
3385
3386 if (!delalloc)
3387 return used_bg;
3388
3389 if (down_read_trylock(&used_bg->data_rwsem))
3390 return used_bg;
3391
3392 spin_unlock(&cluster->refill_lock);
3393
3394 /* We should only have one-level nested. */
3395 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3396
3397 spin_lock(&cluster->refill_lock);
3398 if (used_bg == cluster->block_group)
3399 return used_bg;
3400
3401 up_read(&used_bg->data_rwsem);
3402 btrfs_put_block_group(used_bg);
3403 }
3404}
3405
3406static inline void
3407btrfs_release_block_group(struct btrfs_block_group_cache *cache,
3408 int delalloc)
3409{
3410 if (delalloc)
3411 up_read(&cache->data_rwsem);
3412 btrfs_put_block_group(cache);
3413}
3414
3415/*
3416 * Structure used internally for find_free_extent() function. Wraps needed
3417 * parameters.
3418 */
3419struct find_free_extent_ctl {
3420 /* Basic allocation info */
3421 u64 ram_bytes;
3422 u64 num_bytes;
3423 u64 empty_size;
3424 u64 flags;
3425 int delalloc;
3426
3427 /* Where to start the search inside the bg */
3428 u64 search_start;
3429
3430 /* For clustered allocation */
3431 u64 empty_cluster;
3432
3433 bool have_caching_bg;
3434 bool orig_have_caching_bg;
3435
3436 /* RAID index, converted from flags */
3437 int index;
3438
3439 /*
3440 * Current loop number, check find_free_extent_update_loop() for details
3441 */
3442 int loop;
3443
3444 /*
3445 * Whether we're refilling a cluster, if true we need to re-search
3446 * current block group but don't try to refill the cluster again.
3447 */
3448 bool retry_clustered;
3449
3450 /*
3451 * Whether we're updating free space cache, if true we need to re-search
3452 * current block group but don't try updating free space cache again.
3453 */
3454 bool retry_unclustered;
3455
3456 /* If current block group is cached */
3457 int cached;
3458
3459 /* Max contiguous hole found */
3460 u64 max_extent_size;
3461
3462 /* Total free space from free space cache, not always contiguous */
3463 u64 total_free_space;
3464
3465 /* Found result */
3466 u64 found_offset;
3467};
3468
3469
3470/*
3471 * Helper function for find_free_extent().
3472 *
3473 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3474 * Return -EAGAIN to inform caller that we need to re-search this block group
3475 * Return >0 to inform caller that we find nothing
3476 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3477 */
3478static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
3479 struct btrfs_free_cluster *last_ptr,
3480 struct find_free_extent_ctl *ffe_ctl,
3481 struct btrfs_block_group_cache **cluster_bg_ret)
3482{
3483 struct btrfs_block_group_cache *cluster_bg;
3484 u64 aligned_cluster;
3485 u64 offset;
3486 int ret;
3487
3488 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3489 if (!cluster_bg)
3490 goto refill_cluster;
3491 if (cluster_bg != bg && (cluster_bg->ro ||
3492 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3493 goto release_cluster;
3494
3495 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3496 ffe_ctl->num_bytes, cluster_bg->key.objectid,
3497 &ffe_ctl->max_extent_size);
3498 if (offset) {
3499 /* We have a block, we're done */
3500 spin_unlock(&last_ptr->refill_lock);
3501 trace_btrfs_reserve_extent_cluster(cluster_bg,
3502 ffe_ctl->search_start, ffe_ctl->num_bytes);
3503 *cluster_bg_ret = cluster_bg;
3504 ffe_ctl->found_offset = offset;
3505 return 0;
3506 }
3507 WARN_ON(last_ptr->block_group != cluster_bg);
3508
3509release_cluster:
3510 /*
3511 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3512 * lets just skip it and let the allocator find whatever block it can
3513 * find. If we reach this point, we will have tried the cluster
3514 * allocator plenty of times and not have found anything, so we are
3515 * likely way too fragmented for the clustering stuff to find anything.
3516 *
3517 * However, if the cluster is taken from the current block group,
3518 * release the cluster first, so that we stand a better chance of
3519 * succeeding in the unclustered allocation.
3520 */
3521 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3522 spin_unlock(&last_ptr->refill_lock);
3523 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3524 return -ENOENT;
3525 }
3526
3527 /* This cluster didn't work out, free it and start over */
3528 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3529
3530 if (cluster_bg != bg)
3531 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3532
3533refill_cluster:
3534 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3535 spin_unlock(&last_ptr->refill_lock);
3536 return -ENOENT;
3537 }
3538
3539 aligned_cluster = max_t(u64,
3540 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3541 bg->full_stripe_len);
3542 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3543 ffe_ctl->num_bytes, aligned_cluster);
3544 if (ret == 0) {
3545 /* Now pull our allocation out of this cluster */
3546 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3547 ffe_ctl->num_bytes, ffe_ctl->search_start,
3548 &ffe_ctl->max_extent_size);
3549 if (offset) {
3550 /* We found one, proceed */
3551 spin_unlock(&last_ptr->refill_lock);
3552 trace_btrfs_reserve_extent_cluster(bg,
3553 ffe_ctl->search_start,
3554 ffe_ctl->num_bytes);
3555 ffe_ctl->found_offset = offset;
3556 return 0;
3557 }
3558 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3559 !ffe_ctl->retry_clustered) {
3560 spin_unlock(&last_ptr->refill_lock);
3561
3562 ffe_ctl->retry_clustered = true;
3563 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3564 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3565 return -EAGAIN;
3566 }
3567 /*
3568 * At this point we either didn't find a cluster or we weren't able to
3569 * allocate a block from our cluster. Free the cluster we've been
3570 * trying to use, and go to the next block group.
3571 */
3572 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3573 spin_unlock(&last_ptr->refill_lock);
3574 return 1;
3575}
3576
3577/*
3578 * Return >0 to inform caller that we find nothing
3579 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3580 * Return -EAGAIN to inform caller that we need to re-search this block group
3581 */
3582static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg,
3583 struct btrfs_free_cluster *last_ptr,
3584 struct find_free_extent_ctl *ffe_ctl)
3585{
3586 u64 offset;
3587
3588 /*
3589 * We are doing an unclustered allocation, set the fragmented flag so
3590 * we don't bother trying to setup a cluster again until we get more
3591 * space.
3592 */
3593 if (unlikely(last_ptr)) {
3594 spin_lock(&last_ptr->lock);
3595 last_ptr->fragmented = 1;
3596 spin_unlock(&last_ptr->lock);
3597 }
3598 if (ffe_ctl->cached) {
3599 struct btrfs_free_space_ctl *free_space_ctl;
3600
3601 free_space_ctl = bg->free_space_ctl;
3602 spin_lock(&free_space_ctl->tree_lock);
3603 if (free_space_ctl->free_space <
3604 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3605 ffe_ctl->empty_size) {
3606 ffe_ctl->total_free_space = max_t(u64,
3607 ffe_ctl->total_free_space,
3608 free_space_ctl->free_space);
3609 spin_unlock(&free_space_ctl->tree_lock);
3610 return 1;
3611 }
3612 spin_unlock(&free_space_ctl->tree_lock);
3613 }
3614
3615 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3616 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3617 &ffe_ctl->max_extent_size);
3618
3619 /*
3620 * If we didn't find a chunk, and we haven't failed on this block group
3621 * before, and this block group is in the middle of caching and we are
3622 * ok with waiting, then go ahead and wait for progress to be made, and
3623 * set @retry_unclustered to true.
3624 *
3625 * If @retry_unclustered is true then we've already waited on this
3626 * block group once and should move on to the next block group.
3627 */
3628 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3629 ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3630 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3631 ffe_ctl->empty_size);
3632 ffe_ctl->retry_unclustered = true;
3633 return -EAGAIN;
3634 } else if (!offset) {
3635 return 1;
3636 }
3637 ffe_ctl->found_offset = offset;
3638 return 0;
3639}
3640
3641/*
3642 * Return >0 means caller needs to re-search for free extent
3643 * Return 0 means we have the needed free extent.
3644 * Return <0 means we failed to locate any free extent.
3645 */
3646static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3647 struct btrfs_free_cluster *last_ptr,
3648 struct btrfs_key *ins,
3649 struct find_free_extent_ctl *ffe_ctl,
3650 int full_search, bool use_cluster)
3651{
3652 struct btrfs_root *root = fs_info->extent_root;
3653 int ret;
3654
3655 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3656 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3657 ffe_ctl->orig_have_caching_bg = true;
3658
3659 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3660 ffe_ctl->have_caching_bg)
3661 return 1;
3662
3663 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3664 return 1;
3665
3666 if (ins->objectid) {
3667 if (!use_cluster && last_ptr) {
3668 spin_lock(&last_ptr->lock);
3669 last_ptr->window_start = ins->objectid;
3670 spin_unlock(&last_ptr->lock);
3671 }
3672 return 0;
3673 }
3674
3675 /*
3676 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3677 * caching kthreads as we move along
3678 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3679 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3680 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3681 * again
3682 */
3683 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3684 ffe_ctl->index = 0;
3685 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
3686 /*
3687 * We want to skip the LOOP_CACHING_WAIT step if we
3688 * don't have any uncached bgs and we've already done a
3689 * full search through.
3690 */
3691 if (ffe_ctl->orig_have_caching_bg || !full_search)
3692 ffe_ctl->loop = LOOP_CACHING_WAIT;
3693 else
3694 ffe_ctl->loop = LOOP_ALLOC_CHUNK;
3695 } else {
3696 ffe_ctl->loop++;
3697 }
3698
3699 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3700 struct btrfs_trans_handle *trans;
3701 int exist = 0;
3702
3703 trans = current->journal_info;
3704 if (trans)
3705 exist = 1;
3706 else
3707 trans = btrfs_join_transaction(root);
3708
3709 if (IS_ERR(trans)) {
3710 ret = PTR_ERR(trans);
3711 return ret;
3712 }
3713
3714 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3715 CHUNK_ALLOC_FORCE);
3716
3717 /*
3718 * If we can't allocate a new chunk we've already looped
3719 * through at least once, move on to the NO_EMPTY_SIZE
3720 * case.
3721 */
3722 if (ret == -ENOSPC)
3723 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3724
3725 /* Do not bail out on ENOSPC since we can do more. */
3726 if (ret < 0 && ret != -ENOSPC)
3727 btrfs_abort_transaction(trans, ret);
3728 else
3729 ret = 0;
3730 if (!exist)
3731 btrfs_end_transaction(trans);
3732 if (ret)
3733 return ret;
3734 }
3735
3736 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
3737 /*
3738 * Don't loop again if we already have no empty_size and
3739 * no empty_cluster.
3740 */
3741 if (ffe_ctl->empty_size == 0 &&
3742 ffe_ctl->empty_cluster == 0)
3743 return -ENOSPC;
3744 ffe_ctl->empty_size = 0;
3745 ffe_ctl->empty_cluster = 0;
3746 }
3747 return 1;
3748 }
3749 return -ENOSPC;
3750}
3751
3752/*
3753 * walks the btree of allocated extents and find a hole of a given size.
3754 * The key ins is changed to record the hole:
3755 * ins->objectid == start position
3756 * ins->flags = BTRFS_EXTENT_ITEM_KEY
3757 * ins->offset == the size of the hole.
3758 * Any available blocks before search_start are skipped.
3759 *
3760 * If there is no suitable free space, we will record the max size of
3761 * the free space extent currently.
3762 *
3763 * The overall logic and call chain:
3764 *
3765 * find_free_extent()
3766 * |- Iterate through all block groups
3767 * | |- Get a valid block group
3768 * | |- Try to do clustered allocation in that block group
3769 * | |- Try to do unclustered allocation in that block group
3770 * | |- Check if the result is valid
3771 * | | |- If valid, then exit
3772 * | |- Jump to next block group
3773 * |
3774 * |- Push harder to find free extents
3775 * |- If not found, re-iterate all block groups
3776 */
3777static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
3778 u64 ram_bytes, u64 num_bytes, u64 empty_size,
3779 u64 hint_byte, struct btrfs_key *ins,
3780 u64 flags, int delalloc)
3781{
3782 int ret = 0;
3783 struct btrfs_free_cluster *last_ptr = NULL;
3784 struct btrfs_block_group_cache *block_group = NULL;
3785 struct find_free_extent_ctl ffe_ctl = {0};
3786 struct btrfs_space_info *space_info;
3787 bool use_cluster = true;
3788 bool full_search = false;
3789
3790 WARN_ON(num_bytes < fs_info->sectorsize);
3791
3792 ffe_ctl.ram_bytes = ram_bytes;
3793 ffe_ctl.num_bytes = num_bytes;
3794 ffe_ctl.empty_size = empty_size;
3795 ffe_ctl.flags = flags;
3796 ffe_ctl.search_start = 0;
3797 ffe_ctl.retry_clustered = false;
3798 ffe_ctl.retry_unclustered = false;
3799 ffe_ctl.delalloc = delalloc;
3800 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
3801 ffe_ctl.have_caching_bg = false;
3802 ffe_ctl.orig_have_caching_bg = false;
3803 ffe_ctl.found_offset = 0;
3804
3805 ins->type = BTRFS_EXTENT_ITEM_KEY;
3806 ins->objectid = 0;
3807 ins->offset = 0;
3808
3809 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3810
3811 space_info = btrfs_find_space_info(fs_info, flags);
3812 if (!space_info) {
3813 btrfs_err(fs_info, "No space info for %llu", flags);
3814 return -ENOSPC;
3815 }
3816
3817 /*
3818 * If our free space is heavily fragmented we may not be able to make
3819 * big contiguous allocations, so instead of doing the expensive search
3820 * for free space, simply return ENOSPC with our max_extent_size so we
3821 * can go ahead and search for a more manageable chunk.
3822 *
3823 * If our max_extent_size is large enough for our allocation simply
3824 * disable clustering since we will likely not be able to find enough
3825 * space to create a cluster and induce latency trying.
3826 */
3827 if (unlikely(space_info->max_extent_size)) {
3828 spin_lock(&space_info->lock);
3829 if (space_info->max_extent_size &&
3830 num_bytes > space_info->max_extent_size) {
3831 ins->offset = space_info->max_extent_size;
3832 spin_unlock(&space_info->lock);
3833 return -ENOSPC;
3834 } else if (space_info->max_extent_size) {
3835 use_cluster = false;
3836 }
3837 spin_unlock(&space_info->lock);
3838 }
3839
3840 last_ptr = fetch_cluster_info(fs_info, space_info,
3841 &ffe_ctl.empty_cluster);
3842 if (last_ptr) {
3843 spin_lock(&last_ptr->lock);
3844 if (last_ptr->block_group)
3845 hint_byte = last_ptr->window_start;
3846 if (last_ptr->fragmented) {
3847 /*
3848 * We still set window_start so we can keep track of the
3849 * last place we found an allocation to try and save
3850 * some time.
3851 */
3852 hint_byte = last_ptr->window_start;
3853 use_cluster = false;
3854 }
3855 spin_unlock(&last_ptr->lock);
3856 }
3857
3858 ffe_ctl.search_start = max(ffe_ctl.search_start,
3859 first_logical_byte(fs_info, 0));
3860 ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
3861 if (ffe_ctl.search_start == hint_byte) {
3862 block_group = btrfs_lookup_block_group(fs_info,
3863 ffe_ctl.search_start);
3864 /*
3865 * we don't want to use the block group if it doesn't match our
3866 * allocation bits, or if its not cached.
3867 *
3868 * However if we are re-searching with an ideal block group
3869 * picked out then we don't care that the block group is cached.
3870 */
3871 if (block_group && block_group_bits(block_group, flags) &&
3872 block_group->cached != BTRFS_CACHE_NO) {
3873 down_read(&space_info->groups_sem);
3874 if (list_empty(&block_group->list) ||
3875 block_group->ro) {
3876 /*
3877 * someone is removing this block group,
3878 * we can't jump into the have_block_group
3879 * target because our list pointers are not
3880 * valid
3881 */
3882 btrfs_put_block_group(block_group);
3883 up_read(&space_info->groups_sem);
3884 } else {
3885 ffe_ctl.index = btrfs_bg_flags_to_raid_index(
3886 block_group->flags);
3887 btrfs_lock_block_group(block_group, delalloc);
3888 goto have_block_group;
3889 }
3890 } else if (block_group) {
3891 btrfs_put_block_group(block_group);
3892 }
3893 }
3894search:
3895 ffe_ctl.have_caching_bg = false;
3896 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
3897 ffe_ctl.index == 0)
3898 full_search = true;
3899 down_read(&space_info->groups_sem);
3900 list_for_each_entry(block_group,
3901 &space_info->block_groups[ffe_ctl.index], list) {
3902 /* If the block group is read-only, we can skip it entirely. */
3903 if (unlikely(block_group->ro))
3904 continue;
3905
3906 btrfs_grab_block_group(block_group, delalloc);
3907 ffe_ctl.search_start = block_group->key.objectid;
3908
3909 /*
3910 * this can happen if we end up cycling through all the
3911 * raid types, but we want to make sure we only allocate
3912 * for the proper type.
3913 */
3914 if (!block_group_bits(block_group, flags)) {
3915 u64 extra = BTRFS_BLOCK_GROUP_DUP |
3916 BTRFS_BLOCK_GROUP_RAID1_MASK |
3917 BTRFS_BLOCK_GROUP_RAID56_MASK |
3918 BTRFS_BLOCK_GROUP_RAID10;
3919
3920 /*
3921 * if they asked for extra copies and this block group
3922 * doesn't provide them, bail. This does allow us to
3923 * fill raid0 from raid1.
3924 */
3925 if ((flags & extra) && !(block_group->flags & extra))
3926 goto loop;
3927
3928 /*
3929 * This block group has different flags than we want.
3930 * It's possible that we have MIXED_GROUP flag but no
3931 * block group is mixed. Just skip such block group.
3932 */
3933 btrfs_release_block_group(block_group, delalloc);
3934 continue;
3935 }
3936
3937have_block_group:
3938 ffe_ctl.cached = btrfs_block_group_cache_done(block_group);
3939 if (unlikely(!ffe_ctl.cached)) {
3940 ffe_ctl.have_caching_bg = true;
3941 ret = btrfs_cache_block_group(block_group, 0);
3942 BUG_ON(ret < 0);
3943 ret = 0;
3944 }
3945
3946 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
3947 goto loop;
3948
3949 /*
3950 * Ok we want to try and use the cluster allocator, so
3951 * lets look there
3952 */
3953 if (last_ptr && use_cluster) {
3954 struct btrfs_block_group_cache *cluster_bg = NULL;
3955
3956 ret = find_free_extent_clustered(block_group, last_ptr,
3957 &ffe_ctl, &cluster_bg);
3958
3959 if (ret == 0) {
3960 if (cluster_bg && cluster_bg != block_group) {
3961 btrfs_release_block_group(block_group,
3962 delalloc);
3963 block_group = cluster_bg;
3964 }
3965 goto checks;
3966 } else if (ret == -EAGAIN) {
3967 goto have_block_group;
3968 } else if (ret > 0) {
3969 goto loop;
3970 }
3971 /* ret == -ENOENT case falls through */
3972 }
3973
3974 ret = find_free_extent_unclustered(block_group, last_ptr,
3975 &ffe_ctl);
3976 if (ret == -EAGAIN)
3977 goto have_block_group;
3978 else if (ret > 0)
3979 goto loop;
3980 /* ret == 0 case falls through */
3981checks:
3982 ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
3983 fs_info->stripesize);
3984
3985 /* move on to the next group */
3986 if (ffe_ctl.search_start + num_bytes >
3987 block_group->key.objectid + block_group->key.offset) {
3988 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
3989 num_bytes);
3990 goto loop;
3991 }
3992
3993 if (ffe_ctl.found_offset < ffe_ctl.search_start)
3994 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
3995 ffe_ctl.search_start - ffe_ctl.found_offset);
3996
3997 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
3998 num_bytes, delalloc);
3999 if (ret == -EAGAIN) {
4000 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4001 num_bytes);
4002 goto loop;
4003 }
4004 btrfs_inc_block_group_reservations(block_group);
4005
4006 /* we are all good, lets return */
4007 ins->objectid = ffe_ctl.search_start;
4008 ins->offset = num_bytes;
4009
4010 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4011 num_bytes);
4012 btrfs_release_block_group(block_group, delalloc);
4013 break;
4014loop:
4015 ffe_ctl.retry_clustered = false;
4016 ffe_ctl.retry_unclustered = false;
4017 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4018 ffe_ctl.index);
4019 btrfs_release_block_group(block_group, delalloc);
4020 cond_resched();
4021 }
4022 up_read(&space_info->groups_sem);
4023
4024 ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
4025 full_search, use_cluster);
4026 if (ret > 0)
4027 goto search;
4028
4029 if (ret == -ENOSPC) {
4030 /*
4031 * Use ffe_ctl->total_free_space as fallback if we can't find
4032 * any contiguous hole.
4033 */
4034 if (!ffe_ctl.max_extent_size)
4035 ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4036 spin_lock(&space_info->lock);
4037 space_info->max_extent_size = ffe_ctl.max_extent_size;
4038 spin_unlock(&space_info->lock);
4039 ins->offset = ffe_ctl.max_extent_size;
4040 }
4041 return ret;
4042}
4043
4044/*
4045 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4046 * hole that is at least as big as @num_bytes.
4047 *
4048 * @root - The root that will contain this extent
4049 *
4050 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4051 * is used for accounting purposes. This value differs
4052 * from @num_bytes only in the case of compressed extents.
4053 *
4054 * @num_bytes - Number of bytes to allocate on-disk.
4055 *
4056 * @min_alloc_size - Indicates the minimum amount of space that the
4057 * allocator should try to satisfy. In some cases
4058 * @num_bytes may be larger than what is required and if
4059 * the filesystem is fragmented then allocation fails.
4060 * However, the presence of @min_alloc_size gives a
4061 * chance to try and satisfy the smaller allocation.
4062 *
4063 * @empty_size - A hint that you plan on doing more COW. This is the
4064 * size in bytes the allocator should try to find free
4065 * next to the block it returns. This is just a hint and
4066 * may be ignored by the allocator.
4067 *
4068 * @hint_byte - Hint to the allocator to start searching above the byte
4069 * address passed. It might be ignored.
4070 *
4071 * @ins - This key is modified to record the found hole. It will
4072 * have the following values:
4073 * ins->objectid == start position
4074 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4075 * ins->offset == the size of the hole.
4076 *
4077 * @is_data - Boolean flag indicating whether an extent is
4078 * allocated for data (true) or metadata (false)
4079 *
4080 * @delalloc - Boolean flag indicating whether this allocation is for
4081 * delalloc or not. If 'true' data_rwsem of block groups
4082 * is going to be acquired.
4083 *
4084 *
4085 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4086 * case -ENOSPC is returned then @ins->offset will contain the size of the
4087 * largest available hole the allocator managed to find.
4088 */
4089int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4090 u64 num_bytes, u64 min_alloc_size,
4091 u64 empty_size, u64 hint_byte,
4092 struct btrfs_key *ins, int is_data, int delalloc)
4093{
4094 struct btrfs_fs_info *fs_info = root->fs_info;
4095 bool final_tried = num_bytes == min_alloc_size;
4096 u64 flags;
4097 int ret;
4098
4099 flags = get_alloc_profile_by_root(root, is_data);
4100again:
4101 WARN_ON(num_bytes < fs_info->sectorsize);
4102 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
4103 hint_byte, ins, flags, delalloc);
4104 if (!ret && !is_data) {
4105 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4106 } else if (ret == -ENOSPC) {
4107 if (!final_tried && ins->offset) {
4108 num_bytes = min(num_bytes >> 1, ins->offset);
4109 num_bytes = round_down(num_bytes,
4110 fs_info->sectorsize);
4111 num_bytes = max(num_bytes, min_alloc_size);
4112 ram_bytes = num_bytes;
4113 if (num_bytes == min_alloc_size)
4114 final_tried = true;
4115 goto again;
4116 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4117 struct btrfs_space_info *sinfo;
4118
4119 sinfo = btrfs_find_space_info(fs_info, flags);
4120 btrfs_err(fs_info,
4121 "allocation failed flags %llu, wanted %llu",
4122 flags, num_bytes);
4123 if (sinfo)
4124 btrfs_dump_space_info(fs_info, sinfo,
4125 num_bytes, 1);
4126 }
4127 }
4128
4129 return ret;
4130}
4131
4132static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4133 u64 start, u64 len,
4134 int pin, int delalloc)
4135{
4136 struct btrfs_block_group_cache *cache;
4137 int ret = 0;
4138
4139 cache = btrfs_lookup_block_group(fs_info, start);
4140 if (!cache) {
4141 btrfs_err(fs_info, "Unable to find block group for %llu",
4142 start);
4143 return -ENOSPC;
4144 }
4145
4146 if (pin)
4147 pin_down_extent(cache, start, len, 1);
4148 else {
4149 if (btrfs_test_opt(fs_info, DISCARD))
4150 ret = btrfs_discard_extent(fs_info, start, len, NULL);
4151 btrfs_add_free_space(cache, start, len);
4152 btrfs_free_reserved_bytes(cache, len, delalloc);
4153 trace_btrfs_reserved_extent_free(fs_info, start, len);
4154 }
4155
4156 btrfs_put_block_group(cache);
4157 return ret;
4158}
4159
4160int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4161 u64 start, u64 len, int delalloc)
4162{
4163 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
4164}
4165
4166int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
4167 u64 start, u64 len)
4168{
4169 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
4170}
4171
4172static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4173 u64 parent, u64 root_objectid,
4174 u64 flags, u64 owner, u64 offset,
4175 struct btrfs_key *ins, int ref_mod)
4176{
4177 struct btrfs_fs_info *fs_info = trans->fs_info;
4178 int ret;
4179 struct btrfs_extent_item *extent_item;
4180 struct btrfs_extent_inline_ref *iref;
4181 struct btrfs_path *path;
4182 struct extent_buffer *leaf;
4183 int type;
4184 u32 size;
4185
4186 if (parent > 0)
4187 type = BTRFS_SHARED_DATA_REF_KEY;
4188 else
4189 type = BTRFS_EXTENT_DATA_REF_KEY;
4190
4191 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4192
4193 path = btrfs_alloc_path();
4194 if (!path)
4195 return -ENOMEM;
4196
4197 path->leave_spinning = 1;
4198 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4199 ins, size);
4200 if (ret) {
4201 btrfs_free_path(path);
4202 return ret;
4203 }
4204
4205 leaf = path->nodes[0];
4206 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4207 struct btrfs_extent_item);
4208 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4209 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4210 btrfs_set_extent_flags(leaf, extent_item,
4211 flags | BTRFS_EXTENT_FLAG_DATA);
4212
4213 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4214 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4215 if (parent > 0) {
4216 struct btrfs_shared_data_ref *ref;
4217 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4218 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4219 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4220 } else {
4221 struct btrfs_extent_data_ref *ref;
4222 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4223 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4224 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4225 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4226 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4227 }
4228
4229 btrfs_mark_buffer_dirty(path->nodes[0]);
4230 btrfs_free_path(path);
4231
4232 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4233 if (ret)
4234 return ret;
4235
4236 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4237 if (ret) { /* -ENOENT, logic error */
4238 btrfs_err(fs_info, "update block group failed for %llu %llu",
4239 ins->objectid, ins->offset);
4240 BUG();
4241 }
4242 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4243 return ret;
4244}
4245
4246static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4247 struct btrfs_delayed_ref_node *node,
4248 struct btrfs_delayed_extent_op *extent_op)
4249{
4250 struct btrfs_fs_info *fs_info = trans->fs_info;
4251 int ret;
4252 struct btrfs_extent_item *extent_item;
4253 struct btrfs_key extent_key;
4254 struct btrfs_tree_block_info *block_info;
4255 struct btrfs_extent_inline_ref *iref;
4256 struct btrfs_path *path;
4257 struct extent_buffer *leaf;
4258 struct btrfs_delayed_tree_ref *ref;
4259 u32 size = sizeof(*extent_item) + sizeof(*iref);
4260 u64 num_bytes;
4261 u64 flags = extent_op->flags_to_set;
4262 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4263
4264 ref = btrfs_delayed_node_to_tree_ref(node);
4265
4266 extent_key.objectid = node->bytenr;
4267 if (skinny_metadata) {
4268 extent_key.offset = ref->level;
4269 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4270 num_bytes = fs_info->nodesize;
4271 } else {
4272 extent_key.offset = node->num_bytes;
4273 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4274 size += sizeof(*block_info);
4275 num_bytes = node->num_bytes;
4276 }
4277
4278 path = btrfs_alloc_path();
4279 if (!path)
4280 return -ENOMEM;
4281
4282 path->leave_spinning = 1;
4283 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4284 &extent_key, size);
4285 if (ret) {
4286 btrfs_free_path(path);
4287 return ret;
4288 }
4289
4290 leaf = path->nodes[0];
4291 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4292 struct btrfs_extent_item);
4293 btrfs_set_extent_refs(leaf, extent_item, 1);
4294 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4295 btrfs_set_extent_flags(leaf, extent_item,
4296 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4297
4298 if (skinny_metadata) {
4299 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4300 } else {
4301 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4302 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4303 btrfs_set_tree_block_level(leaf, block_info, ref->level);
4304 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4305 }
4306
4307 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4308 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4309 btrfs_set_extent_inline_ref_type(leaf, iref,
4310 BTRFS_SHARED_BLOCK_REF_KEY);
4311 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4312 } else {
4313 btrfs_set_extent_inline_ref_type(leaf, iref,
4314 BTRFS_TREE_BLOCK_REF_KEY);
4315 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4316 }
4317
4318 btrfs_mark_buffer_dirty(leaf);
4319 btrfs_free_path(path);
4320
4321 ret = remove_from_free_space_tree(trans, extent_key.objectid,
4322 num_bytes);
4323 if (ret)
4324 return ret;
4325
4326 ret = btrfs_update_block_group(trans, extent_key.objectid,
4327 fs_info->nodesize, 1);
4328 if (ret) { /* -ENOENT, logic error */
4329 btrfs_err(fs_info, "update block group failed for %llu %llu",
4330 extent_key.objectid, extent_key.offset);
4331 BUG();
4332 }
4333
4334 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4335 fs_info->nodesize);
4336 return ret;
4337}
4338
4339int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4340 struct btrfs_root *root, u64 owner,
4341 u64 offset, u64 ram_bytes,
4342 struct btrfs_key *ins)
4343{
4344 struct btrfs_ref generic_ref = { 0 };
4345 int ret;
4346
4347 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4348
4349 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4350 ins->objectid, ins->offset, 0);
4351 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
4352 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4353 ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
4354 ram_bytes, NULL, NULL);
4355 return ret;
4356}
4357
4358/*
4359 * this is used by the tree logging recovery code. It records that
4360 * an extent has been allocated and makes sure to clear the free
4361 * space cache bits as well
4362 */
4363int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4364 u64 root_objectid, u64 owner, u64 offset,
4365 struct btrfs_key *ins)
4366{
4367 struct btrfs_fs_info *fs_info = trans->fs_info;
4368 int ret;
4369 struct btrfs_block_group_cache *block_group;
4370 struct btrfs_space_info *space_info;
4371
4372 /*
4373 * Mixed block groups will exclude before processing the log so we only
4374 * need to do the exclude dance if this fs isn't mixed.
4375 */
4376 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4377 ret = __exclude_logged_extent(fs_info, ins->objectid,
4378 ins->offset);
4379 if (ret)
4380 return ret;
4381 }
4382
4383 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4384 if (!block_group)
4385 return -EINVAL;
4386
4387 space_info = block_group->space_info;
4388 spin_lock(&space_info->lock);
4389 spin_lock(&block_group->lock);
4390 space_info->bytes_reserved += ins->offset;
4391 block_group->reserved += ins->offset;
4392 spin_unlock(&block_group->lock);
4393 spin_unlock(&space_info->lock);
4394
4395 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4396 offset, ins, 1);
4397 btrfs_put_block_group(block_group);
4398 return ret;
4399}
4400
4401static struct extent_buffer *
4402btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4403 u64 bytenr, int level, u64 owner)
4404{
4405 struct btrfs_fs_info *fs_info = root->fs_info;
4406 struct extent_buffer *buf;
4407
4408 buf = btrfs_find_create_tree_block(fs_info, bytenr);
4409 if (IS_ERR(buf))
4410 return buf;
4411
4412 /*
4413 * Extra safety check in case the extent tree is corrupted and extent
4414 * allocator chooses to use a tree block which is already used and
4415 * locked.
4416 */
4417 if (buf->lock_owner == current->pid) {
4418 btrfs_err_rl(fs_info,
4419"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4420 buf->start, btrfs_header_owner(buf), current->pid);
4421 free_extent_buffer(buf);
4422 return ERR_PTR(-EUCLEAN);
4423 }
4424
4425 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
4426 btrfs_tree_lock(buf);
4427 btrfs_clean_tree_block(buf);
4428 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4429
4430 btrfs_set_lock_blocking_write(buf);
4431 set_extent_buffer_uptodate(buf);
4432
4433 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4434 btrfs_set_header_level(buf, level);
4435 btrfs_set_header_bytenr(buf, buf->start);
4436 btrfs_set_header_generation(buf, trans->transid);
4437 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4438 btrfs_set_header_owner(buf, owner);
4439 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4440 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4441 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4442 buf->log_index = root->log_transid % 2;
4443 /*
4444 * we allow two log transactions at a time, use different
4445 * EXTENT bit to differentiate dirty pages.
4446 */
4447 if (buf->log_index == 0)
4448 set_extent_dirty(&root->dirty_log_pages, buf->start,
4449 buf->start + buf->len - 1, GFP_NOFS);
4450 else
4451 set_extent_new(&root->dirty_log_pages, buf->start,
4452 buf->start + buf->len - 1);
4453 } else {
4454 buf->log_index = -1;
4455 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4456 buf->start + buf->len - 1, GFP_NOFS);
4457 }
4458 trans->dirty = true;
4459 /* this returns a buffer locked for blocking */
4460 return buf;
4461}
4462
4463/*
4464 * finds a free extent and does all the dirty work required for allocation
4465 * returns the tree buffer or an ERR_PTR on error.
4466 */
4467struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4468 struct btrfs_root *root,
4469 u64 parent, u64 root_objectid,
4470 const struct btrfs_disk_key *key,
4471 int level, u64 hint,
4472 u64 empty_size)
4473{
4474 struct btrfs_fs_info *fs_info = root->fs_info;
4475 struct btrfs_key ins;
4476 struct btrfs_block_rsv *block_rsv;
4477 struct extent_buffer *buf;
4478 struct btrfs_delayed_extent_op *extent_op;
4479 struct btrfs_ref generic_ref = { 0 };
4480 u64 flags = 0;
4481 int ret;
4482 u32 blocksize = fs_info->nodesize;
4483 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4484
4485#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4486 if (btrfs_is_testing(fs_info)) {
4487 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4488 level, root_objectid);
4489 if (!IS_ERR(buf))
4490 root->alloc_bytenr += blocksize;
4491 return buf;
4492 }
4493#endif
4494
4495 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4496 if (IS_ERR(block_rsv))
4497 return ERR_CAST(block_rsv);
4498
4499 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4500 empty_size, hint, &ins, 0, 0);
4501 if (ret)
4502 goto out_unuse;
4503
4504 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4505 root_objectid);
4506 if (IS_ERR(buf)) {
4507 ret = PTR_ERR(buf);
4508 goto out_free_reserved;
4509 }
4510
4511 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4512 if (parent == 0)
4513 parent = ins.objectid;
4514 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4515 } else
4516 BUG_ON(parent > 0);
4517
4518 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4519 extent_op = btrfs_alloc_delayed_extent_op();
4520 if (!extent_op) {
4521 ret = -ENOMEM;
4522 goto out_free_buf;
4523 }
4524 if (key)
4525 memcpy(&extent_op->key, key, sizeof(extent_op->key));
4526 else
4527 memset(&extent_op->key, 0, sizeof(extent_op->key));
4528 extent_op->flags_to_set = flags;
4529 extent_op->update_key = skinny_metadata ? false : true;
4530 extent_op->update_flags = true;
4531 extent_op->is_data = false;
4532 extent_op->level = level;
4533
4534 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4535 ins.objectid, ins.offset, parent);
4536 generic_ref.real_root = root->root_key.objectid;
4537 btrfs_init_tree_ref(&generic_ref, level, root_objectid);
4538 btrfs_ref_tree_mod(fs_info, &generic_ref);
4539 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
4540 extent_op, NULL, NULL);
4541 if (ret)
4542 goto out_free_delayed;
4543 }
4544 return buf;
4545
4546out_free_delayed:
4547 btrfs_free_delayed_extent_op(extent_op);
4548out_free_buf:
4549 free_extent_buffer(buf);
4550out_free_reserved:
4551 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4552out_unuse:
4553 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4554 return ERR_PTR(ret);
4555}
4556
4557struct walk_control {
4558 u64 refs[BTRFS_MAX_LEVEL];
4559 u64 flags[BTRFS_MAX_LEVEL];
4560 struct btrfs_key update_progress;
4561 struct btrfs_key drop_progress;
4562 int drop_level;
4563 int stage;
4564 int level;
4565 int shared_level;
4566 int update_ref;
4567 int keep_locks;
4568 int reada_slot;
4569 int reada_count;
4570 int restarted;
4571};
4572
4573#define DROP_REFERENCE 1
4574#define UPDATE_BACKREF 2
4575
4576static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4577 struct btrfs_root *root,
4578 struct walk_control *wc,
4579 struct btrfs_path *path)
4580{
4581 struct btrfs_fs_info *fs_info = root->fs_info;
4582 u64 bytenr;
4583 u64 generation;
4584 u64 refs;
4585 u64 flags;
4586 u32 nritems;
4587 struct btrfs_key key;
4588 struct extent_buffer *eb;
4589 int ret;
4590 int slot;
4591 int nread = 0;
4592
4593 if (path->slots[wc->level] < wc->reada_slot) {
4594 wc->reada_count = wc->reada_count * 2 / 3;
4595 wc->reada_count = max(wc->reada_count, 2);
4596 } else {
4597 wc->reada_count = wc->reada_count * 3 / 2;
4598 wc->reada_count = min_t(int, wc->reada_count,
4599 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4600 }
4601
4602 eb = path->nodes[wc->level];
4603 nritems = btrfs_header_nritems(eb);
4604
4605 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4606 if (nread >= wc->reada_count)
4607 break;
4608
4609 cond_resched();
4610 bytenr = btrfs_node_blockptr(eb, slot);
4611 generation = btrfs_node_ptr_generation(eb, slot);
4612
4613 if (slot == path->slots[wc->level])
4614 goto reada;
4615
4616 if (wc->stage == UPDATE_BACKREF &&
4617 generation <= root->root_key.offset)
4618 continue;
4619
4620 /* We don't lock the tree block, it's OK to be racy here */
4621 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
4622 wc->level - 1, 1, &refs,
4623 &flags);
4624 /* We don't care about errors in readahead. */
4625 if (ret < 0)
4626 continue;
4627 BUG_ON(refs == 0);
4628
4629 if (wc->stage == DROP_REFERENCE) {
4630 if (refs == 1)
4631 goto reada;
4632
4633 if (wc->level == 1 &&
4634 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4635 continue;
4636 if (!wc->update_ref ||
4637 generation <= root->root_key.offset)
4638 continue;
4639 btrfs_node_key_to_cpu(eb, &key, slot);
4640 ret = btrfs_comp_cpu_keys(&key,
4641 &wc->update_progress);
4642 if (ret < 0)
4643 continue;
4644 } else {
4645 if (wc->level == 1 &&
4646 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4647 continue;
4648 }
4649reada:
4650 readahead_tree_block(fs_info, bytenr);
4651 nread++;
4652 }
4653 wc->reada_slot = slot;
4654}
4655
4656/*
4657 * helper to process tree block while walking down the tree.
4658 *
4659 * when wc->stage == UPDATE_BACKREF, this function updates
4660 * back refs for pointers in the block.
4661 *
4662 * NOTE: return value 1 means we should stop walking down.
4663 */
4664static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4665 struct btrfs_root *root,
4666 struct btrfs_path *path,
4667 struct walk_control *wc, int lookup_info)
4668{
4669 struct btrfs_fs_info *fs_info = root->fs_info;
4670 int level = wc->level;
4671 struct extent_buffer *eb = path->nodes[level];
4672 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4673 int ret;
4674
4675 if (wc->stage == UPDATE_BACKREF &&
4676 btrfs_header_owner(eb) != root->root_key.objectid)
4677 return 1;
4678
4679 /*
4680 * when reference count of tree block is 1, it won't increase
4681 * again. once full backref flag is set, we never clear it.
4682 */
4683 if (lookup_info &&
4684 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
4685 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
4686 BUG_ON(!path->locks[level]);
4687 ret = btrfs_lookup_extent_info(trans, fs_info,
4688 eb->start, level, 1,
4689 &wc->refs[level],
4690 &wc->flags[level]);
4691 BUG_ON(ret == -ENOMEM);
4692 if (ret)
4693 return ret;
4694 BUG_ON(wc->refs[level] == 0);
4695 }
4696
4697 if (wc->stage == DROP_REFERENCE) {
4698 if (wc->refs[level] > 1)
4699 return 1;
4700
4701 if (path->locks[level] && !wc->keep_locks) {
4702 btrfs_tree_unlock_rw(eb, path->locks[level]);
4703 path->locks[level] = 0;
4704 }
4705 return 0;
4706 }
4707
4708 /* wc->stage == UPDATE_BACKREF */
4709 if (!(wc->flags[level] & flag)) {
4710 BUG_ON(!path->locks[level]);
4711 ret = btrfs_inc_ref(trans, root, eb, 1);
4712 BUG_ON(ret); /* -ENOMEM */
4713 ret = btrfs_dec_ref(trans, root, eb, 0);
4714 BUG_ON(ret); /* -ENOMEM */
4715 ret = btrfs_set_disk_extent_flags(trans, eb->start,
4716 eb->len, flag,
4717 btrfs_header_level(eb), 0);
4718 BUG_ON(ret); /* -ENOMEM */
4719 wc->flags[level] |= flag;
4720 }
4721
4722 /*
4723 * the block is shared by multiple trees, so it's not good to
4724 * keep the tree lock
4725 */
4726 if (path->locks[level] && level > 0) {
4727 btrfs_tree_unlock_rw(eb, path->locks[level]);
4728 path->locks[level] = 0;
4729 }
4730 return 0;
4731}
4732
4733/*
4734 * This is used to verify a ref exists for this root to deal with a bug where we
4735 * would have a drop_progress key that hadn't been updated properly.
4736 */
4737static int check_ref_exists(struct btrfs_trans_handle *trans,
4738 struct btrfs_root *root, u64 bytenr, u64 parent,
4739 int level)
4740{
4741 struct btrfs_path *path;
4742 struct btrfs_extent_inline_ref *iref;
4743 int ret;
4744
4745 path = btrfs_alloc_path();
4746 if (!path)
4747 return -ENOMEM;
4748
4749 ret = lookup_extent_backref(trans, path, &iref, bytenr,
4750 root->fs_info->nodesize, parent,
4751 root->root_key.objectid, level, 0);
4752 btrfs_free_path(path);
4753 if (ret == -ENOENT)
4754 return 0;
4755 if (ret < 0)
4756 return ret;
4757 return 1;
4758}
4759
4760/*
4761 * helper to process tree block pointer.
4762 *
4763 * when wc->stage == DROP_REFERENCE, this function checks
4764 * reference count of the block pointed to. if the block
4765 * is shared and we need update back refs for the subtree
4766 * rooted at the block, this function changes wc->stage to
4767 * UPDATE_BACKREF. if the block is shared and there is no
4768 * need to update back, this function drops the reference
4769 * to the block.
4770 *
4771 * NOTE: return value 1 means we should stop walking down.
4772 */
4773static noinline int do_walk_down(struct btrfs_trans_handle *trans,
4774 struct btrfs_root *root,
4775 struct btrfs_path *path,
4776 struct walk_control *wc, int *lookup_info)
4777{
4778 struct btrfs_fs_info *fs_info = root->fs_info;
4779 u64 bytenr;
4780 u64 generation;
4781 u64 parent;
4782 struct btrfs_key key;
4783 struct btrfs_key first_key;
4784 struct btrfs_ref ref = { 0 };
4785 struct extent_buffer *next;
4786 int level = wc->level;
4787 int reada = 0;
4788 int ret = 0;
4789 bool need_account = false;
4790
4791 generation = btrfs_node_ptr_generation(path->nodes[level],
4792 path->slots[level]);
4793 /*
4794 * if the lower level block was created before the snapshot
4795 * was created, we know there is no need to update back refs
4796 * for the subtree
4797 */
4798 if (wc->stage == UPDATE_BACKREF &&
4799 generation <= root->root_key.offset) {
4800 *lookup_info = 1;
4801 return 1;
4802 }
4803
4804 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
4805 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
4806 path->slots[level]);
4807
4808 next = find_extent_buffer(fs_info, bytenr);
4809 if (!next) {
4810 next = btrfs_find_create_tree_block(fs_info, bytenr);
4811 if (IS_ERR(next))
4812 return PTR_ERR(next);
4813
4814 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
4815 level - 1);
4816 reada = 1;
4817 }
4818 btrfs_tree_lock(next);
4819 btrfs_set_lock_blocking_write(next);
4820
4821 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
4822 &wc->refs[level - 1],
4823 &wc->flags[level - 1]);
4824 if (ret < 0)
4825 goto out_unlock;
4826
4827 if (unlikely(wc->refs[level - 1] == 0)) {
4828 btrfs_err(fs_info, "Missing references.");
4829 ret = -EIO;
4830 goto out_unlock;
4831 }
4832 *lookup_info = 0;
4833
4834 if (wc->stage == DROP_REFERENCE) {
4835 if (wc->refs[level - 1] > 1) {
4836 need_account = true;
4837 if (level == 1 &&
4838 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4839 goto skip;
4840
4841 if (!wc->update_ref ||
4842 generation <= root->root_key.offset)
4843 goto skip;
4844
4845 btrfs_node_key_to_cpu(path->nodes[level], &key,
4846 path->slots[level]);
4847 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
4848 if (ret < 0)
4849 goto skip;
4850
4851 wc->stage = UPDATE_BACKREF;
4852 wc->shared_level = level - 1;
4853 }
4854 } else {
4855 if (level == 1 &&
4856 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4857 goto skip;
4858 }
4859
4860 if (!btrfs_buffer_uptodate(next, generation, 0)) {
4861 btrfs_tree_unlock(next);
4862 free_extent_buffer(next);
4863 next = NULL;
4864 *lookup_info = 1;
4865 }
4866
4867 if (!next) {
4868 if (reada && level == 1)
4869 reada_walk_down(trans, root, wc, path);
4870 next = read_tree_block(fs_info, bytenr, generation, level - 1,
4871 &first_key);
4872 if (IS_ERR(next)) {
4873 return PTR_ERR(next);
4874 } else if (!extent_buffer_uptodate(next)) {
4875 free_extent_buffer(next);
4876 return -EIO;
4877 }
4878 btrfs_tree_lock(next);
4879 btrfs_set_lock_blocking_write(next);
4880 }
4881
4882 level--;
4883 ASSERT(level == btrfs_header_level(next));
4884 if (level != btrfs_header_level(next)) {
4885 btrfs_err(root->fs_info, "mismatched level");
4886 ret = -EIO;
4887 goto out_unlock;
4888 }
4889 path->nodes[level] = next;
4890 path->slots[level] = 0;
4891 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
4892 wc->level = level;
4893 if (wc->level == 1)
4894 wc->reada_slot = 0;
4895 return 0;
4896skip:
4897 wc->refs[level - 1] = 0;
4898 wc->flags[level - 1] = 0;
4899 if (wc->stage == DROP_REFERENCE) {
4900 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
4901 parent = path->nodes[level]->start;
4902 } else {
4903 ASSERT(root->root_key.objectid ==
4904 btrfs_header_owner(path->nodes[level]));
4905 if (root->root_key.objectid !=
4906 btrfs_header_owner(path->nodes[level])) {
4907 btrfs_err(root->fs_info,
4908 "mismatched block owner");
4909 ret = -EIO;
4910 goto out_unlock;
4911 }
4912 parent = 0;
4913 }
4914
4915 /*
4916 * If we had a drop_progress we need to verify the refs are set
4917 * as expected. If we find our ref then we know that from here
4918 * on out everything should be correct, and we can clear the
4919 * ->restarted flag.
4920 */
4921 if (wc->restarted) {
4922 ret = check_ref_exists(trans, root, bytenr, parent,
4923 level - 1);
4924 if (ret < 0)
4925 goto out_unlock;
4926 if (ret == 0)
4927 goto no_delete;
4928 ret = 0;
4929 wc->restarted = 0;
4930 }
4931
4932 /*
4933 * Reloc tree doesn't contribute to qgroup numbers, and we have
4934 * already accounted them at merge time (replace_path),
4935 * thus we could skip expensive subtree trace here.
4936 */
4937 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
4938 need_account) {
4939 ret = btrfs_qgroup_trace_subtree(trans, next,
4940 generation, level - 1);
4941 if (ret) {
4942 btrfs_err_rl(fs_info,
4943 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
4944 ret);
4945 }
4946 }
4947
4948 /*
4949 * We need to update the next key in our walk control so we can
4950 * update the drop_progress key accordingly. We don't care if
4951 * find_next_key doesn't find a key because that means we're at
4952 * the end and are going to clean up now.
4953 */
4954 wc->drop_level = level;
4955 find_next_key(path, level, &wc->drop_progress);
4956
4957 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
4958 fs_info->nodesize, parent);
4959 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
4960 ret = btrfs_free_extent(trans, &ref);
4961 if (ret)
4962 goto out_unlock;
4963 }
4964no_delete:
4965 *lookup_info = 1;
4966 ret = 1;
4967
4968out_unlock:
4969 btrfs_tree_unlock(next);
4970 free_extent_buffer(next);
4971
4972 return ret;
4973}
4974
4975/*
4976 * helper to process tree block while walking up the tree.
4977 *
4978 * when wc->stage == DROP_REFERENCE, this function drops
4979 * reference count on the block.
4980 *
4981 * when wc->stage == UPDATE_BACKREF, this function changes
4982 * wc->stage back to DROP_REFERENCE if we changed wc->stage
4983 * to UPDATE_BACKREF previously while processing the block.
4984 *
4985 * NOTE: return value 1 means we should stop walking up.
4986 */
4987static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
4988 struct btrfs_root *root,
4989 struct btrfs_path *path,
4990 struct walk_control *wc)
4991{
4992 struct btrfs_fs_info *fs_info = root->fs_info;
4993 int ret;
4994 int level = wc->level;
4995 struct extent_buffer *eb = path->nodes[level];
4996 u64 parent = 0;
4997
4998 if (wc->stage == UPDATE_BACKREF) {
4999 BUG_ON(wc->shared_level < level);
5000 if (level < wc->shared_level)
5001 goto out;
5002
5003 ret = find_next_key(path, level + 1, &wc->update_progress);
5004 if (ret > 0)
5005 wc->update_ref = 0;
5006
5007 wc->stage = DROP_REFERENCE;
5008 wc->shared_level = -1;
5009 path->slots[level] = 0;
5010
5011 /*
5012 * check reference count again if the block isn't locked.
5013 * we should start walking down the tree again if reference
5014 * count is one.
5015 */
5016 if (!path->locks[level]) {
5017 BUG_ON(level == 0);
5018 btrfs_tree_lock(eb);
5019 btrfs_set_lock_blocking_write(eb);
5020 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5021
5022 ret = btrfs_lookup_extent_info(trans, fs_info,
5023 eb->start, level, 1,
5024 &wc->refs[level],
5025 &wc->flags[level]);
5026 if (ret < 0) {
5027 btrfs_tree_unlock_rw(eb, path->locks[level]);
5028 path->locks[level] = 0;
5029 return ret;
5030 }
5031 BUG_ON(wc->refs[level] == 0);
5032 if (wc->refs[level] == 1) {
5033 btrfs_tree_unlock_rw(eb, path->locks[level]);
5034 path->locks[level] = 0;
5035 return 1;
5036 }
5037 }
5038 }
5039
5040 /* wc->stage == DROP_REFERENCE */
5041 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5042
5043 if (wc->refs[level] == 1) {
5044 if (level == 0) {
5045 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5046 ret = btrfs_dec_ref(trans, root, eb, 1);
5047 else
5048 ret = btrfs_dec_ref(trans, root, eb, 0);
5049 BUG_ON(ret); /* -ENOMEM */
5050 if (is_fstree(root->root_key.objectid)) {
5051 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5052 if (ret) {
5053 btrfs_err_rl(fs_info,
5054 "error %d accounting leaf items, quota is out of sync, rescan required",
5055 ret);
5056 }
5057 }
5058 }
5059 /* make block locked assertion in btrfs_clean_tree_block happy */
5060 if (!path->locks[level] &&
5061 btrfs_header_generation(eb) == trans->transid) {
5062 btrfs_tree_lock(eb);
5063 btrfs_set_lock_blocking_write(eb);
5064 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5065 }
5066 btrfs_clean_tree_block(eb);
5067 }
5068
5069 if (eb == root->node) {
5070 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5071 parent = eb->start;
5072 else if (root->root_key.objectid != btrfs_header_owner(eb))
5073 goto owner_mismatch;
5074 } else {
5075 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5076 parent = path->nodes[level + 1]->start;
5077 else if (root->root_key.objectid !=
5078 btrfs_header_owner(path->nodes[level + 1]))
5079 goto owner_mismatch;
5080 }
5081
5082 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5083out:
5084 wc->refs[level] = 0;
5085 wc->flags[level] = 0;
5086 return 0;
5087
5088owner_mismatch:
5089 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5090 btrfs_header_owner(eb), root->root_key.objectid);
5091 return -EUCLEAN;
5092}
5093
5094static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5095 struct btrfs_root *root,
5096 struct btrfs_path *path,
5097 struct walk_control *wc)
5098{
5099 int level = wc->level;
5100 int lookup_info = 1;
5101 int ret;
5102
5103 while (level >= 0) {
5104 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5105 if (ret > 0)
5106 break;
5107
5108 if (level == 0)
5109 break;
5110
5111 if (path->slots[level] >=
5112 btrfs_header_nritems(path->nodes[level]))
5113 break;
5114
5115 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5116 if (ret > 0) {
5117 path->slots[level]++;
5118 continue;
5119 } else if (ret < 0)
5120 return ret;
5121 level = wc->level;
5122 }
5123 return 0;
5124}
5125
5126static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5127 struct btrfs_root *root,
5128 struct btrfs_path *path,
5129 struct walk_control *wc, int max_level)
5130{
5131 int level = wc->level;
5132 int ret;
5133
5134 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5135 while (level < max_level && path->nodes[level]) {
5136 wc->level = level;
5137 if (path->slots[level] + 1 <
5138 btrfs_header_nritems(path->nodes[level])) {
5139 path->slots[level]++;
5140 return 0;
5141 } else {
5142 ret = walk_up_proc(trans, root, path, wc);
5143 if (ret > 0)
5144 return 0;
5145 if (ret < 0)
5146 return ret;
5147
5148 if (path->locks[level]) {
5149 btrfs_tree_unlock_rw(path->nodes[level],
5150 path->locks[level]);
5151 path->locks[level] = 0;
5152 }
5153 free_extent_buffer(path->nodes[level]);
5154 path->nodes[level] = NULL;
5155 level++;
5156 }
5157 }
5158 return 1;
5159}
5160
5161/*
5162 * drop a subvolume tree.
5163 *
5164 * this function traverses the tree freeing any blocks that only
5165 * referenced by the tree.
5166 *
5167 * when a shared tree block is found. this function decreases its
5168 * reference count by one. if update_ref is true, this function
5169 * also make sure backrefs for the shared block and all lower level
5170 * blocks are properly updated.
5171 *
5172 * If called with for_reloc == 0, may exit early with -EAGAIN
5173 */
5174int btrfs_drop_snapshot(struct btrfs_root *root,
5175 struct btrfs_block_rsv *block_rsv, int update_ref,
5176 int for_reloc)
5177{
5178 struct btrfs_fs_info *fs_info = root->fs_info;
5179 struct btrfs_path *path;
5180 struct btrfs_trans_handle *trans;
5181 struct btrfs_root *tree_root = fs_info->tree_root;
5182 struct btrfs_root_item *root_item = &root->root_item;
5183 struct walk_control *wc;
5184 struct btrfs_key key;
5185 int err = 0;
5186 int ret;
5187 int level;
5188 bool root_dropped = false;
5189
5190 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5191
5192 path = btrfs_alloc_path();
5193 if (!path) {
5194 err = -ENOMEM;
5195 goto out;
5196 }
5197
5198 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5199 if (!wc) {
5200 btrfs_free_path(path);
5201 err = -ENOMEM;
5202 goto out;
5203 }
5204
5205 trans = btrfs_start_transaction(tree_root, 0);
5206 if (IS_ERR(trans)) {
5207 err = PTR_ERR(trans);
5208 goto out_free;
5209 }
5210
5211 err = btrfs_run_delayed_items(trans);
5212 if (err)
5213 goto out_end_trans;
5214
5215 if (block_rsv)
5216 trans->block_rsv = block_rsv;
5217
5218 /*
5219 * This will help us catch people modifying the fs tree while we're
5220 * dropping it. It is unsafe to mess with the fs tree while it's being
5221 * dropped as we unlock the root node and parent nodes as we walk down
5222 * the tree, assuming nothing will change. If something does change
5223 * then we'll have stale information and drop references to blocks we've
5224 * already dropped.
5225 */
5226 set_bit(BTRFS_ROOT_DELETING, &root->state);
5227 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5228 level = btrfs_header_level(root->node);
5229 path->nodes[level] = btrfs_lock_root_node(root);
5230 btrfs_set_lock_blocking_write(path->nodes[level]);
5231 path->slots[level] = 0;
5232 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5233 memset(&wc->update_progress, 0,
5234 sizeof(wc->update_progress));
5235 } else {
5236 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5237 memcpy(&wc->update_progress, &key,
5238 sizeof(wc->update_progress));
5239
5240 level = root_item->drop_level;
5241 BUG_ON(level == 0);
5242 path->lowest_level = level;
5243 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5244 path->lowest_level = 0;
5245 if (ret < 0) {
5246 err = ret;
5247 goto out_end_trans;
5248 }
5249 WARN_ON(ret > 0);
5250
5251 /*
5252 * unlock our path, this is safe because only this
5253 * function is allowed to delete this snapshot
5254 */
5255 btrfs_unlock_up_safe(path, 0);
5256
5257 level = btrfs_header_level(root->node);
5258 while (1) {
5259 btrfs_tree_lock(path->nodes[level]);
5260 btrfs_set_lock_blocking_write(path->nodes[level]);
5261 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5262
5263 ret = btrfs_lookup_extent_info(trans, fs_info,
5264 path->nodes[level]->start,
5265 level, 1, &wc->refs[level],
5266 &wc->flags[level]);
5267 if (ret < 0) {
5268 err = ret;
5269 goto out_end_trans;
5270 }
5271 BUG_ON(wc->refs[level] == 0);
5272
5273 if (level == root_item->drop_level)
5274 break;
5275
5276 btrfs_tree_unlock(path->nodes[level]);
5277 path->locks[level] = 0;
5278 WARN_ON(wc->refs[level] != 1);
5279 level--;
5280 }
5281 }
5282
5283 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5284 wc->level = level;
5285 wc->shared_level = -1;
5286 wc->stage = DROP_REFERENCE;
5287 wc->update_ref = update_ref;
5288 wc->keep_locks = 0;
5289 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5290
5291 while (1) {
5292
5293 ret = walk_down_tree(trans, root, path, wc);
5294 if (ret < 0) {
5295 err = ret;
5296 break;
5297 }
5298
5299 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5300 if (ret < 0) {
5301 err = ret;
5302 break;
5303 }
5304
5305 if (ret > 0) {
5306 BUG_ON(wc->stage != DROP_REFERENCE);
5307 break;
5308 }
5309
5310 if (wc->stage == DROP_REFERENCE) {
5311 wc->drop_level = wc->level;
5312 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5313 &wc->drop_progress,
5314 path->slots[wc->drop_level]);
5315 }
5316 btrfs_cpu_key_to_disk(&root_item->drop_progress,
5317 &wc->drop_progress);
5318 root_item->drop_level = wc->drop_level;
5319
5320 BUG_ON(wc->level == 0);
5321 if (btrfs_should_end_transaction(trans) ||
5322 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5323 ret = btrfs_update_root(trans, tree_root,
5324 &root->root_key,
5325 root_item);
5326 if (ret) {
5327 btrfs_abort_transaction(trans, ret);
5328 err = ret;
5329 goto out_end_trans;
5330 }
5331
5332 btrfs_end_transaction_throttle(trans);
5333 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5334 btrfs_debug(fs_info,
5335 "drop snapshot early exit");
5336 err = -EAGAIN;
5337 goto out_free;
5338 }
5339
5340 trans = btrfs_start_transaction(tree_root, 0);
5341 if (IS_ERR(trans)) {
5342 err = PTR_ERR(trans);
5343 goto out_free;
5344 }
5345 if (block_rsv)
5346 trans->block_rsv = block_rsv;
5347 }
5348 }
5349 btrfs_release_path(path);
5350 if (err)
5351 goto out_end_trans;
5352
5353 ret = btrfs_del_root(trans, &root->root_key);
5354 if (ret) {
5355 btrfs_abort_transaction(trans, ret);
5356 err = ret;
5357 goto out_end_trans;
5358 }
5359
5360 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5361 ret = btrfs_find_root(tree_root, &root->root_key, path,
5362 NULL, NULL);
5363 if (ret < 0) {
5364 btrfs_abort_transaction(trans, ret);
5365 err = ret;
5366 goto out_end_trans;
5367 } else if (ret > 0) {
5368 /* if we fail to delete the orphan item this time
5369 * around, it'll get picked up the next time.
5370 *
5371 * The most common failure here is just -ENOENT.
5372 */
5373 btrfs_del_orphan_item(trans, tree_root,
5374 root->root_key.objectid);
5375 }
5376 }
5377
5378 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
5379 btrfs_add_dropped_root(trans, root);
5380 } else {
5381 free_extent_buffer(root->node);
5382 free_extent_buffer(root->commit_root);
5383 btrfs_put_fs_root(root);
5384 }
5385 root_dropped = true;
5386out_end_trans:
5387 btrfs_end_transaction_throttle(trans);
5388out_free:
5389 kfree(wc);
5390 btrfs_free_path(path);
5391out:
5392 /*
5393 * So if we need to stop dropping the snapshot for whatever reason we
5394 * need to make sure to add it back to the dead root list so that we
5395 * keep trying to do the work later. This also cleans up roots if we
5396 * don't have it in the radix (like when we recover after a power fail
5397 * or unmount) so we don't leak memory.
5398 */
5399 if (!for_reloc && !root_dropped)
5400 btrfs_add_dead_root(root);
5401 if (err && err != -EAGAIN)
5402 btrfs_handle_fs_error(fs_info, err, NULL);
5403 return err;
5404}
5405
5406/*
5407 * drop subtree rooted at tree block 'node'.
5408 *
5409 * NOTE: this function will unlock and release tree block 'node'
5410 * only used by relocation code
5411 */
5412int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5413 struct btrfs_root *root,
5414 struct extent_buffer *node,
5415 struct extent_buffer *parent)
5416{
5417 struct btrfs_fs_info *fs_info = root->fs_info;
5418 struct btrfs_path *path;
5419 struct walk_control *wc;
5420 int level;
5421 int parent_level;
5422 int ret = 0;
5423 int wret;
5424
5425 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5426
5427 path = btrfs_alloc_path();
5428 if (!path)
5429 return -ENOMEM;
5430
5431 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5432 if (!wc) {
5433 btrfs_free_path(path);
5434 return -ENOMEM;
5435 }
5436
5437 btrfs_assert_tree_locked(parent);
5438 parent_level = btrfs_header_level(parent);
5439 extent_buffer_get(parent);
5440 path->nodes[parent_level] = parent;
5441 path->slots[parent_level] = btrfs_header_nritems(parent);
5442
5443 btrfs_assert_tree_locked(node);
5444 level = btrfs_header_level(node);
5445 path->nodes[level] = node;
5446 path->slots[level] = 0;
5447 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5448
5449 wc->refs[parent_level] = 1;
5450 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5451 wc->level = level;
5452 wc->shared_level = -1;
5453 wc->stage = DROP_REFERENCE;
5454 wc->update_ref = 0;
5455 wc->keep_locks = 1;
5456 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5457
5458 while (1) {
5459 wret = walk_down_tree(trans, root, path, wc);
5460 if (wret < 0) {
5461 ret = wret;
5462 break;
5463 }
5464
5465 wret = walk_up_tree(trans, root, path, wc, parent_level);
5466 if (wret < 0)
5467 ret = wret;
5468 if (wret != 0)
5469 break;
5470 }
5471
5472 kfree(wc);
5473 btrfs_free_path(path);
5474 return ret;
5475}
5476
5477/*
5478 * helper to account the unused space of all the readonly block group in the
5479 * space_info. takes mirrors into account.
5480 */
5481u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5482{
5483 struct btrfs_block_group_cache *block_group;
5484 u64 free_bytes = 0;
5485 int factor;
5486
5487 /* It's df, we don't care if it's racy */
5488 if (list_empty(&sinfo->ro_bgs))
5489 return 0;
5490
5491 spin_lock(&sinfo->lock);
5492 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5493 spin_lock(&block_group->lock);
5494
5495 if (!block_group->ro) {
5496 spin_unlock(&block_group->lock);
5497 continue;
5498 }
5499
5500 factor = btrfs_bg_type_to_factor(block_group->flags);
5501 free_bytes += (block_group->key.offset -
5502 btrfs_block_group_used(&block_group->item)) *
5503 factor;
5504
5505 spin_unlock(&block_group->lock);
5506 }
5507 spin_unlock(&sinfo->lock);
5508
5509 return free_bytes;
5510}
5511
5512int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5513 u64 start, u64 end)
5514{
5515 return unpin_extent_range(fs_info, start, end, false);
5516}
5517
5518/*
5519 * It used to be that old block groups would be left around forever.
5520 * Iterating over them would be enough to trim unused space. Since we
5521 * now automatically remove them, we also need to iterate over unallocated
5522 * space.
5523 *
5524 * We don't want a transaction for this since the discard may take a
5525 * substantial amount of time. We don't require that a transaction be
5526 * running, but we do need to take a running transaction into account
5527 * to ensure that we're not discarding chunks that were released or
5528 * allocated in the current transaction.
5529 *
5530 * Holding the chunks lock will prevent other threads from allocating
5531 * or releasing chunks, but it won't prevent a running transaction
5532 * from committing and releasing the memory that the pending chunks
5533 * list head uses. For that, we need to take a reference to the
5534 * transaction and hold the commit root sem. We only need to hold
5535 * it while performing the free space search since we have already
5536 * held back allocations.
5537 */
5538static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5539{
5540 u64 start = SZ_1M, len = 0, end = 0;
5541 int ret;
5542
5543 *trimmed = 0;
5544
5545 /* Discard not supported = nothing to do. */
5546 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5547 return 0;
5548
5549 /* Not writable = nothing to do. */
5550 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5551 return 0;
5552
5553 /* No free space = nothing to do. */
5554 if (device->total_bytes <= device->bytes_used)
5555 return 0;
5556
5557 ret = 0;
5558
5559 while (1) {
5560 struct btrfs_fs_info *fs_info = device->fs_info;
5561 u64 bytes;
5562
5563 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5564 if (ret)
5565 break;
5566
5567 find_first_clear_extent_bit(&device->alloc_state, start,
5568 &start, &end,
5569 CHUNK_TRIMMED | CHUNK_ALLOCATED);
5570
5571 /* Ensure we skip the reserved area in the first 1M */
5572 start = max_t(u64, start, SZ_1M);
5573
5574 /*
5575 * If find_first_clear_extent_bit find a range that spans the
5576 * end of the device it will set end to -1, in this case it's up
5577 * to the caller to trim the value to the size of the device.
5578 */
5579 end = min(end, device->total_bytes - 1);
5580
5581 len = end - start + 1;
5582
5583 /* We didn't find any extents */
5584 if (!len) {
5585 mutex_unlock(&fs_info->chunk_mutex);
5586 ret = 0;
5587 break;
5588 }
5589
5590 ret = btrfs_issue_discard(device->bdev, start, len,
5591 &bytes);
5592 if (!ret)
5593 set_extent_bits(&device->alloc_state, start,
5594 start + bytes - 1,
5595 CHUNK_TRIMMED);
5596 mutex_unlock(&fs_info->chunk_mutex);
5597
5598 if (ret)
5599 break;
5600
5601 start += len;
5602 *trimmed += bytes;
5603
5604 if (fatal_signal_pending(current)) {
5605 ret = -ERESTARTSYS;
5606 break;
5607 }
5608
5609 cond_resched();
5610 }
5611
5612 return ret;
5613}
5614
5615/*
5616 * Trim the whole filesystem by:
5617 * 1) trimming the free space in each block group
5618 * 2) trimming the unallocated space on each device
5619 *
5620 * This will also continue trimming even if a block group or device encounters
5621 * an error. The return value will be the last error, or 0 if nothing bad
5622 * happens.
5623 */
5624int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
5625{
5626 struct btrfs_block_group_cache *cache = NULL;
5627 struct btrfs_device *device;
5628 struct list_head *devices;
5629 u64 group_trimmed;
5630 u64 range_end = U64_MAX;
5631 u64 start;
5632 u64 end;
5633 u64 trimmed = 0;
5634 u64 bg_failed = 0;
5635 u64 dev_failed = 0;
5636 int bg_ret = 0;
5637 int dev_ret = 0;
5638 int ret = 0;
5639
5640 /*
5641 * Check range overflow if range->len is set.
5642 * The default range->len is U64_MAX.
5643 */
5644 if (range->len != U64_MAX &&
5645 check_add_overflow(range->start, range->len, &range_end))
5646 return -EINVAL;
5647
5648 cache = btrfs_lookup_first_block_group(fs_info, range->start);
5649 for (; cache; cache = btrfs_next_block_group(cache)) {
5650 if (cache->key.objectid >= range_end) {
5651 btrfs_put_block_group(cache);
5652 break;
5653 }
5654
5655 start = max(range->start, cache->key.objectid);
5656 end = min(range_end, cache->key.objectid + cache->key.offset);
5657
5658 if (end - start >= range->minlen) {
5659 if (!btrfs_block_group_cache_done(cache)) {
5660 ret = btrfs_cache_block_group(cache, 0);
5661 if (ret) {
5662 bg_failed++;
5663 bg_ret = ret;
5664 continue;
5665 }
5666 ret = btrfs_wait_block_group_cache_done(cache);
5667 if (ret) {
5668 bg_failed++;
5669 bg_ret = ret;
5670 continue;
5671 }
5672 }
5673 ret = btrfs_trim_block_group(cache,
5674 &group_trimmed,
5675 start,
5676 end,
5677 range->minlen);
5678
5679 trimmed += group_trimmed;
5680 if (ret) {
5681 bg_failed++;
5682 bg_ret = ret;
5683 continue;
5684 }
5685 }
5686 }
5687
5688 if (bg_failed)
5689 btrfs_warn(fs_info,
5690 "failed to trim %llu block group(s), last error %d",
5691 bg_failed, bg_ret);
5692 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5693 devices = &fs_info->fs_devices->devices;
5694 list_for_each_entry(device, devices, dev_list) {
5695 ret = btrfs_trim_free_extents(device, &group_trimmed);
5696 if (ret) {
5697 dev_failed++;
5698 dev_ret = ret;
5699 break;
5700 }
5701
5702 trimmed += group_trimmed;
5703 }
5704 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5705
5706 if (dev_failed)
5707 btrfs_warn(fs_info,
5708 "failed to trim %llu device(s), last error %d",
5709 dev_failed, dev_ret);
5710 range->len = trimmed;
5711 if (bg_ret)
5712 return bg_ret;
5713 return dev_ret;
5714}
5715
5716/*
5717 * btrfs_{start,end}_write_no_snapshotting() are similar to
5718 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
5719 * data into the page cache through nocow before the subvolume is snapshoted,
5720 * but flush the data into disk after the snapshot creation, or to prevent
5721 * operations while snapshotting is ongoing and that cause the snapshot to be
5722 * inconsistent (writes followed by expanding truncates for example).
5723 */
5724void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
5725{
5726 percpu_counter_dec(&root->subv_writers->counter);
5727 cond_wake_up(&root->subv_writers->wait);
5728}
5729
5730int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
5731{
5732 if (atomic_read(&root->will_be_snapshotted))
5733 return 0;
5734
5735 percpu_counter_inc(&root->subv_writers->counter);
5736 /*
5737 * Make sure counter is updated before we check for snapshot creation.
5738 */
5739 smp_mb();
5740 if (atomic_read(&root->will_be_snapshotted)) {
5741 btrfs_end_write_no_snapshotting(root);
5742 return 0;
5743 }
5744 return 1;
5745}
5746
5747void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
5748{
5749 while (true) {
5750 int ret;
5751
5752 ret = btrfs_start_write_no_snapshotting(root);
5753 if (ret)
5754 break;
5755 wait_var_event(&root->will_be_snapshotted,
5756 !atomic_read(&root->will_be_snapshotted));
5757 }
5758}
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/pagemap.h>
20#include <linux/writeback.h>
21#include <linux/blkdev.h>
22#include <linux/sort.h>
23#include <linux/rcupdate.h>
24#include <linux/kthread.h>
25#include <linux/slab.h>
26#include <linux/ratelimit.h>
27#include <linux/percpu_counter.h>
28#include "hash.h"
29#include "ctree.h"
30#include "disk-io.h"
31#include "print-tree.h"
32#include "transaction.h"
33#include "volumes.h"
34#include "raid56.h"
35#include "locking.h"
36#include "free-space-cache.h"
37#include "math.h"
38#include "sysfs.h"
39
40#undef SCRAMBLE_DELAYED_REFS
41
42/*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60};
61
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
77static int update_block_group(struct btrfs_root *root,
78 u64 bytenr, u64 num_bytes, int alloc);
79static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 struct btrfs_root *root,
81 u64 bytenr, u64 num_bytes, u64 parent,
82 u64 root_objectid, u64 owner_objectid,
83 u64 owner_offset, int refs_to_drop,
84 struct btrfs_delayed_extent_op *extra_op);
85static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
86 struct extent_buffer *leaf,
87 struct btrfs_extent_item *ei);
88static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root,
90 u64 parent, u64 root_objectid,
91 u64 flags, u64 owner, u64 offset,
92 struct btrfs_key *ins, int ref_mod);
93static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
94 struct btrfs_root *root,
95 u64 parent, u64 root_objectid,
96 u64 flags, struct btrfs_disk_key *key,
97 int level, struct btrfs_key *ins);
98static int do_chunk_alloc(struct btrfs_trans_handle *trans,
99 struct btrfs_root *extent_root, u64 flags,
100 int force);
101static int find_next_key(struct btrfs_path *path, int level,
102 struct btrfs_key *key);
103static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
104 int dump_block_groups);
105static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
106 u64 num_bytes, int reserve);
107static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
108 u64 num_bytes);
109int btrfs_pin_extent(struct btrfs_root *root,
110 u64 bytenr, u64 num_bytes, int reserved);
111
112static noinline int
113block_group_cache_done(struct btrfs_block_group_cache *cache)
114{
115 smp_mb();
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
118}
119
120static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121{
122 return (cache->flags & bits) == bits;
123}
124
125static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126{
127 atomic_inc(&cache->count);
128}
129
130void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131{
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
135 kfree(cache->free_space_ctl);
136 kfree(cache);
137 }
138}
139
140/*
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
143 */
144static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 struct btrfs_block_group_cache *block_group)
146{
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
150
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
153
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
165 }
166 }
167
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
171
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
174
175 spin_unlock(&info->block_group_cache_lock);
176
177 return 0;
178}
179
180/*
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
183 */
184static struct btrfs_block_group_cache *
185block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
187{
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
191
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
194
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
200
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
209 }
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
214 }
215 }
216 if (ret) {
217 btrfs_get_block_group(ret);
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
220 }
221 spin_unlock(&info->block_group_cache_lock);
222
223 return ret;
224}
225
226static int add_excluded_extent(struct btrfs_root *root,
227 u64 start, u64 num_bytes)
228{
229 u64 end = start + num_bytes - 1;
230 set_extent_bits(&root->fs_info->freed_extents[0],
231 start, end, EXTENT_UPTODATE, GFP_NOFS);
232 set_extent_bits(&root->fs_info->freed_extents[1],
233 start, end, EXTENT_UPTODATE, GFP_NOFS);
234 return 0;
235}
236
237static void free_excluded_extents(struct btrfs_root *root,
238 struct btrfs_block_group_cache *cache)
239{
240 u64 start, end;
241
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
244
245 clear_extent_bits(&root->fs_info->freed_extents[0],
246 start, end, EXTENT_UPTODATE, GFP_NOFS);
247 clear_extent_bits(&root->fs_info->freed_extents[1],
248 start, end, EXTENT_UPTODATE, GFP_NOFS);
249}
250
251static int exclude_super_stripes(struct btrfs_root *root,
252 struct btrfs_block_group_cache *cache)
253{
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
258
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(root, cache->key.objectid,
263 stripe_len);
264 if (ret)
265 return ret;
266 }
267
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
270 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
271 cache->key.objectid, bytenr,
272 0, &logical, &nr, &stripe_len);
273 if (ret)
274 return ret;
275
276 while (nr--) {
277 u64 start, len;
278
279 if (logical[nr] > cache->key.objectid +
280 cache->key.offset)
281 continue;
282
283 if (logical[nr] + stripe_len <= cache->key.objectid)
284 continue;
285
286 start = logical[nr];
287 if (start < cache->key.objectid) {
288 start = cache->key.objectid;
289 len = (logical[nr] + stripe_len) - start;
290 } else {
291 len = min_t(u64, stripe_len,
292 cache->key.objectid +
293 cache->key.offset - start);
294 }
295
296 cache->bytes_super += len;
297 ret = add_excluded_extent(root, start, len);
298 if (ret) {
299 kfree(logical);
300 return ret;
301 }
302 }
303
304 kfree(logical);
305 }
306 return 0;
307}
308
309static struct btrfs_caching_control *
310get_caching_control(struct btrfs_block_group_cache *cache)
311{
312 struct btrfs_caching_control *ctl;
313
314 spin_lock(&cache->lock);
315 if (cache->cached != BTRFS_CACHE_STARTED) {
316 spin_unlock(&cache->lock);
317 return NULL;
318 }
319
320 /* We're loading it the fast way, so we don't have a caching_ctl. */
321 if (!cache->caching_ctl) {
322 spin_unlock(&cache->lock);
323 return NULL;
324 }
325
326 ctl = cache->caching_ctl;
327 atomic_inc(&ctl->count);
328 spin_unlock(&cache->lock);
329 return ctl;
330}
331
332static void put_caching_control(struct btrfs_caching_control *ctl)
333{
334 if (atomic_dec_and_test(&ctl->count))
335 kfree(ctl);
336}
337
338/*
339 * this is only called by cache_block_group, since we could have freed extents
340 * we need to check the pinned_extents for any extents that can't be used yet
341 * since their free space will be released as soon as the transaction commits.
342 */
343static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
344 struct btrfs_fs_info *info, u64 start, u64 end)
345{
346 u64 extent_start, extent_end, size, total_added = 0;
347 int ret;
348
349 while (start < end) {
350 ret = find_first_extent_bit(info->pinned_extents, start,
351 &extent_start, &extent_end,
352 EXTENT_DIRTY | EXTENT_UPTODATE,
353 NULL);
354 if (ret)
355 break;
356
357 if (extent_start <= start) {
358 start = extent_end + 1;
359 } else if (extent_start > start && extent_start < end) {
360 size = extent_start - start;
361 total_added += size;
362 ret = btrfs_add_free_space(block_group, start,
363 size);
364 BUG_ON(ret); /* -ENOMEM or logic error */
365 start = extent_end + 1;
366 } else {
367 break;
368 }
369 }
370
371 if (start < end) {
372 size = end - start;
373 total_added += size;
374 ret = btrfs_add_free_space(block_group, start, size);
375 BUG_ON(ret); /* -ENOMEM or logic error */
376 }
377
378 return total_added;
379}
380
381static noinline void caching_thread(struct btrfs_work *work)
382{
383 struct btrfs_block_group_cache *block_group;
384 struct btrfs_fs_info *fs_info;
385 struct btrfs_caching_control *caching_ctl;
386 struct btrfs_root *extent_root;
387 struct btrfs_path *path;
388 struct extent_buffer *leaf;
389 struct btrfs_key key;
390 u64 total_found = 0;
391 u64 last = 0;
392 u32 nritems;
393 int ret = -ENOMEM;
394
395 caching_ctl = container_of(work, struct btrfs_caching_control, work);
396 block_group = caching_ctl->block_group;
397 fs_info = block_group->fs_info;
398 extent_root = fs_info->extent_root;
399
400 path = btrfs_alloc_path();
401 if (!path)
402 goto out;
403
404 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
405
406 /*
407 * We don't want to deadlock with somebody trying to allocate a new
408 * extent for the extent root while also trying to search the extent
409 * root to add free space. So we skip locking and search the commit
410 * root, since its read-only
411 */
412 path->skip_locking = 1;
413 path->search_commit_root = 1;
414 path->reada = 1;
415
416 key.objectid = last;
417 key.offset = 0;
418 key.type = BTRFS_EXTENT_ITEM_KEY;
419again:
420 mutex_lock(&caching_ctl->mutex);
421 /* need to make sure the commit_root doesn't disappear */
422 down_read(&fs_info->commit_root_sem);
423
424next:
425 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
426 if (ret < 0)
427 goto err;
428
429 leaf = path->nodes[0];
430 nritems = btrfs_header_nritems(leaf);
431
432 while (1) {
433 if (btrfs_fs_closing(fs_info) > 1) {
434 last = (u64)-1;
435 break;
436 }
437
438 if (path->slots[0] < nritems) {
439 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
440 } else {
441 ret = find_next_key(path, 0, &key);
442 if (ret)
443 break;
444
445 if (need_resched() ||
446 rwsem_is_contended(&fs_info->commit_root_sem)) {
447 caching_ctl->progress = last;
448 btrfs_release_path(path);
449 up_read(&fs_info->commit_root_sem);
450 mutex_unlock(&caching_ctl->mutex);
451 cond_resched();
452 goto again;
453 }
454
455 ret = btrfs_next_leaf(extent_root, path);
456 if (ret < 0)
457 goto err;
458 if (ret)
459 break;
460 leaf = path->nodes[0];
461 nritems = btrfs_header_nritems(leaf);
462 continue;
463 }
464
465 if (key.objectid < last) {
466 key.objectid = last;
467 key.offset = 0;
468 key.type = BTRFS_EXTENT_ITEM_KEY;
469
470 caching_ctl->progress = last;
471 btrfs_release_path(path);
472 goto next;
473 }
474
475 if (key.objectid < block_group->key.objectid) {
476 path->slots[0]++;
477 continue;
478 }
479
480 if (key.objectid >= block_group->key.objectid +
481 block_group->key.offset)
482 break;
483
484 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
485 key.type == BTRFS_METADATA_ITEM_KEY) {
486 total_found += add_new_free_space(block_group,
487 fs_info, last,
488 key.objectid);
489 if (key.type == BTRFS_METADATA_ITEM_KEY)
490 last = key.objectid +
491 fs_info->tree_root->leafsize;
492 else
493 last = key.objectid + key.offset;
494
495 if (total_found > (1024 * 1024 * 2)) {
496 total_found = 0;
497 wake_up(&caching_ctl->wait);
498 }
499 }
500 path->slots[0]++;
501 }
502 ret = 0;
503
504 total_found += add_new_free_space(block_group, fs_info, last,
505 block_group->key.objectid +
506 block_group->key.offset);
507 caching_ctl->progress = (u64)-1;
508
509 spin_lock(&block_group->lock);
510 block_group->caching_ctl = NULL;
511 block_group->cached = BTRFS_CACHE_FINISHED;
512 spin_unlock(&block_group->lock);
513
514err:
515 btrfs_free_path(path);
516 up_read(&fs_info->commit_root_sem);
517
518 free_excluded_extents(extent_root, block_group);
519
520 mutex_unlock(&caching_ctl->mutex);
521out:
522 if (ret) {
523 spin_lock(&block_group->lock);
524 block_group->caching_ctl = NULL;
525 block_group->cached = BTRFS_CACHE_ERROR;
526 spin_unlock(&block_group->lock);
527 }
528 wake_up(&caching_ctl->wait);
529
530 put_caching_control(caching_ctl);
531 btrfs_put_block_group(block_group);
532}
533
534static int cache_block_group(struct btrfs_block_group_cache *cache,
535 int load_cache_only)
536{
537 DEFINE_WAIT(wait);
538 struct btrfs_fs_info *fs_info = cache->fs_info;
539 struct btrfs_caching_control *caching_ctl;
540 int ret = 0;
541
542 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
543 if (!caching_ctl)
544 return -ENOMEM;
545
546 INIT_LIST_HEAD(&caching_ctl->list);
547 mutex_init(&caching_ctl->mutex);
548 init_waitqueue_head(&caching_ctl->wait);
549 caching_ctl->block_group = cache;
550 caching_ctl->progress = cache->key.objectid;
551 atomic_set(&caching_ctl->count, 1);
552 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
553
554 spin_lock(&cache->lock);
555 /*
556 * This should be a rare occasion, but this could happen I think in the
557 * case where one thread starts to load the space cache info, and then
558 * some other thread starts a transaction commit which tries to do an
559 * allocation while the other thread is still loading the space cache
560 * info. The previous loop should have kept us from choosing this block
561 * group, but if we've moved to the state where we will wait on caching
562 * block groups we need to first check if we're doing a fast load here,
563 * so we can wait for it to finish, otherwise we could end up allocating
564 * from a block group who's cache gets evicted for one reason or
565 * another.
566 */
567 while (cache->cached == BTRFS_CACHE_FAST) {
568 struct btrfs_caching_control *ctl;
569
570 ctl = cache->caching_ctl;
571 atomic_inc(&ctl->count);
572 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
573 spin_unlock(&cache->lock);
574
575 schedule();
576
577 finish_wait(&ctl->wait, &wait);
578 put_caching_control(ctl);
579 spin_lock(&cache->lock);
580 }
581
582 if (cache->cached != BTRFS_CACHE_NO) {
583 spin_unlock(&cache->lock);
584 kfree(caching_ctl);
585 return 0;
586 }
587 WARN_ON(cache->caching_ctl);
588 cache->caching_ctl = caching_ctl;
589 cache->cached = BTRFS_CACHE_FAST;
590 spin_unlock(&cache->lock);
591
592 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
597 cache->caching_ctl = NULL;
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
600 } else {
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
606 }
607 }
608 spin_unlock(&cache->lock);
609 wake_up(&caching_ctl->wait);
610 if (ret == 1) {
611 put_caching_control(caching_ctl);
612 free_excluded_extents(fs_info->extent_root, cache);
613 return 0;
614 }
615 } else {
616 /*
617 * We are not going to do the fast caching, set cached to the
618 * appropriate value and wakeup any waiters.
619 */
620 spin_lock(&cache->lock);
621 if (load_cache_only) {
622 cache->caching_ctl = NULL;
623 cache->cached = BTRFS_CACHE_NO;
624 } else {
625 cache->cached = BTRFS_CACHE_STARTED;
626 }
627 spin_unlock(&cache->lock);
628 wake_up(&caching_ctl->wait);
629 }
630
631 if (load_cache_only) {
632 put_caching_control(caching_ctl);
633 return 0;
634 }
635
636 down_write(&fs_info->commit_root_sem);
637 atomic_inc(&caching_ctl->count);
638 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
639 up_write(&fs_info->commit_root_sem);
640
641 btrfs_get_block_group(cache);
642
643 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
644
645 return ret;
646}
647
648/*
649 * return the block group that starts at or after bytenr
650 */
651static struct btrfs_block_group_cache *
652btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
653{
654 struct btrfs_block_group_cache *cache;
655
656 cache = block_group_cache_tree_search(info, bytenr, 0);
657
658 return cache;
659}
660
661/*
662 * return the block group that contains the given bytenr
663 */
664struct btrfs_block_group_cache *btrfs_lookup_block_group(
665 struct btrfs_fs_info *info,
666 u64 bytenr)
667{
668 struct btrfs_block_group_cache *cache;
669
670 cache = block_group_cache_tree_search(info, bytenr, 1);
671
672 return cache;
673}
674
675static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
676 u64 flags)
677{
678 struct list_head *head = &info->space_info;
679 struct btrfs_space_info *found;
680
681 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
682
683 rcu_read_lock();
684 list_for_each_entry_rcu(found, head, list) {
685 if (found->flags & flags) {
686 rcu_read_unlock();
687 return found;
688 }
689 }
690 rcu_read_unlock();
691 return NULL;
692}
693
694/*
695 * after adding space to the filesystem, we need to clear the full flags
696 * on all the space infos.
697 */
698void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
699{
700 struct list_head *head = &info->space_info;
701 struct btrfs_space_info *found;
702
703 rcu_read_lock();
704 list_for_each_entry_rcu(found, head, list)
705 found->full = 0;
706 rcu_read_unlock();
707}
708
709/* simple helper to search for an existing extent at a given offset */
710int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
711{
712 int ret;
713 struct btrfs_key key;
714 struct btrfs_path *path;
715
716 path = btrfs_alloc_path();
717 if (!path)
718 return -ENOMEM;
719
720 key.objectid = start;
721 key.offset = len;
722 key.type = BTRFS_EXTENT_ITEM_KEY;
723 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
724 0, 0);
725 if (ret > 0) {
726 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
727 if (key.objectid == start &&
728 key.type == BTRFS_METADATA_ITEM_KEY)
729 ret = 0;
730 }
731 btrfs_free_path(path);
732 return ret;
733}
734
735/*
736 * helper function to lookup reference count and flags of a tree block.
737 *
738 * the head node for delayed ref is used to store the sum of all the
739 * reference count modifications queued up in the rbtree. the head
740 * node may also store the extent flags to set. This way you can check
741 * to see what the reference count and extent flags would be if all of
742 * the delayed refs are not processed.
743 */
744int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
745 struct btrfs_root *root, u64 bytenr,
746 u64 offset, int metadata, u64 *refs, u64 *flags)
747{
748 struct btrfs_delayed_ref_head *head;
749 struct btrfs_delayed_ref_root *delayed_refs;
750 struct btrfs_path *path;
751 struct btrfs_extent_item *ei;
752 struct extent_buffer *leaf;
753 struct btrfs_key key;
754 u32 item_size;
755 u64 num_refs;
756 u64 extent_flags;
757 int ret;
758
759 /*
760 * If we don't have skinny metadata, don't bother doing anything
761 * different
762 */
763 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
764 offset = root->leafsize;
765 metadata = 0;
766 }
767
768 path = btrfs_alloc_path();
769 if (!path)
770 return -ENOMEM;
771
772 if (!trans) {
773 path->skip_locking = 1;
774 path->search_commit_root = 1;
775 }
776
777search_again:
778 key.objectid = bytenr;
779 key.offset = offset;
780 if (metadata)
781 key.type = BTRFS_METADATA_ITEM_KEY;
782 else
783 key.type = BTRFS_EXTENT_ITEM_KEY;
784
785again:
786 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
787 &key, path, 0, 0);
788 if (ret < 0)
789 goto out_free;
790
791 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
792 if (path->slots[0]) {
793 path->slots[0]--;
794 btrfs_item_key_to_cpu(path->nodes[0], &key,
795 path->slots[0]);
796 if (key.objectid == bytenr &&
797 key.type == BTRFS_EXTENT_ITEM_KEY &&
798 key.offset == root->leafsize)
799 ret = 0;
800 }
801 if (ret) {
802 key.objectid = bytenr;
803 key.type = BTRFS_EXTENT_ITEM_KEY;
804 key.offset = root->leafsize;
805 btrfs_release_path(path);
806 goto again;
807 }
808 }
809
810 if (ret == 0) {
811 leaf = path->nodes[0];
812 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
813 if (item_size >= sizeof(*ei)) {
814 ei = btrfs_item_ptr(leaf, path->slots[0],
815 struct btrfs_extent_item);
816 num_refs = btrfs_extent_refs(leaf, ei);
817 extent_flags = btrfs_extent_flags(leaf, ei);
818 } else {
819#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
820 struct btrfs_extent_item_v0 *ei0;
821 BUG_ON(item_size != sizeof(*ei0));
822 ei0 = btrfs_item_ptr(leaf, path->slots[0],
823 struct btrfs_extent_item_v0);
824 num_refs = btrfs_extent_refs_v0(leaf, ei0);
825 /* FIXME: this isn't correct for data */
826 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
827#else
828 BUG();
829#endif
830 }
831 BUG_ON(num_refs == 0);
832 } else {
833 num_refs = 0;
834 extent_flags = 0;
835 ret = 0;
836 }
837
838 if (!trans)
839 goto out;
840
841 delayed_refs = &trans->transaction->delayed_refs;
842 spin_lock(&delayed_refs->lock);
843 head = btrfs_find_delayed_ref_head(trans, bytenr);
844 if (head) {
845 if (!mutex_trylock(&head->mutex)) {
846 atomic_inc(&head->node.refs);
847 spin_unlock(&delayed_refs->lock);
848
849 btrfs_release_path(path);
850
851 /*
852 * Mutex was contended, block until it's released and try
853 * again
854 */
855 mutex_lock(&head->mutex);
856 mutex_unlock(&head->mutex);
857 btrfs_put_delayed_ref(&head->node);
858 goto search_again;
859 }
860 spin_lock(&head->lock);
861 if (head->extent_op && head->extent_op->update_flags)
862 extent_flags |= head->extent_op->flags_to_set;
863 else
864 BUG_ON(num_refs == 0);
865
866 num_refs += head->node.ref_mod;
867 spin_unlock(&head->lock);
868 mutex_unlock(&head->mutex);
869 }
870 spin_unlock(&delayed_refs->lock);
871out:
872 WARN_ON(num_refs == 0);
873 if (refs)
874 *refs = num_refs;
875 if (flags)
876 *flags = extent_flags;
877out_free:
878 btrfs_free_path(path);
879 return ret;
880}
881
882/*
883 * Back reference rules. Back refs have three main goals:
884 *
885 * 1) differentiate between all holders of references to an extent so that
886 * when a reference is dropped we can make sure it was a valid reference
887 * before freeing the extent.
888 *
889 * 2) Provide enough information to quickly find the holders of an extent
890 * if we notice a given block is corrupted or bad.
891 *
892 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
893 * maintenance. This is actually the same as #2, but with a slightly
894 * different use case.
895 *
896 * There are two kinds of back refs. The implicit back refs is optimized
897 * for pointers in non-shared tree blocks. For a given pointer in a block,
898 * back refs of this kind provide information about the block's owner tree
899 * and the pointer's key. These information allow us to find the block by
900 * b-tree searching. The full back refs is for pointers in tree blocks not
901 * referenced by their owner trees. The location of tree block is recorded
902 * in the back refs. Actually the full back refs is generic, and can be
903 * used in all cases the implicit back refs is used. The major shortcoming
904 * of the full back refs is its overhead. Every time a tree block gets
905 * COWed, we have to update back refs entry for all pointers in it.
906 *
907 * For a newly allocated tree block, we use implicit back refs for
908 * pointers in it. This means most tree related operations only involve
909 * implicit back refs. For a tree block created in old transaction, the
910 * only way to drop a reference to it is COW it. So we can detect the
911 * event that tree block loses its owner tree's reference and do the
912 * back refs conversion.
913 *
914 * When a tree block is COW'd through a tree, there are four cases:
915 *
916 * The reference count of the block is one and the tree is the block's
917 * owner tree. Nothing to do in this case.
918 *
919 * The reference count of the block is one and the tree is not the
920 * block's owner tree. In this case, full back refs is used for pointers
921 * in the block. Remove these full back refs, add implicit back refs for
922 * every pointers in the new block.
923 *
924 * The reference count of the block is greater than one and the tree is
925 * the block's owner tree. In this case, implicit back refs is used for
926 * pointers in the block. Add full back refs for every pointers in the
927 * block, increase lower level extents' reference counts. The original
928 * implicit back refs are entailed to the new block.
929 *
930 * The reference count of the block is greater than one and the tree is
931 * not the block's owner tree. Add implicit back refs for every pointer in
932 * the new block, increase lower level extents' reference count.
933 *
934 * Back Reference Key composing:
935 *
936 * The key objectid corresponds to the first byte in the extent,
937 * The key type is used to differentiate between types of back refs.
938 * There are different meanings of the key offset for different types
939 * of back refs.
940 *
941 * File extents can be referenced by:
942 *
943 * - multiple snapshots, subvolumes, or different generations in one subvol
944 * - different files inside a single subvolume
945 * - different offsets inside a file (bookend extents in file.c)
946 *
947 * The extent ref structure for the implicit back refs has fields for:
948 *
949 * - Objectid of the subvolume root
950 * - objectid of the file holding the reference
951 * - original offset in the file
952 * - how many bookend extents
953 *
954 * The key offset for the implicit back refs is hash of the first
955 * three fields.
956 *
957 * The extent ref structure for the full back refs has field for:
958 *
959 * - number of pointers in the tree leaf
960 *
961 * The key offset for the implicit back refs is the first byte of
962 * the tree leaf
963 *
964 * When a file extent is allocated, The implicit back refs is used.
965 * the fields are filled in:
966 *
967 * (root_key.objectid, inode objectid, offset in file, 1)
968 *
969 * When a file extent is removed file truncation, we find the
970 * corresponding implicit back refs and check the following fields:
971 *
972 * (btrfs_header_owner(leaf), inode objectid, offset in file)
973 *
974 * Btree extents can be referenced by:
975 *
976 * - Different subvolumes
977 *
978 * Both the implicit back refs and the full back refs for tree blocks
979 * only consist of key. The key offset for the implicit back refs is
980 * objectid of block's owner tree. The key offset for the full back refs
981 * is the first byte of parent block.
982 *
983 * When implicit back refs is used, information about the lowest key and
984 * level of the tree block are required. These information are stored in
985 * tree block info structure.
986 */
987
988#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
989static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
990 struct btrfs_root *root,
991 struct btrfs_path *path,
992 u64 owner, u32 extra_size)
993{
994 struct btrfs_extent_item *item;
995 struct btrfs_extent_item_v0 *ei0;
996 struct btrfs_extent_ref_v0 *ref0;
997 struct btrfs_tree_block_info *bi;
998 struct extent_buffer *leaf;
999 struct btrfs_key key;
1000 struct btrfs_key found_key;
1001 u32 new_size = sizeof(*item);
1002 u64 refs;
1003 int ret;
1004
1005 leaf = path->nodes[0];
1006 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1007
1008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1009 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1010 struct btrfs_extent_item_v0);
1011 refs = btrfs_extent_refs_v0(leaf, ei0);
1012
1013 if (owner == (u64)-1) {
1014 while (1) {
1015 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1016 ret = btrfs_next_leaf(root, path);
1017 if (ret < 0)
1018 return ret;
1019 BUG_ON(ret > 0); /* Corruption */
1020 leaf = path->nodes[0];
1021 }
1022 btrfs_item_key_to_cpu(leaf, &found_key,
1023 path->slots[0]);
1024 BUG_ON(key.objectid != found_key.objectid);
1025 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1026 path->slots[0]++;
1027 continue;
1028 }
1029 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1030 struct btrfs_extent_ref_v0);
1031 owner = btrfs_ref_objectid_v0(leaf, ref0);
1032 break;
1033 }
1034 }
1035 btrfs_release_path(path);
1036
1037 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1038 new_size += sizeof(*bi);
1039
1040 new_size -= sizeof(*ei0);
1041 ret = btrfs_search_slot(trans, root, &key, path,
1042 new_size + extra_size, 1);
1043 if (ret < 0)
1044 return ret;
1045 BUG_ON(ret); /* Corruption */
1046
1047 btrfs_extend_item(root, path, new_size);
1048
1049 leaf = path->nodes[0];
1050 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1051 btrfs_set_extent_refs(leaf, item, refs);
1052 /* FIXME: get real generation */
1053 btrfs_set_extent_generation(leaf, item, 0);
1054 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1055 btrfs_set_extent_flags(leaf, item,
1056 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1057 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1058 bi = (struct btrfs_tree_block_info *)(item + 1);
1059 /* FIXME: get first key of the block */
1060 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1061 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1062 } else {
1063 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1064 }
1065 btrfs_mark_buffer_dirty(leaf);
1066 return 0;
1067}
1068#endif
1069
1070static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1071{
1072 u32 high_crc = ~(u32)0;
1073 u32 low_crc = ~(u32)0;
1074 __le64 lenum;
1075
1076 lenum = cpu_to_le64(root_objectid);
1077 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1078 lenum = cpu_to_le64(owner);
1079 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1080 lenum = cpu_to_le64(offset);
1081 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1082
1083 return ((u64)high_crc << 31) ^ (u64)low_crc;
1084}
1085
1086static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1087 struct btrfs_extent_data_ref *ref)
1088{
1089 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1090 btrfs_extent_data_ref_objectid(leaf, ref),
1091 btrfs_extent_data_ref_offset(leaf, ref));
1092}
1093
1094static int match_extent_data_ref(struct extent_buffer *leaf,
1095 struct btrfs_extent_data_ref *ref,
1096 u64 root_objectid, u64 owner, u64 offset)
1097{
1098 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1099 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1100 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1101 return 0;
1102 return 1;
1103}
1104
1105static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1106 struct btrfs_root *root,
1107 struct btrfs_path *path,
1108 u64 bytenr, u64 parent,
1109 u64 root_objectid,
1110 u64 owner, u64 offset)
1111{
1112 struct btrfs_key key;
1113 struct btrfs_extent_data_ref *ref;
1114 struct extent_buffer *leaf;
1115 u32 nritems;
1116 int ret;
1117 int recow;
1118 int err = -ENOENT;
1119
1120 key.objectid = bytenr;
1121 if (parent) {
1122 key.type = BTRFS_SHARED_DATA_REF_KEY;
1123 key.offset = parent;
1124 } else {
1125 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1126 key.offset = hash_extent_data_ref(root_objectid,
1127 owner, offset);
1128 }
1129again:
1130 recow = 0;
1131 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1132 if (ret < 0) {
1133 err = ret;
1134 goto fail;
1135 }
1136
1137 if (parent) {
1138 if (!ret)
1139 return 0;
1140#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1141 key.type = BTRFS_EXTENT_REF_V0_KEY;
1142 btrfs_release_path(path);
1143 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1144 if (ret < 0) {
1145 err = ret;
1146 goto fail;
1147 }
1148 if (!ret)
1149 return 0;
1150#endif
1151 goto fail;
1152 }
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 while (1) {
1157 if (path->slots[0] >= nritems) {
1158 ret = btrfs_next_leaf(root, path);
1159 if (ret < 0)
1160 err = ret;
1161 if (ret)
1162 goto fail;
1163
1164 leaf = path->nodes[0];
1165 nritems = btrfs_header_nritems(leaf);
1166 recow = 1;
1167 }
1168
1169 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1170 if (key.objectid != bytenr ||
1171 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1172 goto fail;
1173
1174 ref = btrfs_item_ptr(leaf, path->slots[0],
1175 struct btrfs_extent_data_ref);
1176
1177 if (match_extent_data_ref(leaf, ref, root_objectid,
1178 owner, offset)) {
1179 if (recow) {
1180 btrfs_release_path(path);
1181 goto again;
1182 }
1183 err = 0;
1184 break;
1185 }
1186 path->slots[0]++;
1187 }
1188fail:
1189 return err;
1190}
1191
1192static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1193 struct btrfs_root *root,
1194 struct btrfs_path *path,
1195 u64 bytenr, u64 parent,
1196 u64 root_objectid, u64 owner,
1197 u64 offset, int refs_to_add)
1198{
1199 struct btrfs_key key;
1200 struct extent_buffer *leaf;
1201 u32 size;
1202 u32 num_refs;
1203 int ret;
1204
1205 key.objectid = bytenr;
1206 if (parent) {
1207 key.type = BTRFS_SHARED_DATA_REF_KEY;
1208 key.offset = parent;
1209 size = sizeof(struct btrfs_shared_data_ref);
1210 } else {
1211 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1212 key.offset = hash_extent_data_ref(root_objectid,
1213 owner, offset);
1214 size = sizeof(struct btrfs_extent_data_ref);
1215 }
1216
1217 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1218 if (ret && ret != -EEXIST)
1219 goto fail;
1220
1221 leaf = path->nodes[0];
1222 if (parent) {
1223 struct btrfs_shared_data_ref *ref;
1224 ref = btrfs_item_ptr(leaf, path->slots[0],
1225 struct btrfs_shared_data_ref);
1226 if (ret == 0) {
1227 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1228 } else {
1229 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1230 num_refs += refs_to_add;
1231 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1232 }
1233 } else {
1234 struct btrfs_extent_data_ref *ref;
1235 while (ret == -EEXIST) {
1236 ref = btrfs_item_ptr(leaf, path->slots[0],
1237 struct btrfs_extent_data_ref);
1238 if (match_extent_data_ref(leaf, ref, root_objectid,
1239 owner, offset))
1240 break;
1241 btrfs_release_path(path);
1242 key.offset++;
1243 ret = btrfs_insert_empty_item(trans, root, path, &key,
1244 size);
1245 if (ret && ret != -EEXIST)
1246 goto fail;
1247
1248 leaf = path->nodes[0];
1249 }
1250 ref = btrfs_item_ptr(leaf, path->slots[0],
1251 struct btrfs_extent_data_ref);
1252 if (ret == 0) {
1253 btrfs_set_extent_data_ref_root(leaf, ref,
1254 root_objectid);
1255 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1256 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1257 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1258 } else {
1259 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1260 num_refs += refs_to_add;
1261 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1262 }
1263 }
1264 btrfs_mark_buffer_dirty(leaf);
1265 ret = 0;
1266fail:
1267 btrfs_release_path(path);
1268 return ret;
1269}
1270
1271static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1272 struct btrfs_root *root,
1273 struct btrfs_path *path,
1274 int refs_to_drop)
1275{
1276 struct btrfs_key key;
1277 struct btrfs_extent_data_ref *ref1 = NULL;
1278 struct btrfs_shared_data_ref *ref2 = NULL;
1279 struct extent_buffer *leaf;
1280 u32 num_refs = 0;
1281 int ret = 0;
1282
1283 leaf = path->nodes[0];
1284 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1285
1286 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1287 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_data_ref);
1289 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1290 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1291 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1292 struct btrfs_shared_data_ref);
1293 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1294#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1295 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1296 struct btrfs_extent_ref_v0 *ref0;
1297 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1298 struct btrfs_extent_ref_v0);
1299 num_refs = btrfs_ref_count_v0(leaf, ref0);
1300#endif
1301 } else {
1302 BUG();
1303 }
1304
1305 BUG_ON(num_refs < refs_to_drop);
1306 num_refs -= refs_to_drop;
1307
1308 if (num_refs == 0) {
1309 ret = btrfs_del_item(trans, root, path);
1310 } else {
1311 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1312 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1313 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1314 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1315#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1316 else {
1317 struct btrfs_extent_ref_v0 *ref0;
1318 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1319 struct btrfs_extent_ref_v0);
1320 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1321 }
1322#endif
1323 btrfs_mark_buffer_dirty(leaf);
1324 }
1325 return ret;
1326}
1327
1328static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1329 struct btrfs_path *path,
1330 struct btrfs_extent_inline_ref *iref)
1331{
1332 struct btrfs_key key;
1333 struct extent_buffer *leaf;
1334 struct btrfs_extent_data_ref *ref1;
1335 struct btrfs_shared_data_ref *ref2;
1336 u32 num_refs = 0;
1337
1338 leaf = path->nodes[0];
1339 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1340 if (iref) {
1341 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1342 BTRFS_EXTENT_DATA_REF_KEY) {
1343 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else {
1346 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348 }
1349 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1350 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_extent_data_ref);
1352 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1353 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1354 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1355 struct btrfs_shared_data_ref);
1356 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1357#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1359 struct btrfs_extent_ref_v0 *ref0;
1360 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_extent_ref_v0);
1362 num_refs = btrfs_ref_count_v0(leaf, ref0);
1363#endif
1364 } else {
1365 WARN_ON(1);
1366 }
1367 return num_refs;
1368}
1369
1370static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1371 struct btrfs_root *root,
1372 struct btrfs_path *path,
1373 u64 bytenr, u64 parent,
1374 u64 root_objectid)
1375{
1376 struct btrfs_key key;
1377 int ret;
1378
1379 key.objectid = bytenr;
1380 if (parent) {
1381 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1382 key.offset = parent;
1383 } else {
1384 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1385 key.offset = root_objectid;
1386 }
1387
1388 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1389 if (ret > 0)
1390 ret = -ENOENT;
1391#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1392 if (ret == -ENOENT && parent) {
1393 btrfs_release_path(path);
1394 key.type = BTRFS_EXTENT_REF_V0_KEY;
1395 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1396 if (ret > 0)
1397 ret = -ENOENT;
1398 }
1399#endif
1400 return ret;
1401}
1402
1403static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1404 struct btrfs_root *root,
1405 struct btrfs_path *path,
1406 u64 bytenr, u64 parent,
1407 u64 root_objectid)
1408{
1409 struct btrfs_key key;
1410 int ret;
1411
1412 key.objectid = bytenr;
1413 if (parent) {
1414 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1415 key.offset = parent;
1416 } else {
1417 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1418 key.offset = root_objectid;
1419 }
1420
1421 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1422 btrfs_release_path(path);
1423 return ret;
1424}
1425
1426static inline int extent_ref_type(u64 parent, u64 owner)
1427{
1428 int type;
1429 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1430 if (parent > 0)
1431 type = BTRFS_SHARED_BLOCK_REF_KEY;
1432 else
1433 type = BTRFS_TREE_BLOCK_REF_KEY;
1434 } else {
1435 if (parent > 0)
1436 type = BTRFS_SHARED_DATA_REF_KEY;
1437 else
1438 type = BTRFS_EXTENT_DATA_REF_KEY;
1439 }
1440 return type;
1441}
1442
1443static int find_next_key(struct btrfs_path *path, int level,
1444 struct btrfs_key *key)
1445
1446{
1447 for (; level < BTRFS_MAX_LEVEL; level++) {
1448 if (!path->nodes[level])
1449 break;
1450 if (path->slots[level] + 1 >=
1451 btrfs_header_nritems(path->nodes[level]))
1452 continue;
1453 if (level == 0)
1454 btrfs_item_key_to_cpu(path->nodes[level], key,
1455 path->slots[level] + 1);
1456 else
1457 btrfs_node_key_to_cpu(path->nodes[level], key,
1458 path->slots[level] + 1);
1459 return 0;
1460 }
1461 return 1;
1462}
1463
1464/*
1465 * look for inline back ref. if back ref is found, *ref_ret is set
1466 * to the address of inline back ref, and 0 is returned.
1467 *
1468 * if back ref isn't found, *ref_ret is set to the address where it
1469 * should be inserted, and -ENOENT is returned.
1470 *
1471 * if insert is true and there are too many inline back refs, the path
1472 * points to the extent item, and -EAGAIN is returned.
1473 *
1474 * NOTE: inline back refs are ordered in the same way that back ref
1475 * items in the tree are ordered.
1476 */
1477static noinline_for_stack
1478int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1479 struct btrfs_root *root,
1480 struct btrfs_path *path,
1481 struct btrfs_extent_inline_ref **ref_ret,
1482 u64 bytenr, u64 num_bytes,
1483 u64 parent, u64 root_objectid,
1484 u64 owner, u64 offset, int insert)
1485{
1486 struct btrfs_key key;
1487 struct extent_buffer *leaf;
1488 struct btrfs_extent_item *ei;
1489 struct btrfs_extent_inline_ref *iref;
1490 u64 flags;
1491 u64 item_size;
1492 unsigned long ptr;
1493 unsigned long end;
1494 int extra_size;
1495 int type;
1496 int want;
1497 int ret;
1498 int err = 0;
1499 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1500 SKINNY_METADATA);
1501
1502 key.objectid = bytenr;
1503 key.type = BTRFS_EXTENT_ITEM_KEY;
1504 key.offset = num_bytes;
1505
1506 want = extent_ref_type(parent, owner);
1507 if (insert) {
1508 extra_size = btrfs_extent_inline_ref_size(want);
1509 path->keep_locks = 1;
1510 } else
1511 extra_size = -1;
1512
1513 /*
1514 * Owner is our parent level, so we can just add one to get the level
1515 * for the block we are interested in.
1516 */
1517 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1518 key.type = BTRFS_METADATA_ITEM_KEY;
1519 key.offset = owner;
1520 }
1521
1522again:
1523 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1524 if (ret < 0) {
1525 err = ret;
1526 goto out;
1527 }
1528
1529 /*
1530 * We may be a newly converted file system which still has the old fat
1531 * extent entries for metadata, so try and see if we have one of those.
1532 */
1533 if (ret > 0 && skinny_metadata) {
1534 skinny_metadata = false;
1535 if (path->slots[0]) {
1536 path->slots[0]--;
1537 btrfs_item_key_to_cpu(path->nodes[0], &key,
1538 path->slots[0]);
1539 if (key.objectid == bytenr &&
1540 key.type == BTRFS_EXTENT_ITEM_KEY &&
1541 key.offset == num_bytes)
1542 ret = 0;
1543 }
1544 if (ret) {
1545 key.objectid = bytenr;
1546 key.type = BTRFS_EXTENT_ITEM_KEY;
1547 key.offset = num_bytes;
1548 btrfs_release_path(path);
1549 goto again;
1550 }
1551 }
1552
1553 if (ret && !insert) {
1554 err = -ENOENT;
1555 goto out;
1556 } else if (WARN_ON(ret)) {
1557 err = -EIO;
1558 goto out;
1559 }
1560
1561 leaf = path->nodes[0];
1562 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1563#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1564 if (item_size < sizeof(*ei)) {
1565 if (!insert) {
1566 err = -ENOENT;
1567 goto out;
1568 }
1569 ret = convert_extent_item_v0(trans, root, path, owner,
1570 extra_size);
1571 if (ret < 0) {
1572 err = ret;
1573 goto out;
1574 }
1575 leaf = path->nodes[0];
1576 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1577 }
1578#endif
1579 BUG_ON(item_size < sizeof(*ei));
1580
1581 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1582 flags = btrfs_extent_flags(leaf, ei);
1583
1584 ptr = (unsigned long)(ei + 1);
1585 end = (unsigned long)ei + item_size;
1586
1587 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1588 ptr += sizeof(struct btrfs_tree_block_info);
1589 BUG_ON(ptr > end);
1590 }
1591
1592 err = -ENOENT;
1593 while (1) {
1594 if (ptr >= end) {
1595 WARN_ON(ptr > end);
1596 break;
1597 }
1598 iref = (struct btrfs_extent_inline_ref *)ptr;
1599 type = btrfs_extent_inline_ref_type(leaf, iref);
1600 if (want < type)
1601 break;
1602 if (want > type) {
1603 ptr += btrfs_extent_inline_ref_size(type);
1604 continue;
1605 }
1606
1607 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1608 struct btrfs_extent_data_ref *dref;
1609 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1610 if (match_extent_data_ref(leaf, dref, root_objectid,
1611 owner, offset)) {
1612 err = 0;
1613 break;
1614 }
1615 if (hash_extent_data_ref_item(leaf, dref) <
1616 hash_extent_data_ref(root_objectid, owner, offset))
1617 break;
1618 } else {
1619 u64 ref_offset;
1620 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1621 if (parent > 0) {
1622 if (parent == ref_offset) {
1623 err = 0;
1624 break;
1625 }
1626 if (ref_offset < parent)
1627 break;
1628 } else {
1629 if (root_objectid == ref_offset) {
1630 err = 0;
1631 break;
1632 }
1633 if (ref_offset < root_objectid)
1634 break;
1635 }
1636 }
1637 ptr += btrfs_extent_inline_ref_size(type);
1638 }
1639 if (err == -ENOENT && insert) {
1640 if (item_size + extra_size >=
1641 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1642 err = -EAGAIN;
1643 goto out;
1644 }
1645 /*
1646 * To add new inline back ref, we have to make sure
1647 * there is no corresponding back ref item.
1648 * For simplicity, we just do not add new inline back
1649 * ref if there is any kind of item for this block
1650 */
1651 if (find_next_key(path, 0, &key) == 0 &&
1652 key.objectid == bytenr &&
1653 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1654 err = -EAGAIN;
1655 goto out;
1656 }
1657 }
1658 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1659out:
1660 if (insert) {
1661 path->keep_locks = 0;
1662 btrfs_unlock_up_safe(path, 1);
1663 }
1664 return err;
1665}
1666
1667/*
1668 * helper to add new inline back ref
1669 */
1670static noinline_for_stack
1671void setup_inline_extent_backref(struct btrfs_root *root,
1672 struct btrfs_path *path,
1673 struct btrfs_extent_inline_ref *iref,
1674 u64 parent, u64 root_objectid,
1675 u64 owner, u64 offset, int refs_to_add,
1676 struct btrfs_delayed_extent_op *extent_op)
1677{
1678 struct extent_buffer *leaf;
1679 struct btrfs_extent_item *ei;
1680 unsigned long ptr;
1681 unsigned long end;
1682 unsigned long item_offset;
1683 u64 refs;
1684 int size;
1685 int type;
1686
1687 leaf = path->nodes[0];
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 item_offset = (unsigned long)iref - (unsigned long)ei;
1690
1691 type = extent_ref_type(parent, owner);
1692 size = btrfs_extent_inline_ref_size(type);
1693
1694 btrfs_extend_item(root, path, size);
1695
1696 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1697 refs = btrfs_extent_refs(leaf, ei);
1698 refs += refs_to_add;
1699 btrfs_set_extent_refs(leaf, ei, refs);
1700 if (extent_op)
1701 __run_delayed_extent_op(extent_op, leaf, ei);
1702
1703 ptr = (unsigned long)ei + item_offset;
1704 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1705 if (ptr < end - size)
1706 memmove_extent_buffer(leaf, ptr + size, ptr,
1707 end - size - ptr);
1708
1709 iref = (struct btrfs_extent_inline_ref *)ptr;
1710 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1711 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1712 struct btrfs_extent_data_ref *dref;
1713 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1714 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1715 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1716 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1717 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1718 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1719 struct btrfs_shared_data_ref *sref;
1720 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1721 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1722 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1723 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1724 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1725 } else {
1726 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1727 }
1728 btrfs_mark_buffer_dirty(leaf);
1729}
1730
1731static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1732 struct btrfs_root *root,
1733 struct btrfs_path *path,
1734 struct btrfs_extent_inline_ref **ref_ret,
1735 u64 bytenr, u64 num_bytes, u64 parent,
1736 u64 root_objectid, u64 owner, u64 offset)
1737{
1738 int ret;
1739
1740 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1741 bytenr, num_bytes, parent,
1742 root_objectid, owner, offset, 0);
1743 if (ret != -ENOENT)
1744 return ret;
1745
1746 btrfs_release_path(path);
1747 *ref_ret = NULL;
1748
1749 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1750 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1751 root_objectid);
1752 } else {
1753 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1754 root_objectid, owner, offset);
1755 }
1756 return ret;
1757}
1758
1759/*
1760 * helper to update/remove inline back ref
1761 */
1762static noinline_for_stack
1763void update_inline_extent_backref(struct btrfs_root *root,
1764 struct btrfs_path *path,
1765 struct btrfs_extent_inline_ref *iref,
1766 int refs_to_mod,
1767 struct btrfs_delayed_extent_op *extent_op)
1768{
1769 struct extent_buffer *leaf;
1770 struct btrfs_extent_item *ei;
1771 struct btrfs_extent_data_ref *dref = NULL;
1772 struct btrfs_shared_data_ref *sref = NULL;
1773 unsigned long ptr;
1774 unsigned long end;
1775 u32 item_size;
1776 int size;
1777 int type;
1778 u64 refs;
1779
1780 leaf = path->nodes[0];
1781 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1782 refs = btrfs_extent_refs(leaf, ei);
1783 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1784 refs += refs_to_mod;
1785 btrfs_set_extent_refs(leaf, ei, refs);
1786 if (extent_op)
1787 __run_delayed_extent_op(extent_op, leaf, ei);
1788
1789 type = btrfs_extent_inline_ref_type(leaf, iref);
1790
1791 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1792 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1793 refs = btrfs_extent_data_ref_count(leaf, dref);
1794 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1795 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1796 refs = btrfs_shared_data_ref_count(leaf, sref);
1797 } else {
1798 refs = 1;
1799 BUG_ON(refs_to_mod != -1);
1800 }
1801
1802 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1803 refs += refs_to_mod;
1804
1805 if (refs > 0) {
1806 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1807 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1808 else
1809 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1810 } else {
1811 size = btrfs_extent_inline_ref_size(type);
1812 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1813 ptr = (unsigned long)iref;
1814 end = (unsigned long)ei + item_size;
1815 if (ptr + size < end)
1816 memmove_extent_buffer(leaf, ptr, ptr + size,
1817 end - ptr - size);
1818 item_size -= size;
1819 btrfs_truncate_item(root, path, item_size, 1);
1820 }
1821 btrfs_mark_buffer_dirty(leaf);
1822}
1823
1824static noinline_for_stack
1825int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1826 struct btrfs_root *root,
1827 struct btrfs_path *path,
1828 u64 bytenr, u64 num_bytes, u64 parent,
1829 u64 root_objectid, u64 owner,
1830 u64 offset, int refs_to_add,
1831 struct btrfs_delayed_extent_op *extent_op)
1832{
1833 struct btrfs_extent_inline_ref *iref;
1834 int ret;
1835
1836 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1837 bytenr, num_bytes, parent,
1838 root_objectid, owner, offset, 1);
1839 if (ret == 0) {
1840 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1841 update_inline_extent_backref(root, path, iref,
1842 refs_to_add, extent_op);
1843 } else if (ret == -ENOENT) {
1844 setup_inline_extent_backref(root, path, iref, parent,
1845 root_objectid, owner, offset,
1846 refs_to_add, extent_op);
1847 ret = 0;
1848 }
1849 return ret;
1850}
1851
1852static int insert_extent_backref(struct btrfs_trans_handle *trans,
1853 struct btrfs_root *root,
1854 struct btrfs_path *path,
1855 u64 bytenr, u64 parent, u64 root_objectid,
1856 u64 owner, u64 offset, int refs_to_add)
1857{
1858 int ret;
1859 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1860 BUG_ON(refs_to_add != 1);
1861 ret = insert_tree_block_ref(trans, root, path, bytenr,
1862 parent, root_objectid);
1863 } else {
1864 ret = insert_extent_data_ref(trans, root, path, bytenr,
1865 parent, root_objectid,
1866 owner, offset, refs_to_add);
1867 }
1868 return ret;
1869}
1870
1871static int remove_extent_backref(struct btrfs_trans_handle *trans,
1872 struct btrfs_root *root,
1873 struct btrfs_path *path,
1874 struct btrfs_extent_inline_ref *iref,
1875 int refs_to_drop, int is_data)
1876{
1877 int ret = 0;
1878
1879 BUG_ON(!is_data && refs_to_drop != 1);
1880 if (iref) {
1881 update_inline_extent_backref(root, path, iref,
1882 -refs_to_drop, NULL);
1883 } else if (is_data) {
1884 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1885 } else {
1886 ret = btrfs_del_item(trans, root, path);
1887 }
1888 return ret;
1889}
1890
1891static int btrfs_issue_discard(struct block_device *bdev,
1892 u64 start, u64 len)
1893{
1894 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1895}
1896
1897static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1898 u64 num_bytes, u64 *actual_bytes)
1899{
1900 int ret;
1901 u64 discarded_bytes = 0;
1902 struct btrfs_bio *bbio = NULL;
1903
1904
1905 /* Tell the block device(s) that the sectors can be discarded */
1906 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1907 bytenr, &num_bytes, &bbio, 0);
1908 /* Error condition is -ENOMEM */
1909 if (!ret) {
1910 struct btrfs_bio_stripe *stripe = bbio->stripes;
1911 int i;
1912
1913
1914 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1915 if (!stripe->dev->can_discard)
1916 continue;
1917
1918 ret = btrfs_issue_discard(stripe->dev->bdev,
1919 stripe->physical,
1920 stripe->length);
1921 if (!ret)
1922 discarded_bytes += stripe->length;
1923 else if (ret != -EOPNOTSUPP)
1924 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1925
1926 /*
1927 * Just in case we get back EOPNOTSUPP for some reason,
1928 * just ignore the return value so we don't screw up
1929 * people calling discard_extent.
1930 */
1931 ret = 0;
1932 }
1933 kfree(bbio);
1934 }
1935
1936 if (actual_bytes)
1937 *actual_bytes = discarded_bytes;
1938
1939
1940 if (ret == -EOPNOTSUPP)
1941 ret = 0;
1942 return ret;
1943}
1944
1945/* Can return -ENOMEM */
1946int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1947 struct btrfs_root *root,
1948 u64 bytenr, u64 num_bytes, u64 parent,
1949 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1950{
1951 int ret;
1952 struct btrfs_fs_info *fs_info = root->fs_info;
1953
1954 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1955 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1956
1957 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1958 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1959 num_bytes,
1960 parent, root_objectid, (int)owner,
1961 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1962 } else {
1963 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1964 num_bytes,
1965 parent, root_objectid, owner, offset,
1966 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1967 }
1968 return ret;
1969}
1970
1971static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1972 struct btrfs_root *root,
1973 u64 bytenr, u64 num_bytes,
1974 u64 parent, u64 root_objectid,
1975 u64 owner, u64 offset, int refs_to_add,
1976 struct btrfs_delayed_extent_op *extent_op)
1977{
1978 struct btrfs_path *path;
1979 struct extent_buffer *leaf;
1980 struct btrfs_extent_item *item;
1981 u64 refs;
1982 int ret;
1983
1984 path = btrfs_alloc_path();
1985 if (!path)
1986 return -ENOMEM;
1987
1988 path->reada = 1;
1989 path->leave_spinning = 1;
1990 /* this will setup the path even if it fails to insert the back ref */
1991 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1992 path, bytenr, num_bytes, parent,
1993 root_objectid, owner, offset,
1994 refs_to_add, extent_op);
1995 if (ret != -EAGAIN)
1996 goto out;
1997
1998 leaf = path->nodes[0];
1999 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2000 refs = btrfs_extent_refs(leaf, item);
2001 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2002 if (extent_op)
2003 __run_delayed_extent_op(extent_op, leaf, item);
2004
2005 btrfs_mark_buffer_dirty(leaf);
2006 btrfs_release_path(path);
2007
2008 path->reada = 1;
2009 path->leave_spinning = 1;
2010
2011 /* now insert the actual backref */
2012 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2013 path, bytenr, parent, root_objectid,
2014 owner, offset, refs_to_add);
2015 if (ret)
2016 btrfs_abort_transaction(trans, root, ret);
2017out:
2018 btrfs_free_path(path);
2019 return ret;
2020}
2021
2022static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2023 struct btrfs_root *root,
2024 struct btrfs_delayed_ref_node *node,
2025 struct btrfs_delayed_extent_op *extent_op,
2026 int insert_reserved)
2027{
2028 int ret = 0;
2029 struct btrfs_delayed_data_ref *ref;
2030 struct btrfs_key ins;
2031 u64 parent = 0;
2032 u64 ref_root = 0;
2033 u64 flags = 0;
2034
2035 ins.objectid = node->bytenr;
2036 ins.offset = node->num_bytes;
2037 ins.type = BTRFS_EXTENT_ITEM_KEY;
2038
2039 ref = btrfs_delayed_node_to_data_ref(node);
2040 trace_run_delayed_data_ref(node, ref, node->action);
2041
2042 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2043 parent = ref->parent;
2044 else
2045 ref_root = ref->root;
2046
2047 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2048 if (extent_op)
2049 flags |= extent_op->flags_to_set;
2050 ret = alloc_reserved_file_extent(trans, root,
2051 parent, ref_root, flags,
2052 ref->objectid, ref->offset,
2053 &ins, node->ref_mod);
2054 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2055 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2056 node->num_bytes, parent,
2057 ref_root, ref->objectid,
2058 ref->offset, node->ref_mod,
2059 extent_op);
2060 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2061 ret = __btrfs_free_extent(trans, root, node->bytenr,
2062 node->num_bytes, parent,
2063 ref_root, ref->objectid,
2064 ref->offset, node->ref_mod,
2065 extent_op);
2066 } else {
2067 BUG();
2068 }
2069 return ret;
2070}
2071
2072static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2073 struct extent_buffer *leaf,
2074 struct btrfs_extent_item *ei)
2075{
2076 u64 flags = btrfs_extent_flags(leaf, ei);
2077 if (extent_op->update_flags) {
2078 flags |= extent_op->flags_to_set;
2079 btrfs_set_extent_flags(leaf, ei, flags);
2080 }
2081
2082 if (extent_op->update_key) {
2083 struct btrfs_tree_block_info *bi;
2084 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2085 bi = (struct btrfs_tree_block_info *)(ei + 1);
2086 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2087 }
2088}
2089
2090static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2091 struct btrfs_root *root,
2092 struct btrfs_delayed_ref_node *node,
2093 struct btrfs_delayed_extent_op *extent_op)
2094{
2095 struct btrfs_key key;
2096 struct btrfs_path *path;
2097 struct btrfs_extent_item *ei;
2098 struct extent_buffer *leaf;
2099 u32 item_size;
2100 int ret;
2101 int err = 0;
2102 int metadata = !extent_op->is_data;
2103
2104 if (trans->aborted)
2105 return 0;
2106
2107 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2108 metadata = 0;
2109
2110 path = btrfs_alloc_path();
2111 if (!path)
2112 return -ENOMEM;
2113
2114 key.objectid = node->bytenr;
2115
2116 if (metadata) {
2117 key.type = BTRFS_METADATA_ITEM_KEY;
2118 key.offset = extent_op->level;
2119 } else {
2120 key.type = BTRFS_EXTENT_ITEM_KEY;
2121 key.offset = node->num_bytes;
2122 }
2123
2124again:
2125 path->reada = 1;
2126 path->leave_spinning = 1;
2127 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2128 path, 0, 1);
2129 if (ret < 0) {
2130 err = ret;
2131 goto out;
2132 }
2133 if (ret > 0) {
2134 if (metadata) {
2135 if (path->slots[0] > 0) {
2136 path->slots[0]--;
2137 btrfs_item_key_to_cpu(path->nodes[0], &key,
2138 path->slots[0]);
2139 if (key.objectid == node->bytenr &&
2140 key.type == BTRFS_EXTENT_ITEM_KEY &&
2141 key.offset == node->num_bytes)
2142 ret = 0;
2143 }
2144 if (ret > 0) {
2145 btrfs_release_path(path);
2146 metadata = 0;
2147
2148 key.objectid = node->bytenr;
2149 key.offset = node->num_bytes;
2150 key.type = BTRFS_EXTENT_ITEM_KEY;
2151 goto again;
2152 }
2153 } else {
2154 err = -EIO;
2155 goto out;
2156 }
2157 }
2158
2159 leaf = path->nodes[0];
2160 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2161#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2162 if (item_size < sizeof(*ei)) {
2163 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2164 path, (u64)-1, 0);
2165 if (ret < 0) {
2166 err = ret;
2167 goto out;
2168 }
2169 leaf = path->nodes[0];
2170 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2171 }
2172#endif
2173 BUG_ON(item_size < sizeof(*ei));
2174 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2175 __run_delayed_extent_op(extent_op, leaf, ei);
2176
2177 btrfs_mark_buffer_dirty(leaf);
2178out:
2179 btrfs_free_path(path);
2180 return err;
2181}
2182
2183static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2184 struct btrfs_root *root,
2185 struct btrfs_delayed_ref_node *node,
2186 struct btrfs_delayed_extent_op *extent_op,
2187 int insert_reserved)
2188{
2189 int ret = 0;
2190 struct btrfs_delayed_tree_ref *ref;
2191 struct btrfs_key ins;
2192 u64 parent = 0;
2193 u64 ref_root = 0;
2194 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2195 SKINNY_METADATA);
2196
2197 ref = btrfs_delayed_node_to_tree_ref(node);
2198 trace_run_delayed_tree_ref(node, ref, node->action);
2199
2200 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2201 parent = ref->parent;
2202 else
2203 ref_root = ref->root;
2204
2205 ins.objectid = node->bytenr;
2206 if (skinny_metadata) {
2207 ins.offset = ref->level;
2208 ins.type = BTRFS_METADATA_ITEM_KEY;
2209 } else {
2210 ins.offset = node->num_bytes;
2211 ins.type = BTRFS_EXTENT_ITEM_KEY;
2212 }
2213
2214 BUG_ON(node->ref_mod != 1);
2215 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2216 BUG_ON(!extent_op || !extent_op->update_flags);
2217 ret = alloc_reserved_tree_block(trans, root,
2218 parent, ref_root,
2219 extent_op->flags_to_set,
2220 &extent_op->key,
2221 ref->level, &ins);
2222 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2223 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2224 node->num_bytes, parent, ref_root,
2225 ref->level, 0, 1, extent_op);
2226 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2227 ret = __btrfs_free_extent(trans, root, node->bytenr,
2228 node->num_bytes, parent, ref_root,
2229 ref->level, 0, 1, extent_op);
2230 } else {
2231 BUG();
2232 }
2233 return ret;
2234}
2235
2236/* helper function to actually process a single delayed ref entry */
2237static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2238 struct btrfs_root *root,
2239 struct btrfs_delayed_ref_node *node,
2240 struct btrfs_delayed_extent_op *extent_op,
2241 int insert_reserved)
2242{
2243 int ret = 0;
2244
2245 if (trans->aborted) {
2246 if (insert_reserved)
2247 btrfs_pin_extent(root, node->bytenr,
2248 node->num_bytes, 1);
2249 return 0;
2250 }
2251
2252 if (btrfs_delayed_ref_is_head(node)) {
2253 struct btrfs_delayed_ref_head *head;
2254 /*
2255 * we've hit the end of the chain and we were supposed
2256 * to insert this extent into the tree. But, it got
2257 * deleted before we ever needed to insert it, so all
2258 * we have to do is clean up the accounting
2259 */
2260 BUG_ON(extent_op);
2261 head = btrfs_delayed_node_to_head(node);
2262 trace_run_delayed_ref_head(node, head, node->action);
2263
2264 if (insert_reserved) {
2265 btrfs_pin_extent(root, node->bytenr,
2266 node->num_bytes, 1);
2267 if (head->is_data) {
2268 ret = btrfs_del_csums(trans, root,
2269 node->bytenr,
2270 node->num_bytes);
2271 }
2272 }
2273 return ret;
2274 }
2275
2276 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2277 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2278 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2279 insert_reserved);
2280 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2281 node->type == BTRFS_SHARED_DATA_REF_KEY)
2282 ret = run_delayed_data_ref(trans, root, node, extent_op,
2283 insert_reserved);
2284 else
2285 BUG();
2286 return ret;
2287}
2288
2289static noinline struct btrfs_delayed_ref_node *
2290select_delayed_ref(struct btrfs_delayed_ref_head *head)
2291{
2292 struct rb_node *node;
2293 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2294
2295 /*
2296 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2297 * this prevents ref count from going down to zero when
2298 * there still are pending delayed ref.
2299 */
2300 node = rb_first(&head->ref_root);
2301 while (node) {
2302 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2303 rb_node);
2304 if (ref->action == BTRFS_ADD_DELAYED_REF)
2305 return ref;
2306 else if (last == NULL)
2307 last = ref;
2308 node = rb_next(node);
2309 }
2310 return last;
2311}
2312
2313/*
2314 * Returns 0 on success or if called with an already aborted transaction.
2315 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2316 */
2317static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2318 struct btrfs_root *root,
2319 unsigned long nr)
2320{
2321 struct btrfs_delayed_ref_root *delayed_refs;
2322 struct btrfs_delayed_ref_node *ref;
2323 struct btrfs_delayed_ref_head *locked_ref = NULL;
2324 struct btrfs_delayed_extent_op *extent_op;
2325 struct btrfs_fs_info *fs_info = root->fs_info;
2326 ktime_t start = ktime_get();
2327 int ret;
2328 unsigned long count = 0;
2329 unsigned long actual_count = 0;
2330 int must_insert_reserved = 0;
2331
2332 delayed_refs = &trans->transaction->delayed_refs;
2333 while (1) {
2334 if (!locked_ref) {
2335 if (count >= nr)
2336 break;
2337
2338 spin_lock(&delayed_refs->lock);
2339 locked_ref = btrfs_select_ref_head(trans);
2340 if (!locked_ref) {
2341 spin_unlock(&delayed_refs->lock);
2342 break;
2343 }
2344
2345 /* grab the lock that says we are going to process
2346 * all the refs for this head */
2347 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2348 spin_unlock(&delayed_refs->lock);
2349 /*
2350 * we may have dropped the spin lock to get the head
2351 * mutex lock, and that might have given someone else
2352 * time to free the head. If that's true, it has been
2353 * removed from our list and we can move on.
2354 */
2355 if (ret == -EAGAIN) {
2356 locked_ref = NULL;
2357 count++;
2358 continue;
2359 }
2360 }
2361
2362 /*
2363 * We need to try and merge add/drops of the same ref since we
2364 * can run into issues with relocate dropping the implicit ref
2365 * and then it being added back again before the drop can
2366 * finish. If we merged anything we need to re-loop so we can
2367 * get a good ref.
2368 */
2369 spin_lock(&locked_ref->lock);
2370 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2371 locked_ref);
2372
2373 /*
2374 * locked_ref is the head node, so we have to go one
2375 * node back for any delayed ref updates
2376 */
2377 ref = select_delayed_ref(locked_ref);
2378
2379 if (ref && ref->seq &&
2380 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2381 spin_unlock(&locked_ref->lock);
2382 btrfs_delayed_ref_unlock(locked_ref);
2383 spin_lock(&delayed_refs->lock);
2384 locked_ref->processing = 0;
2385 delayed_refs->num_heads_ready++;
2386 spin_unlock(&delayed_refs->lock);
2387 locked_ref = NULL;
2388 cond_resched();
2389 count++;
2390 continue;
2391 }
2392
2393 /*
2394 * record the must insert reserved flag before we
2395 * drop the spin lock.
2396 */
2397 must_insert_reserved = locked_ref->must_insert_reserved;
2398 locked_ref->must_insert_reserved = 0;
2399
2400 extent_op = locked_ref->extent_op;
2401 locked_ref->extent_op = NULL;
2402
2403 if (!ref) {
2404
2405
2406 /* All delayed refs have been processed, Go ahead
2407 * and send the head node to run_one_delayed_ref,
2408 * so that any accounting fixes can happen
2409 */
2410 ref = &locked_ref->node;
2411
2412 if (extent_op && must_insert_reserved) {
2413 btrfs_free_delayed_extent_op(extent_op);
2414 extent_op = NULL;
2415 }
2416
2417 if (extent_op) {
2418 spin_unlock(&locked_ref->lock);
2419 ret = run_delayed_extent_op(trans, root,
2420 ref, extent_op);
2421 btrfs_free_delayed_extent_op(extent_op);
2422
2423 if (ret) {
2424 /*
2425 * Need to reset must_insert_reserved if
2426 * there was an error so the abort stuff
2427 * can cleanup the reserved space
2428 * properly.
2429 */
2430 if (must_insert_reserved)
2431 locked_ref->must_insert_reserved = 1;
2432 locked_ref->processing = 0;
2433 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2434 btrfs_delayed_ref_unlock(locked_ref);
2435 return ret;
2436 }
2437 continue;
2438 }
2439
2440 /*
2441 * Need to drop our head ref lock and re-aqcuire the
2442 * delayed ref lock and then re-check to make sure
2443 * nobody got added.
2444 */
2445 spin_unlock(&locked_ref->lock);
2446 spin_lock(&delayed_refs->lock);
2447 spin_lock(&locked_ref->lock);
2448 if (rb_first(&locked_ref->ref_root) ||
2449 locked_ref->extent_op) {
2450 spin_unlock(&locked_ref->lock);
2451 spin_unlock(&delayed_refs->lock);
2452 continue;
2453 }
2454 ref->in_tree = 0;
2455 delayed_refs->num_heads--;
2456 rb_erase(&locked_ref->href_node,
2457 &delayed_refs->href_root);
2458 spin_unlock(&delayed_refs->lock);
2459 } else {
2460 actual_count++;
2461 ref->in_tree = 0;
2462 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2463 }
2464 atomic_dec(&delayed_refs->num_entries);
2465
2466 if (!btrfs_delayed_ref_is_head(ref)) {
2467 /*
2468 * when we play the delayed ref, also correct the
2469 * ref_mod on head
2470 */
2471 switch (ref->action) {
2472 case BTRFS_ADD_DELAYED_REF:
2473 case BTRFS_ADD_DELAYED_EXTENT:
2474 locked_ref->node.ref_mod -= ref->ref_mod;
2475 break;
2476 case BTRFS_DROP_DELAYED_REF:
2477 locked_ref->node.ref_mod += ref->ref_mod;
2478 break;
2479 default:
2480 WARN_ON(1);
2481 }
2482 }
2483 spin_unlock(&locked_ref->lock);
2484
2485 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2486 must_insert_reserved);
2487
2488 btrfs_free_delayed_extent_op(extent_op);
2489 if (ret) {
2490 locked_ref->processing = 0;
2491 btrfs_delayed_ref_unlock(locked_ref);
2492 btrfs_put_delayed_ref(ref);
2493 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2494 return ret;
2495 }
2496
2497 /*
2498 * If this node is a head, that means all the refs in this head
2499 * have been dealt with, and we will pick the next head to deal
2500 * with, so we must unlock the head and drop it from the cluster
2501 * list before we release it.
2502 */
2503 if (btrfs_delayed_ref_is_head(ref)) {
2504 btrfs_delayed_ref_unlock(locked_ref);
2505 locked_ref = NULL;
2506 }
2507 btrfs_put_delayed_ref(ref);
2508 count++;
2509 cond_resched();
2510 }
2511
2512 /*
2513 * We don't want to include ref heads since we can have empty ref heads
2514 * and those will drastically skew our runtime down since we just do
2515 * accounting, no actual extent tree updates.
2516 */
2517 if (actual_count > 0) {
2518 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2519 u64 avg;
2520
2521 /*
2522 * We weigh the current average higher than our current runtime
2523 * to avoid large swings in the average.
2524 */
2525 spin_lock(&delayed_refs->lock);
2526 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2527 avg = div64_u64(avg, 4);
2528 fs_info->avg_delayed_ref_runtime = avg;
2529 spin_unlock(&delayed_refs->lock);
2530 }
2531 return 0;
2532}
2533
2534#ifdef SCRAMBLE_DELAYED_REFS
2535/*
2536 * Normally delayed refs get processed in ascending bytenr order. This
2537 * correlates in most cases to the order added. To expose dependencies on this
2538 * order, we start to process the tree in the middle instead of the beginning
2539 */
2540static u64 find_middle(struct rb_root *root)
2541{
2542 struct rb_node *n = root->rb_node;
2543 struct btrfs_delayed_ref_node *entry;
2544 int alt = 1;
2545 u64 middle;
2546 u64 first = 0, last = 0;
2547
2548 n = rb_first(root);
2549 if (n) {
2550 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2551 first = entry->bytenr;
2552 }
2553 n = rb_last(root);
2554 if (n) {
2555 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2556 last = entry->bytenr;
2557 }
2558 n = root->rb_node;
2559
2560 while (n) {
2561 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2562 WARN_ON(!entry->in_tree);
2563
2564 middle = entry->bytenr;
2565
2566 if (alt)
2567 n = n->rb_left;
2568 else
2569 n = n->rb_right;
2570
2571 alt = 1 - alt;
2572 }
2573 return middle;
2574}
2575#endif
2576
2577int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2578 struct btrfs_fs_info *fs_info)
2579{
2580 struct qgroup_update *qgroup_update;
2581 int ret = 0;
2582
2583 if (list_empty(&trans->qgroup_ref_list) !=
2584 !trans->delayed_ref_elem.seq) {
2585 /* list without seq or seq without list */
2586 btrfs_err(fs_info,
2587 "qgroup accounting update error, list is%s empty, seq is %#x.%x",
2588 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2589 (u32)(trans->delayed_ref_elem.seq >> 32),
2590 (u32)trans->delayed_ref_elem.seq);
2591 BUG();
2592 }
2593
2594 if (!trans->delayed_ref_elem.seq)
2595 return 0;
2596
2597 while (!list_empty(&trans->qgroup_ref_list)) {
2598 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2599 struct qgroup_update, list);
2600 list_del(&qgroup_update->list);
2601 if (!ret)
2602 ret = btrfs_qgroup_account_ref(
2603 trans, fs_info, qgroup_update->node,
2604 qgroup_update->extent_op);
2605 kfree(qgroup_update);
2606 }
2607
2608 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2609
2610 return ret;
2611}
2612
2613static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2614{
2615 u64 num_bytes;
2616
2617 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2618 sizeof(struct btrfs_extent_inline_ref));
2619 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2620 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2621
2622 /*
2623 * We don't ever fill up leaves all the way so multiply by 2 just to be
2624 * closer to what we're really going to want to ouse.
2625 */
2626 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2627}
2628
2629int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2630 struct btrfs_root *root)
2631{
2632 struct btrfs_block_rsv *global_rsv;
2633 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2634 u64 num_bytes;
2635 int ret = 0;
2636
2637 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2638 num_heads = heads_to_leaves(root, num_heads);
2639 if (num_heads > 1)
2640 num_bytes += (num_heads - 1) * root->leafsize;
2641 num_bytes <<= 1;
2642 global_rsv = &root->fs_info->global_block_rsv;
2643
2644 /*
2645 * If we can't allocate any more chunks lets make sure we have _lots_ of
2646 * wiggle room since running delayed refs can create more delayed refs.
2647 */
2648 if (global_rsv->space_info->full)
2649 num_bytes <<= 1;
2650
2651 spin_lock(&global_rsv->lock);
2652 if (global_rsv->reserved <= num_bytes)
2653 ret = 1;
2654 spin_unlock(&global_rsv->lock);
2655 return ret;
2656}
2657
2658int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2659 struct btrfs_root *root)
2660{
2661 struct btrfs_fs_info *fs_info = root->fs_info;
2662 u64 num_entries =
2663 atomic_read(&trans->transaction->delayed_refs.num_entries);
2664 u64 avg_runtime;
2665
2666 smp_mb();
2667 avg_runtime = fs_info->avg_delayed_ref_runtime;
2668 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2669 return 1;
2670
2671 return btrfs_check_space_for_delayed_refs(trans, root);
2672}
2673
2674/*
2675 * this starts processing the delayed reference count updates and
2676 * extent insertions we have queued up so far. count can be
2677 * 0, which means to process everything in the tree at the start
2678 * of the run (but not newly added entries), or it can be some target
2679 * number you'd like to process.
2680 *
2681 * Returns 0 on success or if called with an aborted transaction
2682 * Returns <0 on error and aborts the transaction
2683 */
2684int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2685 struct btrfs_root *root, unsigned long count)
2686{
2687 struct rb_node *node;
2688 struct btrfs_delayed_ref_root *delayed_refs;
2689 struct btrfs_delayed_ref_head *head;
2690 int ret;
2691 int run_all = count == (unsigned long)-1;
2692 int run_most = 0;
2693
2694 /* We'll clean this up in btrfs_cleanup_transaction */
2695 if (trans->aborted)
2696 return 0;
2697
2698 if (root == root->fs_info->extent_root)
2699 root = root->fs_info->tree_root;
2700
2701 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2702
2703 delayed_refs = &trans->transaction->delayed_refs;
2704 if (count == 0) {
2705 count = atomic_read(&delayed_refs->num_entries) * 2;
2706 run_most = 1;
2707 }
2708
2709again:
2710#ifdef SCRAMBLE_DELAYED_REFS
2711 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2712#endif
2713 ret = __btrfs_run_delayed_refs(trans, root, count);
2714 if (ret < 0) {
2715 btrfs_abort_transaction(trans, root, ret);
2716 return ret;
2717 }
2718
2719 if (run_all) {
2720 if (!list_empty(&trans->new_bgs))
2721 btrfs_create_pending_block_groups(trans, root);
2722
2723 spin_lock(&delayed_refs->lock);
2724 node = rb_first(&delayed_refs->href_root);
2725 if (!node) {
2726 spin_unlock(&delayed_refs->lock);
2727 goto out;
2728 }
2729 count = (unsigned long)-1;
2730
2731 while (node) {
2732 head = rb_entry(node, struct btrfs_delayed_ref_head,
2733 href_node);
2734 if (btrfs_delayed_ref_is_head(&head->node)) {
2735 struct btrfs_delayed_ref_node *ref;
2736
2737 ref = &head->node;
2738 atomic_inc(&ref->refs);
2739
2740 spin_unlock(&delayed_refs->lock);
2741 /*
2742 * Mutex was contended, block until it's
2743 * released and try again
2744 */
2745 mutex_lock(&head->mutex);
2746 mutex_unlock(&head->mutex);
2747
2748 btrfs_put_delayed_ref(ref);
2749 cond_resched();
2750 goto again;
2751 } else {
2752 WARN_ON(1);
2753 }
2754 node = rb_next(node);
2755 }
2756 spin_unlock(&delayed_refs->lock);
2757 cond_resched();
2758 goto again;
2759 }
2760out:
2761 assert_qgroups_uptodate(trans);
2762 return 0;
2763}
2764
2765int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2766 struct btrfs_root *root,
2767 u64 bytenr, u64 num_bytes, u64 flags,
2768 int level, int is_data)
2769{
2770 struct btrfs_delayed_extent_op *extent_op;
2771 int ret;
2772
2773 extent_op = btrfs_alloc_delayed_extent_op();
2774 if (!extent_op)
2775 return -ENOMEM;
2776
2777 extent_op->flags_to_set = flags;
2778 extent_op->update_flags = 1;
2779 extent_op->update_key = 0;
2780 extent_op->is_data = is_data ? 1 : 0;
2781 extent_op->level = level;
2782
2783 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2784 num_bytes, extent_op);
2785 if (ret)
2786 btrfs_free_delayed_extent_op(extent_op);
2787 return ret;
2788}
2789
2790static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2791 struct btrfs_root *root,
2792 struct btrfs_path *path,
2793 u64 objectid, u64 offset, u64 bytenr)
2794{
2795 struct btrfs_delayed_ref_head *head;
2796 struct btrfs_delayed_ref_node *ref;
2797 struct btrfs_delayed_data_ref *data_ref;
2798 struct btrfs_delayed_ref_root *delayed_refs;
2799 struct rb_node *node;
2800 int ret = 0;
2801
2802 delayed_refs = &trans->transaction->delayed_refs;
2803 spin_lock(&delayed_refs->lock);
2804 head = btrfs_find_delayed_ref_head(trans, bytenr);
2805 if (!head) {
2806 spin_unlock(&delayed_refs->lock);
2807 return 0;
2808 }
2809
2810 if (!mutex_trylock(&head->mutex)) {
2811 atomic_inc(&head->node.refs);
2812 spin_unlock(&delayed_refs->lock);
2813
2814 btrfs_release_path(path);
2815
2816 /*
2817 * Mutex was contended, block until it's released and let
2818 * caller try again
2819 */
2820 mutex_lock(&head->mutex);
2821 mutex_unlock(&head->mutex);
2822 btrfs_put_delayed_ref(&head->node);
2823 return -EAGAIN;
2824 }
2825 spin_unlock(&delayed_refs->lock);
2826
2827 spin_lock(&head->lock);
2828 node = rb_first(&head->ref_root);
2829 while (node) {
2830 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2831 node = rb_next(node);
2832
2833 /* If it's a shared ref we know a cross reference exists */
2834 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2835 ret = 1;
2836 break;
2837 }
2838
2839 data_ref = btrfs_delayed_node_to_data_ref(ref);
2840
2841 /*
2842 * If our ref doesn't match the one we're currently looking at
2843 * then we have a cross reference.
2844 */
2845 if (data_ref->root != root->root_key.objectid ||
2846 data_ref->objectid != objectid ||
2847 data_ref->offset != offset) {
2848 ret = 1;
2849 break;
2850 }
2851 }
2852 spin_unlock(&head->lock);
2853 mutex_unlock(&head->mutex);
2854 return ret;
2855}
2856
2857static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2858 struct btrfs_root *root,
2859 struct btrfs_path *path,
2860 u64 objectid, u64 offset, u64 bytenr)
2861{
2862 struct btrfs_root *extent_root = root->fs_info->extent_root;
2863 struct extent_buffer *leaf;
2864 struct btrfs_extent_data_ref *ref;
2865 struct btrfs_extent_inline_ref *iref;
2866 struct btrfs_extent_item *ei;
2867 struct btrfs_key key;
2868 u32 item_size;
2869 int ret;
2870
2871 key.objectid = bytenr;
2872 key.offset = (u64)-1;
2873 key.type = BTRFS_EXTENT_ITEM_KEY;
2874
2875 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2876 if (ret < 0)
2877 goto out;
2878 BUG_ON(ret == 0); /* Corruption */
2879
2880 ret = -ENOENT;
2881 if (path->slots[0] == 0)
2882 goto out;
2883
2884 path->slots[0]--;
2885 leaf = path->nodes[0];
2886 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2887
2888 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2889 goto out;
2890
2891 ret = 1;
2892 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2893#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2894 if (item_size < sizeof(*ei)) {
2895 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2896 goto out;
2897 }
2898#endif
2899 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2900
2901 if (item_size != sizeof(*ei) +
2902 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2903 goto out;
2904
2905 if (btrfs_extent_generation(leaf, ei) <=
2906 btrfs_root_last_snapshot(&root->root_item))
2907 goto out;
2908
2909 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2910 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2911 BTRFS_EXTENT_DATA_REF_KEY)
2912 goto out;
2913
2914 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2915 if (btrfs_extent_refs(leaf, ei) !=
2916 btrfs_extent_data_ref_count(leaf, ref) ||
2917 btrfs_extent_data_ref_root(leaf, ref) !=
2918 root->root_key.objectid ||
2919 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2920 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2921 goto out;
2922
2923 ret = 0;
2924out:
2925 return ret;
2926}
2927
2928int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2929 struct btrfs_root *root,
2930 u64 objectid, u64 offset, u64 bytenr)
2931{
2932 struct btrfs_path *path;
2933 int ret;
2934 int ret2;
2935
2936 path = btrfs_alloc_path();
2937 if (!path)
2938 return -ENOENT;
2939
2940 do {
2941 ret = check_committed_ref(trans, root, path, objectid,
2942 offset, bytenr);
2943 if (ret && ret != -ENOENT)
2944 goto out;
2945
2946 ret2 = check_delayed_ref(trans, root, path, objectid,
2947 offset, bytenr);
2948 } while (ret2 == -EAGAIN);
2949
2950 if (ret2 && ret2 != -ENOENT) {
2951 ret = ret2;
2952 goto out;
2953 }
2954
2955 if (ret != -ENOENT || ret2 != -ENOENT)
2956 ret = 0;
2957out:
2958 btrfs_free_path(path);
2959 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2960 WARN_ON(ret > 0);
2961 return ret;
2962}
2963
2964static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2965 struct btrfs_root *root,
2966 struct extent_buffer *buf,
2967 int full_backref, int inc, int for_cow)
2968{
2969 u64 bytenr;
2970 u64 num_bytes;
2971 u64 parent;
2972 u64 ref_root;
2973 u32 nritems;
2974 struct btrfs_key key;
2975 struct btrfs_file_extent_item *fi;
2976 int i;
2977 int level;
2978 int ret = 0;
2979 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2980 u64, u64, u64, u64, u64, u64, int);
2981
2982 ref_root = btrfs_header_owner(buf);
2983 nritems = btrfs_header_nritems(buf);
2984 level = btrfs_header_level(buf);
2985
2986 if (!root->ref_cows && level == 0)
2987 return 0;
2988
2989 if (inc)
2990 process_func = btrfs_inc_extent_ref;
2991 else
2992 process_func = btrfs_free_extent;
2993
2994 if (full_backref)
2995 parent = buf->start;
2996 else
2997 parent = 0;
2998
2999 for (i = 0; i < nritems; i++) {
3000 if (level == 0) {
3001 btrfs_item_key_to_cpu(buf, &key, i);
3002 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3003 continue;
3004 fi = btrfs_item_ptr(buf, i,
3005 struct btrfs_file_extent_item);
3006 if (btrfs_file_extent_type(buf, fi) ==
3007 BTRFS_FILE_EXTENT_INLINE)
3008 continue;
3009 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3010 if (bytenr == 0)
3011 continue;
3012
3013 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3014 key.offset -= btrfs_file_extent_offset(buf, fi);
3015 ret = process_func(trans, root, bytenr, num_bytes,
3016 parent, ref_root, key.objectid,
3017 key.offset, for_cow);
3018 if (ret)
3019 goto fail;
3020 } else {
3021 bytenr = btrfs_node_blockptr(buf, i);
3022 num_bytes = btrfs_level_size(root, level - 1);
3023 ret = process_func(trans, root, bytenr, num_bytes,
3024 parent, ref_root, level - 1, 0,
3025 for_cow);
3026 if (ret)
3027 goto fail;
3028 }
3029 }
3030 return 0;
3031fail:
3032 return ret;
3033}
3034
3035int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3036 struct extent_buffer *buf, int full_backref, int for_cow)
3037{
3038 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3039}
3040
3041int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3042 struct extent_buffer *buf, int full_backref, int for_cow)
3043{
3044 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3045}
3046
3047static int write_one_cache_group(struct btrfs_trans_handle *trans,
3048 struct btrfs_root *root,
3049 struct btrfs_path *path,
3050 struct btrfs_block_group_cache *cache)
3051{
3052 int ret;
3053 struct btrfs_root *extent_root = root->fs_info->extent_root;
3054 unsigned long bi;
3055 struct extent_buffer *leaf;
3056
3057 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3058 if (ret < 0)
3059 goto fail;
3060 BUG_ON(ret); /* Corruption */
3061
3062 leaf = path->nodes[0];
3063 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3064 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3065 btrfs_mark_buffer_dirty(leaf);
3066 btrfs_release_path(path);
3067fail:
3068 if (ret) {
3069 btrfs_abort_transaction(trans, root, ret);
3070 return ret;
3071 }
3072 return 0;
3073
3074}
3075
3076static struct btrfs_block_group_cache *
3077next_block_group(struct btrfs_root *root,
3078 struct btrfs_block_group_cache *cache)
3079{
3080 struct rb_node *node;
3081 spin_lock(&root->fs_info->block_group_cache_lock);
3082 node = rb_next(&cache->cache_node);
3083 btrfs_put_block_group(cache);
3084 if (node) {
3085 cache = rb_entry(node, struct btrfs_block_group_cache,
3086 cache_node);
3087 btrfs_get_block_group(cache);
3088 } else
3089 cache = NULL;
3090 spin_unlock(&root->fs_info->block_group_cache_lock);
3091 return cache;
3092}
3093
3094static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3095 struct btrfs_trans_handle *trans,
3096 struct btrfs_path *path)
3097{
3098 struct btrfs_root *root = block_group->fs_info->tree_root;
3099 struct inode *inode = NULL;
3100 u64 alloc_hint = 0;
3101 int dcs = BTRFS_DC_ERROR;
3102 int num_pages = 0;
3103 int retries = 0;
3104 int ret = 0;
3105
3106 /*
3107 * If this block group is smaller than 100 megs don't bother caching the
3108 * block group.
3109 */
3110 if (block_group->key.offset < (100 * 1024 * 1024)) {
3111 spin_lock(&block_group->lock);
3112 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3113 spin_unlock(&block_group->lock);
3114 return 0;
3115 }
3116
3117again:
3118 inode = lookup_free_space_inode(root, block_group, path);
3119 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3120 ret = PTR_ERR(inode);
3121 btrfs_release_path(path);
3122 goto out;
3123 }
3124
3125 if (IS_ERR(inode)) {
3126 BUG_ON(retries);
3127 retries++;
3128
3129 if (block_group->ro)
3130 goto out_free;
3131
3132 ret = create_free_space_inode(root, trans, block_group, path);
3133 if (ret)
3134 goto out_free;
3135 goto again;
3136 }
3137
3138 /* We've already setup this transaction, go ahead and exit */
3139 if (block_group->cache_generation == trans->transid &&
3140 i_size_read(inode)) {
3141 dcs = BTRFS_DC_SETUP;
3142 goto out_put;
3143 }
3144
3145 /*
3146 * We want to set the generation to 0, that way if anything goes wrong
3147 * from here on out we know not to trust this cache when we load up next
3148 * time.
3149 */
3150 BTRFS_I(inode)->generation = 0;
3151 ret = btrfs_update_inode(trans, root, inode);
3152 WARN_ON(ret);
3153
3154 if (i_size_read(inode) > 0) {
3155 ret = btrfs_check_trunc_cache_free_space(root,
3156 &root->fs_info->global_block_rsv);
3157 if (ret)
3158 goto out_put;
3159
3160 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3161 if (ret)
3162 goto out_put;
3163 }
3164
3165 spin_lock(&block_group->lock);
3166 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3167 !btrfs_test_opt(root, SPACE_CACHE)) {
3168 /*
3169 * don't bother trying to write stuff out _if_
3170 * a) we're not cached,
3171 * b) we're with nospace_cache mount option.
3172 */
3173 dcs = BTRFS_DC_WRITTEN;
3174 spin_unlock(&block_group->lock);
3175 goto out_put;
3176 }
3177 spin_unlock(&block_group->lock);
3178
3179 /*
3180 * Try to preallocate enough space based on how big the block group is.
3181 * Keep in mind this has to include any pinned space which could end up
3182 * taking up quite a bit since it's not folded into the other space
3183 * cache.
3184 */
3185 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3186 if (!num_pages)
3187 num_pages = 1;
3188
3189 num_pages *= 16;
3190 num_pages *= PAGE_CACHE_SIZE;
3191
3192 ret = btrfs_check_data_free_space(inode, num_pages);
3193 if (ret)
3194 goto out_put;
3195
3196 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3197 num_pages, num_pages,
3198 &alloc_hint);
3199 if (!ret)
3200 dcs = BTRFS_DC_SETUP;
3201 btrfs_free_reserved_data_space(inode, num_pages);
3202
3203out_put:
3204 iput(inode);
3205out_free:
3206 btrfs_release_path(path);
3207out:
3208 spin_lock(&block_group->lock);
3209 if (!ret && dcs == BTRFS_DC_SETUP)
3210 block_group->cache_generation = trans->transid;
3211 block_group->disk_cache_state = dcs;
3212 spin_unlock(&block_group->lock);
3213
3214 return ret;
3215}
3216
3217int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3218 struct btrfs_root *root)
3219{
3220 struct btrfs_block_group_cache *cache;
3221 int err = 0;
3222 struct btrfs_path *path;
3223 u64 last = 0;
3224
3225 path = btrfs_alloc_path();
3226 if (!path)
3227 return -ENOMEM;
3228
3229again:
3230 while (1) {
3231 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3232 while (cache) {
3233 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3234 break;
3235 cache = next_block_group(root, cache);
3236 }
3237 if (!cache) {
3238 if (last == 0)
3239 break;
3240 last = 0;
3241 continue;
3242 }
3243 err = cache_save_setup(cache, trans, path);
3244 last = cache->key.objectid + cache->key.offset;
3245 btrfs_put_block_group(cache);
3246 }
3247
3248 while (1) {
3249 if (last == 0) {
3250 err = btrfs_run_delayed_refs(trans, root,
3251 (unsigned long)-1);
3252 if (err) /* File system offline */
3253 goto out;
3254 }
3255
3256 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3257 while (cache) {
3258 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3259 btrfs_put_block_group(cache);
3260 goto again;
3261 }
3262
3263 if (cache->dirty)
3264 break;
3265 cache = next_block_group(root, cache);
3266 }
3267 if (!cache) {
3268 if (last == 0)
3269 break;
3270 last = 0;
3271 continue;
3272 }
3273
3274 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3275 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3276 cache->dirty = 0;
3277 last = cache->key.objectid + cache->key.offset;
3278
3279 err = write_one_cache_group(trans, root, path, cache);
3280 btrfs_put_block_group(cache);
3281 if (err) /* File system offline */
3282 goto out;
3283 }
3284
3285 while (1) {
3286 /*
3287 * I don't think this is needed since we're just marking our
3288 * preallocated extent as written, but just in case it can't
3289 * hurt.
3290 */
3291 if (last == 0) {
3292 err = btrfs_run_delayed_refs(trans, root,
3293 (unsigned long)-1);
3294 if (err) /* File system offline */
3295 goto out;
3296 }
3297
3298 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3299 while (cache) {
3300 /*
3301 * Really this shouldn't happen, but it could if we
3302 * couldn't write the entire preallocated extent and
3303 * splitting the extent resulted in a new block.
3304 */
3305 if (cache->dirty) {
3306 btrfs_put_block_group(cache);
3307 goto again;
3308 }
3309 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3310 break;
3311 cache = next_block_group(root, cache);
3312 }
3313 if (!cache) {
3314 if (last == 0)
3315 break;
3316 last = 0;
3317 continue;
3318 }
3319
3320 err = btrfs_write_out_cache(root, trans, cache, path);
3321
3322 /*
3323 * If we didn't have an error then the cache state is still
3324 * NEED_WRITE, so we can set it to WRITTEN.
3325 */
3326 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3327 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3328 last = cache->key.objectid + cache->key.offset;
3329 btrfs_put_block_group(cache);
3330 }
3331out:
3332
3333 btrfs_free_path(path);
3334 return err;
3335}
3336
3337int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3338{
3339 struct btrfs_block_group_cache *block_group;
3340 int readonly = 0;
3341
3342 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3343 if (!block_group || block_group->ro)
3344 readonly = 1;
3345 if (block_group)
3346 btrfs_put_block_group(block_group);
3347 return readonly;
3348}
3349
3350static const char *alloc_name(u64 flags)
3351{
3352 switch (flags) {
3353 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3354 return "mixed";
3355 case BTRFS_BLOCK_GROUP_METADATA:
3356 return "metadata";
3357 case BTRFS_BLOCK_GROUP_DATA:
3358 return "data";
3359 case BTRFS_BLOCK_GROUP_SYSTEM:
3360 return "system";
3361 default:
3362 WARN_ON(1);
3363 return "invalid-combination";
3364 };
3365}
3366
3367static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3368 u64 total_bytes, u64 bytes_used,
3369 struct btrfs_space_info **space_info)
3370{
3371 struct btrfs_space_info *found;
3372 int i;
3373 int factor;
3374 int ret;
3375
3376 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3377 BTRFS_BLOCK_GROUP_RAID10))
3378 factor = 2;
3379 else
3380 factor = 1;
3381
3382 found = __find_space_info(info, flags);
3383 if (found) {
3384 spin_lock(&found->lock);
3385 found->total_bytes += total_bytes;
3386 found->disk_total += total_bytes * factor;
3387 found->bytes_used += bytes_used;
3388 found->disk_used += bytes_used * factor;
3389 found->full = 0;
3390 spin_unlock(&found->lock);
3391 *space_info = found;
3392 return 0;
3393 }
3394 found = kzalloc(sizeof(*found), GFP_NOFS);
3395 if (!found)
3396 return -ENOMEM;
3397
3398 ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3399 if (ret) {
3400 kfree(found);
3401 return ret;
3402 }
3403
3404 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
3405 INIT_LIST_HEAD(&found->block_groups[i]);
3406 kobject_init(&found->block_group_kobjs[i], &btrfs_raid_ktype);
3407 }
3408 init_rwsem(&found->groups_sem);
3409 spin_lock_init(&found->lock);
3410 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3411 found->total_bytes = total_bytes;
3412 found->disk_total = total_bytes * factor;
3413 found->bytes_used = bytes_used;
3414 found->disk_used = bytes_used * factor;
3415 found->bytes_pinned = 0;
3416 found->bytes_reserved = 0;
3417 found->bytes_readonly = 0;
3418 found->bytes_may_use = 0;
3419 found->full = 0;
3420 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3421 found->chunk_alloc = 0;
3422 found->flush = 0;
3423 init_waitqueue_head(&found->wait);
3424
3425 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3426 info->space_info_kobj, "%s",
3427 alloc_name(found->flags));
3428 if (ret) {
3429 kfree(found);
3430 return ret;
3431 }
3432
3433 *space_info = found;
3434 list_add_rcu(&found->list, &info->space_info);
3435 if (flags & BTRFS_BLOCK_GROUP_DATA)
3436 info->data_sinfo = found;
3437
3438 return ret;
3439}
3440
3441static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3442{
3443 u64 extra_flags = chunk_to_extended(flags) &
3444 BTRFS_EXTENDED_PROFILE_MASK;
3445
3446 write_seqlock(&fs_info->profiles_lock);
3447 if (flags & BTRFS_BLOCK_GROUP_DATA)
3448 fs_info->avail_data_alloc_bits |= extra_flags;
3449 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3450 fs_info->avail_metadata_alloc_bits |= extra_flags;
3451 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3452 fs_info->avail_system_alloc_bits |= extra_flags;
3453 write_sequnlock(&fs_info->profiles_lock);
3454}
3455
3456/*
3457 * returns target flags in extended format or 0 if restripe for this
3458 * chunk_type is not in progress
3459 *
3460 * should be called with either volume_mutex or balance_lock held
3461 */
3462static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3463{
3464 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3465 u64 target = 0;
3466
3467 if (!bctl)
3468 return 0;
3469
3470 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3471 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3472 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3473 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3474 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3475 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3476 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3477 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3478 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3479 }
3480
3481 return target;
3482}
3483
3484/*
3485 * @flags: available profiles in extended format (see ctree.h)
3486 *
3487 * Returns reduced profile in chunk format. If profile changing is in
3488 * progress (either running or paused) picks the target profile (if it's
3489 * already available), otherwise falls back to plain reducing.
3490 */
3491static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3492{
3493 /*
3494 * we add in the count of missing devices because we want
3495 * to make sure that any RAID levels on a degraded FS
3496 * continue to be honored.
3497 */
3498 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3499 root->fs_info->fs_devices->missing_devices;
3500 u64 target;
3501 u64 tmp;
3502
3503 /*
3504 * see if restripe for this chunk_type is in progress, if so
3505 * try to reduce to the target profile
3506 */
3507 spin_lock(&root->fs_info->balance_lock);
3508 target = get_restripe_target(root->fs_info, flags);
3509 if (target) {
3510 /* pick target profile only if it's already available */
3511 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3512 spin_unlock(&root->fs_info->balance_lock);
3513 return extended_to_chunk(target);
3514 }
3515 }
3516 spin_unlock(&root->fs_info->balance_lock);
3517
3518 /* First, mask out the RAID levels which aren't possible */
3519 if (num_devices == 1)
3520 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3521 BTRFS_BLOCK_GROUP_RAID5);
3522 if (num_devices < 3)
3523 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3524 if (num_devices < 4)
3525 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3526
3527 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3528 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3529 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3530 flags &= ~tmp;
3531
3532 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3533 tmp = BTRFS_BLOCK_GROUP_RAID6;
3534 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3535 tmp = BTRFS_BLOCK_GROUP_RAID5;
3536 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3537 tmp = BTRFS_BLOCK_GROUP_RAID10;
3538 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3539 tmp = BTRFS_BLOCK_GROUP_RAID1;
3540 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3541 tmp = BTRFS_BLOCK_GROUP_RAID0;
3542
3543 return extended_to_chunk(flags | tmp);
3544}
3545
3546static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3547{
3548 unsigned seq;
3549 u64 flags;
3550
3551 do {
3552 flags = orig_flags;
3553 seq = read_seqbegin(&root->fs_info->profiles_lock);
3554
3555 if (flags & BTRFS_BLOCK_GROUP_DATA)
3556 flags |= root->fs_info->avail_data_alloc_bits;
3557 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3558 flags |= root->fs_info->avail_system_alloc_bits;
3559 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3560 flags |= root->fs_info->avail_metadata_alloc_bits;
3561 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3562
3563 return btrfs_reduce_alloc_profile(root, flags);
3564}
3565
3566u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3567{
3568 u64 flags;
3569 u64 ret;
3570
3571 if (data)
3572 flags = BTRFS_BLOCK_GROUP_DATA;
3573 else if (root == root->fs_info->chunk_root)
3574 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3575 else
3576 flags = BTRFS_BLOCK_GROUP_METADATA;
3577
3578 ret = get_alloc_profile(root, flags);
3579 return ret;
3580}
3581
3582/*
3583 * This will check the space that the inode allocates from to make sure we have
3584 * enough space for bytes.
3585 */
3586int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3587{
3588 struct btrfs_space_info *data_sinfo;
3589 struct btrfs_root *root = BTRFS_I(inode)->root;
3590 struct btrfs_fs_info *fs_info = root->fs_info;
3591 u64 used;
3592 int ret = 0, committed = 0, alloc_chunk = 1;
3593
3594 /* make sure bytes are sectorsize aligned */
3595 bytes = ALIGN(bytes, root->sectorsize);
3596
3597 if (btrfs_is_free_space_inode(inode)) {
3598 committed = 1;
3599 ASSERT(current->journal_info);
3600 }
3601
3602 data_sinfo = fs_info->data_sinfo;
3603 if (!data_sinfo)
3604 goto alloc;
3605
3606again:
3607 /* make sure we have enough space to handle the data first */
3608 spin_lock(&data_sinfo->lock);
3609 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3610 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3611 data_sinfo->bytes_may_use;
3612
3613 if (used + bytes > data_sinfo->total_bytes) {
3614 struct btrfs_trans_handle *trans;
3615
3616 /*
3617 * if we don't have enough free bytes in this space then we need
3618 * to alloc a new chunk.
3619 */
3620 if (!data_sinfo->full && alloc_chunk) {
3621 u64 alloc_target;
3622
3623 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3624 spin_unlock(&data_sinfo->lock);
3625alloc:
3626 alloc_target = btrfs_get_alloc_profile(root, 1);
3627 /*
3628 * It is ugly that we don't call nolock join
3629 * transaction for the free space inode case here.
3630 * But it is safe because we only do the data space
3631 * reservation for the free space cache in the
3632 * transaction context, the common join transaction
3633 * just increase the counter of the current transaction
3634 * handler, doesn't try to acquire the trans_lock of
3635 * the fs.
3636 */
3637 trans = btrfs_join_transaction(root);
3638 if (IS_ERR(trans))
3639 return PTR_ERR(trans);
3640
3641 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3642 alloc_target,
3643 CHUNK_ALLOC_NO_FORCE);
3644 btrfs_end_transaction(trans, root);
3645 if (ret < 0) {
3646 if (ret != -ENOSPC)
3647 return ret;
3648 else
3649 goto commit_trans;
3650 }
3651
3652 if (!data_sinfo)
3653 data_sinfo = fs_info->data_sinfo;
3654
3655 goto again;
3656 }
3657
3658 /*
3659 * If we don't have enough pinned space to deal with this
3660 * allocation don't bother committing the transaction.
3661 */
3662 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3663 bytes) < 0)
3664 committed = 1;
3665 spin_unlock(&data_sinfo->lock);
3666
3667 /* commit the current transaction and try again */
3668commit_trans:
3669 if (!committed &&
3670 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3671 committed = 1;
3672
3673 trans = btrfs_join_transaction(root);
3674 if (IS_ERR(trans))
3675 return PTR_ERR(trans);
3676 ret = btrfs_commit_transaction(trans, root);
3677 if (ret)
3678 return ret;
3679 goto again;
3680 }
3681
3682 trace_btrfs_space_reservation(root->fs_info,
3683 "space_info:enospc",
3684 data_sinfo->flags, bytes, 1);
3685 return -ENOSPC;
3686 }
3687 data_sinfo->bytes_may_use += bytes;
3688 trace_btrfs_space_reservation(root->fs_info, "space_info",
3689 data_sinfo->flags, bytes, 1);
3690 spin_unlock(&data_sinfo->lock);
3691
3692 return 0;
3693}
3694
3695/*
3696 * Called if we need to clear a data reservation for this inode.
3697 */
3698void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3699{
3700 struct btrfs_root *root = BTRFS_I(inode)->root;
3701 struct btrfs_space_info *data_sinfo;
3702
3703 /* make sure bytes are sectorsize aligned */
3704 bytes = ALIGN(bytes, root->sectorsize);
3705
3706 data_sinfo = root->fs_info->data_sinfo;
3707 spin_lock(&data_sinfo->lock);
3708 WARN_ON(data_sinfo->bytes_may_use < bytes);
3709 data_sinfo->bytes_may_use -= bytes;
3710 trace_btrfs_space_reservation(root->fs_info, "space_info",
3711 data_sinfo->flags, bytes, 0);
3712 spin_unlock(&data_sinfo->lock);
3713}
3714
3715static void force_metadata_allocation(struct btrfs_fs_info *info)
3716{
3717 struct list_head *head = &info->space_info;
3718 struct btrfs_space_info *found;
3719
3720 rcu_read_lock();
3721 list_for_each_entry_rcu(found, head, list) {
3722 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3723 found->force_alloc = CHUNK_ALLOC_FORCE;
3724 }
3725 rcu_read_unlock();
3726}
3727
3728static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3729{
3730 return (global->size << 1);
3731}
3732
3733static int should_alloc_chunk(struct btrfs_root *root,
3734 struct btrfs_space_info *sinfo, int force)
3735{
3736 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3737 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3738 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3739 u64 thresh;
3740
3741 if (force == CHUNK_ALLOC_FORCE)
3742 return 1;
3743
3744 /*
3745 * We need to take into account the global rsv because for all intents
3746 * and purposes it's used space. Don't worry about locking the
3747 * global_rsv, it doesn't change except when the transaction commits.
3748 */
3749 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3750 num_allocated += calc_global_rsv_need_space(global_rsv);
3751
3752 /*
3753 * in limited mode, we want to have some free space up to
3754 * about 1% of the FS size.
3755 */
3756 if (force == CHUNK_ALLOC_LIMITED) {
3757 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3758 thresh = max_t(u64, 64 * 1024 * 1024,
3759 div_factor_fine(thresh, 1));
3760
3761 if (num_bytes - num_allocated < thresh)
3762 return 1;
3763 }
3764
3765 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3766 return 0;
3767 return 1;
3768}
3769
3770static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3771{
3772 u64 num_dev;
3773
3774 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3775 BTRFS_BLOCK_GROUP_RAID0 |
3776 BTRFS_BLOCK_GROUP_RAID5 |
3777 BTRFS_BLOCK_GROUP_RAID6))
3778 num_dev = root->fs_info->fs_devices->rw_devices;
3779 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3780 num_dev = 2;
3781 else
3782 num_dev = 1; /* DUP or single */
3783
3784 /* metadata for updaing devices and chunk tree */
3785 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3786}
3787
3788static void check_system_chunk(struct btrfs_trans_handle *trans,
3789 struct btrfs_root *root, u64 type)
3790{
3791 struct btrfs_space_info *info;
3792 u64 left;
3793 u64 thresh;
3794
3795 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3796 spin_lock(&info->lock);
3797 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3798 info->bytes_reserved - info->bytes_readonly;
3799 spin_unlock(&info->lock);
3800
3801 thresh = get_system_chunk_thresh(root, type);
3802 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3803 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3804 left, thresh, type);
3805 dump_space_info(info, 0, 0);
3806 }
3807
3808 if (left < thresh) {
3809 u64 flags;
3810
3811 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3812 btrfs_alloc_chunk(trans, root, flags);
3813 }
3814}
3815
3816static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3817 struct btrfs_root *extent_root, u64 flags, int force)
3818{
3819 struct btrfs_space_info *space_info;
3820 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3821 int wait_for_alloc = 0;
3822 int ret = 0;
3823
3824 /* Don't re-enter if we're already allocating a chunk */
3825 if (trans->allocating_chunk)
3826 return -ENOSPC;
3827
3828 space_info = __find_space_info(extent_root->fs_info, flags);
3829 if (!space_info) {
3830 ret = update_space_info(extent_root->fs_info, flags,
3831 0, 0, &space_info);
3832 BUG_ON(ret); /* -ENOMEM */
3833 }
3834 BUG_ON(!space_info); /* Logic error */
3835
3836again:
3837 spin_lock(&space_info->lock);
3838 if (force < space_info->force_alloc)
3839 force = space_info->force_alloc;
3840 if (space_info->full) {
3841 if (should_alloc_chunk(extent_root, space_info, force))
3842 ret = -ENOSPC;
3843 else
3844 ret = 0;
3845 spin_unlock(&space_info->lock);
3846 return ret;
3847 }
3848
3849 if (!should_alloc_chunk(extent_root, space_info, force)) {
3850 spin_unlock(&space_info->lock);
3851 return 0;
3852 } else if (space_info->chunk_alloc) {
3853 wait_for_alloc = 1;
3854 } else {
3855 space_info->chunk_alloc = 1;
3856 }
3857
3858 spin_unlock(&space_info->lock);
3859
3860 mutex_lock(&fs_info->chunk_mutex);
3861
3862 /*
3863 * The chunk_mutex is held throughout the entirety of a chunk
3864 * allocation, so once we've acquired the chunk_mutex we know that the
3865 * other guy is done and we need to recheck and see if we should
3866 * allocate.
3867 */
3868 if (wait_for_alloc) {
3869 mutex_unlock(&fs_info->chunk_mutex);
3870 wait_for_alloc = 0;
3871 goto again;
3872 }
3873
3874 trans->allocating_chunk = true;
3875
3876 /*
3877 * If we have mixed data/metadata chunks we want to make sure we keep
3878 * allocating mixed chunks instead of individual chunks.
3879 */
3880 if (btrfs_mixed_space_info(space_info))
3881 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3882
3883 /*
3884 * if we're doing a data chunk, go ahead and make sure that
3885 * we keep a reasonable number of metadata chunks allocated in the
3886 * FS as well.
3887 */
3888 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3889 fs_info->data_chunk_allocations++;
3890 if (!(fs_info->data_chunk_allocations %
3891 fs_info->metadata_ratio))
3892 force_metadata_allocation(fs_info);
3893 }
3894
3895 /*
3896 * Check if we have enough space in SYSTEM chunk because we may need
3897 * to update devices.
3898 */
3899 check_system_chunk(trans, extent_root, flags);
3900
3901 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3902 trans->allocating_chunk = false;
3903
3904 spin_lock(&space_info->lock);
3905 if (ret < 0 && ret != -ENOSPC)
3906 goto out;
3907 if (ret)
3908 space_info->full = 1;
3909 else
3910 ret = 1;
3911
3912 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3913out:
3914 space_info->chunk_alloc = 0;
3915 spin_unlock(&space_info->lock);
3916 mutex_unlock(&fs_info->chunk_mutex);
3917 return ret;
3918}
3919
3920static int can_overcommit(struct btrfs_root *root,
3921 struct btrfs_space_info *space_info, u64 bytes,
3922 enum btrfs_reserve_flush_enum flush)
3923{
3924 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3925 u64 profile = btrfs_get_alloc_profile(root, 0);
3926 u64 space_size;
3927 u64 avail;
3928 u64 used;
3929
3930 used = space_info->bytes_used + space_info->bytes_reserved +
3931 space_info->bytes_pinned + space_info->bytes_readonly;
3932
3933 /*
3934 * We only want to allow over committing if we have lots of actual space
3935 * free, but if we don't have enough space to handle the global reserve
3936 * space then we could end up having a real enospc problem when trying
3937 * to allocate a chunk or some other such important allocation.
3938 */
3939 spin_lock(&global_rsv->lock);
3940 space_size = calc_global_rsv_need_space(global_rsv);
3941 spin_unlock(&global_rsv->lock);
3942 if (used + space_size >= space_info->total_bytes)
3943 return 0;
3944
3945 used += space_info->bytes_may_use;
3946
3947 spin_lock(&root->fs_info->free_chunk_lock);
3948 avail = root->fs_info->free_chunk_space;
3949 spin_unlock(&root->fs_info->free_chunk_lock);
3950
3951 /*
3952 * If we have dup, raid1 or raid10 then only half of the free
3953 * space is actually useable. For raid56, the space info used
3954 * doesn't include the parity drive, so we don't have to
3955 * change the math
3956 */
3957 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3958 BTRFS_BLOCK_GROUP_RAID1 |
3959 BTRFS_BLOCK_GROUP_RAID10))
3960 avail >>= 1;
3961
3962 /*
3963 * If we aren't flushing all things, let us overcommit up to
3964 * 1/2th of the space. If we can flush, don't let us overcommit
3965 * too much, let it overcommit up to 1/8 of the space.
3966 */
3967 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3968 avail >>= 3;
3969 else
3970 avail >>= 1;
3971
3972 if (used + bytes < space_info->total_bytes + avail)
3973 return 1;
3974 return 0;
3975}
3976
3977static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3978 unsigned long nr_pages, int nr_items)
3979{
3980 struct super_block *sb = root->fs_info->sb;
3981
3982 if (down_read_trylock(&sb->s_umount)) {
3983 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3984 up_read(&sb->s_umount);
3985 } else {
3986 /*
3987 * We needn't worry the filesystem going from r/w to r/o though
3988 * we don't acquire ->s_umount mutex, because the filesystem
3989 * should guarantee the delalloc inodes list be empty after
3990 * the filesystem is readonly(all dirty pages are written to
3991 * the disk).
3992 */
3993 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
3994 if (!current->journal_info)
3995 btrfs_wait_ordered_roots(root->fs_info, nr_items);
3996 }
3997}
3998
3999static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4000{
4001 u64 bytes;
4002 int nr;
4003
4004 bytes = btrfs_calc_trans_metadata_size(root, 1);
4005 nr = (int)div64_u64(to_reclaim, bytes);
4006 if (!nr)
4007 nr = 1;
4008 return nr;
4009}
4010
4011#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4012
4013/*
4014 * shrink metadata reservation for delalloc
4015 */
4016static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4017 bool wait_ordered)
4018{
4019 struct btrfs_block_rsv *block_rsv;
4020 struct btrfs_space_info *space_info;
4021 struct btrfs_trans_handle *trans;
4022 u64 delalloc_bytes;
4023 u64 max_reclaim;
4024 long time_left;
4025 unsigned long nr_pages;
4026 int loops;
4027 int items;
4028 enum btrfs_reserve_flush_enum flush;
4029
4030 /* Calc the number of the pages we need flush for space reservation */
4031 items = calc_reclaim_items_nr(root, to_reclaim);
4032 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4033
4034 trans = (struct btrfs_trans_handle *)current->journal_info;
4035 block_rsv = &root->fs_info->delalloc_block_rsv;
4036 space_info = block_rsv->space_info;
4037
4038 delalloc_bytes = percpu_counter_sum_positive(
4039 &root->fs_info->delalloc_bytes);
4040 if (delalloc_bytes == 0) {
4041 if (trans)
4042 return;
4043 if (wait_ordered)
4044 btrfs_wait_ordered_roots(root->fs_info, items);
4045 return;
4046 }
4047
4048 loops = 0;
4049 while (delalloc_bytes && loops < 3) {
4050 max_reclaim = min(delalloc_bytes, to_reclaim);
4051 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4052 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4053 /*
4054 * We need to wait for the async pages to actually start before
4055 * we do anything.
4056 */
4057 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4058 if (!max_reclaim)
4059 goto skip_async;
4060
4061 if (max_reclaim <= nr_pages)
4062 max_reclaim = 0;
4063 else
4064 max_reclaim -= nr_pages;
4065
4066 wait_event(root->fs_info->async_submit_wait,
4067 atomic_read(&root->fs_info->async_delalloc_pages) <=
4068 (int)max_reclaim);
4069skip_async:
4070 if (!trans)
4071 flush = BTRFS_RESERVE_FLUSH_ALL;
4072 else
4073 flush = BTRFS_RESERVE_NO_FLUSH;
4074 spin_lock(&space_info->lock);
4075 if (can_overcommit(root, space_info, orig, flush)) {
4076 spin_unlock(&space_info->lock);
4077 break;
4078 }
4079 spin_unlock(&space_info->lock);
4080
4081 loops++;
4082 if (wait_ordered && !trans) {
4083 btrfs_wait_ordered_roots(root->fs_info, items);
4084 } else {
4085 time_left = schedule_timeout_killable(1);
4086 if (time_left)
4087 break;
4088 }
4089 delalloc_bytes = percpu_counter_sum_positive(
4090 &root->fs_info->delalloc_bytes);
4091 }
4092}
4093
4094/**
4095 * maybe_commit_transaction - possibly commit the transaction if its ok to
4096 * @root - the root we're allocating for
4097 * @bytes - the number of bytes we want to reserve
4098 * @force - force the commit
4099 *
4100 * This will check to make sure that committing the transaction will actually
4101 * get us somewhere and then commit the transaction if it does. Otherwise it
4102 * will return -ENOSPC.
4103 */
4104static int may_commit_transaction(struct btrfs_root *root,
4105 struct btrfs_space_info *space_info,
4106 u64 bytes, int force)
4107{
4108 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4109 struct btrfs_trans_handle *trans;
4110
4111 trans = (struct btrfs_trans_handle *)current->journal_info;
4112 if (trans)
4113 return -EAGAIN;
4114
4115 if (force)
4116 goto commit;
4117
4118 /* See if there is enough pinned space to make this reservation */
4119 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4120 bytes) >= 0)
4121 goto commit;
4122
4123 /*
4124 * See if there is some space in the delayed insertion reservation for
4125 * this reservation.
4126 */
4127 if (space_info != delayed_rsv->space_info)
4128 return -ENOSPC;
4129
4130 spin_lock(&delayed_rsv->lock);
4131 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4132 bytes - delayed_rsv->size) >= 0) {
4133 spin_unlock(&delayed_rsv->lock);
4134 return -ENOSPC;
4135 }
4136 spin_unlock(&delayed_rsv->lock);
4137
4138commit:
4139 trans = btrfs_join_transaction(root);
4140 if (IS_ERR(trans))
4141 return -ENOSPC;
4142
4143 return btrfs_commit_transaction(trans, root);
4144}
4145
4146enum flush_state {
4147 FLUSH_DELAYED_ITEMS_NR = 1,
4148 FLUSH_DELAYED_ITEMS = 2,
4149 FLUSH_DELALLOC = 3,
4150 FLUSH_DELALLOC_WAIT = 4,
4151 ALLOC_CHUNK = 5,
4152 COMMIT_TRANS = 6,
4153};
4154
4155static int flush_space(struct btrfs_root *root,
4156 struct btrfs_space_info *space_info, u64 num_bytes,
4157 u64 orig_bytes, int state)
4158{
4159 struct btrfs_trans_handle *trans;
4160 int nr;
4161 int ret = 0;
4162
4163 switch (state) {
4164 case FLUSH_DELAYED_ITEMS_NR:
4165 case FLUSH_DELAYED_ITEMS:
4166 if (state == FLUSH_DELAYED_ITEMS_NR)
4167 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4168 else
4169 nr = -1;
4170
4171 trans = btrfs_join_transaction(root);
4172 if (IS_ERR(trans)) {
4173 ret = PTR_ERR(trans);
4174 break;
4175 }
4176 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4177 btrfs_end_transaction(trans, root);
4178 break;
4179 case FLUSH_DELALLOC:
4180 case FLUSH_DELALLOC_WAIT:
4181 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4182 state == FLUSH_DELALLOC_WAIT);
4183 break;
4184 case ALLOC_CHUNK:
4185 trans = btrfs_join_transaction(root);
4186 if (IS_ERR(trans)) {
4187 ret = PTR_ERR(trans);
4188 break;
4189 }
4190 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4191 btrfs_get_alloc_profile(root, 0),
4192 CHUNK_ALLOC_NO_FORCE);
4193 btrfs_end_transaction(trans, root);
4194 if (ret == -ENOSPC)
4195 ret = 0;
4196 break;
4197 case COMMIT_TRANS:
4198 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4199 break;
4200 default:
4201 ret = -ENOSPC;
4202 break;
4203 }
4204
4205 return ret;
4206}
4207/**
4208 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4209 * @root - the root we're allocating for
4210 * @block_rsv - the block_rsv we're allocating for
4211 * @orig_bytes - the number of bytes we want
4212 * @flush - whether or not we can flush to make our reservation
4213 *
4214 * This will reserve orgi_bytes number of bytes from the space info associated
4215 * with the block_rsv. If there is not enough space it will make an attempt to
4216 * flush out space to make room. It will do this by flushing delalloc if
4217 * possible or committing the transaction. If flush is 0 then no attempts to
4218 * regain reservations will be made and this will fail if there is not enough
4219 * space already.
4220 */
4221static int reserve_metadata_bytes(struct btrfs_root *root,
4222 struct btrfs_block_rsv *block_rsv,
4223 u64 orig_bytes,
4224 enum btrfs_reserve_flush_enum flush)
4225{
4226 struct btrfs_space_info *space_info = block_rsv->space_info;
4227 u64 used;
4228 u64 num_bytes = orig_bytes;
4229 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4230 int ret = 0;
4231 bool flushing = false;
4232
4233again:
4234 ret = 0;
4235 spin_lock(&space_info->lock);
4236 /*
4237 * We only want to wait if somebody other than us is flushing and we
4238 * are actually allowed to flush all things.
4239 */
4240 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4241 space_info->flush) {
4242 spin_unlock(&space_info->lock);
4243 /*
4244 * If we have a trans handle we can't wait because the flusher
4245 * may have to commit the transaction, which would mean we would
4246 * deadlock since we are waiting for the flusher to finish, but
4247 * hold the current transaction open.
4248 */
4249 if (current->journal_info)
4250 return -EAGAIN;
4251 ret = wait_event_killable(space_info->wait, !space_info->flush);
4252 /* Must have been killed, return */
4253 if (ret)
4254 return -EINTR;
4255
4256 spin_lock(&space_info->lock);
4257 }
4258
4259 ret = -ENOSPC;
4260 used = space_info->bytes_used + space_info->bytes_reserved +
4261 space_info->bytes_pinned + space_info->bytes_readonly +
4262 space_info->bytes_may_use;
4263
4264 /*
4265 * The idea here is that we've not already over-reserved the block group
4266 * then we can go ahead and save our reservation first and then start
4267 * flushing if we need to. Otherwise if we've already overcommitted
4268 * lets start flushing stuff first and then come back and try to make
4269 * our reservation.
4270 */
4271 if (used <= space_info->total_bytes) {
4272 if (used + orig_bytes <= space_info->total_bytes) {
4273 space_info->bytes_may_use += orig_bytes;
4274 trace_btrfs_space_reservation(root->fs_info,
4275 "space_info", space_info->flags, orig_bytes, 1);
4276 ret = 0;
4277 } else {
4278 /*
4279 * Ok set num_bytes to orig_bytes since we aren't
4280 * overocmmitted, this way we only try and reclaim what
4281 * we need.
4282 */
4283 num_bytes = orig_bytes;
4284 }
4285 } else {
4286 /*
4287 * Ok we're over committed, set num_bytes to the overcommitted
4288 * amount plus the amount of bytes that we need for this
4289 * reservation.
4290 */
4291 num_bytes = used - space_info->total_bytes +
4292 (orig_bytes * 2);
4293 }
4294
4295 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4296 space_info->bytes_may_use += orig_bytes;
4297 trace_btrfs_space_reservation(root->fs_info, "space_info",
4298 space_info->flags, orig_bytes,
4299 1);
4300 ret = 0;
4301 }
4302
4303 /*
4304 * Couldn't make our reservation, save our place so while we're trying
4305 * to reclaim space we can actually use it instead of somebody else
4306 * stealing it from us.
4307 *
4308 * We make the other tasks wait for the flush only when we can flush
4309 * all things.
4310 */
4311 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4312 flushing = true;
4313 space_info->flush = 1;
4314 }
4315
4316 spin_unlock(&space_info->lock);
4317
4318 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4319 goto out;
4320
4321 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4322 flush_state);
4323 flush_state++;
4324
4325 /*
4326 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4327 * would happen. So skip delalloc flush.
4328 */
4329 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4330 (flush_state == FLUSH_DELALLOC ||
4331 flush_state == FLUSH_DELALLOC_WAIT))
4332 flush_state = ALLOC_CHUNK;
4333
4334 if (!ret)
4335 goto again;
4336 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4337 flush_state < COMMIT_TRANS)
4338 goto again;
4339 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4340 flush_state <= COMMIT_TRANS)
4341 goto again;
4342
4343out:
4344 if (ret == -ENOSPC &&
4345 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4346 struct btrfs_block_rsv *global_rsv =
4347 &root->fs_info->global_block_rsv;
4348
4349 if (block_rsv != global_rsv &&
4350 !block_rsv_use_bytes(global_rsv, orig_bytes))
4351 ret = 0;
4352 }
4353 if (ret == -ENOSPC)
4354 trace_btrfs_space_reservation(root->fs_info,
4355 "space_info:enospc",
4356 space_info->flags, orig_bytes, 1);
4357 if (flushing) {
4358 spin_lock(&space_info->lock);
4359 space_info->flush = 0;
4360 wake_up_all(&space_info->wait);
4361 spin_unlock(&space_info->lock);
4362 }
4363 return ret;
4364}
4365
4366static struct btrfs_block_rsv *get_block_rsv(
4367 const struct btrfs_trans_handle *trans,
4368 const struct btrfs_root *root)
4369{
4370 struct btrfs_block_rsv *block_rsv = NULL;
4371
4372 if (root->ref_cows)
4373 block_rsv = trans->block_rsv;
4374
4375 if (root == root->fs_info->csum_root && trans->adding_csums)
4376 block_rsv = trans->block_rsv;
4377
4378 if (root == root->fs_info->uuid_root)
4379 block_rsv = trans->block_rsv;
4380
4381 if (!block_rsv)
4382 block_rsv = root->block_rsv;
4383
4384 if (!block_rsv)
4385 block_rsv = &root->fs_info->empty_block_rsv;
4386
4387 return block_rsv;
4388}
4389
4390static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4391 u64 num_bytes)
4392{
4393 int ret = -ENOSPC;
4394 spin_lock(&block_rsv->lock);
4395 if (block_rsv->reserved >= num_bytes) {
4396 block_rsv->reserved -= num_bytes;
4397 if (block_rsv->reserved < block_rsv->size)
4398 block_rsv->full = 0;
4399 ret = 0;
4400 }
4401 spin_unlock(&block_rsv->lock);
4402 return ret;
4403}
4404
4405static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4406 u64 num_bytes, int update_size)
4407{
4408 spin_lock(&block_rsv->lock);
4409 block_rsv->reserved += num_bytes;
4410 if (update_size)
4411 block_rsv->size += num_bytes;
4412 else if (block_rsv->reserved >= block_rsv->size)
4413 block_rsv->full = 1;
4414 spin_unlock(&block_rsv->lock);
4415}
4416
4417int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4418 struct btrfs_block_rsv *dest, u64 num_bytes,
4419 int min_factor)
4420{
4421 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4422 u64 min_bytes;
4423
4424 if (global_rsv->space_info != dest->space_info)
4425 return -ENOSPC;
4426
4427 spin_lock(&global_rsv->lock);
4428 min_bytes = div_factor(global_rsv->size, min_factor);
4429 if (global_rsv->reserved < min_bytes + num_bytes) {
4430 spin_unlock(&global_rsv->lock);
4431 return -ENOSPC;
4432 }
4433 global_rsv->reserved -= num_bytes;
4434 if (global_rsv->reserved < global_rsv->size)
4435 global_rsv->full = 0;
4436 spin_unlock(&global_rsv->lock);
4437
4438 block_rsv_add_bytes(dest, num_bytes, 1);
4439 return 0;
4440}
4441
4442static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4443 struct btrfs_block_rsv *block_rsv,
4444 struct btrfs_block_rsv *dest, u64 num_bytes)
4445{
4446 struct btrfs_space_info *space_info = block_rsv->space_info;
4447
4448 spin_lock(&block_rsv->lock);
4449 if (num_bytes == (u64)-1)
4450 num_bytes = block_rsv->size;
4451 block_rsv->size -= num_bytes;
4452 if (block_rsv->reserved >= block_rsv->size) {
4453 num_bytes = block_rsv->reserved - block_rsv->size;
4454 block_rsv->reserved = block_rsv->size;
4455 block_rsv->full = 1;
4456 } else {
4457 num_bytes = 0;
4458 }
4459 spin_unlock(&block_rsv->lock);
4460
4461 if (num_bytes > 0) {
4462 if (dest) {
4463 spin_lock(&dest->lock);
4464 if (!dest->full) {
4465 u64 bytes_to_add;
4466
4467 bytes_to_add = dest->size - dest->reserved;
4468 bytes_to_add = min(num_bytes, bytes_to_add);
4469 dest->reserved += bytes_to_add;
4470 if (dest->reserved >= dest->size)
4471 dest->full = 1;
4472 num_bytes -= bytes_to_add;
4473 }
4474 spin_unlock(&dest->lock);
4475 }
4476 if (num_bytes) {
4477 spin_lock(&space_info->lock);
4478 space_info->bytes_may_use -= num_bytes;
4479 trace_btrfs_space_reservation(fs_info, "space_info",
4480 space_info->flags, num_bytes, 0);
4481 spin_unlock(&space_info->lock);
4482 }
4483 }
4484}
4485
4486static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4487 struct btrfs_block_rsv *dst, u64 num_bytes)
4488{
4489 int ret;
4490
4491 ret = block_rsv_use_bytes(src, num_bytes);
4492 if (ret)
4493 return ret;
4494
4495 block_rsv_add_bytes(dst, num_bytes, 1);
4496 return 0;
4497}
4498
4499void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4500{
4501 memset(rsv, 0, sizeof(*rsv));
4502 spin_lock_init(&rsv->lock);
4503 rsv->type = type;
4504}
4505
4506struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4507 unsigned short type)
4508{
4509 struct btrfs_block_rsv *block_rsv;
4510 struct btrfs_fs_info *fs_info = root->fs_info;
4511
4512 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4513 if (!block_rsv)
4514 return NULL;
4515
4516 btrfs_init_block_rsv(block_rsv, type);
4517 block_rsv->space_info = __find_space_info(fs_info,
4518 BTRFS_BLOCK_GROUP_METADATA);
4519 return block_rsv;
4520}
4521
4522void btrfs_free_block_rsv(struct btrfs_root *root,
4523 struct btrfs_block_rsv *rsv)
4524{
4525 if (!rsv)
4526 return;
4527 btrfs_block_rsv_release(root, rsv, (u64)-1);
4528 kfree(rsv);
4529}
4530
4531int btrfs_block_rsv_add(struct btrfs_root *root,
4532 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4533 enum btrfs_reserve_flush_enum flush)
4534{
4535 int ret;
4536
4537 if (num_bytes == 0)
4538 return 0;
4539
4540 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4541 if (!ret) {
4542 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4543 return 0;
4544 }
4545
4546 return ret;
4547}
4548
4549int btrfs_block_rsv_check(struct btrfs_root *root,
4550 struct btrfs_block_rsv *block_rsv, int min_factor)
4551{
4552 u64 num_bytes = 0;
4553 int ret = -ENOSPC;
4554
4555 if (!block_rsv)
4556 return 0;
4557
4558 spin_lock(&block_rsv->lock);
4559 num_bytes = div_factor(block_rsv->size, min_factor);
4560 if (block_rsv->reserved >= num_bytes)
4561 ret = 0;
4562 spin_unlock(&block_rsv->lock);
4563
4564 return ret;
4565}
4566
4567int btrfs_block_rsv_refill(struct btrfs_root *root,
4568 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4569 enum btrfs_reserve_flush_enum flush)
4570{
4571 u64 num_bytes = 0;
4572 int ret = -ENOSPC;
4573
4574 if (!block_rsv)
4575 return 0;
4576
4577 spin_lock(&block_rsv->lock);
4578 num_bytes = min_reserved;
4579 if (block_rsv->reserved >= num_bytes)
4580 ret = 0;
4581 else
4582 num_bytes -= block_rsv->reserved;
4583 spin_unlock(&block_rsv->lock);
4584
4585 if (!ret)
4586 return 0;
4587
4588 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4589 if (!ret) {
4590 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4591 return 0;
4592 }
4593
4594 return ret;
4595}
4596
4597int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4598 struct btrfs_block_rsv *dst_rsv,
4599 u64 num_bytes)
4600{
4601 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4602}
4603
4604void btrfs_block_rsv_release(struct btrfs_root *root,
4605 struct btrfs_block_rsv *block_rsv,
4606 u64 num_bytes)
4607{
4608 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4609 if (global_rsv == block_rsv ||
4610 block_rsv->space_info != global_rsv->space_info)
4611 global_rsv = NULL;
4612 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4613 num_bytes);
4614}
4615
4616/*
4617 * helper to calculate size of global block reservation.
4618 * the desired value is sum of space used by extent tree,
4619 * checksum tree and root tree
4620 */
4621static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4622{
4623 struct btrfs_space_info *sinfo;
4624 u64 num_bytes;
4625 u64 meta_used;
4626 u64 data_used;
4627 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4628
4629 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4630 spin_lock(&sinfo->lock);
4631 data_used = sinfo->bytes_used;
4632 spin_unlock(&sinfo->lock);
4633
4634 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4635 spin_lock(&sinfo->lock);
4636 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4637 data_used = 0;
4638 meta_used = sinfo->bytes_used;
4639 spin_unlock(&sinfo->lock);
4640
4641 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4642 csum_size * 2;
4643 num_bytes += div64_u64(data_used + meta_used, 50);
4644
4645 if (num_bytes * 3 > meta_used)
4646 num_bytes = div64_u64(meta_used, 3);
4647
4648 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4649}
4650
4651static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4652{
4653 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4654 struct btrfs_space_info *sinfo = block_rsv->space_info;
4655 u64 num_bytes;
4656
4657 num_bytes = calc_global_metadata_size(fs_info);
4658
4659 spin_lock(&sinfo->lock);
4660 spin_lock(&block_rsv->lock);
4661
4662 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4663
4664 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4665 sinfo->bytes_reserved + sinfo->bytes_readonly +
4666 sinfo->bytes_may_use;
4667
4668 if (sinfo->total_bytes > num_bytes) {
4669 num_bytes = sinfo->total_bytes - num_bytes;
4670 block_rsv->reserved += num_bytes;
4671 sinfo->bytes_may_use += num_bytes;
4672 trace_btrfs_space_reservation(fs_info, "space_info",
4673 sinfo->flags, num_bytes, 1);
4674 }
4675
4676 if (block_rsv->reserved >= block_rsv->size) {
4677 num_bytes = block_rsv->reserved - block_rsv->size;
4678 sinfo->bytes_may_use -= num_bytes;
4679 trace_btrfs_space_reservation(fs_info, "space_info",
4680 sinfo->flags, num_bytes, 0);
4681 block_rsv->reserved = block_rsv->size;
4682 block_rsv->full = 1;
4683 }
4684
4685 spin_unlock(&block_rsv->lock);
4686 spin_unlock(&sinfo->lock);
4687}
4688
4689static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4690{
4691 struct btrfs_space_info *space_info;
4692
4693 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4694 fs_info->chunk_block_rsv.space_info = space_info;
4695
4696 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4697 fs_info->global_block_rsv.space_info = space_info;
4698 fs_info->delalloc_block_rsv.space_info = space_info;
4699 fs_info->trans_block_rsv.space_info = space_info;
4700 fs_info->empty_block_rsv.space_info = space_info;
4701 fs_info->delayed_block_rsv.space_info = space_info;
4702
4703 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4704 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4705 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4706 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4707 if (fs_info->quota_root)
4708 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4709 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4710
4711 update_global_block_rsv(fs_info);
4712}
4713
4714static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4715{
4716 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4717 (u64)-1);
4718 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4719 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4720 WARN_ON(fs_info->trans_block_rsv.size > 0);
4721 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4722 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4723 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4724 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4725 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4726}
4727
4728void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4729 struct btrfs_root *root)
4730{
4731 if (!trans->block_rsv)
4732 return;
4733
4734 if (!trans->bytes_reserved)
4735 return;
4736
4737 trace_btrfs_space_reservation(root->fs_info, "transaction",
4738 trans->transid, trans->bytes_reserved, 0);
4739 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4740 trans->bytes_reserved = 0;
4741}
4742
4743/* Can only return 0 or -ENOSPC */
4744int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4745 struct inode *inode)
4746{
4747 struct btrfs_root *root = BTRFS_I(inode)->root;
4748 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4749 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4750
4751 /*
4752 * We need to hold space in order to delete our orphan item once we've
4753 * added it, so this takes the reservation so we can release it later
4754 * when we are truly done with the orphan item.
4755 */
4756 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4757 trace_btrfs_space_reservation(root->fs_info, "orphan",
4758 btrfs_ino(inode), num_bytes, 1);
4759 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4760}
4761
4762void btrfs_orphan_release_metadata(struct inode *inode)
4763{
4764 struct btrfs_root *root = BTRFS_I(inode)->root;
4765 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4766 trace_btrfs_space_reservation(root->fs_info, "orphan",
4767 btrfs_ino(inode), num_bytes, 0);
4768 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4769}
4770
4771/*
4772 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4773 * root: the root of the parent directory
4774 * rsv: block reservation
4775 * items: the number of items that we need do reservation
4776 * qgroup_reserved: used to return the reserved size in qgroup
4777 *
4778 * This function is used to reserve the space for snapshot/subvolume
4779 * creation and deletion. Those operations are different with the
4780 * common file/directory operations, they change two fs/file trees
4781 * and root tree, the number of items that the qgroup reserves is
4782 * different with the free space reservation. So we can not use
4783 * the space reseravtion mechanism in start_transaction().
4784 */
4785int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4786 struct btrfs_block_rsv *rsv,
4787 int items,
4788 u64 *qgroup_reserved,
4789 bool use_global_rsv)
4790{
4791 u64 num_bytes;
4792 int ret;
4793 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4794
4795 if (root->fs_info->quota_enabled) {
4796 /* One for parent inode, two for dir entries */
4797 num_bytes = 3 * root->leafsize;
4798 ret = btrfs_qgroup_reserve(root, num_bytes);
4799 if (ret)
4800 return ret;
4801 } else {
4802 num_bytes = 0;
4803 }
4804
4805 *qgroup_reserved = num_bytes;
4806
4807 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4808 rsv->space_info = __find_space_info(root->fs_info,
4809 BTRFS_BLOCK_GROUP_METADATA);
4810 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4811 BTRFS_RESERVE_FLUSH_ALL);
4812
4813 if (ret == -ENOSPC && use_global_rsv)
4814 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4815
4816 if (ret) {
4817 if (*qgroup_reserved)
4818 btrfs_qgroup_free(root, *qgroup_reserved);
4819 }
4820
4821 return ret;
4822}
4823
4824void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4825 struct btrfs_block_rsv *rsv,
4826 u64 qgroup_reserved)
4827{
4828 btrfs_block_rsv_release(root, rsv, (u64)-1);
4829 if (qgroup_reserved)
4830 btrfs_qgroup_free(root, qgroup_reserved);
4831}
4832
4833/**
4834 * drop_outstanding_extent - drop an outstanding extent
4835 * @inode: the inode we're dropping the extent for
4836 *
4837 * This is called when we are freeing up an outstanding extent, either called
4838 * after an error or after an extent is written. This will return the number of
4839 * reserved extents that need to be freed. This must be called with
4840 * BTRFS_I(inode)->lock held.
4841 */
4842static unsigned drop_outstanding_extent(struct inode *inode)
4843{
4844 unsigned drop_inode_space = 0;
4845 unsigned dropped_extents = 0;
4846
4847 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4848 BTRFS_I(inode)->outstanding_extents--;
4849
4850 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4851 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4852 &BTRFS_I(inode)->runtime_flags))
4853 drop_inode_space = 1;
4854
4855 /*
4856 * If we have more or the same amount of outsanding extents than we have
4857 * reserved then we need to leave the reserved extents count alone.
4858 */
4859 if (BTRFS_I(inode)->outstanding_extents >=
4860 BTRFS_I(inode)->reserved_extents)
4861 return drop_inode_space;
4862
4863 dropped_extents = BTRFS_I(inode)->reserved_extents -
4864 BTRFS_I(inode)->outstanding_extents;
4865 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4866 return dropped_extents + drop_inode_space;
4867}
4868
4869/**
4870 * calc_csum_metadata_size - return the amount of metada space that must be
4871 * reserved/free'd for the given bytes.
4872 * @inode: the inode we're manipulating
4873 * @num_bytes: the number of bytes in question
4874 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4875 *
4876 * This adjusts the number of csum_bytes in the inode and then returns the
4877 * correct amount of metadata that must either be reserved or freed. We
4878 * calculate how many checksums we can fit into one leaf and then divide the
4879 * number of bytes that will need to be checksumed by this value to figure out
4880 * how many checksums will be required. If we are adding bytes then the number
4881 * may go up and we will return the number of additional bytes that must be
4882 * reserved. If it is going down we will return the number of bytes that must
4883 * be freed.
4884 *
4885 * This must be called with BTRFS_I(inode)->lock held.
4886 */
4887static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4888 int reserve)
4889{
4890 struct btrfs_root *root = BTRFS_I(inode)->root;
4891 u64 csum_size;
4892 int num_csums_per_leaf;
4893 int num_csums;
4894 int old_csums;
4895
4896 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4897 BTRFS_I(inode)->csum_bytes == 0)
4898 return 0;
4899
4900 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4901 if (reserve)
4902 BTRFS_I(inode)->csum_bytes += num_bytes;
4903 else
4904 BTRFS_I(inode)->csum_bytes -= num_bytes;
4905 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4906 num_csums_per_leaf = (int)div64_u64(csum_size,
4907 sizeof(struct btrfs_csum_item) +
4908 sizeof(struct btrfs_disk_key));
4909 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4910 num_csums = num_csums + num_csums_per_leaf - 1;
4911 num_csums = num_csums / num_csums_per_leaf;
4912
4913 old_csums = old_csums + num_csums_per_leaf - 1;
4914 old_csums = old_csums / num_csums_per_leaf;
4915
4916 /* No change, no need to reserve more */
4917 if (old_csums == num_csums)
4918 return 0;
4919
4920 if (reserve)
4921 return btrfs_calc_trans_metadata_size(root,
4922 num_csums - old_csums);
4923
4924 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4925}
4926
4927int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4928{
4929 struct btrfs_root *root = BTRFS_I(inode)->root;
4930 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4931 u64 to_reserve = 0;
4932 u64 csum_bytes;
4933 unsigned nr_extents = 0;
4934 int extra_reserve = 0;
4935 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4936 int ret = 0;
4937 bool delalloc_lock = true;
4938 u64 to_free = 0;
4939 unsigned dropped;
4940
4941 /* If we are a free space inode we need to not flush since we will be in
4942 * the middle of a transaction commit. We also don't need the delalloc
4943 * mutex since we won't race with anybody. We need this mostly to make
4944 * lockdep shut its filthy mouth.
4945 */
4946 if (btrfs_is_free_space_inode(inode)) {
4947 flush = BTRFS_RESERVE_NO_FLUSH;
4948 delalloc_lock = false;
4949 }
4950
4951 if (flush != BTRFS_RESERVE_NO_FLUSH &&
4952 btrfs_transaction_in_commit(root->fs_info))
4953 schedule_timeout(1);
4954
4955 if (delalloc_lock)
4956 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4957
4958 num_bytes = ALIGN(num_bytes, root->sectorsize);
4959
4960 spin_lock(&BTRFS_I(inode)->lock);
4961 BTRFS_I(inode)->outstanding_extents++;
4962
4963 if (BTRFS_I(inode)->outstanding_extents >
4964 BTRFS_I(inode)->reserved_extents)
4965 nr_extents = BTRFS_I(inode)->outstanding_extents -
4966 BTRFS_I(inode)->reserved_extents;
4967
4968 /*
4969 * Add an item to reserve for updating the inode when we complete the
4970 * delalloc io.
4971 */
4972 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4973 &BTRFS_I(inode)->runtime_flags)) {
4974 nr_extents++;
4975 extra_reserve = 1;
4976 }
4977
4978 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4979 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4980 csum_bytes = BTRFS_I(inode)->csum_bytes;
4981 spin_unlock(&BTRFS_I(inode)->lock);
4982
4983 if (root->fs_info->quota_enabled) {
4984 ret = btrfs_qgroup_reserve(root, num_bytes +
4985 nr_extents * root->leafsize);
4986 if (ret)
4987 goto out_fail;
4988 }
4989
4990 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4991 if (unlikely(ret)) {
4992 if (root->fs_info->quota_enabled)
4993 btrfs_qgroup_free(root, num_bytes +
4994 nr_extents * root->leafsize);
4995 goto out_fail;
4996 }
4997
4998 spin_lock(&BTRFS_I(inode)->lock);
4999 if (extra_reserve) {
5000 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5001 &BTRFS_I(inode)->runtime_flags);
5002 nr_extents--;
5003 }
5004 BTRFS_I(inode)->reserved_extents += nr_extents;
5005 spin_unlock(&BTRFS_I(inode)->lock);
5006
5007 if (delalloc_lock)
5008 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5009
5010 if (to_reserve)
5011 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5012 btrfs_ino(inode), to_reserve, 1);
5013 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5014
5015 return 0;
5016
5017out_fail:
5018 spin_lock(&BTRFS_I(inode)->lock);
5019 dropped = drop_outstanding_extent(inode);
5020 /*
5021 * If the inodes csum_bytes is the same as the original
5022 * csum_bytes then we know we haven't raced with any free()ers
5023 * so we can just reduce our inodes csum bytes and carry on.
5024 */
5025 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5026 calc_csum_metadata_size(inode, num_bytes, 0);
5027 } else {
5028 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5029 u64 bytes;
5030
5031 /*
5032 * This is tricky, but first we need to figure out how much we
5033 * free'd from any free-ers that occured during this
5034 * reservation, so we reset ->csum_bytes to the csum_bytes
5035 * before we dropped our lock, and then call the free for the
5036 * number of bytes that were freed while we were trying our
5037 * reservation.
5038 */
5039 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5040 BTRFS_I(inode)->csum_bytes = csum_bytes;
5041 to_free = calc_csum_metadata_size(inode, bytes, 0);
5042
5043
5044 /*
5045 * Now we need to see how much we would have freed had we not
5046 * been making this reservation and our ->csum_bytes were not
5047 * artificially inflated.
5048 */
5049 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5050 bytes = csum_bytes - orig_csum_bytes;
5051 bytes = calc_csum_metadata_size(inode, bytes, 0);
5052
5053 /*
5054 * Now reset ->csum_bytes to what it should be. If bytes is
5055 * more than to_free then we would have free'd more space had we
5056 * not had an artificially high ->csum_bytes, so we need to free
5057 * the remainder. If bytes is the same or less then we don't
5058 * need to do anything, the other free-ers did the correct
5059 * thing.
5060 */
5061 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5062 if (bytes > to_free)
5063 to_free = bytes - to_free;
5064 else
5065 to_free = 0;
5066 }
5067 spin_unlock(&BTRFS_I(inode)->lock);
5068 if (dropped)
5069 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5070
5071 if (to_free) {
5072 btrfs_block_rsv_release(root, block_rsv, to_free);
5073 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5074 btrfs_ino(inode), to_free, 0);
5075 }
5076 if (delalloc_lock)
5077 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5078 return ret;
5079}
5080
5081/**
5082 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5083 * @inode: the inode to release the reservation for
5084 * @num_bytes: the number of bytes we're releasing
5085 *
5086 * This will release the metadata reservation for an inode. This can be called
5087 * once we complete IO for a given set of bytes to release their metadata
5088 * reservations.
5089 */
5090void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5091{
5092 struct btrfs_root *root = BTRFS_I(inode)->root;
5093 u64 to_free = 0;
5094 unsigned dropped;
5095
5096 num_bytes = ALIGN(num_bytes, root->sectorsize);
5097 spin_lock(&BTRFS_I(inode)->lock);
5098 dropped = drop_outstanding_extent(inode);
5099
5100 if (num_bytes)
5101 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5102 spin_unlock(&BTRFS_I(inode)->lock);
5103 if (dropped > 0)
5104 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5105
5106 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5107 btrfs_ino(inode), to_free, 0);
5108 if (root->fs_info->quota_enabled) {
5109 btrfs_qgroup_free(root, num_bytes +
5110 dropped * root->leafsize);
5111 }
5112
5113 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5114 to_free);
5115}
5116
5117/**
5118 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5119 * @inode: inode we're writing to
5120 * @num_bytes: the number of bytes we want to allocate
5121 *
5122 * This will do the following things
5123 *
5124 * o reserve space in the data space info for num_bytes
5125 * o reserve space in the metadata space info based on number of outstanding
5126 * extents and how much csums will be needed
5127 * o add to the inodes ->delalloc_bytes
5128 * o add it to the fs_info's delalloc inodes list.
5129 *
5130 * This will return 0 for success and -ENOSPC if there is no space left.
5131 */
5132int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5133{
5134 int ret;
5135
5136 ret = btrfs_check_data_free_space(inode, num_bytes);
5137 if (ret)
5138 return ret;
5139
5140 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5141 if (ret) {
5142 btrfs_free_reserved_data_space(inode, num_bytes);
5143 return ret;
5144 }
5145
5146 return 0;
5147}
5148
5149/**
5150 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5151 * @inode: inode we're releasing space for
5152 * @num_bytes: the number of bytes we want to free up
5153 *
5154 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5155 * called in the case that we don't need the metadata AND data reservations
5156 * anymore. So if there is an error or we insert an inline extent.
5157 *
5158 * This function will release the metadata space that was not used and will
5159 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5160 * list if there are no delalloc bytes left.
5161 */
5162void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5163{
5164 btrfs_delalloc_release_metadata(inode, num_bytes);
5165 btrfs_free_reserved_data_space(inode, num_bytes);
5166}
5167
5168static int update_block_group(struct btrfs_root *root,
5169 u64 bytenr, u64 num_bytes, int alloc)
5170{
5171 struct btrfs_block_group_cache *cache = NULL;
5172 struct btrfs_fs_info *info = root->fs_info;
5173 u64 total = num_bytes;
5174 u64 old_val;
5175 u64 byte_in_group;
5176 int factor;
5177
5178 /* block accounting for super block */
5179 spin_lock(&info->delalloc_root_lock);
5180 old_val = btrfs_super_bytes_used(info->super_copy);
5181 if (alloc)
5182 old_val += num_bytes;
5183 else
5184 old_val -= num_bytes;
5185 btrfs_set_super_bytes_used(info->super_copy, old_val);
5186 spin_unlock(&info->delalloc_root_lock);
5187
5188 while (total) {
5189 cache = btrfs_lookup_block_group(info, bytenr);
5190 if (!cache)
5191 return -ENOENT;
5192 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5193 BTRFS_BLOCK_GROUP_RAID1 |
5194 BTRFS_BLOCK_GROUP_RAID10))
5195 factor = 2;
5196 else
5197 factor = 1;
5198 /*
5199 * If this block group has free space cache written out, we
5200 * need to make sure to load it if we are removing space. This
5201 * is because we need the unpinning stage to actually add the
5202 * space back to the block group, otherwise we will leak space.
5203 */
5204 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5205 cache_block_group(cache, 1);
5206
5207 byte_in_group = bytenr - cache->key.objectid;
5208 WARN_ON(byte_in_group > cache->key.offset);
5209
5210 spin_lock(&cache->space_info->lock);
5211 spin_lock(&cache->lock);
5212
5213 if (btrfs_test_opt(root, SPACE_CACHE) &&
5214 cache->disk_cache_state < BTRFS_DC_CLEAR)
5215 cache->disk_cache_state = BTRFS_DC_CLEAR;
5216
5217 cache->dirty = 1;
5218 old_val = btrfs_block_group_used(&cache->item);
5219 num_bytes = min(total, cache->key.offset - byte_in_group);
5220 if (alloc) {
5221 old_val += num_bytes;
5222 btrfs_set_block_group_used(&cache->item, old_val);
5223 cache->reserved -= num_bytes;
5224 cache->space_info->bytes_reserved -= num_bytes;
5225 cache->space_info->bytes_used += num_bytes;
5226 cache->space_info->disk_used += num_bytes * factor;
5227 spin_unlock(&cache->lock);
5228 spin_unlock(&cache->space_info->lock);
5229 } else {
5230 old_val -= num_bytes;
5231 btrfs_set_block_group_used(&cache->item, old_val);
5232 cache->pinned += num_bytes;
5233 cache->space_info->bytes_pinned += num_bytes;
5234 cache->space_info->bytes_used -= num_bytes;
5235 cache->space_info->disk_used -= num_bytes * factor;
5236 spin_unlock(&cache->lock);
5237 spin_unlock(&cache->space_info->lock);
5238
5239 set_extent_dirty(info->pinned_extents,
5240 bytenr, bytenr + num_bytes - 1,
5241 GFP_NOFS | __GFP_NOFAIL);
5242 }
5243 btrfs_put_block_group(cache);
5244 total -= num_bytes;
5245 bytenr += num_bytes;
5246 }
5247 return 0;
5248}
5249
5250static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5251{
5252 struct btrfs_block_group_cache *cache;
5253 u64 bytenr;
5254
5255 spin_lock(&root->fs_info->block_group_cache_lock);
5256 bytenr = root->fs_info->first_logical_byte;
5257 spin_unlock(&root->fs_info->block_group_cache_lock);
5258
5259 if (bytenr < (u64)-1)
5260 return bytenr;
5261
5262 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5263 if (!cache)
5264 return 0;
5265
5266 bytenr = cache->key.objectid;
5267 btrfs_put_block_group(cache);
5268
5269 return bytenr;
5270}
5271
5272static int pin_down_extent(struct btrfs_root *root,
5273 struct btrfs_block_group_cache *cache,
5274 u64 bytenr, u64 num_bytes, int reserved)
5275{
5276 spin_lock(&cache->space_info->lock);
5277 spin_lock(&cache->lock);
5278 cache->pinned += num_bytes;
5279 cache->space_info->bytes_pinned += num_bytes;
5280 if (reserved) {
5281 cache->reserved -= num_bytes;
5282 cache->space_info->bytes_reserved -= num_bytes;
5283 }
5284 spin_unlock(&cache->lock);
5285 spin_unlock(&cache->space_info->lock);
5286
5287 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5288 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5289 if (reserved)
5290 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5291 return 0;
5292}
5293
5294/*
5295 * this function must be called within transaction
5296 */
5297int btrfs_pin_extent(struct btrfs_root *root,
5298 u64 bytenr, u64 num_bytes, int reserved)
5299{
5300 struct btrfs_block_group_cache *cache;
5301
5302 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5303 BUG_ON(!cache); /* Logic error */
5304
5305 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5306
5307 btrfs_put_block_group(cache);
5308 return 0;
5309}
5310
5311/*
5312 * this function must be called within transaction
5313 */
5314int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5315 u64 bytenr, u64 num_bytes)
5316{
5317 struct btrfs_block_group_cache *cache;
5318 int ret;
5319
5320 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5321 if (!cache)
5322 return -EINVAL;
5323
5324 /*
5325 * pull in the free space cache (if any) so that our pin
5326 * removes the free space from the cache. We have load_only set
5327 * to one because the slow code to read in the free extents does check
5328 * the pinned extents.
5329 */
5330 cache_block_group(cache, 1);
5331
5332 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5333
5334 /* remove us from the free space cache (if we're there at all) */
5335 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5336 btrfs_put_block_group(cache);
5337 return ret;
5338}
5339
5340static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5341{
5342 int ret;
5343 struct btrfs_block_group_cache *block_group;
5344 struct btrfs_caching_control *caching_ctl;
5345
5346 block_group = btrfs_lookup_block_group(root->fs_info, start);
5347 if (!block_group)
5348 return -EINVAL;
5349
5350 cache_block_group(block_group, 0);
5351 caching_ctl = get_caching_control(block_group);
5352
5353 if (!caching_ctl) {
5354 /* Logic error */
5355 BUG_ON(!block_group_cache_done(block_group));
5356 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5357 } else {
5358 mutex_lock(&caching_ctl->mutex);
5359
5360 if (start >= caching_ctl->progress) {
5361 ret = add_excluded_extent(root, start, num_bytes);
5362 } else if (start + num_bytes <= caching_ctl->progress) {
5363 ret = btrfs_remove_free_space(block_group,
5364 start, num_bytes);
5365 } else {
5366 num_bytes = caching_ctl->progress - start;
5367 ret = btrfs_remove_free_space(block_group,
5368 start, num_bytes);
5369 if (ret)
5370 goto out_lock;
5371
5372 num_bytes = (start + num_bytes) -
5373 caching_ctl->progress;
5374 start = caching_ctl->progress;
5375 ret = add_excluded_extent(root, start, num_bytes);
5376 }
5377out_lock:
5378 mutex_unlock(&caching_ctl->mutex);
5379 put_caching_control(caching_ctl);
5380 }
5381 btrfs_put_block_group(block_group);
5382 return ret;
5383}
5384
5385int btrfs_exclude_logged_extents(struct btrfs_root *log,
5386 struct extent_buffer *eb)
5387{
5388 struct btrfs_file_extent_item *item;
5389 struct btrfs_key key;
5390 int found_type;
5391 int i;
5392
5393 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5394 return 0;
5395
5396 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5397 btrfs_item_key_to_cpu(eb, &key, i);
5398 if (key.type != BTRFS_EXTENT_DATA_KEY)
5399 continue;
5400 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5401 found_type = btrfs_file_extent_type(eb, item);
5402 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5403 continue;
5404 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5405 continue;
5406 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5407 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5408 __exclude_logged_extent(log, key.objectid, key.offset);
5409 }
5410
5411 return 0;
5412}
5413
5414/**
5415 * btrfs_update_reserved_bytes - update the block_group and space info counters
5416 * @cache: The cache we are manipulating
5417 * @num_bytes: The number of bytes in question
5418 * @reserve: One of the reservation enums
5419 *
5420 * This is called by the allocator when it reserves space, or by somebody who is
5421 * freeing space that was never actually used on disk. For example if you
5422 * reserve some space for a new leaf in transaction A and before transaction A
5423 * commits you free that leaf, you call this with reserve set to 0 in order to
5424 * clear the reservation.
5425 *
5426 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5427 * ENOSPC accounting. For data we handle the reservation through clearing the
5428 * delalloc bits in the io_tree. We have to do this since we could end up
5429 * allocating less disk space for the amount of data we have reserved in the
5430 * case of compression.
5431 *
5432 * If this is a reservation and the block group has become read only we cannot
5433 * make the reservation and return -EAGAIN, otherwise this function always
5434 * succeeds.
5435 */
5436static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5437 u64 num_bytes, int reserve)
5438{
5439 struct btrfs_space_info *space_info = cache->space_info;
5440 int ret = 0;
5441
5442 spin_lock(&space_info->lock);
5443 spin_lock(&cache->lock);
5444 if (reserve != RESERVE_FREE) {
5445 if (cache->ro) {
5446 ret = -EAGAIN;
5447 } else {
5448 cache->reserved += num_bytes;
5449 space_info->bytes_reserved += num_bytes;
5450 if (reserve == RESERVE_ALLOC) {
5451 trace_btrfs_space_reservation(cache->fs_info,
5452 "space_info", space_info->flags,
5453 num_bytes, 0);
5454 space_info->bytes_may_use -= num_bytes;
5455 }
5456 }
5457 } else {
5458 if (cache->ro)
5459 space_info->bytes_readonly += num_bytes;
5460 cache->reserved -= num_bytes;
5461 space_info->bytes_reserved -= num_bytes;
5462 }
5463 spin_unlock(&cache->lock);
5464 spin_unlock(&space_info->lock);
5465 return ret;
5466}
5467
5468void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5469 struct btrfs_root *root)
5470{
5471 struct btrfs_fs_info *fs_info = root->fs_info;
5472 struct btrfs_caching_control *next;
5473 struct btrfs_caching_control *caching_ctl;
5474 struct btrfs_block_group_cache *cache;
5475 struct btrfs_space_info *space_info;
5476
5477 down_write(&fs_info->commit_root_sem);
5478
5479 list_for_each_entry_safe(caching_ctl, next,
5480 &fs_info->caching_block_groups, list) {
5481 cache = caching_ctl->block_group;
5482 if (block_group_cache_done(cache)) {
5483 cache->last_byte_to_unpin = (u64)-1;
5484 list_del_init(&caching_ctl->list);
5485 put_caching_control(caching_ctl);
5486 } else {
5487 cache->last_byte_to_unpin = caching_ctl->progress;
5488 }
5489 }
5490
5491 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5492 fs_info->pinned_extents = &fs_info->freed_extents[1];
5493 else
5494 fs_info->pinned_extents = &fs_info->freed_extents[0];
5495
5496 up_write(&fs_info->commit_root_sem);
5497
5498 list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5499 percpu_counter_set(&space_info->total_bytes_pinned, 0);
5500
5501 update_global_block_rsv(fs_info);
5502}
5503
5504static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5505{
5506 struct btrfs_fs_info *fs_info = root->fs_info;
5507 struct btrfs_block_group_cache *cache = NULL;
5508 struct btrfs_space_info *space_info;
5509 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5510 u64 len;
5511 bool readonly;
5512
5513 while (start <= end) {
5514 readonly = false;
5515 if (!cache ||
5516 start >= cache->key.objectid + cache->key.offset) {
5517 if (cache)
5518 btrfs_put_block_group(cache);
5519 cache = btrfs_lookup_block_group(fs_info, start);
5520 BUG_ON(!cache); /* Logic error */
5521 }
5522
5523 len = cache->key.objectid + cache->key.offset - start;
5524 len = min(len, end + 1 - start);
5525
5526 if (start < cache->last_byte_to_unpin) {
5527 len = min(len, cache->last_byte_to_unpin - start);
5528 btrfs_add_free_space(cache, start, len);
5529 }
5530
5531 start += len;
5532 space_info = cache->space_info;
5533
5534 spin_lock(&space_info->lock);
5535 spin_lock(&cache->lock);
5536 cache->pinned -= len;
5537 space_info->bytes_pinned -= len;
5538 if (cache->ro) {
5539 space_info->bytes_readonly += len;
5540 readonly = true;
5541 }
5542 spin_unlock(&cache->lock);
5543 if (!readonly && global_rsv->space_info == space_info) {
5544 spin_lock(&global_rsv->lock);
5545 if (!global_rsv->full) {
5546 len = min(len, global_rsv->size -
5547 global_rsv->reserved);
5548 global_rsv->reserved += len;
5549 space_info->bytes_may_use += len;
5550 if (global_rsv->reserved >= global_rsv->size)
5551 global_rsv->full = 1;
5552 }
5553 spin_unlock(&global_rsv->lock);
5554 }
5555 spin_unlock(&space_info->lock);
5556 }
5557
5558 if (cache)
5559 btrfs_put_block_group(cache);
5560 return 0;
5561}
5562
5563int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5564 struct btrfs_root *root)
5565{
5566 struct btrfs_fs_info *fs_info = root->fs_info;
5567 struct extent_io_tree *unpin;
5568 u64 start;
5569 u64 end;
5570 int ret;
5571
5572 if (trans->aborted)
5573 return 0;
5574
5575 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5576 unpin = &fs_info->freed_extents[1];
5577 else
5578 unpin = &fs_info->freed_extents[0];
5579
5580 while (1) {
5581 ret = find_first_extent_bit(unpin, 0, &start, &end,
5582 EXTENT_DIRTY, NULL);
5583 if (ret)
5584 break;
5585
5586 if (btrfs_test_opt(root, DISCARD))
5587 ret = btrfs_discard_extent(root, start,
5588 end + 1 - start, NULL);
5589
5590 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5591 unpin_extent_range(root, start, end);
5592 cond_resched();
5593 }
5594
5595 return 0;
5596}
5597
5598static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5599 u64 owner, u64 root_objectid)
5600{
5601 struct btrfs_space_info *space_info;
5602 u64 flags;
5603
5604 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5605 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5606 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5607 else
5608 flags = BTRFS_BLOCK_GROUP_METADATA;
5609 } else {
5610 flags = BTRFS_BLOCK_GROUP_DATA;
5611 }
5612
5613 space_info = __find_space_info(fs_info, flags);
5614 BUG_ON(!space_info); /* Logic bug */
5615 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5616}
5617
5618
5619static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5620 struct btrfs_root *root,
5621 u64 bytenr, u64 num_bytes, u64 parent,
5622 u64 root_objectid, u64 owner_objectid,
5623 u64 owner_offset, int refs_to_drop,
5624 struct btrfs_delayed_extent_op *extent_op)
5625{
5626 struct btrfs_key key;
5627 struct btrfs_path *path;
5628 struct btrfs_fs_info *info = root->fs_info;
5629 struct btrfs_root *extent_root = info->extent_root;
5630 struct extent_buffer *leaf;
5631 struct btrfs_extent_item *ei;
5632 struct btrfs_extent_inline_ref *iref;
5633 int ret;
5634 int is_data;
5635 int extent_slot = 0;
5636 int found_extent = 0;
5637 int num_to_del = 1;
5638 u32 item_size;
5639 u64 refs;
5640 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5641 SKINNY_METADATA);
5642
5643 path = btrfs_alloc_path();
5644 if (!path)
5645 return -ENOMEM;
5646
5647 path->reada = 1;
5648 path->leave_spinning = 1;
5649
5650 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5651 BUG_ON(!is_data && refs_to_drop != 1);
5652
5653 if (is_data)
5654 skinny_metadata = 0;
5655
5656 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5657 bytenr, num_bytes, parent,
5658 root_objectid, owner_objectid,
5659 owner_offset);
5660 if (ret == 0) {
5661 extent_slot = path->slots[0];
5662 while (extent_slot >= 0) {
5663 btrfs_item_key_to_cpu(path->nodes[0], &key,
5664 extent_slot);
5665 if (key.objectid != bytenr)
5666 break;
5667 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5668 key.offset == num_bytes) {
5669 found_extent = 1;
5670 break;
5671 }
5672 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5673 key.offset == owner_objectid) {
5674 found_extent = 1;
5675 break;
5676 }
5677 if (path->slots[0] - extent_slot > 5)
5678 break;
5679 extent_slot--;
5680 }
5681#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5682 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5683 if (found_extent && item_size < sizeof(*ei))
5684 found_extent = 0;
5685#endif
5686 if (!found_extent) {
5687 BUG_ON(iref);
5688 ret = remove_extent_backref(trans, extent_root, path,
5689 NULL, refs_to_drop,
5690 is_data);
5691 if (ret) {
5692 btrfs_abort_transaction(trans, extent_root, ret);
5693 goto out;
5694 }
5695 btrfs_release_path(path);
5696 path->leave_spinning = 1;
5697
5698 key.objectid = bytenr;
5699 key.type = BTRFS_EXTENT_ITEM_KEY;
5700 key.offset = num_bytes;
5701
5702 if (!is_data && skinny_metadata) {
5703 key.type = BTRFS_METADATA_ITEM_KEY;
5704 key.offset = owner_objectid;
5705 }
5706
5707 ret = btrfs_search_slot(trans, extent_root,
5708 &key, path, -1, 1);
5709 if (ret > 0 && skinny_metadata && path->slots[0]) {
5710 /*
5711 * Couldn't find our skinny metadata item,
5712 * see if we have ye olde extent item.
5713 */
5714 path->slots[0]--;
5715 btrfs_item_key_to_cpu(path->nodes[0], &key,
5716 path->slots[0]);
5717 if (key.objectid == bytenr &&
5718 key.type == BTRFS_EXTENT_ITEM_KEY &&
5719 key.offset == num_bytes)
5720 ret = 0;
5721 }
5722
5723 if (ret > 0 && skinny_metadata) {
5724 skinny_metadata = false;
5725 key.objectid = bytenr;
5726 key.type = BTRFS_EXTENT_ITEM_KEY;
5727 key.offset = num_bytes;
5728 btrfs_release_path(path);
5729 ret = btrfs_search_slot(trans, extent_root,
5730 &key, path, -1, 1);
5731 }
5732
5733 if (ret) {
5734 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5735 ret, bytenr);
5736 if (ret > 0)
5737 btrfs_print_leaf(extent_root,
5738 path->nodes[0]);
5739 }
5740 if (ret < 0) {
5741 btrfs_abort_transaction(trans, extent_root, ret);
5742 goto out;
5743 }
5744 extent_slot = path->slots[0];
5745 }
5746 } else if (WARN_ON(ret == -ENOENT)) {
5747 btrfs_print_leaf(extent_root, path->nodes[0]);
5748 btrfs_err(info,
5749 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5750 bytenr, parent, root_objectid, owner_objectid,
5751 owner_offset);
5752 btrfs_abort_transaction(trans, extent_root, ret);
5753 goto out;
5754 } else {
5755 btrfs_abort_transaction(trans, extent_root, ret);
5756 goto out;
5757 }
5758
5759 leaf = path->nodes[0];
5760 item_size = btrfs_item_size_nr(leaf, extent_slot);
5761#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5762 if (item_size < sizeof(*ei)) {
5763 BUG_ON(found_extent || extent_slot != path->slots[0]);
5764 ret = convert_extent_item_v0(trans, extent_root, path,
5765 owner_objectid, 0);
5766 if (ret < 0) {
5767 btrfs_abort_transaction(trans, extent_root, ret);
5768 goto out;
5769 }
5770
5771 btrfs_release_path(path);
5772 path->leave_spinning = 1;
5773
5774 key.objectid = bytenr;
5775 key.type = BTRFS_EXTENT_ITEM_KEY;
5776 key.offset = num_bytes;
5777
5778 ret = btrfs_search_slot(trans, extent_root, &key, path,
5779 -1, 1);
5780 if (ret) {
5781 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5782 ret, bytenr);
5783 btrfs_print_leaf(extent_root, path->nodes[0]);
5784 }
5785 if (ret < 0) {
5786 btrfs_abort_transaction(trans, extent_root, ret);
5787 goto out;
5788 }
5789
5790 extent_slot = path->slots[0];
5791 leaf = path->nodes[0];
5792 item_size = btrfs_item_size_nr(leaf, extent_slot);
5793 }
5794#endif
5795 BUG_ON(item_size < sizeof(*ei));
5796 ei = btrfs_item_ptr(leaf, extent_slot,
5797 struct btrfs_extent_item);
5798 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5799 key.type == BTRFS_EXTENT_ITEM_KEY) {
5800 struct btrfs_tree_block_info *bi;
5801 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5802 bi = (struct btrfs_tree_block_info *)(ei + 1);
5803 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5804 }
5805
5806 refs = btrfs_extent_refs(leaf, ei);
5807 if (refs < refs_to_drop) {
5808 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5809 "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5810 ret = -EINVAL;
5811 btrfs_abort_transaction(trans, extent_root, ret);
5812 goto out;
5813 }
5814 refs -= refs_to_drop;
5815
5816 if (refs > 0) {
5817 if (extent_op)
5818 __run_delayed_extent_op(extent_op, leaf, ei);
5819 /*
5820 * In the case of inline back ref, reference count will
5821 * be updated by remove_extent_backref
5822 */
5823 if (iref) {
5824 BUG_ON(!found_extent);
5825 } else {
5826 btrfs_set_extent_refs(leaf, ei, refs);
5827 btrfs_mark_buffer_dirty(leaf);
5828 }
5829 if (found_extent) {
5830 ret = remove_extent_backref(trans, extent_root, path,
5831 iref, refs_to_drop,
5832 is_data);
5833 if (ret) {
5834 btrfs_abort_transaction(trans, extent_root, ret);
5835 goto out;
5836 }
5837 }
5838 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5839 root_objectid);
5840 } else {
5841 if (found_extent) {
5842 BUG_ON(is_data && refs_to_drop !=
5843 extent_data_ref_count(root, path, iref));
5844 if (iref) {
5845 BUG_ON(path->slots[0] != extent_slot);
5846 } else {
5847 BUG_ON(path->slots[0] != extent_slot + 1);
5848 path->slots[0] = extent_slot;
5849 num_to_del = 2;
5850 }
5851 }
5852
5853 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5854 num_to_del);
5855 if (ret) {
5856 btrfs_abort_transaction(trans, extent_root, ret);
5857 goto out;
5858 }
5859 btrfs_release_path(path);
5860
5861 if (is_data) {
5862 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5863 if (ret) {
5864 btrfs_abort_transaction(trans, extent_root, ret);
5865 goto out;
5866 }
5867 }
5868
5869 ret = update_block_group(root, bytenr, num_bytes, 0);
5870 if (ret) {
5871 btrfs_abort_transaction(trans, extent_root, ret);
5872 goto out;
5873 }
5874 }
5875out:
5876 btrfs_free_path(path);
5877 return ret;
5878}
5879
5880/*
5881 * when we free an block, it is possible (and likely) that we free the last
5882 * delayed ref for that extent as well. This searches the delayed ref tree for
5883 * a given extent, and if there are no other delayed refs to be processed, it
5884 * removes it from the tree.
5885 */
5886static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5887 struct btrfs_root *root, u64 bytenr)
5888{
5889 struct btrfs_delayed_ref_head *head;
5890 struct btrfs_delayed_ref_root *delayed_refs;
5891 int ret = 0;
5892
5893 delayed_refs = &trans->transaction->delayed_refs;
5894 spin_lock(&delayed_refs->lock);
5895 head = btrfs_find_delayed_ref_head(trans, bytenr);
5896 if (!head)
5897 goto out_delayed_unlock;
5898
5899 spin_lock(&head->lock);
5900 if (rb_first(&head->ref_root))
5901 goto out;
5902
5903 if (head->extent_op) {
5904 if (!head->must_insert_reserved)
5905 goto out;
5906 btrfs_free_delayed_extent_op(head->extent_op);
5907 head->extent_op = NULL;
5908 }
5909
5910 /*
5911 * waiting for the lock here would deadlock. If someone else has it
5912 * locked they are already in the process of dropping it anyway
5913 */
5914 if (!mutex_trylock(&head->mutex))
5915 goto out;
5916
5917 /*
5918 * at this point we have a head with no other entries. Go
5919 * ahead and process it.
5920 */
5921 head->node.in_tree = 0;
5922 rb_erase(&head->href_node, &delayed_refs->href_root);
5923
5924 atomic_dec(&delayed_refs->num_entries);
5925
5926 /*
5927 * we don't take a ref on the node because we're removing it from the
5928 * tree, so we just steal the ref the tree was holding.
5929 */
5930 delayed_refs->num_heads--;
5931 if (head->processing == 0)
5932 delayed_refs->num_heads_ready--;
5933 head->processing = 0;
5934 spin_unlock(&head->lock);
5935 spin_unlock(&delayed_refs->lock);
5936
5937 BUG_ON(head->extent_op);
5938 if (head->must_insert_reserved)
5939 ret = 1;
5940
5941 mutex_unlock(&head->mutex);
5942 btrfs_put_delayed_ref(&head->node);
5943 return ret;
5944out:
5945 spin_unlock(&head->lock);
5946
5947out_delayed_unlock:
5948 spin_unlock(&delayed_refs->lock);
5949 return 0;
5950}
5951
5952void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5953 struct btrfs_root *root,
5954 struct extent_buffer *buf,
5955 u64 parent, int last_ref)
5956{
5957 struct btrfs_block_group_cache *cache = NULL;
5958 int pin = 1;
5959 int ret;
5960
5961 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5962 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5963 buf->start, buf->len,
5964 parent, root->root_key.objectid,
5965 btrfs_header_level(buf),
5966 BTRFS_DROP_DELAYED_REF, NULL, 0);
5967 BUG_ON(ret); /* -ENOMEM */
5968 }
5969
5970 if (!last_ref)
5971 return;
5972
5973 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5974
5975 if (btrfs_header_generation(buf) == trans->transid) {
5976 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5977 ret = check_ref_cleanup(trans, root, buf->start);
5978 if (!ret)
5979 goto out;
5980 }
5981
5982 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5983 pin_down_extent(root, cache, buf->start, buf->len, 1);
5984 goto out;
5985 }
5986
5987 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5988
5989 btrfs_add_free_space(cache, buf->start, buf->len);
5990 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5991 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
5992 pin = 0;
5993 }
5994out:
5995 if (pin)
5996 add_pinned_bytes(root->fs_info, buf->len,
5997 btrfs_header_level(buf),
5998 root->root_key.objectid);
5999
6000 /*
6001 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6002 * anymore.
6003 */
6004 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6005 btrfs_put_block_group(cache);
6006}
6007
6008/* Can return -ENOMEM */
6009int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6010 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6011 u64 owner, u64 offset, int for_cow)
6012{
6013 int ret;
6014 struct btrfs_fs_info *fs_info = root->fs_info;
6015
6016 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6017
6018 /*
6019 * tree log blocks never actually go into the extent allocation
6020 * tree, just update pinning info and exit early.
6021 */
6022 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6023 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6024 /* unlocks the pinned mutex */
6025 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6026 ret = 0;
6027 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6028 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6029 num_bytes,
6030 parent, root_objectid, (int)owner,
6031 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6032 } else {
6033 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6034 num_bytes,
6035 parent, root_objectid, owner,
6036 offset, BTRFS_DROP_DELAYED_REF,
6037 NULL, for_cow);
6038 }
6039 return ret;
6040}
6041
6042static u64 stripe_align(struct btrfs_root *root,
6043 struct btrfs_block_group_cache *cache,
6044 u64 val, u64 num_bytes)
6045{
6046 u64 ret = ALIGN(val, root->stripesize);
6047 return ret;
6048}
6049
6050/*
6051 * when we wait for progress in the block group caching, its because
6052 * our allocation attempt failed at least once. So, we must sleep
6053 * and let some progress happen before we try again.
6054 *
6055 * This function will sleep at least once waiting for new free space to
6056 * show up, and then it will check the block group free space numbers
6057 * for our min num_bytes. Another option is to have it go ahead
6058 * and look in the rbtree for a free extent of a given size, but this
6059 * is a good start.
6060 *
6061 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6062 * any of the information in this block group.
6063 */
6064static noinline void
6065wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6066 u64 num_bytes)
6067{
6068 struct btrfs_caching_control *caching_ctl;
6069
6070 caching_ctl = get_caching_control(cache);
6071 if (!caching_ctl)
6072 return;
6073
6074 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6075 (cache->free_space_ctl->free_space >= num_bytes));
6076
6077 put_caching_control(caching_ctl);
6078}
6079
6080static noinline int
6081wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6082{
6083 struct btrfs_caching_control *caching_ctl;
6084 int ret = 0;
6085
6086 caching_ctl = get_caching_control(cache);
6087 if (!caching_ctl)
6088 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6089
6090 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6091 if (cache->cached == BTRFS_CACHE_ERROR)
6092 ret = -EIO;
6093 put_caching_control(caching_ctl);
6094 return ret;
6095}
6096
6097int __get_raid_index(u64 flags)
6098{
6099 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6100 return BTRFS_RAID_RAID10;
6101 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6102 return BTRFS_RAID_RAID1;
6103 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6104 return BTRFS_RAID_DUP;
6105 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6106 return BTRFS_RAID_RAID0;
6107 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6108 return BTRFS_RAID_RAID5;
6109 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6110 return BTRFS_RAID_RAID6;
6111
6112 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6113}
6114
6115int get_block_group_index(struct btrfs_block_group_cache *cache)
6116{
6117 return __get_raid_index(cache->flags);
6118}
6119
6120static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6121 [BTRFS_RAID_RAID10] = "raid10",
6122 [BTRFS_RAID_RAID1] = "raid1",
6123 [BTRFS_RAID_DUP] = "dup",
6124 [BTRFS_RAID_RAID0] = "raid0",
6125 [BTRFS_RAID_SINGLE] = "single",
6126 [BTRFS_RAID_RAID5] = "raid5",
6127 [BTRFS_RAID_RAID6] = "raid6",
6128};
6129
6130static const char *get_raid_name(enum btrfs_raid_types type)
6131{
6132 if (type >= BTRFS_NR_RAID_TYPES)
6133 return NULL;
6134
6135 return btrfs_raid_type_names[type];
6136}
6137
6138enum btrfs_loop_type {
6139 LOOP_CACHING_NOWAIT = 0,
6140 LOOP_CACHING_WAIT = 1,
6141 LOOP_ALLOC_CHUNK = 2,
6142 LOOP_NO_EMPTY_SIZE = 3,
6143};
6144
6145/*
6146 * walks the btree of allocated extents and find a hole of a given size.
6147 * The key ins is changed to record the hole:
6148 * ins->objectid == start position
6149 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6150 * ins->offset == the size of the hole.
6151 * Any available blocks before search_start are skipped.
6152 *
6153 * If there is no suitable free space, we will record the max size of
6154 * the free space extent currently.
6155 */
6156static noinline int find_free_extent(struct btrfs_root *orig_root,
6157 u64 num_bytes, u64 empty_size,
6158 u64 hint_byte, struct btrfs_key *ins,
6159 u64 flags)
6160{
6161 int ret = 0;
6162 struct btrfs_root *root = orig_root->fs_info->extent_root;
6163 struct btrfs_free_cluster *last_ptr = NULL;
6164 struct btrfs_block_group_cache *block_group = NULL;
6165 u64 search_start = 0;
6166 u64 max_extent_size = 0;
6167 int empty_cluster = 2 * 1024 * 1024;
6168 struct btrfs_space_info *space_info;
6169 int loop = 0;
6170 int index = __get_raid_index(flags);
6171 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6172 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6173 bool failed_cluster_refill = false;
6174 bool failed_alloc = false;
6175 bool use_cluster = true;
6176 bool have_caching_bg = false;
6177
6178 WARN_ON(num_bytes < root->sectorsize);
6179 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6180 ins->objectid = 0;
6181 ins->offset = 0;
6182
6183 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6184
6185 space_info = __find_space_info(root->fs_info, flags);
6186 if (!space_info) {
6187 btrfs_err(root->fs_info, "No space info for %llu", flags);
6188 return -ENOSPC;
6189 }
6190
6191 /*
6192 * If the space info is for both data and metadata it means we have a
6193 * small filesystem and we can't use the clustering stuff.
6194 */
6195 if (btrfs_mixed_space_info(space_info))
6196 use_cluster = false;
6197
6198 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6199 last_ptr = &root->fs_info->meta_alloc_cluster;
6200 if (!btrfs_test_opt(root, SSD))
6201 empty_cluster = 64 * 1024;
6202 }
6203
6204 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6205 btrfs_test_opt(root, SSD)) {
6206 last_ptr = &root->fs_info->data_alloc_cluster;
6207 }
6208
6209 if (last_ptr) {
6210 spin_lock(&last_ptr->lock);
6211 if (last_ptr->block_group)
6212 hint_byte = last_ptr->window_start;
6213 spin_unlock(&last_ptr->lock);
6214 }
6215
6216 search_start = max(search_start, first_logical_byte(root, 0));
6217 search_start = max(search_start, hint_byte);
6218
6219 if (!last_ptr)
6220 empty_cluster = 0;
6221
6222 if (search_start == hint_byte) {
6223 block_group = btrfs_lookup_block_group(root->fs_info,
6224 search_start);
6225 /*
6226 * we don't want to use the block group if it doesn't match our
6227 * allocation bits, or if its not cached.
6228 *
6229 * However if we are re-searching with an ideal block group
6230 * picked out then we don't care that the block group is cached.
6231 */
6232 if (block_group && block_group_bits(block_group, flags) &&
6233 block_group->cached != BTRFS_CACHE_NO) {
6234 down_read(&space_info->groups_sem);
6235 if (list_empty(&block_group->list) ||
6236 block_group->ro) {
6237 /*
6238 * someone is removing this block group,
6239 * we can't jump into the have_block_group
6240 * target because our list pointers are not
6241 * valid
6242 */
6243 btrfs_put_block_group(block_group);
6244 up_read(&space_info->groups_sem);
6245 } else {
6246 index = get_block_group_index(block_group);
6247 goto have_block_group;
6248 }
6249 } else if (block_group) {
6250 btrfs_put_block_group(block_group);
6251 }
6252 }
6253search:
6254 have_caching_bg = false;
6255 down_read(&space_info->groups_sem);
6256 list_for_each_entry(block_group, &space_info->block_groups[index],
6257 list) {
6258 u64 offset;
6259 int cached;
6260
6261 btrfs_get_block_group(block_group);
6262 search_start = block_group->key.objectid;
6263
6264 /*
6265 * this can happen if we end up cycling through all the
6266 * raid types, but we want to make sure we only allocate
6267 * for the proper type.
6268 */
6269 if (!block_group_bits(block_group, flags)) {
6270 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6271 BTRFS_BLOCK_GROUP_RAID1 |
6272 BTRFS_BLOCK_GROUP_RAID5 |
6273 BTRFS_BLOCK_GROUP_RAID6 |
6274 BTRFS_BLOCK_GROUP_RAID10;
6275
6276 /*
6277 * if they asked for extra copies and this block group
6278 * doesn't provide them, bail. This does allow us to
6279 * fill raid0 from raid1.
6280 */
6281 if ((flags & extra) && !(block_group->flags & extra))
6282 goto loop;
6283 }
6284
6285have_block_group:
6286 cached = block_group_cache_done(block_group);
6287 if (unlikely(!cached)) {
6288 ret = cache_block_group(block_group, 0);
6289 BUG_ON(ret < 0);
6290 ret = 0;
6291 }
6292
6293 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6294 goto loop;
6295 if (unlikely(block_group->ro))
6296 goto loop;
6297
6298 /*
6299 * Ok we want to try and use the cluster allocator, so
6300 * lets look there
6301 */
6302 if (last_ptr) {
6303 struct btrfs_block_group_cache *used_block_group;
6304 unsigned long aligned_cluster;
6305 /*
6306 * the refill lock keeps out other
6307 * people trying to start a new cluster
6308 */
6309 spin_lock(&last_ptr->refill_lock);
6310 used_block_group = last_ptr->block_group;
6311 if (used_block_group != block_group &&
6312 (!used_block_group ||
6313 used_block_group->ro ||
6314 !block_group_bits(used_block_group, flags)))
6315 goto refill_cluster;
6316
6317 if (used_block_group != block_group)
6318 btrfs_get_block_group(used_block_group);
6319
6320 offset = btrfs_alloc_from_cluster(used_block_group,
6321 last_ptr,
6322 num_bytes,
6323 used_block_group->key.objectid,
6324 &max_extent_size);
6325 if (offset) {
6326 /* we have a block, we're done */
6327 spin_unlock(&last_ptr->refill_lock);
6328 trace_btrfs_reserve_extent_cluster(root,
6329 used_block_group,
6330 search_start, num_bytes);
6331 if (used_block_group != block_group) {
6332 btrfs_put_block_group(block_group);
6333 block_group = used_block_group;
6334 }
6335 goto checks;
6336 }
6337
6338 WARN_ON(last_ptr->block_group != used_block_group);
6339 if (used_block_group != block_group)
6340 btrfs_put_block_group(used_block_group);
6341refill_cluster:
6342 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6343 * set up a new clusters, so lets just skip it
6344 * and let the allocator find whatever block
6345 * it can find. If we reach this point, we
6346 * will have tried the cluster allocator
6347 * plenty of times and not have found
6348 * anything, so we are likely way too
6349 * fragmented for the clustering stuff to find
6350 * anything.
6351 *
6352 * However, if the cluster is taken from the
6353 * current block group, release the cluster
6354 * first, so that we stand a better chance of
6355 * succeeding in the unclustered
6356 * allocation. */
6357 if (loop >= LOOP_NO_EMPTY_SIZE &&
6358 last_ptr->block_group != block_group) {
6359 spin_unlock(&last_ptr->refill_lock);
6360 goto unclustered_alloc;
6361 }
6362
6363 /*
6364 * this cluster didn't work out, free it and
6365 * start over
6366 */
6367 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6368
6369 if (loop >= LOOP_NO_EMPTY_SIZE) {
6370 spin_unlock(&last_ptr->refill_lock);
6371 goto unclustered_alloc;
6372 }
6373
6374 aligned_cluster = max_t(unsigned long,
6375 empty_cluster + empty_size,
6376 block_group->full_stripe_len);
6377
6378 /* allocate a cluster in this block group */
6379 ret = btrfs_find_space_cluster(root, block_group,
6380 last_ptr, search_start,
6381 num_bytes,
6382 aligned_cluster);
6383 if (ret == 0) {
6384 /*
6385 * now pull our allocation out of this
6386 * cluster
6387 */
6388 offset = btrfs_alloc_from_cluster(block_group,
6389 last_ptr,
6390 num_bytes,
6391 search_start,
6392 &max_extent_size);
6393 if (offset) {
6394 /* we found one, proceed */
6395 spin_unlock(&last_ptr->refill_lock);
6396 trace_btrfs_reserve_extent_cluster(root,
6397 block_group, search_start,
6398 num_bytes);
6399 goto checks;
6400 }
6401 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6402 && !failed_cluster_refill) {
6403 spin_unlock(&last_ptr->refill_lock);
6404
6405 failed_cluster_refill = true;
6406 wait_block_group_cache_progress(block_group,
6407 num_bytes + empty_cluster + empty_size);
6408 goto have_block_group;
6409 }
6410
6411 /*
6412 * at this point we either didn't find a cluster
6413 * or we weren't able to allocate a block from our
6414 * cluster. Free the cluster we've been trying
6415 * to use, and go to the next block group
6416 */
6417 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6418 spin_unlock(&last_ptr->refill_lock);
6419 goto loop;
6420 }
6421
6422unclustered_alloc:
6423 spin_lock(&block_group->free_space_ctl->tree_lock);
6424 if (cached &&
6425 block_group->free_space_ctl->free_space <
6426 num_bytes + empty_cluster + empty_size) {
6427 if (block_group->free_space_ctl->free_space >
6428 max_extent_size)
6429 max_extent_size =
6430 block_group->free_space_ctl->free_space;
6431 spin_unlock(&block_group->free_space_ctl->tree_lock);
6432 goto loop;
6433 }
6434 spin_unlock(&block_group->free_space_ctl->tree_lock);
6435
6436 offset = btrfs_find_space_for_alloc(block_group, search_start,
6437 num_bytes, empty_size,
6438 &max_extent_size);
6439 /*
6440 * If we didn't find a chunk, and we haven't failed on this
6441 * block group before, and this block group is in the middle of
6442 * caching and we are ok with waiting, then go ahead and wait
6443 * for progress to be made, and set failed_alloc to true.
6444 *
6445 * If failed_alloc is true then we've already waited on this
6446 * block group once and should move on to the next block group.
6447 */
6448 if (!offset && !failed_alloc && !cached &&
6449 loop > LOOP_CACHING_NOWAIT) {
6450 wait_block_group_cache_progress(block_group,
6451 num_bytes + empty_size);
6452 failed_alloc = true;
6453 goto have_block_group;
6454 } else if (!offset) {
6455 if (!cached)
6456 have_caching_bg = true;
6457 goto loop;
6458 }
6459checks:
6460 search_start = stripe_align(root, block_group,
6461 offset, num_bytes);
6462
6463 /* move on to the next group */
6464 if (search_start + num_bytes >
6465 block_group->key.objectid + block_group->key.offset) {
6466 btrfs_add_free_space(block_group, offset, num_bytes);
6467 goto loop;
6468 }
6469
6470 if (offset < search_start)
6471 btrfs_add_free_space(block_group, offset,
6472 search_start - offset);
6473 BUG_ON(offset > search_start);
6474
6475 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6476 alloc_type);
6477 if (ret == -EAGAIN) {
6478 btrfs_add_free_space(block_group, offset, num_bytes);
6479 goto loop;
6480 }
6481
6482 /* we are all good, lets return */
6483 ins->objectid = search_start;
6484 ins->offset = num_bytes;
6485
6486 trace_btrfs_reserve_extent(orig_root, block_group,
6487 search_start, num_bytes);
6488 btrfs_put_block_group(block_group);
6489 break;
6490loop:
6491 failed_cluster_refill = false;
6492 failed_alloc = false;
6493 BUG_ON(index != get_block_group_index(block_group));
6494 btrfs_put_block_group(block_group);
6495 }
6496 up_read(&space_info->groups_sem);
6497
6498 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6499 goto search;
6500
6501 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6502 goto search;
6503
6504 /*
6505 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6506 * caching kthreads as we move along
6507 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6508 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6509 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6510 * again
6511 */
6512 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6513 index = 0;
6514 loop++;
6515 if (loop == LOOP_ALLOC_CHUNK) {
6516 struct btrfs_trans_handle *trans;
6517
6518 trans = btrfs_join_transaction(root);
6519 if (IS_ERR(trans)) {
6520 ret = PTR_ERR(trans);
6521 goto out;
6522 }
6523
6524 ret = do_chunk_alloc(trans, root, flags,
6525 CHUNK_ALLOC_FORCE);
6526 /*
6527 * Do not bail out on ENOSPC since we
6528 * can do more things.
6529 */
6530 if (ret < 0 && ret != -ENOSPC)
6531 btrfs_abort_transaction(trans,
6532 root, ret);
6533 else
6534 ret = 0;
6535 btrfs_end_transaction(trans, root);
6536 if (ret)
6537 goto out;
6538 }
6539
6540 if (loop == LOOP_NO_EMPTY_SIZE) {
6541 empty_size = 0;
6542 empty_cluster = 0;
6543 }
6544
6545 goto search;
6546 } else if (!ins->objectid) {
6547 ret = -ENOSPC;
6548 } else if (ins->objectid) {
6549 ret = 0;
6550 }
6551out:
6552 if (ret == -ENOSPC)
6553 ins->offset = max_extent_size;
6554 return ret;
6555}
6556
6557static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6558 int dump_block_groups)
6559{
6560 struct btrfs_block_group_cache *cache;
6561 int index = 0;
6562
6563 spin_lock(&info->lock);
6564 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6565 info->flags,
6566 info->total_bytes - info->bytes_used - info->bytes_pinned -
6567 info->bytes_reserved - info->bytes_readonly,
6568 (info->full) ? "" : "not ");
6569 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6570 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6571 info->total_bytes, info->bytes_used, info->bytes_pinned,
6572 info->bytes_reserved, info->bytes_may_use,
6573 info->bytes_readonly);
6574 spin_unlock(&info->lock);
6575
6576 if (!dump_block_groups)
6577 return;
6578
6579 down_read(&info->groups_sem);
6580again:
6581 list_for_each_entry(cache, &info->block_groups[index], list) {
6582 spin_lock(&cache->lock);
6583 printk(KERN_INFO "BTRFS: "
6584 "block group %llu has %llu bytes, "
6585 "%llu used %llu pinned %llu reserved %s\n",
6586 cache->key.objectid, cache->key.offset,
6587 btrfs_block_group_used(&cache->item), cache->pinned,
6588 cache->reserved, cache->ro ? "[readonly]" : "");
6589 btrfs_dump_free_space(cache, bytes);
6590 spin_unlock(&cache->lock);
6591 }
6592 if (++index < BTRFS_NR_RAID_TYPES)
6593 goto again;
6594 up_read(&info->groups_sem);
6595}
6596
6597int btrfs_reserve_extent(struct btrfs_root *root,
6598 u64 num_bytes, u64 min_alloc_size,
6599 u64 empty_size, u64 hint_byte,
6600 struct btrfs_key *ins, int is_data)
6601{
6602 bool final_tried = false;
6603 u64 flags;
6604 int ret;
6605
6606 flags = btrfs_get_alloc_profile(root, is_data);
6607again:
6608 WARN_ON(num_bytes < root->sectorsize);
6609 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6610 flags);
6611
6612 if (ret == -ENOSPC) {
6613 if (!final_tried && ins->offset) {
6614 num_bytes = min(num_bytes >> 1, ins->offset);
6615 num_bytes = round_down(num_bytes, root->sectorsize);
6616 num_bytes = max(num_bytes, min_alloc_size);
6617 if (num_bytes == min_alloc_size)
6618 final_tried = true;
6619 goto again;
6620 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6621 struct btrfs_space_info *sinfo;
6622
6623 sinfo = __find_space_info(root->fs_info, flags);
6624 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6625 flags, num_bytes);
6626 if (sinfo)
6627 dump_space_info(sinfo, num_bytes, 1);
6628 }
6629 }
6630
6631 return ret;
6632}
6633
6634static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6635 u64 start, u64 len, int pin)
6636{
6637 struct btrfs_block_group_cache *cache;
6638 int ret = 0;
6639
6640 cache = btrfs_lookup_block_group(root->fs_info, start);
6641 if (!cache) {
6642 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6643 start);
6644 return -ENOSPC;
6645 }
6646
6647 if (btrfs_test_opt(root, DISCARD))
6648 ret = btrfs_discard_extent(root, start, len, NULL);
6649
6650 if (pin)
6651 pin_down_extent(root, cache, start, len, 1);
6652 else {
6653 btrfs_add_free_space(cache, start, len);
6654 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6655 }
6656 btrfs_put_block_group(cache);
6657
6658 trace_btrfs_reserved_extent_free(root, start, len);
6659
6660 return ret;
6661}
6662
6663int btrfs_free_reserved_extent(struct btrfs_root *root,
6664 u64 start, u64 len)
6665{
6666 return __btrfs_free_reserved_extent(root, start, len, 0);
6667}
6668
6669int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6670 u64 start, u64 len)
6671{
6672 return __btrfs_free_reserved_extent(root, start, len, 1);
6673}
6674
6675static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6676 struct btrfs_root *root,
6677 u64 parent, u64 root_objectid,
6678 u64 flags, u64 owner, u64 offset,
6679 struct btrfs_key *ins, int ref_mod)
6680{
6681 int ret;
6682 struct btrfs_fs_info *fs_info = root->fs_info;
6683 struct btrfs_extent_item *extent_item;
6684 struct btrfs_extent_inline_ref *iref;
6685 struct btrfs_path *path;
6686 struct extent_buffer *leaf;
6687 int type;
6688 u32 size;
6689
6690 if (parent > 0)
6691 type = BTRFS_SHARED_DATA_REF_KEY;
6692 else
6693 type = BTRFS_EXTENT_DATA_REF_KEY;
6694
6695 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6696
6697 path = btrfs_alloc_path();
6698 if (!path)
6699 return -ENOMEM;
6700
6701 path->leave_spinning = 1;
6702 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6703 ins, size);
6704 if (ret) {
6705 btrfs_free_path(path);
6706 return ret;
6707 }
6708
6709 leaf = path->nodes[0];
6710 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6711 struct btrfs_extent_item);
6712 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6713 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6714 btrfs_set_extent_flags(leaf, extent_item,
6715 flags | BTRFS_EXTENT_FLAG_DATA);
6716
6717 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6718 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6719 if (parent > 0) {
6720 struct btrfs_shared_data_ref *ref;
6721 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6722 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6723 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6724 } else {
6725 struct btrfs_extent_data_ref *ref;
6726 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6727 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6728 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6729 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6730 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6731 }
6732
6733 btrfs_mark_buffer_dirty(path->nodes[0]);
6734 btrfs_free_path(path);
6735
6736 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6737 if (ret) { /* -ENOENT, logic error */
6738 btrfs_err(fs_info, "update block group failed for %llu %llu",
6739 ins->objectid, ins->offset);
6740 BUG();
6741 }
6742 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6743 return ret;
6744}
6745
6746static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6747 struct btrfs_root *root,
6748 u64 parent, u64 root_objectid,
6749 u64 flags, struct btrfs_disk_key *key,
6750 int level, struct btrfs_key *ins)
6751{
6752 int ret;
6753 struct btrfs_fs_info *fs_info = root->fs_info;
6754 struct btrfs_extent_item *extent_item;
6755 struct btrfs_tree_block_info *block_info;
6756 struct btrfs_extent_inline_ref *iref;
6757 struct btrfs_path *path;
6758 struct extent_buffer *leaf;
6759 u32 size = sizeof(*extent_item) + sizeof(*iref);
6760 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6761 SKINNY_METADATA);
6762
6763 if (!skinny_metadata)
6764 size += sizeof(*block_info);
6765
6766 path = btrfs_alloc_path();
6767 if (!path) {
6768 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6769 root->leafsize);
6770 return -ENOMEM;
6771 }
6772
6773 path->leave_spinning = 1;
6774 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6775 ins, size);
6776 if (ret) {
6777 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6778 root->leafsize);
6779 btrfs_free_path(path);
6780 return ret;
6781 }
6782
6783 leaf = path->nodes[0];
6784 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6785 struct btrfs_extent_item);
6786 btrfs_set_extent_refs(leaf, extent_item, 1);
6787 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6788 btrfs_set_extent_flags(leaf, extent_item,
6789 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6790
6791 if (skinny_metadata) {
6792 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6793 } else {
6794 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6795 btrfs_set_tree_block_key(leaf, block_info, key);
6796 btrfs_set_tree_block_level(leaf, block_info, level);
6797 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6798 }
6799
6800 if (parent > 0) {
6801 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6802 btrfs_set_extent_inline_ref_type(leaf, iref,
6803 BTRFS_SHARED_BLOCK_REF_KEY);
6804 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6805 } else {
6806 btrfs_set_extent_inline_ref_type(leaf, iref,
6807 BTRFS_TREE_BLOCK_REF_KEY);
6808 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6809 }
6810
6811 btrfs_mark_buffer_dirty(leaf);
6812 btrfs_free_path(path);
6813
6814 ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6815 if (ret) { /* -ENOENT, logic error */
6816 btrfs_err(fs_info, "update block group failed for %llu %llu",
6817 ins->objectid, ins->offset);
6818 BUG();
6819 }
6820
6821 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
6822 return ret;
6823}
6824
6825int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6826 struct btrfs_root *root,
6827 u64 root_objectid, u64 owner,
6828 u64 offset, struct btrfs_key *ins)
6829{
6830 int ret;
6831
6832 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6833
6834 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6835 ins->offset, 0,
6836 root_objectid, owner, offset,
6837 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6838 return ret;
6839}
6840
6841/*
6842 * this is used by the tree logging recovery code. It records that
6843 * an extent has been allocated and makes sure to clear the free
6844 * space cache bits as well
6845 */
6846int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6847 struct btrfs_root *root,
6848 u64 root_objectid, u64 owner, u64 offset,
6849 struct btrfs_key *ins)
6850{
6851 int ret;
6852 struct btrfs_block_group_cache *block_group;
6853
6854 /*
6855 * Mixed block groups will exclude before processing the log so we only
6856 * need to do the exlude dance if this fs isn't mixed.
6857 */
6858 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6859 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6860 if (ret)
6861 return ret;
6862 }
6863
6864 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6865 if (!block_group)
6866 return -EINVAL;
6867
6868 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6869 RESERVE_ALLOC_NO_ACCOUNT);
6870 BUG_ON(ret); /* logic error */
6871 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6872 0, owner, offset, ins, 1);
6873 btrfs_put_block_group(block_group);
6874 return ret;
6875}
6876
6877static struct extent_buffer *
6878btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6879 u64 bytenr, u32 blocksize, int level)
6880{
6881 struct extent_buffer *buf;
6882
6883 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6884 if (!buf)
6885 return ERR_PTR(-ENOMEM);
6886 btrfs_set_header_generation(buf, trans->transid);
6887 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6888 btrfs_tree_lock(buf);
6889 clean_tree_block(trans, root, buf);
6890 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6891
6892 btrfs_set_lock_blocking(buf);
6893 btrfs_set_buffer_uptodate(buf);
6894
6895 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6896 /*
6897 * we allow two log transactions at a time, use different
6898 * EXENT bit to differentiate dirty pages.
6899 */
6900 if (root->log_transid % 2 == 0)
6901 set_extent_dirty(&root->dirty_log_pages, buf->start,
6902 buf->start + buf->len - 1, GFP_NOFS);
6903 else
6904 set_extent_new(&root->dirty_log_pages, buf->start,
6905 buf->start + buf->len - 1, GFP_NOFS);
6906 } else {
6907 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6908 buf->start + buf->len - 1, GFP_NOFS);
6909 }
6910 trans->blocks_used++;
6911 /* this returns a buffer locked for blocking */
6912 return buf;
6913}
6914
6915static struct btrfs_block_rsv *
6916use_block_rsv(struct btrfs_trans_handle *trans,
6917 struct btrfs_root *root, u32 blocksize)
6918{
6919 struct btrfs_block_rsv *block_rsv;
6920 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6921 int ret;
6922 bool global_updated = false;
6923
6924 block_rsv = get_block_rsv(trans, root);
6925
6926 if (unlikely(block_rsv->size == 0))
6927 goto try_reserve;
6928again:
6929 ret = block_rsv_use_bytes(block_rsv, blocksize);
6930 if (!ret)
6931 return block_rsv;
6932
6933 if (block_rsv->failfast)
6934 return ERR_PTR(ret);
6935
6936 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6937 global_updated = true;
6938 update_global_block_rsv(root->fs_info);
6939 goto again;
6940 }
6941
6942 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6943 static DEFINE_RATELIMIT_STATE(_rs,
6944 DEFAULT_RATELIMIT_INTERVAL * 10,
6945 /*DEFAULT_RATELIMIT_BURST*/ 1);
6946 if (__ratelimit(&_rs))
6947 WARN(1, KERN_DEBUG
6948 "BTRFS: block rsv returned %d\n", ret);
6949 }
6950try_reserve:
6951 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6952 BTRFS_RESERVE_NO_FLUSH);
6953 if (!ret)
6954 return block_rsv;
6955 /*
6956 * If we couldn't reserve metadata bytes try and use some from
6957 * the global reserve if its space type is the same as the global
6958 * reservation.
6959 */
6960 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6961 block_rsv->space_info == global_rsv->space_info) {
6962 ret = block_rsv_use_bytes(global_rsv, blocksize);
6963 if (!ret)
6964 return global_rsv;
6965 }
6966 return ERR_PTR(ret);
6967}
6968
6969static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6970 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6971{
6972 block_rsv_add_bytes(block_rsv, blocksize, 0);
6973 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6974}
6975
6976/*
6977 * finds a free extent and does all the dirty work required for allocation
6978 * returns the key for the extent through ins, and a tree buffer for
6979 * the first block of the extent through buf.
6980 *
6981 * returns the tree buffer or NULL.
6982 */
6983struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6984 struct btrfs_root *root, u32 blocksize,
6985 u64 parent, u64 root_objectid,
6986 struct btrfs_disk_key *key, int level,
6987 u64 hint, u64 empty_size)
6988{
6989 struct btrfs_key ins;
6990 struct btrfs_block_rsv *block_rsv;
6991 struct extent_buffer *buf;
6992 u64 flags = 0;
6993 int ret;
6994 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6995 SKINNY_METADATA);
6996
6997 block_rsv = use_block_rsv(trans, root, blocksize);
6998 if (IS_ERR(block_rsv))
6999 return ERR_CAST(block_rsv);
7000
7001 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7002 empty_size, hint, &ins, 0);
7003 if (ret) {
7004 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7005 return ERR_PTR(ret);
7006 }
7007
7008 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7009 blocksize, level);
7010 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7011
7012 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7013 if (parent == 0)
7014 parent = ins.objectid;
7015 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7016 } else
7017 BUG_ON(parent > 0);
7018
7019 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7020 struct btrfs_delayed_extent_op *extent_op;
7021 extent_op = btrfs_alloc_delayed_extent_op();
7022 BUG_ON(!extent_op); /* -ENOMEM */
7023 if (key)
7024 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7025 else
7026 memset(&extent_op->key, 0, sizeof(extent_op->key));
7027 extent_op->flags_to_set = flags;
7028 if (skinny_metadata)
7029 extent_op->update_key = 0;
7030 else
7031 extent_op->update_key = 1;
7032 extent_op->update_flags = 1;
7033 extent_op->is_data = 0;
7034 extent_op->level = level;
7035
7036 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7037 ins.objectid,
7038 ins.offset, parent, root_objectid,
7039 level, BTRFS_ADD_DELAYED_EXTENT,
7040 extent_op, 0);
7041 BUG_ON(ret); /* -ENOMEM */
7042 }
7043 return buf;
7044}
7045
7046struct walk_control {
7047 u64 refs[BTRFS_MAX_LEVEL];
7048 u64 flags[BTRFS_MAX_LEVEL];
7049 struct btrfs_key update_progress;
7050 int stage;
7051 int level;
7052 int shared_level;
7053 int update_ref;
7054 int keep_locks;
7055 int reada_slot;
7056 int reada_count;
7057 int for_reloc;
7058};
7059
7060#define DROP_REFERENCE 1
7061#define UPDATE_BACKREF 2
7062
7063static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7064 struct btrfs_root *root,
7065 struct walk_control *wc,
7066 struct btrfs_path *path)
7067{
7068 u64 bytenr;
7069 u64 generation;
7070 u64 refs;
7071 u64 flags;
7072 u32 nritems;
7073 u32 blocksize;
7074 struct btrfs_key key;
7075 struct extent_buffer *eb;
7076 int ret;
7077 int slot;
7078 int nread = 0;
7079
7080 if (path->slots[wc->level] < wc->reada_slot) {
7081 wc->reada_count = wc->reada_count * 2 / 3;
7082 wc->reada_count = max(wc->reada_count, 2);
7083 } else {
7084 wc->reada_count = wc->reada_count * 3 / 2;
7085 wc->reada_count = min_t(int, wc->reada_count,
7086 BTRFS_NODEPTRS_PER_BLOCK(root));
7087 }
7088
7089 eb = path->nodes[wc->level];
7090 nritems = btrfs_header_nritems(eb);
7091 blocksize = btrfs_level_size(root, wc->level - 1);
7092
7093 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7094 if (nread >= wc->reada_count)
7095 break;
7096
7097 cond_resched();
7098 bytenr = btrfs_node_blockptr(eb, slot);
7099 generation = btrfs_node_ptr_generation(eb, slot);
7100
7101 if (slot == path->slots[wc->level])
7102 goto reada;
7103
7104 if (wc->stage == UPDATE_BACKREF &&
7105 generation <= root->root_key.offset)
7106 continue;
7107
7108 /* We don't lock the tree block, it's OK to be racy here */
7109 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7110 wc->level - 1, 1, &refs,
7111 &flags);
7112 /* We don't care about errors in readahead. */
7113 if (ret < 0)
7114 continue;
7115 BUG_ON(refs == 0);
7116
7117 if (wc->stage == DROP_REFERENCE) {
7118 if (refs == 1)
7119 goto reada;
7120
7121 if (wc->level == 1 &&
7122 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7123 continue;
7124 if (!wc->update_ref ||
7125 generation <= root->root_key.offset)
7126 continue;
7127 btrfs_node_key_to_cpu(eb, &key, slot);
7128 ret = btrfs_comp_cpu_keys(&key,
7129 &wc->update_progress);
7130 if (ret < 0)
7131 continue;
7132 } else {
7133 if (wc->level == 1 &&
7134 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7135 continue;
7136 }
7137reada:
7138 ret = readahead_tree_block(root, bytenr, blocksize,
7139 generation);
7140 if (ret)
7141 break;
7142 nread++;
7143 }
7144 wc->reada_slot = slot;
7145}
7146
7147/*
7148 * helper to process tree block while walking down the tree.
7149 *
7150 * when wc->stage == UPDATE_BACKREF, this function updates
7151 * back refs for pointers in the block.
7152 *
7153 * NOTE: return value 1 means we should stop walking down.
7154 */
7155static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7156 struct btrfs_root *root,
7157 struct btrfs_path *path,
7158 struct walk_control *wc, int lookup_info)
7159{
7160 int level = wc->level;
7161 struct extent_buffer *eb = path->nodes[level];
7162 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7163 int ret;
7164
7165 if (wc->stage == UPDATE_BACKREF &&
7166 btrfs_header_owner(eb) != root->root_key.objectid)
7167 return 1;
7168
7169 /*
7170 * when reference count of tree block is 1, it won't increase
7171 * again. once full backref flag is set, we never clear it.
7172 */
7173 if (lookup_info &&
7174 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7175 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7176 BUG_ON(!path->locks[level]);
7177 ret = btrfs_lookup_extent_info(trans, root,
7178 eb->start, level, 1,
7179 &wc->refs[level],
7180 &wc->flags[level]);
7181 BUG_ON(ret == -ENOMEM);
7182 if (ret)
7183 return ret;
7184 BUG_ON(wc->refs[level] == 0);
7185 }
7186
7187 if (wc->stage == DROP_REFERENCE) {
7188 if (wc->refs[level] > 1)
7189 return 1;
7190
7191 if (path->locks[level] && !wc->keep_locks) {
7192 btrfs_tree_unlock_rw(eb, path->locks[level]);
7193 path->locks[level] = 0;
7194 }
7195 return 0;
7196 }
7197
7198 /* wc->stage == UPDATE_BACKREF */
7199 if (!(wc->flags[level] & flag)) {
7200 BUG_ON(!path->locks[level]);
7201 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7202 BUG_ON(ret); /* -ENOMEM */
7203 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7204 BUG_ON(ret); /* -ENOMEM */
7205 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7206 eb->len, flag,
7207 btrfs_header_level(eb), 0);
7208 BUG_ON(ret); /* -ENOMEM */
7209 wc->flags[level] |= flag;
7210 }
7211
7212 /*
7213 * the block is shared by multiple trees, so it's not good to
7214 * keep the tree lock
7215 */
7216 if (path->locks[level] && level > 0) {
7217 btrfs_tree_unlock_rw(eb, path->locks[level]);
7218 path->locks[level] = 0;
7219 }
7220 return 0;
7221}
7222
7223/*
7224 * helper to process tree block pointer.
7225 *
7226 * when wc->stage == DROP_REFERENCE, this function checks
7227 * reference count of the block pointed to. if the block
7228 * is shared and we need update back refs for the subtree
7229 * rooted at the block, this function changes wc->stage to
7230 * UPDATE_BACKREF. if the block is shared and there is no
7231 * need to update back, this function drops the reference
7232 * to the block.
7233 *
7234 * NOTE: return value 1 means we should stop walking down.
7235 */
7236static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7237 struct btrfs_root *root,
7238 struct btrfs_path *path,
7239 struct walk_control *wc, int *lookup_info)
7240{
7241 u64 bytenr;
7242 u64 generation;
7243 u64 parent;
7244 u32 blocksize;
7245 struct btrfs_key key;
7246 struct extent_buffer *next;
7247 int level = wc->level;
7248 int reada = 0;
7249 int ret = 0;
7250
7251 generation = btrfs_node_ptr_generation(path->nodes[level],
7252 path->slots[level]);
7253 /*
7254 * if the lower level block was created before the snapshot
7255 * was created, we know there is no need to update back refs
7256 * for the subtree
7257 */
7258 if (wc->stage == UPDATE_BACKREF &&
7259 generation <= root->root_key.offset) {
7260 *lookup_info = 1;
7261 return 1;
7262 }
7263
7264 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7265 blocksize = btrfs_level_size(root, level - 1);
7266
7267 next = btrfs_find_tree_block(root, bytenr, blocksize);
7268 if (!next) {
7269 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7270 if (!next)
7271 return -ENOMEM;
7272 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7273 level - 1);
7274 reada = 1;
7275 }
7276 btrfs_tree_lock(next);
7277 btrfs_set_lock_blocking(next);
7278
7279 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7280 &wc->refs[level - 1],
7281 &wc->flags[level - 1]);
7282 if (ret < 0) {
7283 btrfs_tree_unlock(next);
7284 return ret;
7285 }
7286
7287 if (unlikely(wc->refs[level - 1] == 0)) {
7288 btrfs_err(root->fs_info, "Missing references.");
7289 BUG();
7290 }
7291 *lookup_info = 0;
7292
7293 if (wc->stage == DROP_REFERENCE) {
7294 if (wc->refs[level - 1] > 1) {
7295 if (level == 1 &&
7296 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7297 goto skip;
7298
7299 if (!wc->update_ref ||
7300 generation <= root->root_key.offset)
7301 goto skip;
7302
7303 btrfs_node_key_to_cpu(path->nodes[level], &key,
7304 path->slots[level]);
7305 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7306 if (ret < 0)
7307 goto skip;
7308
7309 wc->stage = UPDATE_BACKREF;
7310 wc->shared_level = level - 1;
7311 }
7312 } else {
7313 if (level == 1 &&
7314 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7315 goto skip;
7316 }
7317
7318 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7319 btrfs_tree_unlock(next);
7320 free_extent_buffer(next);
7321 next = NULL;
7322 *lookup_info = 1;
7323 }
7324
7325 if (!next) {
7326 if (reada && level == 1)
7327 reada_walk_down(trans, root, wc, path);
7328 next = read_tree_block(root, bytenr, blocksize, generation);
7329 if (!next || !extent_buffer_uptodate(next)) {
7330 free_extent_buffer(next);
7331 return -EIO;
7332 }
7333 btrfs_tree_lock(next);
7334 btrfs_set_lock_blocking(next);
7335 }
7336
7337 level--;
7338 BUG_ON(level != btrfs_header_level(next));
7339 path->nodes[level] = next;
7340 path->slots[level] = 0;
7341 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7342 wc->level = level;
7343 if (wc->level == 1)
7344 wc->reada_slot = 0;
7345 return 0;
7346skip:
7347 wc->refs[level - 1] = 0;
7348 wc->flags[level - 1] = 0;
7349 if (wc->stage == DROP_REFERENCE) {
7350 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7351 parent = path->nodes[level]->start;
7352 } else {
7353 BUG_ON(root->root_key.objectid !=
7354 btrfs_header_owner(path->nodes[level]));
7355 parent = 0;
7356 }
7357
7358 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7359 root->root_key.objectid, level - 1, 0, 0);
7360 BUG_ON(ret); /* -ENOMEM */
7361 }
7362 btrfs_tree_unlock(next);
7363 free_extent_buffer(next);
7364 *lookup_info = 1;
7365 return 1;
7366}
7367
7368/*
7369 * helper to process tree block while walking up the tree.
7370 *
7371 * when wc->stage == DROP_REFERENCE, this function drops
7372 * reference count on the block.
7373 *
7374 * when wc->stage == UPDATE_BACKREF, this function changes
7375 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7376 * to UPDATE_BACKREF previously while processing the block.
7377 *
7378 * NOTE: return value 1 means we should stop walking up.
7379 */
7380static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7381 struct btrfs_root *root,
7382 struct btrfs_path *path,
7383 struct walk_control *wc)
7384{
7385 int ret;
7386 int level = wc->level;
7387 struct extent_buffer *eb = path->nodes[level];
7388 u64 parent = 0;
7389
7390 if (wc->stage == UPDATE_BACKREF) {
7391 BUG_ON(wc->shared_level < level);
7392 if (level < wc->shared_level)
7393 goto out;
7394
7395 ret = find_next_key(path, level + 1, &wc->update_progress);
7396 if (ret > 0)
7397 wc->update_ref = 0;
7398
7399 wc->stage = DROP_REFERENCE;
7400 wc->shared_level = -1;
7401 path->slots[level] = 0;
7402
7403 /*
7404 * check reference count again if the block isn't locked.
7405 * we should start walking down the tree again if reference
7406 * count is one.
7407 */
7408 if (!path->locks[level]) {
7409 BUG_ON(level == 0);
7410 btrfs_tree_lock(eb);
7411 btrfs_set_lock_blocking(eb);
7412 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7413
7414 ret = btrfs_lookup_extent_info(trans, root,
7415 eb->start, level, 1,
7416 &wc->refs[level],
7417 &wc->flags[level]);
7418 if (ret < 0) {
7419 btrfs_tree_unlock_rw(eb, path->locks[level]);
7420 path->locks[level] = 0;
7421 return ret;
7422 }
7423 BUG_ON(wc->refs[level] == 0);
7424 if (wc->refs[level] == 1) {
7425 btrfs_tree_unlock_rw(eb, path->locks[level]);
7426 path->locks[level] = 0;
7427 return 1;
7428 }
7429 }
7430 }
7431
7432 /* wc->stage == DROP_REFERENCE */
7433 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7434
7435 if (wc->refs[level] == 1) {
7436 if (level == 0) {
7437 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7438 ret = btrfs_dec_ref(trans, root, eb, 1,
7439 wc->for_reloc);
7440 else
7441 ret = btrfs_dec_ref(trans, root, eb, 0,
7442 wc->for_reloc);
7443 BUG_ON(ret); /* -ENOMEM */
7444 }
7445 /* make block locked assertion in clean_tree_block happy */
7446 if (!path->locks[level] &&
7447 btrfs_header_generation(eb) == trans->transid) {
7448 btrfs_tree_lock(eb);
7449 btrfs_set_lock_blocking(eb);
7450 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7451 }
7452 clean_tree_block(trans, root, eb);
7453 }
7454
7455 if (eb == root->node) {
7456 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7457 parent = eb->start;
7458 else
7459 BUG_ON(root->root_key.objectid !=
7460 btrfs_header_owner(eb));
7461 } else {
7462 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7463 parent = path->nodes[level + 1]->start;
7464 else
7465 BUG_ON(root->root_key.objectid !=
7466 btrfs_header_owner(path->nodes[level + 1]));
7467 }
7468
7469 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7470out:
7471 wc->refs[level] = 0;
7472 wc->flags[level] = 0;
7473 return 0;
7474}
7475
7476static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7477 struct btrfs_root *root,
7478 struct btrfs_path *path,
7479 struct walk_control *wc)
7480{
7481 int level = wc->level;
7482 int lookup_info = 1;
7483 int ret;
7484
7485 while (level >= 0) {
7486 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7487 if (ret > 0)
7488 break;
7489
7490 if (level == 0)
7491 break;
7492
7493 if (path->slots[level] >=
7494 btrfs_header_nritems(path->nodes[level]))
7495 break;
7496
7497 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7498 if (ret > 0) {
7499 path->slots[level]++;
7500 continue;
7501 } else if (ret < 0)
7502 return ret;
7503 level = wc->level;
7504 }
7505 return 0;
7506}
7507
7508static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7509 struct btrfs_root *root,
7510 struct btrfs_path *path,
7511 struct walk_control *wc, int max_level)
7512{
7513 int level = wc->level;
7514 int ret;
7515
7516 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7517 while (level < max_level && path->nodes[level]) {
7518 wc->level = level;
7519 if (path->slots[level] + 1 <
7520 btrfs_header_nritems(path->nodes[level])) {
7521 path->slots[level]++;
7522 return 0;
7523 } else {
7524 ret = walk_up_proc(trans, root, path, wc);
7525 if (ret > 0)
7526 return 0;
7527
7528 if (path->locks[level]) {
7529 btrfs_tree_unlock_rw(path->nodes[level],
7530 path->locks[level]);
7531 path->locks[level] = 0;
7532 }
7533 free_extent_buffer(path->nodes[level]);
7534 path->nodes[level] = NULL;
7535 level++;
7536 }
7537 }
7538 return 1;
7539}
7540
7541/*
7542 * drop a subvolume tree.
7543 *
7544 * this function traverses the tree freeing any blocks that only
7545 * referenced by the tree.
7546 *
7547 * when a shared tree block is found. this function decreases its
7548 * reference count by one. if update_ref is true, this function
7549 * also make sure backrefs for the shared block and all lower level
7550 * blocks are properly updated.
7551 *
7552 * If called with for_reloc == 0, may exit early with -EAGAIN
7553 */
7554int btrfs_drop_snapshot(struct btrfs_root *root,
7555 struct btrfs_block_rsv *block_rsv, int update_ref,
7556 int for_reloc)
7557{
7558 struct btrfs_path *path;
7559 struct btrfs_trans_handle *trans;
7560 struct btrfs_root *tree_root = root->fs_info->tree_root;
7561 struct btrfs_root_item *root_item = &root->root_item;
7562 struct walk_control *wc;
7563 struct btrfs_key key;
7564 int err = 0;
7565 int ret;
7566 int level;
7567 bool root_dropped = false;
7568
7569 path = btrfs_alloc_path();
7570 if (!path) {
7571 err = -ENOMEM;
7572 goto out;
7573 }
7574
7575 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7576 if (!wc) {
7577 btrfs_free_path(path);
7578 err = -ENOMEM;
7579 goto out;
7580 }
7581
7582 trans = btrfs_start_transaction(tree_root, 0);
7583 if (IS_ERR(trans)) {
7584 err = PTR_ERR(trans);
7585 goto out_free;
7586 }
7587
7588 if (block_rsv)
7589 trans->block_rsv = block_rsv;
7590
7591 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7592 level = btrfs_header_level(root->node);
7593 path->nodes[level] = btrfs_lock_root_node(root);
7594 btrfs_set_lock_blocking(path->nodes[level]);
7595 path->slots[level] = 0;
7596 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7597 memset(&wc->update_progress, 0,
7598 sizeof(wc->update_progress));
7599 } else {
7600 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7601 memcpy(&wc->update_progress, &key,
7602 sizeof(wc->update_progress));
7603
7604 level = root_item->drop_level;
7605 BUG_ON(level == 0);
7606 path->lowest_level = level;
7607 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7608 path->lowest_level = 0;
7609 if (ret < 0) {
7610 err = ret;
7611 goto out_end_trans;
7612 }
7613 WARN_ON(ret > 0);
7614
7615 /*
7616 * unlock our path, this is safe because only this
7617 * function is allowed to delete this snapshot
7618 */
7619 btrfs_unlock_up_safe(path, 0);
7620
7621 level = btrfs_header_level(root->node);
7622 while (1) {
7623 btrfs_tree_lock(path->nodes[level]);
7624 btrfs_set_lock_blocking(path->nodes[level]);
7625 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7626
7627 ret = btrfs_lookup_extent_info(trans, root,
7628 path->nodes[level]->start,
7629 level, 1, &wc->refs[level],
7630 &wc->flags[level]);
7631 if (ret < 0) {
7632 err = ret;
7633 goto out_end_trans;
7634 }
7635 BUG_ON(wc->refs[level] == 0);
7636
7637 if (level == root_item->drop_level)
7638 break;
7639
7640 btrfs_tree_unlock(path->nodes[level]);
7641 path->locks[level] = 0;
7642 WARN_ON(wc->refs[level] != 1);
7643 level--;
7644 }
7645 }
7646
7647 wc->level = level;
7648 wc->shared_level = -1;
7649 wc->stage = DROP_REFERENCE;
7650 wc->update_ref = update_ref;
7651 wc->keep_locks = 0;
7652 wc->for_reloc = for_reloc;
7653 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7654
7655 while (1) {
7656
7657 ret = walk_down_tree(trans, root, path, wc);
7658 if (ret < 0) {
7659 err = ret;
7660 break;
7661 }
7662
7663 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7664 if (ret < 0) {
7665 err = ret;
7666 break;
7667 }
7668
7669 if (ret > 0) {
7670 BUG_ON(wc->stage != DROP_REFERENCE);
7671 break;
7672 }
7673
7674 if (wc->stage == DROP_REFERENCE) {
7675 level = wc->level;
7676 btrfs_node_key(path->nodes[level],
7677 &root_item->drop_progress,
7678 path->slots[level]);
7679 root_item->drop_level = level;
7680 }
7681
7682 BUG_ON(wc->level == 0);
7683 if (btrfs_should_end_transaction(trans, tree_root) ||
7684 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7685 ret = btrfs_update_root(trans, tree_root,
7686 &root->root_key,
7687 root_item);
7688 if (ret) {
7689 btrfs_abort_transaction(trans, tree_root, ret);
7690 err = ret;
7691 goto out_end_trans;
7692 }
7693
7694 btrfs_end_transaction_throttle(trans, tree_root);
7695 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7696 pr_debug("BTRFS: drop snapshot early exit\n");
7697 err = -EAGAIN;
7698 goto out_free;
7699 }
7700
7701 trans = btrfs_start_transaction(tree_root, 0);
7702 if (IS_ERR(trans)) {
7703 err = PTR_ERR(trans);
7704 goto out_free;
7705 }
7706 if (block_rsv)
7707 trans->block_rsv = block_rsv;
7708 }
7709 }
7710 btrfs_release_path(path);
7711 if (err)
7712 goto out_end_trans;
7713
7714 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7715 if (ret) {
7716 btrfs_abort_transaction(trans, tree_root, ret);
7717 goto out_end_trans;
7718 }
7719
7720 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7721 ret = btrfs_find_root(tree_root, &root->root_key, path,
7722 NULL, NULL);
7723 if (ret < 0) {
7724 btrfs_abort_transaction(trans, tree_root, ret);
7725 err = ret;
7726 goto out_end_trans;
7727 } else if (ret > 0) {
7728 /* if we fail to delete the orphan item this time
7729 * around, it'll get picked up the next time.
7730 *
7731 * The most common failure here is just -ENOENT.
7732 */
7733 btrfs_del_orphan_item(trans, tree_root,
7734 root->root_key.objectid);
7735 }
7736 }
7737
7738 if (root->in_radix) {
7739 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7740 } else {
7741 free_extent_buffer(root->node);
7742 free_extent_buffer(root->commit_root);
7743 btrfs_put_fs_root(root);
7744 }
7745 root_dropped = true;
7746out_end_trans:
7747 btrfs_end_transaction_throttle(trans, tree_root);
7748out_free:
7749 kfree(wc);
7750 btrfs_free_path(path);
7751out:
7752 /*
7753 * So if we need to stop dropping the snapshot for whatever reason we
7754 * need to make sure to add it back to the dead root list so that we
7755 * keep trying to do the work later. This also cleans up roots if we
7756 * don't have it in the radix (like when we recover after a power fail
7757 * or unmount) so we don't leak memory.
7758 */
7759 if (!for_reloc && root_dropped == false)
7760 btrfs_add_dead_root(root);
7761 if (err && err != -EAGAIN)
7762 btrfs_std_error(root->fs_info, err);
7763 return err;
7764}
7765
7766/*
7767 * drop subtree rooted at tree block 'node'.
7768 *
7769 * NOTE: this function will unlock and release tree block 'node'
7770 * only used by relocation code
7771 */
7772int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7773 struct btrfs_root *root,
7774 struct extent_buffer *node,
7775 struct extent_buffer *parent)
7776{
7777 struct btrfs_path *path;
7778 struct walk_control *wc;
7779 int level;
7780 int parent_level;
7781 int ret = 0;
7782 int wret;
7783
7784 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7785
7786 path = btrfs_alloc_path();
7787 if (!path)
7788 return -ENOMEM;
7789
7790 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7791 if (!wc) {
7792 btrfs_free_path(path);
7793 return -ENOMEM;
7794 }
7795
7796 btrfs_assert_tree_locked(parent);
7797 parent_level = btrfs_header_level(parent);
7798 extent_buffer_get(parent);
7799 path->nodes[parent_level] = parent;
7800 path->slots[parent_level] = btrfs_header_nritems(parent);
7801
7802 btrfs_assert_tree_locked(node);
7803 level = btrfs_header_level(node);
7804 path->nodes[level] = node;
7805 path->slots[level] = 0;
7806 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7807
7808 wc->refs[parent_level] = 1;
7809 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7810 wc->level = level;
7811 wc->shared_level = -1;
7812 wc->stage = DROP_REFERENCE;
7813 wc->update_ref = 0;
7814 wc->keep_locks = 1;
7815 wc->for_reloc = 1;
7816 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7817
7818 while (1) {
7819 wret = walk_down_tree(trans, root, path, wc);
7820 if (wret < 0) {
7821 ret = wret;
7822 break;
7823 }
7824
7825 wret = walk_up_tree(trans, root, path, wc, parent_level);
7826 if (wret < 0)
7827 ret = wret;
7828 if (wret != 0)
7829 break;
7830 }
7831
7832 kfree(wc);
7833 btrfs_free_path(path);
7834 return ret;
7835}
7836
7837static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7838{
7839 u64 num_devices;
7840 u64 stripped;
7841
7842 /*
7843 * if restripe for this chunk_type is on pick target profile and
7844 * return, otherwise do the usual balance
7845 */
7846 stripped = get_restripe_target(root->fs_info, flags);
7847 if (stripped)
7848 return extended_to_chunk(stripped);
7849
7850 /*
7851 * we add in the count of missing devices because we want
7852 * to make sure that any RAID levels on a degraded FS
7853 * continue to be honored.
7854 */
7855 num_devices = root->fs_info->fs_devices->rw_devices +
7856 root->fs_info->fs_devices->missing_devices;
7857
7858 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7859 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7860 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7861
7862 if (num_devices == 1) {
7863 stripped |= BTRFS_BLOCK_GROUP_DUP;
7864 stripped = flags & ~stripped;
7865
7866 /* turn raid0 into single device chunks */
7867 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7868 return stripped;
7869
7870 /* turn mirroring into duplication */
7871 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7872 BTRFS_BLOCK_GROUP_RAID10))
7873 return stripped | BTRFS_BLOCK_GROUP_DUP;
7874 } else {
7875 /* they already had raid on here, just return */
7876 if (flags & stripped)
7877 return flags;
7878
7879 stripped |= BTRFS_BLOCK_GROUP_DUP;
7880 stripped = flags & ~stripped;
7881
7882 /* switch duplicated blocks with raid1 */
7883 if (flags & BTRFS_BLOCK_GROUP_DUP)
7884 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7885
7886 /* this is drive concat, leave it alone */
7887 }
7888
7889 return flags;
7890}
7891
7892static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7893{
7894 struct btrfs_space_info *sinfo = cache->space_info;
7895 u64 num_bytes;
7896 u64 min_allocable_bytes;
7897 int ret = -ENOSPC;
7898
7899
7900 /*
7901 * We need some metadata space and system metadata space for
7902 * allocating chunks in some corner cases until we force to set
7903 * it to be readonly.
7904 */
7905 if ((sinfo->flags &
7906 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7907 !force)
7908 min_allocable_bytes = 1 * 1024 * 1024;
7909 else
7910 min_allocable_bytes = 0;
7911
7912 spin_lock(&sinfo->lock);
7913 spin_lock(&cache->lock);
7914
7915 if (cache->ro) {
7916 ret = 0;
7917 goto out;
7918 }
7919
7920 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7921 cache->bytes_super - btrfs_block_group_used(&cache->item);
7922
7923 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7924 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7925 min_allocable_bytes <= sinfo->total_bytes) {
7926 sinfo->bytes_readonly += num_bytes;
7927 cache->ro = 1;
7928 ret = 0;
7929 }
7930out:
7931 spin_unlock(&cache->lock);
7932 spin_unlock(&sinfo->lock);
7933 return ret;
7934}
7935
7936int btrfs_set_block_group_ro(struct btrfs_root *root,
7937 struct btrfs_block_group_cache *cache)
7938
7939{
7940 struct btrfs_trans_handle *trans;
7941 u64 alloc_flags;
7942 int ret;
7943
7944 BUG_ON(cache->ro);
7945
7946 trans = btrfs_join_transaction(root);
7947 if (IS_ERR(trans))
7948 return PTR_ERR(trans);
7949
7950 alloc_flags = update_block_group_flags(root, cache->flags);
7951 if (alloc_flags != cache->flags) {
7952 ret = do_chunk_alloc(trans, root, alloc_flags,
7953 CHUNK_ALLOC_FORCE);
7954 if (ret < 0)
7955 goto out;
7956 }
7957
7958 ret = set_block_group_ro(cache, 0);
7959 if (!ret)
7960 goto out;
7961 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7962 ret = do_chunk_alloc(trans, root, alloc_flags,
7963 CHUNK_ALLOC_FORCE);
7964 if (ret < 0)
7965 goto out;
7966 ret = set_block_group_ro(cache, 0);
7967out:
7968 btrfs_end_transaction(trans, root);
7969 return ret;
7970}
7971
7972int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7973 struct btrfs_root *root, u64 type)
7974{
7975 u64 alloc_flags = get_alloc_profile(root, type);
7976 return do_chunk_alloc(trans, root, alloc_flags,
7977 CHUNK_ALLOC_FORCE);
7978}
7979
7980/*
7981 * helper to account the unused space of all the readonly block group in the
7982 * list. takes mirrors into account.
7983 */
7984static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7985{
7986 struct btrfs_block_group_cache *block_group;
7987 u64 free_bytes = 0;
7988 int factor;
7989
7990 list_for_each_entry(block_group, groups_list, list) {
7991 spin_lock(&block_group->lock);
7992
7993 if (!block_group->ro) {
7994 spin_unlock(&block_group->lock);
7995 continue;
7996 }
7997
7998 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7999 BTRFS_BLOCK_GROUP_RAID10 |
8000 BTRFS_BLOCK_GROUP_DUP))
8001 factor = 2;
8002 else
8003 factor = 1;
8004
8005 free_bytes += (block_group->key.offset -
8006 btrfs_block_group_used(&block_group->item)) *
8007 factor;
8008
8009 spin_unlock(&block_group->lock);
8010 }
8011
8012 return free_bytes;
8013}
8014
8015/*
8016 * helper to account the unused space of all the readonly block group in the
8017 * space_info. takes mirrors into account.
8018 */
8019u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8020{
8021 int i;
8022 u64 free_bytes = 0;
8023
8024 spin_lock(&sinfo->lock);
8025
8026 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8027 if (!list_empty(&sinfo->block_groups[i]))
8028 free_bytes += __btrfs_get_ro_block_group_free_space(
8029 &sinfo->block_groups[i]);
8030
8031 spin_unlock(&sinfo->lock);
8032
8033 return free_bytes;
8034}
8035
8036void btrfs_set_block_group_rw(struct btrfs_root *root,
8037 struct btrfs_block_group_cache *cache)
8038{
8039 struct btrfs_space_info *sinfo = cache->space_info;
8040 u64 num_bytes;
8041
8042 BUG_ON(!cache->ro);
8043
8044 spin_lock(&sinfo->lock);
8045 spin_lock(&cache->lock);
8046 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8047 cache->bytes_super - btrfs_block_group_used(&cache->item);
8048 sinfo->bytes_readonly -= num_bytes;
8049 cache->ro = 0;
8050 spin_unlock(&cache->lock);
8051 spin_unlock(&sinfo->lock);
8052}
8053
8054/*
8055 * checks to see if its even possible to relocate this block group.
8056 *
8057 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8058 * ok to go ahead and try.
8059 */
8060int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8061{
8062 struct btrfs_block_group_cache *block_group;
8063 struct btrfs_space_info *space_info;
8064 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8065 struct btrfs_device *device;
8066 struct btrfs_trans_handle *trans;
8067 u64 min_free;
8068 u64 dev_min = 1;
8069 u64 dev_nr = 0;
8070 u64 target;
8071 int index;
8072 int full = 0;
8073 int ret = 0;
8074
8075 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8076
8077 /* odd, couldn't find the block group, leave it alone */
8078 if (!block_group)
8079 return -1;
8080
8081 min_free = btrfs_block_group_used(&block_group->item);
8082
8083 /* no bytes used, we're good */
8084 if (!min_free)
8085 goto out;
8086
8087 space_info = block_group->space_info;
8088 spin_lock(&space_info->lock);
8089
8090 full = space_info->full;
8091
8092 /*
8093 * if this is the last block group we have in this space, we can't
8094 * relocate it unless we're able to allocate a new chunk below.
8095 *
8096 * Otherwise, we need to make sure we have room in the space to handle
8097 * all of the extents from this block group. If we can, we're good
8098 */
8099 if ((space_info->total_bytes != block_group->key.offset) &&
8100 (space_info->bytes_used + space_info->bytes_reserved +
8101 space_info->bytes_pinned + space_info->bytes_readonly +
8102 min_free < space_info->total_bytes)) {
8103 spin_unlock(&space_info->lock);
8104 goto out;
8105 }
8106 spin_unlock(&space_info->lock);
8107
8108 /*
8109 * ok we don't have enough space, but maybe we have free space on our
8110 * devices to allocate new chunks for relocation, so loop through our
8111 * alloc devices and guess if we have enough space. if this block
8112 * group is going to be restriped, run checks against the target
8113 * profile instead of the current one.
8114 */
8115 ret = -1;
8116
8117 /*
8118 * index:
8119 * 0: raid10
8120 * 1: raid1
8121 * 2: dup
8122 * 3: raid0
8123 * 4: single
8124 */
8125 target = get_restripe_target(root->fs_info, block_group->flags);
8126 if (target) {
8127 index = __get_raid_index(extended_to_chunk(target));
8128 } else {
8129 /*
8130 * this is just a balance, so if we were marked as full
8131 * we know there is no space for a new chunk
8132 */
8133 if (full)
8134 goto out;
8135
8136 index = get_block_group_index(block_group);
8137 }
8138
8139 if (index == BTRFS_RAID_RAID10) {
8140 dev_min = 4;
8141 /* Divide by 2 */
8142 min_free >>= 1;
8143 } else if (index == BTRFS_RAID_RAID1) {
8144 dev_min = 2;
8145 } else if (index == BTRFS_RAID_DUP) {
8146 /* Multiply by 2 */
8147 min_free <<= 1;
8148 } else if (index == BTRFS_RAID_RAID0) {
8149 dev_min = fs_devices->rw_devices;
8150 do_div(min_free, dev_min);
8151 }
8152
8153 /* We need to do this so that we can look at pending chunks */
8154 trans = btrfs_join_transaction(root);
8155 if (IS_ERR(trans)) {
8156 ret = PTR_ERR(trans);
8157 goto out;
8158 }
8159
8160 mutex_lock(&root->fs_info->chunk_mutex);
8161 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8162 u64 dev_offset;
8163
8164 /*
8165 * check to make sure we can actually find a chunk with enough
8166 * space to fit our block group in.
8167 */
8168 if (device->total_bytes > device->bytes_used + min_free &&
8169 !device->is_tgtdev_for_dev_replace) {
8170 ret = find_free_dev_extent(trans, device, min_free,
8171 &dev_offset, NULL);
8172 if (!ret)
8173 dev_nr++;
8174
8175 if (dev_nr >= dev_min)
8176 break;
8177
8178 ret = -1;
8179 }
8180 }
8181 mutex_unlock(&root->fs_info->chunk_mutex);
8182 btrfs_end_transaction(trans, root);
8183out:
8184 btrfs_put_block_group(block_group);
8185 return ret;
8186}
8187
8188static int find_first_block_group(struct btrfs_root *root,
8189 struct btrfs_path *path, struct btrfs_key *key)
8190{
8191 int ret = 0;
8192 struct btrfs_key found_key;
8193 struct extent_buffer *leaf;
8194 int slot;
8195
8196 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8197 if (ret < 0)
8198 goto out;
8199
8200 while (1) {
8201 slot = path->slots[0];
8202 leaf = path->nodes[0];
8203 if (slot >= btrfs_header_nritems(leaf)) {
8204 ret = btrfs_next_leaf(root, path);
8205 if (ret == 0)
8206 continue;
8207 if (ret < 0)
8208 goto out;
8209 break;
8210 }
8211 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8212
8213 if (found_key.objectid >= key->objectid &&
8214 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8215 ret = 0;
8216 goto out;
8217 }
8218 path->slots[0]++;
8219 }
8220out:
8221 return ret;
8222}
8223
8224void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8225{
8226 struct btrfs_block_group_cache *block_group;
8227 u64 last = 0;
8228
8229 while (1) {
8230 struct inode *inode;
8231
8232 block_group = btrfs_lookup_first_block_group(info, last);
8233 while (block_group) {
8234 spin_lock(&block_group->lock);
8235 if (block_group->iref)
8236 break;
8237 spin_unlock(&block_group->lock);
8238 block_group = next_block_group(info->tree_root,
8239 block_group);
8240 }
8241 if (!block_group) {
8242 if (last == 0)
8243 break;
8244 last = 0;
8245 continue;
8246 }
8247
8248 inode = block_group->inode;
8249 block_group->iref = 0;
8250 block_group->inode = NULL;
8251 spin_unlock(&block_group->lock);
8252 iput(inode);
8253 last = block_group->key.objectid + block_group->key.offset;
8254 btrfs_put_block_group(block_group);
8255 }
8256}
8257
8258int btrfs_free_block_groups(struct btrfs_fs_info *info)
8259{
8260 struct btrfs_block_group_cache *block_group;
8261 struct btrfs_space_info *space_info;
8262 struct btrfs_caching_control *caching_ctl;
8263 struct rb_node *n;
8264
8265 down_write(&info->commit_root_sem);
8266 while (!list_empty(&info->caching_block_groups)) {
8267 caching_ctl = list_entry(info->caching_block_groups.next,
8268 struct btrfs_caching_control, list);
8269 list_del(&caching_ctl->list);
8270 put_caching_control(caching_ctl);
8271 }
8272 up_write(&info->commit_root_sem);
8273
8274 spin_lock(&info->block_group_cache_lock);
8275 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8276 block_group = rb_entry(n, struct btrfs_block_group_cache,
8277 cache_node);
8278 rb_erase(&block_group->cache_node,
8279 &info->block_group_cache_tree);
8280 spin_unlock(&info->block_group_cache_lock);
8281
8282 down_write(&block_group->space_info->groups_sem);
8283 list_del(&block_group->list);
8284 up_write(&block_group->space_info->groups_sem);
8285
8286 if (block_group->cached == BTRFS_CACHE_STARTED)
8287 wait_block_group_cache_done(block_group);
8288
8289 /*
8290 * We haven't cached this block group, which means we could
8291 * possibly have excluded extents on this block group.
8292 */
8293 if (block_group->cached == BTRFS_CACHE_NO ||
8294 block_group->cached == BTRFS_CACHE_ERROR)
8295 free_excluded_extents(info->extent_root, block_group);
8296
8297 btrfs_remove_free_space_cache(block_group);
8298 btrfs_put_block_group(block_group);
8299
8300 spin_lock(&info->block_group_cache_lock);
8301 }
8302 spin_unlock(&info->block_group_cache_lock);
8303
8304 /* now that all the block groups are freed, go through and
8305 * free all the space_info structs. This is only called during
8306 * the final stages of unmount, and so we know nobody is
8307 * using them. We call synchronize_rcu() once before we start,
8308 * just to be on the safe side.
8309 */
8310 synchronize_rcu();
8311
8312 release_global_block_rsv(info);
8313
8314 while (!list_empty(&info->space_info)) {
8315 int i;
8316
8317 space_info = list_entry(info->space_info.next,
8318 struct btrfs_space_info,
8319 list);
8320 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8321 if (WARN_ON(space_info->bytes_pinned > 0 ||
8322 space_info->bytes_reserved > 0 ||
8323 space_info->bytes_may_use > 0)) {
8324 dump_space_info(space_info, 0, 0);
8325 }
8326 }
8327 list_del(&space_info->list);
8328 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8329 struct kobject *kobj;
8330 kobj = &space_info->block_group_kobjs[i];
8331 if (kobj->parent) {
8332 kobject_del(kobj);
8333 kobject_put(kobj);
8334 }
8335 }
8336 kobject_del(&space_info->kobj);
8337 kobject_put(&space_info->kobj);
8338 }
8339 return 0;
8340}
8341
8342static void __link_block_group(struct btrfs_space_info *space_info,
8343 struct btrfs_block_group_cache *cache)
8344{
8345 int index = get_block_group_index(cache);
8346 bool first = false;
8347
8348 down_write(&space_info->groups_sem);
8349 if (list_empty(&space_info->block_groups[index]))
8350 first = true;
8351 list_add_tail(&cache->list, &space_info->block_groups[index]);
8352 up_write(&space_info->groups_sem);
8353
8354 if (first) {
8355 struct kobject *kobj = &space_info->block_group_kobjs[index];
8356 int ret;
8357
8358 kobject_get(&space_info->kobj); /* put in release */
8359 ret = kobject_add(kobj, &space_info->kobj, "%s",
8360 get_raid_name(index));
8361 if (ret) {
8362 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8363 kobject_put(&space_info->kobj);
8364 }
8365 }
8366}
8367
8368static struct btrfs_block_group_cache *
8369btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8370{
8371 struct btrfs_block_group_cache *cache;
8372
8373 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8374 if (!cache)
8375 return NULL;
8376
8377 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8378 GFP_NOFS);
8379 if (!cache->free_space_ctl) {
8380 kfree(cache);
8381 return NULL;
8382 }
8383
8384 cache->key.objectid = start;
8385 cache->key.offset = size;
8386 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8387
8388 cache->sectorsize = root->sectorsize;
8389 cache->fs_info = root->fs_info;
8390 cache->full_stripe_len = btrfs_full_stripe_len(root,
8391 &root->fs_info->mapping_tree,
8392 start);
8393 atomic_set(&cache->count, 1);
8394 spin_lock_init(&cache->lock);
8395 INIT_LIST_HEAD(&cache->list);
8396 INIT_LIST_HEAD(&cache->cluster_list);
8397 INIT_LIST_HEAD(&cache->new_bg_list);
8398 btrfs_init_free_space_ctl(cache);
8399
8400 return cache;
8401}
8402
8403int btrfs_read_block_groups(struct btrfs_root *root)
8404{
8405 struct btrfs_path *path;
8406 int ret;
8407 struct btrfs_block_group_cache *cache;
8408 struct btrfs_fs_info *info = root->fs_info;
8409 struct btrfs_space_info *space_info;
8410 struct btrfs_key key;
8411 struct btrfs_key found_key;
8412 struct extent_buffer *leaf;
8413 int need_clear = 0;
8414 u64 cache_gen;
8415
8416 root = info->extent_root;
8417 key.objectid = 0;
8418 key.offset = 0;
8419 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8420 path = btrfs_alloc_path();
8421 if (!path)
8422 return -ENOMEM;
8423 path->reada = 1;
8424
8425 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8426 if (btrfs_test_opt(root, SPACE_CACHE) &&
8427 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8428 need_clear = 1;
8429 if (btrfs_test_opt(root, CLEAR_CACHE))
8430 need_clear = 1;
8431
8432 while (1) {
8433 ret = find_first_block_group(root, path, &key);
8434 if (ret > 0)
8435 break;
8436 if (ret != 0)
8437 goto error;
8438
8439 leaf = path->nodes[0];
8440 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8441
8442 cache = btrfs_create_block_group_cache(root, found_key.objectid,
8443 found_key.offset);
8444 if (!cache) {
8445 ret = -ENOMEM;
8446 goto error;
8447 }
8448
8449 if (need_clear) {
8450 /*
8451 * When we mount with old space cache, we need to
8452 * set BTRFS_DC_CLEAR and set dirty flag.
8453 *
8454 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8455 * truncate the old free space cache inode and
8456 * setup a new one.
8457 * b) Setting 'dirty flag' makes sure that we flush
8458 * the new space cache info onto disk.
8459 */
8460 cache->disk_cache_state = BTRFS_DC_CLEAR;
8461 if (btrfs_test_opt(root, SPACE_CACHE))
8462 cache->dirty = 1;
8463 }
8464
8465 read_extent_buffer(leaf, &cache->item,
8466 btrfs_item_ptr_offset(leaf, path->slots[0]),
8467 sizeof(cache->item));
8468 cache->flags = btrfs_block_group_flags(&cache->item);
8469
8470 key.objectid = found_key.objectid + found_key.offset;
8471 btrfs_release_path(path);
8472
8473 /*
8474 * We need to exclude the super stripes now so that the space
8475 * info has super bytes accounted for, otherwise we'll think
8476 * we have more space than we actually do.
8477 */
8478 ret = exclude_super_stripes(root, cache);
8479 if (ret) {
8480 /*
8481 * We may have excluded something, so call this just in
8482 * case.
8483 */
8484 free_excluded_extents(root, cache);
8485 btrfs_put_block_group(cache);
8486 goto error;
8487 }
8488
8489 /*
8490 * check for two cases, either we are full, and therefore
8491 * don't need to bother with the caching work since we won't
8492 * find any space, or we are empty, and we can just add all
8493 * the space in and be done with it. This saves us _alot_ of
8494 * time, particularly in the full case.
8495 */
8496 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8497 cache->last_byte_to_unpin = (u64)-1;
8498 cache->cached = BTRFS_CACHE_FINISHED;
8499 free_excluded_extents(root, cache);
8500 } else if (btrfs_block_group_used(&cache->item) == 0) {
8501 cache->last_byte_to_unpin = (u64)-1;
8502 cache->cached = BTRFS_CACHE_FINISHED;
8503 add_new_free_space(cache, root->fs_info,
8504 found_key.objectid,
8505 found_key.objectid +
8506 found_key.offset);
8507 free_excluded_extents(root, cache);
8508 }
8509
8510 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8511 if (ret) {
8512 btrfs_remove_free_space_cache(cache);
8513 btrfs_put_block_group(cache);
8514 goto error;
8515 }
8516
8517 ret = update_space_info(info, cache->flags, found_key.offset,
8518 btrfs_block_group_used(&cache->item),
8519 &space_info);
8520 if (ret) {
8521 btrfs_remove_free_space_cache(cache);
8522 spin_lock(&info->block_group_cache_lock);
8523 rb_erase(&cache->cache_node,
8524 &info->block_group_cache_tree);
8525 spin_unlock(&info->block_group_cache_lock);
8526 btrfs_put_block_group(cache);
8527 goto error;
8528 }
8529
8530 cache->space_info = space_info;
8531 spin_lock(&cache->space_info->lock);
8532 cache->space_info->bytes_readonly += cache->bytes_super;
8533 spin_unlock(&cache->space_info->lock);
8534
8535 __link_block_group(space_info, cache);
8536
8537 set_avail_alloc_bits(root->fs_info, cache->flags);
8538 if (btrfs_chunk_readonly(root, cache->key.objectid))
8539 set_block_group_ro(cache, 1);
8540 }
8541
8542 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8543 if (!(get_alloc_profile(root, space_info->flags) &
8544 (BTRFS_BLOCK_GROUP_RAID10 |
8545 BTRFS_BLOCK_GROUP_RAID1 |
8546 BTRFS_BLOCK_GROUP_RAID5 |
8547 BTRFS_BLOCK_GROUP_RAID6 |
8548 BTRFS_BLOCK_GROUP_DUP)))
8549 continue;
8550 /*
8551 * avoid allocating from un-mirrored block group if there are
8552 * mirrored block groups.
8553 */
8554 list_for_each_entry(cache,
8555 &space_info->block_groups[BTRFS_RAID_RAID0],
8556 list)
8557 set_block_group_ro(cache, 1);
8558 list_for_each_entry(cache,
8559 &space_info->block_groups[BTRFS_RAID_SINGLE],
8560 list)
8561 set_block_group_ro(cache, 1);
8562 }
8563
8564 init_global_block_rsv(info);
8565 ret = 0;
8566error:
8567 btrfs_free_path(path);
8568 return ret;
8569}
8570
8571void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8572 struct btrfs_root *root)
8573{
8574 struct btrfs_block_group_cache *block_group, *tmp;
8575 struct btrfs_root *extent_root = root->fs_info->extent_root;
8576 struct btrfs_block_group_item item;
8577 struct btrfs_key key;
8578 int ret = 0;
8579
8580 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8581 new_bg_list) {
8582 list_del_init(&block_group->new_bg_list);
8583
8584 if (ret)
8585 continue;
8586
8587 spin_lock(&block_group->lock);
8588 memcpy(&item, &block_group->item, sizeof(item));
8589 memcpy(&key, &block_group->key, sizeof(key));
8590 spin_unlock(&block_group->lock);
8591
8592 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8593 sizeof(item));
8594 if (ret)
8595 btrfs_abort_transaction(trans, extent_root, ret);
8596 ret = btrfs_finish_chunk_alloc(trans, extent_root,
8597 key.objectid, key.offset);
8598 if (ret)
8599 btrfs_abort_transaction(trans, extent_root, ret);
8600 }
8601}
8602
8603int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8604 struct btrfs_root *root, u64 bytes_used,
8605 u64 type, u64 chunk_objectid, u64 chunk_offset,
8606 u64 size)
8607{
8608 int ret;
8609 struct btrfs_root *extent_root;
8610 struct btrfs_block_group_cache *cache;
8611
8612 extent_root = root->fs_info->extent_root;
8613
8614 root->fs_info->last_trans_log_full_commit = trans->transid;
8615
8616 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
8617 if (!cache)
8618 return -ENOMEM;
8619
8620 btrfs_set_block_group_used(&cache->item, bytes_used);
8621 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8622 btrfs_set_block_group_flags(&cache->item, type);
8623
8624 cache->flags = type;
8625 cache->last_byte_to_unpin = (u64)-1;
8626 cache->cached = BTRFS_CACHE_FINISHED;
8627 ret = exclude_super_stripes(root, cache);
8628 if (ret) {
8629 /*
8630 * We may have excluded something, so call this just in
8631 * case.
8632 */
8633 free_excluded_extents(root, cache);
8634 btrfs_put_block_group(cache);
8635 return ret;
8636 }
8637
8638 add_new_free_space(cache, root->fs_info, chunk_offset,
8639 chunk_offset + size);
8640
8641 free_excluded_extents(root, cache);
8642
8643 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8644 if (ret) {
8645 btrfs_remove_free_space_cache(cache);
8646 btrfs_put_block_group(cache);
8647 return ret;
8648 }
8649
8650 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8651 &cache->space_info);
8652 if (ret) {
8653 btrfs_remove_free_space_cache(cache);
8654 spin_lock(&root->fs_info->block_group_cache_lock);
8655 rb_erase(&cache->cache_node,
8656 &root->fs_info->block_group_cache_tree);
8657 spin_unlock(&root->fs_info->block_group_cache_lock);
8658 btrfs_put_block_group(cache);
8659 return ret;
8660 }
8661 update_global_block_rsv(root->fs_info);
8662
8663 spin_lock(&cache->space_info->lock);
8664 cache->space_info->bytes_readonly += cache->bytes_super;
8665 spin_unlock(&cache->space_info->lock);
8666
8667 __link_block_group(cache->space_info, cache);
8668
8669 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8670
8671 set_avail_alloc_bits(extent_root->fs_info, type);
8672
8673 return 0;
8674}
8675
8676static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8677{
8678 u64 extra_flags = chunk_to_extended(flags) &
8679 BTRFS_EXTENDED_PROFILE_MASK;
8680
8681 write_seqlock(&fs_info->profiles_lock);
8682 if (flags & BTRFS_BLOCK_GROUP_DATA)
8683 fs_info->avail_data_alloc_bits &= ~extra_flags;
8684 if (flags & BTRFS_BLOCK_GROUP_METADATA)
8685 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8686 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8687 fs_info->avail_system_alloc_bits &= ~extra_flags;
8688 write_sequnlock(&fs_info->profiles_lock);
8689}
8690
8691int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8692 struct btrfs_root *root, u64 group_start)
8693{
8694 struct btrfs_path *path;
8695 struct btrfs_block_group_cache *block_group;
8696 struct btrfs_free_cluster *cluster;
8697 struct btrfs_root *tree_root = root->fs_info->tree_root;
8698 struct btrfs_key key;
8699 struct inode *inode;
8700 int ret;
8701 int index;
8702 int factor;
8703
8704 root = root->fs_info->extent_root;
8705
8706 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8707 BUG_ON(!block_group);
8708 BUG_ON(!block_group->ro);
8709
8710 /*
8711 * Free the reserved super bytes from this block group before
8712 * remove it.
8713 */
8714 free_excluded_extents(root, block_group);
8715
8716 memcpy(&key, &block_group->key, sizeof(key));
8717 index = get_block_group_index(block_group);
8718 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8719 BTRFS_BLOCK_GROUP_RAID1 |
8720 BTRFS_BLOCK_GROUP_RAID10))
8721 factor = 2;
8722 else
8723 factor = 1;
8724
8725 /* make sure this block group isn't part of an allocation cluster */
8726 cluster = &root->fs_info->data_alloc_cluster;
8727 spin_lock(&cluster->refill_lock);
8728 btrfs_return_cluster_to_free_space(block_group, cluster);
8729 spin_unlock(&cluster->refill_lock);
8730
8731 /*
8732 * make sure this block group isn't part of a metadata
8733 * allocation cluster
8734 */
8735 cluster = &root->fs_info->meta_alloc_cluster;
8736 spin_lock(&cluster->refill_lock);
8737 btrfs_return_cluster_to_free_space(block_group, cluster);
8738 spin_unlock(&cluster->refill_lock);
8739
8740 path = btrfs_alloc_path();
8741 if (!path) {
8742 ret = -ENOMEM;
8743 goto out;
8744 }
8745
8746 inode = lookup_free_space_inode(tree_root, block_group, path);
8747 if (!IS_ERR(inode)) {
8748 ret = btrfs_orphan_add(trans, inode);
8749 if (ret) {
8750 btrfs_add_delayed_iput(inode);
8751 goto out;
8752 }
8753 clear_nlink(inode);
8754 /* One for the block groups ref */
8755 spin_lock(&block_group->lock);
8756 if (block_group->iref) {
8757 block_group->iref = 0;
8758 block_group->inode = NULL;
8759 spin_unlock(&block_group->lock);
8760 iput(inode);
8761 } else {
8762 spin_unlock(&block_group->lock);
8763 }
8764 /* One for our lookup ref */
8765 btrfs_add_delayed_iput(inode);
8766 }
8767
8768 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8769 key.offset = block_group->key.objectid;
8770 key.type = 0;
8771
8772 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8773 if (ret < 0)
8774 goto out;
8775 if (ret > 0)
8776 btrfs_release_path(path);
8777 if (ret == 0) {
8778 ret = btrfs_del_item(trans, tree_root, path);
8779 if (ret)
8780 goto out;
8781 btrfs_release_path(path);
8782 }
8783
8784 spin_lock(&root->fs_info->block_group_cache_lock);
8785 rb_erase(&block_group->cache_node,
8786 &root->fs_info->block_group_cache_tree);
8787
8788 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8789 root->fs_info->first_logical_byte = (u64)-1;
8790 spin_unlock(&root->fs_info->block_group_cache_lock);
8791
8792 down_write(&block_group->space_info->groups_sem);
8793 /*
8794 * we must use list_del_init so people can check to see if they
8795 * are still on the list after taking the semaphore
8796 */
8797 list_del_init(&block_group->list);
8798 if (list_empty(&block_group->space_info->block_groups[index])) {
8799 kobject_del(&block_group->space_info->block_group_kobjs[index]);
8800 kobject_put(&block_group->space_info->block_group_kobjs[index]);
8801 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8802 }
8803 up_write(&block_group->space_info->groups_sem);
8804
8805 if (block_group->cached == BTRFS_CACHE_STARTED)
8806 wait_block_group_cache_done(block_group);
8807
8808 btrfs_remove_free_space_cache(block_group);
8809
8810 spin_lock(&block_group->space_info->lock);
8811 block_group->space_info->total_bytes -= block_group->key.offset;
8812 block_group->space_info->bytes_readonly -= block_group->key.offset;
8813 block_group->space_info->disk_total -= block_group->key.offset * factor;
8814 spin_unlock(&block_group->space_info->lock);
8815
8816 memcpy(&key, &block_group->key, sizeof(key));
8817
8818 btrfs_clear_space_info_full(root->fs_info);
8819
8820 btrfs_put_block_group(block_group);
8821 btrfs_put_block_group(block_group);
8822
8823 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8824 if (ret > 0)
8825 ret = -EIO;
8826 if (ret < 0)
8827 goto out;
8828
8829 ret = btrfs_del_item(trans, root, path);
8830out:
8831 btrfs_free_path(path);
8832 return ret;
8833}
8834
8835int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8836{
8837 struct btrfs_space_info *space_info;
8838 struct btrfs_super_block *disk_super;
8839 u64 features;
8840 u64 flags;
8841 int mixed = 0;
8842 int ret;
8843
8844 disk_super = fs_info->super_copy;
8845 if (!btrfs_super_root(disk_super))
8846 return 1;
8847
8848 features = btrfs_super_incompat_flags(disk_super);
8849 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8850 mixed = 1;
8851
8852 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8853 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8854 if (ret)
8855 goto out;
8856
8857 if (mixed) {
8858 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8859 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8860 } else {
8861 flags = BTRFS_BLOCK_GROUP_METADATA;
8862 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8863 if (ret)
8864 goto out;
8865
8866 flags = BTRFS_BLOCK_GROUP_DATA;
8867 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8868 }
8869out:
8870 return ret;
8871}
8872
8873int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8874{
8875 return unpin_extent_range(root, start, end);
8876}
8877
8878int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8879 u64 num_bytes, u64 *actual_bytes)
8880{
8881 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8882}
8883
8884int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8885{
8886 struct btrfs_fs_info *fs_info = root->fs_info;
8887 struct btrfs_block_group_cache *cache = NULL;
8888 u64 group_trimmed;
8889 u64 start;
8890 u64 end;
8891 u64 trimmed = 0;
8892 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8893 int ret = 0;
8894
8895 /*
8896 * try to trim all FS space, our block group may start from non-zero.
8897 */
8898 if (range->len == total_bytes)
8899 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8900 else
8901 cache = btrfs_lookup_block_group(fs_info, range->start);
8902
8903 while (cache) {
8904 if (cache->key.objectid >= (range->start + range->len)) {
8905 btrfs_put_block_group(cache);
8906 break;
8907 }
8908
8909 start = max(range->start, cache->key.objectid);
8910 end = min(range->start + range->len,
8911 cache->key.objectid + cache->key.offset);
8912
8913 if (end - start >= range->minlen) {
8914 if (!block_group_cache_done(cache)) {
8915 ret = cache_block_group(cache, 0);
8916 if (ret) {
8917 btrfs_put_block_group(cache);
8918 break;
8919 }
8920 ret = wait_block_group_cache_done(cache);
8921 if (ret) {
8922 btrfs_put_block_group(cache);
8923 break;
8924 }
8925 }
8926 ret = btrfs_trim_block_group(cache,
8927 &group_trimmed,
8928 start,
8929 end,
8930 range->minlen);
8931
8932 trimmed += group_trimmed;
8933 if (ret) {
8934 btrfs_put_block_group(cache);
8935 break;
8936 }
8937 }
8938
8939 cache = next_block_group(fs_info->tree_root, cache);
8940 }
8941
8942 range->len = trimmed;
8943 return ret;
8944}
8945
8946/*
8947 * btrfs_{start,end}_write() is similar to mnt_{want, drop}_write(),
8948 * they are used to prevent the some tasks writing data into the page cache
8949 * by nocow before the subvolume is snapshoted, but flush the data into
8950 * the disk after the snapshot creation.
8951 */
8952void btrfs_end_nocow_write(struct btrfs_root *root)
8953{
8954 percpu_counter_dec(&root->subv_writers->counter);
8955 /*
8956 * Make sure counter is updated before we wake up
8957 * waiters.
8958 */
8959 smp_mb();
8960 if (waitqueue_active(&root->subv_writers->wait))
8961 wake_up(&root->subv_writers->wait);
8962}
8963
8964int btrfs_start_nocow_write(struct btrfs_root *root)
8965{
8966 if (unlikely(atomic_read(&root->will_be_snapshoted)))
8967 return 0;
8968
8969 percpu_counter_inc(&root->subv_writers->counter);
8970 /*
8971 * Make sure counter is updated before we check for snapshot creation.
8972 */
8973 smp_mb();
8974 if (unlikely(atomic_read(&root->will_be_snapshoted))) {
8975 btrfs_end_nocow_write(root);
8976 return 0;
8977 }
8978 return 1;
8979}