Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/signal.h>
8#include <linux/pagemap.h>
9#include <linux/writeback.h>
10#include <linux/blkdev.h>
11#include <linux/sort.h>
12#include <linux/rcupdate.h>
13#include <linux/kthread.h>
14#include <linux/slab.h>
15#include <linux/ratelimit.h>
16#include <linux/percpu_counter.h>
17#include <linux/lockdep.h>
18#include <linux/crc32c.h>
19#include "misc.h"
20#include "tree-log.h"
21#include "disk-io.h"
22#include "print-tree.h"
23#include "volumes.h"
24#include "raid56.h"
25#include "locking.h"
26#include "free-space-cache.h"
27#include "free-space-tree.h"
28#include "sysfs.h"
29#include "qgroup.h"
30#include "ref-verify.h"
31#include "space-info.h"
32#include "block-rsv.h"
33#include "delalloc-space.h"
34#include "block-group.h"
35
36#undef SCRAMBLE_DELAYED_REFS
37
38
39static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
40 struct btrfs_delayed_ref_node *node, u64 parent,
41 u64 root_objectid, u64 owner_objectid,
42 u64 owner_offset, int refs_to_drop,
43 struct btrfs_delayed_extent_op *extra_op);
44static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
45 struct extent_buffer *leaf,
46 struct btrfs_extent_item *ei);
47static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
48 u64 parent, u64 root_objectid,
49 u64 flags, u64 owner, u64 offset,
50 struct btrfs_key *ins, int ref_mod);
51static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
52 struct btrfs_delayed_ref_node *node,
53 struct btrfs_delayed_extent_op *extent_op);
54static int find_next_key(struct btrfs_path *path, int level,
55 struct btrfs_key *key);
56
57static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
58{
59 return (cache->flags & bits) == bits;
60}
61
62int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
63 u64 start, u64 num_bytes)
64{
65 u64 end = start + num_bytes - 1;
66 set_extent_bits(&fs_info->freed_extents[0],
67 start, end, EXTENT_UPTODATE);
68 set_extent_bits(&fs_info->freed_extents[1],
69 start, end, EXTENT_UPTODATE);
70 return 0;
71}
72
73void btrfs_free_excluded_extents(struct btrfs_block_group_cache *cache)
74{
75 struct btrfs_fs_info *fs_info = cache->fs_info;
76 u64 start, end;
77
78 start = cache->key.objectid;
79 end = start + cache->key.offset - 1;
80
81 clear_extent_bits(&fs_info->freed_extents[0],
82 start, end, EXTENT_UPTODATE);
83 clear_extent_bits(&fs_info->freed_extents[1],
84 start, end, EXTENT_UPTODATE);
85}
86
87static u64 generic_ref_to_space_flags(struct btrfs_ref *ref)
88{
89 if (ref->type == BTRFS_REF_METADATA) {
90 if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
91 return BTRFS_BLOCK_GROUP_SYSTEM;
92 else
93 return BTRFS_BLOCK_GROUP_METADATA;
94 }
95 return BTRFS_BLOCK_GROUP_DATA;
96}
97
98static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
99 struct btrfs_ref *ref)
100{
101 struct btrfs_space_info *space_info;
102 u64 flags = generic_ref_to_space_flags(ref);
103
104 space_info = btrfs_find_space_info(fs_info, flags);
105 ASSERT(space_info);
106 percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len,
107 BTRFS_TOTAL_BYTES_PINNED_BATCH);
108}
109
110static void sub_pinned_bytes(struct btrfs_fs_info *fs_info,
111 struct btrfs_ref *ref)
112{
113 struct btrfs_space_info *space_info;
114 u64 flags = generic_ref_to_space_flags(ref);
115
116 space_info = btrfs_find_space_info(fs_info, flags);
117 ASSERT(space_info);
118 percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len,
119 BTRFS_TOTAL_BYTES_PINNED_BATCH);
120}
121
122/* simple helper to search for an existing data extent at a given offset */
123int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
124{
125 int ret;
126 struct btrfs_key key;
127 struct btrfs_path *path;
128
129 path = btrfs_alloc_path();
130 if (!path)
131 return -ENOMEM;
132
133 key.objectid = start;
134 key.offset = len;
135 key.type = BTRFS_EXTENT_ITEM_KEY;
136 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
137 btrfs_free_path(path);
138 return ret;
139}
140
141/*
142 * helper function to lookup reference count and flags of a tree block.
143 *
144 * the head node for delayed ref is used to store the sum of all the
145 * reference count modifications queued up in the rbtree. the head
146 * node may also store the extent flags to set. This way you can check
147 * to see what the reference count and extent flags would be if all of
148 * the delayed refs are not processed.
149 */
150int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
151 struct btrfs_fs_info *fs_info, u64 bytenr,
152 u64 offset, int metadata, u64 *refs, u64 *flags)
153{
154 struct btrfs_delayed_ref_head *head;
155 struct btrfs_delayed_ref_root *delayed_refs;
156 struct btrfs_path *path;
157 struct btrfs_extent_item *ei;
158 struct extent_buffer *leaf;
159 struct btrfs_key key;
160 u32 item_size;
161 u64 num_refs;
162 u64 extent_flags;
163 int ret;
164
165 /*
166 * If we don't have skinny metadata, don't bother doing anything
167 * different
168 */
169 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
170 offset = fs_info->nodesize;
171 metadata = 0;
172 }
173
174 path = btrfs_alloc_path();
175 if (!path)
176 return -ENOMEM;
177
178 if (!trans) {
179 path->skip_locking = 1;
180 path->search_commit_root = 1;
181 }
182
183search_again:
184 key.objectid = bytenr;
185 key.offset = offset;
186 if (metadata)
187 key.type = BTRFS_METADATA_ITEM_KEY;
188 else
189 key.type = BTRFS_EXTENT_ITEM_KEY;
190
191 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
192 if (ret < 0)
193 goto out_free;
194
195 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
196 if (path->slots[0]) {
197 path->slots[0]--;
198 btrfs_item_key_to_cpu(path->nodes[0], &key,
199 path->slots[0]);
200 if (key.objectid == bytenr &&
201 key.type == BTRFS_EXTENT_ITEM_KEY &&
202 key.offset == fs_info->nodesize)
203 ret = 0;
204 }
205 }
206
207 if (ret == 0) {
208 leaf = path->nodes[0];
209 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
210 if (item_size >= sizeof(*ei)) {
211 ei = btrfs_item_ptr(leaf, path->slots[0],
212 struct btrfs_extent_item);
213 num_refs = btrfs_extent_refs(leaf, ei);
214 extent_flags = btrfs_extent_flags(leaf, ei);
215 } else {
216 ret = -EINVAL;
217 btrfs_print_v0_err(fs_info);
218 if (trans)
219 btrfs_abort_transaction(trans, ret);
220 else
221 btrfs_handle_fs_error(fs_info, ret, NULL);
222
223 goto out_free;
224 }
225
226 BUG_ON(num_refs == 0);
227 } else {
228 num_refs = 0;
229 extent_flags = 0;
230 ret = 0;
231 }
232
233 if (!trans)
234 goto out;
235
236 delayed_refs = &trans->transaction->delayed_refs;
237 spin_lock(&delayed_refs->lock);
238 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
239 if (head) {
240 if (!mutex_trylock(&head->mutex)) {
241 refcount_inc(&head->refs);
242 spin_unlock(&delayed_refs->lock);
243
244 btrfs_release_path(path);
245
246 /*
247 * Mutex was contended, block until it's released and try
248 * again
249 */
250 mutex_lock(&head->mutex);
251 mutex_unlock(&head->mutex);
252 btrfs_put_delayed_ref_head(head);
253 goto search_again;
254 }
255 spin_lock(&head->lock);
256 if (head->extent_op && head->extent_op->update_flags)
257 extent_flags |= head->extent_op->flags_to_set;
258 else
259 BUG_ON(num_refs == 0);
260
261 num_refs += head->ref_mod;
262 spin_unlock(&head->lock);
263 mutex_unlock(&head->mutex);
264 }
265 spin_unlock(&delayed_refs->lock);
266out:
267 WARN_ON(num_refs == 0);
268 if (refs)
269 *refs = num_refs;
270 if (flags)
271 *flags = extent_flags;
272out_free:
273 btrfs_free_path(path);
274 return ret;
275}
276
277/*
278 * Back reference rules. Back refs have three main goals:
279 *
280 * 1) differentiate between all holders of references to an extent so that
281 * when a reference is dropped we can make sure it was a valid reference
282 * before freeing the extent.
283 *
284 * 2) Provide enough information to quickly find the holders of an extent
285 * if we notice a given block is corrupted or bad.
286 *
287 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
288 * maintenance. This is actually the same as #2, but with a slightly
289 * different use case.
290 *
291 * There are two kinds of back refs. The implicit back refs is optimized
292 * for pointers in non-shared tree blocks. For a given pointer in a block,
293 * back refs of this kind provide information about the block's owner tree
294 * and the pointer's key. These information allow us to find the block by
295 * b-tree searching. The full back refs is for pointers in tree blocks not
296 * referenced by their owner trees. The location of tree block is recorded
297 * in the back refs. Actually the full back refs is generic, and can be
298 * used in all cases the implicit back refs is used. The major shortcoming
299 * of the full back refs is its overhead. Every time a tree block gets
300 * COWed, we have to update back refs entry for all pointers in it.
301 *
302 * For a newly allocated tree block, we use implicit back refs for
303 * pointers in it. This means most tree related operations only involve
304 * implicit back refs. For a tree block created in old transaction, the
305 * only way to drop a reference to it is COW it. So we can detect the
306 * event that tree block loses its owner tree's reference and do the
307 * back refs conversion.
308 *
309 * When a tree block is COWed through a tree, there are four cases:
310 *
311 * The reference count of the block is one and the tree is the block's
312 * owner tree. Nothing to do in this case.
313 *
314 * The reference count of the block is one and the tree is not the
315 * block's owner tree. In this case, full back refs is used for pointers
316 * in the block. Remove these full back refs, add implicit back refs for
317 * every pointers in the new block.
318 *
319 * The reference count of the block is greater than one and the tree is
320 * the block's owner tree. In this case, implicit back refs is used for
321 * pointers in the block. Add full back refs for every pointers in the
322 * block, increase lower level extents' reference counts. The original
323 * implicit back refs are entailed to the new block.
324 *
325 * The reference count of the block is greater than one and the tree is
326 * not the block's owner tree. Add implicit back refs for every pointer in
327 * the new block, increase lower level extents' reference count.
328 *
329 * Back Reference Key composing:
330 *
331 * The key objectid corresponds to the first byte in the extent,
332 * The key type is used to differentiate between types of back refs.
333 * There are different meanings of the key offset for different types
334 * of back refs.
335 *
336 * File extents can be referenced by:
337 *
338 * - multiple snapshots, subvolumes, or different generations in one subvol
339 * - different files inside a single subvolume
340 * - different offsets inside a file (bookend extents in file.c)
341 *
342 * The extent ref structure for the implicit back refs has fields for:
343 *
344 * - Objectid of the subvolume root
345 * - objectid of the file holding the reference
346 * - original offset in the file
347 * - how many bookend extents
348 *
349 * The key offset for the implicit back refs is hash of the first
350 * three fields.
351 *
352 * The extent ref structure for the full back refs has field for:
353 *
354 * - number of pointers in the tree leaf
355 *
356 * The key offset for the implicit back refs is the first byte of
357 * the tree leaf
358 *
359 * When a file extent is allocated, The implicit back refs is used.
360 * the fields are filled in:
361 *
362 * (root_key.objectid, inode objectid, offset in file, 1)
363 *
364 * When a file extent is removed file truncation, we find the
365 * corresponding implicit back refs and check the following fields:
366 *
367 * (btrfs_header_owner(leaf), inode objectid, offset in file)
368 *
369 * Btree extents can be referenced by:
370 *
371 * - Different subvolumes
372 *
373 * Both the implicit back refs and the full back refs for tree blocks
374 * only consist of key. The key offset for the implicit back refs is
375 * objectid of block's owner tree. The key offset for the full back refs
376 * is the first byte of parent block.
377 *
378 * When implicit back refs is used, information about the lowest key and
379 * level of the tree block are required. These information are stored in
380 * tree block info structure.
381 */
382
383/*
384 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
385 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
386 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
387 */
388int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
389 struct btrfs_extent_inline_ref *iref,
390 enum btrfs_inline_ref_type is_data)
391{
392 int type = btrfs_extent_inline_ref_type(eb, iref);
393 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
394
395 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
396 type == BTRFS_SHARED_BLOCK_REF_KEY ||
397 type == BTRFS_SHARED_DATA_REF_KEY ||
398 type == BTRFS_EXTENT_DATA_REF_KEY) {
399 if (is_data == BTRFS_REF_TYPE_BLOCK) {
400 if (type == BTRFS_TREE_BLOCK_REF_KEY)
401 return type;
402 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
403 ASSERT(eb->fs_info);
404 /*
405 * Every shared one has parent tree
406 * block, which must be aligned to
407 * nodesize.
408 */
409 if (offset &&
410 IS_ALIGNED(offset, eb->fs_info->nodesize))
411 return type;
412 }
413 } else if (is_data == BTRFS_REF_TYPE_DATA) {
414 if (type == BTRFS_EXTENT_DATA_REF_KEY)
415 return type;
416 if (type == BTRFS_SHARED_DATA_REF_KEY) {
417 ASSERT(eb->fs_info);
418 /*
419 * Every shared one has parent tree
420 * block, which must be aligned to
421 * nodesize.
422 */
423 if (offset &&
424 IS_ALIGNED(offset, eb->fs_info->nodesize))
425 return type;
426 }
427 } else {
428 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
429 return type;
430 }
431 }
432
433 btrfs_print_leaf((struct extent_buffer *)eb);
434 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
435 eb->start, type);
436 WARN_ON(1);
437
438 return BTRFS_REF_TYPE_INVALID;
439}
440
441u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
442{
443 u32 high_crc = ~(u32)0;
444 u32 low_crc = ~(u32)0;
445 __le64 lenum;
446
447 lenum = cpu_to_le64(root_objectid);
448 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
449 lenum = cpu_to_le64(owner);
450 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
451 lenum = cpu_to_le64(offset);
452 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
453
454 return ((u64)high_crc << 31) ^ (u64)low_crc;
455}
456
457static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
458 struct btrfs_extent_data_ref *ref)
459{
460 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
461 btrfs_extent_data_ref_objectid(leaf, ref),
462 btrfs_extent_data_ref_offset(leaf, ref));
463}
464
465static int match_extent_data_ref(struct extent_buffer *leaf,
466 struct btrfs_extent_data_ref *ref,
467 u64 root_objectid, u64 owner, u64 offset)
468{
469 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
470 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
471 btrfs_extent_data_ref_offset(leaf, ref) != offset)
472 return 0;
473 return 1;
474}
475
476static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
477 struct btrfs_path *path,
478 u64 bytenr, u64 parent,
479 u64 root_objectid,
480 u64 owner, u64 offset)
481{
482 struct btrfs_root *root = trans->fs_info->extent_root;
483 struct btrfs_key key;
484 struct btrfs_extent_data_ref *ref;
485 struct extent_buffer *leaf;
486 u32 nritems;
487 int ret;
488 int recow;
489 int err = -ENOENT;
490
491 key.objectid = bytenr;
492 if (parent) {
493 key.type = BTRFS_SHARED_DATA_REF_KEY;
494 key.offset = parent;
495 } else {
496 key.type = BTRFS_EXTENT_DATA_REF_KEY;
497 key.offset = hash_extent_data_ref(root_objectid,
498 owner, offset);
499 }
500again:
501 recow = 0;
502 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
503 if (ret < 0) {
504 err = ret;
505 goto fail;
506 }
507
508 if (parent) {
509 if (!ret)
510 return 0;
511 goto fail;
512 }
513
514 leaf = path->nodes[0];
515 nritems = btrfs_header_nritems(leaf);
516 while (1) {
517 if (path->slots[0] >= nritems) {
518 ret = btrfs_next_leaf(root, path);
519 if (ret < 0)
520 err = ret;
521 if (ret)
522 goto fail;
523
524 leaf = path->nodes[0];
525 nritems = btrfs_header_nritems(leaf);
526 recow = 1;
527 }
528
529 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
530 if (key.objectid != bytenr ||
531 key.type != BTRFS_EXTENT_DATA_REF_KEY)
532 goto fail;
533
534 ref = btrfs_item_ptr(leaf, path->slots[0],
535 struct btrfs_extent_data_ref);
536
537 if (match_extent_data_ref(leaf, ref, root_objectid,
538 owner, offset)) {
539 if (recow) {
540 btrfs_release_path(path);
541 goto again;
542 }
543 err = 0;
544 break;
545 }
546 path->slots[0]++;
547 }
548fail:
549 return err;
550}
551
552static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
553 struct btrfs_path *path,
554 u64 bytenr, u64 parent,
555 u64 root_objectid, u64 owner,
556 u64 offset, int refs_to_add)
557{
558 struct btrfs_root *root = trans->fs_info->extent_root;
559 struct btrfs_key key;
560 struct extent_buffer *leaf;
561 u32 size;
562 u32 num_refs;
563 int ret;
564
565 key.objectid = bytenr;
566 if (parent) {
567 key.type = BTRFS_SHARED_DATA_REF_KEY;
568 key.offset = parent;
569 size = sizeof(struct btrfs_shared_data_ref);
570 } else {
571 key.type = BTRFS_EXTENT_DATA_REF_KEY;
572 key.offset = hash_extent_data_ref(root_objectid,
573 owner, offset);
574 size = sizeof(struct btrfs_extent_data_ref);
575 }
576
577 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
578 if (ret && ret != -EEXIST)
579 goto fail;
580
581 leaf = path->nodes[0];
582 if (parent) {
583 struct btrfs_shared_data_ref *ref;
584 ref = btrfs_item_ptr(leaf, path->slots[0],
585 struct btrfs_shared_data_ref);
586 if (ret == 0) {
587 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
588 } else {
589 num_refs = btrfs_shared_data_ref_count(leaf, ref);
590 num_refs += refs_to_add;
591 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
592 }
593 } else {
594 struct btrfs_extent_data_ref *ref;
595 while (ret == -EEXIST) {
596 ref = btrfs_item_ptr(leaf, path->slots[0],
597 struct btrfs_extent_data_ref);
598 if (match_extent_data_ref(leaf, ref, root_objectid,
599 owner, offset))
600 break;
601 btrfs_release_path(path);
602 key.offset++;
603 ret = btrfs_insert_empty_item(trans, root, path, &key,
604 size);
605 if (ret && ret != -EEXIST)
606 goto fail;
607
608 leaf = path->nodes[0];
609 }
610 ref = btrfs_item_ptr(leaf, path->slots[0],
611 struct btrfs_extent_data_ref);
612 if (ret == 0) {
613 btrfs_set_extent_data_ref_root(leaf, ref,
614 root_objectid);
615 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
616 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
617 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
618 } else {
619 num_refs = btrfs_extent_data_ref_count(leaf, ref);
620 num_refs += refs_to_add;
621 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
622 }
623 }
624 btrfs_mark_buffer_dirty(leaf);
625 ret = 0;
626fail:
627 btrfs_release_path(path);
628 return ret;
629}
630
631static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
632 struct btrfs_path *path,
633 int refs_to_drop, int *last_ref)
634{
635 struct btrfs_key key;
636 struct btrfs_extent_data_ref *ref1 = NULL;
637 struct btrfs_shared_data_ref *ref2 = NULL;
638 struct extent_buffer *leaf;
639 u32 num_refs = 0;
640 int ret = 0;
641
642 leaf = path->nodes[0];
643 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
644
645 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
646 ref1 = btrfs_item_ptr(leaf, path->slots[0],
647 struct btrfs_extent_data_ref);
648 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
649 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
650 ref2 = btrfs_item_ptr(leaf, path->slots[0],
651 struct btrfs_shared_data_ref);
652 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
653 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
654 btrfs_print_v0_err(trans->fs_info);
655 btrfs_abort_transaction(trans, -EINVAL);
656 return -EINVAL;
657 } else {
658 BUG();
659 }
660
661 BUG_ON(num_refs < refs_to_drop);
662 num_refs -= refs_to_drop;
663
664 if (num_refs == 0) {
665 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
666 *last_ref = 1;
667 } else {
668 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
669 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
670 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
671 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
672 btrfs_mark_buffer_dirty(leaf);
673 }
674 return ret;
675}
676
677static noinline u32 extent_data_ref_count(struct btrfs_path *path,
678 struct btrfs_extent_inline_ref *iref)
679{
680 struct btrfs_key key;
681 struct extent_buffer *leaf;
682 struct btrfs_extent_data_ref *ref1;
683 struct btrfs_shared_data_ref *ref2;
684 u32 num_refs = 0;
685 int type;
686
687 leaf = path->nodes[0];
688 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
689
690 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
691 if (iref) {
692 /*
693 * If type is invalid, we should have bailed out earlier than
694 * this call.
695 */
696 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
697 ASSERT(type != BTRFS_REF_TYPE_INVALID);
698 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
699 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
700 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
701 } else {
702 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
703 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
704 }
705 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
706 ref1 = btrfs_item_ptr(leaf, path->slots[0],
707 struct btrfs_extent_data_ref);
708 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
709 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
710 ref2 = btrfs_item_ptr(leaf, path->slots[0],
711 struct btrfs_shared_data_ref);
712 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
713 } else {
714 WARN_ON(1);
715 }
716 return num_refs;
717}
718
719static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
720 struct btrfs_path *path,
721 u64 bytenr, u64 parent,
722 u64 root_objectid)
723{
724 struct btrfs_root *root = trans->fs_info->extent_root;
725 struct btrfs_key key;
726 int ret;
727
728 key.objectid = bytenr;
729 if (parent) {
730 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
731 key.offset = parent;
732 } else {
733 key.type = BTRFS_TREE_BLOCK_REF_KEY;
734 key.offset = root_objectid;
735 }
736
737 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
738 if (ret > 0)
739 ret = -ENOENT;
740 return ret;
741}
742
743static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
744 struct btrfs_path *path,
745 u64 bytenr, u64 parent,
746 u64 root_objectid)
747{
748 struct btrfs_key key;
749 int ret;
750
751 key.objectid = bytenr;
752 if (parent) {
753 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
754 key.offset = parent;
755 } else {
756 key.type = BTRFS_TREE_BLOCK_REF_KEY;
757 key.offset = root_objectid;
758 }
759
760 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
761 path, &key, 0);
762 btrfs_release_path(path);
763 return ret;
764}
765
766static inline int extent_ref_type(u64 parent, u64 owner)
767{
768 int type;
769 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
770 if (parent > 0)
771 type = BTRFS_SHARED_BLOCK_REF_KEY;
772 else
773 type = BTRFS_TREE_BLOCK_REF_KEY;
774 } else {
775 if (parent > 0)
776 type = BTRFS_SHARED_DATA_REF_KEY;
777 else
778 type = BTRFS_EXTENT_DATA_REF_KEY;
779 }
780 return type;
781}
782
783static int find_next_key(struct btrfs_path *path, int level,
784 struct btrfs_key *key)
785
786{
787 for (; level < BTRFS_MAX_LEVEL; level++) {
788 if (!path->nodes[level])
789 break;
790 if (path->slots[level] + 1 >=
791 btrfs_header_nritems(path->nodes[level]))
792 continue;
793 if (level == 0)
794 btrfs_item_key_to_cpu(path->nodes[level], key,
795 path->slots[level] + 1);
796 else
797 btrfs_node_key_to_cpu(path->nodes[level], key,
798 path->slots[level] + 1);
799 return 0;
800 }
801 return 1;
802}
803
804/*
805 * look for inline back ref. if back ref is found, *ref_ret is set
806 * to the address of inline back ref, and 0 is returned.
807 *
808 * if back ref isn't found, *ref_ret is set to the address where it
809 * should be inserted, and -ENOENT is returned.
810 *
811 * if insert is true and there are too many inline back refs, the path
812 * points to the extent item, and -EAGAIN is returned.
813 *
814 * NOTE: inline back refs are ordered in the same way that back ref
815 * items in the tree are ordered.
816 */
817static noinline_for_stack
818int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
819 struct btrfs_path *path,
820 struct btrfs_extent_inline_ref **ref_ret,
821 u64 bytenr, u64 num_bytes,
822 u64 parent, u64 root_objectid,
823 u64 owner, u64 offset, int insert)
824{
825 struct btrfs_fs_info *fs_info = trans->fs_info;
826 struct btrfs_root *root = fs_info->extent_root;
827 struct btrfs_key key;
828 struct extent_buffer *leaf;
829 struct btrfs_extent_item *ei;
830 struct btrfs_extent_inline_ref *iref;
831 u64 flags;
832 u64 item_size;
833 unsigned long ptr;
834 unsigned long end;
835 int extra_size;
836 int type;
837 int want;
838 int ret;
839 int err = 0;
840 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
841 int needed;
842
843 key.objectid = bytenr;
844 key.type = BTRFS_EXTENT_ITEM_KEY;
845 key.offset = num_bytes;
846
847 want = extent_ref_type(parent, owner);
848 if (insert) {
849 extra_size = btrfs_extent_inline_ref_size(want);
850 path->keep_locks = 1;
851 } else
852 extra_size = -1;
853
854 /*
855 * Owner is our level, so we can just add one to get the level for the
856 * block we are interested in.
857 */
858 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
859 key.type = BTRFS_METADATA_ITEM_KEY;
860 key.offset = owner;
861 }
862
863again:
864 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
865 if (ret < 0) {
866 err = ret;
867 goto out;
868 }
869
870 /*
871 * We may be a newly converted file system which still has the old fat
872 * extent entries for metadata, so try and see if we have one of those.
873 */
874 if (ret > 0 && skinny_metadata) {
875 skinny_metadata = false;
876 if (path->slots[0]) {
877 path->slots[0]--;
878 btrfs_item_key_to_cpu(path->nodes[0], &key,
879 path->slots[0]);
880 if (key.objectid == bytenr &&
881 key.type == BTRFS_EXTENT_ITEM_KEY &&
882 key.offset == num_bytes)
883 ret = 0;
884 }
885 if (ret) {
886 key.objectid = bytenr;
887 key.type = BTRFS_EXTENT_ITEM_KEY;
888 key.offset = num_bytes;
889 btrfs_release_path(path);
890 goto again;
891 }
892 }
893
894 if (ret && !insert) {
895 err = -ENOENT;
896 goto out;
897 } else if (WARN_ON(ret)) {
898 err = -EIO;
899 goto out;
900 }
901
902 leaf = path->nodes[0];
903 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
904 if (unlikely(item_size < sizeof(*ei))) {
905 err = -EINVAL;
906 btrfs_print_v0_err(fs_info);
907 btrfs_abort_transaction(trans, err);
908 goto out;
909 }
910
911 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
912 flags = btrfs_extent_flags(leaf, ei);
913
914 ptr = (unsigned long)(ei + 1);
915 end = (unsigned long)ei + item_size;
916
917 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
918 ptr += sizeof(struct btrfs_tree_block_info);
919 BUG_ON(ptr > end);
920 }
921
922 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
923 needed = BTRFS_REF_TYPE_DATA;
924 else
925 needed = BTRFS_REF_TYPE_BLOCK;
926
927 err = -ENOENT;
928 while (1) {
929 if (ptr >= end) {
930 WARN_ON(ptr > end);
931 break;
932 }
933 iref = (struct btrfs_extent_inline_ref *)ptr;
934 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
935 if (type == BTRFS_REF_TYPE_INVALID) {
936 err = -EUCLEAN;
937 goto out;
938 }
939
940 if (want < type)
941 break;
942 if (want > type) {
943 ptr += btrfs_extent_inline_ref_size(type);
944 continue;
945 }
946
947 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
948 struct btrfs_extent_data_ref *dref;
949 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
950 if (match_extent_data_ref(leaf, dref, root_objectid,
951 owner, offset)) {
952 err = 0;
953 break;
954 }
955 if (hash_extent_data_ref_item(leaf, dref) <
956 hash_extent_data_ref(root_objectid, owner, offset))
957 break;
958 } else {
959 u64 ref_offset;
960 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
961 if (parent > 0) {
962 if (parent == ref_offset) {
963 err = 0;
964 break;
965 }
966 if (ref_offset < parent)
967 break;
968 } else {
969 if (root_objectid == ref_offset) {
970 err = 0;
971 break;
972 }
973 if (ref_offset < root_objectid)
974 break;
975 }
976 }
977 ptr += btrfs_extent_inline_ref_size(type);
978 }
979 if (err == -ENOENT && insert) {
980 if (item_size + extra_size >=
981 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
982 err = -EAGAIN;
983 goto out;
984 }
985 /*
986 * To add new inline back ref, we have to make sure
987 * there is no corresponding back ref item.
988 * For simplicity, we just do not add new inline back
989 * ref if there is any kind of item for this block
990 */
991 if (find_next_key(path, 0, &key) == 0 &&
992 key.objectid == bytenr &&
993 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
994 err = -EAGAIN;
995 goto out;
996 }
997 }
998 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
999out:
1000 if (insert) {
1001 path->keep_locks = 0;
1002 btrfs_unlock_up_safe(path, 1);
1003 }
1004 return err;
1005}
1006
1007/*
1008 * helper to add new inline back ref
1009 */
1010static noinline_for_stack
1011void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1012 struct btrfs_path *path,
1013 struct btrfs_extent_inline_ref *iref,
1014 u64 parent, u64 root_objectid,
1015 u64 owner, u64 offset, int refs_to_add,
1016 struct btrfs_delayed_extent_op *extent_op)
1017{
1018 struct extent_buffer *leaf;
1019 struct btrfs_extent_item *ei;
1020 unsigned long ptr;
1021 unsigned long end;
1022 unsigned long item_offset;
1023 u64 refs;
1024 int size;
1025 int type;
1026
1027 leaf = path->nodes[0];
1028 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1029 item_offset = (unsigned long)iref - (unsigned long)ei;
1030
1031 type = extent_ref_type(parent, owner);
1032 size = btrfs_extent_inline_ref_size(type);
1033
1034 btrfs_extend_item(path, size);
1035
1036 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1037 refs = btrfs_extent_refs(leaf, ei);
1038 refs += refs_to_add;
1039 btrfs_set_extent_refs(leaf, ei, refs);
1040 if (extent_op)
1041 __run_delayed_extent_op(extent_op, leaf, ei);
1042
1043 ptr = (unsigned long)ei + item_offset;
1044 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1045 if (ptr < end - size)
1046 memmove_extent_buffer(leaf, ptr + size, ptr,
1047 end - size - ptr);
1048
1049 iref = (struct btrfs_extent_inline_ref *)ptr;
1050 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1051 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1052 struct btrfs_extent_data_ref *dref;
1053 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1054 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1055 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1056 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1057 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1058 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1059 struct btrfs_shared_data_ref *sref;
1060 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1061 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1062 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1063 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1064 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1065 } else {
1066 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1067 }
1068 btrfs_mark_buffer_dirty(leaf);
1069}
1070
1071static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1072 struct btrfs_path *path,
1073 struct btrfs_extent_inline_ref **ref_ret,
1074 u64 bytenr, u64 num_bytes, u64 parent,
1075 u64 root_objectid, u64 owner, u64 offset)
1076{
1077 int ret;
1078
1079 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1080 num_bytes, parent, root_objectid,
1081 owner, offset, 0);
1082 if (ret != -ENOENT)
1083 return ret;
1084
1085 btrfs_release_path(path);
1086 *ref_ret = NULL;
1087
1088 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1089 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1090 root_objectid);
1091 } else {
1092 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1093 root_objectid, owner, offset);
1094 }
1095 return ret;
1096}
1097
1098/*
1099 * helper to update/remove inline back ref
1100 */
1101static noinline_for_stack
1102void update_inline_extent_backref(struct btrfs_path *path,
1103 struct btrfs_extent_inline_ref *iref,
1104 int refs_to_mod,
1105 struct btrfs_delayed_extent_op *extent_op,
1106 int *last_ref)
1107{
1108 struct extent_buffer *leaf = path->nodes[0];
1109 struct btrfs_extent_item *ei;
1110 struct btrfs_extent_data_ref *dref = NULL;
1111 struct btrfs_shared_data_ref *sref = NULL;
1112 unsigned long ptr;
1113 unsigned long end;
1114 u32 item_size;
1115 int size;
1116 int type;
1117 u64 refs;
1118
1119 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120 refs = btrfs_extent_refs(leaf, ei);
1121 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1122 refs += refs_to_mod;
1123 btrfs_set_extent_refs(leaf, ei, refs);
1124 if (extent_op)
1125 __run_delayed_extent_op(extent_op, leaf, ei);
1126
1127 /*
1128 * If type is invalid, we should have bailed out after
1129 * lookup_inline_extent_backref().
1130 */
1131 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1132 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1133
1134 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1135 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1136 refs = btrfs_extent_data_ref_count(leaf, dref);
1137 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1138 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1139 refs = btrfs_shared_data_ref_count(leaf, sref);
1140 } else {
1141 refs = 1;
1142 BUG_ON(refs_to_mod != -1);
1143 }
1144
1145 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1146 refs += refs_to_mod;
1147
1148 if (refs > 0) {
1149 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1150 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1151 else
1152 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1153 } else {
1154 *last_ref = 1;
1155 size = btrfs_extent_inline_ref_size(type);
1156 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1157 ptr = (unsigned long)iref;
1158 end = (unsigned long)ei + item_size;
1159 if (ptr + size < end)
1160 memmove_extent_buffer(leaf, ptr, ptr + size,
1161 end - ptr - size);
1162 item_size -= size;
1163 btrfs_truncate_item(path, item_size, 1);
1164 }
1165 btrfs_mark_buffer_dirty(leaf);
1166}
1167
1168static noinline_for_stack
1169int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1170 struct btrfs_path *path,
1171 u64 bytenr, u64 num_bytes, u64 parent,
1172 u64 root_objectid, u64 owner,
1173 u64 offset, int refs_to_add,
1174 struct btrfs_delayed_extent_op *extent_op)
1175{
1176 struct btrfs_extent_inline_ref *iref;
1177 int ret;
1178
1179 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1180 num_bytes, parent, root_objectid,
1181 owner, offset, 1);
1182 if (ret == 0) {
1183 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1184 update_inline_extent_backref(path, iref, refs_to_add,
1185 extent_op, NULL);
1186 } else if (ret == -ENOENT) {
1187 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1188 root_objectid, owner, offset,
1189 refs_to_add, extent_op);
1190 ret = 0;
1191 }
1192 return ret;
1193}
1194
1195static int insert_extent_backref(struct btrfs_trans_handle *trans,
1196 struct btrfs_path *path,
1197 u64 bytenr, u64 parent, u64 root_objectid,
1198 u64 owner, u64 offset, int refs_to_add)
1199{
1200 int ret;
1201 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1202 BUG_ON(refs_to_add != 1);
1203 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1204 root_objectid);
1205 } else {
1206 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1207 root_objectid, owner, offset,
1208 refs_to_add);
1209 }
1210 return ret;
1211}
1212
1213static int remove_extent_backref(struct btrfs_trans_handle *trans,
1214 struct btrfs_path *path,
1215 struct btrfs_extent_inline_ref *iref,
1216 int refs_to_drop, int is_data, int *last_ref)
1217{
1218 int ret = 0;
1219
1220 BUG_ON(!is_data && refs_to_drop != 1);
1221 if (iref) {
1222 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1223 last_ref);
1224 } else if (is_data) {
1225 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1226 last_ref);
1227 } else {
1228 *last_ref = 1;
1229 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1230 }
1231 return ret;
1232}
1233
1234static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1235 u64 *discarded_bytes)
1236{
1237 int j, ret = 0;
1238 u64 bytes_left, end;
1239 u64 aligned_start = ALIGN(start, 1 << 9);
1240
1241 if (WARN_ON(start != aligned_start)) {
1242 len -= aligned_start - start;
1243 len = round_down(len, 1 << 9);
1244 start = aligned_start;
1245 }
1246
1247 *discarded_bytes = 0;
1248
1249 if (!len)
1250 return 0;
1251
1252 end = start + len;
1253 bytes_left = len;
1254
1255 /* Skip any superblocks on this device. */
1256 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1257 u64 sb_start = btrfs_sb_offset(j);
1258 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1259 u64 size = sb_start - start;
1260
1261 if (!in_range(sb_start, start, bytes_left) &&
1262 !in_range(sb_end, start, bytes_left) &&
1263 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1264 continue;
1265
1266 /*
1267 * Superblock spans beginning of range. Adjust start and
1268 * try again.
1269 */
1270 if (sb_start <= start) {
1271 start += sb_end - start;
1272 if (start > end) {
1273 bytes_left = 0;
1274 break;
1275 }
1276 bytes_left = end - start;
1277 continue;
1278 }
1279
1280 if (size) {
1281 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1282 GFP_NOFS, 0);
1283 if (!ret)
1284 *discarded_bytes += size;
1285 else if (ret != -EOPNOTSUPP)
1286 return ret;
1287 }
1288
1289 start = sb_end;
1290 if (start > end) {
1291 bytes_left = 0;
1292 break;
1293 }
1294 bytes_left = end - start;
1295 }
1296
1297 if (bytes_left) {
1298 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1299 GFP_NOFS, 0);
1300 if (!ret)
1301 *discarded_bytes += bytes_left;
1302 }
1303 return ret;
1304}
1305
1306int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1307 u64 num_bytes, u64 *actual_bytes)
1308{
1309 int ret;
1310 u64 discarded_bytes = 0;
1311 struct btrfs_bio *bbio = NULL;
1312
1313
1314 /*
1315 * Avoid races with device replace and make sure our bbio has devices
1316 * associated to its stripes that don't go away while we are discarding.
1317 */
1318 btrfs_bio_counter_inc_blocked(fs_info);
1319 /* Tell the block device(s) that the sectors can be discarded */
1320 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1321 &bbio, 0);
1322 /* Error condition is -ENOMEM */
1323 if (!ret) {
1324 struct btrfs_bio_stripe *stripe = bbio->stripes;
1325 int i;
1326
1327
1328 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1329 u64 bytes;
1330 struct request_queue *req_q;
1331
1332 if (!stripe->dev->bdev) {
1333 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1334 continue;
1335 }
1336 req_q = bdev_get_queue(stripe->dev->bdev);
1337 if (!blk_queue_discard(req_q))
1338 continue;
1339
1340 ret = btrfs_issue_discard(stripe->dev->bdev,
1341 stripe->physical,
1342 stripe->length,
1343 &bytes);
1344 if (!ret)
1345 discarded_bytes += bytes;
1346 else if (ret != -EOPNOTSUPP)
1347 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1348
1349 /*
1350 * Just in case we get back EOPNOTSUPP for some reason,
1351 * just ignore the return value so we don't screw up
1352 * people calling discard_extent.
1353 */
1354 ret = 0;
1355 }
1356 btrfs_put_bbio(bbio);
1357 }
1358 btrfs_bio_counter_dec(fs_info);
1359
1360 if (actual_bytes)
1361 *actual_bytes = discarded_bytes;
1362
1363
1364 if (ret == -EOPNOTSUPP)
1365 ret = 0;
1366 return ret;
1367}
1368
1369/* Can return -ENOMEM */
1370int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1371 struct btrfs_ref *generic_ref)
1372{
1373 struct btrfs_fs_info *fs_info = trans->fs_info;
1374 int old_ref_mod, new_ref_mod;
1375 int ret;
1376
1377 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1378 generic_ref->action);
1379 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1380 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1381
1382 if (generic_ref->type == BTRFS_REF_METADATA)
1383 ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
1384 NULL, &old_ref_mod, &new_ref_mod);
1385 else
1386 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
1387 &old_ref_mod, &new_ref_mod);
1388
1389 btrfs_ref_tree_mod(fs_info, generic_ref);
1390
1391 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
1392 sub_pinned_bytes(fs_info, generic_ref);
1393
1394 return ret;
1395}
1396
1397/*
1398 * __btrfs_inc_extent_ref - insert backreference for a given extent
1399 *
1400 * @trans: Handle of transaction
1401 *
1402 * @node: The delayed ref node used to get the bytenr/length for
1403 * extent whose references are incremented.
1404 *
1405 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1406 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1407 * bytenr of the parent block. Since new extents are always
1408 * created with indirect references, this will only be the case
1409 * when relocating a shared extent. In that case, root_objectid
1410 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1411 * be 0
1412 *
1413 * @root_objectid: The id of the root where this modification has originated,
1414 * this can be either one of the well-known metadata trees or
1415 * the subvolume id which references this extent.
1416 *
1417 * @owner: For data extents it is the inode number of the owning file.
1418 * For metadata extents this parameter holds the level in the
1419 * tree of the extent.
1420 *
1421 * @offset: For metadata extents the offset is ignored and is currently
1422 * always passed as 0. For data extents it is the fileoffset
1423 * this extent belongs to.
1424 *
1425 * @refs_to_add Number of references to add
1426 *
1427 * @extent_op Pointer to a structure, holding information necessary when
1428 * updating a tree block's flags
1429 *
1430 */
1431static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1432 struct btrfs_delayed_ref_node *node,
1433 u64 parent, u64 root_objectid,
1434 u64 owner, u64 offset, int refs_to_add,
1435 struct btrfs_delayed_extent_op *extent_op)
1436{
1437 struct btrfs_path *path;
1438 struct extent_buffer *leaf;
1439 struct btrfs_extent_item *item;
1440 struct btrfs_key key;
1441 u64 bytenr = node->bytenr;
1442 u64 num_bytes = node->num_bytes;
1443 u64 refs;
1444 int ret;
1445
1446 path = btrfs_alloc_path();
1447 if (!path)
1448 return -ENOMEM;
1449
1450 path->reada = READA_FORWARD;
1451 path->leave_spinning = 1;
1452 /* this will setup the path even if it fails to insert the back ref */
1453 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1454 parent, root_objectid, owner,
1455 offset, refs_to_add, extent_op);
1456 if ((ret < 0 && ret != -EAGAIN) || !ret)
1457 goto out;
1458
1459 /*
1460 * Ok we had -EAGAIN which means we didn't have space to insert and
1461 * inline extent ref, so just update the reference count and add a
1462 * normal backref.
1463 */
1464 leaf = path->nodes[0];
1465 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1466 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1467 refs = btrfs_extent_refs(leaf, item);
1468 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1469 if (extent_op)
1470 __run_delayed_extent_op(extent_op, leaf, item);
1471
1472 btrfs_mark_buffer_dirty(leaf);
1473 btrfs_release_path(path);
1474
1475 path->reada = READA_FORWARD;
1476 path->leave_spinning = 1;
1477 /* now insert the actual backref */
1478 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
1479 owner, offset, refs_to_add);
1480 if (ret)
1481 btrfs_abort_transaction(trans, ret);
1482out:
1483 btrfs_free_path(path);
1484 return ret;
1485}
1486
1487static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1488 struct btrfs_delayed_ref_node *node,
1489 struct btrfs_delayed_extent_op *extent_op,
1490 int insert_reserved)
1491{
1492 int ret = 0;
1493 struct btrfs_delayed_data_ref *ref;
1494 struct btrfs_key ins;
1495 u64 parent = 0;
1496 u64 ref_root = 0;
1497 u64 flags = 0;
1498
1499 ins.objectid = node->bytenr;
1500 ins.offset = node->num_bytes;
1501 ins.type = BTRFS_EXTENT_ITEM_KEY;
1502
1503 ref = btrfs_delayed_node_to_data_ref(node);
1504 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1505
1506 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1507 parent = ref->parent;
1508 ref_root = ref->root;
1509
1510 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1511 if (extent_op)
1512 flags |= extent_op->flags_to_set;
1513 ret = alloc_reserved_file_extent(trans, parent, ref_root,
1514 flags, ref->objectid,
1515 ref->offset, &ins,
1516 node->ref_mod);
1517 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1518 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1519 ref->objectid, ref->offset,
1520 node->ref_mod, extent_op);
1521 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1522 ret = __btrfs_free_extent(trans, node, parent,
1523 ref_root, ref->objectid,
1524 ref->offset, node->ref_mod,
1525 extent_op);
1526 } else {
1527 BUG();
1528 }
1529 return ret;
1530}
1531
1532static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1533 struct extent_buffer *leaf,
1534 struct btrfs_extent_item *ei)
1535{
1536 u64 flags = btrfs_extent_flags(leaf, ei);
1537 if (extent_op->update_flags) {
1538 flags |= extent_op->flags_to_set;
1539 btrfs_set_extent_flags(leaf, ei, flags);
1540 }
1541
1542 if (extent_op->update_key) {
1543 struct btrfs_tree_block_info *bi;
1544 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1545 bi = (struct btrfs_tree_block_info *)(ei + 1);
1546 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1547 }
1548}
1549
1550static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1551 struct btrfs_delayed_ref_head *head,
1552 struct btrfs_delayed_extent_op *extent_op)
1553{
1554 struct btrfs_fs_info *fs_info = trans->fs_info;
1555 struct btrfs_key key;
1556 struct btrfs_path *path;
1557 struct btrfs_extent_item *ei;
1558 struct extent_buffer *leaf;
1559 u32 item_size;
1560 int ret;
1561 int err = 0;
1562 int metadata = !extent_op->is_data;
1563
1564 if (trans->aborted)
1565 return 0;
1566
1567 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1568 metadata = 0;
1569
1570 path = btrfs_alloc_path();
1571 if (!path)
1572 return -ENOMEM;
1573
1574 key.objectid = head->bytenr;
1575
1576 if (metadata) {
1577 key.type = BTRFS_METADATA_ITEM_KEY;
1578 key.offset = extent_op->level;
1579 } else {
1580 key.type = BTRFS_EXTENT_ITEM_KEY;
1581 key.offset = head->num_bytes;
1582 }
1583
1584again:
1585 path->reada = READA_FORWARD;
1586 path->leave_spinning = 1;
1587 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1588 if (ret < 0) {
1589 err = ret;
1590 goto out;
1591 }
1592 if (ret > 0) {
1593 if (metadata) {
1594 if (path->slots[0] > 0) {
1595 path->slots[0]--;
1596 btrfs_item_key_to_cpu(path->nodes[0], &key,
1597 path->slots[0]);
1598 if (key.objectid == head->bytenr &&
1599 key.type == BTRFS_EXTENT_ITEM_KEY &&
1600 key.offset == head->num_bytes)
1601 ret = 0;
1602 }
1603 if (ret > 0) {
1604 btrfs_release_path(path);
1605 metadata = 0;
1606
1607 key.objectid = head->bytenr;
1608 key.offset = head->num_bytes;
1609 key.type = BTRFS_EXTENT_ITEM_KEY;
1610 goto again;
1611 }
1612 } else {
1613 err = -EIO;
1614 goto out;
1615 }
1616 }
1617
1618 leaf = path->nodes[0];
1619 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1620
1621 if (unlikely(item_size < sizeof(*ei))) {
1622 err = -EINVAL;
1623 btrfs_print_v0_err(fs_info);
1624 btrfs_abort_transaction(trans, err);
1625 goto out;
1626 }
1627
1628 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1629 __run_delayed_extent_op(extent_op, leaf, ei);
1630
1631 btrfs_mark_buffer_dirty(leaf);
1632out:
1633 btrfs_free_path(path);
1634 return err;
1635}
1636
1637static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1638 struct btrfs_delayed_ref_node *node,
1639 struct btrfs_delayed_extent_op *extent_op,
1640 int insert_reserved)
1641{
1642 int ret = 0;
1643 struct btrfs_delayed_tree_ref *ref;
1644 u64 parent = 0;
1645 u64 ref_root = 0;
1646
1647 ref = btrfs_delayed_node_to_tree_ref(node);
1648 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1649
1650 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1651 parent = ref->parent;
1652 ref_root = ref->root;
1653
1654 if (node->ref_mod != 1) {
1655 btrfs_err(trans->fs_info,
1656 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1657 node->bytenr, node->ref_mod, node->action, ref_root,
1658 parent);
1659 return -EIO;
1660 }
1661 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1662 BUG_ON(!extent_op || !extent_op->update_flags);
1663 ret = alloc_reserved_tree_block(trans, node, extent_op);
1664 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1665 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1666 ref->level, 0, 1, extent_op);
1667 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1668 ret = __btrfs_free_extent(trans, node, parent, ref_root,
1669 ref->level, 0, 1, extent_op);
1670 } else {
1671 BUG();
1672 }
1673 return ret;
1674}
1675
1676/* helper function to actually process a single delayed ref entry */
1677static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1678 struct btrfs_delayed_ref_node *node,
1679 struct btrfs_delayed_extent_op *extent_op,
1680 int insert_reserved)
1681{
1682 int ret = 0;
1683
1684 if (trans->aborted) {
1685 if (insert_reserved)
1686 btrfs_pin_extent(trans->fs_info, node->bytenr,
1687 node->num_bytes, 1);
1688 return 0;
1689 }
1690
1691 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1692 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1693 ret = run_delayed_tree_ref(trans, node, extent_op,
1694 insert_reserved);
1695 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1696 node->type == BTRFS_SHARED_DATA_REF_KEY)
1697 ret = run_delayed_data_ref(trans, node, extent_op,
1698 insert_reserved);
1699 else
1700 BUG();
1701 if (ret && insert_reserved)
1702 btrfs_pin_extent(trans->fs_info, node->bytenr,
1703 node->num_bytes, 1);
1704 return ret;
1705}
1706
1707static inline struct btrfs_delayed_ref_node *
1708select_delayed_ref(struct btrfs_delayed_ref_head *head)
1709{
1710 struct btrfs_delayed_ref_node *ref;
1711
1712 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1713 return NULL;
1714
1715 /*
1716 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1717 * This is to prevent a ref count from going down to zero, which deletes
1718 * the extent item from the extent tree, when there still are references
1719 * to add, which would fail because they would not find the extent item.
1720 */
1721 if (!list_empty(&head->ref_add_list))
1722 return list_first_entry(&head->ref_add_list,
1723 struct btrfs_delayed_ref_node, add_list);
1724
1725 ref = rb_entry(rb_first_cached(&head->ref_tree),
1726 struct btrfs_delayed_ref_node, ref_node);
1727 ASSERT(list_empty(&ref->add_list));
1728 return ref;
1729}
1730
1731static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1732 struct btrfs_delayed_ref_head *head)
1733{
1734 spin_lock(&delayed_refs->lock);
1735 head->processing = 0;
1736 delayed_refs->num_heads_ready++;
1737 spin_unlock(&delayed_refs->lock);
1738 btrfs_delayed_ref_unlock(head);
1739}
1740
1741static struct btrfs_delayed_extent_op *cleanup_extent_op(
1742 struct btrfs_delayed_ref_head *head)
1743{
1744 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1745
1746 if (!extent_op)
1747 return NULL;
1748
1749 if (head->must_insert_reserved) {
1750 head->extent_op = NULL;
1751 btrfs_free_delayed_extent_op(extent_op);
1752 return NULL;
1753 }
1754 return extent_op;
1755}
1756
1757static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1758 struct btrfs_delayed_ref_head *head)
1759{
1760 struct btrfs_delayed_extent_op *extent_op;
1761 int ret;
1762
1763 extent_op = cleanup_extent_op(head);
1764 if (!extent_op)
1765 return 0;
1766 head->extent_op = NULL;
1767 spin_unlock(&head->lock);
1768 ret = run_delayed_extent_op(trans, head, extent_op);
1769 btrfs_free_delayed_extent_op(extent_op);
1770 return ret ? ret : 1;
1771}
1772
1773void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1774 struct btrfs_delayed_ref_root *delayed_refs,
1775 struct btrfs_delayed_ref_head *head)
1776{
1777 int nr_items = 1; /* Dropping this ref head update. */
1778
1779 if (head->total_ref_mod < 0) {
1780 struct btrfs_space_info *space_info;
1781 u64 flags;
1782
1783 if (head->is_data)
1784 flags = BTRFS_BLOCK_GROUP_DATA;
1785 else if (head->is_system)
1786 flags = BTRFS_BLOCK_GROUP_SYSTEM;
1787 else
1788 flags = BTRFS_BLOCK_GROUP_METADATA;
1789 space_info = btrfs_find_space_info(fs_info, flags);
1790 ASSERT(space_info);
1791 percpu_counter_add_batch(&space_info->total_bytes_pinned,
1792 -head->num_bytes,
1793 BTRFS_TOTAL_BYTES_PINNED_BATCH);
1794
1795 /*
1796 * We had csum deletions accounted for in our delayed refs rsv,
1797 * we need to drop the csum leaves for this update from our
1798 * delayed_refs_rsv.
1799 */
1800 if (head->is_data) {
1801 spin_lock(&delayed_refs->lock);
1802 delayed_refs->pending_csums -= head->num_bytes;
1803 spin_unlock(&delayed_refs->lock);
1804 nr_items += btrfs_csum_bytes_to_leaves(fs_info,
1805 head->num_bytes);
1806 }
1807 }
1808
1809 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1810}
1811
1812static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1813 struct btrfs_delayed_ref_head *head)
1814{
1815
1816 struct btrfs_fs_info *fs_info = trans->fs_info;
1817 struct btrfs_delayed_ref_root *delayed_refs;
1818 int ret;
1819
1820 delayed_refs = &trans->transaction->delayed_refs;
1821
1822 ret = run_and_cleanup_extent_op(trans, head);
1823 if (ret < 0) {
1824 unselect_delayed_ref_head(delayed_refs, head);
1825 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1826 return ret;
1827 } else if (ret) {
1828 return ret;
1829 }
1830
1831 /*
1832 * Need to drop our head ref lock and re-acquire the delayed ref lock
1833 * and then re-check to make sure nobody got added.
1834 */
1835 spin_unlock(&head->lock);
1836 spin_lock(&delayed_refs->lock);
1837 spin_lock(&head->lock);
1838 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1839 spin_unlock(&head->lock);
1840 spin_unlock(&delayed_refs->lock);
1841 return 1;
1842 }
1843 btrfs_delete_ref_head(delayed_refs, head);
1844 spin_unlock(&head->lock);
1845 spin_unlock(&delayed_refs->lock);
1846
1847 if (head->must_insert_reserved) {
1848 btrfs_pin_extent(fs_info, head->bytenr,
1849 head->num_bytes, 1);
1850 if (head->is_data) {
1851 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
1852 head->num_bytes);
1853 }
1854 }
1855
1856 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1857
1858 trace_run_delayed_ref_head(fs_info, head, 0);
1859 btrfs_delayed_ref_unlock(head);
1860 btrfs_put_delayed_ref_head(head);
1861 return 0;
1862}
1863
1864static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1865 struct btrfs_trans_handle *trans)
1866{
1867 struct btrfs_delayed_ref_root *delayed_refs =
1868 &trans->transaction->delayed_refs;
1869 struct btrfs_delayed_ref_head *head = NULL;
1870 int ret;
1871
1872 spin_lock(&delayed_refs->lock);
1873 head = btrfs_select_ref_head(delayed_refs);
1874 if (!head) {
1875 spin_unlock(&delayed_refs->lock);
1876 return head;
1877 }
1878
1879 /*
1880 * Grab the lock that says we are going to process all the refs for
1881 * this head
1882 */
1883 ret = btrfs_delayed_ref_lock(delayed_refs, head);
1884 spin_unlock(&delayed_refs->lock);
1885
1886 /*
1887 * We may have dropped the spin lock to get the head mutex lock, and
1888 * that might have given someone else time to free the head. If that's
1889 * true, it has been removed from our list and we can move on.
1890 */
1891 if (ret == -EAGAIN)
1892 head = ERR_PTR(-EAGAIN);
1893
1894 return head;
1895}
1896
1897static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1898 struct btrfs_delayed_ref_head *locked_ref,
1899 unsigned long *run_refs)
1900{
1901 struct btrfs_fs_info *fs_info = trans->fs_info;
1902 struct btrfs_delayed_ref_root *delayed_refs;
1903 struct btrfs_delayed_extent_op *extent_op;
1904 struct btrfs_delayed_ref_node *ref;
1905 int must_insert_reserved = 0;
1906 int ret;
1907
1908 delayed_refs = &trans->transaction->delayed_refs;
1909
1910 lockdep_assert_held(&locked_ref->mutex);
1911 lockdep_assert_held(&locked_ref->lock);
1912
1913 while ((ref = select_delayed_ref(locked_ref))) {
1914 if (ref->seq &&
1915 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1916 spin_unlock(&locked_ref->lock);
1917 unselect_delayed_ref_head(delayed_refs, locked_ref);
1918 return -EAGAIN;
1919 }
1920
1921 (*run_refs)++;
1922 ref->in_tree = 0;
1923 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1924 RB_CLEAR_NODE(&ref->ref_node);
1925 if (!list_empty(&ref->add_list))
1926 list_del(&ref->add_list);
1927 /*
1928 * When we play the delayed ref, also correct the ref_mod on
1929 * head
1930 */
1931 switch (ref->action) {
1932 case BTRFS_ADD_DELAYED_REF:
1933 case BTRFS_ADD_DELAYED_EXTENT:
1934 locked_ref->ref_mod -= ref->ref_mod;
1935 break;
1936 case BTRFS_DROP_DELAYED_REF:
1937 locked_ref->ref_mod += ref->ref_mod;
1938 break;
1939 default:
1940 WARN_ON(1);
1941 }
1942 atomic_dec(&delayed_refs->num_entries);
1943
1944 /*
1945 * Record the must_insert_reserved flag before we drop the
1946 * spin lock.
1947 */
1948 must_insert_reserved = locked_ref->must_insert_reserved;
1949 locked_ref->must_insert_reserved = 0;
1950
1951 extent_op = locked_ref->extent_op;
1952 locked_ref->extent_op = NULL;
1953 spin_unlock(&locked_ref->lock);
1954
1955 ret = run_one_delayed_ref(trans, ref, extent_op,
1956 must_insert_reserved);
1957
1958 btrfs_free_delayed_extent_op(extent_op);
1959 if (ret) {
1960 unselect_delayed_ref_head(delayed_refs, locked_ref);
1961 btrfs_put_delayed_ref(ref);
1962 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1963 ret);
1964 return ret;
1965 }
1966
1967 btrfs_put_delayed_ref(ref);
1968 cond_resched();
1969
1970 spin_lock(&locked_ref->lock);
1971 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1972 }
1973
1974 return 0;
1975}
1976
1977/*
1978 * Returns 0 on success or if called with an already aborted transaction.
1979 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1980 */
1981static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1982 unsigned long nr)
1983{
1984 struct btrfs_fs_info *fs_info = trans->fs_info;
1985 struct btrfs_delayed_ref_root *delayed_refs;
1986 struct btrfs_delayed_ref_head *locked_ref = NULL;
1987 ktime_t start = ktime_get();
1988 int ret;
1989 unsigned long count = 0;
1990 unsigned long actual_count = 0;
1991
1992 delayed_refs = &trans->transaction->delayed_refs;
1993 do {
1994 if (!locked_ref) {
1995 locked_ref = btrfs_obtain_ref_head(trans);
1996 if (IS_ERR_OR_NULL(locked_ref)) {
1997 if (PTR_ERR(locked_ref) == -EAGAIN) {
1998 continue;
1999 } else {
2000 break;
2001 }
2002 }
2003 count++;
2004 }
2005 /*
2006 * We need to try and merge add/drops of the same ref since we
2007 * can run into issues with relocate dropping the implicit ref
2008 * and then it being added back again before the drop can
2009 * finish. If we merged anything we need to re-loop so we can
2010 * get a good ref.
2011 * Or we can get node references of the same type that weren't
2012 * merged when created due to bumps in the tree mod seq, and
2013 * we need to merge them to prevent adding an inline extent
2014 * backref before dropping it (triggering a BUG_ON at
2015 * insert_inline_extent_backref()).
2016 */
2017 spin_lock(&locked_ref->lock);
2018 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2019
2020 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2021 &actual_count);
2022 if (ret < 0 && ret != -EAGAIN) {
2023 /*
2024 * Error, btrfs_run_delayed_refs_for_head already
2025 * unlocked everything so just bail out
2026 */
2027 return ret;
2028 } else if (!ret) {
2029 /*
2030 * Success, perform the usual cleanup of a processed
2031 * head
2032 */
2033 ret = cleanup_ref_head(trans, locked_ref);
2034 if (ret > 0 ) {
2035 /* We dropped our lock, we need to loop. */
2036 ret = 0;
2037 continue;
2038 } else if (ret) {
2039 return ret;
2040 }
2041 }
2042
2043 /*
2044 * Either success case or btrfs_run_delayed_refs_for_head
2045 * returned -EAGAIN, meaning we need to select another head
2046 */
2047
2048 locked_ref = NULL;
2049 cond_resched();
2050 } while ((nr != -1 && count < nr) || locked_ref);
2051
2052 /*
2053 * We don't want to include ref heads since we can have empty ref heads
2054 * and those will drastically skew our runtime down since we just do
2055 * accounting, no actual extent tree updates.
2056 */
2057 if (actual_count > 0) {
2058 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2059 u64 avg;
2060
2061 /*
2062 * We weigh the current average higher than our current runtime
2063 * to avoid large swings in the average.
2064 */
2065 spin_lock(&delayed_refs->lock);
2066 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2067 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2068 spin_unlock(&delayed_refs->lock);
2069 }
2070 return 0;
2071}
2072
2073#ifdef SCRAMBLE_DELAYED_REFS
2074/*
2075 * Normally delayed refs get processed in ascending bytenr order. This
2076 * correlates in most cases to the order added. To expose dependencies on this
2077 * order, we start to process the tree in the middle instead of the beginning
2078 */
2079static u64 find_middle(struct rb_root *root)
2080{
2081 struct rb_node *n = root->rb_node;
2082 struct btrfs_delayed_ref_node *entry;
2083 int alt = 1;
2084 u64 middle;
2085 u64 first = 0, last = 0;
2086
2087 n = rb_first(root);
2088 if (n) {
2089 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2090 first = entry->bytenr;
2091 }
2092 n = rb_last(root);
2093 if (n) {
2094 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2095 last = entry->bytenr;
2096 }
2097 n = root->rb_node;
2098
2099 while (n) {
2100 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2101 WARN_ON(!entry->in_tree);
2102
2103 middle = entry->bytenr;
2104
2105 if (alt)
2106 n = n->rb_left;
2107 else
2108 n = n->rb_right;
2109
2110 alt = 1 - alt;
2111 }
2112 return middle;
2113}
2114#endif
2115
2116static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2117{
2118 u64 num_bytes;
2119
2120 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2121 sizeof(struct btrfs_extent_inline_ref));
2122 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2123 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2124
2125 /*
2126 * We don't ever fill up leaves all the way so multiply by 2 just to be
2127 * closer to what we're really going to want to use.
2128 */
2129 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2130}
2131
2132/*
2133 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2134 * would require to store the csums for that many bytes.
2135 */
2136u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2137{
2138 u64 csum_size;
2139 u64 num_csums_per_leaf;
2140 u64 num_csums;
2141
2142 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2143 num_csums_per_leaf = div64_u64(csum_size,
2144 (u64)btrfs_super_csum_size(fs_info->super_copy));
2145 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2146 num_csums += num_csums_per_leaf - 1;
2147 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2148 return num_csums;
2149}
2150
2151/*
2152 * this starts processing the delayed reference count updates and
2153 * extent insertions we have queued up so far. count can be
2154 * 0, which means to process everything in the tree at the start
2155 * of the run (but not newly added entries), or it can be some target
2156 * number you'd like to process.
2157 *
2158 * Returns 0 on success or if called with an aborted transaction
2159 * Returns <0 on error and aborts the transaction
2160 */
2161int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2162 unsigned long count)
2163{
2164 struct btrfs_fs_info *fs_info = trans->fs_info;
2165 struct rb_node *node;
2166 struct btrfs_delayed_ref_root *delayed_refs;
2167 struct btrfs_delayed_ref_head *head;
2168 int ret;
2169 int run_all = count == (unsigned long)-1;
2170
2171 /* We'll clean this up in btrfs_cleanup_transaction */
2172 if (trans->aborted)
2173 return 0;
2174
2175 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2176 return 0;
2177
2178 delayed_refs = &trans->transaction->delayed_refs;
2179 if (count == 0)
2180 count = atomic_read(&delayed_refs->num_entries) * 2;
2181
2182again:
2183#ifdef SCRAMBLE_DELAYED_REFS
2184 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2185#endif
2186 ret = __btrfs_run_delayed_refs(trans, count);
2187 if (ret < 0) {
2188 btrfs_abort_transaction(trans, ret);
2189 return ret;
2190 }
2191
2192 if (run_all) {
2193 btrfs_create_pending_block_groups(trans);
2194
2195 spin_lock(&delayed_refs->lock);
2196 node = rb_first_cached(&delayed_refs->href_root);
2197 if (!node) {
2198 spin_unlock(&delayed_refs->lock);
2199 goto out;
2200 }
2201 head = rb_entry(node, struct btrfs_delayed_ref_head,
2202 href_node);
2203 refcount_inc(&head->refs);
2204 spin_unlock(&delayed_refs->lock);
2205
2206 /* Mutex was contended, block until it's released and retry. */
2207 mutex_lock(&head->mutex);
2208 mutex_unlock(&head->mutex);
2209
2210 btrfs_put_delayed_ref_head(head);
2211 cond_resched();
2212 goto again;
2213 }
2214out:
2215 return 0;
2216}
2217
2218int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2219 u64 bytenr, u64 num_bytes, u64 flags,
2220 int level, int is_data)
2221{
2222 struct btrfs_delayed_extent_op *extent_op;
2223 int ret;
2224
2225 extent_op = btrfs_alloc_delayed_extent_op();
2226 if (!extent_op)
2227 return -ENOMEM;
2228
2229 extent_op->flags_to_set = flags;
2230 extent_op->update_flags = true;
2231 extent_op->update_key = false;
2232 extent_op->is_data = is_data ? true : false;
2233 extent_op->level = level;
2234
2235 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2236 if (ret)
2237 btrfs_free_delayed_extent_op(extent_op);
2238 return ret;
2239}
2240
2241static noinline int check_delayed_ref(struct btrfs_root *root,
2242 struct btrfs_path *path,
2243 u64 objectid, u64 offset, u64 bytenr)
2244{
2245 struct btrfs_delayed_ref_head *head;
2246 struct btrfs_delayed_ref_node *ref;
2247 struct btrfs_delayed_data_ref *data_ref;
2248 struct btrfs_delayed_ref_root *delayed_refs;
2249 struct btrfs_transaction *cur_trans;
2250 struct rb_node *node;
2251 int ret = 0;
2252
2253 spin_lock(&root->fs_info->trans_lock);
2254 cur_trans = root->fs_info->running_transaction;
2255 if (cur_trans)
2256 refcount_inc(&cur_trans->use_count);
2257 spin_unlock(&root->fs_info->trans_lock);
2258 if (!cur_trans)
2259 return 0;
2260
2261 delayed_refs = &cur_trans->delayed_refs;
2262 spin_lock(&delayed_refs->lock);
2263 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2264 if (!head) {
2265 spin_unlock(&delayed_refs->lock);
2266 btrfs_put_transaction(cur_trans);
2267 return 0;
2268 }
2269
2270 if (!mutex_trylock(&head->mutex)) {
2271 refcount_inc(&head->refs);
2272 spin_unlock(&delayed_refs->lock);
2273
2274 btrfs_release_path(path);
2275
2276 /*
2277 * Mutex was contended, block until it's released and let
2278 * caller try again
2279 */
2280 mutex_lock(&head->mutex);
2281 mutex_unlock(&head->mutex);
2282 btrfs_put_delayed_ref_head(head);
2283 btrfs_put_transaction(cur_trans);
2284 return -EAGAIN;
2285 }
2286 spin_unlock(&delayed_refs->lock);
2287
2288 spin_lock(&head->lock);
2289 /*
2290 * XXX: We should replace this with a proper search function in the
2291 * future.
2292 */
2293 for (node = rb_first_cached(&head->ref_tree); node;
2294 node = rb_next(node)) {
2295 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2296 /* If it's a shared ref we know a cross reference exists */
2297 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2298 ret = 1;
2299 break;
2300 }
2301
2302 data_ref = btrfs_delayed_node_to_data_ref(ref);
2303
2304 /*
2305 * If our ref doesn't match the one we're currently looking at
2306 * then we have a cross reference.
2307 */
2308 if (data_ref->root != root->root_key.objectid ||
2309 data_ref->objectid != objectid ||
2310 data_ref->offset != offset) {
2311 ret = 1;
2312 break;
2313 }
2314 }
2315 spin_unlock(&head->lock);
2316 mutex_unlock(&head->mutex);
2317 btrfs_put_transaction(cur_trans);
2318 return ret;
2319}
2320
2321static noinline int check_committed_ref(struct btrfs_root *root,
2322 struct btrfs_path *path,
2323 u64 objectid, u64 offset, u64 bytenr)
2324{
2325 struct btrfs_fs_info *fs_info = root->fs_info;
2326 struct btrfs_root *extent_root = fs_info->extent_root;
2327 struct extent_buffer *leaf;
2328 struct btrfs_extent_data_ref *ref;
2329 struct btrfs_extent_inline_ref *iref;
2330 struct btrfs_extent_item *ei;
2331 struct btrfs_key key;
2332 u32 item_size;
2333 int type;
2334 int ret;
2335
2336 key.objectid = bytenr;
2337 key.offset = (u64)-1;
2338 key.type = BTRFS_EXTENT_ITEM_KEY;
2339
2340 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2341 if (ret < 0)
2342 goto out;
2343 BUG_ON(ret == 0); /* Corruption */
2344
2345 ret = -ENOENT;
2346 if (path->slots[0] == 0)
2347 goto out;
2348
2349 path->slots[0]--;
2350 leaf = path->nodes[0];
2351 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2352
2353 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2354 goto out;
2355
2356 ret = 1;
2357 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2358 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2359
2360 /* If extent item has more than 1 inline ref then it's shared */
2361 if (item_size != sizeof(*ei) +
2362 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2363 goto out;
2364
2365 /* If extent created before last snapshot => it's definitely shared */
2366 if (btrfs_extent_generation(leaf, ei) <=
2367 btrfs_root_last_snapshot(&root->root_item))
2368 goto out;
2369
2370 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2371
2372 /* If this extent has SHARED_DATA_REF then it's shared */
2373 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2374 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2375 goto out;
2376
2377 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2378 if (btrfs_extent_refs(leaf, ei) !=
2379 btrfs_extent_data_ref_count(leaf, ref) ||
2380 btrfs_extent_data_ref_root(leaf, ref) !=
2381 root->root_key.objectid ||
2382 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2383 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2384 goto out;
2385
2386 ret = 0;
2387out:
2388 return ret;
2389}
2390
2391int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2392 u64 bytenr)
2393{
2394 struct btrfs_path *path;
2395 int ret;
2396
2397 path = btrfs_alloc_path();
2398 if (!path)
2399 return -ENOMEM;
2400
2401 do {
2402 ret = check_committed_ref(root, path, objectid,
2403 offset, bytenr);
2404 if (ret && ret != -ENOENT)
2405 goto out;
2406
2407 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2408 } while (ret == -EAGAIN);
2409
2410out:
2411 btrfs_free_path(path);
2412 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2413 WARN_ON(ret > 0);
2414 return ret;
2415}
2416
2417static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2418 struct btrfs_root *root,
2419 struct extent_buffer *buf,
2420 int full_backref, int inc)
2421{
2422 struct btrfs_fs_info *fs_info = root->fs_info;
2423 u64 bytenr;
2424 u64 num_bytes;
2425 u64 parent;
2426 u64 ref_root;
2427 u32 nritems;
2428 struct btrfs_key key;
2429 struct btrfs_file_extent_item *fi;
2430 struct btrfs_ref generic_ref = { 0 };
2431 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2432 int i;
2433 int action;
2434 int level;
2435 int ret = 0;
2436
2437 if (btrfs_is_testing(fs_info))
2438 return 0;
2439
2440 ref_root = btrfs_header_owner(buf);
2441 nritems = btrfs_header_nritems(buf);
2442 level = btrfs_header_level(buf);
2443
2444 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
2445 return 0;
2446
2447 if (full_backref)
2448 parent = buf->start;
2449 else
2450 parent = 0;
2451 if (inc)
2452 action = BTRFS_ADD_DELAYED_REF;
2453 else
2454 action = BTRFS_DROP_DELAYED_REF;
2455
2456 for (i = 0; i < nritems; i++) {
2457 if (level == 0) {
2458 btrfs_item_key_to_cpu(buf, &key, i);
2459 if (key.type != BTRFS_EXTENT_DATA_KEY)
2460 continue;
2461 fi = btrfs_item_ptr(buf, i,
2462 struct btrfs_file_extent_item);
2463 if (btrfs_file_extent_type(buf, fi) ==
2464 BTRFS_FILE_EXTENT_INLINE)
2465 continue;
2466 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2467 if (bytenr == 0)
2468 continue;
2469
2470 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2471 key.offset -= btrfs_file_extent_offset(buf, fi);
2472 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2473 num_bytes, parent);
2474 generic_ref.real_root = root->root_key.objectid;
2475 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2476 key.offset);
2477 generic_ref.skip_qgroup = for_reloc;
2478 if (inc)
2479 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2480 else
2481 ret = btrfs_free_extent(trans, &generic_ref);
2482 if (ret)
2483 goto fail;
2484 } else {
2485 bytenr = btrfs_node_blockptr(buf, i);
2486 num_bytes = fs_info->nodesize;
2487 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2488 num_bytes, parent);
2489 generic_ref.real_root = root->root_key.objectid;
2490 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
2491 generic_ref.skip_qgroup = for_reloc;
2492 if (inc)
2493 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2494 else
2495 ret = btrfs_free_extent(trans, &generic_ref);
2496 if (ret)
2497 goto fail;
2498 }
2499 }
2500 return 0;
2501fail:
2502 return ret;
2503}
2504
2505int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2506 struct extent_buffer *buf, int full_backref)
2507{
2508 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2509}
2510
2511int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2512 struct extent_buffer *buf, int full_backref)
2513{
2514 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2515}
2516
2517int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
2518{
2519 struct btrfs_block_group_cache *block_group;
2520 int readonly = 0;
2521
2522 block_group = btrfs_lookup_block_group(fs_info, bytenr);
2523 if (!block_group || block_group->ro)
2524 readonly = 1;
2525 if (block_group)
2526 btrfs_put_block_group(block_group);
2527 return readonly;
2528}
2529
2530static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2531{
2532 struct btrfs_fs_info *fs_info = root->fs_info;
2533 u64 flags;
2534 u64 ret;
2535
2536 if (data)
2537 flags = BTRFS_BLOCK_GROUP_DATA;
2538 else if (root == fs_info->chunk_root)
2539 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2540 else
2541 flags = BTRFS_BLOCK_GROUP_METADATA;
2542
2543 ret = btrfs_get_alloc_profile(fs_info, flags);
2544 return ret;
2545}
2546
2547static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2548{
2549 struct btrfs_block_group_cache *cache;
2550 u64 bytenr;
2551
2552 spin_lock(&fs_info->block_group_cache_lock);
2553 bytenr = fs_info->first_logical_byte;
2554 spin_unlock(&fs_info->block_group_cache_lock);
2555
2556 if (bytenr < (u64)-1)
2557 return bytenr;
2558
2559 cache = btrfs_lookup_first_block_group(fs_info, search_start);
2560 if (!cache)
2561 return 0;
2562
2563 bytenr = cache->key.objectid;
2564 btrfs_put_block_group(cache);
2565
2566 return bytenr;
2567}
2568
2569static int pin_down_extent(struct btrfs_block_group_cache *cache,
2570 u64 bytenr, u64 num_bytes, int reserved)
2571{
2572 struct btrfs_fs_info *fs_info = cache->fs_info;
2573
2574 spin_lock(&cache->space_info->lock);
2575 spin_lock(&cache->lock);
2576 cache->pinned += num_bytes;
2577 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2578 num_bytes);
2579 if (reserved) {
2580 cache->reserved -= num_bytes;
2581 cache->space_info->bytes_reserved -= num_bytes;
2582 }
2583 spin_unlock(&cache->lock);
2584 spin_unlock(&cache->space_info->lock);
2585
2586 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
2587 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2588 set_extent_dirty(fs_info->pinned_extents, bytenr,
2589 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2590 return 0;
2591}
2592
2593/*
2594 * this function must be called within transaction
2595 */
2596int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
2597 u64 bytenr, u64 num_bytes, int reserved)
2598{
2599 struct btrfs_block_group_cache *cache;
2600
2601 cache = btrfs_lookup_block_group(fs_info, bytenr);
2602 BUG_ON(!cache); /* Logic error */
2603
2604 pin_down_extent(cache, bytenr, num_bytes, reserved);
2605
2606 btrfs_put_block_group(cache);
2607 return 0;
2608}
2609
2610/*
2611 * this function must be called within transaction
2612 */
2613int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
2614 u64 bytenr, u64 num_bytes)
2615{
2616 struct btrfs_block_group_cache *cache;
2617 int ret;
2618
2619 cache = btrfs_lookup_block_group(fs_info, bytenr);
2620 if (!cache)
2621 return -EINVAL;
2622
2623 /*
2624 * pull in the free space cache (if any) so that our pin
2625 * removes the free space from the cache. We have load_only set
2626 * to one because the slow code to read in the free extents does check
2627 * the pinned extents.
2628 */
2629 btrfs_cache_block_group(cache, 1);
2630
2631 pin_down_extent(cache, bytenr, num_bytes, 0);
2632
2633 /* remove us from the free space cache (if we're there at all) */
2634 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2635 btrfs_put_block_group(cache);
2636 return ret;
2637}
2638
2639static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2640 u64 start, u64 num_bytes)
2641{
2642 int ret;
2643 struct btrfs_block_group_cache *block_group;
2644 struct btrfs_caching_control *caching_ctl;
2645
2646 block_group = btrfs_lookup_block_group(fs_info, start);
2647 if (!block_group)
2648 return -EINVAL;
2649
2650 btrfs_cache_block_group(block_group, 0);
2651 caching_ctl = btrfs_get_caching_control(block_group);
2652
2653 if (!caching_ctl) {
2654 /* Logic error */
2655 BUG_ON(!btrfs_block_group_cache_done(block_group));
2656 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2657 } else {
2658 mutex_lock(&caching_ctl->mutex);
2659
2660 if (start >= caching_ctl->progress) {
2661 ret = btrfs_add_excluded_extent(fs_info, start,
2662 num_bytes);
2663 } else if (start + num_bytes <= caching_ctl->progress) {
2664 ret = btrfs_remove_free_space(block_group,
2665 start, num_bytes);
2666 } else {
2667 num_bytes = caching_ctl->progress - start;
2668 ret = btrfs_remove_free_space(block_group,
2669 start, num_bytes);
2670 if (ret)
2671 goto out_lock;
2672
2673 num_bytes = (start + num_bytes) -
2674 caching_ctl->progress;
2675 start = caching_ctl->progress;
2676 ret = btrfs_add_excluded_extent(fs_info, start,
2677 num_bytes);
2678 }
2679out_lock:
2680 mutex_unlock(&caching_ctl->mutex);
2681 btrfs_put_caching_control(caching_ctl);
2682 }
2683 btrfs_put_block_group(block_group);
2684 return ret;
2685}
2686
2687int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2688{
2689 struct btrfs_fs_info *fs_info = eb->fs_info;
2690 struct btrfs_file_extent_item *item;
2691 struct btrfs_key key;
2692 int found_type;
2693 int i;
2694 int ret = 0;
2695
2696 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2697 return 0;
2698
2699 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2700 btrfs_item_key_to_cpu(eb, &key, i);
2701 if (key.type != BTRFS_EXTENT_DATA_KEY)
2702 continue;
2703 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2704 found_type = btrfs_file_extent_type(eb, item);
2705 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2706 continue;
2707 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2708 continue;
2709 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2710 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2711 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2712 if (ret)
2713 break;
2714 }
2715
2716 return ret;
2717}
2718
2719static void
2720btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
2721{
2722 atomic_inc(&bg->reservations);
2723}
2724
2725void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
2726{
2727 struct btrfs_caching_control *next;
2728 struct btrfs_caching_control *caching_ctl;
2729 struct btrfs_block_group_cache *cache;
2730
2731 down_write(&fs_info->commit_root_sem);
2732
2733 list_for_each_entry_safe(caching_ctl, next,
2734 &fs_info->caching_block_groups, list) {
2735 cache = caching_ctl->block_group;
2736 if (btrfs_block_group_cache_done(cache)) {
2737 cache->last_byte_to_unpin = (u64)-1;
2738 list_del_init(&caching_ctl->list);
2739 btrfs_put_caching_control(caching_ctl);
2740 } else {
2741 cache->last_byte_to_unpin = caching_ctl->progress;
2742 }
2743 }
2744
2745 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
2746 fs_info->pinned_extents = &fs_info->freed_extents[1];
2747 else
2748 fs_info->pinned_extents = &fs_info->freed_extents[0];
2749
2750 up_write(&fs_info->commit_root_sem);
2751
2752 btrfs_update_global_block_rsv(fs_info);
2753}
2754
2755/*
2756 * Returns the free cluster for the given space info and sets empty_cluster to
2757 * what it should be based on the mount options.
2758 */
2759static struct btrfs_free_cluster *
2760fetch_cluster_info(struct btrfs_fs_info *fs_info,
2761 struct btrfs_space_info *space_info, u64 *empty_cluster)
2762{
2763 struct btrfs_free_cluster *ret = NULL;
2764
2765 *empty_cluster = 0;
2766 if (btrfs_mixed_space_info(space_info))
2767 return ret;
2768
2769 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2770 ret = &fs_info->meta_alloc_cluster;
2771 if (btrfs_test_opt(fs_info, SSD))
2772 *empty_cluster = SZ_2M;
2773 else
2774 *empty_cluster = SZ_64K;
2775 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2776 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2777 *empty_cluster = SZ_2M;
2778 ret = &fs_info->data_alloc_cluster;
2779 }
2780
2781 return ret;
2782}
2783
2784static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2785 u64 start, u64 end,
2786 const bool return_free_space)
2787{
2788 struct btrfs_block_group_cache *cache = NULL;
2789 struct btrfs_space_info *space_info;
2790 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2791 struct btrfs_free_cluster *cluster = NULL;
2792 u64 len;
2793 u64 total_unpinned = 0;
2794 u64 empty_cluster = 0;
2795 bool readonly;
2796
2797 while (start <= end) {
2798 readonly = false;
2799 if (!cache ||
2800 start >= cache->key.objectid + cache->key.offset) {
2801 if (cache)
2802 btrfs_put_block_group(cache);
2803 total_unpinned = 0;
2804 cache = btrfs_lookup_block_group(fs_info, start);
2805 BUG_ON(!cache); /* Logic error */
2806
2807 cluster = fetch_cluster_info(fs_info,
2808 cache->space_info,
2809 &empty_cluster);
2810 empty_cluster <<= 1;
2811 }
2812
2813 len = cache->key.objectid + cache->key.offset - start;
2814 len = min(len, end + 1 - start);
2815
2816 if (start < cache->last_byte_to_unpin) {
2817 len = min(len, cache->last_byte_to_unpin - start);
2818 if (return_free_space)
2819 btrfs_add_free_space(cache, start, len);
2820 }
2821
2822 start += len;
2823 total_unpinned += len;
2824 space_info = cache->space_info;
2825
2826 /*
2827 * If this space cluster has been marked as fragmented and we've
2828 * unpinned enough in this block group to potentially allow a
2829 * cluster to be created inside of it go ahead and clear the
2830 * fragmented check.
2831 */
2832 if (cluster && cluster->fragmented &&
2833 total_unpinned > empty_cluster) {
2834 spin_lock(&cluster->lock);
2835 cluster->fragmented = 0;
2836 spin_unlock(&cluster->lock);
2837 }
2838
2839 spin_lock(&space_info->lock);
2840 spin_lock(&cache->lock);
2841 cache->pinned -= len;
2842 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2843 space_info->max_extent_size = 0;
2844 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2845 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2846 if (cache->ro) {
2847 space_info->bytes_readonly += len;
2848 readonly = true;
2849 }
2850 spin_unlock(&cache->lock);
2851 if (!readonly && return_free_space &&
2852 global_rsv->space_info == space_info) {
2853 u64 to_add = len;
2854
2855 spin_lock(&global_rsv->lock);
2856 if (!global_rsv->full) {
2857 to_add = min(len, global_rsv->size -
2858 global_rsv->reserved);
2859 global_rsv->reserved += to_add;
2860 btrfs_space_info_update_bytes_may_use(fs_info,
2861 space_info, to_add);
2862 if (global_rsv->reserved >= global_rsv->size)
2863 global_rsv->full = 1;
2864 len -= to_add;
2865 }
2866 spin_unlock(&global_rsv->lock);
2867 /* Add to any tickets we may have */
2868 if (len)
2869 btrfs_try_granting_tickets(fs_info,
2870 space_info);
2871 }
2872 spin_unlock(&space_info->lock);
2873 }
2874
2875 if (cache)
2876 btrfs_put_block_group(cache);
2877 return 0;
2878}
2879
2880int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2881{
2882 struct btrfs_fs_info *fs_info = trans->fs_info;
2883 struct btrfs_block_group_cache *block_group, *tmp;
2884 struct list_head *deleted_bgs;
2885 struct extent_io_tree *unpin;
2886 u64 start;
2887 u64 end;
2888 int ret;
2889
2890 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
2891 unpin = &fs_info->freed_extents[1];
2892 else
2893 unpin = &fs_info->freed_extents[0];
2894
2895 while (!trans->aborted) {
2896 struct extent_state *cached_state = NULL;
2897
2898 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2899 ret = find_first_extent_bit(unpin, 0, &start, &end,
2900 EXTENT_DIRTY, &cached_state);
2901 if (ret) {
2902 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2903 break;
2904 }
2905
2906 if (btrfs_test_opt(fs_info, DISCARD))
2907 ret = btrfs_discard_extent(fs_info, start,
2908 end + 1 - start, NULL);
2909
2910 clear_extent_dirty(unpin, start, end, &cached_state);
2911 unpin_extent_range(fs_info, start, end, true);
2912 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2913 free_extent_state(cached_state);
2914 cond_resched();
2915 }
2916
2917 /*
2918 * Transaction is finished. We don't need the lock anymore. We
2919 * do need to clean up the block groups in case of a transaction
2920 * abort.
2921 */
2922 deleted_bgs = &trans->transaction->deleted_bgs;
2923 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2924 u64 trimmed = 0;
2925
2926 ret = -EROFS;
2927 if (!trans->aborted)
2928 ret = btrfs_discard_extent(fs_info,
2929 block_group->key.objectid,
2930 block_group->key.offset,
2931 &trimmed);
2932
2933 list_del_init(&block_group->bg_list);
2934 btrfs_put_block_group_trimming(block_group);
2935 btrfs_put_block_group(block_group);
2936
2937 if (ret) {
2938 const char *errstr = btrfs_decode_error(ret);
2939 btrfs_warn(fs_info,
2940 "discard failed while removing blockgroup: errno=%d %s",
2941 ret, errstr);
2942 }
2943 }
2944
2945 return 0;
2946}
2947
2948static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2949 struct btrfs_delayed_ref_node *node, u64 parent,
2950 u64 root_objectid, u64 owner_objectid,
2951 u64 owner_offset, int refs_to_drop,
2952 struct btrfs_delayed_extent_op *extent_op)
2953{
2954 struct btrfs_fs_info *info = trans->fs_info;
2955 struct btrfs_key key;
2956 struct btrfs_path *path;
2957 struct btrfs_root *extent_root = info->extent_root;
2958 struct extent_buffer *leaf;
2959 struct btrfs_extent_item *ei;
2960 struct btrfs_extent_inline_ref *iref;
2961 int ret;
2962 int is_data;
2963 int extent_slot = 0;
2964 int found_extent = 0;
2965 int num_to_del = 1;
2966 u32 item_size;
2967 u64 refs;
2968 u64 bytenr = node->bytenr;
2969 u64 num_bytes = node->num_bytes;
2970 int last_ref = 0;
2971 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2972
2973 path = btrfs_alloc_path();
2974 if (!path)
2975 return -ENOMEM;
2976
2977 path->reada = READA_FORWARD;
2978 path->leave_spinning = 1;
2979
2980 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2981 BUG_ON(!is_data && refs_to_drop != 1);
2982
2983 if (is_data)
2984 skinny_metadata = false;
2985
2986 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2987 parent, root_objectid, owner_objectid,
2988 owner_offset);
2989 if (ret == 0) {
2990 extent_slot = path->slots[0];
2991 while (extent_slot >= 0) {
2992 btrfs_item_key_to_cpu(path->nodes[0], &key,
2993 extent_slot);
2994 if (key.objectid != bytenr)
2995 break;
2996 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2997 key.offset == num_bytes) {
2998 found_extent = 1;
2999 break;
3000 }
3001 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3002 key.offset == owner_objectid) {
3003 found_extent = 1;
3004 break;
3005 }
3006 if (path->slots[0] - extent_slot > 5)
3007 break;
3008 extent_slot--;
3009 }
3010
3011 if (!found_extent) {
3012 BUG_ON(iref);
3013 ret = remove_extent_backref(trans, path, NULL,
3014 refs_to_drop,
3015 is_data, &last_ref);
3016 if (ret) {
3017 btrfs_abort_transaction(trans, ret);
3018 goto out;
3019 }
3020 btrfs_release_path(path);
3021 path->leave_spinning = 1;
3022
3023 key.objectid = bytenr;
3024 key.type = BTRFS_EXTENT_ITEM_KEY;
3025 key.offset = num_bytes;
3026
3027 if (!is_data && skinny_metadata) {
3028 key.type = BTRFS_METADATA_ITEM_KEY;
3029 key.offset = owner_objectid;
3030 }
3031
3032 ret = btrfs_search_slot(trans, extent_root,
3033 &key, path, -1, 1);
3034 if (ret > 0 && skinny_metadata && path->slots[0]) {
3035 /*
3036 * Couldn't find our skinny metadata item,
3037 * see if we have ye olde extent item.
3038 */
3039 path->slots[0]--;
3040 btrfs_item_key_to_cpu(path->nodes[0], &key,
3041 path->slots[0]);
3042 if (key.objectid == bytenr &&
3043 key.type == BTRFS_EXTENT_ITEM_KEY &&
3044 key.offset == num_bytes)
3045 ret = 0;
3046 }
3047
3048 if (ret > 0 && skinny_metadata) {
3049 skinny_metadata = false;
3050 key.objectid = bytenr;
3051 key.type = BTRFS_EXTENT_ITEM_KEY;
3052 key.offset = num_bytes;
3053 btrfs_release_path(path);
3054 ret = btrfs_search_slot(trans, extent_root,
3055 &key, path, -1, 1);
3056 }
3057
3058 if (ret) {
3059 btrfs_err(info,
3060 "umm, got %d back from search, was looking for %llu",
3061 ret, bytenr);
3062 if (ret > 0)
3063 btrfs_print_leaf(path->nodes[0]);
3064 }
3065 if (ret < 0) {
3066 btrfs_abort_transaction(trans, ret);
3067 goto out;
3068 }
3069 extent_slot = path->slots[0];
3070 }
3071 } else if (WARN_ON(ret == -ENOENT)) {
3072 btrfs_print_leaf(path->nodes[0]);
3073 btrfs_err(info,
3074 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
3075 bytenr, parent, root_objectid, owner_objectid,
3076 owner_offset);
3077 btrfs_abort_transaction(trans, ret);
3078 goto out;
3079 } else {
3080 btrfs_abort_transaction(trans, ret);
3081 goto out;
3082 }
3083
3084 leaf = path->nodes[0];
3085 item_size = btrfs_item_size_nr(leaf, extent_slot);
3086 if (unlikely(item_size < sizeof(*ei))) {
3087 ret = -EINVAL;
3088 btrfs_print_v0_err(info);
3089 btrfs_abort_transaction(trans, ret);
3090 goto out;
3091 }
3092 ei = btrfs_item_ptr(leaf, extent_slot,
3093 struct btrfs_extent_item);
3094 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3095 key.type == BTRFS_EXTENT_ITEM_KEY) {
3096 struct btrfs_tree_block_info *bi;
3097 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
3098 bi = (struct btrfs_tree_block_info *)(ei + 1);
3099 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3100 }
3101
3102 refs = btrfs_extent_refs(leaf, ei);
3103 if (refs < refs_to_drop) {
3104 btrfs_err(info,
3105 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
3106 refs_to_drop, refs, bytenr);
3107 ret = -EINVAL;
3108 btrfs_abort_transaction(trans, ret);
3109 goto out;
3110 }
3111 refs -= refs_to_drop;
3112
3113 if (refs > 0) {
3114 if (extent_op)
3115 __run_delayed_extent_op(extent_op, leaf, ei);
3116 /*
3117 * In the case of inline back ref, reference count will
3118 * be updated by remove_extent_backref
3119 */
3120 if (iref) {
3121 BUG_ON(!found_extent);
3122 } else {
3123 btrfs_set_extent_refs(leaf, ei, refs);
3124 btrfs_mark_buffer_dirty(leaf);
3125 }
3126 if (found_extent) {
3127 ret = remove_extent_backref(trans, path, iref,
3128 refs_to_drop, is_data,
3129 &last_ref);
3130 if (ret) {
3131 btrfs_abort_transaction(trans, ret);
3132 goto out;
3133 }
3134 }
3135 } else {
3136 if (found_extent) {
3137 BUG_ON(is_data && refs_to_drop !=
3138 extent_data_ref_count(path, iref));
3139 if (iref) {
3140 BUG_ON(path->slots[0] != extent_slot);
3141 } else {
3142 BUG_ON(path->slots[0] != extent_slot + 1);
3143 path->slots[0] = extent_slot;
3144 num_to_del = 2;
3145 }
3146 }
3147
3148 last_ref = 1;
3149 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3150 num_to_del);
3151 if (ret) {
3152 btrfs_abort_transaction(trans, ret);
3153 goto out;
3154 }
3155 btrfs_release_path(path);
3156
3157 if (is_data) {
3158 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
3159 if (ret) {
3160 btrfs_abort_transaction(trans, ret);
3161 goto out;
3162 }
3163 }
3164
3165 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3166 if (ret) {
3167 btrfs_abort_transaction(trans, ret);
3168 goto out;
3169 }
3170
3171 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3172 if (ret) {
3173 btrfs_abort_transaction(trans, ret);
3174 goto out;
3175 }
3176 }
3177 btrfs_release_path(path);
3178
3179out:
3180 btrfs_free_path(path);
3181 return ret;
3182}
3183
3184/*
3185 * when we free an block, it is possible (and likely) that we free the last
3186 * delayed ref for that extent as well. This searches the delayed ref tree for
3187 * a given extent, and if there are no other delayed refs to be processed, it
3188 * removes it from the tree.
3189 */
3190static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3191 u64 bytenr)
3192{
3193 struct btrfs_delayed_ref_head *head;
3194 struct btrfs_delayed_ref_root *delayed_refs;
3195 int ret = 0;
3196
3197 delayed_refs = &trans->transaction->delayed_refs;
3198 spin_lock(&delayed_refs->lock);
3199 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3200 if (!head)
3201 goto out_delayed_unlock;
3202
3203 spin_lock(&head->lock);
3204 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3205 goto out;
3206
3207 if (cleanup_extent_op(head) != NULL)
3208 goto out;
3209
3210 /*
3211 * waiting for the lock here would deadlock. If someone else has it
3212 * locked they are already in the process of dropping it anyway
3213 */
3214 if (!mutex_trylock(&head->mutex))
3215 goto out;
3216
3217 btrfs_delete_ref_head(delayed_refs, head);
3218 head->processing = 0;
3219
3220 spin_unlock(&head->lock);
3221 spin_unlock(&delayed_refs->lock);
3222
3223 BUG_ON(head->extent_op);
3224 if (head->must_insert_reserved)
3225 ret = 1;
3226
3227 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3228 mutex_unlock(&head->mutex);
3229 btrfs_put_delayed_ref_head(head);
3230 return ret;
3231out:
3232 spin_unlock(&head->lock);
3233
3234out_delayed_unlock:
3235 spin_unlock(&delayed_refs->lock);
3236 return 0;
3237}
3238
3239void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3240 struct btrfs_root *root,
3241 struct extent_buffer *buf,
3242 u64 parent, int last_ref)
3243{
3244 struct btrfs_fs_info *fs_info = root->fs_info;
3245 struct btrfs_ref generic_ref = { 0 };
3246 int pin = 1;
3247 int ret;
3248
3249 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3250 buf->start, buf->len, parent);
3251 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3252 root->root_key.objectid);
3253
3254 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3255 int old_ref_mod, new_ref_mod;
3256
3257 btrfs_ref_tree_mod(fs_info, &generic_ref);
3258 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
3259 &old_ref_mod, &new_ref_mod);
3260 BUG_ON(ret); /* -ENOMEM */
3261 pin = old_ref_mod >= 0 && new_ref_mod < 0;
3262 }
3263
3264 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3265 struct btrfs_block_group_cache *cache;
3266
3267 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3268 ret = check_ref_cleanup(trans, buf->start);
3269 if (!ret)
3270 goto out;
3271 }
3272
3273 pin = 0;
3274 cache = btrfs_lookup_block_group(fs_info, buf->start);
3275
3276 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3277 pin_down_extent(cache, buf->start, buf->len, 1);
3278 btrfs_put_block_group(cache);
3279 goto out;
3280 }
3281
3282 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3283
3284 btrfs_add_free_space(cache, buf->start, buf->len);
3285 btrfs_free_reserved_bytes(cache, buf->len, 0);
3286 btrfs_put_block_group(cache);
3287 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3288 }
3289out:
3290 if (pin)
3291 add_pinned_bytes(fs_info, &generic_ref);
3292
3293 if (last_ref) {
3294 /*
3295 * Deleting the buffer, clear the corrupt flag since it doesn't
3296 * matter anymore.
3297 */
3298 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3299 }
3300}
3301
3302/* Can return -ENOMEM */
3303int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3304{
3305 struct btrfs_fs_info *fs_info = trans->fs_info;
3306 int old_ref_mod, new_ref_mod;
3307 int ret;
3308
3309 if (btrfs_is_testing(fs_info))
3310 return 0;
3311
3312 /*
3313 * tree log blocks never actually go into the extent allocation
3314 * tree, just update pinning info and exit early.
3315 */
3316 if ((ref->type == BTRFS_REF_METADATA &&
3317 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3318 (ref->type == BTRFS_REF_DATA &&
3319 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3320 /* unlocks the pinned mutex */
3321 btrfs_pin_extent(fs_info, ref->bytenr, ref->len, 1);
3322 old_ref_mod = new_ref_mod = 0;
3323 ret = 0;
3324 } else if (ref->type == BTRFS_REF_METADATA) {
3325 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
3326 &old_ref_mod, &new_ref_mod);
3327 } else {
3328 ret = btrfs_add_delayed_data_ref(trans, ref, 0,
3329 &old_ref_mod, &new_ref_mod);
3330 }
3331
3332 if (!((ref->type == BTRFS_REF_METADATA &&
3333 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3334 (ref->type == BTRFS_REF_DATA &&
3335 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3336 btrfs_ref_tree_mod(fs_info, ref);
3337
3338 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
3339 add_pinned_bytes(fs_info, ref);
3340
3341 return ret;
3342}
3343
3344enum btrfs_loop_type {
3345 LOOP_CACHING_NOWAIT,
3346 LOOP_CACHING_WAIT,
3347 LOOP_ALLOC_CHUNK,
3348 LOOP_NO_EMPTY_SIZE,
3349};
3350
3351static inline void
3352btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
3353 int delalloc)
3354{
3355 if (delalloc)
3356 down_read(&cache->data_rwsem);
3357}
3358
3359static inline void
3360btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
3361 int delalloc)
3362{
3363 btrfs_get_block_group(cache);
3364 if (delalloc)
3365 down_read(&cache->data_rwsem);
3366}
3367
3368static struct btrfs_block_group_cache *
3369btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
3370 struct btrfs_free_cluster *cluster,
3371 int delalloc)
3372{
3373 struct btrfs_block_group_cache *used_bg = NULL;
3374
3375 spin_lock(&cluster->refill_lock);
3376 while (1) {
3377 used_bg = cluster->block_group;
3378 if (!used_bg)
3379 return NULL;
3380
3381 if (used_bg == block_group)
3382 return used_bg;
3383
3384 btrfs_get_block_group(used_bg);
3385
3386 if (!delalloc)
3387 return used_bg;
3388
3389 if (down_read_trylock(&used_bg->data_rwsem))
3390 return used_bg;
3391
3392 spin_unlock(&cluster->refill_lock);
3393
3394 /* We should only have one-level nested. */
3395 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3396
3397 spin_lock(&cluster->refill_lock);
3398 if (used_bg == cluster->block_group)
3399 return used_bg;
3400
3401 up_read(&used_bg->data_rwsem);
3402 btrfs_put_block_group(used_bg);
3403 }
3404}
3405
3406static inline void
3407btrfs_release_block_group(struct btrfs_block_group_cache *cache,
3408 int delalloc)
3409{
3410 if (delalloc)
3411 up_read(&cache->data_rwsem);
3412 btrfs_put_block_group(cache);
3413}
3414
3415/*
3416 * Structure used internally for find_free_extent() function. Wraps needed
3417 * parameters.
3418 */
3419struct find_free_extent_ctl {
3420 /* Basic allocation info */
3421 u64 ram_bytes;
3422 u64 num_bytes;
3423 u64 empty_size;
3424 u64 flags;
3425 int delalloc;
3426
3427 /* Where to start the search inside the bg */
3428 u64 search_start;
3429
3430 /* For clustered allocation */
3431 u64 empty_cluster;
3432
3433 bool have_caching_bg;
3434 bool orig_have_caching_bg;
3435
3436 /* RAID index, converted from flags */
3437 int index;
3438
3439 /*
3440 * Current loop number, check find_free_extent_update_loop() for details
3441 */
3442 int loop;
3443
3444 /*
3445 * Whether we're refilling a cluster, if true we need to re-search
3446 * current block group but don't try to refill the cluster again.
3447 */
3448 bool retry_clustered;
3449
3450 /*
3451 * Whether we're updating free space cache, if true we need to re-search
3452 * current block group but don't try updating free space cache again.
3453 */
3454 bool retry_unclustered;
3455
3456 /* If current block group is cached */
3457 int cached;
3458
3459 /* Max contiguous hole found */
3460 u64 max_extent_size;
3461
3462 /* Total free space from free space cache, not always contiguous */
3463 u64 total_free_space;
3464
3465 /* Found result */
3466 u64 found_offset;
3467};
3468
3469
3470/*
3471 * Helper function for find_free_extent().
3472 *
3473 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3474 * Return -EAGAIN to inform caller that we need to re-search this block group
3475 * Return >0 to inform caller that we find nothing
3476 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3477 */
3478static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
3479 struct btrfs_free_cluster *last_ptr,
3480 struct find_free_extent_ctl *ffe_ctl,
3481 struct btrfs_block_group_cache **cluster_bg_ret)
3482{
3483 struct btrfs_block_group_cache *cluster_bg;
3484 u64 aligned_cluster;
3485 u64 offset;
3486 int ret;
3487
3488 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3489 if (!cluster_bg)
3490 goto refill_cluster;
3491 if (cluster_bg != bg && (cluster_bg->ro ||
3492 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3493 goto release_cluster;
3494
3495 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3496 ffe_ctl->num_bytes, cluster_bg->key.objectid,
3497 &ffe_ctl->max_extent_size);
3498 if (offset) {
3499 /* We have a block, we're done */
3500 spin_unlock(&last_ptr->refill_lock);
3501 trace_btrfs_reserve_extent_cluster(cluster_bg,
3502 ffe_ctl->search_start, ffe_ctl->num_bytes);
3503 *cluster_bg_ret = cluster_bg;
3504 ffe_ctl->found_offset = offset;
3505 return 0;
3506 }
3507 WARN_ON(last_ptr->block_group != cluster_bg);
3508
3509release_cluster:
3510 /*
3511 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3512 * lets just skip it and let the allocator find whatever block it can
3513 * find. If we reach this point, we will have tried the cluster
3514 * allocator plenty of times and not have found anything, so we are
3515 * likely way too fragmented for the clustering stuff to find anything.
3516 *
3517 * However, if the cluster is taken from the current block group,
3518 * release the cluster first, so that we stand a better chance of
3519 * succeeding in the unclustered allocation.
3520 */
3521 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3522 spin_unlock(&last_ptr->refill_lock);
3523 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3524 return -ENOENT;
3525 }
3526
3527 /* This cluster didn't work out, free it and start over */
3528 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3529
3530 if (cluster_bg != bg)
3531 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3532
3533refill_cluster:
3534 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3535 spin_unlock(&last_ptr->refill_lock);
3536 return -ENOENT;
3537 }
3538
3539 aligned_cluster = max_t(u64,
3540 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3541 bg->full_stripe_len);
3542 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3543 ffe_ctl->num_bytes, aligned_cluster);
3544 if (ret == 0) {
3545 /* Now pull our allocation out of this cluster */
3546 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3547 ffe_ctl->num_bytes, ffe_ctl->search_start,
3548 &ffe_ctl->max_extent_size);
3549 if (offset) {
3550 /* We found one, proceed */
3551 spin_unlock(&last_ptr->refill_lock);
3552 trace_btrfs_reserve_extent_cluster(bg,
3553 ffe_ctl->search_start,
3554 ffe_ctl->num_bytes);
3555 ffe_ctl->found_offset = offset;
3556 return 0;
3557 }
3558 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3559 !ffe_ctl->retry_clustered) {
3560 spin_unlock(&last_ptr->refill_lock);
3561
3562 ffe_ctl->retry_clustered = true;
3563 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3564 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3565 return -EAGAIN;
3566 }
3567 /*
3568 * At this point we either didn't find a cluster or we weren't able to
3569 * allocate a block from our cluster. Free the cluster we've been
3570 * trying to use, and go to the next block group.
3571 */
3572 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3573 spin_unlock(&last_ptr->refill_lock);
3574 return 1;
3575}
3576
3577/*
3578 * Return >0 to inform caller that we find nothing
3579 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3580 * Return -EAGAIN to inform caller that we need to re-search this block group
3581 */
3582static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg,
3583 struct btrfs_free_cluster *last_ptr,
3584 struct find_free_extent_ctl *ffe_ctl)
3585{
3586 u64 offset;
3587
3588 /*
3589 * We are doing an unclustered allocation, set the fragmented flag so
3590 * we don't bother trying to setup a cluster again until we get more
3591 * space.
3592 */
3593 if (unlikely(last_ptr)) {
3594 spin_lock(&last_ptr->lock);
3595 last_ptr->fragmented = 1;
3596 spin_unlock(&last_ptr->lock);
3597 }
3598 if (ffe_ctl->cached) {
3599 struct btrfs_free_space_ctl *free_space_ctl;
3600
3601 free_space_ctl = bg->free_space_ctl;
3602 spin_lock(&free_space_ctl->tree_lock);
3603 if (free_space_ctl->free_space <
3604 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3605 ffe_ctl->empty_size) {
3606 ffe_ctl->total_free_space = max_t(u64,
3607 ffe_ctl->total_free_space,
3608 free_space_ctl->free_space);
3609 spin_unlock(&free_space_ctl->tree_lock);
3610 return 1;
3611 }
3612 spin_unlock(&free_space_ctl->tree_lock);
3613 }
3614
3615 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3616 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3617 &ffe_ctl->max_extent_size);
3618
3619 /*
3620 * If we didn't find a chunk, and we haven't failed on this block group
3621 * before, and this block group is in the middle of caching and we are
3622 * ok with waiting, then go ahead and wait for progress to be made, and
3623 * set @retry_unclustered to true.
3624 *
3625 * If @retry_unclustered is true then we've already waited on this
3626 * block group once and should move on to the next block group.
3627 */
3628 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3629 ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3630 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3631 ffe_ctl->empty_size);
3632 ffe_ctl->retry_unclustered = true;
3633 return -EAGAIN;
3634 } else if (!offset) {
3635 return 1;
3636 }
3637 ffe_ctl->found_offset = offset;
3638 return 0;
3639}
3640
3641/*
3642 * Return >0 means caller needs to re-search for free extent
3643 * Return 0 means we have the needed free extent.
3644 * Return <0 means we failed to locate any free extent.
3645 */
3646static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3647 struct btrfs_free_cluster *last_ptr,
3648 struct btrfs_key *ins,
3649 struct find_free_extent_ctl *ffe_ctl,
3650 int full_search, bool use_cluster)
3651{
3652 struct btrfs_root *root = fs_info->extent_root;
3653 int ret;
3654
3655 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3656 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3657 ffe_ctl->orig_have_caching_bg = true;
3658
3659 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3660 ffe_ctl->have_caching_bg)
3661 return 1;
3662
3663 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3664 return 1;
3665
3666 if (ins->objectid) {
3667 if (!use_cluster && last_ptr) {
3668 spin_lock(&last_ptr->lock);
3669 last_ptr->window_start = ins->objectid;
3670 spin_unlock(&last_ptr->lock);
3671 }
3672 return 0;
3673 }
3674
3675 /*
3676 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3677 * caching kthreads as we move along
3678 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3679 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3680 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3681 * again
3682 */
3683 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3684 ffe_ctl->index = 0;
3685 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
3686 /*
3687 * We want to skip the LOOP_CACHING_WAIT step if we
3688 * don't have any uncached bgs and we've already done a
3689 * full search through.
3690 */
3691 if (ffe_ctl->orig_have_caching_bg || !full_search)
3692 ffe_ctl->loop = LOOP_CACHING_WAIT;
3693 else
3694 ffe_ctl->loop = LOOP_ALLOC_CHUNK;
3695 } else {
3696 ffe_ctl->loop++;
3697 }
3698
3699 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3700 struct btrfs_trans_handle *trans;
3701 int exist = 0;
3702
3703 trans = current->journal_info;
3704 if (trans)
3705 exist = 1;
3706 else
3707 trans = btrfs_join_transaction(root);
3708
3709 if (IS_ERR(trans)) {
3710 ret = PTR_ERR(trans);
3711 return ret;
3712 }
3713
3714 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3715 CHUNK_ALLOC_FORCE);
3716
3717 /*
3718 * If we can't allocate a new chunk we've already looped
3719 * through at least once, move on to the NO_EMPTY_SIZE
3720 * case.
3721 */
3722 if (ret == -ENOSPC)
3723 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3724
3725 /* Do not bail out on ENOSPC since we can do more. */
3726 if (ret < 0 && ret != -ENOSPC)
3727 btrfs_abort_transaction(trans, ret);
3728 else
3729 ret = 0;
3730 if (!exist)
3731 btrfs_end_transaction(trans);
3732 if (ret)
3733 return ret;
3734 }
3735
3736 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
3737 /*
3738 * Don't loop again if we already have no empty_size and
3739 * no empty_cluster.
3740 */
3741 if (ffe_ctl->empty_size == 0 &&
3742 ffe_ctl->empty_cluster == 0)
3743 return -ENOSPC;
3744 ffe_ctl->empty_size = 0;
3745 ffe_ctl->empty_cluster = 0;
3746 }
3747 return 1;
3748 }
3749 return -ENOSPC;
3750}
3751
3752/*
3753 * walks the btree of allocated extents and find a hole of a given size.
3754 * The key ins is changed to record the hole:
3755 * ins->objectid == start position
3756 * ins->flags = BTRFS_EXTENT_ITEM_KEY
3757 * ins->offset == the size of the hole.
3758 * Any available blocks before search_start are skipped.
3759 *
3760 * If there is no suitable free space, we will record the max size of
3761 * the free space extent currently.
3762 *
3763 * The overall logic and call chain:
3764 *
3765 * find_free_extent()
3766 * |- Iterate through all block groups
3767 * | |- Get a valid block group
3768 * | |- Try to do clustered allocation in that block group
3769 * | |- Try to do unclustered allocation in that block group
3770 * | |- Check if the result is valid
3771 * | | |- If valid, then exit
3772 * | |- Jump to next block group
3773 * |
3774 * |- Push harder to find free extents
3775 * |- If not found, re-iterate all block groups
3776 */
3777static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
3778 u64 ram_bytes, u64 num_bytes, u64 empty_size,
3779 u64 hint_byte, struct btrfs_key *ins,
3780 u64 flags, int delalloc)
3781{
3782 int ret = 0;
3783 struct btrfs_free_cluster *last_ptr = NULL;
3784 struct btrfs_block_group_cache *block_group = NULL;
3785 struct find_free_extent_ctl ffe_ctl = {0};
3786 struct btrfs_space_info *space_info;
3787 bool use_cluster = true;
3788 bool full_search = false;
3789
3790 WARN_ON(num_bytes < fs_info->sectorsize);
3791
3792 ffe_ctl.ram_bytes = ram_bytes;
3793 ffe_ctl.num_bytes = num_bytes;
3794 ffe_ctl.empty_size = empty_size;
3795 ffe_ctl.flags = flags;
3796 ffe_ctl.search_start = 0;
3797 ffe_ctl.retry_clustered = false;
3798 ffe_ctl.retry_unclustered = false;
3799 ffe_ctl.delalloc = delalloc;
3800 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
3801 ffe_ctl.have_caching_bg = false;
3802 ffe_ctl.orig_have_caching_bg = false;
3803 ffe_ctl.found_offset = 0;
3804
3805 ins->type = BTRFS_EXTENT_ITEM_KEY;
3806 ins->objectid = 0;
3807 ins->offset = 0;
3808
3809 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3810
3811 space_info = btrfs_find_space_info(fs_info, flags);
3812 if (!space_info) {
3813 btrfs_err(fs_info, "No space info for %llu", flags);
3814 return -ENOSPC;
3815 }
3816
3817 /*
3818 * If our free space is heavily fragmented we may not be able to make
3819 * big contiguous allocations, so instead of doing the expensive search
3820 * for free space, simply return ENOSPC with our max_extent_size so we
3821 * can go ahead and search for a more manageable chunk.
3822 *
3823 * If our max_extent_size is large enough for our allocation simply
3824 * disable clustering since we will likely not be able to find enough
3825 * space to create a cluster and induce latency trying.
3826 */
3827 if (unlikely(space_info->max_extent_size)) {
3828 spin_lock(&space_info->lock);
3829 if (space_info->max_extent_size &&
3830 num_bytes > space_info->max_extent_size) {
3831 ins->offset = space_info->max_extent_size;
3832 spin_unlock(&space_info->lock);
3833 return -ENOSPC;
3834 } else if (space_info->max_extent_size) {
3835 use_cluster = false;
3836 }
3837 spin_unlock(&space_info->lock);
3838 }
3839
3840 last_ptr = fetch_cluster_info(fs_info, space_info,
3841 &ffe_ctl.empty_cluster);
3842 if (last_ptr) {
3843 spin_lock(&last_ptr->lock);
3844 if (last_ptr->block_group)
3845 hint_byte = last_ptr->window_start;
3846 if (last_ptr->fragmented) {
3847 /*
3848 * We still set window_start so we can keep track of the
3849 * last place we found an allocation to try and save
3850 * some time.
3851 */
3852 hint_byte = last_ptr->window_start;
3853 use_cluster = false;
3854 }
3855 spin_unlock(&last_ptr->lock);
3856 }
3857
3858 ffe_ctl.search_start = max(ffe_ctl.search_start,
3859 first_logical_byte(fs_info, 0));
3860 ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
3861 if (ffe_ctl.search_start == hint_byte) {
3862 block_group = btrfs_lookup_block_group(fs_info,
3863 ffe_ctl.search_start);
3864 /*
3865 * we don't want to use the block group if it doesn't match our
3866 * allocation bits, or if its not cached.
3867 *
3868 * However if we are re-searching with an ideal block group
3869 * picked out then we don't care that the block group is cached.
3870 */
3871 if (block_group && block_group_bits(block_group, flags) &&
3872 block_group->cached != BTRFS_CACHE_NO) {
3873 down_read(&space_info->groups_sem);
3874 if (list_empty(&block_group->list) ||
3875 block_group->ro) {
3876 /*
3877 * someone is removing this block group,
3878 * we can't jump into the have_block_group
3879 * target because our list pointers are not
3880 * valid
3881 */
3882 btrfs_put_block_group(block_group);
3883 up_read(&space_info->groups_sem);
3884 } else {
3885 ffe_ctl.index = btrfs_bg_flags_to_raid_index(
3886 block_group->flags);
3887 btrfs_lock_block_group(block_group, delalloc);
3888 goto have_block_group;
3889 }
3890 } else if (block_group) {
3891 btrfs_put_block_group(block_group);
3892 }
3893 }
3894search:
3895 ffe_ctl.have_caching_bg = false;
3896 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
3897 ffe_ctl.index == 0)
3898 full_search = true;
3899 down_read(&space_info->groups_sem);
3900 list_for_each_entry(block_group,
3901 &space_info->block_groups[ffe_ctl.index], list) {
3902 /* If the block group is read-only, we can skip it entirely. */
3903 if (unlikely(block_group->ro))
3904 continue;
3905
3906 btrfs_grab_block_group(block_group, delalloc);
3907 ffe_ctl.search_start = block_group->key.objectid;
3908
3909 /*
3910 * this can happen if we end up cycling through all the
3911 * raid types, but we want to make sure we only allocate
3912 * for the proper type.
3913 */
3914 if (!block_group_bits(block_group, flags)) {
3915 u64 extra = BTRFS_BLOCK_GROUP_DUP |
3916 BTRFS_BLOCK_GROUP_RAID1_MASK |
3917 BTRFS_BLOCK_GROUP_RAID56_MASK |
3918 BTRFS_BLOCK_GROUP_RAID10;
3919
3920 /*
3921 * if they asked for extra copies and this block group
3922 * doesn't provide them, bail. This does allow us to
3923 * fill raid0 from raid1.
3924 */
3925 if ((flags & extra) && !(block_group->flags & extra))
3926 goto loop;
3927
3928 /*
3929 * This block group has different flags than we want.
3930 * It's possible that we have MIXED_GROUP flag but no
3931 * block group is mixed. Just skip such block group.
3932 */
3933 btrfs_release_block_group(block_group, delalloc);
3934 continue;
3935 }
3936
3937have_block_group:
3938 ffe_ctl.cached = btrfs_block_group_cache_done(block_group);
3939 if (unlikely(!ffe_ctl.cached)) {
3940 ffe_ctl.have_caching_bg = true;
3941 ret = btrfs_cache_block_group(block_group, 0);
3942 BUG_ON(ret < 0);
3943 ret = 0;
3944 }
3945
3946 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
3947 goto loop;
3948
3949 /*
3950 * Ok we want to try and use the cluster allocator, so
3951 * lets look there
3952 */
3953 if (last_ptr && use_cluster) {
3954 struct btrfs_block_group_cache *cluster_bg = NULL;
3955
3956 ret = find_free_extent_clustered(block_group, last_ptr,
3957 &ffe_ctl, &cluster_bg);
3958
3959 if (ret == 0) {
3960 if (cluster_bg && cluster_bg != block_group) {
3961 btrfs_release_block_group(block_group,
3962 delalloc);
3963 block_group = cluster_bg;
3964 }
3965 goto checks;
3966 } else if (ret == -EAGAIN) {
3967 goto have_block_group;
3968 } else if (ret > 0) {
3969 goto loop;
3970 }
3971 /* ret == -ENOENT case falls through */
3972 }
3973
3974 ret = find_free_extent_unclustered(block_group, last_ptr,
3975 &ffe_ctl);
3976 if (ret == -EAGAIN)
3977 goto have_block_group;
3978 else if (ret > 0)
3979 goto loop;
3980 /* ret == 0 case falls through */
3981checks:
3982 ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
3983 fs_info->stripesize);
3984
3985 /* move on to the next group */
3986 if (ffe_ctl.search_start + num_bytes >
3987 block_group->key.objectid + block_group->key.offset) {
3988 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
3989 num_bytes);
3990 goto loop;
3991 }
3992
3993 if (ffe_ctl.found_offset < ffe_ctl.search_start)
3994 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
3995 ffe_ctl.search_start - ffe_ctl.found_offset);
3996
3997 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
3998 num_bytes, delalloc);
3999 if (ret == -EAGAIN) {
4000 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4001 num_bytes);
4002 goto loop;
4003 }
4004 btrfs_inc_block_group_reservations(block_group);
4005
4006 /* we are all good, lets return */
4007 ins->objectid = ffe_ctl.search_start;
4008 ins->offset = num_bytes;
4009
4010 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4011 num_bytes);
4012 btrfs_release_block_group(block_group, delalloc);
4013 break;
4014loop:
4015 ffe_ctl.retry_clustered = false;
4016 ffe_ctl.retry_unclustered = false;
4017 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4018 ffe_ctl.index);
4019 btrfs_release_block_group(block_group, delalloc);
4020 cond_resched();
4021 }
4022 up_read(&space_info->groups_sem);
4023
4024 ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
4025 full_search, use_cluster);
4026 if (ret > 0)
4027 goto search;
4028
4029 if (ret == -ENOSPC) {
4030 /*
4031 * Use ffe_ctl->total_free_space as fallback if we can't find
4032 * any contiguous hole.
4033 */
4034 if (!ffe_ctl.max_extent_size)
4035 ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4036 spin_lock(&space_info->lock);
4037 space_info->max_extent_size = ffe_ctl.max_extent_size;
4038 spin_unlock(&space_info->lock);
4039 ins->offset = ffe_ctl.max_extent_size;
4040 }
4041 return ret;
4042}
4043
4044/*
4045 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4046 * hole that is at least as big as @num_bytes.
4047 *
4048 * @root - The root that will contain this extent
4049 *
4050 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4051 * is used for accounting purposes. This value differs
4052 * from @num_bytes only in the case of compressed extents.
4053 *
4054 * @num_bytes - Number of bytes to allocate on-disk.
4055 *
4056 * @min_alloc_size - Indicates the minimum amount of space that the
4057 * allocator should try to satisfy. In some cases
4058 * @num_bytes may be larger than what is required and if
4059 * the filesystem is fragmented then allocation fails.
4060 * However, the presence of @min_alloc_size gives a
4061 * chance to try and satisfy the smaller allocation.
4062 *
4063 * @empty_size - A hint that you plan on doing more COW. This is the
4064 * size in bytes the allocator should try to find free
4065 * next to the block it returns. This is just a hint and
4066 * may be ignored by the allocator.
4067 *
4068 * @hint_byte - Hint to the allocator to start searching above the byte
4069 * address passed. It might be ignored.
4070 *
4071 * @ins - This key is modified to record the found hole. It will
4072 * have the following values:
4073 * ins->objectid == start position
4074 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4075 * ins->offset == the size of the hole.
4076 *
4077 * @is_data - Boolean flag indicating whether an extent is
4078 * allocated for data (true) or metadata (false)
4079 *
4080 * @delalloc - Boolean flag indicating whether this allocation is for
4081 * delalloc or not. If 'true' data_rwsem of block groups
4082 * is going to be acquired.
4083 *
4084 *
4085 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4086 * case -ENOSPC is returned then @ins->offset will contain the size of the
4087 * largest available hole the allocator managed to find.
4088 */
4089int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4090 u64 num_bytes, u64 min_alloc_size,
4091 u64 empty_size, u64 hint_byte,
4092 struct btrfs_key *ins, int is_data, int delalloc)
4093{
4094 struct btrfs_fs_info *fs_info = root->fs_info;
4095 bool final_tried = num_bytes == min_alloc_size;
4096 u64 flags;
4097 int ret;
4098
4099 flags = get_alloc_profile_by_root(root, is_data);
4100again:
4101 WARN_ON(num_bytes < fs_info->sectorsize);
4102 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
4103 hint_byte, ins, flags, delalloc);
4104 if (!ret && !is_data) {
4105 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4106 } else if (ret == -ENOSPC) {
4107 if (!final_tried && ins->offset) {
4108 num_bytes = min(num_bytes >> 1, ins->offset);
4109 num_bytes = round_down(num_bytes,
4110 fs_info->sectorsize);
4111 num_bytes = max(num_bytes, min_alloc_size);
4112 ram_bytes = num_bytes;
4113 if (num_bytes == min_alloc_size)
4114 final_tried = true;
4115 goto again;
4116 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4117 struct btrfs_space_info *sinfo;
4118
4119 sinfo = btrfs_find_space_info(fs_info, flags);
4120 btrfs_err(fs_info,
4121 "allocation failed flags %llu, wanted %llu",
4122 flags, num_bytes);
4123 if (sinfo)
4124 btrfs_dump_space_info(fs_info, sinfo,
4125 num_bytes, 1);
4126 }
4127 }
4128
4129 return ret;
4130}
4131
4132static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4133 u64 start, u64 len,
4134 int pin, int delalloc)
4135{
4136 struct btrfs_block_group_cache *cache;
4137 int ret = 0;
4138
4139 cache = btrfs_lookup_block_group(fs_info, start);
4140 if (!cache) {
4141 btrfs_err(fs_info, "Unable to find block group for %llu",
4142 start);
4143 return -ENOSPC;
4144 }
4145
4146 if (pin)
4147 pin_down_extent(cache, start, len, 1);
4148 else {
4149 if (btrfs_test_opt(fs_info, DISCARD))
4150 ret = btrfs_discard_extent(fs_info, start, len, NULL);
4151 btrfs_add_free_space(cache, start, len);
4152 btrfs_free_reserved_bytes(cache, len, delalloc);
4153 trace_btrfs_reserved_extent_free(fs_info, start, len);
4154 }
4155
4156 btrfs_put_block_group(cache);
4157 return ret;
4158}
4159
4160int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4161 u64 start, u64 len, int delalloc)
4162{
4163 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
4164}
4165
4166int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
4167 u64 start, u64 len)
4168{
4169 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
4170}
4171
4172static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4173 u64 parent, u64 root_objectid,
4174 u64 flags, u64 owner, u64 offset,
4175 struct btrfs_key *ins, int ref_mod)
4176{
4177 struct btrfs_fs_info *fs_info = trans->fs_info;
4178 int ret;
4179 struct btrfs_extent_item *extent_item;
4180 struct btrfs_extent_inline_ref *iref;
4181 struct btrfs_path *path;
4182 struct extent_buffer *leaf;
4183 int type;
4184 u32 size;
4185
4186 if (parent > 0)
4187 type = BTRFS_SHARED_DATA_REF_KEY;
4188 else
4189 type = BTRFS_EXTENT_DATA_REF_KEY;
4190
4191 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4192
4193 path = btrfs_alloc_path();
4194 if (!path)
4195 return -ENOMEM;
4196
4197 path->leave_spinning = 1;
4198 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4199 ins, size);
4200 if (ret) {
4201 btrfs_free_path(path);
4202 return ret;
4203 }
4204
4205 leaf = path->nodes[0];
4206 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4207 struct btrfs_extent_item);
4208 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4209 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4210 btrfs_set_extent_flags(leaf, extent_item,
4211 flags | BTRFS_EXTENT_FLAG_DATA);
4212
4213 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4214 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4215 if (parent > 0) {
4216 struct btrfs_shared_data_ref *ref;
4217 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4218 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4219 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4220 } else {
4221 struct btrfs_extent_data_ref *ref;
4222 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4223 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4224 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4225 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4226 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4227 }
4228
4229 btrfs_mark_buffer_dirty(path->nodes[0]);
4230 btrfs_free_path(path);
4231
4232 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4233 if (ret)
4234 return ret;
4235
4236 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4237 if (ret) { /* -ENOENT, logic error */
4238 btrfs_err(fs_info, "update block group failed for %llu %llu",
4239 ins->objectid, ins->offset);
4240 BUG();
4241 }
4242 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4243 return ret;
4244}
4245
4246static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4247 struct btrfs_delayed_ref_node *node,
4248 struct btrfs_delayed_extent_op *extent_op)
4249{
4250 struct btrfs_fs_info *fs_info = trans->fs_info;
4251 int ret;
4252 struct btrfs_extent_item *extent_item;
4253 struct btrfs_key extent_key;
4254 struct btrfs_tree_block_info *block_info;
4255 struct btrfs_extent_inline_ref *iref;
4256 struct btrfs_path *path;
4257 struct extent_buffer *leaf;
4258 struct btrfs_delayed_tree_ref *ref;
4259 u32 size = sizeof(*extent_item) + sizeof(*iref);
4260 u64 num_bytes;
4261 u64 flags = extent_op->flags_to_set;
4262 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4263
4264 ref = btrfs_delayed_node_to_tree_ref(node);
4265
4266 extent_key.objectid = node->bytenr;
4267 if (skinny_metadata) {
4268 extent_key.offset = ref->level;
4269 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4270 num_bytes = fs_info->nodesize;
4271 } else {
4272 extent_key.offset = node->num_bytes;
4273 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4274 size += sizeof(*block_info);
4275 num_bytes = node->num_bytes;
4276 }
4277
4278 path = btrfs_alloc_path();
4279 if (!path)
4280 return -ENOMEM;
4281
4282 path->leave_spinning = 1;
4283 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4284 &extent_key, size);
4285 if (ret) {
4286 btrfs_free_path(path);
4287 return ret;
4288 }
4289
4290 leaf = path->nodes[0];
4291 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4292 struct btrfs_extent_item);
4293 btrfs_set_extent_refs(leaf, extent_item, 1);
4294 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4295 btrfs_set_extent_flags(leaf, extent_item,
4296 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4297
4298 if (skinny_metadata) {
4299 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4300 } else {
4301 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4302 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4303 btrfs_set_tree_block_level(leaf, block_info, ref->level);
4304 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4305 }
4306
4307 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4308 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4309 btrfs_set_extent_inline_ref_type(leaf, iref,
4310 BTRFS_SHARED_BLOCK_REF_KEY);
4311 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4312 } else {
4313 btrfs_set_extent_inline_ref_type(leaf, iref,
4314 BTRFS_TREE_BLOCK_REF_KEY);
4315 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4316 }
4317
4318 btrfs_mark_buffer_dirty(leaf);
4319 btrfs_free_path(path);
4320
4321 ret = remove_from_free_space_tree(trans, extent_key.objectid,
4322 num_bytes);
4323 if (ret)
4324 return ret;
4325
4326 ret = btrfs_update_block_group(trans, extent_key.objectid,
4327 fs_info->nodesize, 1);
4328 if (ret) { /* -ENOENT, logic error */
4329 btrfs_err(fs_info, "update block group failed for %llu %llu",
4330 extent_key.objectid, extent_key.offset);
4331 BUG();
4332 }
4333
4334 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4335 fs_info->nodesize);
4336 return ret;
4337}
4338
4339int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4340 struct btrfs_root *root, u64 owner,
4341 u64 offset, u64 ram_bytes,
4342 struct btrfs_key *ins)
4343{
4344 struct btrfs_ref generic_ref = { 0 };
4345 int ret;
4346
4347 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4348
4349 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4350 ins->objectid, ins->offset, 0);
4351 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
4352 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4353 ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
4354 ram_bytes, NULL, NULL);
4355 return ret;
4356}
4357
4358/*
4359 * this is used by the tree logging recovery code. It records that
4360 * an extent has been allocated and makes sure to clear the free
4361 * space cache bits as well
4362 */
4363int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4364 u64 root_objectid, u64 owner, u64 offset,
4365 struct btrfs_key *ins)
4366{
4367 struct btrfs_fs_info *fs_info = trans->fs_info;
4368 int ret;
4369 struct btrfs_block_group_cache *block_group;
4370 struct btrfs_space_info *space_info;
4371
4372 /*
4373 * Mixed block groups will exclude before processing the log so we only
4374 * need to do the exclude dance if this fs isn't mixed.
4375 */
4376 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4377 ret = __exclude_logged_extent(fs_info, ins->objectid,
4378 ins->offset);
4379 if (ret)
4380 return ret;
4381 }
4382
4383 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4384 if (!block_group)
4385 return -EINVAL;
4386
4387 space_info = block_group->space_info;
4388 spin_lock(&space_info->lock);
4389 spin_lock(&block_group->lock);
4390 space_info->bytes_reserved += ins->offset;
4391 block_group->reserved += ins->offset;
4392 spin_unlock(&block_group->lock);
4393 spin_unlock(&space_info->lock);
4394
4395 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4396 offset, ins, 1);
4397 btrfs_put_block_group(block_group);
4398 return ret;
4399}
4400
4401static struct extent_buffer *
4402btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4403 u64 bytenr, int level, u64 owner)
4404{
4405 struct btrfs_fs_info *fs_info = root->fs_info;
4406 struct extent_buffer *buf;
4407
4408 buf = btrfs_find_create_tree_block(fs_info, bytenr);
4409 if (IS_ERR(buf))
4410 return buf;
4411
4412 /*
4413 * Extra safety check in case the extent tree is corrupted and extent
4414 * allocator chooses to use a tree block which is already used and
4415 * locked.
4416 */
4417 if (buf->lock_owner == current->pid) {
4418 btrfs_err_rl(fs_info,
4419"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4420 buf->start, btrfs_header_owner(buf), current->pid);
4421 free_extent_buffer(buf);
4422 return ERR_PTR(-EUCLEAN);
4423 }
4424
4425 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
4426 btrfs_tree_lock(buf);
4427 btrfs_clean_tree_block(buf);
4428 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4429
4430 btrfs_set_lock_blocking_write(buf);
4431 set_extent_buffer_uptodate(buf);
4432
4433 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4434 btrfs_set_header_level(buf, level);
4435 btrfs_set_header_bytenr(buf, buf->start);
4436 btrfs_set_header_generation(buf, trans->transid);
4437 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4438 btrfs_set_header_owner(buf, owner);
4439 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4440 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4441 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4442 buf->log_index = root->log_transid % 2;
4443 /*
4444 * we allow two log transactions at a time, use different
4445 * EXTENT bit to differentiate dirty pages.
4446 */
4447 if (buf->log_index == 0)
4448 set_extent_dirty(&root->dirty_log_pages, buf->start,
4449 buf->start + buf->len - 1, GFP_NOFS);
4450 else
4451 set_extent_new(&root->dirty_log_pages, buf->start,
4452 buf->start + buf->len - 1);
4453 } else {
4454 buf->log_index = -1;
4455 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4456 buf->start + buf->len - 1, GFP_NOFS);
4457 }
4458 trans->dirty = true;
4459 /* this returns a buffer locked for blocking */
4460 return buf;
4461}
4462
4463/*
4464 * finds a free extent and does all the dirty work required for allocation
4465 * returns the tree buffer or an ERR_PTR on error.
4466 */
4467struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4468 struct btrfs_root *root,
4469 u64 parent, u64 root_objectid,
4470 const struct btrfs_disk_key *key,
4471 int level, u64 hint,
4472 u64 empty_size)
4473{
4474 struct btrfs_fs_info *fs_info = root->fs_info;
4475 struct btrfs_key ins;
4476 struct btrfs_block_rsv *block_rsv;
4477 struct extent_buffer *buf;
4478 struct btrfs_delayed_extent_op *extent_op;
4479 struct btrfs_ref generic_ref = { 0 };
4480 u64 flags = 0;
4481 int ret;
4482 u32 blocksize = fs_info->nodesize;
4483 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4484
4485#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4486 if (btrfs_is_testing(fs_info)) {
4487 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4488 level, root_objectid);
4489 if (!IS_ERR(buf))
4490 root->alloc_bytenr += blocksize;
4491 return buf;
4492 }
4493#endif
4494
4495 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4496 if (IS_ERR(block_rsv))
4497 return ERR_CAST(block_rsv);
4498
4499 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4500 empty_size, hint, &ins, 0, 0);
4501 if (ret)
4502 goto out_unuse;
4503
4504 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4505 root_objectid);
4506 if (IS_ERR(buf)) {
4507 ret = PTR_ERR(buf);
4508 goto out_free_reserved;
4509 }
4510
4511 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4512 if (parent == 0)
4513 parent = ins.objectid;
4514 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4515 } else
4516 BUG_ON(parent > 0);
4517
4518 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4519 extent_op = btrfs_alloc_delayed_extent_op();
4520 if (!extent_op) {
4521 ret = -ENOMEM;
4522 goto out_free_buf;
4523 }
4524 if (key)
4525 memcpy(&extent_op->key, key, sizeof(extent_op->key));
4526 else
4527 memset(&extent_op->key, 0, sizeof(extent_op->key));
4528 extent_op->flags_to_set = flags;
4529 extent_op->update_key = skinny_metadata ? false : true;
4530 extent_op->update_flags = true;
4531 extent_op->is_data = false;
4532 extent_op->level = level;
4533
4534 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4535 ins.objectid, ins.offset, parent);
4536 generic_ref.real_root = root->root_key.objectid;
4537 btrfs_init_tree_ref(&generic_ref, level, root_objectid);
4538 btrfs_ref_tree_mod(fs_info, &generic_ref);
4539 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
4540 extent_op, NULL, NULL);
4541 if (ret)
4542 goto out_free_delayed;
4543 }
4544 return buf;
4545
4546out_free_delayed:
4547 btrfs_free_delayed_extent_op(extent_op);
4548out_free_buf:
4549 free_extent_buffer(buf);
4550out_free_reserved:
4551 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4552out_unuse:
4553 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4554 return ERR_PTR(ret);
4555}
4556
4557struct walk_control {
4558 u64 refs[BTRFS_MAX_LEVEL];
4559 u64 flags[BTRFS_MAX_LEVEL];
4560 struct btrfs_key update_progress;
4561 struct btrfs_key drop_progress;
4562 int drop_level;
4563 int stage;
4564 int level;
4565 int shared_level;
4566 int update_ref;
4567 int keep_locks;
4568 int reada_slot;
4569 int reada_count;
4570 int restarted;
4571};
4572
4573#define DROP_REFERENCE 1
4574#define UPDATE_BACKREF 2
4575
4576static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4577 struct btrfs_root *root,
4578 struct walk_control *wc,
4579 struct btrfs_path *path)
4580{
4581 struct btrfs_fs_info *fs_info = root->fs_info;
4582 u64 bytenr;
4583 u64 generation;
4584 u64 refs;
4585 u64 flags;
4586 u32 nritems;
4587 struct btrfs_key key;
4588 struct extent_buffer *eb;
4589 int ret;
4590 int slot;
4591 int nread = 0;
4592
4593 if (path->slots[wc->level] < wc->reada_slot) {
4594 wc->reada_count = wc->reada_count * 2 / 3;
4595 wc->reada_count = max(wc->reada_count, 2);
4596 } else {
4597 wc->reada_count = wc->reada_count * 3 / 2;
4598 wc->reada_count = min_t(int, wc->reada_count,
4599 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4600 }
4601
4602 eb = path->nodes[wc->level];
4603 nritems = btrfs_header_nritems(eb);
4604
4605 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4606 if (nread >= wc->reada_count)
4607 break;
4608
4609 cond_resched();
4610 bytenr = btrfs_node_blockptr(eb, slot);
4611 generation = btrfs_node_ptr_generation(eb, slot);
4612
4613 if (slot == path->slots[wc->level])
4614 goto reada;
4615
4616 if (wc->stage == UPDATE_BACKREF &&
4617 generation <= root->root_key.offset)
4618 continue;
4619
4620 /* We don't lock the tree block, it's OK to be racy here */
4621 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
4622 wc->level - 1, 1, &refs,
4623 &flags);
4624 /* We don't care about errors in readahead. */
4625 if (ret < 0)
4626 continue;
4627 BUG_ON(refs == 0);
4628
4629 if (wc->stage == DROP_REFERENCE) {
4630 if (refs == 1)
4631 goto reada;
4632
4633 if (wc->level == 1 &&
4634 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4635 continue;
4636 if (!wc->update_ref ||
4637 generation <= root->root_key.offset)
4638 continue;
4639 btrfs_node_key_to_cpu(eb, &key, slot);
4640 ret = btrfs_comp_cpu_keys(&key,
4641 &wc->update_progress);
4642 if (ret < 0)
4643 continue;
4644 } else {
4645 if (wc->level == 1 &&
4646 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4647 continue;
4648 }
4649reada:
4650 readahead_tree_block(fs_info, bytenr);
4651 nread++;
4652 }
4653 wc->reada_slot = slot;
4654}
4655
4656/*
4657 * helper to process tree block while walking down the tree.
4658 *
4659 * when wc->stage == UPDATE_BACKREF, this function updates
4660 * back refs for pointers in the block.
4661 *
4662 * NOTE: return value 1 means we should stop walking down.
4663 */
4664static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4665 struct btrfs_root *root,
4666 struct btrfs_path *path,
4667 struct walk_control *wc, int lookup_info)
4668{
4669 struct btrfs_fs_info *fs_info = root->fs_info;
4670 int level = wc->level;
4671 struct extent_buffer *eb = path->nodes[level];
4672 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4673 int ret;
4674
4675 if (wc->stage == UPDATE_BACKREF &&
4676 btrfs_header_owner(eb) != root->root_key.objectid)
4677 return 1;
4678
4679 /*
4680 * when reference count of tree block is 1, it won't increase
4681 * again. once full backref flag is set, we never clear it.
4682 */
4683 if (lookup_info &&
4684 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
4685 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
4686 BUG_ON(!path->locks[level]);
4687 ret = btrfs_lookup_extent_info(trans, fs_info,
4688 eb->start, level, 1,
4689 &wc->refs[level],
4690 &wc->flags[level]);
4691 BUG_ON(ret == -ENOMEM);
4692 if (ret)
4693 return ret;
4694 BUG_ON(wc->refs[level] == 0);
4695 }
4696
4697 if (wc->stage == DROP_REFERENCE) {
4698 if (wc->refs[level] > 1)
4699 return 1;
4700
4701 if (path->locks[level] && !wc->keep_locks) {
4702 btrfs_tree_unlock_rw(eb, path->locks[level]);
4703 path->locks[level] = 0;
4704 }
4705 return 0;
4706 }
4707
4708 /* wc->stage == UPDATE_BACKREF */
4709 if (!(wc->flags[level] & flag)) {
4710 BUG_ON(!path->locks[level]);
4711 ret = btrfs_inc_ref(trans, root, eb, 1);
4712 BUG_ON(ret); /* -ENOMEM */
4713 ret = btrfs_dec_ref(trans, root, eb, 0);
4714 BUG_ON(ret); /* -ENOMEM */
4715 ret = btrfs_set_disk_extent_flags(trans, eb->start,
4716 eb->len, flag,
4717 btrfs_header_level(eb), 0);
4718 BUG_ON(ret); /* -ENOMEM */
4719 wc->flags[level] |= flag;
4720 }
4721
4722 /*
4723 * the block is shared by multiple trees, so it's not good to
4724 * keep the tree lock
4725 */
4726 if (path->locks[level] && level > 0) {
4727 btrfs_tree_unlock_rw(eb, path->locks[level]);
4728 path->locks[level] = 0;
4729 }
4730 return 0;
4731}
4732
4733/*
4734 * This is used to verify a ref exists for this root to deal with a bug where we
4735 * would have a drop_progress key that hadn't been updated properly.
4736 */
4737static int check_ref_exists(struct btrfs_trans_handle *trans,
4738 struct btrfs_root *root, u64 bytenr, u64 parent,
4739 int level)
4740{
4741 struct btrfs_path *path;
4742 struct btrfs_extent_inline_ref *iref;
4743 int ret;
4744
4745 path = btrfs_alloc_path();
4746 if (!path)
4747 return -ENOMEM;
4748
4749 ret = lookup_extent_backref(trans, path, &iref, bytenr,
4750 root->fs_info->nodesize, parent,
4751 root->root_key.objectid, level, 0);
4752 btrfs_free_path(path);
4753 if (ret == -ENOENT)
4754 return 0;
4755 if (ret < 0)
4756 return ret;
4757 return 1;
4758}
4759
4760/*
4761 * helper to process tree block pointer.
4762 *
4763 * when wc->stage == DROP_REFERENCE, this function checks
4764 * reference count of the block pointed to. if the block
4765 * is shared and we need update back refs for the subtree
4766 * rooted at the block, this function changes wc->stage to
4767 * UPDATE_BACKREF. if the block is shared and there is no
4768 * need to update back, this function drops the reference
4769 * to the block.
4770 *
4771 * NOTE: return value 1 means we should stop walking down.
4772 */
4773static noinline int do_walk_down(struct btrfs_trans_handle *trans,
4774 struct btrfs_root *root,
4775 struct btrfs_path *path,
4776 struct walk_control *wc, int *lookup_info)
4777{
4778 struct btrfs_fs_info *fs_info = root->fs_info;
4779 u64 bytenr;
4780 u64 generation;
4781 u64 parent;
4782 struct btrfs_key key;
4783 struct btrfs_key first_key;
4784 struct btrfs_ref ref = { 0 };
4785 struct extent_buffer *next;
4786 int level = wc->level;
4787 int reada = 0;
4788 int ret = 0;
4789 bool need_account = false;
4790
4791 generation = btrfs_node_ptr_generation(path->nodes[level],
4792 path->slots[level]);
4793 /*
4794 * if the lower level block was created before the snapshot
4795 * was created, we know there is no need to update back refs
4796 * for the subtree
4797 */
4798 if (wc->stage == UPDATE_BACKREF &&
4799 generation <= root->root_key.offset) {
4800 *lookup_info = 1;
4801 return 1;
4802 }
4803
4804 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
4805 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
4806 path->slots[level]);
4807
4808 next = find_extent_buffer(fs_info, bytenr);
4809 if (!next) {
4810 next = btrfs_find_create_tree_block(fs_info, bytenr);
4811 if (IS_ERR(next))
4812 return PTR_ERR(next);
4813
4814 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
4815 level - 1);
4816 reada = 1;
4817 }
4818 btrfs_tree_lock(next);
4819 btrfs_set_lock_blocking_write(next);
4820
4821 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
4822 &wc->refs[level - 1],
4823 &wc->flags[level - 1]);
4824 if (ret < 0)
4825 goto out_unlock;
4826
4827 if (unlikely(wc->refs[level - 1] == 0)) {
4828 btrfs_err(fs_info, "Missing references.");
4829 ret = -EIO;
4830 goto out_unlock;
4831 }
4832 *lookup_info = 0;
4833
4834 if (wc->stage == DROP_REFERENCE) {
4835 if (wc->refs[level - 1] > 1) {
4836 need_account = true;
4837 if (level == 1 &&
4838 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4839 goto skip;
4840
4841 if (!wc->update_ref ||
4842 generation <= root->root_key.offset)
4843 goto skip;
4844
4845 btrfs_node_key_to_cpu(path->nodes[level], &key,
4846 path->slots[level]);
4847 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
4848 if (ret < 0)
4849 goto skip;
4850
4851 wc->stage = UPDATE_BACKREF;
4852 wc->shared_level = level - 1;
4853 }
4854 } else {
4855 if (level == 1 &&
4856 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4857 goto skip;
4858 }
4859
4860 if (!btrfs_buffer_uptodate(next, generation, 0)) {
4861 btrfs_tree_unlock(next);
4862 free_extent_buffer(next);
4863 next = NULL;
4864 *lookup_info = 1;
4865 }
4866
4867 if (!next) {
4868 if (reada && level == 1)
4869 reada_walk_down(trans, root, wc, path);
4870 next = read_tree_block(fs_info, bytenr, generation, level - 1,
4871 &first_key);
4872 if (IS_ERR(next)) {
4873 return PTR_ERR(next);
4874 } else if (!extent_buffer_uptodate(next)) {
4875 free_extent_buffer(next);
4876 return -EIO;
4877 }
4878 btrfs_tree_lock(next);
4879 btrfs_set_lock_blocking_write(next);
4880 }
4881
4882 level--;
4883 ASSERT(level == btrfs_header_level(next));
4884 if (level != btrfs_header_level(next)) {
4885 btrfs_err(root->fs_info, "mismatched level");
4886 ret = -EIO;
4887 goto out_unlock;
4888 }
4889 path->nodes[level] = next;
4890 path->slots[level] = 0;
4891 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
4892 wc->level = level;
4893 if (wc->level == 1)
4894 wc->reada_slot = 0;
4895 return 0;
4896skip:
4897 wc->refs[level - 1] = 0;
4898 wc->flags[level - 1] = 0;
4899 if (wc->stage == DROP_REFERENCE) {
4900 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
4901 parent = path->nodes[level]->start;
4902 } else {
4903 ASSERT(root->root_key.objectid ==
4904 btrfs_header_owner(path->nodes[level]));
4905 if (root->root_key.objectid !=
4906 btrfs_header_owner(path->nodes[level])) {
4907 btrfs_err(root->fs_info,
4908 "mismatched block owner");
4909 ret = -EIO;
4910 goto out_unlock;
4911 }
4912 parent = 0;
4913 }
4914
4915 /*
4916 * If we had a drop_progress we need to verify the refs are set
4917 * as expected. If we find our ref then we know that from here
4918 * on out everything should be correct, and we can clear the
4919 * ->restarted flag.
4920 */
4921 if (wc->restarted) {
4922 ret = check_ref_exists(trans, root, bytenr, parent,
4923 level - 1);
4924 if (ret < 0)
4925 goto out_unlock;
4926 if (ret == 0)
4927 goto no_delete;
4928 ret = 0;
4929 wc->restarted = 0;
4930 }
4931
4932 /*
4933 * Reloc tree doesn't contribute to qgroup numbers, and we have
4934 * already accounted them at merge time (replace_path),
4935 * thus we could skip expensive subtree trace here.
4936 */
4937 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
4938 need_account) {
4939 ret = btrfs_qgroup_trace_subtree(trans, next,
4940 generation, level - 1);
4941 if (ret) {
4942 btrfs_err_rl(fs_info,
4943 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
4944 ret);
4945 }
4946 }
4947
4948 /*
4949 * We need to update the next key in our walk control so we can
4950 * update the drop_progress key accordingly. We don't care if
4951 * find_next_key doesn't find a key because that means we're at
4952 * the end and are going to clean up now.
4953 */
4954 wc->drop_level = level;
4955 find_next_key(path, level, &wc->drop_progress);
4956
4957 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
4958 fs_info->nodesize, parent);
4959 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
4960 ret = btrfs_free_extent(trans, &ref);
4961 if (ret)
4962 goto out_unlock;
4963 }
4964no_delete:
4965 *lookup_info = 1;
4966 ret = 1;
4967
4968out_unlock:
4969 btrfs_tree_unlock(next);
4970 free_extent_buffer(next);
4971
4972 return ret;
4973}
4974
4975/*
4976 * helper to process tree block while walking up the tree.
4977 *
4978 * when wc->stage == DROP_REFERENCE, this function drops
4979 * reference count on the block.
4980 *
4981 * when wc->stage == UPDATE_BACKREF, this function changes
4982 * wc->stage back to DROP_REFERENCE if we changed wc->stage
4983 * to UPDATE_BACKREF previously while processing the block.
4984 *
4985 * NOTE: return value 1 means we should stop walking up.
4986 */
4987static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
4988 struct btrfs_root *root,
4989 struct btrfs_path *path,
4990 struct walk_control *wc)
4991{
4992 struct btrfs_fs_info *fs_info = root->fs_info;
4993 int ret;
4994 int level = wc->level;
4995 struct extent_buffer *eb = path->nodes[level];
4996 u64 parent = 0;
4997
4998 if (wc->stage == UPDATE_BACKREF) {
4999 BUG_ON(wc->shared_level < level);
5000 if (level < wc->shared_level)
5001 goto out;
5002
5003 ret = find_next_key(path, level + 1, &wc->update_progress);
5004 if (ret > 0)
5005 wc->update_ref = 0;
5006
5007 wc->stage = DROP_REFERENCE;
5008 wc->shared_level = -1;
5009 path->slots[level] = 0;
5010
5011 /*
5012 * check reference count again if the block isn't locked.
5013 * we should start walking down the tree again if reference
5014 * count is one.
5015 */
5016 if (!path->locks[level]) {
5017 BUG_ON(level == 0);
5018 btrfs_tree_lock(eb);
5019 btrfs_set_lock_blocking_write(eb);
5020 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5021
5022 ret = btrfs_lookup_extent_info(trans, fs_info,
5023 eb->start, level, 1,
5024 &wc->refs[level],
5025 &wc->flags[level]);
5026 if (ret < 0) {
5027 btrfs_tree_unlock_rw(eb, path->locks[level]);
5028 path->locks[level] = 0;
5029 return ret;
5030 }
5031 BUG_ON(wc->refs[level] == 0);
5032 if (wc->refs[level] == 1) {
5033 btrfs_tree_unlock_rw(eb, path->locks[level]);
5034 path->locks[level] = 0;
5035 return 1;
5036 }
5037 }
5038 }
5039
5040 /* wc->stage == DROP_REFERENCE */
5041 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5042
5043 if (wc->refs[level] == 1) {
5044 if (level == 0) {
5045 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5046 ret = btrfs_dec_ref(trans, root, eb, 1);
5047 else
5048 ret = btrfs_dec_ref(trans, root, eb, 0);
5049 BUG_ON(ret); /* -ENOMEM */
5050 if (is_fstree(root->root_key.objectid)) {
5051 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5052 if (ret) {
5053 btrfs_err_rl(fs_info,
5054 "error %d accounting leaf items, quota is out of sync, rescan required",
5055 ret);
5056 }
5057 }
5058 }
5059 /* make block locked assertion in btrfs_clean_tree_block happy */
5060 if (!path->locks[level] &&
5061 btrfs_header_generation(eb) == trans->transid) {
5062 btrfs_tree_lock(eb);
5063 btrfs_set_lock_blocking_write(eb);
5064 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5065 }
5066 btrfs_clean_tree_block(eb);
5067 }
5068
5069 if (eb == root->node) {
5070 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5071 parent = eb->start;
5072 else if (root->root_key.objectid != btrfs_header_owner(eb))
5073 goto owner_mismatch;
5074 } else {
5075 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5076 parent = path->nodes[level + 1]->start;
5077 else if (root->root_key.objectid !=
5078 btrfs_header_owner(path->nodes[level + 1]))
5079 goto owner_mismatch;
5080 }
5081
5082 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5083out:
5084 wc->refs[level] = 0;
5085 wc->flags[level] = 0;
5086 return 0;
5087
5088owner_mismatch:
5089 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5090 btrfs_header_owner(eb), root->root_key.objectid);
5091 return -EUCLEAN;
5092}
5093
5094static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5095 struct btrfs_root *root,
5096 struct btrfs_path *path,
5097 struct walk_control *wc)
5098{
5099 int level = wc->level;
5100 int lookup_info = 1;
5101 int ret;
5102
5103 while (level >= 0) {
5104 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5105 if (ret > 0)
5106 break;
5107
5108 if (level == 0)
5109 break;
5110
5111 if (path->slots[level] >=
5112 btrfs_header_nritems(path->nodes[level]))
5113 break;
5114
5115 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5116 if (ret > 0) {
5117 path->slots[level]++;
5118 continue;
5119 } else if (ret < 0)
5120 return ret;
5121 level = wc->level;
5122 }
5123 return 0;
5124}
5125
5126static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5127 struct btrfs_root *root,
5128 struct btrfs_path *path,
5129 struct walk_control *wc, int max_level)
5130{
5131 int level = wc->level;
5132 int ret;
5133
5134 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5135 while (level < max_level && path->nodes[level]) {
5136 wc->level = level;
5137 if (path->slots[level] + 1 <
5138 btrfs_header_nritems(path->nodes[level])) {
5139 path->slots[level]++;
5140 return 0;
5141 } else {
5142 ret = walk_up_proc(trans, root, path, wc);
5143 if (ret > 0)
5144 return 0;
5145 if (ret < 0)
5146 return ret;
5147
5148 if (path->locks[level]) {
5149 btrfs_tree_unlock_rw(path->nodes[level],
5150 path->locks[level]);
5151 path->locks[level] = 0;
5152 }
5153 free_extent_buffer(path->nodes[level]);
5154 path->nodes[level] = NULL;
5155 level++;
5156 }
5157 }
5158 return 1;
5159}
5160
5161/*
5162 * drop a subvolume tree.
5163 *
5164 * this function traverses the tree freeing any blocks that only
5165 * referenced by the tree.
5166 *
5167 * when a shared tree block is found. this function decreases its
5168 * reference count by one. if update_ref is true, this function
5169 * also make sure backrefs for the shared block and all lower level
5170 * blocks are properly updated.
5171 *
5172 * If called with for_reloc == 0, may exit early with -EAGAIN
5173 */
5174int btrfs_drop_snapshot(struct btrfs_root *root,
5175 struct btrfs_block_rsv *block_rsv, int update_ref,
5176 int for_reloc)
5177{
5178 struct btrfs_fs_info *fs_info = root->fs_info;
5179 struct btrfs_path *path;
5180 struct btrfs_trans_handle *trans;
5181 struct btrfs_root *tree_root = fs_info->tree_root;
5182 struct btrfs_root_item *root_item = &root->root_item;
5183 struct walk_control *wc;
5184 struct btrfs_key key;
5185 int err = 0;
5186 int ret;
5187 int level;
5188 bool root_dropped = false;
5189
5190 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5191
5192 path = btrfs_alloc_path();
5193 if (!path) {
5194 err = -ENOMEM;
5195 goto out;
5196 }
5197
5198 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5199 if (!wc) {
5200 btrfs_free_path(path);
5201 err = -ENOMEM;
5202 goto out;
5203 }
5204
5205 trans = btrfs_start_transaction(tree_root, 0);
5206 if (IS_ERR(trans)) {
5207 err = PTR_ERR(trans);
5208 goto out_free;
5209 }
5210
5211 err = btrfs_run_delayed_items(trans);
5212 if (err)
5213 goto out_end_trans;
5214
5215 if (block_rsv)
5216 trans->block_rsv = block_rsv;
5217
5218 /*
5219 * This will help us catch people modifying the fs tree while we're
5220 * dropping it. It is unsafe to mess with the fs tree while it's being
5221 * dropped as we unlock the root node and parent nodes as we walk down
5222 * the tree, assuming nothing will change. If something does change
5223 * then we'll have stale information and drop references to blocks we've
5224 * already dropped.
5225 */
5226 set_bit(BTRFS_ROOT_DELETING, &root->state);
5227 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5228 level = btrfs_header_level(root->node);
5229 path->nodes[level] = btrfs_lock_root_node(root);
5230 btrfs_set_lock_blocking_write(path->nodes[level]);
5231 path->slots[level] = 0;
5232 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5233 memset(&wc->update_progress, 0,
5234 sizeof(wc->update_progress));
5235 } else {
5236 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5237 memcpy(&wc->update_progress, &key,
5238 sizeof(wc->update_progress));
5239
5240 level = root_item->drop_level;
5241 BUG_ON(level == 0);
5242 path->lowest_level = level;
5243 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5244 path->lowest_level = 0;
5245 if (ret < 0) {
5246 err = ret;
5247 goto out_end_trans;
5248 }
5249 WARN_ON(ret > 0);
5250
5251 /*
5252 * unlock our path, this is safe because only this
5253 * function is allowed to delete this snapshot
5254 */
5255 btrfs_unlock_up_safe(path, 0);
5256
5257 level = btrfs_header_level(root->node);
5258 while (1) {
5259 btrfs_tree_lock(path->nodes[level]);
5260 btrfs_set_lock_blocking_write(path->nodes[level]);
5261 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5262
5263 ret = btrfs_lookup_extent_info(trans, fs_info,
5264 path->nodes[level]->start,
5265 level, 1, &wc->refs[level],
5266 &wc->flags[level]);
5267 if (ret < 0) {
5268 err = ret;
5269 goto out_end_trans;
5270 }
5271 BUG_ON(wc->refs[level] == 0);
5272
5273 if (level == root_item->drop_level)
5274 break;
5275
5276 btrfs_tree_unlock(path->nodes[level]);
5277 path->locks[level] = 0;
5278 WARN_ON(wc->refs[level] != 1);
5279 level--;
5280 }
5281 }
5282
5283 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5284 wc->level = level;
5285 wc->shared_level = -1;
5286 wc->stage = DROP_REFERENCE;
5287 wc->update_ref = update_ref;
5288 wc->keep_locks = 0;
5289 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5290
5291 while (1) {
5292
5293 ret = walk_down_tree(trans, root, path, wc);
5294 if (ret < 0) {
5295 err = ret;
5296 break;
5297 }
5298
5299 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5300 if (ret < 0) {
5301 err = ret;
5302 break;
5303 }
5304
5305 if (ret > 0) {
5306 BUG_ON(wc->stage != DROP_REFERENCE);
5307 break;
5308 }
5309
5310 if (wc->stage == DROP_REFERENCE) {
5311 wc->drop_level = wc->level;
5312 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5313 &wc->drop_progress,
5314 path->slots[wc->drop_level]);
5315 }
5316 btrfs_cpu_key_to_disk(&root_item->drop_progress,
5317 &wc->drop_progress);
5318 root_item->drop_level = wc->drop_level;
5319
5320 BUG_ON(wc->level == 0);
5321 if (btrfs_should_end_transaction(trans) ||
5322 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5323 ret = btrfs_update_root(trans, tree_root,
5324 &root->root_key,
5325 root_item);
5326 if (ret) {
5327 btrfs_abort_transaction(trans, ret);
5328 err = ret;
5329 goto out_end_trans;
5330 }
5331
5332 btrfs_end_transaction_throttle(trans);
5333 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5334 btrfs_debug(fs_info,
5335 "drop snapshot early exit");
5336 err = -EAGAIN;
5337 goto out_free;
5338 }
5339
5340 trans = btrfs_start_transaction(tree_root, 0);
5341 if (IS_ERR(trans)) {
5342 err = PTR_ERR(trans);
5343 goto out_free;
5344 }
5345 if (block_rsv)
5346 trans->block_rsv = block_rsv;
5347 }
5348 }
5349 btrfs_release_path(path);
5350 if (err)
5351 goto out_end_trans;
5352
5353 ret = btrfs_del_root(trans, &root->root_key);
5354 if (ret) {
5355 btrfs_abort_transaction(trans, ret);
5356 err = ret;
5357 goto out_end_trans;
5358 }
5359
5360 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5361 ret = btrfs_find_root(tree_root, &root->root_key, path,
5362 NULL, NULL);
5363 if (ret < 0) {
5364 btrfs_abort_transaction(trans, ret);
5365 err = ret;
5366 goto out_end_trans;
5367 } else if (ret > 0) {
5368 /* if we fail to delete the orphan item this time
5369 * around, it'll get picked up the next time.
5370 *
5371 * The most common failure here is just -ENOENT.
5372 */
5373 btrfs_del_orphan_item(trans, tree_root,
5374 root->root_key.objectid);
5375 }
5376 }
5377
5378 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
5379 btrfs_add_dropped_root(trans, root);
5380 } else {
5381 free_extent_buffer(root->node);
5382 free_extent_buffer(root->commit_root);
5383 btrfs_put_fs_root(root);
5384 }
5385 root_dropped = true;
5386out_end_trans:
5387 btrfs_end_transaction_throttle(trans);
5388out_free:
5389 kfree(wc);
5390 btrfs_free_path(path);
5391out:
5392 /*
5393 * So if we need to stop dropping the snapshot for whatever reason we
5394 * need to make sure to add it back to the dead root list so that we
5395 * keep trying to do the work later. This also cleans up roots if we
5396 * don't have it in the radix (like when we recover after a power fail
5397 * or unmount) so we don't leak memory.
5398 */
5399 if (!for_reloc && !root_dropped)
5400 btrfs_add_dead_root(root);
5401 if (err && err != -EAGAIN)
5402 btrfs_handle_fs_error(fs_info, err, NULL);
5403 return err;
5404}
5405
5406/*
5407 * drop subtree rooted at tree block 'node'.
5408 *
5409 * NOTE: this function will unlock and release tree block 'node'
5410 * only used by relocation code
5411 */
5412int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5413 struct btrfs_root *root,
5414 struct extent_buffer *node,
5415 struct extent_buffer *parent)
5416{
5417 struct btrfs_fs_info *fs_info = root->fs_info;
5418 struct btrfs_path *path;
5419 struct walk_control *wc;
5420 int level;
5421 int parent_level;
5422 int ret = 0;
5423 int wret;
5424
5425 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5426
5427 path = btrfs_alloc_path();
5428 if (!path)
5429 return -ENOMEM;
5430
5431 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5432 if (!wc) {
5433 btrfs_free_path(path);
5434 return -ENOMEM;
5435 }
5436
5437 btrfs_assert_tree_locked(parent);
5438 parent_level = btrfs_header_level(parent);
5439 extent_buffer_get(parent);
5440 path->nodes[parent_level] = parent;
5441 path->slots[parent_level] = btrfs_header_nritems(parent);
5442
5443 btrfs_assert_tree_locked(node);
5444 level = btrfs_header_level(node);
5445 path->nodes[level] = node;
5446 path->slots[level] = 0;
5447 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5448
5449 wc->refs[parent_level] = 1;
5450 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5451 wc->level = level;
5452 wc->shared_level = -1;
5453 wc->stage = DROP_REFERENCE;
5454 wc->update_ref = 0;
5455 wc->keep_locks = 1;
5456 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5457
5458 while (1) {
5459 wret = walk_down_tree(trans, root, path, wc);
5460 if (wret < 0) {
5461 ret = wret;
5462 break;
5463 }
5464
5465 wret = walk_up_tree(trans, root, path, wc, parent_level);
5466 if (wret < 0)
5467 ret = wret;
5468 if (wret != 0)
5469 break;
5470 }
5471
5472 kfree(wc);
5473 btrfs_free_path(path);
5474 return ret;
5475}
5476
5477/*
5478 * helper to account the unused space of all the readonly block group in the
5479 * space_info. takes mirrors into account.
5480 */
5481u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5482{
5483 struct btrfs_block_group_cache *block_group;
5484 u64 free_bytes = 0;
5485 int factor;
5486
5487 /* It's df, we don't care if it's racy */
5488 if (list_empty(&sinfo->ro_bgs))
5489 return 0;
5490
5491 spin_lock(&sinfo->lock);
5492 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5493 spin_lock(&block_group->lock);
5494
5495 if (!block_group->ro) {
5496 spin_unlock(&block_group->lock);
5497 continue;
5498 }
5499
5500 factor = btrfs_bg_type_to_factor(block_group->flags);
5501 free_bytes += (block_group->key.offset -
5502 btrfs_block_group_used(&block_group->item)) *
5503 factor;
5504
5505 spin_unlock(&block_group->lock);
5506 }
5507 spin_unlock(&sinfo->lock);
5508
5509 return free_bytes;
5510}
5511
5512int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5513 u64 start, u64 end)
5514{
5515 return unpin_extent_range(fs_info, start, end, false);
5516}
5517
5518/*
5519 * It used to be that old block groups would be left around forever.
5520 * Iterating over them would be enough to trim unused space. Since we
5521 * now automatically remove them, we also need to iterate over unallocated
5522 * space.
5523 *
5524 * We don't want a transaction for this since the discard may take a
5525 * substantial amount of time. We don't require that a transaction be
5526 * running, but we do need to take a running transaction into account
5527 * to ensure that we're not discarding chunks that were released or
5528 * allocated in the current transaction.
5529 *
5530 * Holding the chunks lock will prevent other threads from allocating
5531 * or releasing chunks, but it won't prevent a running transaction
5532 * from committing and releasing the memory that the pending chunks
5533 * list head uses. For that, we need to take a reference to the
5534 * transaction and hold the commit root sem. We only need to hold
5535 * it while performing the free space search since we have already
5536 * held back allocations.
5537 */
5538static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5539{
5540 u64 start = SZ_1M, len = 0, end = 0;
5541 int ret;
5542
5543 *trimmed = 0;
5544
5545 /* Discard not supported = nothing to do. */
5546 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5547 return 0;
5548
5549 /* Not writable = nothing to do. */
5550 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5551 return 0;
5552
5553 /* No free space = nothing to do. */
5554 if (device->total_bytes <= device->bytes_used)
5555 return 0;
5556
5557 ret = 0;
5558
5559 while (1) {
5560 struct btrfs_fs_info *fs_info = device->fs_info;
5561 u64 bytes;
5562
5563 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5564 if (ret)
5565 break;
5566
5567 find_first_clear_extent_bit(&device->alloc_state, start,
5568 &start, &end,
5569 CHUNK_TRIMMED | CHUNK_ALLOCATED);
5570
5571 /* Ensure we skip the reserved area in the first 1M */
5572 start = max_t(u64, start, SZ_1M);
5573
5574 /*
5575 * If find_first_clear_extent_bit find a range that spans the
5576 * end of the device it will set end to -1, in this case it's up
5577 * to the caller to trim the value to the size of the device.
5578 */
5579 end = min(end, device->total_bytes - 1);
5580
5581 len = end - start + 1;
5582
5583 /* We didn't find any extents */
5584 if (!len) {
5585 mutex_unlock(&fs_info->chunk_mutex);
5586 ret = 0;
5587 break;
5588 }
5589
5590 ret = btrfs_issue_discard(device->bdev, start, len,
5591 &bytes);
5592 if (!ret)
5593 set_extent_bits(&device->alloc_state, start,
5594 start + bytes - 1,
5595 CHUNK_TRIMMED);
5596 mutex_unlock(&fs_info->chunk_mutex);
5597
5598 if (ret)
5599 break;
5600
5601 start += len;
5602 *trimmed += bytes;
5603
5604 if (fatal_signal_pending(current)) {
5605 ret = -ERESTARTSYS;
5606 break;
5607 }
5608
5609 cond_resched();
5610 }
5611
5612 return ret;
5613}
5614
5615/*
5616 * Trim the whole filesystem by:
5617 * 1) trimming the free space in each block group
5618 * 2) trimming the unallocated space on each device
5619 *
5620 * This will also continue trimming even if a block group or device encounters
5621 * an error. The return value will be the last error, or 0 if nothing bad
5622 * happens.
5623 */
5624int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
5625{
5626 struct btrfs_block_group_cache *cache = NULL;
5627 struct btrfs_device *device;
5628 struct list_head *devices;
5629 u64 group_trimmed;
5630 u64 range_end = U64_MAX;
5631 u64 start;
5632 u64 end;
5633 u64 trimmed = 0;
5634 u64 bg_failed = 0;
5635 u64 dev_failed = 0;
5636 int bg_ret = 0;
5637 int dev_ret = 0;
5638 int ret = 0;
5639
5640 /*
5641 * Check range overflow if range->len is set.
5642 * The default range->len is U64_MAX.
5643 */
5644 if (range->len != U64_MAX &&
5645 check_add_overflow(range->start, range->len, &range_end))
5646 return -EINVAL;
5647
5648 cache = btrfs_lookup_first_block_group(fs_info, range->start);
5649 for (; cache; cache = btrfs_next_block_group(cache)) {
5650 if (cache->key.objectid >= range_end) {
5651 btrfs_put_block_group(cache);
5652 break;
5653 }
5654
5655 start = max(range->start, cache->key.objectid);
5656 end = min(range_end, cache->key.objectid + cache->key.offset);
5657
5658 if (end - start >= range->minlen) {
5659 if (!btrfs_block_group_cache_done(cache)) {
5660 ret = btrfs_cache_block_group(cache, 0);
5661 if (ret) {
5662 bg_failed++;
5663 bg_ret = ret;
5664 continue;
5665 }
5666 ret = btrfs_wait_block_group_cache_done(cache);
5667 if (ret) {
5668 bg_failed++;
5669 bg_ret = ret;
5670 continue;
5671 }
5672 }
5673 ret = btrfs_trim_block_group(cache,
5674 &group_trimmed,
5675 start,
5676 end,
5677 range->minlen);
5678
5679 trimmed += group_trimmed;
5680 if (ret) {
5681 bg_failed++;
5682 bg_ret = ret;
5683 continue;
5684 }
5685 }
5686 }
5687
5688 if (bg_failed)
5689 btrfs_warn(fs_info,
5690 "failed to trim %llu block group(s), last error %d",
5691 bg_failed, bg_ret);
5692 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5693 devices = &fs_info->fs_devices->devices;
5694 list_for_each_entry(device, devices, dev_list) {
5695 ret = btrfs_trim_free_extents(device, &group_trimmed);
5696 if (ret) {
5697 dev_failed++;
5698 dev_ret = ret;
5699 break;
5700 }
5701
5702 trimmed += group_trimmed;
5703 }
5704 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5705
5706 if (dev_failed)
5707 btrfs_warn(fs_info,
5708 "failed to trim %llu device(s), last error %d",
5709 dev_failed, dev_ret);
5710 range->len = trimmed;
5711 if (bg_ret)
5712 return bg_ret;
5713 return dev_ret;
5714}
5715
5716/*
5717 * btrfs_{start,end}_write_no_snapshotting() are similar to
5718 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
5719 * data into the page cache through nocow before the subvolume is snapshoted,
5720 * but flush the data into disk after the snapshot creation, or to prevent
5721 * operations while snapshotting is ongoing and that cause the snapshot to be
5722 * inconsistent (writes followed by expanding truncates for example).
5723 */
5724void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
5725{
5726 percpu_counter_dec(&root->subv_writers->counter);
5727 cond_wake_up(&root->subv_writers->wait);
5728}
5729
5730int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
5731{
5732 if (atomic_read(&root->will_be_snapshotted))
5733 return 0;
5734
5735 percpu_counter_inc(&root->subv_writers->counter);
5736 /*
5737 * Make sure counter is updated before we check for snapshot creation.
5738 */
5739 smp_mb();
5740 if (atomic_read(&root->will_be_snapshotted)) {
5741 btrfs_end_write_no_snapshotting(root);
5742 return 0;
5743 }
5744 return 1;
5745}
5746
5747void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
5748{
5749 while (true) {
5750 int ret;
5751
5752 ret = btrfs_start_write_no_snapshotting(root);
5753 if (ret)
5754 break;
5755 wait_var_event(&root->will_be_snapshotted,
5756 !atomic_read(&root->will_be_snapshotted));
5757 }
5758}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/signal.h>
8#include <linux/pagemap.h>
9#include <linux/writeback.h>
10#include <linux/blkdev.h>
11#include <linux/sort.h>
12#include <linux/rcupdate.h>
13#include <linux/kthread.h>
14#include <linux/slab.h>
15#include <linux/ratelimit.h>
16#include <linux/percpu_counter.h>
17#include <linux/lockdep.h>
18#include <linux/crc32c.h>
19#include "tree-log.h"
20#include "disk-io.h"
21#include "print-tree.h"
22#include "volumes.h"
23#include "raid56.h"
24#include "locking.h"
25#include "free-space-cache.h"
26#include "free-space-tree.h"
27#include "math.h"
28#include "sysfs.h"
29#include "qgroup.h"
30#include "ref-verify.h"
31
32#undef SCRAMBLE_DELAYED_REFS
33
34/*
35 * control flags for do_chunk_alloc's force field
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
47 */
48enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
52};
53
54static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55 struct btrfs_fs_info *fs_info,
56 struct btrfs_delayed_ref_node *node, u64 parent,
57 u64 root_objectid, u64 owner_objectid,
58 u64 owner_offset, int refs_to_drop,
59 struct btrfs_delayed_extent_op *extra_op);
60static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
61 struct extent_buffer *leaf,
62 struct btrfs_extent_item *ei);
63static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
64 struct btrfs_fs_info *fs_info,
65 u64 parent, u64 root_objectid,
66 u64 flags, u64 owner, u64 offset,
67 struct btrfs_key *ins, int ref_mod);
68static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
69 struct btrfs_fs_info *fs_info,
70 u64 parent, u64 root_objectid,
71 u64 flags, struct btrfs_disk_key *key,
72 int level, struct btrfs_key *ins);
73static int do_chunk_alloc(struct btrfs_trans_handle *trans,
74 struct btrfs_fs_info *fs_info, u64 flags,
75 int force);
76static int find_next_key(struct btrfs_path *path, int level,
77 struct btrfs_key *key);
78static void dump_space_info(struct btrfs_fs_info *fs_info,
79 struct btrfs_space_info *info, u64 bytes,
80 int dump_block_groups);
81static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
82 u64 num_bytes);
83static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
84 struct btrfs_space_info *space_info,
85 u64 num_bytes);
86static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
87 struct btrfs_space_info *space_info,
88 u64 num_bytes);
89
90static noinline int
91block_group_cache_done(struct btrfs_block_group_cache *cache)
92{
93 smp_mb();
94 return cache->cached == BTRFS_CACHE_FINISHED ||
95 cache->cached == BTRFS_CACHE_ERROR;
96}
97
98static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
99{
100 return (cache->flags & bits) == bits;
101}
102
103void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
104{
105 atomic_inc(&cache->count);
106}
107
108void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
109{
110 if (atomic_dec_and_test(&cache->count)) {
111 WARN_ON(cache->pinned > 0);
112 WARN_ON(cache->reserved > 0);
113
114 /*
115 * If not empty, someone is still holding mutex of
116 * full_stripe_lock, which can only be released by caller.
117 * And it will definitely cause use-after-free when caller
118 * tries to release full stripe lock.
119 *
120 * No better way to resolve, but only to warn.
121 */
122 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
123 kfree(cache->free_space_ctl);
124 kfree(cache);
125 }
126}
127
128/*
129 * this adds the block group to the fs_info rb tree for the block group
130 * cache
131 */
132static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
133 struct btrfs_block_group_cache *block_group)
134{
135 struct rb_node **p;
136 struct rb_node *parent = NULL;
137 struct btrfs_block_group_cache *cache;
138
139 spin_lock(&info->block_group_cache_lock);
140 p = &info->block_group_cache_tree.rb_node;
141
142 while (*p) {
143 parent = *p;
144 cache = rb_entry(parent, struct btrfs_block_group_cache,
145 cache_node);
146 if (block_group->key.objectid < cache->key.objectid) {
147 p = &(*p)->rb_left;
148 } else if (block_group->key.objectid > cache->key.objectid) {
149 p = &(*p)->rb_right;
150 } else {
151 spin_unlock(&info->block_group_cache_lock);
152 return -EEXIST;
153 }
154 }
155
156 rb_link_node(&block_group->cache_node, parent, p);
157 rb_insert_color(&block_group->cache_node,
158 &info->block_group_cache_tree);
159
160 if (info->first_logical_byte > block_group->key.objectid)
161 info->first_logical_byte = block_group->key.objectid;
162
163 spin_unlock(&info->block_group_cache_lock);
164
165 return 0;
166}
167
168/*
169 * This will return the block group at or after bytenr if contains is 0, else
170 * it will return the block group that contains the bytenr
171 */
172static struct btrfs_block_group_cache *
173block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
174 int contains)
175{
176 struct btrfs_block_group_cache *cache, *ret = NULL;
177 struct rb_node *n;
178 u64 end, start;
179
180 spin_lock(&info->block_group_cache_lock);
181 n = info->block_group_cache_tree.rb_node;
182
183 while (n) {
184 cache = rb_entry(n, struct btrfs_block_group_cache,
185 cache_node);
186 end = cache->key.objectid + cache->key.offset - 1;
187 start = cache->key.objectid;
188
189 if (bytenr < start) {
190 if (!contains && (!ret || start < ret->key.objectid))
191 ret = cache;
192 n = n->rb_left;
193 } else if (bytenr > start) {
194 if (contains && bytenr <= end) {
195 ret = cache;
196 break;
197 }
198 n = n->rb_right;
199 } else {
200 ret = cache;
201 break;
202 }
203 }
204 if (ret) {
205 btrfs_get_block_group(ret);
206 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
207 info->first_logical_byte = ret->key.objectid;
208 }
209 spin_unlock(&info->block_group_cache_lock);
210
211 return ret;
212}
213
214static int add_excluded_extent(struct btrfs_fs_info *fs_info,
215 u64 start, u64 num_bytes)
216{
217 u64 end = start + num_bytes - 1;
218 set_extent_bits(&fs_info->freed_extents[0],
219 start, end, EXTENT_UPTODATE);
220 set_extent_bits(&fs_info->freed_extents[1],
221 start, end, EXTENT_UPTODATE);
222 return 0;
223}
224
225static void free_excluded_extents(struct btrfs_fs_info *fs_info,
226 struct btrfs_block_group_cache *cache)
227{
228 u64 start, end;
229
230 start = cache->key.objectid;
231 end = start + cache->key.offset - 1;
232
233 clear_extent_bits(&fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE);
235 clear_extent_bits(&fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE);
237}
238
239static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
240 struct btrfs_block_group_cache *cache)
241{
242 u64 bytenr;
243 u64 *logical;
244 int stripe_len;
245 int i, nr, ret;
246
247 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
248 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
249 cache->bytes_super += stripe_len;
250 ret = add_excluded_extent(fs_info, cache->key.objectid,
251 stripe_len);
252 if (ret)
253 return ret;
254 }
255
256 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
257 bytenr = btrfs_sb_offset(i);
258 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
259 bytenr, 0, &logical, &nr, &stripe_len);
260 if (ret)
261 return ret;
262
263 while (nr--) {
264 u64 start, len;
265
266 if (logical[nr] > cache->key.objectid +
267 cache->key.offset)
268 continue;
269
270 if (logical[nr] + stripe_len <= cache->key.objectid)
271 continue;
272
273 start = logical[nr];
274 if (start < cache->key.objectid) {
275 start = cache->key.objectid;
276 len = (logical[nr] + stripe_len) - start;
277 } else {
278 len = min_t(u64, stripe_len,
279 cache->key.objectid +
280 cache->key.offset - start);
281 }
282
283 cache->bytes_super += len;
284 ret = add_excluded_extent(fs_info, start, len);
285 if (ret) {
286 kfree(logical);
287 return ret;
288 }
289 }
290
291 kfree(logical);
292 }
293 return 0;
294}
295
296static struct btrfs_caching_control *
297get_caching_control(struct btrfs_block_group_cache *cache)
298{
299 struct btrfs_caching_control *ctl;
300
301 spin_lock(&cache->lock);
302 if (!cache->caching_ctl) {
303 spin_unlock(&cache->lock);
304 return NULL;
305 }
306
307 ctl = cache->caching_ctl;
308 refcount_inc(&ctl->count);
309 spin_unlock(&cache->lock);
310 return ctl;
311}
312
313static void put_caching_control(struct btrfs_caching_control *ctl)
314{
315 if (refcount_dec_and_test(&ctl->count))
316 kfree(ctl);
317}
318
319#ifdef CONFIG_BTRFS_DEBUG
320static void fragment_free_space(struct btrfs_block_group_cache *block_group)
321{
322 struct btrfs_fs_info *fs_info = block_group->fs_info;
323 u64 start = block_group->key.objectid;
324 u64 len = block_group->key.offset;
325 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
326 fs_info->nodesize : fs_info->sectorsize;
327 u64 step = chunk << 1;
328
329 while (len > chunk) {
330 btrfs_remove_free_space(block_group, start, chunk);
331 start += step;
332 if (len < step)
333 len = 0;
334 else
335 len -= step;
336 }
337}
338#endif
339
340/*
341 * this is only called by cache_block_group, since we could have freed extents
342 * we need to check the pinned_extents for any extents that can't be used yet
343 * since their free space will be released as soon as the transaction commits.
344 */
345u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
346 struct btrfs_fs_info *info, u64 start, u64 end)
347{
348 u64 extent_start, extent_end, size, total_added = 0;
349 int ret;
350
351 while (start < end) {
352 ret = find_first_extent_bit(info->pinned_extents, start,
353 &extent_start, &extent_end,
354 EXTENT_DIRTY | EXTENT_UPTODATE,
355 NULL);
356 if (ret)
357 break;
358
359 if (extent_start <= start) {
360 start = extent_end + 1;
361 } else if (extent_start > start && extent_start < end) {
362 size = extent_start - start;
363 total_added += size;
364 ret = btrfs_add_free_space(block_group, start,
365 size);
366 BUG_ON(ret); /* -ENOMEM or logic error */
367 start = extent_end + 1;
368 } else {
369 break;
370 }
371 }
372
373 if (start < end) {
374 size = end - start;
375 total_added += size;
376 ret = btrfs_add_free_space(block_group, start, size);
377 BUG_ON(ret); /* -ENOMEM or logic error */
378 }
379
380 return total_added;
381}
382
383static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
384{
385 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
386 struct btrfs_fs_info *fs_info = block_group->fs_info;
387 struct btrfs_root *extent_root = fs_info->extent_root;
388 struct btrfs_path *path;
389 struct extent_buffer *leaf;
390 struct btrfs_key key;
391 u64 total_found = 0;
392 u64 last = 0;
393 u32 nritems;
394 int ret;
395 bool wakeup = true;
396
397 path = btrfs_alloc_path();
398 if (!path)
399 return -ENOMEM;
400
401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
402
403#ifdef CONFIG_BTRFS_DEBUG
404 /*
405 * If we're fragmenting we don't want to make anybody think we can
406 * allocate from this block group until we've had a chance to fragment
407 * the free space.
408 */
409 if (btrfs_should_fragment_free_space(block_group))
410 wakeup = false;
411#endif
412 /*
413 * We don't want to deadlock with somebody trying to allocate a new
414 * extent for the extent root while also trying to search the extent
415 * root to add free space. So we skip locking and search the commit
416 * root, since its read-only
417 */
418 path->skip_locking = 1;
419 path->search_commit_root = 1;
420 path->reada = READA_FORWARD;
421
422 key.objectid = last;
423 key.offset = 0;
424 key.type = BTRFS_EXTENT_ITEM_KEY;
425
426next:
427 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
428 if (ret < 0)
429 goto out;
430
431 leaf = path->nodes[0];
432 nritems = btrfs_header_nritems(leaf);
433
434 while (1) {
435 if (btrfs_fs_closing(fs_info) > 1) {
436 last = (u64)-1;
437 break;
438 }
439
440 if (path->slots[0] < nritems) {
441 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
442 } else {
443 ret = find_next_key(path, 0, &key);
444 if (ret)
445 break;
446
447 if (need_resched() ||
448 rwsem_is_contended(&fs_info->commit_root_sem)) {
449 if (wakeup)
450 caching_ctl->progress = last;
451 btrfs_release_path(path);
452 up_read(&fs_info->commit_root_sem);
453 mutex_unlock(&caching_ctl->mutex);
454 cond_resched();
455 mutex_lock(&caching_ctl->mutex);
456 down_read(&fs_info->commit_root_sem);
457 goto next;
458 }
459
460 ret = btrfs_next_leaf(extent_root, path);
461 if (ret < 0)
462 goto out;
463 if (ret)
464 break;
465 leaf = path->nodes[0];
466 nritems = btrfs_header_nritems(leaf);
467 continue;
468 }
469
470 if (key.objectid < last) {
471 key.objectid = last;
472 key.offset = 0;
473 key.type = BTRFS_EXTENT_ITEM_KEY;
474
475 if (wakeup)
476 caching_ctl->progress = last;
477 btrfs_release_path(path);
478 goto next;
479 }
480
481 if (key.objectid < block_group->key.objectid) {
482 path->slots[0]++;
483 continue;
484 }
485
486 if (key.objectid >= block_group->key.objectid +
487 block_group->key.offset)
488 break;
489
490 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
491 key.type == BTRFS_METADATA_ITEM_KEY) {
492 total_found += add_new_free_space(block_group,
493 fs_info, last,
494 key.objectid);
495 if (key.type == BTRFS_METADATA_ITEM_KEY)
496 last = key.objectid +
497 fs_info->nodesize;
498 else
499 last = key.objectid + key.offset;
500
501 if (total_found > CACHING_CTL_WAKE_UP) {
502 total_found = 0;
503 if (wakeup)
504 wake_up(&caching_ctl->wait);
505 }
506 }
507 path->slots[0]++;
508 }
509 ret = 0;
510
511 total_found += add_new_free_space(block_group, fs_info, last,
512 block_group->key.objectid +
513 block_group->key.offset);
514 caching_ctl->progress = (u64)-1;
515
516out:
517 btrfs_free_path(path);
518 return ret;
519}
520
521static noinline void caching_thread(struct btrfs_work *work)
522{
523 struct btrfs_block_group_cache *block_group;
524 struct btrfs_fs_info *fs_info;
525 struct btrfs_caching_control *caching_ctl;
526 int ret;
527
528 caching_ctl = container_of(work, struct btrfs_caching_control, work);
529 block_group = caching_ctl->block_group;
530 fs_info = block_group->fs_info;
531
532 mutex_lock(&caching_ctl->mutex);
533 down_read(&fs_info->commit_root_sem);
534
535 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
536 ret = load_free_space_tree(caching_ctl);
537 else
538 ret = load_extent_tree_free(caching_ctl);
539
540 spin_lock(&block_group->lock);
541 block_group->caching_ctl = NULL;
542 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
543 spin_unlock(&block_group->lock);
544
545#ifdef CONFIG_BTRFS_DEBUG
546 if (btrfs_should_fragment_free_space(block_group)) {
547 u64 bytes_used;
548
549 spin_lock(&block_group->space_info->lock);
550 spin_lock(&block_group->lock);
551 bytes_used = block_group->key.offset -
552 btrfs_block_group_used(&block_group->item);
553 block_group->space_info->bytes_used += bytes_used >> 1;
554 spin_unlock(&block_group->lock);
555 spin_unlock(&block_group->space_info->lock);
556 fragment_free_space(block_group);
557 }
558#endif
559
560 caching_ctl->progress = (u64)-1;
561
562 up_read(&fs_info->commit_root_sem);
563 free_excluded_extents(fs_info, block_group);
564 mutex_unlock(&caching_ctl->mutex);
565
566 wake_up(&caching_ctl->wait);
567
568 put_caching_control(caching_ctl);
569 btrfs_put_block_group(block_group);
570}
571
572static int cache_block_group(struct btrfs_block_group_cache *cache,
573 int load_cache_only)
574{
575 DEFINE_WAIT(wait);
576 struct btrfs_fs_info *fs_info = cache->fs_info;
577 struct btrfs_caching_control *caching_ctl;
578 int ret = 0;
579
580 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
581 if (!caching_ctl)
582 return -ENOMEM;
583
584 INIT_LIST_HEAD(&caching_ctl->list);
585 mutex_init(&caching_ctl->mutex);
586 init_waitqueue_head(&caching_ctl->wait);
587 caching_ctl->block_group = cache;
588 caching_ctl->progress = cache->key.objectid;
589 refcount_set(&caching_ctl->count, 1);
590 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
591 caching_thread, NULL, NULL);
592
593 spin_lock(&cache->lock);
594 /*
595 * This should be a rare occasion, but this could happen I think in the
596 * case where one thread starts to load the space cache info, and then
597 * some other thread starts a transaction commit which tries to do an
598 * allocation while the other thread is still loading the space cache
599 * info. The previous loop should have kept us from choosing this block
600 * group, but if we've moved to the state where we will wait on caching
601 * block groups we need to first check if we're doing a fast load here,
602 * so we can wait for it to finish, otherwise we could end up allocating
603 * from a block group who's cache gets evicted for one reason or
604 * another.
605 */
606 while (cache->cached == BTRFS_CACHE_FAST) {
607 struct btrfs_caching_control *ctl;
608
609 ctl = cache->caching_ctl;
610 refcount_inc(&ctl->count);
611 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
612 spin_unlock(&cache->lock);
613
614 schedule();
615
616 finish_wait(&ctl->wait, &wait);
617 put_caching_control(ctl);
618 spin_lock(&cache->lock);
619 }
620
621 if (cache->cached != BTRFS_CACHE_NO) {
622 spin_unlock(&cache->lock);
623 kfree(caching_ctl);
624 return 0;
625 }
626 WARN_ON(cache->caching_ctl);
627 cache->caching_ctl = caching_ctl;
628 cache->cached = BTRFS_CACHE_FAST;
629 spin_unlock(&cache->lock);
630
631 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
632 mutex_lock(&caching_ctl->mutex);
633 ret = load_free_space_cache(fs_info, cache);
634
635 spin_lock(&cache->lock);
636 if (ret == 1) {
637 cache->caching_ctl = NULL;
638 cache->cached = BTRFS_CACHE_FINISHED;
639 cache->last_byte_to_unpin = (u64)-1;
640 caching_ctl->progress = (u64)-1;
641 } else {
642 if (load_cache_only) {
643 cache->caching_ctl = NULL;
644 cache->cached = BTRFS_CACHE_NO;
645 } else {
646 cache->cached = BTRFS_CACHE_STARTED;
647 cache->has_caching_ctl = 1;
648 }
649 }
650 spin_unlock(&cache->lock);
651#ifdef CONFIG_BTRFS_DEBUG
652 if (ret == 1 &&
653 btrfs_should_fragment_free_space(cache)) {
654 u64 bytes_used;
655
656 spin_lock(&cache->space_info->lock);
657 spin_lock(&cache->lock);
658 bytes_used = cache->key.offset -
659 btrfs_block_group_used(&cache->item);
660 cache->space_info->bytes_used += bytes_used >> 1;
661 spin_unlock(&cache->lock);
662 spin_unlock(&cache->space_info->lock);
663 fragment_free_space(cache);
664 }
665#endif
666 mutex_unlock(&caching_ctl->mutex);
667
668 wake_up(&caching_ctl->wait);
669 if (ret == 1) {
670 put_caching_control(caching_ctl);
671 free_excluded_extents(fs_info, cache);
672 return 0;
673 }
674 } else {
675 /*
676 * We're either using the free space tree or no caching at all.
677 * Set cached to the appropriate value and wakeup any waiters.
678 */
679 spin_lock(&cache->lock);
680 if (load_cache_only) {
681 cache->caching_ctl = NULL;
682 cache->cached = BTRFS_CACHE_NO;
683 } else {
684 cache->cached = BTRFS_CACHE_STARTED;
685 cache->has_caching_ctl = 1;
686 }
687 spin_unlock(&cache->lock);
688 wake_up(&caching_ctl->wait);
689 }
690
691 if (load_cache_only) {
692 put_caching_control(caching_ctl);
693 return 0;
694 }
695
696 down_write(&fs_info->commit_root_sem);
697 refcount_inc(&caching_ctl->count);
698 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
699 up_write(&fs_info->commit_root_sem);
700
701 btrfs_get_block_group(cache);
702
703 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
704
705 return ret;
706}
707
708/*
709 * return the block group that starts at or after bytenr
710 */
711static struct btrfs_block_group_cache *
712btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
713{
714 return block_group_cache_tree_search(info, bytenr, 0);
715}
716
717/*
718 * return the block group that contains the given bytenr
719 */
720struct btrfs_block_group_cache *btrfs_lookup_block_group(
721 struct btrfs_fs_info *info,
722 u64 bytenr)
723{
724 return block_group_cache_tree_search(info, bytenr, 1);
725}
726
727static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
728 u64 flags)
729{
730 struct list_head *head = &info->space_info;
731 struct btrfs_space_info *found;
732
733 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
734
735 rcu_read_lock();
736 list_for_each_entry_rcu(found, head, list) {
737 if (found->flags & flags) {
738 rcu_read_unlock();
739 return found;
740 }
741 }
742 rcu_read_unlock();
743 return NULL;
744}
745
746static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
747 u64 owner, u64 root_objectid)
748{
749 struct btrfs_space_info *space_info;
750 u64 flags;
751
752 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
753 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
754 flags = BTRFS_BLOCK_GROUP_SYSTEM;
755 else
756 flags = BTRFS_BLOCK_GROUP_METADATA;
757 } else {
758 flags = BTRFS_BLOCK_GROUP_DATA;
759 }
760
761 space_info = __find_space_info(fs_info, flags);
762 ASSERT(space_info);
763 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
764}
765
766/*
767 * after adding space to the filesystem, we need to clear the full flags
768 * on all the space infos.
769 */
770void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
771{
772 struct list_head *head = &info->space_info;
773 struct btrfs_space_info *found;
774
775 rcu_read_lock();
776 list_for_each_entry_rcu(found, head, list)
777 found->full = 0;
778 rcu_read_unlock();
779}
780
781/* simple helper to search for an existing data extent at a given offset */
782int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
783{
784 int ret;
785 struct btrfs_key key;
786 struct btrfs_path *path;
787
788 path = btrfs_alloc_path();
789 if (!path)
790 return -ENOMEM;
791
792 key.objectid = start;
793 key.offset = len;
794 key.type = BTRFS_EXTENT_ITEM_KEY;
795 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
796 btrfs_free_path(path);
797 return ret;
798}
799
800/*
801 * helper function to lookup reference count and flags of a tree block.
802 *
803 * the head node for delayed ref is used to store the sum of all the
804 * reference count modifications queued up in the rbtree. the head
805 * node may also store the extent flags to set. This way you can check
806 * to see what the reference count and extent flags would be if all of
807 * the delayed refs are not processed.
808 */
809int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
810 struct btrfs_fs_info *fs_info, u64 bytenr,
811 u64 offset, int metadata, u64 *refs, u64 *flags)
812{
813 struct btrfs_delayed_ref_head *head;
814 struct btrfs_delayed_ref_root *delayed_refs;
815 struct btrfs_path *path;
816 struct btrfs_extent_item *ei;
817 struct extent_buffer *leaf;
818 struct btrfs_key key;
819 u32 item_size;
820 u64 num_refs;
821 u64 extent_flags;
822 int ret;
823
824 /*
825 * If we don't have skinny metadata, don't bother doing anything
826 * different
827 */
828 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
829 offset = fs_info->nodesize;
830 metadata = 0;
831 }
832
833 path = btrfs_alloc_path();
834 if (!path)
835 return -ENOMEM;
836
837 if (!trans) {
838 path->skip_locking = 1;
839 path->search_commit_root = 1;
840 }
841
842search_again:
843 key.objectid = bytenr;
844 key.offset = offset;
845 if (metadata)
846 key.type = BTRFS_METADATA_ITEM_KEY;
847 else
848 key.type = BTRFS_EXTENT_ITEM_KEY;
849
850 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
851 if (ret < 0)
852 goto out_free;
853
854 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
855 if (path->slots[0]) {
856 path->slots[0]--;
857 btrfs_item_key_to_cpu(path->nodes[0], &key,
858 path->slots[0]);
859 if (key.objectid == bytenr &&
860 key.type == BTRFS_EXTENT_ITEM_KEY &&
861 key.offset == fs_info->nodesize)
862 ret = 0;
863 }
864 }
865
866 if (ret == 0) {
867 leaf = path->nodes[0];
868 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
869 if (item_size >= sizeof(*ei)) {
870 ei = btrfs_item_ptr(leaf, path->slots[0],
871 struct btrfs_extent_item);
872 num_refs = btrfs_extent_refs(leaf, ei);
873 extent_flags = btrfs_extent_flags(leaf, ei);
874 } else {
875#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
876 struct btrfs_extent_item_v0 *ei0;
877 BUG_ON(item_size != sizeof(*ei0));
878 ei0 = btrfs_item_ptr(leaf, path->slots[0],
879 struct btrfs_extent_item_v0);
880 num_refs = btrfs_extent_refs_v0(leaf, ei0);
881 /* FIXME: this isn't correct for data */
882 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
883#else
884 BUG();
885#endif
886 }
887 BUG_ON(num_refs == 0);
888 } else {
889 num_refs = 0;
890 extent_flags = 0;
891 ret = 0;
892 }
893
894 if (!trans)
895 goto out;
896
897 delayed_refs = &trans->transaction->delayed_refs;
898 spin_lock(&delayed_refs->lock);
899 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
900 if (head) {
901 if (!mutex_trylock(&head->mutex)) {
902 refcount_inc(&head->refs);
903 spin_unlock(&delayed_refs->lock);
904
905 btrfs_release_path(path);
906
907 /*
908 * Mutex was contended, block until it's released and try
909 * again
910 */
911 mutex_lock(&head->mutex);
912 mutex_unlock(&head->mutex);
913 btrfs_put_delayed_ref_head(head);
914 goto search_again;
915 }
916 spin_lock(&head->lock);
917 if (head->extent_op && head->extent_op->update_flags)
918 extent_flags |= head->extent_op->flags_to_set;
919 else
920 BUG_ON(num_refs == 0);
921
922 num_refs += head->ref_mod;
923 spin_unlock(&head->lock);
924 mutex_unlock(&head->mutex);
925 }
926 spin_unlock(&delayed_refs->lock);
927out:
928 WARN_ON(num_refs == 0);
929 if (refs)
930 *refs = num_refs;
931 if (flags)
932 *flags = extent_flags;
933out_free:
934 btrfs_free_path(path);
935 return ret;
936}
937
938/*
939 * Back reference rules. Back refs have three main goals:
940 *
941 * 1) differentiate between all holders of references to an extent so that
942 * when a reference is dropped we can make sure it was a valid reference
943 * before freeing the extent.
944 *
945 * 2) Provide enough information to quickly find the holders of an extent
946 * if we notice a given block is corrupted or bad.
947 *
948 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
949 * maintenance. This is actually the same as #2, but with a slightly
950 * different use case.
951 *
952 * There are two kinds of back refs. The implicit back refs is optimized
953 * for pointers in non-shared tree blocks. For a given pointer in a block,
954 * back refs of this kind provide information about the block's owner tree
955 * and the pointer's key. These information allow us to find the block by
956 * b-tree searching. The full back refs is for pointers in tree blocks not
957 * referenced by their owner trees. The location of tree block is recorded
958 * in the back refs. Actually the full back refs is generic, and can be
959 * used in all cases the implicit back refs is used. The major shortcoming
960 * of the full back refs is its overhead. Every time a tree block gets
961 * COWed, we have to update back refs entry for all pointers in it.
962 *
963 * For a newly allocated tree block, we use implicit back refs for
964 * pointers in it. This means most tree related operations only involve
965 * implicit back refs. For a tree block created in old transaction, the
966 * only way to drop a reference to it is COW it. So we can detect the
967 * event that tree block loses its owner tree's reference and do the
968 * back refs conversion.
969 *
970 * When a tree block is COWed through a tree, there are four cases:
971 *
972 * The reference count of the block is one and the tree is the block's
973 * owner tree. Nothing to do in this case.
974 *
975 * The reference count of the block is one and the tree is not the
976 * block's owner tree. In this case, full back refs is used for pointers
977 * in the block. Remove these full back refs, add implicit back refs for
978 * every pointers in the new block.
979 *
980 * The reference count of the block is greater than one and the tree is
981 * the block's owner tree. In this case, implicit back refs is used for
982 * pointers in the block. Add full back refs for every pointers in the
983 * block, increase lower level extents' reference counts. The original
984 * implicit back refs are entailed to the new block.
985 *
986 * The reference count of the block is greater than one and the tree is
987 * not the block's owner tree. Add implicit back refs for every pointer in
988 * the new block, increase lower level extents' reference count.
989 *
990 * Back Reference Key composing:
991 *
992 * The key objectid corresponds to the first byte in the extent,
993 * The key type is used to differentiate between types of back refs.
994 * There are different meanings of the key offset for different types
995 * of back refs.
996 *
997 * File extents can be referenced by:
998 *
999 * - multiple snapshots, subvolumes, or different generations in one subvol
1000 * - different files inside a single subvolume
1001 * - different offsets inside a file (bookend extents in file.c)
1002 *
1003 * The extent ref structure for the implicit back refs has fields for:
1004 *
1005 * - Objectid of the subvolume root
1006 * - objectid of the file holding the reference
1007 * - original offset in the file
1008 * - how many bookend extents
1009 *
1010 * The key offset for the implicit back refs is hash of the first
1011 * three fields.
1012 *
1013 * The extent ref structure for the full back refs has field for:
1014 *
1015 * - number of pointers in the tree leaf
1016 *
1017 * The key offset for the implicit back refs is the first byte of
1018 * the tree leaf
1019 *
1020 * When a file extent is allocated, The implicit back refs is used.
1021 * the fields are filled in:
1022 *
1023 * (root_key.objectid, inode objectid, offset in file, 1)
1024 *
1025 * When a file extent is removed file truncation, we find the
1026 * corresponding implicit back refs and check the following fields:
1027 *
1028 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1029 *
1030 * Btree extents can be referenced by:
1031 *
1032 * - Different subvolumes
1033 *
1034 * Both the implicit back refs and the full back refs for tree blocks
1035 * only consist of key. The key offset for the implicit back refs is
1036 * objectid of block's owner tree. The key offset for the full back refs
1037 * is the first byte of parent block.
1038 *
1039 * When implicit back refs is used, information about the lowest key and
1040 * level of the tree block are required. These information are stored in
1041 * tree block info structure.
1042 */
1043
1044#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1045static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1046 struct btrfs_fs_info *fs_info,
1047 struct btrfs_path *path,
1048 u64 owner, u32 extra_size)
1049{
1050 struct btrfs_root *root = fs_info->extent_root;
1051 struct btrfs_extent_item *item;
1052 struct btrfs_extent_item_v0 *ei0;
1053 struct btrfs_extent_ref_v0 *ref0;
1054 struct btrfs_tree_block_info *bi;
1055 struct extent_buffer *leaf;
1056 struct btrfs_key key;
1057 struct btrfs_key found_key;
1058 u32 new_size = sizeof(*item);
1059 u64 refs;
1060 int ret;
1061
1062 leaf = path->nodes[0];
1063 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1064
1065 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1066 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1067 struct btrfs_extent_item_v0);
1068 refs = btrfs_extent_refs_v0(leaf, ei0);
1069
1070 if (owner == (u64)-1) {
1071 while (1) {
1072 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1073 ret = btrfs_next_leaf(root, path);
1074 if (ret < 0)
1075 return ret;
1076 BUG_ON(ret > 0); /* Corruption */
1077 leaf = path->nodes[0];
1078 }
1079 btrfs_item_key_to_cpu(leaf, &found_key,
1080 path->slots[0]);
1081 BUG_ON(key.objectid != found_key.objectid);
1082 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1083 path->slots[0]++;
1084 continue;
1085 }
1086 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1087 struct btrfs_extent_ref_v0);
1088 owner = btrfs_ref_objectid_v0(leaf, ref0);
1089 break;
1090 }
1091 }
1092 btrfs_release_path(path);
1093
1094 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1095 new_size += sizeof(*bi);
1096
1097 new_size -= sizeof(*ei0);
1098 ret = btrfs_search_slot(trans, root, &key, path,
1099 new_size + extra_size, 1);
1100 if (ret < 0)
1101 return ret;
1102 BUG_ON(ret); /* Corruption */
1103
1104 btrfs_extend_item(fs_info, path, new_size);
1105
1106 leaf = path->nodes[0];
1107 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1108 btrfs_set_extent_refs(leaf, item, refs);
1109 /* FIXME: get real generation */
1110 btrfs_set_extent_generation(leaf, item, 0);
1111 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1112 btrfs_set_extent_flags(leaf, item,
1113 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1114 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1115 bi = (struct btrfs_tree_block_info *)(item + 1);
1116 /* FIXME: get first key of the block */
1117 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1118 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1119 } else {
1120 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1121 }
1122 btrfs_mark_buffer_dirty(leaf);
1123 return 0;
1124}
1125#endif
1126
1127/*
1128 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1129 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1130 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1131 */
1132int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1133 struct btrfs_extent_inline_ref *iref,
1134 enum btrfs_inline_ref_type is_data)
1135{
1136 int type = btrfs_extent_inline_ref_type(eb, iref);
1137 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1138
1139 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1140 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1141 type == BTRFS_SHARED_DATA_REF_KEY ||
1142 type == BTRFS_EXTENT_DATA_REF_KEY) {
1143 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1144 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1145 return type;
1146 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1147 ASSERT(eb->fs_info);
1148 /*
1149 * Every shared one has parent tree
1150 * block, which must be aligned to
1151 * nodesize.
1152 */
1153 if (offset &&
1154 IS_ALIGNED(offset, eb->fs_info->nodesize))
1155 return type;
1156 }
1157 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1158 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1159 return type;
1160 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1161 ASSERT(eb->fs_info);
1162 /*
1163 * Every shared one has parent tree
1164 * block, which must be aligned to
1165 * nodesize.
1166 */
1167 if (offset &&
1168 IS_ALIGNED(offset, eb->fs_info->nodesize))
1169 return type;
1170 }
1171 } else {
1172 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1173 return type;
1174 }
1175 }
1176
1177 btrfs_print_leaf((struct extent_buffer *)eb);
1178 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1179 eb->start, type);
1180 WARN_ON(1);
1181
1182 return BTRFS_REF_TYPE_INVALID;
1183}
1184
1185static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1186{
1187 u32 high_crc = ~(u32)0;
1188 u32 low_crc = ~(u32)0;
1189 __le64 lenum;
1190
1191 lenum = cpu_to_le64(root_objectid);
1192 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1193 lenum = cpu_to_le64(owner);
1194 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1195 lenum = cpu_to_le64(offset);
1196 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1197
1198 return ((u64)high_crc << 31) ^ (u64)low_crc;
1199}
1200
1201static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1202 struct btrfs_extent_data_ref *ref)
1203{
1204 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1205 btrfs_extent_data_ref_objectid(leaf, ref),
1206 btrfs_extent_data_ref_offset(leaf, ref));
1207}
1208
1209static int match_extent_data_ref(struct extent_buffer *leaf,
1210 struct btrfs_extent_data_ref *ref,
1211 u64 root_objectid, u64 owner, u64 offset)
1212{
1213 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1214 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1215 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1216 return 0;
1217 return 1;
1218}
1219
1220static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1221 struct btrfs_fs_info *fs_info,
1222 struct btrfs_path *path,
1223 u64 bytenr, u64 parent,
1224 u64 root_objectid,
1225 u64 owner, u64 offset)
1226{
1227 struct btrfs_root *root = fs_info->extent_root;
1228 struct btrfs_key key;
1229 struct btrfs_extent_data_ref *ref;
1230 struct extent_buffer *leaf;
1231 u32 nritems;
1232 int ret;
1233 int recow;
1234 int err = -ENOENT;
1235
1236 key.objectid = bytenr;
1237 if (parent) {
1238 key.type = BTRFS_SHARED_DATA_REF_KEY;
1239 key.offset = parent;
1240 } else {
1241 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1242 key.offset = hash_extent_data_ref(root_objectid,
1243 owner, offset);
1244 }
1245again:
1246 recow = 0;
1247 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1248 if (ret < 0) {
1249 err = ret;
1250 goto fail;
1251 }
1252
1253 if (parent) {
1254 if (!ret)
1255 return 0;
1256#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1257 key.type = BTRFS_EXTENT_REF_V0_KEY;
1258 btrfs_release_path(path);
1259 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1260 if (ret < 0) {
1261 err = ret;
1262 goto fail;
1263 }
1264 if (!ret)
1265 return 0;
1266#endif
1267 goto fail;
1268 }
1269
1270 leaf = path->nodes[0];
1271 nritems = btrfs_header_nritems(leaf);
1272 while (1) {
1273 if (path->slots[0] >= nritems) {
1274 ret = btrfs_next_leaf(root, path);
1275 if (ret < 0)
1276 err = ret;
1277 if (ret)
1278 goto fail;
1279
1280 leaf = path->nodes[0];
1281 nritems = btrfs_header_nritems(leaf);
1282 recow = 1;
1283 }
1284
1285 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1286 if (key.objectid != bytenr ||
1287 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1288 goto fail;
1289
1290 ref = btrfs_item_ptr(leaf, path->slots[0],
1291 struct btrfs_extent_data_ref);
1292
1293 if (match_extent_data_ref(leaf, ref, root_objectid,
1294 owner, offset)) {
1295 if (recow) {
1296 btrfs_release_path(path);
1297 goto again;
1298 }
1299 err = 0;
1300 break;
1301 }
1302 path->slots[0]++;
1303 }
1304fail:
1305 return err;
1306}
1307
1308static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1309 struct btrfs_fs_info *fs_info,
1310 struct btrfs_path *path,
1311 u64 bytenr, u64 parent,
1312 u64 root_objectid, u64 owner,
1313 u64 offset, int refs_to_add)
1314{
1315 struct btrfs_root *root = fs_info->extent_root;
1316 struct btrfs_key key;
1317 struct extent_buffer *leaf;
1318 u32 size;
1319 u32 num_refs;
1320 int ret;
1321
1322 key.objectid = bytenr;
1323 if (parent) {
1324 key.type = BTRFS_SHARED_DATA_REF_KEY;
1325 key.offset = parent;
1326 size = sizeof(struct btrfs_shared_data_ref);
1327 } else {
1328 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1329 key.offset = hash_extent_data_ref(root_objectid,
1330 owner, offset);
1331 size = sizeof(struct btrfs_extent_data_ref);
1332 }
1333
1334 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1335 if (ret && ret != -EEXIST)
1336 goto fail;
1337
1338 leaf = path->nodes[0];
1339 if (parent) {
1340 struct btrfs_shared_data_ref *ref;
1341 ref = btrfs_item_ptr(leaf, path->slots[0],
1342 struct btrfs_shared_data_ref);
1343 if (ret == 0) {
1344 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1345 } else {
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1347 num_refs += refs_to_add;
1348 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1349 }
1350 } else {
1351 struct btrfs_extent_data_ref *ref;
1352 while (ret == -EEXIST) {
1353 ref = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_extent_data_ref);
1355 if (match_extent_data_ref(leaf, ref, root_objectid,
1356 owner, offset))
1357 break;
1358 btrfs_release_path(path);
1359 key.offset++;
1360 ret = btrfs_insert_empty_item(trans, root, path, &key,
1361 size);
1362 if (ret && ret != -EEXIST)
1363 goto fail;
1364
1365 leaf = path->nodes[0];
1366 }
1367 ref = btrfs_item_ptr(leaf, path->slots[0],
1368 struct btrfs_extent_data_ref);
1369 if (ret == 0) {
1370 btrfs_set_extent_data_ref_root(leaf, ref,
1371 root_objectid);
1372 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1373 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1374 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1375 } else {
1376 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1377 num_refs += refs_to_add;
1378 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1379 }
1380 }
1381 btrfs_mark_buffer_dirty(leaf);
1382 ret = 0;
1383fail:
1384 btrfs_release_path(path);
1385 return ret;
1386}
1387
1388static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1389 struct btrfs_fs_info *fs_info,
1390 struct btrfs_path *path,
1391 int refs_to_drop, int *last_ref)
1392{
1393 struct btrfs_key key;
1394 struct btrfs_extent_data_ref *ref1 = NULL;
1395 struct btrfs_shared_data_ref *ref2 = NULL;
1396 struct extent_buffer *leaf;
1397 u32 num_refs = 0;
1398 int ret = 0;
1399
1400 leaf = path->nodes[0];
1401 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1402
1403 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1404 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1405 struct btrfs_extent_data_ref);
1406 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1408 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1409 struct btrfs_shared_data_ref);
1410 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1411#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1412 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1413 struct btrfs_extent_ref_v0 *ref0;
1414 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1415 struct btrfs_extent_ref_v0);
1416 num_refs = btrfs_ref_count_v0(leaf, ref0);
1417#endif
1418 } else {
1419 BUG();
1420 }
1421
1422 BUG_ON(num_refs < refs_to_drop);
1423 num_refs -= refs_to_drop;
1424
1425 if (num_refs == 0) {
1426 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1427 *last_ref = 1;
1428 } else {
1429 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1430 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1431 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1432 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1433#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1434 else {
1435 struct btrfs_extent_ref_v0 *ref0;
1436 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1437 struct btrfs_extent_ref_v0);
1438 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1439 }
1440#endif
1441 btrfs_mark_buffer_dirty(leaf);
1442 }
1443 return ret;
1444}
1445
1446static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1447 struct btrfs_extent_inline_ref *iref)
1448{
1449 struct btrfs_key key;
1450 struct extent_buffer *leaf;
1451 struct btrfs_extent_data_ref *ref1;
1452 struct btrfs_shared_data_ref *ref2;
1453 u32 num_refs = 0;
1454 int type;
1455
1456 leaf = path->nodes[0];
1457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1458 if (iref) {
1459 /*
1460 * If type is invalid, we should have bailed out earlier than
1461 * this call.
1462 */
1463 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1464 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1465 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1466 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1467 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1468 } else {
1469 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1470 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1471 }
1472 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1473 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1474 struct btrfs_extent_data_ref);
1475 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1476 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1477 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1478 struct btrfs_shared_data_ref);
1479 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1480#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1481 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1482 struct btrfs_extent_ref_v0 *ref0;
1483 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1484 struct btrfs_extent_ref_v0);
1485 num_refs = btrfs_ref_count_v0(leaf, ref0);
1486#endif
1487 } else {
1488 WARN_ON(1);
1489 }
1490 return num_refs;
1491}
1492
1493static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1494 struct btrfs_fs_info *fs_info,
1495 struct btrfs_path *path,
1496 u64 bytenr, u64 parent,
1497 u64 root_objectid)
1498{
1499 struct btrfs_root *root = fs_info->extent_root;
1500 struct btrfs_key key;
1501 int ret;
1502
1503 key.objectid = bytenr;
1504 if (parent) {
1505 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1506 key.offset = parent;
1507 } else {
1508 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1509 key.offset = root_objectid;
1510 }
1511
1512 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1513 if (ret > 0)
1514 ret = -ENOENT;
1515#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1516 if (ret == -ENOENT && parent) {
1517 btrfs_release_path(path);
1518 key.type = BTRFS_EXTENT_REF_V0_KEY;
1519 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1520 if (ret > 0)
1521 ret = -ENOENT;
1522 }
1523#endif
1524 return ret;
1525}
1526
1527static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1528 struct btrfs_fs_info *fs_info,
1529 struct btrfs_path *path,
1530 u64 bytenr, u64 parent,
1531 u64 root_objectid)
1532{
1533 struct btrfs_key key;
1534 int ret;
1535
1536 key.objectid = bytenr;
1537 if (parent) {
1538 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1539 key.offset = parent;
1540 } else {
1541 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1542 key.offset = root_objectid;
1543 }
1544
1545 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1546 path, &key, 0);
1547 btrfs_release_path(path);
1548 return ret;
1549}
1550
1551static inline int extent_ref_type(u64 parent, u64 owner)
1552{
1553 int type;
1554 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1555 if (parent > 0)
1556 type = BTRFS_SHARED_BLOCK_REF_KEY;
1557 else
1558 type = BTRFS_TREE_BLOCK_REF_KEY;
1559 } else {
1560 if (parent > 0)
1561 type = BTRFS_SHARED_DATA_REF_KEY;
1562 else
1563 type = BTRFS_EXTENT_DATA_REF_KEY;
1564 }
1565 return type;
1566}
1567
1568static int find_next_key(struct btrfs_path *path, int level,
1569 struct btrfs_key *key)
1570
1571{
1572 for (; level < BTRFS_MAX_LEVEL; level++) {
1573 if (!path->nodes[level])
1574 break;
1575 if (path->slots[level] + 1 >=
1576 btrfs_header_nritems(path->nodes[level]))
1577 continue;
1578 if (level == 0)
1579 btrfs_item_key_to_cpu(path->nodes[level], key,
1580 path->slots[level] + 1);
1581 else
1582 btrfs_node_key_to_cpu(path->nodes[level], key,
1583 path->slots[level] + 1);
1584 return 0;
1585 }
1586 return 1;
1587}
1588
1589/*
1590 * look for inline back ref. if back ref is found, *ref_ret is set
1591 * to the address of inline back ref, and 0 is returned.
1592 *
1593 * if back ref isn't found, *ref_ret is set to the address where it
1594 * should be inserted, and -ENOENT is returned.
1595 *
1596 * if insert is true and there are too many inline back refs, the path
1597 * points to the extent item, and -EAGAIN is returned.
1598 *
1599 * NOTE: inline back refs are ordered in the same way that back ref
1600 * items in the tree are ordered.
1601 */
1602static noinline_for_stack
1603int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1604 struct btrfs_fs_info *fs_info,
1605 struct btrfs_path *path,
1606 struct btrfs_extent_inline_ref **ref_ret,
1607 u64 bytenr, u64 num_bytes,
1608 u64 parent, u64 root_objectid,
1609 u64 owner, u64 offset, int insert)
1610{
1611 struct btrfs_root *root = fs_info->extent_root;
1612 struct btrfs_key key;
1613 struct extent_buffer *leaf;
1614 struct btrfs_extent_item *ei;
1615 struct btrfs_extent_inline_ref *iref;
1616 u64 flags;
1617 u64 item_size;
1618 unsigned long ptr;
1619 unsigned long end;
1620 int extra_size;
1621 int type;
1622 int want;
1623 int ret;
1624 int err = 0;
1625 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1626 int needed;
1627
1628 key.objectid = bytenr;
1629 key.type = BTRFS_EXTENT_ITEM_KEY;
1630 key.offset = num_bytes;
1631
1632 want = extent_ref_type(parent, owner);
1633 if (insert) {
1634 extra_size = btrfs_extent_inline_ref_size(want);
1635 path->keep_locks = 1;
1636 } else
1637 extra_size = -1;
1638
1639 /*
1640 * Owner is our parent level, so we can just add one to get the level
1641 * for the block we are interested in.
1642 */
1643 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1644 key.type = BTRFS_METADATA_ITEM_KEY;
1645 key.offset = owner;
1646 }
1647
1648again:
1649 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1650 if (ret < 0) {
1651 err = ret;
1652 goto out;
1653 }
1654
1655 /*
1656 * We may be a newly converted file system which still has the old fat
1657 * extent entries for metadata, so try and see if we have one of those.
1658 */
1659 if (ret > 0 && skinny_metadata) {
1660 skinny_metadata = false;
1661 if (path->slots[0]) {
1662 path->slots[0]--;
1663 btrfs_item_key_to_cpu(path->nodes[0], &key,
1664 path->slots[0]);
1665 if (key.objectid == bytenr &&
1666 key.type == BTRFS_EXTENT_ITEM_KEY &&
1667 key.offset == num_bytes)
1668 ret = 0;
1669 }
1670 if (ret) {
1671 key.objectid = bytenr;
1672 key.type = BTRFS_EXTENT_ITEM_KEY;
1673 key.offset = num_bytes;
1674 btrfs_release_path(path);
1675 goto again;
1676 }
1677 }
1678
1679 if (ret && !insert) {
1680 err = -ENOENT;
1681 goto out;
1682 } else if (WARN_ON(ret)) {
1683 err = -EIO;
1684 goto out;
1685 }
1686
1687 leaf = path->nodes[0];
1688 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1689#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1690 if (item_size < sizeof(*ei)) {
1691 if (!insert) {
1692 err = -ENOENT;
1693 goto out;
1694 }
1695 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1696 extra_size);
1697 if (ret < 0) {
1698 err = ret;
1699 goto out;
1700 }
1701 leaf = path->nodes[0];
1702 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703 }
1704#endif
1705 BUG_ON(item_size < sizeof(*ei));
1706
1707 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1708 flags = btrfs_extent_flags(leaf, ei);
1709
1710 ptr = (unsigned long)(ei + 1);
1711 end = (unsigned long)ei + item_size;
1712
1713 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1714 ptr += sizeof(struct btrfs_tree_block_info);
1715 BUG_ON(ptr > end);
1716 }
1717
1718 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1719 needed = BTRFS_REF_TYPE_DATA;
1720 else
1721 needed = BTRFS_REF_TYPE_BLOCK;
1722
1723 err = -ENOENT;
1724 while (1) {
1725 if (ptr >= end) {
1726 WARN_ON(ptr > end);
1727 break;
1728 }
1729 iref = (struct btrfs_extent_inline_ref *)ptr;
1730 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1731 if (type == BTRFS_REF_TYPE_INVALID) {
1732 err = -EINVAL;
1733 goto out;
1734 }
1735
1736 if (want < type)
1737 break;
1738 if (want > type) {
1739 ptr += btrfs_extent_inline_ref_size(type);
1740 continue;
1741 }
1742
1743 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1744 struct btrfs_extent_data_ref *dref;
1745 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1746 if (match_extent_data_ref(leaf, dref, root_objectid,
1747 owner, offset)) {
1748 err = 0;
1749 break;
1750 }
1751 if (hash_extent_data_ref_item(leaf, dref) <
1752 hash_extent_data_ref(root_objectid, owner, offset))
1753 break;
1754 } else {
1755 u64 ref_offset;
1756 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1757 if (parent > 0) {
1758 if (parent == ref_offset) {
1759 err = 0;
1760 break;
1761 }
1762 if (ref_offset < parent)
1763 break;
1764 } else {
1765 if (root_objectid == ref_offset) {
1766 err = 0;
1767 break;
1768 }
1769 if (ref_offset < root_objectid)
1770 break;
1771 }
1772 }
1773 ptr += btrfs_extent_inline_ref_size(type);
1774 }
1775 if (err == -ENOENT && insert) {
1776 if (item_size + extra_size >=
1777 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1778 err = -EAGAIN;
1779 goto out;
1780 }
1781 /*
1782 * To add new inline back ref, we have to make sure
1783 * there is no corresponding back ref item.
1784 * For simplicity, we just do not add new inline back
1785 * ref if there is any kind of item for this block
1786 */
1787 if (find_next_key(path, 0, &key) == 0 &&
1788 key.objectid == bytenr &&
1789 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1790 err = -EAGAIN;
1791 goto out;
1792 }
1793 }
1794 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1795out:
1796 if (insert) {
1797 path->keep_locks = 0;
1798 btrfs_unlock_up_safe(path, 1);
1799 }
1800 return err;
1801}
1802
1803/*
1804 * helper to add new inline back ref
1805 */
1806static noinline_for_stack
1807void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1808 struct btrfs_path *path,
1809 struct btrfs_extent_inline_ref *iref,
1810 u64 parent, u64 root_objectid,
1811 u64 owner, u64 offset, int refs_to_add,
1812 struct btrfs_delayed_extent_op *extent_op)
1813{
1814 struct extent_buffer *leaf;
1815 struct btrfs_extent_item *ei;
1816 unsigned long ptr;
1817 unsigned long end;
1818 unsigned long item_offset;
1819 u64 refs;
1820 int size;
1821 int type;
1822
1823 leaf = path->nodes[0];
1824 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1825 item_offset = (unsigned long)iref - (unsigned long)ei;
1826
1827 type = extent_ref_type(parent, owner);
1828 size = btrfs_extent_inline_ref_size(type);
1829
1830 btrfs_extend_item(fs_info, path, size);
1831
1832 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1833 refs = btrfs_extent_refs(leaf, ei);
1834 refs += refs_to_add;
1835 btrfs_set_extent_refs(leaf, ei, refs);
1836 if (extent_op)
1837 __run_delayed_extent_op(extent_op, leaf, ei);
1838
1839 ptr = (unsigned long)ei + item_offset;
1840 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1841 if (ptr < end - size)
1842 memmove_extent_buffer(leaf, ptr + size, ptr,
1843 end - size - ptr);
1844
1845 iref = (struct btrfs_extent_inline_ref *)ptr;
1846 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1847 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1848 struct btrfs_extent_data_ref *dref;
1849 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1850 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1851 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1852 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1853 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1854 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1855 struct btrfs_shared_data_ref *sref;
1856 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1857 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1858 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1859 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1860 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1861 } else {
1862 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1863 }
1864 btrfs_mark_buffer_dirty(leaf);
1865}
1866
1867static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1868 struct btrfs_fs_info *fs_info,
1869 struct btrfs_path *path,
1870 struct btrfs_extent_inline_ref **ref_ret,
1871 u64 bytenr, u64 num_bytes, u64 parent,
1872 u64 root_objectid, u64 owner, u64 offset)
1873{
1874 int ret;
1875
1876 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1877 bytenr, num_bytes, parent,
1878 root_objectid, owner, offset, 0);
1879 if (ret != -ENOENT)
1880 return ret;
1881
1882 btrfs_release_path(path);
1883 *ref_ret = NULL;
1884
1885 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1886 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1887 parent, root_objectid);
1888 } else {
1889 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1890 parent, root_objectid, owner,
1891 offset);
1892 }
1893 return ret;
1894}
1895
1896/*
1897 * helper to update/remove inline back ref
1898 */
1899static noinline_for_stack
1900void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1901 struct btrfs_path *path,
1902 struct btrfs_extent_inline_ref *iref,
1903 int refs_to_mod,
1904 struct btrfs_delayed_extent_op *extent_op,
1905 int *last_ref)
1906{
1907 struct extent_buffer *leaf;
1908 struct btrfs_extent_item *ei;
1909 struct btrfs_extent_data_ref *dref = NULL;
1910 struct btrfs_shared_data_ref *sref = NULL;
1911 unsigned long ptr;
1912 unsigned long end;
1913 u32 item_size;
1914 int size;
1915 int type;
1916 u64 refs;
1917
1918 leaf = path->nodes[0];
1919 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1920 refs = btrfs_extent_refs(leaf, ei);
1921 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1922 refs += refs_to_mod;
1923 btrfs_set_extent_refs(leaf, ei, refs);
1924 if (extent_op)
1925 __run_delayed_extent_op(extent_op, leaf, ei);
1926
1927 /*
1928 * If type is invalid, we should have bailed out after
1929 * lookup_inline_extent_backref().
1930 */
1931 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1932 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1933
1934 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1935 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1936 refs = btrfs_extent_data_ref_count(leaf, dref);
1937 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1938 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1939 refs = btrfs_shared_data_ref_count(leaf, sref);
1940 } else {
1941 refs = 1;
1942 BUG_ON(refs_to_mod != -1);
1943 }
1944
1945 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1946 refs += refs_to_mod;
1947
1948 if (refs > 0) {
1949 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1950 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1951 else
1952 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1953 } else {
1954 *last_ref = 1;
1955 size = btrfs_extent_inline_ref_size(type);
1956 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1957 ptr = (unsigned long)iref;
1958 end = (unsigned long)ei + item_size;
1959 if (ptr + size < end)
1960 memmove_extent_buffer(leaf, ptr, ptr + size,
1961 end - ptr - size);
1962 item_size -= size;
1963 btrfs_truncate_item(fs_info, path, item_size, 1);
1964 }
1965 btrfs_mark_buffer_dirty(leaf);
1966}
1967
1968static noinline_for_stack
1969int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1970 struct btrfs_fs_info *fs_info,
1971 struct btrfs_path *path,
1972 u64 bytenr, u64 num_bytes, u64 parent,
1973 u64 root_objectid, u64 owner,
1974 u64 offset, int refs_to_add,
1975 struct btrfs_delayed_extent_op *extent_op)
1976{
1977 struct btrfs_extent_inline_ref *iref;
1978 int ret;
1979
1980 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1981 bytenr, num_bytes, parent,
1982 root_objectid, owner, offset, 1);
1983 if (ret == 0) {
1984 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1985 update_inline_extent_backref(fs_info, path, iref,
1986 refs_to_add, extent_op, NULL);
1987 } else if (ret == -ENOENT) {
1988 setup_inline_extent_backref(fs_info, path, iref, parent,
1989 root_objectid, owner, offset,
1990 refs_to_add, extent_op);
1991 ret = 0;
1992 }
1993 return ret;
1994}
1995
1996static int insert_extent_backref(struct btrfs_trans_handle *trans,
1997 struct btrfs_fs_info *fs_info,
1998 struct btrfs_path *path,
1999 u64 bytenr, u64 parent, u64 root_objectid,
2000 u64 owner, u64 offset, int refs_to_add)
2001{
2002 int ret;
2003 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2004 BUG_ON(refs_to_add != 1);
2005 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2006 parent, root_objectid);
2007 } else {
2008 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2009 parent, root_objectid,
2010 owner, offset, refs_to_add);
2011 }
2012 return ret;
2013}
2014
2015static int remove_extent_backref(struct btrfs_trans_handle *trans,
2016 struct btrfs_fs_info *fs_info,
2017 struct btrfs_path *path,
2018 struct btrfs_extent_inline_ref *iref,
2019 int refs_to_drop, int is_data, int *last_ref)
2020{
2021 int ret = 0;
2022
2023 BUG_ON(!is_data && refs_to_drop != 1);
2024 if (iref) {
2025 update_inline_extent_backref(fs_info, path, iref,
2026 -refs_to_drop, NULL, last_ref);
2027 } else if (is_data) {
2028 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2029 last_ref);
2030 } else {
2031 *last_ref = 1;
2032 ret = btrfs_del_item(trans, fs_info->extent_root, path);
2033 }
2034 return ret;
2035}
2036
2037#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
2038static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2039 u64 *discarded_bytes)
2040{
2041 int j, ret = 0;
2042 u64 bytes_left, end;
2043 u64 aligned_start = ALIGN(start, 1 << 9);
2044
2045 if (WARN_ON(start != aligned_start)) {
2046 len -= aligned_start - start;
2047 len = round_down(len, 1 << 9);
2048 start = aligned_start;
2049 }
2050
2051 *discarded_bytes = 0;
2052
2053 if (!len)
2054 return 0;
2055
2056 end = start + len;
2057 bytes_left = len;
2058
2059 /* Skip any superblocks on this device. */
2060 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2061 u64 sb_start = btrfs_sb_offset(j);
2062 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2063 u64 size = sb_start - start;
2064
2065 if (!in_range(sb_start, start, bytes_left) &&
2066 !in_range(sb_end, start, bytes_left) &&
2067 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2068 continue;
2069
2070 /*
2071 * Superblock spans beginning of range. Adjust start and
2072 * try again.
2073 */
2074 if (sb_start <= start) {
2075 start += sb_end - start;
2076 if (start > end) {
2077 bytes_left = 0;
2078 break;
2079 }
2080 bytes_left = end - start;
2081 continue;
2082 }
2083
2084 if (size) {
2085 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2086 GFP_NOFS, 0);
2087 if (!ret)
2088 *discarded_bytes += size;
2089 else if (ret != -EOPNOTSUPP)
2090 return ret;
2091 }
2092
2093 start = sb_end;
2094 if (start > end) {
2095 bytes_left = 0;
2096 break;
2097 }
2098 bytes_left = end - start;
2099 }
2100
2101 if (bytes_left) {
2102 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2103 GFP_NOFS, 0);
2104 if (!ret)
2105 *discarded_bytes += bytes_left;
2106 }
2107 return ret;
2108}
2109
2110int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2111 u64 num_bytes, u64 *actual_bytes)
2112{
2113 int ret;
2114 u64 discarded_bytes = 0;
2115 struct btrfs_bio *bbio = NULL;
2116
2117
2118 /*
2119 * Avoid races with device replace and make sure our bbio has devices
2120 * associated to its stripes that don't go away while we are discarding.
2121 */
2122 btrfs_bio_counter_inc_blocked(fs_info);
2123 /* Tell the block device(s) that the sectors can be discarded */
2124 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2125 &bbio, 0);
2126 /* Error condition is -ENOMEM */
2127 if (!ret) {
2128 struct btrfs_bio_stripe *stripe = bbio->stripes;
2129 int i;
2130
2131
2132 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2133 u64 bytes;
2134 struct request_queue *req_q;
2135
2136 if (!stripe->dev->bdev) {
2137 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2138 continue;
2139 }
2140 req_q = bdev_get_queue(stripe->dev->bdev);
2141 if (!blk_queue_discard(req_q))
2142 continue;
2143
2144 ret = btrfs_issue_discard(stripe->dev->bdev,
2145 stripe->physical,
2146 stripe->length,
2147 &bytes);
2148 if (!ret)
2149 discarded_bytes += bytes;
2150 else if (ret != -EOPNOTSUPP)
2151 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2152
2153 /*
2154 * Just in case we get back EOPNOTSUPP for some reason,
2155 * just ignore the return value so we don't screw up
2156 * people calling discard_extent.
2157 */
2158 ret = 0;
2159 }
2160 btrfs_put_bbio(bbio);
2161 }
2162 btrfs_bio_counter_dec(fs_info);
2163
2164 if (actual_bytes)
2165 *actual_bytes = discarded_bytes;
2166
2167
2168 if (ret == -EOPNOTSUPP)
2169 ret = 0;
2170 return ret;
2171}
2172
2173/* Can return -ENOMEM */
2174int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2175 struct btrfs_root *root,
2176 u64 bytenr, u64 num_bytes, u64 parent,
2177 u64 root_objectid, u64 owner, u64 offset)
2178{
2179 struct btrfs_fs_info *fs_info = root->fs_info;
2180 int old_ref_mod, new_ref_mod;
2181 int ret;
2182
2183 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2184 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2185
2186 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2187 owner, offset, BTRFS_ADD_DELAYED_REF);
2188
2189 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2190 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2191 num_bytes, parent,
2192 root_objectid, (int)owner,
2193 BTRFS_ADD_DELAYED_REF, NULL,
2194 &old_ref_mod, &new_ref_mod);
2195 } else {
2196 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2197 num_bytes, parent,
2198 root_objectid, owner, offset,
2199 0, BTRFS_ADD_DELAYED_REF,
2200 &old_ref_mod, &new_ref_mod);
2201 }
2202
2203 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2204 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2205
2206 return ret;
2207}
2208
2209static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2210 struct btrfs_fs_info *fs_info,
2211 struct btrfs_delayed_ref_node *node,
2212 u64 parent, u64 root_objectid,
2213 u64 owner, u64 offset, int refs_to_add,
2214 struct btrfs_delayed_extent_op *extent_op)
2215{
2216 struct btrfs_path *path;
2217 struct extent_buffer *leaf;
2218 struct btrfs_extent_item *item;
2219 struct btrfs_key key;
2220 u64 bytenr = node->bytenr;
2221 u64 num_bytes = node->num_bytes;
2222 u64 refs;
2223 int ret;
2224
2225 path = btrfs_alloc_path();
2226 if (!path)
2227 return -ENOMEM;
2228
2229 path->reada = READA_FORWARD;
2230 path->leave_spinning = 1;
2231 /* this will setup the path even if it fails to insert the back ref */
2232 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2233 num_bytes, parent, root_objectid,
2234 owner, offset,
2235 refs_to_add, extent_op);
2236 if ((ret < 0 && ret != -EAGAIN) || !ret)
2237 goto out;
2238
2239 /*
2240 * Ok we had -EAGAIN which means we didn't have space to insert and
2241 * inline extent ref, so just update the reference count and add a
2242 * normal backref.
2243 */
2244 leaf = path->nodes[0];
2245 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2246 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2247 refs = btrfs_extent_refs(leaf, item);
2248 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2249 if (extent_op)
2250 __run_delayed_extent_op(extent_op, leaf, item);
2251
2252 btrfs_mark_buffer_dirty(leaf);
2253 btrfs_release_path(path);
2254
2255 path->reada = READA_FORWARD;
2256 path->leave_spinning = 1;
2257 /* now insert the actual backref */
2258 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2259 root_objectid, owner, offset, refs_to_add);
2260 if (ret)
2261 btrfs_abort_transaction(trans, ret);
2262out:
2263 btrfs_free_path(path);
2264 return ret;
2265}
2266
2267static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2268 struct btrfs_fs_info *fs_info,
2269 struct btrfs_delayed_ref_node *node,
2270 struct btrfs_delayed_extent_op *extent_op,
2271 int insert_reserved)
2272{
2273 int ret = 0;
2274 struct btrfs_delayed_data_ref *ref;
2275 struct btrfs_key ins;
2276 u64 parent = 0;
2277 u64 ref_root = 0;
2278 u64 flags = 0;
2279
2280 ins.objectid = node->bytenr;
2281 ins.offset = node->num_bytes;
2282 ins.type = BTRFS_EXTENT_ITEM_KEY;
2283
2284 ref = btrfs_delayed_node_to_data_ref(node);
2285 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2286
2287 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2288 parent = ref->parent;
2289 ref_root = ref->root;
2290
2291 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2292 if (extent_op)
2293 flags |= extent_op->flags_to_set;
2294 ret = alloc_reserved_file_extent(trans, fs_info,
2295 parent, ref_root, flags,
2296 ref->objectid, ref->offset,
2297 &ins, node->ref_mod);
2298 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2299 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2300 ref_root, ref->objectid,
2301 ref->offset, node->ref_mod,
2302 extent_op);
2303 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2304 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2305 ref_root, ref->objectid,
2306 ref->offset, node->ref_mod,
2307 extent_op);
2308 } else {
2309 BUG();
2310 }
2311 return ret;
2312}
2313
2314static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2315 struct extent_buffer *leaf,
2316 struct btrfs_extent_item *ei)
2317{
2318 u64 flags = btrfs_extent_flags(leaf, ei);
2319 if (extent_op->update_flags) {
2320 flags |= extent_op->flags_to_set;
2321 btrfs_set_extent_flags(leaf, ei, flags);
2322 }
2323
2324 if (extent_op->update_key) {
2325 struct btrfs_tree_block_info *bi;
2326 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2327 bi = (struct btrfs_tree_block_info *)(ei + 1);
2328 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2329 }
2330}
2331
2332static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2333 struct btrfs_fs_info *fs_info,
2334 struct btrfs_delayed_ref_head *head,
2335 struct btrfs_delayed_extent_op *extent_op)
2336{
2337 struct btrfs_key key;
2338 struct btrfs_path *path;
2339 struct btrfs_extent_item *ei;
2340 struct extent_buffer *leaf;
2341 u32 item_size;
2342 int ret;
2343 int err = 0;
2344 int metadata = !extent_op->is_data;
2345
2346 if (trans->aborted)
2347 return 0;
2348
2349 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2350 metadata = 0;
2351
2352 path = btrfs_alloc_path();
2353 if (!path)
2354 return -ENOMEM;
2355
2356 key.objectid = head->bytenr;
2357
2358 if (metadata) {
2359 key.type = BTRFS_METADATA_ITEM_KEY;
2360 key.offset = extent_op->level;
2361 } else {
2362 key.type = BTRFS_EXTENT_ITEM_KEY;
2363 key.offset = head->num_bytes;
2364 }
2365
2366again:
2367 path->reada = READA_FORWARD;
2368 path->leave_spinning = 1;
2369 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2370 if (ret < 0) {
2371 err = ret;
2372 goto out;
2373 }
2374 if (ret > 0) {
2375 if (metadata) {
2376 if (path->slots[0] > 0) {
2377 path->slots[0]--;
2378 btrfs_item_key_to_cpu(path->nodes[0], &key,
2379 path->slots[0]);
2380 if (key.objectid == head->bytenr &&
2381 key.type == BTRFS_EXTENT_ITEM_KEY &&
2382 key.offset == head->num_bytes)
2383 ret = 0;
2384 }
2385 if (ret > 0) {
2386 btrfs_release_path(path);
2387 metadata = 0;
2388
2389 key.objectid = head->bytenr;
2390 key.offset = head->num_bytes;
2391 key.type = BTRFS_EXTENT_ITEM_KEY;
2392 goto again;
2393 }
2394 } else {
2395 err = -EIO;
2396 goto out;
2397 }
2398 }
2399
2400 leaf = path->nodes[0];
2401 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2402#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2403 if (item_size < sizeof(*ei)) {
2404 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2405 if (ret < 0) {
2406 err = ret;
2407 goto out;
2408 }
2409 leaf = path->nodes[0];
2410 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2411 }
2412#endif
2413 BUG_ON(item_size < sizeof(*ei));
2414 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2415 __run_delayed_extent_op(extent_op, leaf, ei);
2416
2417 btrfs_mark_buffer_dirty(leaf);
2418out:
2419 btrfs_free_path(path);
2420 return err;
2421}
2422
2423static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2424 struct btrfs_fs_info *fs_info,
2425 struct btrfs_delayed_ref_node *node,
2426 struct btrfs_delayed_extent_op *extent_op,
2427 int insert_reserved)
2428{
2429 int ret = 0;
2430 struct btrfs_delayed_tree_ref *ref;
2431 struct btrfs_key ins;
2432 u64 parent = 0;
2433 u64 ref_root = 0;
2434 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2435
2436 ref = btrfs_delayed_node_to_tree_ref(node);
2437 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2438
2439 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2440 parent = ref->parent;
2441 ref_root = ref->root;
2442
2443 ins.objectid = node->bytenr;
2444 if (skinny_metadata) {
2445 ins.offset = ref->level;
2446 ins.type = BTRFS_METADATA_ITEM_KEY;
2447 } else {
2448 ins.offset = node->num_bytes;
2449 ins.type = BTRFS_EXTENT_ITEM_KEY;
2450 }
2451
2452 if (node->ref_mod != 1) {
2453 btrfs_err(fs_info,
2454 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2455 node->bytenr, node->ref_mod, node->action, ref_root,
2456 parent);
2457 return -EIO;
2458 }
2459 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2460 BUG_ON(!extent_op || !extent_op->update_flags);
2461 ret = alloc_reserved_tree_block(trans, fs_info,
2462 parent, ref_root,
2463 extent_op->flags_to_set,
2464 &extent_op->key,
2465 ref->level, &ins);
2466 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2467 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2468 parent, ref_root,
2469 ref->level, 0, 1,
2470 extent_op);
2471 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2472 ret = __btrfs_free_extent(trans, fs_info, node,
2473 parent, ref_root,
2474 ref->level, 0, 1, extent_op);
2475 } else {
2476 BUG();
2477 }
2478 return ret;
2479}
2480
2481/* helper function to actually process a single delayed ref entry */
2482static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2483 struct btrfs_fs_info *fs_info,
2484 struct btrfs_delayed_ref_node *node,
2485 struct btrfs_delayed_extent_op *extent_op,
2486 int insert_reserved)
2487{
2488 int ret = 0;
2489
2490 if (trans->aborted) {
2491 if (insert_reserved)
2492 btrfs_pin_extent(fs_info, node->bytenr,
2493 node->num_bytes, 1);
2494 return 0;
2495 }
2496
2497 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2498 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2499 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2500 insert_reserved);
2501 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2502 node->type == BTRFS_SHARED_DATA_REF_KEY)
2503 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2504 insert_reserved);
2505 else
2506 BUG();
2507 return ret;
2508}
2509
2510static inline struct btrfs_delayed_ref_node *
2511select_delayed_ref(struct btrfs_delayed_ref_head *head)
2512{
2513 struct btrfs_delayed_ref_node *ref;
2514
2515 if (RB_EMPTY_ROOT(&head->ref_tree))
2516 return NULL;
2517
2518 /*
2519 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2520 * This is to prevent a ref count from going down to zero, which deletes
2521 * the extent item from the extent tree, when there still are references
2522 * to add, which would fail because they would not find the extent item.
2523 */
2524 if (!list_empty(&head->ref_add_list))
2525 return list_first_entry(&head->ref_add_list,
2526 struct btrfs_delayed_ref_node, add_list);
2527
2528 ref = rb_entry(rb_first(&head->ref_tree),
2529 struct btrfs_delayed_ref_node, ref_node);
2530 ASSERT(list_empty(&ref->add_list));
2531 return ref;
2532}
2533
2534static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2535 struct btrfs_delayed_ref_head *head)
2536{
2537 spin_lock(&delayed_refs->lock);
2538 head->processing = 0;
2539 delayed_refs->num_heads_ready++;
2540 spin_unlock(&delayed_refs->lock);
2541 btrfs_delayed_ref_unlock(head);
2542}
2543
2544static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2545 struct btrfs_fs_info *fs_info,
2546 struct btrfs_delayed_ref_head *head)
2547{
2548 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2549 int ret;
2550
2551 if (!extent_op)
2552 return 0;
2553 head->extent_op = NULL;
2554 if (head->must_insert_reserved) {
2555 btrfs_free_delayed_extent_op(extent_op);
2556 return 0;
2557 }
2558 spin_unlock(&head->lock);
2559 ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2560 btrfs_free_delayed_extent_op(extent_op);
2561 return ret ? ret : 1;
2562}
2563
2564static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2565 struct btrfs_fs_info *fs_info,
2566 struct btrfs_delayed_ref_head *head)
2567{
2568 struct btrfs_delayed_ref_root *delayed_refs;
2569 int ret;
2570
2571 delayed_refs = &trans->transaction->delayed_refs;
2572
2573 ret = cleanup_extent_op(trans, fs_info, head);
2574 if (ret < 0) {
2575 unselect_delayed_ref_head(delayed_refs, head);
2576 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2577 return ret;
2578 } else if (ret) {
2579 return ret;
2580 }
2581
2582 /*
2583 * Need to drop our head ref lock and re-acquire the delayed ref lock
2584 * and then re-check to make sure nobody got added.
2585 */
2586 spin_unlock(&head->lock);
2587 spin_lock(&delayed_refs->lock);
2588 spin_lock(&head->lock);
2589 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2590 spin_unlock(&head->lock);
2591 spin_unlock(&delayed_refs->lock);
2592 return 1;
2593 }
2594 delayed_refs->num_heads--;
2595 rb_erase(&head->href_node, &delayed_refs->href_root);
2596 RB_CLEAR_NODE(&head->href_node);
2597 spin_unlock(&delayed_refs->lock);
2598 spin_unlock(&head->lock);
2599 atomic_dec(&delayed_refs->num_entries);
2600
2601 trace_run_delayed_ref_head(fs_info, head, 0);
2602
2603 if (head->total_ref_mod < 0) {
2604 struct btrfs_space_info *space_info;
2605 u64 flags;
2606
2607 if (head->is_data)
2608 flags = BTRFS_BLOCK_GROUP_DATA;
2609 else if (head->is_system)
2610 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2611 else
2612 flags = BTRFS_BLOCK_GROUP_METADATA;
2613 space_info = __find_space_info(fs_info, flags);
2614 ASSERT(space_info);
2615 percpu_counter_add(&space_info->total_bytes_pinned,
2616 -head->num_bytes);
2617
2618 if (head->is_data) {
2619 spin_lock(&delayed_refs->lock);
2620 delayed_refs->pending_csums -= head->num_bytes;
2621 spin_unlock(&delayed_refs->lock);
2622 }
2623 }
2624
2625 if (head->must_insert_reserved) {
2626 btrfs_pin_extent(fs_info, head->bytenr,
2627 head->num_bytes, 1);
2628 if (head->is_data) {
2629 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2630 head->num_bytes);
2631 }
2632 }
2633
2634 /* Also free its reserved qgroup space */
2635 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2636 head->qgroup_reserved);
2637 btrfs_delayed_ref_unlock(head);
2638 btrfs_put_delayed_ref_head(head);
2639 return 0;
2640}
2641
2642/*
2643 * Returns 0 on success or if called with an already aborted transaction.
2644 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2645 */
2646static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2647 unsigned long nr)
2648{
2649 struct btrfs_fs_info *fs_info = trans->fs_info;
2650 struct btrfs_delayed_ref_root *delayed_refs;
2651 struct btrfs_delayed_ref_node *ref;
2652 struct btrfs_delayed_ref_head *locked_ref = NULL;
2653 struct btrfs_delayed_extent_op *extent_op;
2654 ktime_t start = ktime_get();
2655 int ret;
2656 unsigned long count = 0;
2657 unsigned long actual_count = 0;
2658 int must_insert_reserved = 0;
2659
2660 delayed_refs = &trans->transaction->delayed_refs;
2661 while (1) {
2662 if (!locked_ref) {
2663 if (count >= nr)
2664 break;
2665
2666 spin_lock(&delayed_refs->lock);
2667 locked_ref = btrfs_select_ref_head(trans);
2668 if (!locked_ref) {
2669 spin_unlock(&delayed_refs->lock);
2670 break;
2671 }
2672
2673 /* grab the lock that says we are going to process
2674 * all the refs for this head */
2675 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2676 spin_unlock(&delayed_refs->lock);
2677 /*
2678 * we may have dropped the spin lock to get the head
2679 * mutex lock, and that might have given someone else
2680 * time to free the head. If that's true, it has been
2681 * removed from our list and we can move on.
2682 */
2683 if (ret == -EAGAIN) {
2684 locked_ref = NULL;
2685 count++;
2686 continue;
2687 }
2688 }
2689
2690 /*
2691 * We need to try and merge add/drops of the same ref since we
2692 * can run into issues with relocate dropping the implicit ref
2693 * and then it being added back again before the drop can
2694 * finish. If we merged anything we need to re-loop so we can
2695 * get a good ref.
2696 * Or we can get node references of the same type that weren't
2697 * merged when created due to bumps in the tree mod seq, and
2698 * we need to merge them to prevent adding an inline extent
2699 * backref before dropping it (triggering a BUG_ON at
2700 * insert_inline_extent_backref()).
2701 */
2702 spin_lock(&locked_ref->lock);
2703 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2704 locked_ref);
2705
2706 /*
2707 * locked_ref is the head node, so we have to go one
2708 * node back for any delayed ref updates
2709 */
2710 ref = select_delayed_ref(locked_ref);
2711
2712 if (ref && ref->seq &&
2713 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2714 spin_unlock(&locked_ref->lock);
2715 unselect_delayed_ref_head(delayed_refs, locked_ref);
2716 locked_ref = NULL;
2717 cond_resched();
2718 count++;
2719 continue;
2720 }
2721
2722 /*
2723 * We're done processing refs in this ref_head, clean everything
2724 * up and move on to the next ref_head.
2725 */
2726 if (!ref) {
2727 ret = cleanup_ref_head(trans, fs_info, locked_ref);
2728 if (ret > 0 ) {
2729 /* We dropped our lock, we need to loop. */
2730 ret = 0;
2731 continue;
2732 } else if (ret) {
2733 return ret;
2734 }
2735 locked_ref = NULL;
2736 count++;
2737 continue;
2738 }
2739
2740 actual_count++;
2741 ref->in_tree = 0;
2742 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2743 RB_CLEAR_NODE(&ref->ref_node);
2744 if (!list_empty(&ref->add_list))
2745 list_del(&ref->add_list);
2746 /*
2747 * When we play the delayed ref, also correct the ref_mod on
2748 * head
2749 */
2750 switch (ref->action) {
2751 case BTRFS_ADD_DELAYED_REF:
2752 case BTRFS_ADD_DELAYED_EXTENT:
2753 locked_ref->ref_mod -= ref->ref_mod;
2754 break;
2755 case BTRFS_DROP_DELAYED_REF:
2756 locked_ref->ref_mod += ref->ref_mod;
2757 break;
2758 default:
2759 WARN_ON(1);
2760 }
2761 atomic_dec(&delayed_refs->num_entries);
2762
2763 /*
2764 * Record the must-insert_reserved flag before we drop the spin
2765 * lock.
2766 */
2767 must_insert_reserved = locked_ref->must_insert_reserved;
2768 locked_ref->must_insert_reserved = 0;
2769
2770 extent_op = locked_ref->extent_op;
2771 locked_ref->extent_op = NULL;
2772 spin_unlock(&locked_ref->lock);
2773
2774 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2775 must_insert_reserved);
2776
2777 btrfs_free_delayed_extent_op(extent_op);
2778 if (ret) {
2779 unselect_delayed_ref_head(delayed_refs, locked_ref);
2780 btrfs_put_delayed_ref(ref);
2781 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2782 ret);
2783 return ret;
2784 }
2785
2786 btrfs_put_delayed_ref(ref);
2787 count++;
2788 cond_resched();
2789 }
2790
2791 /*
2792 * We don't want to include ref heads since we can have empty ref heads
2793 * and those will drastically skew our runtime down since we just do
2794 * accounting, no actual extent tree updates.
2795 */
2796 if (actual_count > 0) {
2797 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2798 u64 avg;
2799
2800 /*
2801 * We weigh the current average higher than our current runtime
2802 * to avoid large swings in the average.
2803 */
2804 spin_lock(&delayed_refs->lock);
2805 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2806 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2807 spin_unlock(&delayed_refs->lock);
2808 }
2809 return 0;
2810}
2811
2812#ifdef SCRAMBLE_DELAYED_REFS
2813/*
2814 * Normally delayed refs get processed in ascending bytenr order. This
2815 * correlates in most cases to the order added. To expose dependencies on this
2816 * order, we start to process the tree in the middle instead of the beginning
2817 */
2818static u64 find_middle(struct rb_root *root)
2819{
2820 struct rb_node *n = root->rb_node;
2821 struct btrfs_delayed_ref_node *entry;
2822 int alt = 1;
2823 u64 middle;
2824 u64 first = 0, last = 0;
2825
2826 n = rb_first(root);
2827 if (n) {
2828 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2829 first = entry->bytenr;
2830 }
2831 n = rb_last(root);
2832 if (n) {
2833 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2834 last = entry->bytenr;
2835 }
2836 n = root->rb_node;
2837
2838 while (n) {
2839 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2840 WARN_ON(!entry->in_tree);
2841
2842 middle = entry->bytenr;
2843
2844 if (alt)
2845 n = n->rb_left;
2846 else
2847 n = n->rb_right;
2848
2849 alt = 1 - alt;
2850 }
2851 return middle;
2852}
2853#endif
2854
2855static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2856{
2857 u64 num_bytes;
2858
2859 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2860 sizeof(struct btrfs_extent_inline_ref));
2861 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2862 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2863
2864 /*
2865 * We don't ever fill up leaves all the way so multiply by 2 just to be
2866 * closer to what we're really going to want to use.
2867 */
2868 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2869}
2870
2871/*
2872 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2873 * would require to store the csums for that many bytes.
2874 */
2875u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2876{
2877 u64 csum_size;
2878 u64 num_csums_per_leaf;
2879 u64 num_csums;
2880
2881 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2882 num_csums_per_leaf = div64_u64(csum_size,
2883 (u64)btrfs_super_csum_size(fs_info->super_copy));
2884 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2885 num_csums += num_csums_per_leaf - 1;
2886 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2887 return num_csums;
2888}
2889
2890int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2891 struct btrfs_fs_info *fs_info)
2892{
2893 struct btrfs_block_rsv *global_rsv;
2894 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2895 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2896 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2897 u64 num_bytes, num_dirty_bgs_bytes;
2898 int ret = 0;
2899
2900 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2901 num_heads = heads_to_leaves(fs_info, num_heads);
2902 if (num_heads > 1)
2903 num_bytes += (num_heads - 1) * fs_info->nodesize;
2904 num_bytes <<= 1;
2905 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2906 fs_info->nodesize;
2907 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2908 num_dirty_bgs);
2909 global_rsv = &fs_info->global_block_rsv;
2910
2911 /*
2912 * If we can't allocate any more chunks lets make sure we have _lots_ of
2913 * wiggle room since running delayed refs can create more delayed refs.
2914 */
2915 if (global_rsv->space_info->full) {
2916 num_dirty_bgs_bytes <<= 1;
2917 num_bytes <<= 1;
2918 }
2919
2920 spin_lock(&global_rsv->lock);
2921 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2922 ret = 1;
2923 spin_unlock(&global_rsv->lock);
2924 return ret;
2925}
2926
2927int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2928 struct btrfs_fs_info *fs_info)
2929{
2930 u64 num_entries =
2931 atomic_read(&trans->transaction->delayed_refs.num_entries);
2932 u64 avg_runtime;
2933 u64 val;
2934
2935 smp_mb();
2936 avg_runtime = fs_info->avg_delayed_ref_runtime;
2937 val = num_entries * avg_runtime;
2938 if (val >= NSEC_PER_SEC)
2939 return 1;
2940 if (val >= NSEC_PER_SEC / 2)
2941 return 2;
2942
2943 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2944}
2945
2946struct async_delayed_refs {
2947 struct btrfs_root *root;
2948 u64 transid;
2949 int count;
2950 int error;
2951 int sync;
2952 struct completion wait;
2953 struct btrfs_work work;
2954};
2955
2956static inline struct async_delayed_refs *
2957to_async_delayed_refs(struct btrfs_work *work)
2958{
2959 return container_of(work, struct async_delayed_refs, work);
2960}
2961
2962static void delayed_ref_async_start(struct btrfs_work *work)
2963{
2964 struct async_delayed_refs *async = to_async_delayed_refs(work);
2965 struct btrfs_trans_handle *trans;
2966 struct btrfs_fs_info *fs_info = async->root->fs_info;
2967 int ret;
2968
2969 /* if the commit is already started, we don't need to wait here */
2970 if (btrfs_transaction_blocked(fs_info))
2971 goto done;
2972
2973 trans = btrfs_join_transaction(async->root);
2974 if (IS_ERR(trans)) {
2975 async->error = PTR_ERR(trans);
2976 goto done;
2977 }
2978
2979 /*
2980 * trans->sync means that when we call end_transaction, we won't
2981 * wait on delayed refs
2982 */
2983 trans->sync = true;
2984
2985 /* Don't bother flushing if we got into a different transaction */
2986 if (trans->transid > async->transid)
2987 goto end;
2988
2989 ret = btrfs_run_delayed_refs(trans, async->count);
2990 if (ret)
2991 async->error = ret;
2992end:
2993 ret = btrfs_end_transaction(trans);
2994 if (ret && !async->error)
2995 async->error = ret;
2996done:
2997 if (async->sync)
2998 complete(&async->wait);
2999 else
3000 kfree(async);
3001}
3002
3003int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3004 unsigned long count, u64 transid, int wait)
3005{
3006 struct async_delayed_refs *async;
3007 int ret;
3008
3009 async = kmalloc(sizeof(*async), GFP_NOFS);
3010 if (!async)
3011 return -ENOMEM;
3012
3013 async->root = fs_info->tree_root;
3014 async->count = count;
3015 async->error = 0;
3016 async->transid = transid;
3017 if (wait)
3018 async->sync = 1;
3019 else
3020 async->sync = 0;
3021 init_completion(&async->wait);
3022
3023 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3024 delayed_ref_async_start, NULL, NULL);
3025
3026 btrfs_queue_work(fs_info->extent_workers, &async->work);
3027
3028 if (wait) {
3029 wait_for_completion(&async->wait);
3030 ret = async->error;
3031 kfree(async);
3032 return ret;
3033 }
3034 return 0;
3035}
3036
3037/*
3038 * this starts processing the delayed reference count updates and
3039 * extent insertions we have queued up so far. count can be
3040 * 0, which means to process everything in the tree at the start
3041 * of the run (but not newly added entries), or it can be some target
3042 * number you'd like to process.
3043 *
3044 * Returns 0 on success or if called with an aborted transaction
3045 * Returns <0 on error and aborts the transaction
3046 */
3047int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3048 unsigned long count)
3049{
3050 struct btrfs_fs_info *fs_info = trans->fs_info;
3051 struct rb_node *node;
3052 struct btrfs_delayed_ref_root *delayed_refs;
3053 struct btrfs_delayed_ref_head *head;
3054 int ret;
3055 int run_all = count == (unsigned long)-1;
3056 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3057
3058 /* We'll clean this up in btrfs_cleanup_transaction */
3059 if (trans->aborted)
3060 return 0;
3061
3062 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3063 return 0;
3064
3065 delayed_refs = &trans->transaction->delayed_refs;
3066 if (count == 0)
3067 count = atomic_read(&delayed_refs->num_entries) * 2;
3068
3069again:
3070#ifdef SCRAMBLE_DELAYED_REFS
3071 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3072#endif
3073 trans->can_flush_pending_bgs = false;
3074 ret = __btrfs_run_delayed_refs(trans, count);
3075 if (ret < 0) {
3076 btrfs_abort_transaction(trans, ret);
3077 return ret;
3078 }
3079
3080 if (run_all) {
3081 if (!list_empty(&trans->new_bgs))
3082 btrfs_create_pending_block_groups(trans);
3083
3084 spin_lock(&delayed_refs->lock);
3085 node = rb_first(&delayed_refs->href_root);
3086 if (!node) {
3087 spin_unlock(&delayed_refs->lock);
3088 goto out;
3089 }
3090 head = rb_entry(node, struct btrfs_delayed_ref_head,
3091 href_node);
3092 refcount_inc(&head->refs);
3093 spin_unlock(&delayed_refs->lock);
3094
3095 /* Mutex was contended, block until it's released and retry. */
3096 mutex_lock(&head->mutex);
3097 mutex_unlock(&head->mutex);
3098
3099 btrfs_put_delayed_ref_head(head);
3100 cond_resched();
3101 goto again;
3102 }
3103out:
3104 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3105 return 0;
3106}
3107
3108int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3109 struct btrfs_fs_info *fs_info,
3110 u64 bytenr, u64 num_bytes, u64 flags,
3111 int level, int is_data)
3112{
3113 struct btrfs_delayed_extent_op *extent_op;
3114 int ret;
3115
3116 extent_op = btrfs_alloc_delayed_extent_op();
3117 if (!extent_op)
3118 return -ENOMEM;
3119
3120 extent_op->flags_to_set = flags;
3121 extent_op->update_flags = true;
3122 extent_op->update_key = false;
3123 extent_op->is_data = is_data ? true : false;
3124 extent_op->level = level;
3125
3126 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3127 num_bytes, extent_op);
3128 if (ret)
3129 btrfs_free_delayed_extent_op(extent_op);
3130 return ret;
3131}
3132
3133static noinline int check_delayed_ref(struct btrfs_root *root,
3134 struct btrfs_path *path,
3135 u64 objectid, u64 offset, u64 bytenr)
3136{
3137 struct btrfs_delayed_ref_head *head;
3138 struct btrfs_delayed_ref_node *ref;
3139 struct btrfs_delayed_data_ref *data_ref;
3140 struct btrfs_delayed_ref_root *delayed_refs;
3141 struct btrfs_transaction *cur_trans;
3142 struct rb_node *node;
3143 int ret = 0;
3144
3145 spin_lock(&root->fs_info->trans_lock);
3146 cur_trans = root->fs_info->running_transaction;
3147 if (cur_trans)
3148 refcount_inc(&cur_trans->use_count);
3149 spin_unlock(&root->fs_info->trans_lock);
3150 if (!cur_trans)
3151 return 0;
3152
3153 delayed_refs = &cur_trans->delayed_refs;
3154 spin_lock(&delayed_refs->lock);
3155 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3156 if (!head) {
3157 spin_unlock(&delayed_refs->lock);
3158 btrfs_put_transaction(cur_trans);
3159 return 0;
3160 }
3161
3162 if (!mutex_trylock(&head->mutex)) {
3163 refcount_inc(&head->refs);
3164 spin_unlock(&delayed_refs->lock);
3165
3166 btrfs_release_path(path);
3167
3168 /*
3169 * Mutex was contended, block until it's released and let
3170 * caller try again
3171 */
3172 mutex_lock(&head->mutex);
3173 mutex_unlock(&head->mutex);
3174 btrfs_put_delayed_ref_head(head);
3175 btrfs_put_transaction(cur_trans);
3176 return -EAGAIN;
3177 }
3178 spin_unlock(&delayed_refs->lock);
3179
3180 spin_lock(&head->lock);
3181 /*
3182 * XXX: We should replace this with a proper search function in the
3183 * future.
3184 */
3185 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3186 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3187 /* If it's a shared ref we know a cross reference exists */
3188 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3189 ret = 1;
3190 break;
3191 }
3192
3193 data_ref = btrfs_delayed_node_to_data_ref(ref);
3194
3195 /*
3196 * If our ref doesn't match the one we're currently looking at
3197 * then we have a cross reference.
3198 */
3199 if (data_ref->root != root->root_key.objectid ||
3200 data_ref->objectid != objectid ||
3201 data_ref->offset != offset) {
3202 ret = 1;
3203 break;
3204 }
3205 }
3206 spin_unlock(&head->lock);
3207 mutex_unlock(&head->mutex);
3208 btrfs_put_transaction(cur_trans);
3209 return ret;
3210}
3211
3212static noinline int check_committed_ref(struct btrfs_root *root,
3213 struct btrfs_path *path,
3214 u64 objectid, u64 offset, u64 bytenr)
3215{
3216 struct btrfs_fs_info *fs_info = root->fs_info;
3217 struct btrfs_root *extent_root = fs_info->extent_root;
3218 struct extent_buffer *leaf;
3219 struct btrfs_extent_data_ref *ref;
3220 struct btrfs_extent_inline_ref *iref;
3221 struct btrfs_extent_item *ei;
3222 struct btrfs_key key;
3223 u32 item_size;
3224 int type;
3225 int ret;
3226
3227 key.objectid = bytenr;
3228 key.offset = (u64)-1;
3229 key.type = BTRFS_EXTENT_ITEM_KEY;
3230
3231 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3232 if (ret < 0)
3233 goto out;
3234 BUG_ON(ret == 0); /* Corruption */
3235
3236 ret = -ENOENT;
3237 if (path->slots[0] == 0)
3238 goto out;
3239
3240 path->slots[0]--;
3241 leaf = path->nodes[0];
3242 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3243
3244 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3245 goto out;
3246
3247 ret = 1;
3248 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3249#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3250 if (item_size < sizeof(*ei)) {
3251 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3252 goto out;
3253 }
3254#endif
3255 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3256
3257 if (item_size != sizeof(*ei) +
3258 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3259 goto out;
3260
3261 if (btrfs_extent_generation(leaf, ei) <=
3262 btrfs_root_last_snapshot(&root->root_item))
3263 goto out;
3264
3265 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3266
3267 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3268 if (type != BTRFS_EXTENT_DATA_REF_KEY)
3269 goto out;
3270
3271 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3272 if (btrfs_extent_refs(leaf, ei) !=
3273 btrfs_extent_data_ref_count(leaf, ref) ||
3274 btrfs_extent_data_ref_root(leaf, ref) !=
3275 root->root_key.objectid ||
3276 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3277 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3278 goto out;
3279
3280 ret = 0;
3281out:
3282 return ret;
3283}
3284
3285int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3286 u64 bytenr)
3287{
3288 struct btrfs_path *path;
3289 int ret;
3290 int ret2;
3291
3292 path = btrfs_alloc_path();
3293 if (!path)
3294 return -ENOENT;
3295
3296 do {
3297 ret = check_committed_ref(root, path, objectid,
3298 offset, bytenr);
3299 if (ret && ret != -ENOENT)
3300 goto out;
3301
3302 ret2 = check_delayed_ref(root, path, objectid,
3303 offset, bytenr);
3304 } while (ret2 == -EAGAIN);
3305
3306 if (ret2 && ret2 != -ENOENT) {
3307 ret = ret2;
3308 goto out;
3309 }
3310
3311 if (ret != -ENOENT || ret2 != -ENOENT)
3312 ret = 0;
3313out:
3314 btrfs_free_path(path);
3315 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3316 WARN_ON(ret > 0);
3317 return ret;
3318}
3319
3320static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3321 struct btrfs_root *root,
3322 struct extent_buffer *buf,
3323 int full_backref, int inc)
3324{
3325 struct btrfs_fs_info *fs_info = root->fs_info;
3326 u64 bytenr;
3327 u64 num_bytes;
3328 u64 parent;
3329 u64 ref_root;
3330 u32 nritems;
3331 struct btrfs_key key;
3332 struct btrfs_file_extent_item *fi;
3333 int i;
3334 int level;
3335 int ret = 0;
3336 int (*process_func)(struct btrfs_trans_handle *,
3337 struct btrfs_root *,
3338 u64, u64, u64, u64, u64, u64);
3339
3340
3341 if (btrfs_is_testing(fs_info))
3342 return 0;
3343
3344 ref_root = btrfs_header_owner(buf);
3345 nritems = btrfs_header_nritems(buf);
3346 level = btrfs_header_level(buf);
3347
3348 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3349 return 0;
3350
3351 if (inc)
3352 process_func = btrfs_inc_extent_ref;
3353 else
3354 process_func = btrfs_free_extent;
3355
3356 if (full_backref)
3357 parent = buf->start;
3358 else
3359 parent = 0;
3360
3361 for (i = 0; i < nritems; i++) {
3362 if (level == 0) {
3363 btrfs_item_key_to_cpu(buf, &key, i);
3364 if (key.type != BTRFS_EXTENT_DATA_KEY)
3365 continue;
3366 fi = btrfs_item_ptr(buf, i,
3367 struct btrfs_file_extent_item);
3368 if (btrfs_file_extent_type(buf, fi) ==
3369 BTRFS_FILE_EXTENT_INLINE)
3370 continue;
3371 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3372 if (bytenr == 0)
3373 continue;
3374
3375 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3376 key.offset -= btrfs_file_extent_offset(buf, fi);
3377 ret = process_func(trans, root, bytenr, num_bytes,
3378 parent, ref_root, key.objectid,
3379 key.offset);
3380 if (ret)
3381 goto fail;
3382 } else {
3383 bytenr = btrfs_node_blockptr(buf, i);
3384 num_bytes = fs_info->nodesize;
3385 ret = process_func(trans, root, bytenr, num_bytes,
3386 parent, ref_root, level - 1, 0);
3387 if (ret)
3388 goto fail;
3389 }
3390 }
3391 return 0;
3392fail:
3393 return ret;
3394}
3395
3396int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3397 struct extent_buffer *buf, int full_backref)
3398{
3399 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3400}
3401
3402int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3403 struct extent_buffer *buf, int full_backref)
3404{
3405 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3406}
3407
3408static int write_one_cache_group(struct btrfs_trans_handle *trans,
3409 struct btrfs_fs_info *fs_info,
3410 struct btrfs_path *path,
3411 struct btrfs_block_group_cache *cache)
3412{
3413 int ret;
3414 struct btrfs_root *extent_root = fs_info->extent_root;
3415 unsigned long bi;
3416 struct extent_buffer *leaf;
3417
3418 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3419 if (ret) {
3420 if (ret > 0)
3421 ret = -ENOENT;
3422 goto fail;
3423 }
3424
3425 leaf = path->nodes[0];
3426 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3427 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3428 btrfs_mark_buffer_dirty(leaf);
3429fail:
3430 btrfs_release_path(path);
3431 return ret;
3432
3433}
3434
3435static struct btrfs_block_group_cache *
3436next_block_group(struct btrfs_fs_info *fs_info,
3437 struct btrfs_block_group_cache *cache)
3438{
3439 struct rb_node *node;
3440
3441 spin_lock(&fs_info->block_group_cache_lock);
3442
3443 /* If our block group was removed, we need a full search. */
3444 if (RB_EMPTY_NODE(&cache->cache_node)) {
3445 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3446
3447 spin_unlock(&fs_info->block_group_cache_lock);
3448 btrfs_put_block_group(cache);
3449 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3450 }
3451 node = rb_next(&cache->cache_node);
3452 btrfs_put_block_group(cache);
3453 if (node) {
3454 cache = rb_entry(node, struct btrfs_block_group_cache,
3455 cache_node);
3456 btrfs_get_block_group(cache);
3457 } else
3458 cache = NULL;
3459 spin_unlock(&fs_info->block_group_cache_lock);
3460 return cache;
3461}
3462
3463static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3464 struct btrfs_trans_handle *trans,
3465 struct btrfs_path *path)
3466{
3467 struct btrfs_fs_info *fs_info = block_group->fs_info;
3468 struct btrfs_root *root = fs_info->tree_root;
3469 struct inode *inode = NULL;
3470 struct extent_changeset *data_reserved = NULL;
3471 u64 alloc_hint = 0;
3472 int dcs = BTRFS_DC_ERROR;
3473 u64 num_pages = 0;
3474 int retries = 0;
3475 int ret = 0;
3476
3477 /*
3478 * If this block group is smaller than 100 megs don't bother caching the
3479 * block group.
3480 */
3481 if (block_group->key.offset < (100 * SZ_1M)) {
3482 spin_lock(&block_group->lock);
3483 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3484 spin_unlock(&block_group->lock);
3485 return 0;
3486 }
3487
3488 if (trans->aborted)
3489 return 0;
3490again:
3491 inode = lookup_free_space_inode(fs_info, block_group, path);
3492 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3493 ret = PTR_ERR(inode);
3494 btrfs_release_path(path);
3495 goto out;
3496 }
3497
3498 if (IS_ERR(inode)) {
3499 BUG_ON(retries);
3500 retries++;
3501
3502 if (block_group->ro)
3503 goto out_free;
3504
3505 ret = create_free_space_inode(fs_info, trans, block_group,
3506 path);
3507 if (ret)
3508 goto out_free;
3509 goto again;
3510 }
3511
3512 /*
3513 * We want to set the generation to 0, that way if anything goes wrong
3514 * from here on out we know not to trust this cache when we load up next
3515 * time.
3516 */
3517 BTRFS_I(inode)->generation = 0;
3518 ret = btrfs_update_inode(trans, root, inode);
3519 if (ret) {
3520 /*
3521 * So theoretically we could recover from this, simply set the
3522 * super cache generation to 0 so we know to invalidate the
3523 * cache, but then we'd have to keep track of the block groups
3524 * that fail this way so we know we _have_ to reset this cache
3525 * before the next commit or risk reading stale cache. So to
3526 * limit our exposure to horrible edge cases lets just abort the
3527 * transaction, this only happens in really bad situations
3528 * anyway.
3529 */
3530 btrfs_abort_transaction(trans, ret);
3531 goto out_put;
3532 }
3533 WARN_ON(ret);
3534
3535 /* We've already setup this transaction, go ahead and exit */
3536 if (block_group->cache_generation == trans->transid &&
3537 i_size_read(inode)) {
3538 dcs = BTRFS_DC_SETUP;
3539 goto out_put;
3540 }
3541
3542 if (i_size_read(inode) > 0) {
3543 ret = btrfs_check_trunc_cache_free_space(fs_info,
3544 &fs_info->global_block_rsv);
3545 if (ret)
3546 goto out_put;
3547
3548 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3549 if (ret)
3550 goto out_put;
3551 }
3552
3553 spin_lock(&block_group->lock);
3554 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3555 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3556 /*
3557 * don't bother trying to write stuff out _if_
3558 * a) we're not cached,
3559 * b) we're with nospace_cache mount option,
3560 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3561 */
3562 dcs = BTRFS_DC_WRITTEN;
3563 spin_unlock(&block_group->lock);
3564 goto out_put;
3565 }
3566 spin_unlock(&block_group->lock);
3567
3568 /*
3569 * We hit an ENOSPC when setting up the cache in this transaction, just
3570 * skip doing the setup, we've already cleared the cache so we're safe.
3571 */
3572 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3573 ret = -ENOSPC;
3574 goto out_put;
3575 }
3576
3577 /*
3578 * Try to preallocate enough space based on how big the block group is.
3579 * Keep in mind this has to include any pinned space which could end up
3580 * taking up quite a bit since it's not folded into the other space
3581 * cache.
3582 */
3583 num_pages = div_u64(block_group->key.offset, SZ_256M);
3584 if (!num_pages)
3585 num_pages = 1;
3586
3587 num_pages *= 16;
3588 num_pages *= PAGE_SIZE;
3589
3590 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3591 if (ret)
3592 goto out_put;
3593
3594 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3595 num_pages, num_pages,
3596 &alloc_hint);
3597 /*
3598 * Our cache requires contiguous chunks so that we don't modify a bunch
3599 * of metadata or split extents when writing the cache out, which means
3600 * we can enospc if we are heavily fragmented in addition to just normal
3601 * out of space conditions. So if we hit this just skip setting up any
3602 * other block groups for this transaction, maybe we'll unpin enough
3603 * space the next time around.
3604 */
3605 if (!ret)
3606 dcs = BTRFS_DC_SETUP;
3607 else if (ret == -ENOSPC)
3608 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3609
3610out_put:
3611 iput(inode);
3612out_free:
3613 btrfs_release_path(path);
3614out:
3615 spin_lock(&block_group->lock);
3616 if (!ret && dcs == BTRFS_DC_SETUP)
3617 block_group->cache_generation = trans->transid;
3618 block_group->disk_cache_state = dcs;
3619 spin_unlock(&block_group->lock);
3620
3621 extent_changeset_free(data_reserved);
3622 return ret;
3623}
3624
3625int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3626 struct btrfs_fs_info *fs_info)
3627{
3628 struct btrfs_block_group_cache *cache, *tmp;
3629 struct btrfs_transaction *cur_trans = trans->transaction;
3630 struct btrfs_path *path;
3631
3632 if (list_empty(&cur_trans->dirty_bgs) ||
3633 !btrfs_test_opt(fs_info, SPACE_CACHE))
3634 return 0;
3635
3636 path = btrfs_alloc_path();
3637 if (!path)
3638 return -ENOMEM;
3639
3640 /* Could add new block groups, use _safe just in case */
3641 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3642 dirty_list) {
3643 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3644 cache_save_setup(cache, trans, path);
3645 }
3646
3647 btrfs_free_path(path);
3648 return 0;
3649}
3650
3651/*
3652 * transaction commit does final block group cache writeback during a
3653 * critical section where nothing is allowed to change the FS. This is
3654 * required in order for the cache to actually match the block group,
3655 * but can introduce a lot of latency into the commit.
3656 *
3657 * So, btrfs_start_dirty_block_groups is here to kick off block group
3658 * cache IO. There's a chance we'll have to redo some of it if the
3659 * block group changes again during the commit, but it greatly reduces
3660 * the commit latency by getting rid of the easy block groups while
3661 * we're still allowing others to join the commit.
3662 */
3663int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3664{
3665 struct btrfs_fs_info *fs_info = trans->fs_info;
3666 struct btrfs_block_group_cache *cache;
3667 struct btrfs_transaction *cur_trans = trans->transaction;
3668 int ret = 0;
3669 int should_put;
3670 struct btrfs_path *path = NULL;
3671 LIST_HEAD(dirty);
3672 struct list_head *io = &cur_trans->io_bgs;
3673 int num_started = 0;
3674 int loops = 0;
3675
3676 spin_lock(&cur_trans->dirty_bgs_lock);
3677 if (list_empty(&cur_trans->dirty_bgs)) {
3678 spin_unlock(&cur_trans->dirty_bgs_lock);
3679 return 0;
3680 }
3681 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3682 spin_unlock(&cur_trans->dirty_bgs_lock);
3683
3684again:
3685 /*
3686 * make sure all the block groups on our dirty list actually
3687 * exist
3688 */
3689 btrfs_create_pending_block_groups(trans);
3690
3691 if (!path) {
3692 path = btrfs_alloc_path();
3693 if (!path)
3694 return -ENOMEM;
3695 }
3696
3697 /*
3698 * cache_write_mutex is here only to save us from balance or automatic
3699 * removal of empty block groups deleting this block group while we are
3700 * writing out the cache
3701 */
3702 mutex_lock(&trans->transaction->cache_write_mutex);
3703 while (!list_empty(&dirty)) {
3704 cache = list_first_entry(&dirty,
3705 struct btrfs_block_group_cache,
3706 dirty_list);
3707 /*
3708 * this can happen if something re-dirties a block
3709 * group that is already under IO. Just wait for it to
3710 * finish and then do it all again
3711 */
3712 if (!list_empty(&cache->io_list)) {
3713 list_del_init(&cache->io_list);
3714 btrfs_wait_cache_io(trans, cache, path);
3715 btrfs_put_block_group(cache);
3716 }
3717
3718
3719 /*
3720 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3721 * if it should update the cache_state. Don't delete
3722 * until after we wait.
3723 *
3724 * Since we're not running in the commit critical section
3725 * we need the dirty_bgs_lock to protect from update_block_group
3726 */
3727 spin_lock(&cur_trans->dirty_bgs_lock);
3728 list_del_init(&cache->dirty_list);
3729 spin_unlock(&cur_trans->dirty_bgs_lock);
3730
3731 should_put = 1;
3732
3733 cache_save_setup(cache, trans, path);
3734
3735 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3736 cache->io_ctl.inode = NULL;
3737 ret = btrfs_write_out_cache(fs_info, trans,
3738 cache, path);
3739 if (ret == 0 && cache->io_ctl.inode) {
3740 num_started++;
3741 should_put = 0;
3742
3743 /*
3744 * The cache_write_mutex is protecting the
3745 * io_list, also refer to the definition of
3746 * btrfs_transaction::io_bgs for more details
3747 */
3748 list_add_tail(&cache->io_list, io);
3749 } else {
3750 /*
3751 * if we failed to write the cache, the
3752 * generation will be bad and life goes on
3753 */
3754 ret = 0;
3755 }
3756 }
3757 if (!ret) {
3758 ret = write_one_cache_group(trans, fs_info,
3759 path, cache);
3760 /*
3761 * Our block group might still be attached to the list
3762 * of new block groups in the transaction handle of some
3763 * other task (struct btrfs_trans_handle->new_bgs). This
3764 * means its block group item isn't yet in the extent
3765 * tree. If this happens ignore the error, as we will
3766 * try again later in the critical section of the
3767 * transaction commit.
3768 */
3769 if (ret == -ENOENT) {
3770 ret = 0;
3771 spin_lock(&cur_trans->dirty_bgs_lock);
3772 if (list_empty(&cache->dirty_list)) {
3773 list_add_tail(&cache->dirty_list,
3774 &cur_trans->dirty_bgs);
3775 btrfs_get_block_group(cache);
3776 }
3777 spin_unlock(&cur_trans->dirty_bgs_lock);
3778 } else if (ret) {
3779 btrfs_abort_transaction(trans, ret);
3780 }
3781 }
3782
3783 /* if its not on the io list, we need to put the block group */
3784 if (should_put)
3785 btrfs_put_block_group(cache);
3786
3787 if (ret)
3788 break;
3789
3790 /*
3791 * Avoid blocking other tasks for too long. It might even save
3792 * us from writing caches for block groups that are going to be
3793 * removed.
3794 */
3795 mutex_unlock(&trans->transaction->cache_write_mutex);
3796 mutex_lock(&trans->transaction->cache_write_mutex);
3797 }
3798 mutex_unlock(&trans->transaction->cache_write_mutex);
3799
3800 /*
3801 * go through delayed refs for all the stuff we've just kicked off
3802 * and then loop back (just once)
3803 */
3804 ret = btrfs_run_delayed_refs(trans, 0);
3805 if (!ret && loops == 0) {
3806 loops++;
3807 spin_lock(&cur_trans->dirty_bgs_lock);
3808 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3809 /*
3810 * dirty_bgs_lock protects us from concurrent block group
3811 * deletes too (not just cache_write_mutex).
3812 */
3813 if (!list_empty(&dirty)) {
3814 spin_unlock(&cur_trans->dirty_bgs_lock);
3815 goto again;
3816 }
3817 spin_unlock(&cur_trans->dirty_bgs_lock);
3818 } else if (ret < 0) {
3819 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3820 }
3821
3822 btrfs_free_path(path);
3823 return ret;
3824}
3825
3826int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3827 struct btrfs_fs_info *fs_info)
3828{
3829 struct btrfs_block_group_cache *cache;
3830 struct btrfs_transaction *cur_trans = trans->transaction;
3831 int ret = 0;
3832 int should_put;
3833 struct btrfs_path *path;
3834 struct list_head *io = &cur_trans->io_bgs;
3835 int num_started = 0;
3836
3837 path = btrfs_alloc_path();
3838 if (!path)
3839 return -ENOMEM;
3840
3841 /*
3842 * Even though we are in the critical section of the transaction commit,
3843 * we can still have concurrent tasks adding elements to this
3844 * transaction's list of dirty block groups. These tasks correspond to
3845 * endio free space workers started when writeback finishes for a
3846 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3847 * allocate new block groups as a result of COWing nodes of the root
3848 * tree when updating the free space inode. The writeback for the space
3849 * caches is triggered by an earlier call to
3850 * btrfs_start_dirty_block_groups() and iterations of the following
3851 * loop.
3852 * Also we want to do the cache_save_setup first and then run the
3853 * delayed refs to make sure we have the best chance at doing this all
3854 * in one shot.
3855 */
3856 spin_lock(&cur_trans->dirty_bgs_lock);
3857 while (!list_empty(&cur_trans->dirty_bgs)) {
3858 cache = list_first_entry(&cur_trans->dirty_bgs,
3859 struct btrfs_block_group_cache,
3860 dirty_list);
3861
3862 /*
3863 * this can happen if cache_save_setup re-dirties a block
3864 * group that is already under IO. Just wait for it to
3865 * finish and then do it all again
3866 */
3867 if (!list_empty(&cache->io_list)) {
3868 spin_unlock(&cur_trans->dirty_bgs_lock);
3869 list_del_init(&cache->io_list);
3870 btrfs_wait_cache_io(trans, cache, path);
3871 btrfs_put_block_group(cache);
3872 spin_lock(&cur_trans->dirty_bgs_lock);
3873 }
3874
3875 /*
3876 * don't remove from the dirty list until after we've waited
3877 * on any pending IO
3878 */
3879 list_del_init(&cache->dirty_list);
3880 spin_unlock(&cur_trans->dirty_bgs_lock);
3881 should_put = 1;
3882
3883 cache_save_setup(cache, trans, path);
3884
3885 if (!ret)
3886 ret = btrfs_run_delayed_refs(trans,
3887 (unsigned long) -1);
3888
3889 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3890 cache->io_ctl.inode = NULL;
3891 ret = btrfs_write_out_cache(fs_info, trans,
3892 cache, path);
3893 if (ret == 0 && cache->io_ctl.inode) {
3894 num_started++;
3895 should_put = 0;
3896 list_add_tail(&cache->io_list, io);
3897 } else {
3898 /*
3899 * if we failed to write the cache, the
3900 * generation will be bad and life goes on
3901 */
3902 ret = 0;
3903 }
3904 }
3905 if (!ret) {
3906 ret = write_one_cache_group(trans, fs_info,
3907 path, cache);
3908 /*
3909 * One of the free space endio workers might have
3910 * created a new block group while updating a free space
3911 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3912 * and hasn't released its transaction handle yet, in
3913 * which case the new block group is still attached to
3914 * its transaction handle and its creation has not
3915 * finished yet (no block group item in the extent tree
3916 * yet, etc). If this is the case, wait for all free
3917 * space endio workers to finish and retry. This is a
3918 * a very rare case so no need for a more efficient and
3919 * complex approach.
3920 */
3921 if (ret == -ENOENT) {
3922 wait_event(cur_trans->writer_wait,
3923 atomic_read(&cur_trans->num_writers) == 1);
3924 ret = write_one_cache_group(trans, fs_info,
3925 path, cache);
3926 }
3927 if (ret)
3928 btrfs_abort_transaction(trans, ret);
3929 }
3930
3931 /* if its not on the io list, we need to put the block group */
3932 if (should_put)
3933 btrfs_put_block_group(cache);
3934 spin_lock(&cur_trans->dirty_bgs_lock);
3935 }
3936 spin_unlock(&cur_trans->dirty_bgs_lock);
3937
3938 /*
3939 * Refer to the definition of io_bgs member for details why it's safe
3940 * to use it without any locking
3941 */
3942 while (!list_empty(io)) {
3943 cache = list_first_entry(io, struct btrfs_block_group_cache,
3944 io_list);
3945 list_del_init(&cache->io_list);
3946 btrfs_wait_cache_io(trans, cache, path);
3947 btrfs_put_block_group(cache);
3948 }
3949
3950 btrfs_free_path(path);
3951 return ret;
3952}
3953
3954int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3955{
3956 struct btrfs_block_group_cache *block_group;
3957 int readonly = 0;
3958
3959 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3960 if (!block_group || block_group->ro)
3961 readonly = 1;
3962 if (block_group)
3963 btrfs_put_block_group(block_group);
3964 return readonly;
3965}
3966
3967bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3968{
3969 struct btrfs_block_group_cache *bg;
3970 bool ret = true;
3971
3972 bg = btrfs_lookup_block_group(fs_info, bytenr);
3973 if (!bg)
3974 return false;
3975
3976 spin_lock(&bg->lock);
3977 if (bg->ro)
3978 ret = false;
3979 else
3980 atomic_inc(&bg->nocow_writers);
3981 spin_unlock(&bg->lock);
3982
3983 /* no put on block group, done by btrfs_dec_nocow_writers */
3984 if (!ret)
3985 btrfs_put_block_group(bg);
3986
3987 return ret;
3988
3989}
3990
3991void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3992{
3993 struct btrfs_block_group_cache *bg;
3994
3995 bg = btrfs_lookup_block_group(fs_info, bytenr);
3996 ASSERT(bg);
3997 if (atomic_dec_and_test(&bg->nocow_writers))
3998 wake_up_var(&bg->nocow_writers);
3999 /*
4000 * Once for our lookup and once for the lookup done by a previous call
4001 * to btrfs_inc_nocow_writers()
4002 */
4003 btrfs_put_block_group(bg);
4004 btrfs_put_block_group(bg);
4005}
4006
4007void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4008{
4009 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
4010}
4011
4012static const char *alloc_name(u64 flags)
4013{
4014 switch (flags) {
4015 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4016 return "mixed";
4017 case BTRFS_BLOCK_GROUP_METADATA:
4018 return "metadata";
4019 case BTRFS_BLOCK_GROUP_DATA:
4020 return "data";
4021 case BTRFS_BLOCK_GROUP_SYSTEM:
4022 return "system";
4023 default:
4024 WARN_ON(1);
4025 return "invalid-combination";
4026 };
4027}
4028
4029static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4030 struct btrfs_space_info **new)
4031{
4032
4033 struct btrfs_space_info *space_info;
4034 int i;
4035 int ret;
4036
4037 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4038 if (!space_info)
4039 return -ENOMEM;
4040
4041 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4042 GFP_KERNEL);
4043 if (ret) {
4044 kfree(space_info);
4045 return ret;
4046 }
4047
4048 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4049 INIT_LIST_HEAD(&space_info->block_groups[i]);
4050 init_rwsem(&space_info->groups_sem);
4051 spin_lock_init(&space_info->lock);
4052 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4053 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4054 init_waitqueue_head(&space_info->wait);
4055 INIT_LIST_HEAD(&space_info->ro_bgs);
4056 INIT_LIST_HEAD(&space_info->tickets);
4057 INIT_LIST_HEAD(&space_info->priority_tickets);
4058
4059 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4060 info->space_info_kobj, "%s",
4061 alloc_name(space_info->flags));
4062 if (ret) {
4063 percpu_counter_destroy(&space_info->total_bytes_pinned);
4064 kfree(space_info);
4065 return ret;
4066 }
4067
4068 *new = space_info;
4069 list_add_rcu(&space_info->list, &info->space_info);
4070 if (flags & BTRFS_BLOCK_GROUP_DATA)
4071 info->data_sinfo = space_info;
4072
4073 return ret;
4074}
4075
4076static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4077 u64 total_bytes, u64 bytes_used,
4078 u64 bytes_readonly,
4079 struct btrfs_space_info **space_info)
4080{
4081 struct btrfs_space_info *found;
4082 int factor;
4083
4084 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4085 BTRFS_BLOCK_GROUP_RAID10))
4086 factor = 2;
4087 else
4088 factor = 1;
4089
4090 found = __find_space_info(info, flags);
4091 ASSERT(found);
4092 spin_lock(&found->lock);
4093 found->total_bytes += total_bytes;
4094 found->disk_total += total_bytes * factor;
4095 found->bytes_used += bytes_used;
4096 found->disk_used += bytes_used * factor;
4097 found->bytes_readonly += bytes_readonly;
4098 if (total_bytes > 0)
4099 found->full = 0;
4100 space_info_add_new_bytes(info, found, total_bytes -
4101 bytes_used - bytes_readonly);
4102 spin_unlock(&found->lock);
4103 *space_info = found;
4104}
4105
4106static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4107{
4108 u64 extra_flags = chunk_to_extended(flags) &
4109 BTRFS_EXTENDED_PROFILE_MASK;
4110
4111 write_seqlock(&fs_info->profiles_lock);
4112 if (flags & BTRFS_BLOCK_GROUP_DATA)
4113 fs_info->avail_data_alloc_bits |= extra_flags;
4114 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4115 fs_info->avail_metadata_alloc_bits |= extra_flags;
4116 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4117 fs_info->avail_system_alloc_bits |= extra_flags;
4118 write_sequnlock(&fs_info->profiles_lock);
4119}
4120
4121/*
4122 * returns target flags in extended format or 0 if restripe for this
4123 * chunk_type is not in progress
4124 *
4125 * should be called with either volume_mutex or balance_lock held
4126 */
4127static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4128{
4129 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4130 u64 target = 0;
4131
4132 if (!bctl)
4133 return 0;
4134
4135 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4136 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4137 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4138 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4139 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4140 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4141 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4142 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4143 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4144 }
4145
4146 return target;
4147}
4148
4149/*
4150 * @flags: available profiles in extended format (see ctree.h)
4151 *
4152 * Returns reduced profile in chunk format. If profile changing is in
4153 * progress (either running or paused) picks the target profile (if it's
4154 * already available), otherwise falls back to plain reducing.
4155 */
4156static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4157{
4158 u64 num_devices = fs_info->fs_devices->rw_devices;
4159 u64 target;
4160 u64 raid_type;
4161 u64 allowed = 0;
4162
4163 /*
4164 * see if restripe for this chunk_type is in progress, if so
4165 * try to reduce to the target profile
4166 */
4167 spin_lock(&fs_info->balance_lock);
4168 target = get_restripe_target(fs_info, flags);
4169 if (target) {
4170 /* pick target profile only if it's already available */
4171 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4172 spin_unlock(&fs_info->balance_lock);
4173 return extended_to_chunk(target);
4174 }
4175 }
4176 spin_unlock(&fs_info->balance_lock);
4177
4178 /* First, mask out the RAID levels which aren't possible */
4179 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4180 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4181 allowed |= btrfs_raid_group[raid_type];
4182 }
4183 allowed &= flags;
4184
4185 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4186 allowed = BTRFS_BLOCK_GROUP_RAID6;
4187 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4188 allowed = BTRFS_BLOCK_GROUP_RAID5;
4189 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4190 allowed = BTRFS_BLOCK_GROUP_RAID10;
4191 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4192 allowed = BTRFS_BLOCK_GROUP_RAID1;
4193 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4194 allowed = BTRFS_BLOCK_GROUP_RAID0;
4195
4196 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4197
4198 return extended_to_chunk(flags | allowed);
4199}
4200
4201static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4202{
4203 unsigned seq;
4204 u64 flags;
4205
4206 do {
4207 flags = orig_flags;
4208 seq = read_seqbegin(&fs_info->profiles_lock);
4209
4210 if (flags & BTRFS_BLOCK_GROUP_DATA)
4211 flags |= fs_info->avail_data_alloc_bits;
4212 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4213 flags |= fs_info->avail_system_alloc_bits;
4214 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4215 flags |= fs_info->avail_metadata_alloc_bits;
4216 } while (read_seqretry(&fs_info->profiles_lock, seq));
4217
4218 return btrfs_reduce_alloc_profile(fs_info, flags);
4219}
4220
4221static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4222{
4223 struct btrfs_fs_info *fs_info = root->fs_info;
4224 u64 flags;
4225 u64 ret;
4226
4227 if (data)
4228 flags = BTRFS_BLOCK_GROUP_DATA;
4229 else if (root == fs_info->chunk_root)
4230 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4231 else
4232 flags = BTRFS_BLOCK_GROUP_METADATA;
4233
4234 ret = get_alloc_profile(fs_info, flags);
4235 return ret;
4236}
4237
4238u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4239{
4240 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4241}
4242
4243u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4244{
4245 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4246}
4247
4248u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4249{
4250 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4251}
4252
4253static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4254 bool may_use_included)
4255{
4256 ASSERT(s_info);
4257 return s_info->bytes_used + s_info->bytes_reserved +
4258 s_info->bytes_pinned + s_info->bytes_readonly +
4259 (may_use_included ? s_info->bytes_may_use : 0);
4260}
4261
4262int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4263{
4264 struct btrfs_root *root = inode->root;
4265 struct btrfs_fs_info *fs_info = root->fs_info;
4266 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4267 u64 used;
4268 int ret = 0;
4269 int need_commit = 2;
4270 int have_pinned_space;
4271
4272 /* make sure bytes are sectorsize aligned */
4273 bytes = ALIGN(bytes, fs_info->sectorsize);
4274
4275 if (btrfs_is_free_space_inode(inode)) {
4276 need_commit = 0;
4277 ASSERT(current->journal_info);
4278 }
4279
4280again:
4281 /* make sure we have enough space to handle the data first */
4282 spin_lock(&data_sinfo->lock);
4283 used = btrfs_space_info_used(data_sinfo, true);
4284
4285 if (used + bytes > data_sinfo->total_bytes) {
4286 struct btrfs_trans_handle *trans;
4287
4288 /*
4289 * if we don't have enough free bytes in this space then we need
4290 * to alloc a new chunk.
4291 */
4292 if (!data_sinfo->full) {
4293 u64 alloc_target;
4294
4295 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4296 spin_unlock(&data_sinfo->lock);
4297
4298 alloc_target = btrfs_data_alloc_profile(fs_info);
4299 /*
4300 * It is ugly that we don't call nolock join
4301 * transaction for the free space inode case here.
4302 * But it is safe because we only do the data space
4303 * reservation for the free space cache in the
4304 * transaction context, the common join transaction
4305 * just increase the counter of the current transaction
4306 * handler, doesn't try to acquire the trans_lock of
4307 * the fs.
4308 */
4309 trans = btrfs_join_transaction(root);
4310 if (IS_ERR(trans))
4311 return PTR_ERR(trans);
4312
4313 ret = do_chunk_alloc(trans, fs_info, alloc_target,
4314 CHUNK_ALLOC_NO_FORCE);
4315 btrfs_end_transaction(trans);
4316 if (ret < 0) {
4317 if (ret != -ENOSPC)
4318 return ret;
4319 else {
4320 have_pinned_space = 1;
4321 goto commit_trans;
4322 }
4323 }
4324
4325 goto again;
4326 }
4327
4328 /*
4329 * If we don't have enough pinned space to deal with this
4330 * allocation, and no removed chunk in current transaction,
4331 * don't bother committing the transaction.
4332 */
4333 have_pinned_space = percpu_counter_compare(
4334 &data_sinfo->total_bytes_pinned,
4335 used + bytes - data_sinfo->total_bytes);
4336 spin_unlock(&data_sinfo->lock);
4337
4338 /* commit the current transaction and try again */
4339commit_trans:
4340 if (need_commit) {
4341 need_commit--;
4342
4343 if (need_commit > 0) {
4344 btrfs_start_delalloc_roots(fs_info, 0, -1);
4345 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4346 (u64)-1);
4347 }
4348
4349 trans = btrfs_join_transaction(root);
4350 if (IS_ERR(trans))
4351 return PTR_ERR(trans);
4352 if (have_pinned_space >= 0 ||
4353 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4354 &trans->transaction->flags) ||
4355 need_commit > 0) {
4356 ret = btrfs_commit_transaction(trans);
4357 if (ret)
4358 return ret;
4359 /*
4360 * The cleaner kthread might still be doing iput
4361 * operations. Wait for it to finish so that
4362 * more space is released.
4363 */
4364 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4365 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4366 goto again;
4367 } else {
4368 btrfs_end_transaction(trans);
4369 }
4370 }
4371
4372 trace_btrfs_space_reservation(fs_info,
4373 "space_info:enospc",
4374 data_sinfo->flags, bytes, 1);
4375 return -ENOSPC;
4376 }
4377 data_sinfo->bytes_may_use += bytes;
4378 trace_btrfs_space_reservation(fs_info, "space_info",
4379 data_sinfo->flags, bytes, 1);
4380 spin_unlock(&data_sinfo->lock);
4381
4382 return ret;
4383}
4384
4385int btrfs_check_data_free_space(struct inode *inode,
4386 struct extent_changeset **reserved, u64 start, u64 len)
4387{
4388 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4389 int ret;
4390
4391 /* align the range */
4392 len = round_up(start + len, fs_info->sectorsize) -
4393 round_down(start, fs_info->sectorsize);
4394 start = round_down(start, fs_info->sectorsize);
4395
4396 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4397 if (ret < 0)
4398 return ret;
4399
4400 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4401 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4402 if (ret < 0)
4403 btrfs_free_reserved_data_space_noquota(inode, start, len);
4404 else
4405 ret = 0;
4406 return ret;
4407}
4408
4409/*
4410 * Called if we need to clear a data reservation for this inode
4411 * Normally in a error case.
4412 *
4413 * This one will *NOT* use accurate qgroup reserved space API, just for case
4414 * which we can't sleep and is sure it won't affect qgroup reserved space.
4415 * Like clear_bit_hook().
4416 */
4417void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4418 u64 len)
4419{
4420 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4421 struct btrfs_space_info *data_sinfo;
4422
4423 /* Make sure the range is aligned to sectorsize */
4424 len = round_up(start + len, fs_info->sectorsize) -
4425 round_down(start, fs_info->sectorsize);
4426 start = round_down(start, fs_info->sectorsize);
4427
4428 data_sinfo = fs_info->data_sinfo;
4429 spin_lock(&data_sinfo->lock);
4430 if (WARN_ON(data_sinfo->bytes_may_use < len))
4431 data_sinfo->bytes_may_use = 0;
4432 else
4433 data_sinfo->bytes_may_use -= len;
4434 trace_btrfs_space_reservation(fs_info, "space_info",
4435 data_sinfo->flags, len, 0);
4436 spin_unlock(&data_sinfo->lock);
4437}
4438
4439/*
4440 * Called if we need to clear a data reservation for this inode
4441 * Normally in a error case.
4442 *
4443 * This one will handle the per-inode data rsv map for accurate reserved
4444 * space framework.
4445 */
4446void btrfs_free_reserved_data_space(struct inode *inode,
4447 struct extent_changeset *reserved, u64 start, u64 len)
4448{
4449 struct btrfs_root *root = BTRFS_I(inode)->root;
4450
4451 /* Make sure the range is aligned to sectorsize */
4452 len = round_up(start + len, root->fs_info->sectorsize) -
4453 round_down(start, root->fs_info->sectorsize);
4454 start = round_down(start, root->fs_info->sectorsize);
4455
4456 btrfs_free_reserved_data_space_noquota(inode, start, len);
4457 btrfs_qgroup_free_data(inode, reserved, start, len);
4458}
4459
4460static void force_metadata_allocation(struct btrfs_fs_info *info)
4461{
4462 struct list_head *head = &info->space_info;
4463 struct btrfs_space_info *found;
4464
4465 rcu_read_lock();
4466 list_for_each_entry_rcu(found, head, list) {
4467 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4468 found->force_alloc = CHUNK_ALLOC_FORCE;
4469 }
4470 rcu_read_unlock();
4471}
4472
4473static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4474{
4475 return (global->size << 1);
4476}
4477
4478static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4479 struct btrfs_space_info *sinfo, int force)
4480{
4481 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4482 u64 bytes_used = btrfs_space_info_used(sinfo, false);
4483 u64 thresh;
4484
4485 if (force == CHUNK_ALLOC_FORCE)
4486 return 1;
4487
4488 /*
4489 * We need to take into account the global rsv because for all intents
4490 * and purposes it's used space. Don't worry about locking the
4491 * global_rsv, it doesn't change except when the transaction commits.
4492 */
4493 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4494 bytes_used += calc_global_rsv_need_space(global_rsv);
4495
4496 /*
4497 * in limited mode, we want to have some free space up to
4498 * about 1% of the FS size.
4499 */
4500 if (force == CHUNK_ALLOC_LIMITED) {
4501 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4502 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4503
4504 if (sinfo->total_bytes - bytes_used < thresh)
4505 return 1;
4506 }
4507
4508 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4509 return 0;
4510 return 1;
4511}
4512
4513static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4514{
4515 u64 num_dev;
4516
4517 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4518 BTRFS_BLOCK_GROUP_RAID0 |
4519 BTRFS_BLOCK_GROUP_RAID5 |
4520 BTRFS_BLOCK_GROUP_RAID6))
4521 num_dev = fs_info->fs_devices->rw_devices;
4522 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4523 num_dev = 2;
4524 else
4525 num_dev = 1; /* DUP or single */
4526
4527 return num_dev;
4528}
4529
4530/*
4531 * If @is_allocation is true, reserve space in the system space info necessary
4532 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4533 * removing a chunk.
4534 */
4535void check_system_chunk(struct btrfs_trans_handle *trans,
4536 struct btrfs_fs_info *fs_info, u64 type)
4537{
4538 struct btrfs_space_info *info;
4539 u64 left;
4540 u64 thresh;
4541 int ret = 0;
4542 u64 num_devs;
4543
4544 /*
4545 * Needed because we can end up allocating a system chunk and for an
4546 * atomic and race free space reservation in the chunk block reserve.
4547 */
4548 lockdep_assert_held(&fs_info->chunk_mutex);
4549
4550 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4551 spin_lock(&info->lock);
4552 left = info->total_bytes - btrfs_space_info_used(info, true);
4553 spin_unlock(&info->lock);
4554
4555 num_devs = get_profile_num_devs(fs_info, type);
4556
4557 /* num_devs device items to update and 1 chunk item to add or remove */
4558 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4559 btrfs_calc_trans_metadata_size(fs_info, 1);
4560
4561 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4562 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4563 left, thresh, type);
4564 dump_space_info(fs_info, info, 0, 0);
4565 }
4566
4567 if (left < thresh) {
4568 u64 flags = btrfs_system_alloc_profile(fs_info);
4569
4570 /*
4571 * Ignore failure to create system chunk. We might end up not
4572 * needing it, as we might not need to COW all nodes/leafs from
4573 * the paths we visit in the chunk tree (they were already COWed
4574 * or created in the current transaction for example).
4575 */
4576 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4577 }
4578
4579 if (!ret) {
4580 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4581 &fs_info->chunk_block_rsv,
4582 thresh, BTRFS_RESERVE_NO_FLUSH);
4583 if (!ret)
4584 trans->chunk_bytes_reserved += thresh;
4585 }
4586}
4587
4588/*
4589 * If force is CHUNK_ALLOC_FORCE:
4590 * - return 1 if it successfully allocates a chunk,
4591 * - return errors including -ENOSPC otherwise.
4592 * If force is NOT CHUNK_ALLOC_FORCE:
4593 * - return 0 if it doesn't need to allocate a new chunk,
4594 * - return 1 if it successfully allocates a chunk,
4595 * - return errors including -ENOSPC otherwise.
4596 */
4597static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4598 struct btrfs_fs_info *fs_info, u64 flags, int force)
4599{
4600 struct btrfs_space_info *space_info;
4601 int wait_for_alloc = 0;
4602 int ret = 0;
4603
4604 /* Don't re-enter if we're already allocating a chunk */
4605 if (trans->allocating_chunk)
4606 return -ENOSPC;
4607
4608 space_info = __find_space_info(fs_info, flags);
4609 ASSERT(space_info);
4610
4611again:
4612 spin_lock(&space_info->lock);
4613 if (force < space_info->force_alloc)
4614 force = space_info->force_alloc;
4615 if (space_info->full) {
4616 if (should_alloc_chunk(fs_info, space_info, force))
4617 ret = -ENOSPC;
4618 else
4619 ret = 0;
4620 spin_unlock(&space_info->lock);
4621 return ret;
4622 }
4623
4624 if (!should_alloc_chunk(fs_info, space_info, force)) {
4625 spin_unlock(&space_info->lock);
4626 return 0;
4627 } else if (space_info->chunk_alloc) {
4628 wait_for_alloc = 1;
4629 } else {
4630 space_info->chunk_alloc = 1;
4631 }
4632
4633 spin_unlock(&space_info->lock);
4634
4635 mutex_lock(&fs_info->chunk_mutex);
4636
4637 /*
4638 * The chunk_mutex is held throughout the entirety of a chunk
4639 * allocation, so once we've acquired the chunk_mutex we know that the
4640 * other guy is done and we need to recheck and see if we should
4641 * allocate.
4642 */
4643 if (wait_for_alloc) {
4644 mutex_unlock(&fs_info->chunk_mutex);
4645 wait_for_alloc = 0;
4646 cond_resched();
4647 goto again;
4648 }
4649
4650 trans->allocating_chunk = true;
4651
4652 /*
4653 * If we have mixed data/metadata chunks we want to make sure we keep
4654 * allocating mixed chunks instead of individual chunks.
4655 */
4656 if (btrfs_mixed_space_info(space_info))
4657 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4658
4659 /*
4660 * if we're doing a data chunk, go ahead and make sure that
4661 * we keep a reasonable number of metadata chunks allocated in the
4662 * FS as well.
4663 */
4664 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4665 fs_info->data_chunk_allocations++;
4666 if (!(fs_info->data_chunk_allocations %
4667 fs_info->metadata_ratio))
4668 force_metadata_allocation(fs_info);
4669 }
4670
4671 /*
4672 * Check if we have enough space in SYSTEM chunk because we may need
4673 * to update devices.
4674 */
4675 check_system_chunk(trans, fs_info, flags);
4676
4677 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4678 trans->allocating_chunk = false;
4679
4680 spin_lock(&space_info->lock);
4681 if (ret < 0 && ret != -ENOSPC)
4682 goto out;
4683 if (ret)
4684 space_info->full = 1;
4685 else
4686 ret = 1;
4687
4688 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4689out:
4690 space_info->chunk_alloc = 0;
4691 spin_unlock(&space_info->lock);
4692 mutex_unlock(&fs_info->chunk_mutex);
4693 /*
4694 * When we allocate a new chunk we reserve space in the chunk block
4695 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4696 * add new nodes/leafs to it if we end up needing to do it when
4697 * inserting the chunk item and updating device items as part of the
4698 * second phase of chunk allocation, performed by
4699 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4700 * large number of new block groups to create in our transaction
4701 * handle's new_bgs list to avoid exhausting the chunk block reserve
4702 * in extreme cases - like having a single transaction create many new
4703 * block groups when starting to write out the free space caches of all
4704 * the block groups that were made dirty during the lifetime of the
4705 * transaction.
4706 */
4707 if (trans->can_flush_pending_bgs &&
4708 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4709 btrfs_create_pending_block_groups(trans);
4710 btrfs_trans_release_chunk_metadata(trans);
4711 }
4712 return ret;
4713}
4714
4715static int can_overcommit(struct btrfs_fs_info *fs_info,
4716 struct btrfs_space_info *space_info, u64 bytes,
4717 enum btrfs_reserve_flush_enum flush,
4718 bool system_chunk)
4719{
4720 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4721 u64 profile;
4722 u64 space_size;
4723 u64 avail;
4724 u64 used;
4725
4726 /* Don't overcommit when in mixed mode. */
4727 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4728 return 0;
4729
4730 if (system_chunk)
4731 profile = btrfs_system_alloc_profile(fs_info);
4732 else
4733 profile = btrfs_metadata_alloc_profile(fs_info);
4734
4735 used = btrfs_space_info_used(space_info, false);
4736
4737 /*
4738 * We only want to allow over committing if we have lots of actual space
4739 * free, but if we don't have enough space to handle the global reserve
4740 * space then we could end up having a real enospc problem when trying
4741 * to allocate a chunk or some other such important allocation.
4742 */
4743 spin_lock(&global_rsv->lock);
4744 space_size = calc_global_rsv_need_space(global_rsv);
4745 spin_unlock(&global_rsv->lock);
4746 if (used + space_size >= space_info->total_bytes)
4747 return 0;
4748
4749 used += space_info->bytes_may_use;
4750
4751 avail = atomic64_read(&fs_info->free_chunk_space);
4752
4753 /*
4754 * If we have dup, raid1 or raid10 then only half of the free
4755 * space is actually useable. For raid56, the space info used
4756 * doesn't include the parity drive, so we don't have to
4757 * change the math
4758 */
4759 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4760 BTRFS_BLOCK_GROUP_RAID1 |
4761 BTRFS_BLOCK_GROUP_RAID10))
4762 avail >>= 1;
4763
4764 /*
4765 * If we aren't flushing all things, let us overcommit up to
4766 * 1/2th of the space. If we can flush, don't let us overcommit
4767 * too much, let it overcommit up to 1/8 of the space.
4768 */
4769 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4770 avail >>= 3;
4771 else
4772 avail >>= 1;
4773
4774 if (used + bytes < space_info->total_bytes + avail)
4775 return 1;
4776 return 0;
4777}
4778
4779static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4780 unsigned long nr_pages, int nr_items)
4781{
4782 struct super_block *sb = fs_info->sb;
4783
4784 if (down_read_trylock(&sb->s_umount)) {
4785 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4786 up_read(&sb->s_umount);
4787 } else {
4788 /*
4789 * We needn't worry the filesystem going from r/w to r/o though
4790 * we don't acquire ->s_umount mutex, because the filesystem
4791 * should guarantee the delalloc inodes list be empty after
4792 * the filesystem is readonly(all dirty pages are written to
4793 * the disk).
4794 */
4795 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4796 if (!current->journal_info)
4797 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4798 }
4799}
4800
4801static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4802 u64 to_reclaim)
4803{
4804 u64 bytes;
4805 u64 nr;
4806
4807 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4808 nr = div64_u64(to_reclaim, bytes);
4809 if (!nr)
4810 nr = 1;
4811 return nr;
4812}
4813
4814#define EXTENT_SIZE_PER_ITEM SZ_256K
4815
4816/*
4817 * shrink metadata reservation for delalloc
4818 */
4819static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4820 u64 orig, bool wait_ordered)
4821{
4822 struct btrfs_space_info *space_info;
4823 struct btrfs_trans_handle *trans;
4824 u64 delalloc_bytes;
4825 u64 max_reclaim;
4826 u64 items;
4827 long time_left;
4828 unsigned long nr_pages;
4829 int loops;
4830
4831 /* Calc the number of the pages we need flush for space reservation */
4832 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4833 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4834
4835 trans = (struct btrfs_trans_handle *)current->journal_info;
4836 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4837
4838 delalloc_bytes = percpu_counter_sum_positive(
4839 &fs_info->delalloc_bytes);
4840 if (delalloc_bytes == 0) {
4841 if (trans)
4842 return;
4843 if (wait_ordered)
4844 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4845 return;
4846 }
4847
4848 loops = 0;
4849 while (delalloc_bytes && loops < 3) {
4850 max_reclaim = min(delalloc_bytes, to_reclaim);
4851 nr_pages = max_reclaim >> PAGE_SHIFT;
4852 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4853 /*
4854 * We need to wait for the async pages to actually start before
4855 * we do anything.
4856 */
4857 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4858 if (!max_reclaim)
4859 goto skip_async;
4860
4861 if (max_reclaim <= nr_pages)
4862 max_reclaim = 0;
4863 else
4864 max_reclaim -= nr_pages;
4865
4866 wait_event(fs_info->async_submit_wait,
4867 atomic_read(&fs_info->async_delalloc_pages) <=
4868 (int)max_reclaim);
4869skip_async:
4870 spin_lock(&space_info->lock);
4871 if (list_empty(&space_info->tickets) &&
4872 list_empty(&space_info->priority_tickets)) {
4873 spin_unlock(&space_info->lock);
4874 break;
4875 }
4876 spin_unlock(&space_info->lock);
4877
4878 loops++;
4879 if (wait_ordered && !trans) {
4880 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4881 } else {
4882 time_left = schedule_timeout_killable(1);
4883 if (time_left)
4884 break;
4885 }
4886 delalloc_bytes = percpu_counter_sum_positive(
4887 &fs_info->delalloc_bytes);
4888 }
4889}
4890
4891struct reserve_ticket {
4892 u64 bytes;
4893 int error;
4894 struct list_head list;
4895 wait_queue_head_t wait;
4896};
4897
4898/**
4899 * maybe_commit_transaction - possibly commit the transaction if its ok to
4900 * @root - the root we're allocating for
4901 * @bytes - the number of bytes we want to reserve
4902 * @force - force the commit
4903 *
4904 * This will check to make sure that committing the transaction will actually
4905 * get us somewhere and then commit the transaction if it does. Otherwise it
4906 * will return -ENOSPC.
4907 */
4908static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4909 struct btrfs_space_info *space_info)
4910{
4911 struct reserve_ticket *ticket = NULL;
4912 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4913 struct btrfs_trans_handle *trans;
4914 u64 bytes;
4915
4916 trans = (struct btrfs_trans_handle *)current->journal_info;
4917 if (trans)
4918 return -EAGAIN;
4919
4920 spin_lock(&space_info->lock);
4921 if (!list_empty(&space_info->priority_tickets))
4922 ticket = list_first_entry(&space_info->priority_tickets,
4923 struct reserve_ticket, list);
4924 else if (!list_empty(&space_info->tickets))
4925 ticket = list_first_entry(&space_info->tickets,
4926 struct reserve_ticket, list);
4927 bytes = (ticket) ? ticket->bytes : 0;
4928 spin_unlock(&space_info->lock);
4929
4930 if (!bytes)
4931 return 0;
4932
4933 /* See if there is enough pinned space to make this reservation */
4934 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4935 bytes) >= 0)
4936 goto commit;
4937
4938 /*
4939 * See if there is some space in the delayed insertion reservation for
4940 * this reservation.
4941 */
4942 if (space_info != delayed_rsv->space_info)
4943 return -ENOSPC;
4944
4945 spin_lock(&delayed_rsv->lock);
4946 if (delayed_rsv->size > bytes)
4947 bytes = 0;
4948 else
4949 bytes -= delayed_rsv->size;
4950 spin_unlock(&delayed_rsv->lock);
4951
4952 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4953 bytes) < 0) {
4954 return -ENOSPC;
4955 }
4956
4957commit:
4958 trans = btrfs_join_transaction(fs_info->extent_root);
4959 if (IS_ERR(trans))
4960 return -ENOSPC;
4961
4962 return btrfs_commit_transaction(trans);
4963}
4964
4965/*
4966 * Try to flush some data based on policy set by @state. This is only advisory
4967 * and may fail for various reasons. The caller is supposed to examine the
4968 * state of @space_info to detect the outcome.
4969 */
4970static void flush_space(struct btrfs_fs_info *fs_info,
4971 struct btrfs_space_info *space_info, u64 num_bytes,
4972 int state)
4973{
4974 struct btrfs_root *root = fs_info->extent_root;
4975 struct btrfs_trans_handle *trans;
4976 int nr;
4977 int ret = 0;
4978
4979 switch (state) {
4980 case FLUSH_DELAYED_ITEMS_NR:
4981 case FLUSH_DELAYED_ITEMS:
4982 if (state == FLUSH_DELAYED_ITEMS_NR)
4983 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4984 else
4985 nr = -1;
4986
4987 trans = btrfs_join_transaction(root);
4988 if (IS_ERR(trans)) {
4989 ret = PTR_ERR(trans);
4990 break;
4991 }
4992 ret = btrfs_run_delayed_items_nr(trans, nr);
4993 btrfs_end_transaction(trans);
4994 break;
4995 case FLUSH_DELALLOC:
4996 case FLUSH_DELALLOC_WAIT:
4997 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4998 state == FLUSH_DELALLOC_WAIT);
4999 break;
5000 case ALLOC_CHUNK:
5001 trans = btrfs_join_transaction(root);
5002 if (IS_ERR(trans)) {
5003 ret = PTR_ERR(trans);
5004 break;
5005 }
5006 ret = do_chunk_alloc(trans, fs_info,
5007 btrfs_metadata_alloc_profile(fs_info),
5008 CHUNK_ALLOC_NO_FORCE);
5009 btrfs_end_transaction(trans);
5010 if (ret > 0 || ret == -ENOSPC)
5011 ret = 0;
5012 break;
5013 case COMMIT_TRANS:
5014 ret = may_commit_transaction(fs_info, space_info);
5015 break;
5016 default:
5017 ret = -ENOSPC;
5018 break;
5019 }
5020
5021 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5022 ret);
5023 return;
5024}
5025
5026static inline u64
5027btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5028 struct btrfs_space_info *space_info,
5029 bool system_chunk)
5030{
5031 struct reserve_ticket *ticket;
5032 u64 used;
5033 u64 expected;
5034 u64 to_reclaim = 0;
5035
5036 list_for_each_entry(ticket, &space_info->tickets, list)
5037 to_reclaim += ticket->bytes;
5038 list_for_each_entry(ticket, &space_info->priority_tickets, list)
5039 to_reclaim += ticket->bytes;
5040 if (to_reclaim)
5041 return to_reclaim;
5042
5043 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5044 if (can_overcommit(fs_info, space_info, to_reclaim,
5045 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5046 return 0;
5047
5048 used = btrfs_space_info_used(space_info, true);
5049
5050 if (can_overcommit(fs_info, space_info, SZ_1M,
5051 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5052 expected = div_factor_fine(space_info->total_bytes, 95);
5053 else
5054 expected = div_factor_fine(space_info->total_bytes, 90);
5055
5056 if (used > expected)
5057 to_reclaim = used - expected;
5058 else
5059 to_reclaim = 0;
5060 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5061 space_info->bytes_reserved);
5062 return to_reclaim;
5063}
5064
5065static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5066 struct btrfs_space_info *space_info,
5067 u64 used, bool system_chunk)
5068{
5069 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5070
5071 /* If we're just plain full then async reclaim just slows us down. */
5072 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5073 return 0;
5074
5075 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5076 system_chunk))
5077 return 0;
5078
5079 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5080 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5081}
5082
5083static void wake_all_tickets(struct list_head *head)
5084{
5085 struct reserve_ticket *ticket;
5086
5087 while (!list_empty(head)) {
5088 ticket = list_first_entry(head, struct reserve_ticket, list);
5089 list_del_init(&ticket->list);
5090 ticket->error = -ENOSPC;
5091 wake_up(&ticket->wait);
5092 }
5093}
5094
5095/*
5096 * This is for normal flushers, we can wait all goddamned day if we want to. We
5097 * will loop and continuously try to flush as long as we are making progress.
5098 * We count progress as clearing off tickets each time we have to loop.
5099 */
5100static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5101{
5102 struct btrfs_fs_info *fs_info;
5103 struct btrfs_space_info *space_info;
5104 u64 to_reclaim;
5105 int flush_state;
5106 int commit_cycles = 0;
5107 u64 last_tickets_id;
5108
5109 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5110 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5111
5112 spin_lock(&space_info->lock);
5113 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5114 false);
5115 if (!to_reclaim) {
5116 space_info->flush = 0;
5117 spin_unlock(&space_info->lock);
5118 return;
5119 }
5120 last_tickets_id = space_info->tickets_id;
5121 spin_unlock(&space_info->lock);
5122
5123 flush_state = FLUSH_DELAYED_ITEMS_NR;
5124 do {
5125 flush_space(fs_info, space_info, to_reclaim, flush_state);
5126 spin_lock(&space_info->lock);
5127 if (list_empty(&space_info->tickets)) {
5128 space_info->flush = 0;
5129 spin_unlock(&space_info->lock);
5130 return;
5131 }
5132 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5133 space_info,
5134 false);
5135 if (last_tickets_id == space_info->tickets_id) {
5136 flush_state++;
5137 } else {
5138 last_tickets_id = space_info->tickets_id;
5139 flush_state = FLUSH_DELAYED_ITEMS_NR;
5140 if (commit_cycles)
5141 commit_cycles--;
5142 }
5143
5144 if (flush_state > COMMIT_TRANS) {
5145 commit_cycles++;
5146 if (commit_cycles > 2) {
5147 wake_all_tickets(&space_info->tickets);
5148 space_info->flush = 0;
5149 } else {
5150 flush_state = FLUSH_DELAYED_ITEMS_NR;
5151 }
5152 }
5153 spin_unlock(&space_info->lock);
5154 } while (flush_state <= COMMIT_TRANS);
5155}
5156
5157void btrfs_init_async_reclaim_work(struct work_struct *work)
5158{
5159 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5160}
5161
5162static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5163 struct btrfs_space_info *space_info,
5164 struct reserve_ticket *ticket)
5165{
5166 u64 to_reclaim;
5167 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5168
5169 spin_lock(&space_info->lock);
5170 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5171 false);
5172 if (!to_reclaim) {
5173 spin_unlock(&space_info->lock);
5174 return;
5175 }
5176 spin_unlock(&space_info->lock);
5177
5178 do {
5179 flush_space(fs_info, space_info, to_reclaim, flush_state);
5180 flush_state++;
5181 spin_lock(&space_info->lock);
5182 if (ticket->bytes == 0) {
5183 spin_unlock(&space_info->lock);
5184 return;
5185 }
5186 spin_unlock(&space_info->lock);
5187
5188 /*
5189 * Priority flushers can't wait on delalloc without
5190 * deadlocking.
5191 */
5192 if (flush_state == FLUSH_DELALLOC ||
5193 flush_state == FLUSH_DELALLOC_WAIT)
5194 flush_state = ALLOC_CHUNK;
5195 } while (flush_state < COMMIT_TRANS);
5196}
5197
5198static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5199 struct btrfs_space_info *space_info,
5200 struct reserve_ticket *ticket, u64 orig_bytes)
5201
5202{
5203 DEFINE_WAIT(wait);
5204 int ret = 0;
5205
5206 spin_lock(&space_info->lock);
5207 while (ticket->bytes > 0 && ticket->error == 0) {
5208 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5209 if (ret) {
5210 ret = -EINTR;
5211 break;
5212 }
5213 spin_unlock(&space_info->lock);
5214
5215 schedule();
5216
5217 finish_wait(&ticket->wait, &wait);
5218 spin_lock(&space_info->lock);
5219 }
5220 if (!ret)
5221 ret = ticket->error;
5222 if (!list_empty(&ticket->list))
5223 list_del_init(&ticket->list);
5224 if (ticket->bytes && ticket->bytes < orig_bytes) {
5225 u64 num_bytes = orig_bytes - ticket->bytes;
5226 space_info->bytes_may_use -= num_bytes;
5227 trace_btrfs_space_reservation(fs_info, "space_info",
5228 space_info->flags, num_bytes, 0);
5229 }
5230 spin_unlock(&space_info->lock);
5231
5232 return ret;
5233}
5234
5235/**
5236 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5237 * @root - the root we're allocating for
5238 * @space_info - the space info we want to allocate from
5239 * @orig_bytes - the number of bytes we want
5240 * @flush - whether or not we can flush to make our reservation
5241 *
5242 * This will reserve orig_bytes number of bytes from the space info associated
5243 * with the block_rsv. If there is not enough space it will make an attempt to
5244 * flush out space to make room. It will do this by flushing delalloc if
5245 * possible or committing the transaction. If flush is 0 then no attempts to
5246 * regain reservations will be made and this will fail if there is not enough
5247 * space already.
5248 */
5249static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5250 struct btrfs_space_info *space_info,
5251 u64 orig_bytes,
5252 enum btrfs_reserve_flush_enum flush,
5253 bool system_chunk)
5254{
5255 struct reserve_ticket ticket;
5256 u64 used;
5257 int ret = 0;
5258
5259 ASSERT(orig_bytes);
5260 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5261
5262 spin_lock(&space_info->lock);
5263 ret = -ENOSPC;
5264 used = btrfs_space_info_used(space_info, true);
5265
5266 /*
5267 * If we have enough space then hooray, make our reservation and carry
5268 * on. If not see if we can overcommit, and if we can, hooray carry on.
5269 * If not things get more complicated.
5270 */
5271 if (used + orig_bytes <= space_info->total_bytes) {
5272 space_info->bytes_may_use += orig_bytes;
5273 trace_btrfs_space_reservation(fs_info, "space_info",
5274 space_info->flags, orig_bytes, 1);
5275 ret = 0;
5276 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5277 system_chunk)) {
5278 space_info->bytes_may_use += orig_bytes;
5279 trace_btrfs_space_reservation(fs_info, "space_info",
5280 space_info->flags, orig_bytes, 1);
5281 ret = 0;
5282 }
5283
5284 /*
5285 * If we couldn't make a reservation then setup our reservation ticket
5286 * and kick the async worker if it's not already running.
5287 *
5288 * If we are a priority flusher then we just need to add our ticket to
5289 * the list and we will do our own flushing further down.
5290 */
5291 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5292 ticket.bytes = orig_bytes;
5293 ticket.error = 0;
5294 init_waitqueue_head(&ticket.wait);
5295 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5296 list_add_tail(&ticket.list, &space_info->tickets);
5297 if (!space_info->flush) {
5298 space_info->flush = 1;
5299 trace_btrfs_trigger_flush(fs_info,
5300 space_info->flags,
5301 orig_bytes, flush,
5302 "enospc");
5303 queue_work(system_unbound_wq,
5304 &fs_info->async_reclaim_work);
5305 }
5306 } else {
5307 list_add_tail(&ticket.list,
5308 &space_info->priority_tickets);
5309 }
5310 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5311 used += orig_bytes;
5312 /*
5313 * We will do the space reservation dance during log replay,
5314 * which means we won't have fs_info->fs_root set, so don't do
5315 * the async reclaim as we will panic.
5316 */
5317 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5318 need_do_async_reclaim(fs_info, space_info,
5319 used, system_chunk) &&
5320 !work_busy(&fs_info->async_reclaim_work)) {
5321 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5322 orig_bytes, flush, "preempt");
5323 queue_work(system_unbound_wq,
5324 &fs_info->async_reclaim_work);
5325 }
5326 }
5327 spin_unlock(&space_info->lock);
5328 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5329 return ret;
5330
5331 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5332 return wait_reserve_ticket(fs_info, space_info, &ticket,
5333 orig_bytes);
5334
5335 ret = 0;
5336 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5337 spin_lock(&space_info->lock);
5338 if (ticket.bytes) {
5339 if (ticket.bytes < orig_bytes) {
5340 u64 num_bytes = orig_bytes - ticket.bytes;
5341 space_info->bytes_may_use -= num_bytes;
5342 trace_btrfs_space_reservation(fs_info, "space_info",
5343 space_info->flags,
5344 num_bytes, 0);
5345
5346 }
5347 list_del_init(&ticket.list);
5348 ret = -ENOSPC;
5349 }
5350 spin_unlock(&space_info->lock);
5351 ASSERT(list_empty(&ticket.list));
5352 return ret;
5353}
5354
5355/**
5356 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5357 * @root - the root we're allocating for
5358 * @block_rsv - the block_rsv we're allocating for
5359 * @orig_bytes - the number of bytes we want
5360 * @flush - whether or not we can flush to make our reservation
5361 *
5362 * This will reserve orgi_bytes number of bytes from the space info associated
5363 * with the block_rsv. If there is not enough space it will make an attempt to
5364 * flush out space to make room. It will do this by flushing delalloc if
5365 * possible or committing the transaction. If flush is 0 then no attempts to
5366 * regain reservations will be made and this will fail if there is not enough
5367 * space already.
5368 */
5369static int reserve_metadata_bytes(struct btrfs_root *root,
5370 struct btrfs_block_rsv *block_rsv,
5371 u64 orig_bytes,
5372 enum btrfs_reserve_flush_enum flush)
5373{
5374 struct btrfs_fs_info *fs_info = root->fs_info;
5375 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5376 int ret;
5377 bool system_chunk = (root == fs_info->chunk_root);
5378
5379 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5380 orig_bytes, flush, system_chunk);
5381 if (ret == -ENOSPC &&
5382 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5383 if (block_rsv != global_rsv &&
5384 !block_rsv_use_bytes(global_rsv, orig_bytes))
5385 ret = 0;
5386 }
5387 if (ret == -ENOSPC) {
5388 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5389 block_rsv->space_info->flags,
5390 orig_bytes, 1);
5391
5392 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5393 dump_space_info(fs_info, block_rsv->space_info,
5394 orig_bytes, 0);
5395 }
5396 return ret;
5397}
5398
5399static struct btrfs_block_rsv *get_block_rsv(
5400 const struct btrfs_trans_handle *trans,
5401 const struct btrfs_root *root)
5402{
5403 struct btrfs_fs_info *fs_info = root->fs_info;
5404 struct btrfs_block_rsv *block_rsv = NULL;
5405
5406 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5407 (root == fs_info->csum_root && trans->adding_csums) ||
5408 (root == fs_info->uuid_root))
5409 block_rsv = trans->block_rsv;
5410
5411 if (!block_rsv)
5412 block_rsv = root->block_rsv;
5413
5414 if (!block_rsv)
5415 block_rsv = &fs_info->empty_block_rsv;
5416
5417 return block_rsv;
5418}
5419
5420static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5421 u64 num_bytes)
5422{
5423 int ret = -ENOSPC;
5424 spin_lock(&block_rsv->lock);
5425 if (block_rsv->reserved >= num_bytes) {
5426 block_rsv->reserved -= num_bytes;
5427 if (block_rsv->reserved < block_rsv->size)
5428 block_rsv->full = 0;
5429 ret = 0;
5430 }
5431 spin_unlock(&block_rsv->lock);
5432 return ret;
5433}
5434
5435static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5436 u64 num_bytes, int update_size)
5437{
5438 spin_lock(&block_rsv->lock);
5439 block_rsv->reserved += num_bytes;
5440 if (update_size)
5441 block_rsv->size += num_bytes;
5442 else if (block_rsv->reserved >= block_rsv->size)
5443 block_rsv->full = 1;
5444 spin_unlock(&block_rsv->lock);
5445}
5446
5447int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5448 struct btrfs_block_rsv *dest, u64 num_bytes,
5449 int min_factor)
5450{
5451 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5452 u64 min_bytes;
5453
5454 if (global_rsv->space_info != dest->space_info)
5455 return -ENOSPC;
5456
5457 spin_lock(&global_rsv->lock);
5458 min_bytes = div_factor(global_rsv->size, min_factor);
5459 if (global_rsv->reserved < min_bytes + num_bytes) {
5460 spin_unlock(&global_rsv->lock);
5461 return -ENOSPC;
5462 }
5463 global_rsv->reserved -= num_bytes;
5464 if (global_rsv->reserved < global_rsv->size)
5465 global_rsv->full = 0;
5466 spin_unlock(&global_rsv->lock);
5467
5468 block_rsv_add_bytes(dest, num_bytes, 1);
5469 return 0;
5470}
5471
5472/*
5473 * This is for space we already have accounted in space_info->bytes_may_use, so
5474 * basically when we're returning space from block_rsv's.
5475 */
5476static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5477 struct btrfs_space_info *space_info,
5478 u64 num_bytes)
5479{
5480 struct reserve_ticket *ticket;
5481 struct list_head *head;
5482 u64 used;
5483 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5484 bool check_overcommit = false;
5485
5486 spin_lock(&space_info->lock);
5487 head = &space_info->priority_tickets;
5488
5489 /*
5490 * If we are over our limit then we need to check and see if we can
5491 * overcommit, and if we can't then we just need to free up our space
5492 * and not satisfy any requests.
5493 */
5494 used = btrfs_space_info_used(space_info, true);
5495 if (used - num_bytes >= space_info->total_bytes)
5496 check_overcommit = true;
5497again:
5498 while (!list_empty(head) && num_bytes) {
5499 ticket = list_first_entry(head, struct reserve_ticket,
5500 list);
5501 /*
5502 * We use 0 bytes because this space is already reserved, so
5503 * adding the ticket space would be a double count.
5504 */
5505 if (check_overcommit &&
5506 !can_overcommit(fs_info, space_info, 0, flush, false))
5507 break;
5508 if (num_bytes >= ticket->bytes) {
5509 list_del_init(&ticket->list);
5510 num_bytes -= ticket->bytes;
5511 ticket->bytes = 0;
5512 space_info->tickets_id++;
5513 wake_up(&ticket->wait);
5514 } else {
5515 ticket->bytes -= num_bytes;
5516 num_bytes = 0;
5517 }
5518 }
5519
5520 if (num_bytes && head == &space_info->priority_tickets) {
5521 head = &space_info->tickets;
5522 flush = BTRFS_RESERVE_FLUSH_ALL;
5523 goto again;
5524 }
5525 space_info->bytes_may_use -= num_bytes;
5526 trace_btrfs_space_reservation(fs_info, "space_info",
5527 space_info->flags, num_bytes, 0);
5528 spin_unlock(&space_info->lock);
5529}
5530
5531/*
5532 * This is for newly allocated space that isn't accounted in
5533 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5534 * we use this helper.
5535 */
5536static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5537 struct btrfs_space_info *space_info,
5538 u64 num_bytes)
5539{
5540 struct reserve_ticket *ticket;
5541 struct list_head *head = &space_info->priority_tickets;
5542
5543again:
5544 while (!list_empty(head) && num_bytes) {
5545 ticket = list_first_entry(head, struct reserve_ticket,
5546 list);
5547 if (num_bytes >= ticket->bytes) {
5548 trace_btrfs_space_reservation(fs_info, "space_info",
5549 space_info->flags,
5550 ticket->bytes, 1);
5551 list_del_init(&ticket->list);
5552 num_bytes -= ticket->bytes;
5553 space_info->bytes_may_use += ticket->bytes;
5554 ticket->bytes = 0;
5555 space_info->tickets_id++;
5556 wake_up(&ticket->wait);
5557 } else {
5558 trace_btrfs_space_reservation(fs_info, "space_info",
5559 space_info->flags,
5560 num_bytes, 1);
5561 space_info->bytes_may_use += num_bytes;
5562 ticket->bytes -= num_bytes;
5563 num_bytes = 0;
5564 }
5565 }
5566
5567 if (num_bytes && head == &space_info->priority_tickets) {
5568 head = &space_info->tickets;
5569 goto again;
5570 }
5571}
5572
5573static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5574 struct btrfs_block_rsv *block_rsv,
5575 struct btrfs_block_rsv *dest, u64 num_bytes,
5576 u64 *qgroup_to_release_ret)
5577{
5578 struct btrfs_space_info *space_info = block_rsv->space_info;
5579 u64 qgroup_to_release = 0;
5580 u64 ret;
5581
5582 spin_lock(&block_rsv->lock);
5583 if (num_bytes == (u64)-1) {
5584 num_bytes = block_rsv->size;
5585 qgroup_to_release = block_rsv->qgroup_rsv_size;
5586 }
5587 block_rsv->size -= num_bytes;
5588 if (block_rsv->reserved >= block_rsv->size) {
5589 num_bytes = block_rsv->reserved - block_rsv->size;
5590 block_rsv->reserved = block_rsv->size;
5591 block_rsv->full = 1;
5592 } else {
5593 num_bytes = 0;
5594 }
5595 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5596 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5597 block_rsv->qgroup_rsv_size;
5598 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5599 } else {
5600 qgroup_to_release = 0;
5601 }
5602 spin_unlock(&block_rsv->lock);
5603
5604 ret = num_bytes;
5605 if (num_bytes > 0) {
5606 if (dest) {
5607 spin_lock(&dest->lock);
5608 if (!dest->full) {
5609 u64 bytes_to_add;
5610
5611 bytes_to_add = dest->size - dest->reserved;
5612 bytes_to_add = min(num_bytes, bytes_to_add);
5613 dest->reserved += bytes_to_add;
5614 if (dest->reserved >= dest->size)
5615 dest->full = 1;
5616 num_bytes -= bytes_to_add;
5617 }
5618 spin_unlock(&dest->lock);
5619 }
5620 if (num_bytes)
5621 space_info_add_old_bytes(fs_info, space_info,
5622 num_bytes);
5623 }
5624 if (qgroup_to_release_ret)
5625 *qgroup_to_release_ret = qgroup_to_release;
5626 return ret;
5627}
5628
5629int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5630 struct btrfs_block_rsv *dst, u64 num_bytes,
5631 int update_size)
5632{
5633 int ret;
5634
5635 ret = block_rsv_use_bytes(src, num_bytes);
5636 if (ret)
5637 return ret;
5638
5639 block_rsv_add_bytes(dst, num_bytes, update_size);
5640 return 0;
5641}
5642
5643void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5644{
5645 memset(rsv, 0, sizeof(*rsv));
5646 spin_lock_init(&rsv->lock);
5647 rsv->type = type;
5648}
5649
5650void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5651 struct btrfs_block_rsv *rsv,
5652 unsigned short type)
5653{
5654 btrfs_init_block_rsv(rsv, type);
5655 rsv->space_info = __find_space_info(fs_info,
5656 BTRFS_BLOCK_GROUP_METADATA);
5657}
5658
5659struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5660 unsigned short type)
5661{
5662 struct btrfs_block_rsv *block_rsv;
5663
5664 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5665 if (!block_rsv)
5666 return NULL;
5667
5668 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5669 return block_rsv;
5670}
5671
5672void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5673 struct btrfs_block_rsv *rsv)
5674{
5675 if (!rsv)
5676 return;
5677 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5678 kfree(rsv);
5679}
5680
5681void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5682{
5683 kfree(rsv);
5684}
5685
5686int btrfs_block_rsv_add(struct btrfs_root *root,
5687 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5688 enum btrfs_reserve_flush_enum flush)
5689{
5690 int ret;
5691
5692 if (num_bytes == 0)
5693 return 0;
5694
5695 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5696 if (!ret) {
5697 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5698 return 0;
5699 }
5700
5701 return ret;
5702}
5703
5704int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5705{
5706 u64 num_bytes = 0;
5707 int ret = -ENOSPC;
5708
5709 if (!block_rsv)
5710 return 0;
5711
5712 spin_lock(&block_rsv->lock);
5713 num_bytes = div_factor(block_rsv->size, min_factor);
5714 if (block_rsv->reserved >= num_bytes)
5715 ret = 0;
5716 spin_unlock(&block_rsv->lock);
5717
5718 return ret;
5719}
5720
5721int btrfs_block_rsv_refill(struct btrfs_root *root,
5722 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5723 enum btrfs_reserve_flush_enum flush)
5724{
5725 u64 num_bytes = 0;
5726 int ret = -ENOSPC;
5727
5728 if (!block_rsv)
5729 return 0;
5730
5731 spin_lock(&block_rsv->lock);
5732 num_bytes = min_reserved;
5733 if (block_rsv->reserved >= num_bytes)
5734 ret = 0;
5735 else
5736 num_bytes -= block_rsv->reserved;
5737 spin_unlock(&block_rsv->lock);
5738
5739 if (!ret)
5740 return 0;
5741
5742 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5743 if (!ret) {
5744 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5745 return 0;
5746 }
5747
5748 return ret;
5749}
5750
5751/**
5752 * btrfs_inode_rsv_refill - refill the inode block rsv.
5753 * @inode - the inode we are refilling.
5754 * @flush - the flusing restriction.
5755 *
5756 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5757 * block_rsv->size as the minimum size. We'll either refill the missing amount
5758 * or return if we already have enough space. This will also handle the resreve
5759 * tracepoint for the reserved amount.
5760 */
5761static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5762 enum btrfs_reserve_flush_enum flush)
5763{
5764 struct btrfs_root *root = inode->root;
5765 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5766 u64 num_bytes = 0;
5767 u64 qgroup_num_bytes = 0;
5768 int ret = -ENOSPC;
5769
5770 spin_lock(&block_rsv->lock);
5771 if (block_rsv->reserved < block_rsv->size)
5772 num_bytes = block_rsv->size - block_rsv->reserved;
5773 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5774 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5775 block_rsv->qgroup_rsv_reserved;
5776 spin_unlock(&block_rsv->lock);
5777
5778 if (num_bytes == 0)
5779 return 0;
5780
5781 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
5782 if (ret)
5783 return ret;
5784 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5785 if (!ret) {
5786 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5787 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5788 btrfs_ino(inode), num_bytes, 1);
5789
5790 /* Don't forget to increase qgroup_rsv_reserved */
5791 spin_lock(&block_rsv->lock);
5792 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5793 spin_unlock(&block_rsv->lock);
5794 } else
5795 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5796 return ret;
5797}
5798
5799/**
5800 * btrfs_inode_rsv_release - release any excessive reservation.
5801 * @inode - the inode we need to release from.
5802 * @qgroup_free - free or convert qgroup meta.
5803 * Unlike normal operation, qgroup meta reservation needs to know if we are
5804 * freeing qgroup reservation or just converting it into per-trans. Normally
5805 * @qgroup_free is true for error handling, and false for normal release.
5806 *
5807 * This is the same as btrfs_block_rsv_release, except that it handles the
5808 * tracepoint for the reservation.
5809 */
5810static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5811{
5812 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5813 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5814 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5815 u64 released = 0;
5816 u64 qgroup_to_release = 0;
5817
5818 /*
5819 * Since we statically set the block_rsv->size we just want to say we
5820 * are releasing 0 bytes, and then we'll just get the reservation over
5821 * the size free'd.
5822 */
5823 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5824 &qgroup_to_release);
5825 if (released > 0)
5826 trace_btrfs_space_reservation(fs_info, "delalloc",
5827 btrfs_ino(inode), released, 0);
5828 if (qgroup_free)
5829 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5830 else
5831 btrfs_qgroup_convert_reserved_meta(inode->root,
5832 qgroup_to_release);
5833}
5834
5835void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5836 struct btrfs_block_rsv *block_rsv,
5837 u64 num_bytes)
5838{
5839 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5840
5841 if (global_rsv == block_rsv ||
5842 block_rsv->space_info != global_rsv->space_info)
5843 global_rsv = NULL;
5844 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
5845}
5846
5847static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5848{
5849 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5850 struct btrfs_space_info *sinfo = block_rsv->space_info;
5851 u64 num_bytes;
5852
5853 /*
5854 * The global block rsv is based on the size of the extent tree, the
5855 * checksum tree and the root tree. If the fs is empty we want to set
5856 * it to a minimal amount for safety.
5857 */
5858 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5859 btrfs_root_used(&fs_info->csum_root->root_item) +
5860 btrfs_root_used(&fs_info->tree_root->root_item);
5861 num_bytes = max_t(u64, num_bytes, SZ_16M);
5862
5863 spin_lock(&sinfo->lock);
5864 spin_lock(&block_rsv->lock);
5865
5866 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5867
5868 if (block_rsv->reserved < block_rsv->size) {
5869 num_bytes = btrfs_space_info_used(sinfo, true);
5870 if (sinfo->total_bytes > num_bytes) {
5871 num_bytes = sinfo->total_bytes - num_bytes;
5872 num_bytes = min(num_bytes,
5873 block_rsv->size - block_rsv->reserved);
5874 block_rsv->reserved += num_bytes;
5875 sinfo->bytes_may_use += num_bytes;
5876 trace_btrfs_space_reservation(fs_info, "space_info",
5877 sinfo->flags, num_bytes,
5878 1);
5879 }
5880 } else if (block_rsv->reserved > block_rsv->size) {
5881 num_bytes = block_rsv->reserved - block_rsv->size;
5882 sinfo->bytes_may_use -= num_bytes;
5883 trace_btrfs_space_reservation(fs_info, "space_info",
5884 sinfo->flags, num_bytes, 0);
5885 block_rsv->reserved = block_rsv->size;
5886 }
5887
5888 if (block_rsv->reserved == block_rsv->size)
5889 block_rsv->full = 1;
5890 else
5891 block_rsv->full = 0;
5892
5893 spin_unlock(&block_rsv->lock);
5894 spin_unlock(&sinfo->lock);
5895}
5896
5897static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5898{
5899 struct btrfs_space_info *space_info;
5900
5901 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5902 fs_info->chunk_block_rsv.space_info = space_info;
5903
5904 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5905 fs_info->global_block_rsv.space_info = space_info;
5906 fs_info->trans_block_rsv.space_info = space_info;
5907 fs_info->empty_block_rsv.space_info = space_info;
5908 fs_info->delayed_block_rsv.space_info = space_info;
5909
5910 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5911 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5912 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5913 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5914 if (fs_info->quota_root)
5915 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5916 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5917
5918 update_global_block_rsv(fs_info);
5919}
5920
5921static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5922{
5923 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5924 (u64)-1, NULL);
5925 WARN_ON(fs_info->trans_block_rsv.size > 0);
5926 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5927 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5928 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5929 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5930 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5931}
5932
5933
5934/*
5935 * To be called after all the new block groups attached to the transaction
5936 * handle have been created (btrfs_create_pending_block_groups()).
5937 */
5938void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5939{
5940 struct btrfs_fs_info *fs_info = trans->fs_info;
5941
5942 if (!trans->chunk_bytes_reserved)
5943 return;
5944
5945 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5946
5947 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5948 trans->chunk_bytes_reserved, NULL);
5949 trans->chunk_bytes_reserved = 0;
5950}
5951
5952/* Can only return 0 or -ENOSPC */
5953int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5954 struct btrfs_inode *inode)
5955{
5956 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5957 struct btrfs_root *root = inode->root;
5958 /*
5959 * We always use trans->block_rsv here as we will have reserved space
5960 * for our orphan when starting the transaction, using get_block_rsv()
5961 * here will sometimes make us choose the wrong block rsv as we could be
5962 * doing a reloc inode for a non refcounted root.
5963 */
5964 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5965 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5966
5967 /*
5968 * We need to hold space in order to delete our orphan item once we've
5969 * added it, so this takes the reservation so we can release it later
5970 * when we are truly done with the orphan item.
5971 */
5972 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5973
5974 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5975 num_bytes, 1);
5976 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5977}
5978
5979void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5980{
5981 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5982 struct btrfs_root *root = inode->root;
5983 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5984
5985 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5986 num_bytes, 0);
5987 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5988}
5989
5990/*
5991 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5992 * root: the root of the parent directory
5993 * rsv: block reservation
5994 * items: the number of items that we need do reservation
5995 * qgroup_reserved: used to return the reserved size in qgroup
5996 *
5997 * This function is used to reserve the space for snapshot/subvolume
5998 * creation and deletion. Those operations are different with the
5999 * common file/directory operations, they change two fs/file trees
6000 * and root tree, the number of items that the qgroup reserves is
6001 * different with the free space reservation. So we can not use
6002 * the space reservation mechanism in start_transaction().
6003 */
6004int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
6005 struct btrfs_block_rsv *rsv,
6006 int items,
6007 u64 *qgroup_reserved,
6008 bool use_global_rsv)
6009{
6010 u64 num_bytes;
6011 int ret;
6012 struct btrfs_fs_info *fs_info = root->fs_info;
6013 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6014
6015 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6016 /* One for parent inode, two for dir entries */
6017 num_bytes = 3 * fs_info->nodesize;
6018 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
6019 if (ret)
6020 return ret;
6021 } else {
6022 num_bytes = 0;
6023 }
6024
6025 *qgroup_reserved = num_bytes;
6026
6027 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6028 rsv->space_info = __find_space_info(fs_info,
6029 BTRFS_BLOCK_GROUP_METADATA);
6030 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6031 BTRFS_RESERVE_FLUSH_ALL);
6032
6033 if (ret == -ENOSPC && use_global_rsv)
6034 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
6035
6036 if (ret && *qgroup_reserved)
6037 btrfs_qgroup_free_meta_prealloc(root, *qgroup_reserved);
6038
6039 return ret;
6040}
6041
6042void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6043 struct btrfs_block_rsv *rsv)
6044{
6045 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6046}
6047
6048static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6049 struct btrfs_inode *inode)
6050{
6051 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6052 u64 reserve_size = 0;
6053 u64 qgroup_rsv_size = 0;
6054 u64 csum_leaves;
6055 unsigned outstanding_extents;
6056
6057 lockdep_assert_held(&inode->lock);
6058 outstanding_extents = inode->outstanding_extents;
6059 if (outstanding_extents)
6060 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6061 outstanding_extents + 1);
6062 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6063 inode->csum_bytes);
6064 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6065 csum_leaves);
6066 /*
6067 * For qgroup rsv, the calculation is very simple:
6068 * account one nodesize for each outstanding extent
6069 *
6070 * This is overestimating in most cases.
6071 */
6072 qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
6073
6074 spin_lock(&block_rsv->lock);
6075 block_rsv->size = reserve_size;
6076 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
6077 spin_unlock(&block_rsv->lock);
6078}
6079
6080int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6081{
6082 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6083 unsigned nr_extents;
6084 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6085 int ret = 0;
6086 bool delalloc_lock = true;
6087
6088 /* If we are a free space inode we need to not flush since we will be in
6089 * the middle of a transaction commit. We also don't need the delalloc
6090 * mutex since we won't race with anybody. We need this mostly to make
6091 * lockdep shut its filthy mouth.
6092 *
6093 * If we have a transaction open (can happen if we call truncate_block
6094 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6095 */
6096 if (btrfs_is_free_space_inode(inode)) {
6097 flush = BTRFS_RESERVE_NO_FLUSH;
6098 delalloc_lock = false;
6099 } else {
6100 if (current->journal_info)
6101 flush = BTRFS_RESERVE_FLUSH_LIMIT;
6102
6103 if (btrfs_transaction_in_commit(fs_info))
6104 schedule_timeout(1);
6105 }
6106
6107 if (delalloc_lock)
6108 mutex_lock(&inode->delalloc_mutex);
6109
6110 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6111
6112 /* Add our new extents and calculate the new rsv size. */
6113 spin_lock(&inode->lock);
6114 nr_extents = count_max_extents(num_bytes);
6115 btrfs_mod_outstanding_extents(inode, nr_extents);
6116 inode->csum_bytes += num_bytes;
6117 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6118 spin_unlock(&inode->lock);
6119
6120 ret = btrfs_inode_rsv_refill(inode, flush);
6121 if (unlikely(ret))
6122 goto out_fail;
6123
6124 if (delalloc_lock)
6125 mutex_unlock(&inode->delalloc_mutex);
6126 return 0;
6127
6128out_fail:
6129 spin_lock(&inode->lock);
6130 nr_extents = count_max_extents(num_bytes);
6131 btrfs_mod_outstanding_extents(inode, -nr_extents);
6132 inode->csum_bytes -= num_bytes;
6133 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6134 spin_unlock(&inode->lock);
6135
6136 btrfs_inode_rsv_release(inode, true);
6137 if (delalloc_lock)
6138 mutex_unlock(&inode->delalloc_mutex);
6139 return ret;
6140}
6141
6142/**
6143 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6144 * @inode: the inode to release the reservation for.
6145 * @num_bytes: the number of bytes we are releasing.
6146 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
6147 *
6148 * This will release the metadata reservation for an inode. This can be called
6149 * once we complete IO for a given set of bytes to release their metadata
6150 * reservations, or on error for the same reason.
6151 */
6152void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6153 bool qgroup_free)
6154{
6155 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6156
6157 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6158 spin_lock(&inode->lock);
6159 inode->csum_bytes -= num_bytes;
6160 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6161 spin_unlock(&inode->lock);
6162
6163 if (btrfs_is_testing(fs_info))
6164 return;
6165
6166 btrfs_inode_rsv_release(inode, qgroup_free);
6167}
6168
6169/**
6170 * btrfs_delalloc_release_extents - release our outstanding_extents
6171 * @inode: the inode to balance the reservation for.
6172 * @num_bytes: the number of bytes we originally reserved with
6173 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
6174 *
6175 * When we reserve space we increase outstanding_extents for the extents we may
6176 * add. Once we've set the range as delalloc or created our ordered extents we
6177 * have outstanding_extents to track the real usage, so we use this to free our
6178 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6179 * with btrfs_delalloc_reserve_metadata.
6180 */
6181void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6182 bool qgroup_free)
6183{
6184 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6185 unsigned num_extents;
6186
6187 spin_lock(&inode->lock);
6188 num_extents = count_max_extents(num_bytes);
6189 btrfs_mod_outstanding_extents(inode, -num_extents);
6190 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6191 spin_unlock(&inode->lock);
6192
6193 if (btrfs_is_testing(fs_info))
6194 return;
6195
6196 btrfs_inode_rsv_release(inode, qgroup_free);
6197}
6198
6199/**
6200 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6201 * delalloc
6202 * @inode: inode we're writing to
6203 * @start: start range we are writing to
6204 * @len: how long the range we are writing to
6205 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6206 * current reservation.
6207 *
6208 * This will do the following things
6209 *
6210 * o reserve space in data space info for num bytes
6211 * and reserve precious corresponding qgroup space
6212 * (Done in check_data_free_space)
6213 *
6214 * o reserve space for metadata space, based on the number of outstanding
6215 * extents and how much csums will be needed
6216 * also reserve metadata space in a per root over-reserve method.
6217 * o add to the inodes->delalloc_bytes
6218 * o add it to the fs_info's delalloc inodes list.
6219 * (Above 3 all done in delalloc_reserve_metadata)
6220 *
6221 * Return 0 for success
6222 * Return <0 for error(-ENOSPC or -EQUOT)
6223 */
6224int btrfs_delalloc_reserve_space(struct inode *inode,
6225 struct extent_changeset **reserved, u64 start, u64 len)
6226{
6227 int ret;
6228
6229 ret = btrfs_check_data_free_space(inode, reserved, start, len);
6230 if (ret < 0)
6231 return ret;
6232 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6233 if (ret < 0)
6234 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6235 return ret;
6236}
6237
6238/**
6239 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6240 * @inode: inode we're releasing space for
6241 * @start: start position of the space already reserved
6242 * @len: the len of the space already reserved
6243 * @release_bytes: the len of the space we consumed or didn't use
6244 *
6245 * This function will release the metadata space that was not used and will
6246 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6247 * list if there are no delalloc bytes left.
6248 * Also it will handle the qgroup reserved space.
6249 */
6250void btrfs_delalloc_release_space(struct inode *inode,
6251 struct extent_changeset *reserved,
6252 u64 start, u64 len, bool qgroup_free)
6253{
6254 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6255 btrfs_free_reserved_data_space(inode, reserved, start, len);
6256}
6257
6258static int update_block_group(struct btrfs_trans_handle *trans,
6259 struct btrfs_fs_info *info, u64 bytenr,
6260 u64 num_bytes, int alloc)
6261{
6262 struct btrfs_block_group_cache *cache = NULL;
6263 u64 total = num_bytes;
6264 u64 old_val;
6265 u64 byte_in_group;
6266 int factor;
6267
6268 /* block accounting for super block */
6269 spin_lock(&info->delalloc_root_lock);
6270 old_val = btrfs_super_bytes_used(info->super_copy);
6271 if (alloc)
6272 old_val += num_bytes;
6273 else
6274 old_val -= num_bytes;
6275 btrfs_set_super_bytes_used(info->super_copy, old_val);
6276 spin_unlock(&info->delalloc_root_lock);
6277
6278 while (total) {
6279 cache = btrfs_lookup_block_group(info, bytenr);
6280 if (!cache)
6281 return -ENOENT;
6282 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6283 BTRFS_BLOCK_GROUP_RAID1 |
6284 BTRFS_BLOCK_GROUP_RAID10))
6285 factor = 2;
6286 else
6287 factor = 1;
6288 /*
6289 * If this block group has free space cache written out, we
6290 * need to make sure to load it if we are removing space. This
6291 * is because we need the unpinning stage to actually add the
6292 * space back to the block group, otherwise we will leak space.
6293 */
6294 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6295 cache_block_group(cache, 1);
6296
6297 byte_in_group = bytenr - cache->key.objectid;
6298 WARN_ON(byte_in_group > cache->key.offset);
6299
6300 spin_lock(&cache->space_info->lock);
6301 spin_lock(&cache->lock);
6302
6303 if (btrfs_test_opt(info, SPACE_CACHE) &&
6304 cache->disk_cache_state < BTRFS_DC_CLEAR)
6305 cache->disk_cache_state = BTRFS_DC_CLEAR;
6306
6307 old_val = btrfs_block_group_used(&cache->item);
6308 num_bytes = min(total, cache->key.offset - byte_in_group);
6309 if (alloc) {
6310 old_val += num_bytes;
6311 btrfs_set_block_group_used(&cache->item, old_val);
6312 cache->reserved -= num_bytes;
6313 cache->space_info->bytes_reserved -= num_bytes;
6314 cache->space_info->bytes_used += num_bytes;
6315 cache->space_info->disk_used += num_bytes * factor;
6316 spin_unlock(&cache->lock);
6317 spin_unlock(&cache->space_info->lock);
6318 } else {
6319 old_val -= num_bytes;
6320 btrfs_set_block_group_used(&cache->item, old_val);
6321 cache->pinned += num_bytes;
6322 cache->space_info->bytes_pinned += num_bytes;
6323 cache->space_info->bytes_used -= num_bytes;
6324 cache->space_info->disk_used -= num_bytes * factor;
6325 spin_unlock(&cache->lock);
6326 spin_unlock(&cache->space_info->lock);
6327
6328 trace_btrfs_space_reservation(info, "pinned",
6329 cache->space_info->flags,
6330 num_bytes, 1);
6331 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6332 num_bytes);
6333 set_extent_dirty(info->pinned_extents,
6334 bytenr, bytenr + num_bytes - 1,
6335 GFP_NOFS | __GFP_NOFAIL);
6336 }
6337
6338 spin_lock(&trans->transaction->dirty_bgs_lock);
6339 if (list_empty(&cache->dirty_list)) {
6340 list_add_tail(&cache->dirty_list,
6341 &trans->transaction->dirty_bgs);
6342 trans->transaction->num_dirty_bgs++;
6343 btrfs_get_block_group(cache);
6344 }
6345 spin_unlock(&trans->transaction->dirty_bgs_lock);
6346
6347 /*
6348 * No longer have used bytes in this block group, queue it for
6349 * deletion. We do this after adding the block group to the
6350 * dirty list to avoid races between cleaner kthread and space
6351 * cache writeout.
6352 */
6353 if (!alloc && old_val == 0) {
6354 spin_lock(&info->unused_bgs_lock);
6355 if (list_empty(&cache->bg_list)) {
6356 btrfs_get_block_group(cache);
6357 list_add_tail(&cache->bg_list,
6358 &info->unused_bgs);
6359 }
6360 spin_unlock(&info->unused_bgs_lock);
6361 }
6362
6363 btrfs_put_block_group(cache);
6364 total -= num_bytes;
6365 bytenr += num_bytes;
6366 }
6367 return 0;
6368}
6369
6370static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6371{
6372 struct btrfs_block_group_cache *cache;
6373 u64 bytenr;
6374
6375 spin_lock(&fs_info->block_group_cache_lock);
6376 bytenr = fs_info->first_logical_byte;
6377 spin_unlock(&fs_info->block_group_cache_lock);
6378
6379 if (bytenr < (u64)-1)
6380 return bytenr;
6381
6382 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6383 if (!cache)
6384 return 0;
6385
6386 bytenr = cache->key.objectid;
6387 btrfs_put_block_group(cache);
6388
6389 return bytenr;
6390}
6391
6392static int pin_down_extent(struct btrfs_fs_info *fs_info,
6393 struct btrfs_block_group_cache *cache,
6394 u64 bytenr, u64 num_bytes, int reserved)
6395{
6396 spin_lock(&cache->space_info->lock);
6397 spin_lock(&cache->lock);
6398 cache->pinned += num_bytes;
6399 cache->space_info->bytes_pinned += num_bytes;
6400 if (reserved) {
6401 cache->reserved -= num_bytes;
6402 cache->space_info->bytes_reserved -= num_bytes;
6403 }
6404 spin_unlock(&cache->lock);
6405 spin_unlock(&cache->space_info->lock);
6406
6407 trace_btrfs_space_reservation(fs_info, "pinned",
6408 cache->space_info->flags, num_bytes, 1);
6409 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6410 set_extent_dirty(fs_info->pinned_extents, bytenr,
6411 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6412 return 0;
6413}
6414
6415/*
6416 * this function must be called within transaction
6417 */
6418int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6419 u64 bytenr, u64 num_bytes, int reserved)
6420{
6421 struct btrfs_block_group_cache *cache;
6422
6423 cache = btrfs_lookup_block_group(fs_info, bytenr);
6424 BUG_ON(!cache); /* Logic error */
6425
6426 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6427
6428 btrfs_put_block_group(cache);
6429 return 0;
6430}
6431
6432/*
6433 * this function must be called within transaction
6434 */
6435int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6436 u64 bytenr, u64 num_bytes)
6437{
6438 struct btrfs_block_group_cache *cache;
6439 int ret;
6440
6441 cache = btrfs_lookup_block_group(fs_info, bytenr);
6442 if (!cache)
6443 return -EINVAL;
6444
6445 /*
6446 * pull in the free space cache (if any) so that our pin
6447 * removes the free space from the cache. We have load_only set
6448 * to one because the slow code to read in the free extents does check
6449 * the pinned extents.
6450 */
6451 cache_block_group(cache, 1);
6452
6453 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6454
6455 /* remove us from the free space cache (if we're there at all) */
6456 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6457 btrfs_put_block_group(cache);
6458 return ret;
6459}
6460
6461static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6462 u64 start, u64 num_bytes)
6463{
6464 int ret;
6465 struct btrfs_block_group_cache *block_group;
6466 struct btrfs_caching_control *caching_ctl;
6467
6468 block_group = btrfs_lookup_block_group(fs_info, start);
6469 if (!block_group)
6470 return -EINVAL;
6471
6472 cache_block_group(block_group, 0);
6473 caching_ctl = get_caching_control(block_group);
6474
6475 if (!caching_ctl) {
6476 /* Logic error */
6477 BUG_ON(!block_group_cache_done(block_group));
6478 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6479 } else {
6480 mutex_lock(&caching_ctl->mutex);
6481
6482 if (start >= caching_ctl->progress) {
6483 ret = add_excluded_extent(fs_info, start, num_bytes);
6484 } else if (start + num_bytes <= caching_ctl->progress) {
6485 ret = btrfs_remove_free_space(block_group,
6486 start, num_bytes);
6487 } else {
6488 num_bytes = caching_ctl->progress - start;
6489 ret = btrfs_remove_free_space(block_group,
6490 start, num_bytes);
6491 if (ret)
6492 goto out_lock;
6493
6494 num_bytes = (start + num_bytes) -
6495 caching_ctl->progress;
6496 start = caching_ctl->progress;
6497 ret = add_excluded_extent(fs_info, start, num_bytes);
6498 }
6499out_lock:
6500 mutex_unlock(&caching_ctl->mutex);
6501 put_caching_control(caching_ctl);
6502 }
6503 btrfs_put_block_group(block_group);
6504 return ret;
6505}
6506
6507int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6508 struct extent_buffer *eb)
6509{
6510 struct btrfs_file_extent_item *item;
6511 struct btrfs_key key;
6512 int found_type;
6513 int i;
6514
6515 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6516 return 0;
6517
6518 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6519 btrfs_item_key_to_cpu(eb, &key, i);
6520 if (key.type != BTRFS_EXTENT_DATA_KEY)
6521 continue;
6522 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6523 found_type = btrfs_file_extent_type(eb, item);
6524 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6525 continue;
6526 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6527 continue;
6528 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6529 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6530 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6531 }
6532
6533 return 0;
6534}
6535
6536static void
6537btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6538{
6539 atomic_inc(&bg->reservations);
6540}
6541
6542void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6543 const u64 start)
6544{
6545 struct btrfs_block_group_cache *bg;
6546
6547 bg = btrfs_lookup_block_group(fs_info, start);
6548 ASSERT(bg);
6549 if (atomic_dec_and_test(&bg->reservations))
6550 wake_up_var(&bg->reservations);
6551 btrfs_put_block_group(bg);
6552}
6553
6554void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6555{
6556 struct btrfs_space_info *space_info = bg->space_info;
6557
6558 ASSERT(bg->ro);
6559
6560 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6561 return;
6562
6563 /*
6564 * Our block group is read only but before we set it to read only,
6565 * some task might have had allocated an extent from it already, but it
6566 * has not yet created a respective ordered extent (and added it to a
6567 * root's list of ordered extents).
6568 * Therefore wait for any task currently allocating extents, since the
6569 * block group's reservations counter is incremented while a read lock
6570 * on the groups' semaphore is held and decremented after releasing
6571 * the read access on that semaphore and creating the ordered extent.
6572 */
6573 down_write(&space_info->groups_sem);
6574 up_write(&space_info->groups_sem);
6575
6576 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6577}
6578
6579/**
6580 * btrfs_add_reserved_bytes - update the block_group and space info counters
6581 * @cache: The cache we are manipulating
6582 * @ram_bytes: The number of bytes of file content, and will be same to
6583 * @num_bytes except for the compress path.
6584 * @num_bytes: The number of bytes in question
6585 * @delalloc: The blocks are allocated for the delalloc write
6586 *
6587 * This is called by the allocator when it reserves space. If this is a
6588 * reservation and the block group has become read only we cannot make the
6589 * reservation and return -EAGAIN, otherwise this function always succeeds.
6590 */
6591static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6592 u64 ram_bytes, u64 num_bytes, int delalloc)
6593{
6594 struct btrfs_space_info *space_info = cache->space_info;
6595 int ret = 0;
6596
6597 spin_lock(&space_info->lock);
6598 spin_lock(&cache->lock);
6599 if (cache->ro) {
6600 ret = -EAGAIN;
6601 } else {
6602 cache->reserved += num_bytes;
6603 space_info->bytes_reserved += num_bytes;
6604
6605 trace_btrfs_space_reservation(cache->fs_info,
6606 "space_info", space_info->flags,
6607 ram_bytes, 0);
6608 space_info->bytes_may_use -= ram_bytes;
6609 if (delalloc)
6610 cache->delalloc_bytes += num_bytes;
6611 }
6612 spin_unlock(&cache->lock);
6613 spin_unlock(&space_info->lock);
6614 return ret;
6615}
6616
6617/**
6618 * btrfs_free_reserved_bytes - update the block_group and space info counters
6619 * @cache: The cache we are manipulating
6620 * @num_bytes: The number of bytes in question
6621 * @delalloc: The blocks are allocated for the delalloc write
6622 *
6623 * This is called by somebody who is freeing space that was never actually used
6624 * on disk. For example if you reserve some space for a new leaf in transaction
6625 * A and before transaction A commits you free that leaf, you call this with
6626 * reserve set to 0 in order to clear the reservation.
6627 */
6628
6629static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6630 u64 num_bytes, int delalloc)
6631{
6632 struct btrfs_space_info *space_info = cache->space_info;
6633 int ret = 0;
6634
6635 spin_lock(&space_info->lock);
6636 spin_lock(&cache->lock);
6637 if (cache->ro)
6638 space_info->bytes_readonly += num_bytes;
6639 cache->reserved -= num_bytes;
6640 space_info->bytes_reserved -= num_bytes;
6641
6642 if (delalloc)
6643 cache->delalloc_bytes -= num_bytes;
6644 spin_unlock(&cache->lock);
6645 spin_unlock(&space_info->lock);
6646 return ret;
6647}
6648void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6649{
6650 struct btrfs_caching_control *next;
6651 struct btrfs_caching_control *caching_ctl;
6652 struct btrfs_block_group_cache *cache;
6653
6654 down_write(&fs_info->commit_root_sem);
6655
6656 list_for_each_entry_safe(caching_ctl, next,
6657 &fs_info->caching_block_groups, list) {
6658 cache = caching_ctl->block_group;
6659 if (block_group_cache_done(cache)) {
6660 cache->last_byte_to_unpin = (u64)-1;
6661 list_del_init(&caching_ctl->list);
6662 put_caching_control(caching_ctl);
6663 } else {
6664 cache->last_byte_to_unpin = caching_ctl->progress;
6665 }
6666 }
6667
6668 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6669 fs_info->pinned_extents = &fs_info->freed_extents[1];
6670 else
6671 fs_info->pinned_extents = &fs_info->freed_extents[0];
6672
6673 up_write(&fs_info->commit_root_sem);
6674
6675 update_global_block_rsv(fs_info);
6676}
6677
6678/*
6679 * Returns the free cluster for the given space info and sets empty_cluster to
6680 * what it should be based on the mount options.
6681 */
6682static struct btrfs_free_cluster *
6683fetch_cluster_info(struct btrfs_fs_info *fs_info,
6684 struct btrfs_space_info *space_info, u64 *empty_cluster)
6685{
6686 struct btrfs_free_cluster *ret = NULL;
6687
6688 *empty_cluster = 0;
6689 if (btrfs_mixed_space_info(space_info))
6690 return ret;
6691
6692 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6693 ret = &fs_info->meta_alloc_cluster;
6694 if (btrfs_test_opt(fs_info, SSD))
6695 *empty_cluster = SZ_2M;
6696 else
6697 *empty_cluster = SZ_64K;
6698 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6699 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6700 *empty_cluster = SZ_2M;
6701 ret = &fs_info->data_alloc_cluster;
6702 }
6703
6704 return ret;
6705}
6706
6707static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6708 u64 start, u64 end,
6709 const bool return_free_space)
6710{
6711 struct btrfs_block_group_cache *cache = NULL;
6712 struct btrfs_space_info *space_info;
6713 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6714 struct btrfs_free_cluster *cluster = NULL;
6715 u64 len;
6716 u64 total_unpinned = 0;
6717 u64 empty_cluster = 0;
6718 bool readonly;
6719
6720 while (start <= end) {
6721 readonly = false;
6722 if (!cache ||
6723 start >= cache->key.objectid + cache->key.offset) {
6724 if (cache)
6725 btrfs_put_block_group(cache);
6726 total_unpinned = 0;
6727 cache = btrfs_lookup_block_group(fs_info, start);
6728 BUG_ON(!cache); /* Logic error */
6729
6730 cluster = fetch_cluster_info(fs_info,
6731 cache->space_info,
6732 &empty_cluster);
6733 empty_cluster <<= 1;
6734 }
6735
6736 len = cache->key.objectid + cache->key.offset - start;
6737 len = min(len, end + 1 - start);
6738
6739 if (start < cache->last_byte_to_unpin) {
6740 len = min(len, cache->last_byte_to_unpin - start);
6741 if (return_free_space)
6742 btrfs_add_free_space(cache, start, len);
6743 }
6744
6745 start += len;
6746 total_unpinned += len;
6747 space_info = cache->space_info;
6748
6749 /*
6750 * If this space cluster has been marked as fragmented and we've
6751 * unpinned enough in this block group to potentially allow a
6752 * cluster to be created inside of it go ahead and clear the
6753 * fragmented check.
6754 */
6755 if (cluster && cluster->fragmented &&
6756 total_unpinned > empty_cluster) {
6757 spin_lock(&cluster->lock);
6758 cluster->fragmented = 0;
6759 spin_unlock(&cluster->lock);
6760 }
6761
6762 spin_lock(&space_info->lock);
6763 spin_lock(&cache->lock);
6764 cache->pinned -= len;
6765 space_info->bytes_pinned -= len;
6766
6767 trace_btrfs_space_reservation(fs_info, "pinned",
6768 space_info->flags, len, 0);
6769 space_info->max_extent_size = 0;
6770 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6771 if (cache->ro) {
6772 space_info->bytes_readonly += len;
6773 readonly = true;
6774 }
6775 spin_unlock(&cache->lock);
6776 if (!readonly && return_free_space &&
6777 global_rsv->space_info == space_info) {
6778 u64 to_add = len;
6779
6780 spin_lock(&global_rsv->lock);
6781 if (!global_rsv->full) {
6782 to_add = min(len, global_rsv->size -
6783 global_rsv->reserved);
6784 global_rsv->reserved += to_add;
6785 space_info->bytes_may_use += to_add;
6786 if (global_rsv->reserved >= global_rsv->size)
6787 global_rsv->full = 1;
6788 trace_btrfs_space_reservation(fs_info,
6789 "space_info",
6790 space_info->flags,
6791 to_add, 1);
6792 len -= to_add;
6793 }
6794 spin_unlock(&global_rsv->lock);
6795 /* Add to any tickets we may have */
6796 if (len)
6797 space_info_add_new_bytes(fs_info, space_info,
6798 len);
6799 }
6800 spin_unlock(&space_info->lock);
6801 }
6802
6803 if (cache)
6804 btrfs_put_block_group(cache);
6805 return 0;
6806}
6807
6808int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6809{
6810 struct btrfs_fs_info *fs_info = trans->fs_info;
6811 struct btrfs_block_group_cache *block_group, *tmp;
6812 struct list_head *deleted_bgs;
6813 struct extent_io_tree *unpin;
6814 u64 start;
6815 u64 end;
6816 int ret;
6817
6818 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6819 unpin = &fs_info->freed_extents[1];
6820 else
6821 unpin = &fs_info->freed_extents[0];
6822
6823 while (!trans->aborted) {
6824 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6825 ret = find_first_extent_bit(unpin, 0, &start, &end,
6826 EXTENT_DIRTY, NULL);
6827 if (ret) {
6828 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6829 break;
6830 }
6831
6832 if (btrfs_test_opt(fs_info, DISCARD))
6833 ret = btrfs_discard_extent(fs_info, start,
6834 end + 1 - start, NULL);
6835
6836 clear_extent_dirty(unpin, start, end);
6837 unpin_extent_range(fs_info, start, end, true);
6838 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6839 cond_resched();
6840 }
6841
6842 /*
6843 * Transaction is finished. We don't need the lock anymore. We
6844 * do need to clean up the block groups in case of a transaction
6845 * abort.
6846 */
6847 deleted_bgs = &trans->transaction->deleted_bgs;
6848 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6849 u64 trimmed = 0;
6850
6851 ret = -EROFS;
6852 if (!trans->aborted)
6853 ret = btrfs_discard_extent(fs_info,
6854 block_group->key.objectid,
6855 block_group->key.offset,
6856 &trimmed);
6857
6858 list_del_init(&block_group->bg_list);
6859 btrfs_put_block_group_trimming(block_group);
6860 btrfs_put_block_group(block_group);
6861
6862 if (ret) {
6863 const char *errstr = btrfs_decode_error(ret);
6864 btrfs_warn(fs_info,
6865 "discard failed while removing blockgroup: errno=%d %s",
6866 ret, errstr);
6867 }
6868 }
6869
6870 return 0;
6871}
6872
6873static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6874 struct btrfs_fs_info *info,
6875 struct btrfs_delayed_ref_node *node, u64 parent,
6876 u64 root_objectid, u64 owner_objectid,
6877 u64 owner_offset, int refs_to_drop,
6878 struct btrfs_delayed_extent_op *extent_op)
6879{
6880 struct btrfs_key key;
6881 struct btrfs_path *path;
6882 struct btrfs_root *extent_root = info->extent_root;
6883 struct extent_buffer *leaf;
6884 struct btrfs_extent_item *ei;
6885 struct btrfs_extent_inline_ref *iref;
6886 int ret;
6887 int is_data;
6888 int extent_slot = 0;
6889 int found_extent = 0;
6890 int num_to_del = 1;
6891 u32 item_size;
6892 u64 refs;
6893 u64 bytenr = node->bytenr;
6894 u64 num_bytes = node->num_bytes;
6895 int last_ref = 0;
6896 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6897
6898 path = btrfs_alloc_path();
6899 if (!path)
6900 return -ENOMEM;
6901
6902 path->reada = READA_FORWARD;
6903 path->leave_spinning = 1;
6904
6905 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6906 BUG_ON(!is_data && refs_to_drop != 1);
6907
6908 if (is_data)
6909 skinny_metadata = false;
6910
6911 ret = lookup_extent_backref(trans, info, path, &iref,
6912 bytenr, num_bytes, parent,
6913 root_objectid, owner_objectid,
6914 owner_offset);
6915 if (ret == 0) {
6916 extent_slot = path->slots[0];
6917 while (extent_slot >= 0) {
6918 btrfs_item_key_to_cpu(path->nodes[0], &key,
6919 extent_slot);
6920 if (key.objectid != bytenr)
6921 break;
6922 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6923 key.offset == num_bytes) {
6924 found_extent = 1;
6925 break;
6926 }
6927 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6928 key.offset == owner_objectid) {
6929 found_extent = 1;
6930 break;
6931 }
6932 if (path->slots[0] - extent_slot > 5)
6933 break;
6934 extent_slot--;
6935 }
6936#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6937 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6938 if (found_extent && item_size < sizeof(*ei))
6939 found_extent = 0;
6940#endif
6941 if (!found_extent) {
6942 BUG_ON(iref);
6943 ret = remove_extent_backref(trans, info, path, NULL,
6944 refs_to_drop,
6945 is_data, &last_ref);
6946 if (ret) {
6947 btrfs_abort_transaction(trans, ret);
6948 goto out;
6949 }
6950 btrfs_release_path(path);
6951 path->leave_spinning = 1;
6952
6953 key.objectid = bytenr;
6954 key.type = BTRFS_EXTENT_ITEM_KEY;
6955 key.offset = num_bytes;
6956
6957 if (!is_data && skinny_metadata) {
6958 key.type = BTRFS_METADATA_ITEM_KEY;
6959 key.offset = owner_objectid;
6960 }
6961
6962 ret = btrfs_search_slot(trans, extent_root,
6963 &key, path, -1, 1);
6964 if (ret > 0 && skinny_metadata && path->slots[0]) {
6965 /*
6966 * Couldn't find our skinny metadata item,
6967 * see if we have ye olde extent item.
6968 */
6969 path->slots[0]--;
6970 btrfs_item_key_to_cpu(path->nodes[0], &key,
6971 path->slots[0]);
6972 if (key.objectid == bytenr &&
6973 key.type == BTRFS_EXTENT_ITEM_KEY &&
6974 key.offset == num_bytes)
6975 ret = 0;
6976 }
6977
6978 if (ret > 0 && skinny_metadata) {
6979 skinny_metadata = false;
6980 key.objectid = bytenr;
6981 key.type = BTRFS_EXTENT_ITEM_KEY;
6982 key.offset = num_bytes;
6983 btrfs_release_path(path);
6984 ret = btrfs_search_slot(trans, extent_root,
6985 &key, path, -1, 1);
6986 }
6987
6988 if (ret) {
6989 btrfs_err(info,
6990 "umm, got %d back from search, was looking for %llu",
6991 ret, bytenr);
6992 if (ret > 0)
6993 btrfs_print_leaf(path->nodes[0]);
6994 }
6995 if (ret < 0) {
6996 btrfs_abort_transaction(trans, ret);
6997 goto out;
6998 }
6999 extent_slot = path->slots[0];
7000 }
7001 } else if (WARN_ON(ret == -ENOENT)) {
7002 btrfs_print_leaf(path->nodes[0]);
7003 btrfs_err(info,
7004 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
7005 bytenr, parent, root_objectid, owner_objectid,
7006 owner_offset);
7007 btrfs_abort_transaction(trans, ret);
7008 goto out;
7009 } else {
7010 btrfs_abort_transaction(trans, ret);
7011 goto out;
7012 }
7013
7014 leaf = path->nodes[0];
7015 item_size = btrfs_item_size_nr(leaf, extent_slot);
7016#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7017 if (item_size < sizeof(*ei)) {
7018 BUG_ON(found_extent || extent_slot != path->slots[0]);
7019 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
7020 0);
7021 if (ret < 0) {
7022 btrfs_abort_transaction(trans, ret);
7023 goto out;
7024 }
7025
7026 btrfs_release_path(path);
7027 path->leave_spinning = 1;
7028
7029 key.objectid = bytenr;
7030 key.type = BTRFS_EXTENT_ITEM_KEY;
7031 key.offset = num_bytes;
7032
7033 ret = btrfs_search_slot(trans, extent_root, &key, path,
7034 -1, 1);
7035 if (ret) {
7036 btrfs_err(info,
7037 "umm, got %d back from search, was looking for %llu",
7038 ret, bytenr);
7039 btrfs_print_leaf(path->nodes[0]);
7040 }
7041 if (ret < 0) {
7042 btrfs_abort_transaction(trans, ret);
7043 goto out;
7044 }
7045
7046 extent_slot = path->slots[0];
7047 leaf = path->nodes[0];
7048 item_size = btrfs_item_size_nr(leaf, extent_slot);
7049 }
7050#endif
7051 BUG_ON(item_size < sizeof(*ei));
7052 ei = btrfs_item_ptr(leaf, extent_slot,
7053 struct btrfs_extent_item);
7054 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7055 key.type == BTRFS_EXTENT_ITEM_KEY) {
7056 struct btrfs_tree_block_info *bi;
7057 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7058 bi = (struct btrfs_tree_block_info *)(ei + 1);
7059 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7060 }
7061
7062 refs = btrfs_extent_refs(leaf, ei);
7063 if (refs < refs_to_drop) {
7064 btrfs_err(info,
7065 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7066 refs_to_drop, refs, bytenr);
7067 ret = -EINVAL;
7068 btrfs_abort_transaction(trans, ret);
7069 goto out;
7070 }
7071 refs -= refs_to_drop;
7072
7073 if (refs > 0) {
7074 if (extent_op)
7075 __run_delayed_extent_op(extent_op, leaf, ei);
7076 /*
7077 * In the case of inline back ref, reference count will
7078 * be updated by remove_extent_backref
7079 */
7080 if (iref) {
7081 BUG_ON(!found_extent);
7082 } else {
7083 btrfs_set_extent_refs(leaf, ei, refs);
7084 btrfs_mark_buffer_dirty(leaf);
7085 }
7086 if (found_extent) {
7087 ret = remove_extent_backref(trans, info, path,
7088 iref, refs_to_drop,
7089 is_data, &last_ref);
7090 if (ret) {
7091 btrfs_abort_transaction(trans, ret);
7092 goto out;
7093 }
7094 }
7095 } else {
7096 if (found_extent) {
7097 BUG_ON(is_data && refs_to_drop !=
7098 extent_data_ref_count(path, iref));
7099 if (iref) {
7100 BUG_ON(path->slots[0] != extent_slot);
7101 } else {
7102 BUG_ON(path->slots[0] != extent_slot + 1);
7103 path->slots[0] = extent_slot;
7104 num_to_del = 2;
7105 }
7106 }
7107
7108 last_ref = 1;
7109 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7110 num_to_del);
7111 if (ret) {
7112 btrfs_abort_transaction(trans, ret);
7113 goto out;
7114 }
7115 btrfs_release_path(path);
7116
7117 if (is_data) {
7118 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7119 if (ret) {
7120 btrfs_abort_transaction(trans, ret);
7121 goto out;
7122 }
7123 }
7124
7125 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7126 if (ret) {
7127 btrfs_abort_transaction(trans, ret);
7128 goto out;
7129 }
7130
7131 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7132 if (ret) {
7133 btrfs_abort_transaction(trans, ret);
7134 goto out;
7135 }
7136 }
7137 btrfs_release_path(path);
7138
7139out:
7140 btrfs_free_path(path);
7141 return ret;
7142}
7143
7144/*
7145 * when we free an block, it is possible (and likely) that we free the last
7146 * delayed ref for that extent as well. This searches the delayed ref tree for
7147 * a given extent, and if there are no other delayed refs to be processed, it
7148 * removes it from the tree.
7149 */
7150static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7151 u64 bytenr)
7152{
7153 struct btrfs_delayed_ref_head *head;
7154 struct btrfs_delayed_ref_root *delayed_refs;
7155 int ret = 0;
7156
7157 delayed_refs = &trans->transaction->delayed_refs;
7158 spin_lock(&delayed_refs->lock);
7159 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7160 if (!head)
7161 goto out_delayed_unlock;
7162
7163 spin_lock(&head->lock);
7164 if (!RB_EMPTY_ROOT(&head->ref_tree))
7165 goto out;
7166
7167 if (head->extent_op) {
7168 if (!head->must_insert_reserved)
7169 goto out;
7170 btrfs_free_delayed_extent_op(head->extent_op);
7171 head->extent_op = NULL;
7172 }
7173
7174 /*
7175 * waiting for the lock here would deadlock. If someone else has it
7176 * locked they are already in the process of dropping it anyway
7177 */
7178 if (!mutex_trylock(&head->mutex))
7179 goto out;
7180
7181 /*
7182 * at this point we have a head with no other entries. Go
7183 * ahead and process it.
7184 */
7185 rb_erase(&head->href_node, &delayed_refs->href_root);
7186 RB_CLEAR_NODE(&head->href_node);
7187 atomic_dec(&delayed_refs->num_entries);
7188
7189 /*
7190 * we don't take a ref on the node because we're removing it from the
7191 * tree, so we just steal the ref the tree was holding.
7192 */
7193 delayed_refs->num_heads--;
7194 if (head->processing == 0)
7195 delayed_refs->num_heads_ready--;
7196 head->processing = 0;
7197 spin_unlock(&head->lock);
7198 spin_unlock(&delayed_refs->lock);
7199
7200 BUG_ON(head->extent_op);
7201 if (head->must_insert_reserved)
7202 ret = 1;
7203
7204 mutex_unlock(&head->mutex);
7205 btrfs_put_delayed_ref_head(head);
7206 return ret;
7207out:
7208 spin_unlock(&head->lock);
7209
7210out_delayed_unlock:
7211 spin_unlock(&delayed_refs->lock);
7212 return 0;
7213}
7214
7215void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7216 struct btrfs_root *root,
7217 struct extent_buffer *buf,
7218 u64 parent, int last_ref)
7219{
7220 struct btrfs_fs_info *fs_info = root->fs_info;
7221 int pin = 1;
7222 int ret;
7223
7224 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7225 int old_ref_mod, new_ref_mod;
7226
7227 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7228 root->root_key.objectid,
7229 btrfs_header_level(buf), 0,
7230 BTRFS_DROP_DELAYED_REF);
7231 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7232 buf->len, parent,
7233 root->root_key.objectid,
7234 btrfs_header_level(buf),
7235 BTRFS_DROP_DELAYED_REF, NULL,
7236 &old_ref_mod, &new_ref_mod);
7237 BUG_ON(ret); /* -ENOMEM */
7238 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7239 }
7240
7241 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7242 struct btrfs_block_group_cache *cache;
7243
7244 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7245 ret = check_ref_cleanup(trans, buf->start);
7246 if (!ret)
7247 goto out;
7248 }
7249
7250 pin = 0;
7251 cache = btrfs_lookup_block_group(fs_info, buf->start);
7252
7253 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7254 pin_down_extent(fs_info, cache, buf->start,
7255 buf->len, 1);
7256 btrfs_put_block_group(cache);
7257 goto out;
7258 }
7259
7260 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7261
7262 btrfs_add_free_space(cache, buf->start, buf->len);
7263 btrfs_free_reserved_bytes(cache, buf->len, 0);
7264 btrfs_put_block_group(cache);
7265 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7266 }
7267out:
7268 if (pin)
7269 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7270 root->root_key.objectid);
7271
7272 if (last_ref) {
7273 /*
7274 * Deleting the buffer, clear the corrupt flag since it doesn't
7275 * matter anymore.
7276 */
7277 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7278 }
7279}
7280
7281/* Can return -ENOMEM */
7282int btrfs_free_extent(struct btrfs_trans_handle *trans,
7283 struct btrfs_root *root,
7284 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7285 u64 owner, u64 offset)
7286{
7287 struct btrfs_fs_info *fs_info = root->fs_info;
7288 int old_ref_mod, new_ref_mod;
7289 int ret;
7290
7291 if (btrfs_is_testing(fs_info))
7292 return 0;
7293
7294 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7295 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7296 root_objectid, owner, offset,
7297 BTRFS_DROP_DELAYED_REF);
7298
7299 /*
7300 * tree log blocks never actually go into the extent allocation
7301 * tree, just update pinning info and exit early.
7302 */
7303 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7304 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7305 /* unlocks the pinned mutex */
7306 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7307 old_ref_mod = new_ref_mod = 0;
7308 ret = 0;
7309 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7310 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7311 num_bytes, parent,
7312 root_objectid, (int)owner,
7313 BTRFS_DROP_DELAYED_REF, NULL,
7314 &old_ref_mod, &new_ref_mod);
7315 } else {
7316 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7317 num_bytes, parent,
7318 root_objectid, owner, offset,
7319 0, BTRFS_DROP_DELAYED_REF,
7320 &old_ref_mod, &new_ref_mod);
7321 }
7322
7323 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7324 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7325
7326 return ret;
7327}
7328
7329/*
7330 * when we wait for progress in the block group caching, its because
7331 * our allocation attempt failed at least once. So, we must sleep
7332 * and let some progress happen before we try again.
7333 *
7334 * This function will sleep at least once waiting for new free space to
7335 * show up, and then it will check the block group free space numbers
7336 * for our min num_bytes. Another option is to have it go ahead
7337 * and look in the rbtree for a free extent of a given size, but this
7338 * is a good start.
7339 *
7340 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7341 * any of the information in this block group.
7342 */
7343static noinline void
7344wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7345 u64 num_bytes)
7346{
7347 struct btrfs_caching_control *caching_ctl;
7348
7349 caching_ctl = get_caching_control(cache);
7350 if (!caching_ctl)
7351 return;
7352
7353 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7354 (cache->free_space_ctl->free_space >= num_bytes));
7355
7356 put_caching_control(caching_ctl);
7357}
7358
7359static noinline int
7360wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7361{
7362 struct btrfs_caching_control *caching_ctl;
7363 int ret = 0;
7364
7365 caching_ctl = get_caching_control(cache);
7366 if (!caching_ctl)
7367 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7368
7369 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7370 if (cache->cached == BTRFS_CACHE_ERROR)
7371 ret = -EIO;
7372 put_caching_control(caching_ctl);
7373 return ret;
7374}
7375
7376static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7377 [BTRFS_RAID_RAID10] = "raid10",
7378 [BTRFS_RAID_RAID1] = "raid1",
7379 [BTRFS_RAID_DUP] = "dup",
7380 [BTRFS_RAID_RAID0] = "raid0",
7381 [BTRFS_RAID_SINGLE] = "single",
7382 [BTRFS_RAID_RAID5] = "raid5",
7383 [BTRFS_RAID_RAID6] = "raid6",
7384};
7385
7386static const char *get_raid_name(enum btrfs_raid_types type)
7387{
7388 if (type >= BTRFS_NR_RAID_TYPES)
7389 return NULL;
7390
7391 return btrfs_raid_type_names[type];
7392}
7393
7394enum btrfs_loop_type {
7395 LOOP_CACHING_NOWAIT = 0,
7396 LOOP_CACHING_WAIT = 1,
7397 LOOP_ALLOC_CHUNK = 2,
7398 LOOP_NO_EMPTY_SIZE = 3,
7399};
7400
7401static inline void
7402btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7403 int delalloc)
7404{
7405 if (delalloc)
7406 down_read(&cache->data_rwsem);
7407}
7408
7409static inline void
7410btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7411 int delalloc)
7412{
7413 btrfs_get_block_group(cache);
7414 if (delalloc)
7415 down_read(&cache->data_rwsem);
7416}
7417
7418static struct btrfs_block_group_cache *
7419btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7420 struct btrfs_free_cluster *cluster,
7421 int delalloc)
7422{
7423 struct btrfs_block_group_cache *used_bg = NULL;
7424
7425 spin_lock(&cluster->refill_lock);
7426 while (1) {
7427 used_bg = cluster->block_group;
7428 if (!used_bg)
7429 return NULL;
7430
7431 if (used_bg == block_group)
7432 return used_bg;
7433
7434 btrfs_get_block_group(used_bg);
7435
7436 if (!delalloc)
7437 return used_bg;
7438
7439 if (down_read_trylock(&used_bg->data_rwsem))
7440 return used_bg;
7441
7442 spin_unlock(&cluster->refill_lock);
7443
7444 /* We should only have one-level nested. */
7445 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7446
7447 spin_lock(&cluster->refill_lock);
7448 if (used_bg == cluster->block_group)
7449 return used_bg;
7450
7451 up_read(&used_bg->data_rwsem);
7452 btrfs_put_block_group(used_bg);
7453 }
7454}
7455
7456static inline void
7457btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7458 int delalloc)
7459{
7460 if (delalloc)
7461 up_read(&cache->data_rwsem);
7462 btrfs_put_block_group(cache);
7463}
7464
7465/*
7466 * walks the btree of allocated extents and find a hole of a given size.
7467 * The key ins is changed to record the hole:
7468 * ins->objectid == start position
7469 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7470 * ins->offset == the size of the hole.
7471 * Any available blocks before search_start are skipped.
7472 *
7473 * If there is no suitable free space, we will record the max size of
7474 * the free space extent currently.
7475 */
7476static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7477 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7478 u64 hint_byte, struct btrfs_key *ins,
7479 u64 flags, int delalloc)
7480{
7481 int ret = 0;
7482 struct btrfs_root *root = fs_info->extent_root;
7483 struct btrfs_free_cluster *last_ptr = NULL;
7484 struct btrfs_block_group_cache *block_group = NULL;
7485 u64 search_start = 0;
7486 u64 max_extent_size = 0;
7487 u64 empty_cluster = 0;
7488 struct btrfs_space_info *space_info;
7489 int loop = 0;
7490 int index = btrfs_bg_flags_to_raid_index(flags);
7491 bool failed_cluster_refill = false;
7492 bool failed_alloc = false;
7493 bool use_cluster = true;
7494 bool have_caching_bg = false;
7495 bool orig_have_caching_bg = false;
7496 bool full_search = false;
7497
7498 WARN_ON(num_bytes < fs_info->sectorsize);
7499 ins->type = BTRFS_EXTENT_ITEM_KEY;
7500 ins->objectid = 0;
7501 ins->offset = 0;
7502
7503 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7504
7505 space_info = __find_space_info(fs_info, flags);
7506 if (!space_info) {
7507 btrfs_err(fs_info, "No space info for %llu", flags);
7508 return -ENOSPC;
7509 }
7510
7511 /*
7512 * If our free space is heavily fragmented we may not be able to make
7513 * big contiguous allocations, so instead of doing the expensive search
7514 * for free space, simply return ENOSPC with our max_extent_size so we
7515 * can go ahead and search for a more manageable chunk.
7516 *
7517 * If our max_extent_size is large enough for our allocation simply
7518 * disable clustering since we will likely not be able to find enough
7519 * space to create a cluster and induce latency trying.
7520 */
7521 if (unlikely(space_info->max_extent_size)) {
7522 spin_lock(&space_info->lock);
7523 if (space_info->max_extent_size &&
7524 num_bytes > space_info->max_extent_size) {
7525 ins->offset = space_info->max_extent_size;
7526 spin_unlock(&space_info->lock);
7527 return -ENOSPC;
7528 } else if (space_info->max_extent_size) {
7529 use_cluster = false;
7530 }
7531 spin_unlock(&space_info->lock);
7532 }
7533
7534 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7535 if (last_ptr) {
7536 spin_lock(&last_ptr->lock);
7537 if (last_ptr->block_group)
7538 hint_byte = last_ptr->window_start;
7539 if (last_ptr->fragmented) {
7540 /*
7541 * We still set window_start so we can keep track of the
7542 * last place we found an allocation to try and save
7543 * some time.
7544 */
7545 hint_byte = last_ptr->window_start;
7546 use_cluster = false;
7547 }
7548 spin_unlock(&last_ptr->lock);
7549 }
7550
7551 search_start = max(search_start, first_logical_byte(fs_info, 0));
7552 search_start = max(search_start, hint_byte);
7553 if (search_start == hint_byte) {
7554 block_group = btrfs_lookup_block_group(fs_info, search_start);
7555 /*
7556 * we don't want to use the block group if it doesn't match our
7557 * allocation bits, or if its not cached.
7558 *
7559 * However if we are re-searching with an ideal block group
7560 * picked out then we don't care that the block group is cached.
7561 */
7562 if (block_group && block_group_bits(block_group, flags) &&
7563 block_group->cached != BTRFS_CACHE_NO) {
7564 down_read(&space_info->groups_sem);
7565 if (list_empty(&block_group->list) ||
7566 block_group->ro) {
7567 /*
7568 * someone is removing this block group,
7569 * we can't jump into the have_block_group
7570 * target because our list pointers are not
7571 * valid
7572 */
7573 btrfs_put_block_group(block_group);
7574 up_read(&space_info->groups_sem);
7575 } else {
7576 index = btrfs_bg_flags_to_raid_index(
7577 block_group->flags);
7578 btrfs_lock_block_group(block_group, delalloc);
7579 goto have_block_group;
7580 }
7581 } else if (block_group) {
7582 btrfs_put_block_group(block_group);
7583 }
7584 }
7585search:
7586 have_caching_bg = false;
7587 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
7588 full_search = true;
7589 down_read(&space_info->groups_sem);
7590 list_for_each_entry(block_group, &space_info->block_groups[index],
7591 list) {
7592 u64 offset;
7593 int cached;
7594
7595 /* If the block group is read-only, we can skip it entirely. */
7596 if (unlikely(block_group->ro))
7597 continue;
7598
7599 btrfs_grab_block_group(block_group, delalloc);
7600 search_start = block_group->key.objectid;
7601
7602 /*
7603 * this can happen if we end up cycling through all the
7604 * raid types, but we want to make sure we only allocate
7605 * for the proper type.
7606 */
7607 if (!block_group_bits(block_group, flags)) {
7608 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7609 BTRFS_BLOCK_GROUP_RAID1 |
7610 BTRFS_BLOCK_GROUP_RAID5 |
7611 BTRFS_BLOCK_GROUP_RAID6 |
7612 BTRFS_BLOCK_GROUP_RAID10;
7613
7614 /*
7615 * if they asked for extra copies and this block group
7616 * doesn't provide them, bail. This does allow us to
7617 * fill raid0 from raid1.
7618 */
7619 if ((flags & extra) && !(block_group->flags & extra))
7620 goto loop;
7621 }
7622
7623have_block_group:
7624 cached = block_group_cache_done(block_group);
7625 if (unlikely(!cached)) {
7626 have_caching_bg = true;
7627 ret = cache_block_group(block_group, 0);
7628 BUG_ON(ret < 0);
7629 ret = 0;
7630 }
7631
7632 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7633 goto loop;
7634
7635 /*
7636 * Ok we want to try and use the cluster allocator, so
7637 * lets look there
7638 */
7639 if (last_ptr && use_cluster) {
7640 struct btrfs_block_group_cache *used_block_group;
7641 unsigned long aligned_cluster;
7642 /*
7643 * the refill lock keeps out other
7644 * people trying to start a new cluster
7645 */
7646 used_block_group = btrfs_lock_cluster(block_group,
7647 last_ptr,
7648 delalloc);
7649 if (!used_block_group)
7650 goto refill_cluster;
7651
7652 if (used_block_group != block_group &&
7653 (used_block_group->ro ||
7654 !block_group_bits(used_block_group, flags)))
7655 goto release_cluster;
7656
7657 offset = btrfs_alloc_from_cluster(used_block_group,
7658 last_ptr,
7659 num_bytes,
7660 used_block_group->key.objectid,
7661 &max_extent_size);
7662 if (offset) {
7663 /* we have a block, we're done */
7664 spin_unlock(&last_ptr->refill_lock);
7665 trace_btrfs_reserve_extent_cluster(fs_info,
7666 used_block_group,
7667 search_start, num_bytes);
7668 if (used_block_group != block_group) {
7669 btrfs_release_block_group(block_group,
7670 delalloc);
7671 block_group = used_block_group;
7672 }
7673 goto checks;
7674 }
7675
7676 WARN_ON(last_ptr->block_group != used_block_group);
7677release_cluster:
7678 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7679 * set up a new clusters, so lets just skip it
7680 * and let the allocator find whatever block
7681 * it can find. If we reach this point, we
7682 * will have tried the cluster allocator
7683 * plenty of times and not have found
7684 * anything, so we are likely way too
7685 * fragmented for the clustering stuff to find
7686 * anything.
7687 *
7688 * However, if the cluster is taken from the
7689 * current block group, release the cluster
7690 * first, so that we stand a better chance of
7691 * succeeding in the unclustered
7692 * allocation. */
7693 if (loop >= LOOP_NO_EMPTY_SIZE &&
7694 used_block_group != block_group) {
7695 spin_unlock(&last_ptr->refill_lock);
7696 btrfs_release_block_group(used_block_group,
7697 delalloc);
7698 goto unclustered_alloc;
7699 }
7700
7701 /*
7702 * this cluster didn't work out, free it and
7703 * start over
7704 */
7705 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7706
7707 if (used_block_group != block_group)
7708 btrfs_release_block_group(used_block_group,
7709 delalloc);
7710refill_cluster:
7711 if (loop >= LOOP_NO_EMPTY_SIZE) {
7712 spin_unlock(&last_ptr->refill_lock);
7713 goto unclustered_alloc;
7714 }
7715
7716 aligned_cluster = max_t(unsigned long,
7717 empty_cluster + empty_size,
7718 block_group->full_stripe_len);
7719
7720 /* allocate a cluster in this block group */
7721 ret = btrfs_find_space_cluster(fs_info, block_group,
7722 last_ptr, search_start,
7723 num_bytes,
7724 aligned_cluster);
7725 if (ret == 0) {
7726 /*
7727 * now pull our allocation out of this
7728 * cluster
7729 */
7730 offset = btrfs_alloc_from_cluster(block_group,
7731 last_ptr,
7732 num_bytes,
7733 search_start,
7734 &max_extent_size);
7735 if (offset) {
7736 /* we found one, proceed */
7737 spin_unlock(&last_ptr->refill_lock);
7738 trace_btrfs_reserve_extent_cluster(fs_info,
7739 block_group, search_start,
7740 num_bytes);
7741 goto checks;
7742 }
7743 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7744 && !failed_cluster_refill) {
7745 spin_unlock(&last_ptr->refill_lock);
7746
7747 failed_cluster_refill = true;
7748 wait_block_group_cache_progress(block_group,
7749 num_bytes + empty_cluster + empty_size);
7750 goto have_block_group;
7751 }
7752
7753 /*
7754 * at this point we either didn't find a cluster
7755 * or we weren't able to allocate a block from our
7756 * cluster. Free the cluster we've been trying
7757 * to use, and go to the next block group
7758 */
7759 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7760 spin_unlock(&last_ptr->refill_lock);
7761 goto loop;
7762 }
7763
7764unclustered_alloc:
7765 /*
7766 * We are doing an unclustered alloc, set the fragmented flag so
7767 * we don't bother trying to setup a cluster again until we get
7768 * more space.
7769 */
7770 if (unlikely(last_ptr)) {
7771 spin_lock(&last_ptr->lock);
7772 last_ptr->fragmented = 1;
7773 spin_unlock(&last_ptr->lock);
7774 }
7775 if (cached) {
7776 struct btrfs_free_space_ctl *ctl =
7777 block_group->free_space_ctl;
7778
7779 spin_lock(&ctl->tree_lock);
7780 if (ctl->free_space <
7781 num_bytes + empty_cluster + empty_size) {
7782 if (ctl->free_space > max_extent_size)
7783 max_extent_size = ctl->free_space;
7784 spin_unlock(&ctl->tree_lock);
7785 goto loop;
7786 }
7787 spin_unlock(&ctl->tree_lock);
7788 }
7789
7790 offset = btrfs_find_space_for_alloc(block_group, search_start,
7791 num_bytes, empty_size,
7792 &max_extent_size);
7793 /*
7794 * If we didn't find a chunk, and we haven't failed on this
7795 * block group before, and this block group is in the middle of
7796 * caching and we are ok with waiting, then go ahead and wait
7797 * for progress to be made, and set failed_alloc to true.
7798 *
7799 * If failed_alloc is true then we've already waited on this
7800 * block group once and should move on to the next block group.
7801 */
7802 if (!offset && !failed_alloc && !cached &&
7803 loop > LOOP_CACHING_NOWAIT) {
7804 wait_block_group_cache_progress(block_group,
7805 num_bytes + empty_size);
7806 failed_alloc = true;
7807 goto have_block_group;
7808 } else if (!offset) {
7809 goto loop;
7810 }
7811checks:
7812 search_start = ALIGN(offset, fs_info->stripesize);
7813
7814 /* move on to the next group */
7815 if (search_start + num_bytes >
7816 block_group->key.objectid + block_group->key.offset) {
7817 btrfs_add_free_space(block_group, offset, num_bytes);
7818 goto loop;
7819 }
7820
7821 if (offset < search_start)
7822 btrfs_add_free_space(block_group, offset,
7823 search_start - offset);
7824 BUG_ON(offset > search_start);
7825
7826 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7827 num_bytes, delalloc);
7828 if (ret == -EAGAIN) {
7829 btrfs_add_free_space(block_group, offset, num_bytes);
7830 goto loop;
7831 }
7832 btrfs_inc_block_group_reservations(block_group);
7833
7834 /* we are all good, lets return */
7835 ins->objectid = search_start;
7836 ins->offset = num_bytes;
7837
7838 trace_btrfs_reserve_extent(fs_info, block_group,
7839 search_start, num_bytes);
7840 btrfs_release_block_group(block_group, delalloc);
7841 break;
7842loop:
7843 failed_cluster_refill = false;
7844 failed_alloc = false;
7845 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7846 index);
7847 btrfs_release_block_group(block_group, delalloc);
7848 cond_resched();
7849 }
7850 up_read(&space_info->groups_sem);
7851
7852 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7853 && !orig_have_caching_bg)
7854 orig_have_caching_bg = true;
7855
7856 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7857 goto search;
7858
7859 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7860 goto search;
7861
7862 /*
7863 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7864 * caching kthreads as we move along
7865 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7866 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7867 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7868 * again
7869 */
7870 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7871 index = 0;
7872 if (loop == LOOP_CACHING_NOWAIT) {
7873 /*
7874 * We want to skip the LOOP_CACHING_WAIT step if we
7875 * don't have any uncached bgs and we've already done a
7876 * full search through.
7877 */
7878 if (orig_have_caching_bg || !full_search)
7879 loop = LOOP_CACHING_WAIT;
7880 else
7881 loop = LOOP_ALLOC_CHUNK;
7882 } else {
7883 loop++;
7884 }
7885
7886 if (loop == LOOP_ALLOC_CHUNK) {
7887 struct btrfs_trans_handle *trans;
7888 int exist = 0;
7889
7890 trans = current->journal_info;
7891 if (trans)
7892 exist = 1;
7893 else
7894 trans = btrfs_join_transaction(root);
7895
7896 if (IS_ERR(trans)) {
7897 ret = PTR_ERR(trans);
7898 goto out;
7899 }
7900
7901 ret = do_chunk_alloc(trans, fs_info, flags,
7902 CHUNK_ALLOC_FORCE);
7903
7904 /*
7905 * If we can't allocate a new chunk we've already looped
7906 * through at least once, move on to the NO_EMPTY_SIZE
7907 * case.
7908 */
7909 if (ret == -ENOSPC)
7910 loop = LOOP_NO_EMPTY_SIZE;
7911
7912 /*
7913 * Do not bail out on ENOSPC since we
7914 * can do more things.
7915 */
7916 if (ret < 0 && ret != -ENOSPC)
7917 btrfs_abort_transaction(trans, ret);
7918 else
7919 ret = 0;
7920 if (!exist)
7921 btrfs_end_transaction(trans);
7922 if (ret)
7923 goto out;
7924 }
7925
7926 if (loop == LOOP_NO_EMPTY_SIZE) {
7927 /*
7928 * Don't loop again if we already have no empty_size and
7929 * no empty_cluster.
7930 */
7931 if (empty_size == 0 &&
7932 empty_cluster == 0) {
7933 ret = -ENOSPC;
7934 goto out;
7935 }
7936 empty_size = 0;
7937 empty_cluster = 0;
7938 }
7939
7940 goto search;
7941 } else if (!ins->objectid) {
7942 ret = -ENOSPC;
7943 } else if (ins->objectid) {
7944 if (!use_cluster && last_ptr) {
7945 spin_lock(&last_ptr->lock);
7946 last_ptr->window_start = ins->objectid;
7947 spin_unlock(&last_ptr->lock);
7948 }
7949 ret = 0;
7950 }
7951out:
7952 if (ret == -ENOSPC) {
7953 spin_lock(&space_info->lock);
7954 space_info->max_extent_size = max_extent_size;
7955 spin_unlock(&space_info->lock);
7956 ins->offset = max_extent_size;
7957 }
7958 return ret;
7959}
7960
7961static void dump_space_info(struct btrfs_fs_info *fs_info,
7962 struct btrfs_space_info *info, u64 bytes,
7963 int dump_block_groups)
7964{
7965 struct btrfs_block_group_cache *cache;
7966 int index = 0;
7967
7968 spin_lock(&info->lock);
7969 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7970 info->flags,
7971 info->total_bytes - btrfs_space_info_used(info, true),
7972 info->full ? "" : "not ");
7973 btrfs_info(fs_info,
7974 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7975 info->total_bytes, info->bytes_used, info->bytes_pinned,
7976 info->bytes_reserved, info->bytes_may_use,
7977 info->bytes_readonly);
7978 spin_unlock(&info->lock);
7979
7980 if (!dump_block_groups)
7981 return;
7982
7983 down_read(&info->groups_sem);
7984again:
7985 list_for_each_entry(cache, &info->block_groups[index], list) {
7986 spin_lock(&cache->lock);
7987 btrfs_info(fs_info,
7988 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7989 cache->key.objectid, cache->key.offset,
7990 btrfs_block_group_used(&cache->item), cache->pinned,
7991 cache->reserved, cache->ro ? "[readonly]" : "");
7992 btrfs_dump_free_space(cache, bytes);
7993 spin_unlock(&cache->lock);
7994 }
7995 if (++index < BTRFS_NR_RAID_TYPES)
7996 goto again;
7997 up_read(&info->groups_sem);
7998}
7999
8000/*
8001 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
8002 * hole that is at least as big as @num_bytes.
8003 *
8004 * @root - The root that will contain this extent
8005 *
8006 * @ram_bytes - The amount of space in ram that @num_bytes take. This
8007 * is used for accounting purposes. This value differs
8008 * from @num_bytes only in the case of compressed extents.
8009 *
8010 * @num_bytes - Number of bytes to allocate on-disk.
8011 *
8012 * @min_alloc_size - Indicates the minimum amount of space that the
8013 * allocator should try to satisfy. In some cases
8014 * @num_bytes may be larger than what is required and if
8015 * the filesystem is fragmented then allocation fails.
8016 * However, the presence of @min_alloc_size gives a
8017 * chance to try and satisfy the smaller allocation.
8018 *
8019 * @empty_size - A hint that you plan on doing more COW. This is the
8020 * size in bytes the allocator should try to find free
8021 * next to the block it returns. This is just a hint and
8022 * may be ignored by the allocator.
8023 *
8024 * @hint_byte - Hint to the allocator to start searching above the byte
8025 * address passed. It might be ignored.
8026 *
8027 * @ins - This key is modified to record the found hole. It will
8028 * have the following values:
8029 * ins->objectid == start position
8030 * ins->flags = BTRFS_EXTENT_ITEM_KEY
8031 * ins->offset == the size of the hole.
8032 *
8033 * @is_data - Boolean flag indicating whether an extent is
8034 * allocated for data (true) or metadata (false)
8035 *
8036 * @delalloc - Boolean flag indicating whether this allocation is for
8037 * delalloc or not. If 'true' data_rwsem of block groups
8038 * is going to be acquired.
8039 *
8040 *
8041 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8042 * case -ENOSPC is returned then @ins->offset will contain the size of the
8043 * largest available hole the allocator managed to find.
8044 */
8045int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
8046 u64 num_bytes, u64 min_alloc_size,
8047 u64 empty_size, u64 hint_byte,
8048 struct btrfs_key *ins, int is_data, int delalloc)
8049{
8050 struct btrfs_fs_info *fs_info = root->fs_info;
8051 bool final_tried = num_bytes == min_alloc_size;
8052 u64 flags;
8053 int ret;
8054
8055 flags = get_alloc_profile_by_root(root, is_data);
8056again:
8057 WARN_ON(num_bytes < fs_info->sectorsize);
8058 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8059 hint_byte, ins, flags, delalloc);
8060 if (!ret && !is_data) {
8061 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8062 } else if (ret == -ENOSPC) {
8063 if (!final_tried && ins->offset) {
8064 num_bytes = min(num_bytes >> 1, ins->offset);
8065 num_bytes = round_down(num_bytes,
8066 fs_info->sectorsize);
8067 num_bytes = max(num_bytes, min_alloc_size);
8068 ram_bytes = num_bytes;
8069 if (num_bytes == min_alloc_size)
8070 final_tried = true;
8071 goto again;
8072 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8073 struct btrfs_space_info *sinfo;
8074
8075 sinfo = __find_space_info(fs_info, flags);
8076 btrfs_err(fs_info,
8077 "allocation failed flags %llu, wanted %llu",
8078 flags, num_bytes);
8079 if (sinfo)
8080 dump_space_info(fs_info, sinfo, num_bytes, 1);
8081 }
8082 }
8083
8084 return ret;
8085}
8086
8087static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8088 u64 start, u64 len,
8089 int pin, int delalloc)
8090{
8091 struct btrfs_block_group_cache *cache;
8092 int ret = 0;
8093
8094 cache = btrfs_lookup_block_group(fs_info, start);
8095 if (!cache) {
8096 btrfs_err(fs_info, "Unable to find block group for %llu",
8097 start);
8098 return -ENOSPC;
8099 }
8100
8101 if (pin)
8102 pin_down_extent(fs_info, cache, start, len, 1);
8103 else {
8104 if (btrfs_test_opt(fs_info, DISCARD))
8105 ret = btrfs_discard_extent(fs_info, start, len, NULL);
8106 btrfs_add_free_space(cache, start, len);
8107 btrfs_free_reserved_bytes(cache, len, delalloc);
8108 trace_btrfs_reserved_extent_free(fs_info, start, len);
8109 }
8110
8111 btrfs_put_block_group(cache);
8112 return ret;
8113}
8114
8115int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8116 u64 start, u64 len, int delalloc)
8117{
8118 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8119}
8120
8121int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8122 u64 start, u64 len)
8123{
8124 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8125}
8126
8127static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8128 struct btrfs_fs_info *fs_info,
8129 u64 parent, u64 root_objectid,
8130 u64 flags, u64 owner, u64 offset,
8131 struct btrfs_key *ins, int ref_mod)
8132{
8133 int ret;
8134 struct btrfs_extent_item *extent_item;
8135 struct btrfs_extent_inline_ref *iref;
8136 struct btrfs_path *path;
8137 struct extent_buffer *leaf;
8138 int type;
8139 u32 size;
8140
8141 if (parent > 0)
8142 type = BTRFS_SHARED_DATA_REF_KEY;
8143 else
8144 type = BTRFS_EXTENT_DATA_REF_KEY;
8145
8146 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8147
8148 path = btrfs_alloc_path();
8149 if (!path)
8150 return -ENOMEM;
8151
8152 path->leave_spinning = 1;
8153 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8154 ins, size);
8155 if (ret) {
8156 btrfs_free_path(path);
8157 return ret;
8158 }
8159
8160 leaf = path->nodes[0];
8161 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8162 struct btrfs_extent_item);
8163 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8164 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8165 btrfs_set_extent_flags(leaf, extent_item,
8166 flags | BTRFS_EXTENT_FLAG_DATA);
8167
8168 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8169 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8170 if (parent > 0) {
8171 struct btrfs_shared_data_ref *ref;
8172 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8173 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8174 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8175 } else {
8176 struct btrfs_extent_data_ref *ref;
8177 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8178 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8179 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8180 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8181 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8182 }
8183
8184 btrfs_mark_buffer_dirty(path->nodes[0]);
8185 btrfs_free_path(path);
8186
8187 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8188 ins->offset);
8189 if (ret)
8190 return ret;
8191
8192 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8193 if (ret) { /* -ENOENT, logic error */
8194 btrfs_err(fs_info, "update block group failed for %llu %llu",
8195 ins->objectid, ins->offset);
8196 BUG();
8197 }
8198 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8199 return ret;
8200}
8201
8202static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8203 struct btrfs_fs_info *fs_info,
8204 u64 parent, u64 root_objectid,
8205 u64 flags, struct btrfs_disk_key *key,
8206 int level, struct btrfs_key *ins)
8207{
8208 int ret;
8209 struct btrfs_extent_item *extent_item;
8210 struct btrfs_tree_block_info *block_info;
8211 struct btrfs_extent_inline_ref *iref;
8212 struct btrfs_path *path;
8213 struct extent_buffer *leaf;
8214 u32 size = sizeof(*extent_item) + sizeof(*iref);
8215 u64 num_bytes = ins->offset;
8216 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8217
8218 if (!skinny_metadata)
8219 size += sizeof(*block_info);
8220
8221 path = btrfs_alloc_path();
8222 if (!path) {
8223 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8224 fs_info->nodesize);
8225 return -ENOMEM;
8226 }
8227
8228 path->leave_spinning = 1;
8229 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8230 ins, size);
8231 if (ret) {
8232 btrfs_free_path(path);
8233 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8234 fs_info->nodesize);
8235 return ret;
8236 }
8237
8238 leaf = path->nodes[0];
8239 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8240 struct btrfs_extent_item);
8241 btrfs_set_extent_refs(leaf, extent_item, 1);
8242 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8243 btrfs_set_extent_flags(leaf, extent_item,
8244 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8245
8246 if (skinny_metadata) {
8247 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8248 num_bytes = fs_info->nodesize;
8249 } else {
8250 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8251 btrfs_set_tree_block_key(leaf, block_info, key);
8252 btrfs_set_tree_block_level(leaf, block_info, level);
8253 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8254 }
8255
8256 if (parent > 0) {
8257 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8258 btrfs_set_extent_inline_ref_type(leaf, iref,
8259 BTRFS_SHARED_BLOCK_REF_KEY);
8260 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8261 } else {
8262 btrfs_set_extent_inline_ref_type(leaf, iref,
8263 BTRFS_TREE_BLOCK_REF_KEY);
8264 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8265 }
8266
8267 btrfs_mark_buffer_dirty(leaf);
8268 btrfs_free_path(path);
8269
8270 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8271 num_bytes);
8272 if (ret)
8273 return ret;
8274
8275 ret = update_block_group(trans, fs_info, ins->objectid,
8276 fs_info->nodesize, 1);
8277 if (ret) { /* -ENOENT, logic error */
8278 btrfs_err(fs_info, "update block group failed for %llu %llu",
8279 ins->objectid, ins->offset);
8280 BUG();
8281 }
8282
8283 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8284 fs_info->nodesize);
8285 return ret;
8286}
8287
8288int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8289 struct btrfs_root *root, u64 owner,
8290 u64 offset, u64 ram_bytes,
8291 struct btrfs_key *ins)
8292{
8293 struct btrfs_fs_info *fs_info = root->fs_info;
8294 int ret;
8295
8296 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8297
8298 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8299 root->root_key.objectid, owner, offset,
8300 BTRFS_ADD_DELAYED_EXTENT);
8301
8302 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8303 ins->offset, 0,
8304 root->root_key.objectid, owner,
8305 offset, ram_bytes,
8306 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8307 return ret;
8308}
8309
8310/*
8311 * this is used by the tree logging recovery code. It records that
8312 * an extent has been allocated and makes sure to clear the free
8313 * space cache bits as well
8314 */
8315int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8316 struct btrfs_fs_info *fs_info,
8317 u64 root_objectid, u64 owner, u64 offset,
8318 struct btrfs_key *ins)
8319{
8320 int ret;
8321 struct btrfs_block_group_cache *block_group;
8322 struct btrfs_space_info *space_info;
8323
8324 /*
8325 * Mixed block groups will exclude before processing the log so we only
8326 * need to do the exclude dance if this fs isn't mixed.
8327 */
8328 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8329 ret = __exclude_logged_extent(fs_info, ins->objectid,
8330 ins->offset);
8331 if (ret)
8332 return ret;
8333 }
8334
8335 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8336 if (!block_group)
8337 return -EINVAL;
8338
8339 space_info = block_group->space_info;
8340 spin_lock(&space_info->lock);
8341 spin_lock(&block_group->lock);
8342 space_info->bytes_reserved += ins->offset;
8343 block_group->reserved += ins->offset;
8344 spin_unlock(&block_group->lock);
8345 spin_unlock(&space_info->lock);
8346
8347 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8348 0, owner, offset, ins, 1);
8349 btrfs_put_block_group(block_group);
8350 return ret;
8351}
8352
8353static struct extent_buffer *
8354btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8355 u64 bytenr, int level)
8356{
8357 struct btrfs_fs_info *fs_info = root->fs_info;
8358 struct extent_buffer *buf;
8359
8360 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8361 if (IS_ERR(buf))
8362 return buf;
8363
8364 btrfs_set_header_generation(buf, trans->transid);
8365 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8366 btrfs_tree_lock(buf);
8367 clean_tree_block(fs_info, buf);
8368 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8369
8370 btrfs_set_lock_blocking(buf);
8371 set_extent_buffer_uptodate(buf);
8372
8373 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8374 buf->log_index = root->log_transid % 2;
8375 /*
8376 * we allow two log transactions at a time, use different
8377 * EXENT bit to differentiate dirty pages.
8378 */
8379 if (buf->log_index == 0)
8380 set_extent_dirty(&root->dirty_log_pages, buf->start,
8381 buf->start + buf->len - 1, GFP_NOFS);
8382 else
8383 set_extent_new(&root->dirty_log_pages, buf->start,
8384 buf->start + buf->len - 1);
8385 } else {
8386 buf->log_index = -1;
8387 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8388 buf->start + buf->len - 1, GFP_NOFS);
8389 }
8390 trans->dirty = true;
8391 /* this returns a buffer locked for blocking */
8392 return buf;
8393}
8394
8395static struct btrfs_block_rsv *
8396use_block_rsv(struct btrfs_trans_handle *trans,
8397 struct btrfs_root *root, u32 blocksize)
8398{
8399 struct btrfs_fs_info *fs_info = root->fs_info;
8400 struct btrfs_block_rsv *block_rsv;
8401 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8402 int ret;
8403 bool global_updated = false;
8404
8405 block_rsv = get_block_rsv(trans, root);
8406
8407 if (unlikely(block_rsv->size == 0))
8408 goto try_reserve;
8409again:
8410 ret = block_rsv_use_bytes(block_rsv, blocksize);
8411 if (!ret)
8412 return block_rsv;
8413
8414 if (block_rsv->failfast)
8415 return ERR_PTR(ret);
8416
8417 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8418 global_updated = true;
8419 update_global_block_rsv(fs_info);
8420 goto again;
8421 }
8422
8423 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8424 static DEFINE_RATELIMIT_STATE(_rs,
8425 DEFAULT_RATELIMIT_INTERVAL * 10,
8426 /*DEFAULT_RATELIMIT_BURST*/ 1);
8427 if (__ratelimit(&_rs))
8428 WARN(1, KERN_DEBUG
8429 "BTRFS: block rsv returned %d\n", ret);
8430 }
8431try_reserve:
8432 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8433 BTRFS_RESERVE_NO_FLUSH);
8434 if (!ret)
8435 return block_rsv;
8436 /*
8437 * If we couldn't reserve metadata bytes try and use some from
8438 * the global reserve if its space type is the same as the global
8439 * reservation.
8440 */
8441 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8442 block_rsv->space_info == global_rsv->space_info) {
8443 ret = block_rsv_use_bytes(global_rsv, blocksize);
8444 if (!ret)
8445 return global_rsv;
8446 }
8447 return ERR_PTR(ret);
8448}
8449
8450static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8451 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8452{
8453 block_rsv_add_bytes(block_rsv, blocksize, 0);
8454 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8455}
8456
8457/*
8458 * finds a free extent and does all the dirty work required for allocation
8459 * returns the tree buffer or an ERR_PTR on error.
8460 */
8461struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8462 struct btrfs_root *root,
8463 u64 parent, u64 root_objectid,
8464 const struct btrfs_disk_key *key,
8465 int level, u64 hint,
8466 u64 empty_size)
8467{
8468 struct btrfs_fs_info *fs_info = root->fs_info;
8469 struct btrfs_key ins;
8470 struct btrfs_block_rsv *block_rsv;
8471 struct extent_buffer *buf;
8472 struct btrfs_delayed_extent_op *extent_op;
8473 u64 flags = 0;
8474 int ret;
8475 u32 blocksize = fs_info->nodesize;
8476 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8477
8478#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8479 if (btrfs_is_testing(fs_info)) {
8480 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8481 level);
8482 if (!IS_ERR(buf))
8483 root->alloc_bytenr += blocksize;
8484 return buf;
8485 }
8486#endif
8487
8488 block_rsv = use_block_rsv(trans, root, blocksize);
8489 if (IS_ERR(block_rsv))
8490 return ERR_CAST(block_rsv);
8491
8492 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8493 empty_size, hint, &ins, 0, 0);
8494 if (ret)
8495 goto out_unuse;
8496
8497 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8498 if (IS_ERR(buf)) {
8499 ret = PTR_ERR(buf);
8500 goto out_free_reserved;
8501 }
8502
8503 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8504 if (parent == 0)
8505 parent = ins.objectid;
8506 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8507 } else
8508 BUG_ON(parent > 0);
8509
8510 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8511 extent_op = btrfs_alloc_delayed_extent_op();
8512 if (!extent_op) {
8513 ret = -ENOMEM;
8514 goto out_free_buf;
8515 }
8516 if (key)
8517 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8518 else
8519 memset(&extent_op->key, 0, sizeof(extent_op->key));
8520 extent_op->flags_to_set = flags;
8521 extent_op->update_key = skinny_metadata ? false : true;
8522 extent_op->update_flags = true;
8523 extent_op->is_data = false;
8524 extent_op->level = level;
8525
8526 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8527 root_objectid, level, 0,
8528 BTRFS_ADD_DELAYED_EXTENT);
8529 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8530 ins.offset, parent,
8531 root_objectid, level,
8532 BTRFS_ADD_DELAYED_EXTENT,
8533 extent_op, NULL, NULL);
8534 if (ret)
8535 goto out_free_delayed;
8536 }
8537 return buf;
8538
8539out_free_delayed:
8540 btrfs_free_delayed_extent_op(extent_op);
8541out_free_buf:
8542 free_extent_buffer(buf);
8543out_free_reserved:
8544 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8545out_unuse:
8546 unuse_block_rsv(fs_info, block_rsv, blocksize);
8547 return ERR_PTR(ret);
8548}
8549
8550struct walk_control {
8551 u64 refs[BTRFS_MAX_LEVEL];
8552 u64 flags[BTRFS_MAX_LEVEL];
8553 struct btrfs_key update_progress;
8554 int stage;
8555 int level;
8556 int shared_level;
8557 int update_ref;
8558 int keep_locks;
8559 int reada_slot;
8560 int reada_count;
8561 int for_reloc;
8562};
8563
8564#define DROP_REFERENCE 1
8565#define UPDATE_BACKREF 2
8566
8567static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8568 struct btrfs_root *root,
8569 struct walk_control *wc,
8570 struct btrfs_path *path)
8571{
8572 struct btrfs_fs_info *fs_info = root->fs_info;
8573 u64 bytenr;
8574 u64 generation;
8575 u64 refs;
8576 u64 flags;
8577 u32 nritems;
8578 struct btrfs_key key;
8579 struct extent_buffer *eb;
8580 int ret;
8581 int slot;
8582 int nread = 0;
8583
8584 if (path->slots[wc->level] < wc->reada_slot) {
8585 wc->reada_count = wc->reada_count * 2 / 3;
8586 wc->reada_count = max(wc->reada_count, 2);
8587 } else {
8588 wc->reada_count = wc->reada_count * 3 / 2;
8589 wc->reada_count = min_t(int, wc->reada_count,
8590 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8591 }
8592
8593 eb = path->nodes[wc->level];
8594 nritems = btrfs_header_nritems(eb);
8595
8596 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8597 if (nread >= wc->reada_count)
8598 break;
8599
8600 cond_resched();
8601 bytenr = btrfs_node_blockptr(eb, slot);
8602 generation = btrfs_node_ptr_generation(eb, slot);
8603
8604 if (slot == path->slots[wc->level])
8605 goto reada;
8606
8607 if (wc->stage == UPDATE_BACKREF &&
8608 generation <= root->root_key.offset)
8609 continue;
8610
8611 /* We don't lock the tree block, it's OK to be racy here */
8612 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8613 wc->level - 1, 1, &refs,
8614 &flags);
8615 /* We don't care about errors in readahead. */
8616 if (ret < 0)
8617 continue;
8618 BUG_ON(refs == 0);
8619
8620 if (wc->stage == DROP_REFERENCE) {
8621 if (refs == 1)
8622 goto reada;
8623
8624 if (wc->level == 1 &&
8625 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8626 continue;
8627 if (!wc->update_ref ||
8628 generation <= root->root_key.offset)
8629 continue;
8630 btrfs_node_key_to_cpu(eb, &key, slot);
8631 ret = btrfs_comp_cpu_keys(&key,
8632 &wc->update_progress);
8633 if (ret < 0)
8634 continue;
8635 } else {
8636 if (wc->level == 1 &&
8637 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8638 continue;
8639 }
8640reada:
8641 readahead_tree_block(fs_info, bytenr);
8642 nread++;
8643 }
8644 wc->reada_slot = slot;
8645}
8646
8647/*
8648 * helper to process tree block while walking down the tree.
8649 *
8650 * when wc->stage == UPDATE_BACKREF, this function updates
8651 * back refs for pointers in the block.
8652 *
8653 * NOTE: return value 1 means we should stop walking down.
8654 */
8655static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8656 struct btrfs_root *root,
8657 struct btrfs_path *path,
8658 struct walk_control *wc, int lookup_info)
8659{
8660 struct btrfs_fs_info *fs_info = root->fs_info;
8661 int level = wc->level;
8662 struct extent_buffer *eb = path->nodes[level];
8663 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8664 int ret;
8665
8666 if (wc->stage == UPDATE_BACKREF &&
8667 btrfs_header_owner(eb) != root->root_key.objectid)
8668 return 1;
8669
8670 /*
8671 * when reference count of tree block is 1, it won't increase
8672 * again. once full backref flag is set, we never clear it.
8673 */
8674 if (lookup_info &&
8675 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8676 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8677 BUG_ON(!path->locks[level]);
8678 ret = btrfs_lookup_extent_info(trans, fs_info,
8679 eb->start, level, 1,
8680 &wc->refs[level],
8681 &wc->flags[level]);
8682 BUG_ON(ret == -ENOMEM);
8683 if (ret)
8684 return ret;
8685 BUG_ON(wc->refs[level] == 0);
8686 }
8687
8688 if (wc->stage == DROP_REFERENCE) {
8689 if (wc->refs[level] > 1)
8690 return 1;
8691
8692 if (path->locks[level] && !wc->keep_locks) {
8693 btrfs_tree_unlock_rw(eb, path->locks[level]);
8694 path->locks[level] = 0;
8695 }
8696 return 0;
8697 }
8698
8699 /* wc->stage == UPDATE_BACKREF */
8700 if (!(wc->flags[level] & flag)) {
8701 BUG_ON(!path->locks[level]);
8702 ret = btrfs_inc_ref(trans, root, eb, 1);
8703 BUG_ON(ret); /* -ENOMEM */
8704 ret = btrfs_dec_ref(trans, root, eb, 0);
8705 BUG_ON(ret); /* -ENOMEM */
8706 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8707 eb->len, flag,
8708 btrfs_header_level(eb), 0);
8709 BUG_ON(ret); /* -ENOMEM */
8710 wc->flags[level] |= flag;
8711 }
8712
8713 /*
8714 * the block is shared by multiple trees, so it's not good to
8715 * keep the tree lock
8716 */
8717 if (path->locks[level] && level > 0) {
8718 btrfs_tree_unlock_rw(eb, path->locks[level]);
8719 path->locks[level] = 0;
8720 }
8721 return 0;
8722}
8723
8724/*
8725 * helper to process tree block pointer.
8726 *
8727 * when wc->stage == DROP_REFERENCE, this function checks
8728 * reference count of the block pointed to. if the block
8729 * is shared and we need update back refs for the subtree
8730 * rooted at the block, this function changes wc->stage to
8731 * UPDATE_BACKREF. if the block is shared and there is no
8732 * need to update back, this function drops the reference
8733 * to the block.
8734 *
8735 * NOTE: return value 1 means we should stop walking down.
8736 */
8737static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8738 struct btrfs_root *root,
8739 struct btrfs_path *path,
8740 struct walk_control *wc, int *lookup_info)
8741{
8742 struct btrfs_fs_info *fs_info = root->fs_info;
8743 u64 bytenr;
8744 u64 generation;
8745 u64 parent;
8746 u32 blocksize;
8747 struct btrfs_key key;
8748 struct btrfs_key first_key;
8749 struct extent_buffer *next;
8750 int level = wc->level;
8751 int reada = 0;
8752 int ret = 0;
8753 bool need_account = false;
8754
8755 generation = btrfs_node_ptr_generation(path->nodes[level],
8756 path->slots[level]);
8757 /*
8758 * if the lower level block was created before the snapshot
8759 * was created, we know there is no need to update back refs
8760 * for the subtree
8761 */
8762 if (wc->stage == UPDATE_BACKREF &&
8763 generation <= root->root_key.offset) {
8764 *lookup_info = 1;
8765 return 1;
8766 }
8767
8768 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8769 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8770 path->slots[level]);
8771 blocksize = fs_info->nodesize;
8772
8773 next = find_extent_buffer(fs_info, bytenr);
8774 if (!next) {
8775 next = btrfs_find_create_tree_block(fs_info, bytenr);
8776 if (IS_ERR(next))
8777 return PTR_ERR(next);
8778
8779 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8780 level - 1);
8781 reada = 1;
8782 }
8783 btrfs_tree_lock(next);
8784 btrfs_set_lock_blocking(next);
8785
8786 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8787 &wc->refs[level - 1],
8788 &wc->flags[level - 1]);
8789 if (ret < 0)
8790 goto out_unlock;
8791
8792 if (unlikely(wc->refs[level - 1] == 0)) {
8793 btrfs_err(fs_info, "Missing references.");
8794 ret = -EIO;
8795 goto out_unlock;
8796 }
8797 *lookup_info = 0;
8798
8799 if (wc->stage == DROP_REFERENCE) {
8800 if (wc->refs[level - 1] > 1) {
8801 need_account = true;
8802 if (level == 1 &&
8803 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8804 goto skip;
8805
8806 if (!wc->update_ref ||
8807 generation <= root->root_key.offset)
8808 goto skip;
8809
8810 btrfs_node_key_to_cpu(path->nodes[level], &key,
8811 path->slots[level]);
8812 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8813 if (ret < 0)
8814 goto skip;
8815
8816 wc->stage = UPDATE_BACKREF;
8817 wc->shared_level = level - 1;
8818 }
8819 } else {
8820 if (level == 1 &&
8821 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8822 goto skip;
8823 }
8824
8825 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8826 btrfs_tree_unlock(next);
8827 free_extent_buffer(next);
8828 next = NULL;
8829 *lookup_info = 1;
8830 }
8831
8832 if (!next) {
8833 if (reada && level == 1)
8834 reada_walk_down(trans, root, wc, path);
8835 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8836 &first_key);
8837 if (IS_ERR(next)) {
8838 return PTR_ERR(next);
8839 } else if (!extent_buffer_uptodate(next)) {
8840 free_extent_buffer(next);
8841 return -EIO;
8842 }
8843 btrfs_tree_lock(next);
8844 btrfs_set_lock_blocking(next);
8845 }
8846
8847 level--;
8848 ASSERT(level == btrfs_header_level(next));
8849 if (level != btrfs_header_level(next)) {
8850 btrfs_err(root->fs_info, "mismatched level");
8851 ret = -EIO;
8852 goto out_unlock;
8853 }
8854 path->nodes[level] = next;
8855 path->slots[level] = 0;
8856 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8857 wc->level = level;
8858 if (wc->level == 1)
8859 wc->reada_slot = 0;
8860 return 0;
8861skip:
8862 wc->refs[level - 1] = 0;
8863 wc->flags[level - 1] = 0;
8864 if (wc->stage == DROP_REFERENCE) {
8865 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8866 parent = path->nodes[level]->start;
8867 } else {
8868 ASSERT(root->root_key.objectid ==
8869 btrfs_header_owner(path->nodes[level]));
8870 if (root->root_key.objectid !=
8871 btrfs_header_owner(path->nodes[level])) {
8872 btrfs_err(root->fs_info,
8873 "mismatched block owner");
8874 ret = -EIO;
8875 goto out_unlock;
8876 }
8877 parent = 0;
8878 }
8879
8880 if (need_account) {
8881 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8882 generation, level - 1);
8883 if (ret) {
8884 btrfs_err_rl(fs_info,
8885 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8886 ret);
8887 }
8888 }
8889 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8890 parent, root->root_key.objectid,
8891 level - 1, 0);
8892 if (ret)
8893 goto out_unlock;
8894 }
8895
8896 *lookup_info = 1;
8897 ret = 1;
8898
8899out_unlock:
8900 btrfs_tree_unlock(next);
8901 free_extent_buffer(next);
8902
8903 return ret;
8904}
8905
8906/*
8907 * helper to process tree block while walking up the tree.
8908 *
8909 * when wc->stage == DROP_REFERENCE, this function drops
8910 * reference count on the block.
8911 *
8912 * when wc->stage == UPDATE_BACKREF, this function changes
8913 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8914 * to UPDATE_BACKREF previously while processing the block.
8915 *
8916 * NOTE: return value 1 means we should stop walking up.
8917 */
8918static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8919 struct btrfs_root *root,
8920 struct btrfs_path *path,
8921 struct walk_control *wc)
8922{
8923 struct btrfs_fs_info *fs_info = root->fs_info;
8924 int ret;
8925 int level = wc->level;
8926 struct extent_buffer *eb = path->nodes[level];
8927 u64 parent = 0;
8928
8929 if (wc->stage == UPDATE_BACKREF) {
8930 BUG_ON(wc->shared_level < level);
8931 if (level < wc->shared_level)
8932 goto out;
8933
8934 ret = find_next_key(path, level + 1, &wc->update_progress);
8935 if (ret > 0)
8936 wc->update_ref = 0;
8937
8938 wc->stage = DROP_REFERENCE;
8939 wc->shared_level = -1;
8940 path->slots[level] = 0;
8941
8942 /*
8943 * check reference count again if the block isn't locked.
8944 * we should start walking down the tree again if reference
8945 * count is one.
8946 */
8947 if (!path->locks[level]) {
8948 BUG_ON(level == 0);
8949 btrfs_tree_lock(eb);
8950 btrfs_set_lock_blocking(eb);
8951 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8952
8953 ret = btrfs_lookup_extent_info(trans, fs_info,
8954 eb->start, level, 1,
8955 &wc->refs[level],
8956 &wc->flags[level]);
8957 if (ret < 0) {
8958 btrfs_tree_unlock_rw(eb, path->locks[level]);
8959 path->locks[level] = 0;
8960 return ret;
8961 }
8962 BUG_ON(wc->refs[level] == 0);
8963 if (wc->refs[level] == 1) {
8964 btrfs_tree_unlock_rw(eb, path->locks[level]);
8965 path->locks[level] = 0;
8966 return 1;
8967 }
8968 }
8969 }
8970
8971 /* wc->stage == DROP_REFERENCE */
8972 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8973
8974 if (wc->refs[level] == 1) {
8975 if (level == 0) {
8976 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8977 ret = btrfs_dec_ref(trans, root, eb, 1);
8978 else
8979 ret = btrfs_dec_ref(trans, root, eb, 0);
8980 BUG_ON(ret); /* -ENOMEM */
8981 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8982 if (ret) {
8983 btrfs_err_rl(fs_info,
8984 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8985 ret);
8986 }
8987 }
8988 /* make block locked assertion in clean_tree_block happy */
8989 if (!path->locks[level] &&
8990 btrfs_header_generation(eb) == trans->transid) {
8991 btrfs_tree_lock(eb);
8992 btrfs_set_lock_blocking(eb);
8993 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8994 }
8995 clean_tree_block(fs_info, eb);
8996 }
8997
8998 if (eb == root->node) {
8999 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9000 parent = eb->start;
9001 else
9002 BUG_ON(root->root_key.objectid !=
9003 btrfs_header_owner(eb));
9004 } else {
9005 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9006 parent = path->nodes[level + 1]->start;
9007 else
9008 BUG_ON(root->root_key.objectid !=
9009 btrfs_header_owner(path->nodes[level + 1]));
9010 }
9011
9012 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9013out:
9014 wc->refs[level] = 0;
9015 wc->flags[level] = 0;
9016 return 0;
9017}
9018
9019static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9020 struct btrfs_root *root,
9021 struct btrfs_path *path,
9022 struct walk_control *wc)
9023{
9024 int level = wc->level;
9025 int lookup_info = 1;
9026 int ret;
9027
9028 while (level >= 0) {
9029 ret = walk_down_proc(trans, root, path, wc, lookup_info);
9030 if (ret > 0)
9031 break;
9032
9033 if (level == 0)
9034 break;
9035
9036 if (path->slots[level] >=
9037 btrfs_header_nritems(path->nodes[level]))
9038 break;
9039
9040 ret = do_walk_down(trans, root, path, wc, &lookup_info);
9041 if (ret > 0) {
9042 path->slots[level]++;
9043 continue;
9044 } else if (ret < 0)
9045 return ret;
9046 level = wc->level;
9047 }
9048 return 0;
9049}
9050
9051static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9052 struct btrfs_root *root,
9053 struct btrfs_path *path,
9054 struct walk_control *wc, int max_level)
9055{
9056 int level = wc->level;
9057 int ret;
9058
9059 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9060 while (level < max_level && path->nodes[level]) {
9061 wc->level = level;
9062 if (path->slots[level] + 1 <
9063 btrfs_header_nritems(path->nodes[level])) {
9064 path->slots[level]++;
9065 return 0;
9066 } else {
9067 ret = walk_up_proc(trans, root, path, wc);
9068 if (ret > 0)
9069 return 0;
9070
9071 if (path->locks[level]) {
9072 btrfs_tree_unlock_rw(path->nodes[level],
9073 path->locks[level]);
9074 path->locks[level] = 0;
9075 }
9076 free_extent_buffer(path->nodes[level]);
9077 path->nodes[level] = NULL;
9078 level++;
9079 }
9080 }
9081 return 1;
9082}
9083
9084/*
9085 * drop a subvolume tree.
9086 *
9087 * this function traverses the tree freeing any blocks that only
9088 * referenced by the tree.
9089 *
9090 * when a shared tree block is found. this function decreases its
9091 * reference count by one. if update_ref is true, this function
9092 * also make sure backrefs for the shared block and all lower level
9093 * blocks are properly updated.
9094 *
9095 * If called with for_reloc == 0, may exit early with -EAGAIN
9096 */
9097int btrfs_drop_snapshot(struct btrfs_root *root,
9098 struct btrfs_block_rsv *block_rsv, int update_ref,
9099 int for_reloc)
9100{
9101 struct btrfs_fs_info *fs_info = root->fs_info;
9102 struct btrfs_path *path;
9103 struct btrfs_trans_handle *trans;
9104 struct btrfs_root *tree_root = fs_info->tree_root;
9105 struct btrfs_root_item *root_item = &root->root_item;
9106 struct walk_control *wc;
9107 struct btrfs_key key;
9108 int err = 0;
9109 int ret;
9110 int level;
9111 bool root_dropped = false;
9112
9113 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9114
9115 path = btrfs_alloc_path();
9116 if (!path) {
9117 err = -ENOMEM;
9118 goto out;
9119 }
9120
9121 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9122 if (!wc) {
9123 btrfs_free_path(path);
9124 err = -ENOMEM;
9125 goto out;
9126 }
9127
9128 trans = btrfs_start_transaction(tree_root, 0);
9129 if (IS_ERR(trans)) {
9130 err = PTR_ERR(trans);
9131 goto out_free;
9132 }
9133
9134 if (block_rsv)
9135 trans->block_rsv = block_rsv;
9136
9137 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9138 level = btrfs_header_level(root->node);
9139 path->nodes[level] = btrfs_lock_root_node(root);
9140 btrfs_set_lock_blocking(path->nodes[level]);
9141 path->slots[level] = 0;
9142 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9143 memset(&wc->update_progress, 0,
9144 sizeof(wc->update_progress));
9145 } else {
9146 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9147 memcpy(&wc->update_progress, &key,
9148 sizeof(wc->update_progress));
9149
9150 level = root_item->drop_level;
9151 BUG_ON(level == 0);
9152 path->lowest_level = level;
9153 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9154 path->lowest_level = 0;
9155 if (ret < 0) {
9156 err = ret;
9157 goto out_end_trans;
9158 }
9159 WARN_ON(ret > 0);
9160
9161 /*
9162 * unlock our path, this is safe because only this
9163 * function is allowed to delete this snapshot
9164 */
9165 btrfs_unlock_up_safe(path, 0);
9166
9167 level = btrfs_header_level(root->node);
9168 while (1) {
9169 btrfs_tree_lock(path->nodes[level]);
9170 btrfs_set_lock_blocking(path->nodes[level]);
9171 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9172
9173 ret = btrfs_lookup_extent_info(trans, fs_info,
9174 path->nodes[level]->start,
9175 level, 1, &wc->refs[level],
9176 &wc->flags[level]);
9177 if (ret < 0) {
9178 err = ret;
9179 goto out_end_trans;
9180 }
9181 BUG_ON(wc->refs[level] == 0);
9182
9183 if (level == root_item->drop_level)
9184 break;
9185
9186 btrfs_tree_unlock(path->nodes[level]);
9187 path->locks[level] = 0;
9188 WARN_ON(wc->refs[level] != 1);
9189 level--;
9190 }
9191 }
9192
9193 wc->level = level;
9194 wc->shared_level = -1;
9195 wc->stage = DROP_REFERENCE;
9196 wc->update_ref = update_ref;
9197 wc->keep_locks = 0;
9198 wc->for_reloc = for_reloc;
9199 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9200
9201 while (1) {
9202
9203 ret = walk_down_tree(trans, root, path, wc);
9204 if (ret < 0) {
9205 err = ret;
9206 break;
9207 }
9208
9209 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9210 if (ret < 0) {
9211 err = ret;
9212 break;
9213 }
9214
9215 if (ret > 0) {
9216 BUG_ON(wc->stage != DROP_REFERENCE);
9217 break;
9218 }
9219
9220 if (wc->stage == DROP_REFERENCE) {
9221 level = wc->level;
9222 btrfs_node_key(path->nodes[level],
9223 &root_item->drop_progress,
9224 path->slots[level]);
9225 root_item->drop_level = level;
9226 }
9227
9228 BUG_ON(wc->level == 0);
9229 if (btrfs_should_end_transaction(trans) ||
9230 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9231 ret = btrfs_update_root(trans, tree_root,
9232 &root->root_key,
9233 root_item);
9234 if (ret) {
9235 btrfs_abort_transaction(trans, ret);
9236 err = ret;
9237 goto out_end_trans;
9238 }
9239
9240 btrfs_end_transaction_throttle(trans);
9241 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9242 btrfs_debug(fs_info,
9243 "drop snapshot early exit");
9244 err = -EAGAIN;
9245 goto out_free;
9246 }
9247
9248 trans = btrfs_start_transaction(tree_root, 0);
9249 if (IS_ERR(trans)) {
9250 err = PTR_ERR(trans);
9251 goto out_free;
9252 }
9253 if (block_rsv)
9254 trans->block_rsv = block_rsv;
9255 }
9256 }
9257 btrfs_release_path(path);
9258 if (err)
9259 goto out_end_trans;
9260
9261 ret = btrfs_del_root(trans, fs_info, &root->root_key);
9262 if (ret) {
9263 btrfs_abort_transaction(trans, ret);
9264 err = ret;
9265 goto out_end_trans;
9266 }
9267
9268 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9269 ret = btrfs_find_root(tree_root, &root->root_key, path,
9270 NULL, NULL);
9271 if (ret < 0) {
9272 btrfs_abort_transaction(trans, ret);
9273 err = ret;
9274 goto out_end_trans;
9275 } else if (ret > 0) {
9276 /* if we fail to delete the orphan item this time
9277 * around, it'll get picked up the next time.
9278 *
9279 * The most common failure here is just -ENOENT.
9280 */
9281 btrfs_del_orphan_item(trans, tree_root,
9282 root->root_key.objectid);
9283 }
9284 }
9285
9286 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9287 btrfs_add_dropped_root(trans, root);
9288 } else {
9289 free_extent_buffer(root->node);
9290 free_extent_buffer(root->commit_root);
9291 btrfs_put_fs_root(root);
9292 }
9293 root_dropped = true;
9294out_end_trans:
9295 btrfs_end_transaction_throttle(trans);
9296out_free:
9297 kfree(wc);
9298 btrfs_free_path(path);
9299out:
9300 /*
9301 * So if we need to stop dropping the snapshot for whatever reason we
9302 * need to make sure to add it back to the dead root list so that we
9303 * keep trying to do the work later. This also cleans up roots if we
9304 * don't have it in the radix (like when we recover after a power fail
9305 * or unmount) so we don't leak memory.
9306 */
9307 if (!for_reloc && !root_dropped)
9308 btrfs_add_dead_root(root);
9309 if (err && err != -EAGAIN)
9310 btrfs_handle_fs_error(fs_info, err, NULL);
9311 return err;
9312}
9313
9314/*
9315 * drop subtree rooted at tree block 'node'.
9316 *
9317 * NOTE: this function will unlock and release tree block 'node'
9318 * only used by relocation code
9319 */
9320int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9321 struct btrfs_root *root,
9322 struct extent_buffer *node,
9323 struct extent_buffer *parent)
9324{
9325 struct btrfs_fs_info *fs_info = root->fs_info;
9326 struct btrfs_path *path;
9327 struct walk_control *wc;
9328 int level;
9329 int parent_level;
9330 int ret = 0;
9331 int wret;
9332
9333 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9334
9335 path = btrfs_alloc_path();
9336 if (!path)
9337 return -ENOMEM;
9338
9339 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9340 if (!wc) {
9341 btrfs_free_path(path);
9342 return -ENOMEM;
9343 }
9344
9345 btrfs_assert_tree_locked(parent);
9346 parent_level = btrfs_header_level(parent);
9347 extent_buffer_get(parent);
9348 path->nodes[parent_level] = parent;
9349 path->slots[parent_level] = btrfs_header_nritems(parent);
9350
9351 btrfs_assert_tree_locked(node);
9352 level = btrfs_header_level(node);
9353 path->nodes[level] = node;
9354 path->slots[level] = 0;
9355 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9356
9357 wc->refs[parent_level] = 1;
9358 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9359 wc->level = level;
9360 wc->shared_level = -1;
9361 wc->stage = DROP_REFERENCE;
9362 wc->update_ref = 0;
9363 wc->keep_locks = 1;
9364 wc->for_reloc = 1;
9365 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9366
9367 while (1) {
9368 wret = walk_down_tree(trans, root, path, wc);
9369 if (wret < 0) {
9370 ret = wret;
9371 break;
9372 }
9373
9374 wret = walk_up_tree(trans, root, path, wc, parent_level);
9375 if (wret < 0)
9376 ret = wret;
9377 if (wret != 0)
9378 break;
9379 }
9380
9381 kfree(wc);
9382 btrfs_free_path(path);
9383 return ret;
9384}
9385
9386static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9387{
9388 u64 num_devices;
9389 u64 stripped;
9390
9391 /*
9392 * if restripe for this chunk_type is on pick target profile and
9393 * return, otherwise do the usual balance
9394 */
9395 stripped = get_restripe_target(fs_info, flags);
9396 if (stripped)
9397 return extended_to_chunk(stripped);
9398
9399 num_devices = fs_info->fs_devices->rw_devices;
9400
9401 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9402 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9403 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9404
9405 if (num_devices == 1) {
9406 stripped |= BTRFS_BLOCK_GROUP_DUP;
9407 stripped = flags & ~stripped;
9408
9409 /* turn raid0 into single device chunks */
9410 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9411 return stripped;
9412
9413 /* turn mirroring into duplication */
9414 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9415 BTRFS_BLOCK_GROUP_RAID10))
9416 return stripped | BTRFS_BLOCK_GROUP_DUP;
9417 } else {
9418 /* they already had raid on here, just return */
9419 if (flags & stripped)
9420 return flags;
9421
9422 stripped |= BTRFS_BLOCK_GROUP_DUP;
9423 stripped = flags & ~stripped;
9424
9425 /* switch duplicated blocks with raid1 */
9426 if (flags & BTRFS_BLOCK_GROUP_DUP)
9427 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9428
9429 /* this is drive concat, leave it alone */
9430 }
9431
9432 return flags;
9433}
9434
9435static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9436{
9437 struct btrfs_space_info *sinfo = cache->space_info;
9438 u64 num_bytes;
9439 u64 min_allocable_bytes;
9440 int ret = -ENOSPC;
9441
9442 /*
9443 * We need some metadata space and system metadata space for
9444 * allocating chunks in some corner cases until we force to set
9445 * it to be readonly.
9446 */
9447 if ((sinfo->flags &
9448 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9449 !force)
9450 min_allocable_bytes = SZ_1M;
9451 else
9452 min_allocable_bytes = 0;
9453
9454 spin_lock(&sinfo->lock);
9455 spin_lock(&cache->lock);
9456
9457 if (cache->ro) {
9458 cache->ro++;
9459 ret = 0;
9460 goto out;
9461 }
9462
9463 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9464 cache->bytes_super - btrfs_block_group_used(&cache->item);
9465
9466 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9467 min_allocable_bytes <= sinfo->total_bytes) {
9468 sinfo->bytes_readonly += num_bytes;
9469 cache->ro++;
9470 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9471 ret = 0;
9472 }
9473out:
9474 spin_unlock(&cache->lock);
9475 spin_unlock(&sinfo->lock);
9476 return ret;
9477}
9478
9479int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9480 struct btrfs_block_group_cache *cache)
9481
9482{
9483 struct btrfs_trans_handle *trans;
9484 u64 alloc_flags;
9485 int ret;
9486
9487again:
9488 trans = btrfs_join_transaction(fs_info->extent_root);
9489 if (IS_ERR(trans))
9490 return PTR_ERR(trans);
9491
9492 /*
9493 * we're not allowed to set block groups readonly after the dirty
9494 * block groups cache has started writing. If it already started,
9495 * back off and let this transaction commit
9496 */
9497 mutex_lock(&fs_info->ro_block_group_mutex);
9498 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9499 u64 transid = trans->transid;
9500
9501 mutex_unlock(&fs_info->ro_block_group_mutex);
9502 btrfs_end_transaction(trans);
9503
9504 ret = btrfs_wait_for_commit(fs_info, transid);
9505 if (ret)
9506 return ret;
9507 goto again;
9508 }
9509
9510 /*
9511 * if we are changing raid levels, try to allocate a corresponding
9512 * block group with the new raid level.
9513 */
9514 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9515 if (alloc_flags != cache->flags) {
9516 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9517 CHUNK_ALLOC_FORCE);
9518 /*
9519 * ENOSPC is allowed here, we may have enough space
9520 * already allocated at the new raid level to
9521 * carry on
9522 */
9523 if (ret == -ENOSPC)
9524 ret = 0;
9525 if (ret < 0)
9526 goto out;
9527 }
9528
9529 ret = inc_block_group_ro(cache, 0);
9530 if (!ret)
9531 goto out;
9532 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9533 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9534 CHUNK_ALLOC_FORCE);
9535 if (ret < 0)
9536 goto out;
9537 ret = inc_block_group_ro(cache, 0);
9538out:
9539 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9540 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9541 mutex_lock(&fs_info->chunk_mutex);
9542 check_system_chunk(trans, fs_info, alloc_flags);
9543 mutex_unlock(&fs_info->chunk_mutex);
9544 }
9545 mutex_unlock(&fs_info->ro_block_group_mutex);
9546
9547 btrfs_end_transaction(trans);
9548 return ret;
9549}
9550
9551int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9552 struct btrfs_fs_info *fs_info, u64 type)
9553{
9554 u64 alloc_flags = get_alloc_profile(fs_info, type);
9555
9556 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9557}
9558
9559/*
9560 * helper to account the unused space of all the readonly block group in the
9561 * space_info. takes mirrors into account.
9562 */
9563u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9564{
9565 struct btrfs_block_group_cache *block_group;
9566 u64 free_bytes = 0;
9567 int factor;
9568
9569 /* It's df, we don't care if it's racy */
9570 if (list_empty(&sinfo->ro_bgs))
9571 return 0;
9572
9573 spin_lock(&sinfo->lock);
9574 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9575 spin_lock(&block_group->lock);
9576
9577 if (!block_group->ro) {
9578 spin_unlock(&block_group->lock);
9579 continue;
9580 }
9581
9582 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9583 BTRFS_BLOCK_GROUP_RAID10 |
9584 BTRFS_BLOCK_GROUP_DUP))
9585 factor = 2;
9586 else
9587 factor = 1;
9588
9589 free_bytes += (block_group->key.offset -
9590 btrfs_block_group_used(&block_group->item)) *
9591 factor;
9592
9593 spin_unlock(&block_group->lock);
9594 }
9595 spin_unlock(&sinfo->lock);
9596
9597 return free_bytes;
9598}
9599
9600void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9601{
9602 struct btrfs_space_info *sinfo = cache->space_info;
9603 u64 num_bytes;
9604
9605 BUG_ON(!cache->ro);
9606
9607 spin_lock(&sinfo->lock);
9608 spin_lock(&cache->lock);
9609 if (!--cache->ro) {
9610 num_bytes = cache->key.offset - cache->reserved -
9611 cache->pinned - cache->bytes_super -
9612 btrfs_block_group_used(&cache->item);
9613 sinfo->bytes_readonly -= num_bytes;
9614 list_del_init(&cache->ro_list);
9615 }
9616 spin_unlock(&cache->lock);
9617 spin_unlock(&sinfo->lock);
9618}
9619
9620/*
9621 * checks to see if its even possible to relocate this block group.
9622 *
9623 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9624 * ok to go ahead and try.
9625 */
9626int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9627{
9628 struct btrfs_root *root = fs_info->extent_root;
9629 struct btrfs_block_group_cache *block_group;
9630 struct btrfs_space_info *space_info;
9631 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9632 struct btrfs_device *device;
9633 struct btrfs_trans_handle *trans;
9634 u64 min_free;
9635 u64 dev_min = 1;
9636 u64 dev_nr = 0;
9637 u64 target;
9638 int debug;
9639 int index;
9640 int full = 0;
9641 int ret = 0;
9642
9643 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9644
9645 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9646
9647 /* odd, couldn't find the block group, leave it alone */
9648 if (!block_group) {
9649 if (debug)
9650 btrfs_warn(fs_info,
9651 "can't find block group for bytenr %llu",
9652 bytenr);
9653 return -1;
9654 }
9655
9656 min_free = btrfs_block_group_used(&block_group->item);
9657
9658 /* no bytes used, we're good */
9659 if (!min_free)
9660 goto out;
9661
9662 space_info = block_group->space_info;
9663 spin_lock(&space_info->lock);
9664
9665 full = space_info->full;
9666
9667 /*
9668 * if this is the last block group we have in this space, we can't
9669 * relocate it unless we're able to allocate a new chunk below.
9670 *
9671 * Otherwise, we need to make sure we have room in the space to handle
9672 * all of the extents from this block group. If we can, we're good
9673 */
9674 if ((space_info->total_bytes != block_group->key.offset) &&
9675 (btrfs_space_info_used(space_info, false) + min_free <
9676 space_info->total_bytes)) {
9677 spin_unlock(&space_info->lock);
9678 goto out;
9679 }
9680 spin_unlock(&space_info->lock);
9681
9682 /*
9683 * ok we don't have enough space, but maybe we have free space on our
9684 * devices to allocate new chunks for relocation, so loop through our
9685 * alloc devices and guess if we have enough space. if this block
9686 * group is going to be restriped, run checks against the target
9687 * profile instead of the current one.
9688 */
9689 ret = -1;
9690
9691 /*
9692 * index:
9693 * 0: raid10
9694 * 1: raid1
9695 * 2: dup
9696 * 3: raid0
9697 * 4: single
9698 */
9699 target = get_restripe_target(fs_info, block_group->flags);
9700 if (target) {
9701 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9702 } else {
9703 /*
9704 * this is just a balance, so if we were marked as full
9705 * we know there is no space for a new chunk
9706 */
9707 if (full) {
9708 if (debug)
9709 btrfs_warn(fs_info,
9710 "no space to alloc new chunk for block group %llu",
9711 block_group->key.objectid);
9712 goto out;
9713 }
9714
9715 index = btrfs_bg_flags_to_raid_index(block_group->flags);
9716 }
9717
9718 if (index == BTRFS_RAID_RAID10) {
9719 dev_min = 4;
9720 /* Divide by 2 */
9721 min_free >>= 1;
9722 } else if (index == BTRFS_RAID_RAID1) {
9723 dev_min = 2;
9724 } else if (index == BTRFS_RAID_DUP) {
9725 /* Multiply by 2 */
9726 min_free <<= 1;
9727 } else if (index == BTRFS_RAID_RAID0) {
9728 dev_min = fs_devices->rw_devices;
9729 min_free = div64_u64(min_free, dev_min);
9730 }
9731
9732 /* We need to do this so that we can look at pending chunks */
9733 trans = btrfs_join_transaction(root);
9734 if (IS_ERR(trans)) {
9735 ret = PTR_ERR(trans);
9736 goto out;
9737 }
9738
9739 mutex_lock(&fs_info->chunk_mutex);
9740 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9741 u64 dev_offset;
9742
9743 /*
9744 * check to make sure we can actually find a chunk with enough
9745 * space to fit our block group in.
9746 */
9747 if (device->total_bytes > device->bytes_used + min_free &&
9748 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9749 ret = find_free_dev_extent(trans, device, min_free,
9750 &dev_offset, NULL);
9751 if (!ret)
9752 dev_nr++;
9753
9754 if (dev_nr >= dev_min)
9755 break;
9756
9757 ret = -1;
9758 }
9759 }
9760 if (debug && ret == -1)
9761 btrfs_warn(fs_info,
9762 "no space to allocate a new chunk for block group %llu",
9763 block_group->key.objectid);
9764 mutex_unlock(&fs_info->chunk_mutex);
9765 btrfs_end_transaction(trans);
9766out:
9767 btrfs_put_block_group(block_group);
9768 return ret;
9769}
9770
9771static int find_first_block_group(struct btrfs_fs_info *fs_info,
9772 struct btrfs_path *path,
9773 struct btrfs_key *key)
9774{
9775 struct btrfs_root *root = fs_info->extent_root;
9776 int ret = 0;
9777 struct btrfs_key found_key;
9778 struct extent_buffer *leaf;
9779 int slot;
9780
9781 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9782 if (ret < 0)
9783 goto out;
9784
9785 while (1) {
9786 slot = path->slots[0];
9787 leaf = path->nodes[0];
9788 if (slot >= btrfs_header_nritems(leaf)) {
9789 ret = btrfs_next_leaf(root, path);
9790 if (ret == 0)
9791 continue;
9792 if (ret < 0)
9793 goto out;
9794 break;
9795 }
9796 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9797
9798 if (found_key.objectid >= key->objectid &&
9799 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9800 struct extent_map_tree *em_tree;
9801 struct extent_map *em;
9802
9803 em_tree = &root->fs_info->mapping_tree.map_tree;
9804 read_lock(&em_tree->lock);
9805 em = lookup_extent_mapping(em_tree, found_key.objectid,
9806 found_key.offset);
9807 read_unlock(&em_tree->lock);
9808 if (!em) {
9809 btrfs_err(fs_info,
9810 "logical %llu len %llu found bg but no related chunk",
9811 found_key.objectid, found_key.offset);
9812 ret = -ENOENT;
9813 } else {
9814 ret = 0;
9815 }
9816 free_extent_map(em);
9817 goto out;
9818 }
9819 path->slots[0]++;
9820 }
9821out:
9822 return ret;
9823}
9824
9825void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9826{
9827 struct btrfs_block_group_cache *block_group;
9828 u64 last = 0;
9829
9830 while (1) {
9831 struct inode *inode;
9832
9833 block_group = btrfs_lookup_first_block_group(info, last);
9834 while (block_group) {
9835 spin_lock(&block_group->lock);
9836 if (block_group->iref)
9837 break;
9838 spin_unlock(&block_group->lock);
9839 block_group = next_block_group(info, block_group);
9840 }
9841 if (!block_group) {
9842 if (last == 0)
9843 break;
9844 last = 0;
9845 continue;
9846 }
9847
9848 inode = block_group->inode;
9849 block_group->iref = 0;
9850 block_group->inode = NULL;
9851 spin_unlock(&block_group->lock);
9852 ASSERT(block_group->io_ctl.inode == NULL);
9853 iput(inode);
9854 last = block_group->key.objectid + block_group->key.offset;
9855 btrfs_put_block_group(block_group);
9856 }
9857}
9858
9859/*
9860 * Must be called only after stopping all workers, since we could have block
9861 * group caching kthreads running, and therefore they could race with us if we
9862 * freed the block groups before stopping them.
9863 */
9864int btrfs_free_block_groups(struct btrfs_fs_info *info)
9865{
9866 struct btrfs_block_group_cache *block_group;
9867 struct btrfs_space_info *space_info;
9868 struct btrfs_caching_control *caching_ctl;
9869 struct rb_node *n;
9870
9871 down_write(&info->commit_root_sem);
9872 while (!list_empty(&info->caching_block_groups)) {
9873 caching_ctl = list_entry(info->caching_block_groups.next,
9874 struct btrfs_caching_control, list);
9875 list_del(&caching_ctl->list);
9876 put_caching_control(caching_ctl);
9877 }
9878 up_write(&info->commit_root_sem);
9879
9880 spin_lock(&info->unused_bgs_lock);
9881 while (!list_empty(&info->unused_bgs)) {
9882 block_group = list_first_entry(&info->unused_bgs,
9883 struct btrfs_block_group_cache,
9884 bg_list);
9885 list_del_init(&block_group->bg_list);
9886 btrfs_put_block_group(block_group);
9887 }
9888 spin_unlock(&info->unused_bgs_lock);
9889
9890 spin_lock(&info->block_group_cache_lock);
9891 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9892 block_group = rb_entry(n, struct btrfs_block_group_cache,
9893 cache_node);
9894 rb_erase(&block_group->cache_node,
9895 &info->block_group_cache_tree);
9896 RB_CLEAR_NODE(&block_group->cache_node);
9897 spin_unlock(&info->block_group_cache_lock);
9898
9899 down_write(&block_group->space_info->groups_sem);
9900 list_del(&block_group->list);
9901 up_write(&block_group->space_info->groups_sem);
9902
9903 /*
9904 * We haven't cached this block group, which means we could
9905 * possibly have excluded extents on this block group.
9906 */
9907 if (block_group->cached == BTRFS_CACHE_NO ||
9908 block_group->cached == BTRFS_CACHE_ERROR)
9909 free_excluded_extents(info, block_group);
9910
9911 btrfs_remove_free_space_cache(block_group);
9912 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9913 ASSERT(list_empty(&block_group->dirty_list));
9914 ASSERT(list_empty(&block_group->io_list));
9915 ASSERT(list_empty(&block_group->bg_list));
9916 ASSERT(atomic_read(&block_group->count) == 1);
9917 btrfs_put_block_group(block_group);
9918
9919 spin_lock(&info->block_group_cache_lock);
9920 }
9921 spin_unlock(&info->block_group_cache_lock);
9922
9923 /* now that all the block groups are freed, go through and
9924 * free all the space_info structs. This is only called during
9925 * the final stages of unmount, and so we know nobody is
9926 * using them. We call synchronize_rcu() once before we start,
9927 * just to be on the safe side.
9928 */
9929 synchronize_rcu();
9930
9931 release_global_block_rsv(info);
9932
9933 while (!list_empty(&info->space_info)) {
9934 int i;
9935
9936 space_info = list_entry(info->space_info.next,
9937 struct btrfs_space_info,
9938 list);
9939
9940 /*
9941 * Do not hide this behind enospc_debug, this is actually
9942 * important and indicates a real bug if this happens.
9943 */
9944 if (WARN_ON(space_info->bytes_pinned > 0 ||
9945 space_info->bytes_reserved > 0 ||
9946 space_info->bytes_may_use > 0))
9947 dump_space_info(info, space_info, 0, 0);
9948 list_del(&space_info->list);
9949 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9950 struct kobject *kobj;
9951 kobj = space_info->block_group_kobjs[i];
9952 space_info->block_group_kobjs[i] = NULL;
9953 if (kobj) {
9954 kobject_del(kobj);
9955 kobject_put(kobj);
9956 }
9957 }
9958 kobject_del(&space_info->kobj);
9959 kobject_put(&space_info->kobj);
9960 }
9961 return 0;
9962}
9963
9964/* link_block_group will queue up kobjects to add when we're reclaim-safe */
9965void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9966{
9967 struct btrfs_space_info *space_info;
9968 struct raid_kobject *rkobj;
9969 LIST_HEAD(list);
9970 int index;
9971 int ret = 0;
9972
9973 spin_lock(&fs_info->pending_raid_kobjs_lock);
9974 list_splice_init(&fs_info->pending_raid_kobjs, &list);
9975 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9976
9977 list_for_each_entry(rkobj, &list, list) {
9978 space_info = __find_space_info(fs_info, rkobj->flags);
9979 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9980
9981 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9982 "%s", get_raid_name(index));
9983 if (ret) {
9984 kobject_put(&rkobj->kobj);
9985 break;
9986 }
9987 }
9988 if (ret)
9989 btrfs_warn(fs_info,
9990 "failed to add kobject for block cache, ignoring");
9991}
9992
9993static void link_block_group(struct btrfs_block_group_cache *cache)
9994{
9995 struct btrfs_space_info *space_info = cache->space_info;
9996 struct btrfs_fs_info *fs_info = cache->fs_info;
9997 int index = btrfs_bg_flags_to_raid_index(cache->flags);
9998 bool first = false;
9999
10000 down_write(&space_info->groups_sem);
10001 if (list_empty(&space_info->block_groups[index]))
10002 first = true;
10003 list_add_tail(&cache->list, &space_info->block_groups[index]);
10004 up_write(&space_info->groups_sem);
10005
10006 if (first) {
10007 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10008 if (!rkobj) {
10009 btrfs_warn(cache->fs_info,
10010 "couldn't alloc memory for raid level kobject");
10011 return;
10012 }
10013 rkobj->flags = cache->flags;
10014 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10015
10016 spin_lock(&fs_info->pending_raid_kobjs_lock);
10017 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10018 spin_unlock(&fs_info->pending_raid_kobjs_lock);
10019 space_info->block_group_kobjs[index] = &rkobj->kobj;
10020 }
10021}
10022
10023static struct btrfs_block_group_cache *
10024btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10025 u64 start, u64 size)
10026{
10027 struct btrfs_block_group_cache *cache;
10028
10029 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10030 if (!cache)
10031 return NULL;
10032
10033 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10034 GFP_NOFS);
10035 if (!cache->free_space_ctl) {
10036 kfree(cache);
10037 return NULL;
10038 }
10039
10040 cache->key.objectid = start;
10041 cache->key.offset = size;
10042 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10043
10044 cache->fs_info = fs_info;
10045 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
10046 set_free_space_tree_thresholds(cache);
10047
10048 atomic_set(&cache->count, 1);
10049 spin_lock_init(&cache->lock);
10050 init_rwsem(&cache->data_rwsem);
10051 INIT_LIST_HEAD(&cache->list);
10052 INIT_LIST_HEAD(&cache->cluster_list);
10053 INIT_LIST_HEAD(&cache->bg_list);
10054 INIT_LIST_HEAD(&cache->ro_list);
10055 INIT_LIST_HEAD(&cache->dirty_list);
10056 INIT_LIST_HEAD(&cache->io_list);
10057 btrfs_init_free_space_ctl(cache);
10058 atomic_set(&cache->trimming, 0);
10059 mutex_init(&cache->free_space_lock);
10060 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
10061
10062 return cache;
10063}
10064
10065int btrfs_read_block_groups(struct btrfs_fs_info *info)
10066{
10067 struct btrfs_path *path;
10068 int ret;
10069 struct btrfs_block_group_cache *cache;
10070 struct btrfs_space_info *space_info;
10071 struct btrfs_key key;
10072 struct btrfs_key found_key;
10073 struct extent_buffer *leaf;
10074 int need_clear = 0;
10075 u64 cache_gen;
10076 u64 feature;
10077 int mixed;
10078
10079 feature = btrfs_super_incompat_flags(info->super_copy);
10080 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10081
10082 key.objectid = 0;
10083 key.offset = 0;
10084 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10085 path = btrfs_alloc_path();
10086 if (!path)
10087 return -ENOMEM;
10088 path->reada = READA_FORWARD;
10089
10090 cache_gen = btrfs_super_cache_generation(info->super_copy);
10091 if (btrfs_test_opt(info, SPACE_CACHE) &&
10092 btrfs_super_generation(info->super_copy) != cache_gen)
10093 need_clear = 1;
10094 if (btrfs_test_opt(info, CLEAR_CACHE))
10095 need_clear = 1;
10096
10097 while (1) {
10098 ret = find_first_block_group(info, path, &key);
10099 if (ret > 0)
10100 break;
10101 if (ret != 0)
10102 goto error;
10103
10104 leaf = path->nodes[0];
10105 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10106
10107 cache = btrfs_create_block_group_cache(info, found_key.objectid,
10108 found_key.offset);
10109 if (!cache) {
10110 ret = -ENOMEM;
10111 goto error;
10112 }
10113
10114 if (need_clear) {
10115 /*
10116 * When we mount with old space cache, we need to
10117 * set BTRFS_DC_CLEAR and set dirty flag.
10118 *
10119 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10120 * truncate the old free space cache inode and
10121 * setup a new one.
10122 * b) Setting 'dirty flag' makes sure that we flush
10123 * the new space cache info onto disk.
10124 */
10125 if (btrfs_test_opt(info, SPACE_CACHE))
10126 cache->disk_cache_state = BTRFS_DC_CLEAR;
10127 }
10128
10129 read_extent_buffer(leaf, &cache->item,
10130 btrfs_item_ptr_offset(leaf, path->slots[0]),
10131 sizeof(cache->item));
10132 cache->flags = btrfs_block_group_flags(&cache->item);
10133 if (!mixed &&
10134 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10135 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10136 btrfs_err(info,
10137"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10138 cache->key.objectid);
10139 ret = -EINVAL;
10140 goto error;
10141 }
10142
10143 key.objectid = found_key.objectid + found_key.offset;
10144 btrfs_release_path(path);
10145
10146 /*
10147 * We need to exclude the super stripes now so that the space
10148 * info has super bytes accounted for, otherwise we'll think
10149 * we have more space than we actually do.
10150 */
10151 ret = exclude_super_stripes(info, cache);
10152 if (ret) {
10153 /*
10154 * We may have excluded something, so call this just in
10155 * case.
10156 */
10157 free_excluded_extents(info, cache);
10158 btrfs_put_block_group(cache);
10159 goto error;
10160 }
10161
10162 /*
10163 * check for two cases, either we are full, and therefore
10164 * don't need to bother with the caching work since we won't
10165 * find any space, or we are empty, and we can just add all
10166 * the space in and be done with it. This saves us _alot_ of
10167 * time, particularly in the full case.
10168 */
10169 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10170 cache->last_byte_to_unpin = (u64)-1;
10171 cache->cached = BTRFS_CACHE_FINISHED;
10172 free_excluded_extents(info, cache);
10173 } else if (btrfs_block_group_used(&cache->item) == 0) {
10174 cache->last_byte_to_unpin = (u64)-1;
10175 cache->cached = BTRFS_CACHE_FINISHED;
10176 add_new_free_space(cache, info,
10177 found_key.objectid,
10178 found_key.objectid +
10179 found_key.offset);
10180 free_excluded_extents(info, cache);
10181 }
10182
10183 ret = btrfs_add_block_group_cache(info, cache);
10184 if (ret) {
10185 btrfs_remove_free_space_cache(cache);
10186 btrfs_put_block_group(cache);
10187 goto error;
10188 }
10189
10190 trace_btrfs_add_block_group(info, cache, 0);
10191 update_space_info(info, cache->flags, found_key.offset,
10192 btrfs_block_group_used(&cache->item),
10193 cache->bytes_super, &space_info);
10194
10195 cache->space_info = space_info;
10196
10197 link_block_group(cache);
10198
10199 set_avail_alloc_bits(info, cache->flags);
10200 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10201 inc_block_group_ro(cache, 1);
10202 } else if (btrfs_block_group_used(&cache->item) == 0) {
10203 spin_lock(&info->unused_bgs_lock);
10204 /* Should always be true but just in case. */
10205 if (list_empty(&cache->bg_list)) {
10206 btrfs_get_block_group(cache);
10207 list_add_tail(&cache->bg_list,
10208 &info->unused_bgs);
10209 }
10210 spin_unlock(&info->unused_bgs_lock);
10211 }
10212 }
10213
10214 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10215 if (!(get_alloc_profile(info, space_info->flags) &
10216 (BTRFS_BLOCK_GROUP_RAID10 |
10217 BTRFS_BLOCK_GROUP_RAID1 |
10218 BTRFS_BLOCK_GROUP_RAID5 |
10219 BTRFS_BLOCK_GROUP_RAID6 |
10220 BTRFS_BLOCK_GROUP_DUP)))
10221 continue;
10222 /*
10223 * avoid allocating from un-mirrored block group if there are
10224 * mirrored block groups.
10225 */
10226 list_for_each_entry(cache,
10227 &space_info->block_groups[BTRFS_RAID_RAID0],
10228 list)
10229 inc_block_group_ro(cache, 1);
10230 list_for_each_entry(cache,
10231 &space_info->block_groups[BTRFS_RAID_SINGLE],
10232 list)
10233 inc_block_group_ro(cache, 1);
10234 }
10235
10236 btrfs_add_raid_kobjects(info);
10237 init_global_block_rsv(info);
10238 ret = 0;
10239error:
10240 btrfs_free_path(path);
10241 return ret;
10242}
10243
10244void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10245{
10246 struct btrfs_fs_info *fs_info = trans->fs_info;
10247 struct btrfs_block_group_cache *block_group, *tmp;
10248 struct btrfs_root *extent_root = fs_info->extent_root;
10249 struct btrfs_block_group_item item;
10250 struct btrfs_key key;
10251 int ret = 0;
10252 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10253
10254 trans->can_flush_pending_bgs = false;
10255 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10256 if (ret)
10257 goto next;
10258
10259 spin_lock(&block_group->lock);
10260 memcpy(&item, &block_group->item, sizeof(item));
10261 memcpy(&key, &block_group->key, sizeof(key));
10262 spin_unlock(&block_group->lock);
10263
10264 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10265 sizeof(item));
10266 if (ret)
10267 btrfs_abort_transaction(trans, ret);
10268 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10269 key.offset);
10270 if (ret)
10271 btrfs_abort_transaction(trans, ret);
10272 add_block_group_free_space(trans, fs_info, block_group);
10273 /* already aborted the transaction if it failed. */
10274next:
10275 list_del_init(&block_group->bg_list);
10276 }
10277 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10278}
10279
10280int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10281 struct btrfs_fs_info *fs_info, u64 bytes_used,
10282 u64 type, u64 chunk_offset, u64 size)
10283{
10284 struct btrfs_block_group_cache *cache;
10285 int ret;
10286
10287 btrfs_set_log_full_commit(fs_info, trans);
10288
10289 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10290 if (!cache)
10291 return -ENOMEM;
10292
10293 btrfs_set_block_group_used(&cache->item, bytes_used);
10294 btrfs_set_block_group_chunk_objectid(&cache->item,
10295 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10296 btrfs_set_block_group_flags(&cache->item, type);
10297
10298 cache->flags = type;
10299 cache->last_byte_to_unpin = (u64)-1;
10300 cache->cached = BTRFS_CACHE_FINISHED;
10301 cache->needs_free_space = 1;
10302 ret = exclude_super_stripes(fs_info, cache);
10303 if (ret) {
10304 /*
10305 * We may have excluded something, so call this just in
10306 * case.
10307 */
10308 free_excluded_extents(fs_info, cache);
10309 btrfs_put_block_group(cache);
10310 return ret;
10311 }
10312
10313 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10314
10315 free_excluded_extents(fs_info, cache);
10316
10317#ifdef CONFIG_BTRFS_DEBUG
10318 if (btrfs_should_fragment_free_space(cache)) {
10319 u64 new_bytes_used = size - bytes_used;
10320
10321 bytes_used += new_bytes_used >> 1;
10322 fragment_free_space(cache);
10323 }
10324#endif
10325 /*
10326 * Ensure the corresponding space_info object is created and
10327 * assigned to our block group. We want our bg to be added to the rbtree
10328 * with its ->space_info set.
10329 */
10330 cache->space_info = __find_space_info(fs_info, cache->flags);
10331 ASSERT(cache->space_info);
10332
10333 ret = btrfs_add_block_group_cache(fs_info, cache);
10334 if (ret) {
10335 btrfs_remove_free_space_cache(cache);
10336 btrfs_put_block_group(cache);
10337 return ret;
10338 }
10339
10340 /*
10341 * Now that our block group has its ->space_info set and is inserted in
10342 * the rbtree, update the space info's counters.
10343 */
10344 trace_btrfs_add_block_group(fs_info, cache, 1);
10345 update_space_info(fs_info, cache->flags, size, bytes_used,
10346 cache->bytes_super, &cache->space_info);
10347 update_global_block_rsv(fs_info);
10348
10349 link_block_group(cache);
10350
10351 list_add_tail(&cache->bg_list, &trans->new_bgs);
10352
10353 set_avail_alloc_bits(fs_info, type);
10354 return 0;
10355}
10356
10357static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10358{
10359 u64 extra_flags = chunk_to_extended(flags) &
10360 BTRFS_EXTENDED_PROFILE_MASK;
10361
10362 write_seqlock(&fs_info->profiles_lock);
10363 if (flags & BTRFS_BLOCK_GROUP_DATA)
10364 fs_info->avail_data_alloc_bits &= ~extra_flags;
10365 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10366 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10367 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10368 fs_info->avail_system_alloc_bits &= ~extra_flags;
10369 write_sequnlock(&fs_info->profiles_lock);
10370}
10371
10372int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10373 struct btrfs_fs_info *fs_info, u64 group_start,
10374 struct extent_map *em)
10375{
10376 struct btrfs_root *root = fs_info->extent_root;
10377 struct btrfs_path *path;
10378 struct btrfs_block_group_cache *block_group;
10379 struct btrfs_free_cluster *cluster;
10380 struct btrfs_root *tree_root = fs_info->tree_root;
10381 struct btrfs_key key;
10382 struct inode *inode;
10383 struct kobject *kobj = NULL;
10384 int ret;
10385 int index;
10386 int factor;
10387 struct btrfs_caching_control *caching_ctl = NULL;
10388 bool remove_em;
10389
10390 block_group = btrfs_lookup_block_group(fs_info, group_start);
10391 BUG_ON(!block_group);
10392 BUG_ON(!block_group->ro);
10393
10394 /*
10395 * Free the reserved super bytes from this block group before
10396 * remove it.
10397 */
10398 free_excluded_extents(fs_info, block_group);
10399 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10400 block_group->key.offset);
10401
10402 memcpy(&key, &block_group->key, sizeof(key));
10403 index = btrfs_bg_flags_to_raid_index(block_group->flags);
10404 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10405 BTRFS_BLOCK_GROUP_RAID1 |
10406 BTRFS_BLOCK_GROUP_RAID10))
10407 factor = 2;
10408 else
10409 factor = 1;
10410
10411 /* make sure this block group isn't part of an allocation cluster */
10412 cluster = &fs_info->data_alloc_cluster;
10413 spin_lock(&cluster->refill_lock);
10414 btrfs_return_cluster_to_free_space(block_group, cluster);
10415 spin_unlock(&cluster->refill_lock);
10416
10417 /*
10418 * make sure this block group isn't part of a metadata
10419 * allocation cluster
10420 */
10421 cluster = &fs_info->meta_alloc_cluster;
10422 spin_lock(&cluster->refill_lock);
10423 btrfs_return_cluster_to_free_space(block_group, cluster);
10424 spin_unlock(&cluster->refill_lock);
10425
10426 path = btrfs_alloc_path();
10427 if (!path) {
10428 ret = -ENOMEM;
10429 goto out;
10430 }
10431
10432 /*
10433 * get the inode first so any iput calls done for the io_list
10434 * aren't the final iput (no unlinks allowed now)
10435 */
10436 inode = lookup_free_space_inode(fs_info, block_group, path);
10437
10438 mutex_lock(&trans->transaction->cache_write_mutex);
10439 /*
10440 * make sure our free spache cache IO is done before remove the
10441 * free space inode
10442 */
10443 spin_lock(&trans->transaction->dirty_bgs_lock);
10444 if (!list_empty(&block_group->io_list)) {
10445 list_del_init(&block_group->io_list);
10446
10447 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10448
10449 spin_unlock(&trans->transaction->dirty_bgs_lock);
10450 btrfs_wait_cache_io(trans, block_group, path);
10451 btrfs_put_block_group(block_group);
10452 spin_lock(&trans->transaction->dirty_bgs_lock);
10453 }
10454
10455 if (!list_empty(&block_group->dirty_list)) {
10456 list_del_init(&block_group->dirty_list);
10457 btrfs_put_block_group(block_group);
10458 }
10459 spin_unlock(&trans->transaction->dirty_bgs_lock);
10460 mutex_unlock(&trans->transaction->cache_write_mutex);
10461
10462 if (!IS_ERR(inode)) {
10463 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10464 if (ret) {
10465 btrfs_add_delayed_iput(inode);
10466 goto out;
10467 }
10468 clear_nlink(inode);
10469 /* One for the block groups ref */
10470 spin_lock(&block_group->lock);
10471 if (block_group->iref) {
10472 block_group->iref = 0;
10473 block_group->inode = NULL;
10474 spin_unlock(&block_group->lock);
10475 iput(inode);
10476 } else {
10477 spin_unlock(&block_group->lock);
10478 }
10479 /* One for our lookup ref */
10480 btrfs_add_delayed_iput(inode);
10481 }
10482
10483 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10484 key.offset = block_group->key.objectid;
10485 key.type = 0;
10486
10487 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10488 if (ret < 0)
10489 goto out;
10490 if (ret > 0)
10491 btrfs_release_path(path);
10492 if (ret == 0) {
10493 ret = btrfs_del_item(trans, tree_root, path);
10494 if (ret)
10495 goto out;
10496 btrfs_release_path(path);
10497 }
10498
10499 spin_lock(&fs_info->block_group_cache_lock);
10500 rb_erase(&block_group->cache_node,
10501 &fs_info->block_group_cache_tree);
10502 RB_CLEAR_NODE(&block_group->cache_node);
10503
10504 if (fs_info->first_logical_byte == block_group->key.objectid)
10505 fs_info->first_logical_byte = (u64)-1;
10506 spin_unlock(&fs_info->block_group_cache_lock);
10507
10508 down_write(&block_group->space_info->groups_sem);
10509 /*
10510 * we must use list_del_init so people can check to see if they
10511 * are still on the list after taking the semaphore
10512 */
10513 list_del_init(&block_group->list);
10514 if (list_empty(&block_group->space_info->block_groups[index])) {
10515 kobj = block_group->space_info->block_group_kobjs[index];
10516 block_group->space_info->block_group_kobjs[index] = NULL;
10517 clear_avail_alloc_bits(fs_info, block_group->flags);
10518 }
10519 up_write(&block_group->space_info->groups_sem);
10520 if (kobj) {
10521 kobject_del(kobj);
10522 kobject_put(kobj);
10523 }
10524
10525 if (block_group->has_caching_ctl)
10526 caching_ctl = get_caching_control(block_group);
10527 if (block_group->cached == BTRFS_CACHE_STARTED)
10528 wait_block_group_cache_done(block_group);
10529 if (block_group->has_caching_ctl) {
10530 down_write(&fs_info->commit_root_sem);
10531 if (!caching_ctl) {
10532 struct btrfs_caching_control *ctl;
10533
10534 list_for_each_entry(ctl,
10535 &fs_info->caching_block_groups, list)
10536 if (ctl->block_group == block_group) {
10537 caching_ctl = ctl;
10538 refcount_inc(&caching_ctl->count);
10539 break;
10540 }
10541 }
10542 if (caching_ctl)
10543 list_del_init(&caching_ctl->list);
10544 up_write(&fs_info->commit_root_sem);
10545 if (caching_ctl) {
10546 /* Once for the caching bgs list and once for us. */
10547 put_caching_control(caching_ctl);
10548 put_caching_control(caching_ctl);
10549 }
10550 }
10551
10552 spin_lock(&trans->transaction->dirty_bgs_lock);
10553 if (!list_empty(&block_group->dirty_list)) {
10554 WARN_ON(1);
10555 }
10556 if (!list_empty(&block_group->io_list)) {
10557 WARN_ON(1);
10558 }
10559 spin_unlock(&trans->transaction->dirty_bgs_lock);
10560 btrfs_remove_free_space_cache(block_group);
10561
10562 spin_lock(&block_group->space_info->lock);
10563 list_del_init(&block_group->ro_list);
10564
10565 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10566 WARN_ON(block_group->space_info->total_bytes
10567 < block_group->key.offset);
10568 WARN_ON(block_group->space_info->bytes_readonly
10569 < block_group->key.offset);
10570 WARN_ON(block_group->space_info->disk_total
10571 < block_group->key.offset * factor);
10572 }
10573 block_group->space_info->total_bytes -= block_group->key.offset;
10574 block_group->space_info->bytes_readonly -= block_group->key.offset;
10575 block_group->space_info->disk_total -= block_group->key.offset * factor;
10576
10577 spin_unlock(&block_group->space_info->lock);
10578
10579 memcpy(&key, &block_group->key, sizeof(key));
10580
10581 mutex_lock(&fs_info->chunk_mutex);
10582 if (!list_empty(&em->list)) {
10583 /* We're in the transaction->pending_chunks list. */
10584 free_extent_map(em);
10585 }
10586 spin_lock(&block_group->lock);
10587 block_group->removed = 1;
10588 /*
10589 * At this point trimming can't start on this block group, because we
10590 * removed the block group from the tree fs_info->block_group_cache_tree
10591 * so no one can't find it anymore and even if someone already got this
10592 * block group before we removed it from the rbtree, they have already
10593 * incremented block_group->trimming - if they didn't, they won't find
10594 * any free space entries because we already removed them all when we
10595 * called btrfs_remove_free_space_cache().
10596 *
10597 * And we must not remove the extent map from the fs_info->mapping_tree
10598 * to prevent the same logical address range and physical device space
10599 * ranges from being reused for a new block group. This is because our
10600 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10601 * completely transactionless, so while it is trimming a range the
10602 * currently running transaction might finish and a new one start,
10603 * allowing for new block groups to be created that can reuse the same
10604 * physical device locations unless we take this special care.
10605 *
10606 * There may also be an implicit trim operation if the file system
10607 * is mounted with -odiscard. The same protections must remain
10608 * in place until the extents have been discarded completely when
10609 * the transaction commit has completed.
10610 */
10611 remove_em = (atomic_read(&block_group->trimming) == 0);
10612 /*
10613 * Make sure a trimmer task always sees the em in the pinned_chunks list
10614 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10615 * before checking block_group->removed).
10616 */
10617 if (!remove_em) {
10618 /*
10619 * Our em might be in trans->transaction->pending_chunks which
10620 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10621 * and so is the fs_info->pinned_chunks list.
10622 *
10623 * So at this point we must be holding the chunk_mutex to avoid
10624 * any races with chunk allocation (more specifically at
10625 * volumes.c:contains_pending_extent()), to ensure it always
10626 * sees the em, either in the pending_chunks list or in the
10627 * pinned_chunks list.
10628 */
10629 list_move_tail(&em->list, &fs_info->pinned_chunks);
10630 }
10631 spin_unlock(&block_group->lock);
10632
10633 if (remove_em) {
10634 struct extent_map_tree *em_tree;
10635
10636 em_tree = &fs_info->mapping_tree.map_tree;
10637 write_lock(&em_tree->lock);
10638 /*
10639 * The em might be in the pending_chunks list, so make sure the
10640 * chunk mutex is locked, since remove_extent_mapping() will
10641 * delete us from that list.
10642 */
10643 remove_extent_mapping(em_tree, em);
10644 write_unlock(&em_tree->lock);
10645 /* once for the tree */
10646 free_extent_map(em);
10647 }
10648
10649 mutex_unlock(&fs_info->chunk_mutex);
10650
10651 ret = remove_block_group_free_space(trans, fs_info, block_group);
10652 if (ret)
10653 goto out;
10654
10655 btrfs_put_block_group(block_group);
10656 btrfs_put_block_group(block_group);
10657
10658 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10659 if (ret > 0)
10660 ret = -EIO;
10661 if (ret < 0)
10662 goto out;
10663
10664 ret = btrfs_del_item(trans, root, path);
10665out:
10666 btrfs_free_path(path);
10667 return ret;
10668}
10669
10670struct btrfs_trans_handle *
10671btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10672 const u64 chunk_offset)
10673{
10674 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10675 struct extent_map *em;
10676 struct map_lookup *map;
10677 unsigned int num_items;
10678
10679 read_lock(&em_tree->lock);
10680 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10681 read_unlock(&em_tree->lock);
10682 ASSERT(em && em->start == chunk_offset);
10683
10684 /*
10685 * We need to reserve 3 + N units from the metadata space info in order
10686 * to remove a block group (done at btrfs_remove_chunk() and at
10687 * btrfs_remove_block_group()), which are used for:
10688 *
10689 * 1 unit for adding the free space inode's orphan (located in the tree
10690 * of tree roots).
10691 * 1 unit for deleting the block group item (located in the extent
10692 * tree).
10693 * 1 unit for deleting the free space item (located in tree of tree
10694 * roots).
10695 * N units for deleting N device extent items corresponding to each
10696 * stripe (located in the device tree).
10697 *
10698 * In order to remove a block group we also need to reserve units in the
10699 * system space info in order to update the chunk tree (update one or
10700 * more device items and remove one chunk item), but this is done at
10701 * btrfs_remove_chunk() through a call to check_system_chunk().
10702 */
10703 map = em->map_lookup;
10704 num_items = 3 + map->num_stripes;
10705 free_extent_map(em);
10706
10707 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10708 num_items, 1);
10709}
10710
10711/*
10712 * Process the unused_bgs list and remove any that don't have any allocated
10713 * space inside of them.
10714 */
10715void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10716{
10717 struct btrfs_block_group_cache *block_group;
10718 struct btrfs_space_info *space_info;
10719 struct btrfs_trans_handle *trans;
10720 int ret = 0;
10721
10722 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10723 return;
10724
10725 spin_lock(&fs_info->unused_bgs_lock);
10726 while (!list_empty(&fs_info->unused_bgs)) {
10727 u64 start, end;
10728 int trimming;
10729
10730 block_group = list_first_entry(&fs_info->unused_bgs,
10731 struct btrfs_block_group_cache,
10732 bg_list);
10733 list_del_init(&block_group->bg_list);
10734
10735 space_info = block_group->space_info;
10736
10737 if (ret || btrfs_mixed_space_info(space_info)) {
10738 btrfs_put_block_group(block_group);
10739 continue;
10740 }
10741 spin_unlock(&fs_info->unused_bgs_lock);
10742
10743 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10744
10745 /* Don't want to race with allocators so take the groups_sem */
10746 down_write(&space_info->groups_sem);
10747 spin_lock(&block_group->lock);
10748 if (block_group->reserved ||
10749 btrfs_block_group_used(&block_group->item) ||
10750 block_group->ro ||
10751 list_is_singular(&block_group->list)) {
10752 /*
10753 * We want to bail if we made new allocations or have
10754 * outstanding allocations in this block group. We do
10755 * the ro check in case balance is currently acting on
10756 * this block group.
10757 */
10758 spin_unlock(&block_group->lock);
10759 up_write(&space_info->groups_sem);
10760 goto next;
10761 }
10762 spin_unlock(&block_group->lock);
10763
10764 /* We don't want to force the issue, only flip if it's ok. */
10765 ret = inc_block_group_ro(block_group, 0);
10766 up_write(&space_info->groups_sem);
10767 if (ret < 0) {
10768 ret = 0;
10769 goto next;
10770 }
10771
10772 /*
10773 * Want to do this before we do anything else so we can recover
10774 * properly if we fail to join the transaction.
10775 */
10776 trans = btrfs_start_trans_remove_block_group(fs_info,
10777 block_group->key.objectid);
10778 if (IS_ERR(trans)) {
10779 btrfs_dec_block_group_ro(block_group);
10780 ret = PTR_ERR(trans);
10781 goto next;
10782 }
10783
10784 /*
10785 * We could have pending pinned extents for this block group,
10786 * just delete them, we don't care about them anymore.
10787 */
10788 start = block_group->key.objectid;
10789 end = start + block_group->key.offset - 1;
10790 /*
10791 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10792 * btrfs_finish_extent_commit(). If we are at transaction N,
10793 * another task might be running finish_extent_commit() for the
10794 * previous transaction N - 1, and have seen a range belonging
10795 * to the block group in freed_extents[] before we were able to
10796 * clear the whole block group range from freed_extents[]. This
10797 * means that task can lookup for the block group after we
10798 * unpinned it from freed_extents[] and removed it, leading to
10799 * a BUG_ON() at btrfs_unpin_extent_range().
10800 */
10801 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10802 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10803 EXTENT_DIRTY);
10804 if (ret) {
10805 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10806 btrfs_dec_block_group_ro(block_group);
10807 goto end_trans;
10808 }
10809 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10810 EXTENT_DIRTY);
10811 if (ret) {
10812 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10813 btrfs_dec_block_group_ro(block_group);
10814 goto end_trans;
10815 }
10816 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10817
10818 /* Reset pinned so btrfs_put_block_group doesn't complain */
10819 spin_lock(&space_info->lock);
10820 spin_lock(&block_group->lock);
10821
10822 space_info->bytes_pinned -= block_group->pinned;
10823 space_info->bytes_readonly += block_group->pinned;
10824 percpu_counter_add(&space_info->total_bytes_pinned,
10825 -block_group->pinned);
10826 block_group->pinned = 0;
10827
10828 spin_unlock(&block_group->lock);
10829 spin_unlock(&space_info->lock);
10830
10831 /* DISCARD can flip during remount */
10832 trimming = btrfs_test_opt(fs_info, DISCARD);
10833
10834 /* Implicit trim during transaction commit. */
10835 if (trimming)
10836 btrfs_get_block_group_trimming(block_group);
10837
10838 /*
10839 * Btrfs_remove_chunk will abort the transaction if things go
10840 * horribly wrong.
10841 */
10842 ret = btrfs_remove_chunk(trans, fs_info,
10843 block_group->key.objectid);
10844
10845 if (ret) {
10846 if (trimming)
10847 btrfs_put_block_group_trimming(block_group);
10848 goto end_trans;
10849 }
10850
10851 /*
10852 * If we're not mounted with -odiscard, we can just forget
10853 * about this block group. Otherwise we'll need to wait
10854 * until transaction commit to do the actual discard.
10855 */
10856 if (trimming) {
10857 spin_lock(&fs_info->unused_bgs_lock);
10858 /*
10859 * A concurrent scrub might have added us to the list
10860 * fs_info->unused_bgs, so use a list_move operation
10861 * to add the block group to the deleted_bgs list.
10862 */
10863 list_move(&block_group->bg_list,
10864 &trans->transaction->deleted_bgs);
10865 spin_unlock(&fs_info->unused_bgs_lock);
10866 btrfs_get_block_group(block_group);
10867 }
10868end_trans:
10869 btrfs_end_transaction(trans);
10870next:
10871 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10872 btrfs_put_block_group(block_group);
10873 spin_lock(&fs_info->unused_bgs_lock);
10874 }
10875 spin_unlock(&fs_info->unused_bgs_lock);
10876}
10877
10878int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10879{
10880 struct btrfs_space_info *space_info;
10881 struct btrfs_super_block *disk_super;
10882 u64 features;
10883 u64 flags;
10884 int mixed = 0;
10885 int ret;
10886
10887 disk_super = fs_info->super_copy;
10888 if (!btrfs_super_root(disk_super))
10889 return -EINVAL;
10890
10891 features = btrfs_super_incompat_flags(disk_super);
10892 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10893 mixed = 1;
10894
10895 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10896 ret = create_space_info(fs_info, flags, &space_info);
10897 if (ret)
10898 goto out;
10899
10900 if (mixed) {
10901 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10902 ret = create_space_info(fs_info, flags, &space_info);
10903 } else {
10904 flags = BTRFS_BLOCK_GROUP_METADATA;
10905 ret = create_space_info(fs_info, flags, &space_info);
10906 if (ret)
10907 goto out;
10908
10909 flags = BTRFS_BLOCK_GROUP_DATA;
10910 ret = create_space_info(fs_info, flags, &space_info);
10911 }
10912out:
10913 return ret;
10914}
10915
10916int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10917 u64 start, u64 end)
10918{
10919 return unpin_extent_range(fs_info, start, end, false);
10920}
10921
10922/*
10923 * It used to be that old block groups would be left around forever.
10924 * Iterating over them would be enough to trim unused space. Since we
10925 * now automatically remove them, we also need to iterate over unallocated
10926 * space.
10927 *
10928 * We don't want a transaction for this since the discard may take a
10929 * substantial amount of time. We don't require that a transaction be
10930 * running, but we do need to take a running transaction into account
10931 * to ensure that we're not discarding chunks that were released in
10932 * the current transaction.
10933 *
10934 * Holding the chunks lock will prevent other threads from allocating
10935 * or releasing chunks, but it won't prevent a running transaction
10936 * from committing and releasing the memory that the pending chunks
10937 * list head uses. For that, we need to take a reference to the
10938 * transaction.
10939 */
10940static int btrfs_trim_free_extents(struct btrfs_device *device,
10941 u64 minlen, u64 *trimmed)
10942{
10943 u64 start = 0, len = 0;
10944 int ret;
10945
10946 *trimmed = 0;
10947
10948 /* Not writeable = nothing to do. */
10949 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10950 return 0;
10951
10952 /* No free space = nothing to do. */
10953 if (device->total_bytes <= device->bytes_used)
10954 return 0;
10955
10956 ret = 0;
10957
10958 while (1) {
10959 struct btrfs_fs_info *fs_info = device->fs_info;
10960 struct btrfs_transaction *trans;
10961 u64 bytes;
10962
10963 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10964 if (ret)
10965 return ret;
10966
10967 down_read(&fs_info->commit_root_sem);
10968
10969 spin_lock(&fs_info->trans_lock);
10970 trans = fs_info->running_transaction;
10971 if (trans)
10972 refcount_inc(&trans->use_count);
10973 spin_unlock(&fs_info->trans_lock);
10974
10975 ret = find_free_dev_extent_start(trans, device, minlen, start,
10976 &start, &len);
10977 if (trans)
10978 btrfs_put_transaction(trans);
10979
10980 if (ret) {
10981 up_read(&fs_info->commit_root_sem);
10982 mutex_unlock(&fs_info->chunk_mutex);
10983 if (ret == -ENOSPC)
10984 ret = 0;
10985 break;
10986 }
10987
10988 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10989 up_read(&fs_info->commit_root_sem);
10990 mutex_unlock(&fs_info->chunk_mutex);
10991
10992 if (ret)
10993 break;
10994
10995 start += len;
10996 *trimmed += bytes;
10997
10998 if (fatal_signal_pending(current)) {
10999 ret = -ERESTARTSYS;
11000 break;
11001 }
11002
11003 cond_resched();
11004 }
11005
11006 return ret;
11007}
11008
11009int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
11010{
11011 struct btrfs_block_group_cache *cache = NULL;
11012 struct btrfs_device *device;
11013 struct list_head *devices;
11014 u64 group_trimmed;
11015 u64 start;
11016 u64 end;
11017 u64 trimmed = 0;
11018 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
11019 int ret = 0;
11020
11021 /*
11022 * try to trim all FS space, our block group may start from non-zero.
11023 */
11024 if (range->len == total_bytes)
11025 cache = btrfs_lookup_first_block_group(fs_info, range->start);
11026 else
11027 cache = btrfs_lookup_block_group(fs_info, range->start);
11028
11029 while (cache) {
11030 if (cache->key.objectid >= (range->start + range->len)) {
11031 btrfs_put_block_group(cache);
11032 break;
11033 }
11034
11035 start = max(range->start, cache->key.objectid);
11036 end = min(range->start + range->len,
11037 cache->key.objectid + cache->key.offset);
11038
11039 if (end - start >= range->minlen) {
11040 if (!block_group_cache_done(cache)) {
11041 ret = cache_block_group(cache, 0);
11042 if (ret) {
11043 btrfs_put_block_group(cache);
11044 break;
11045 }
11046 ret = wait_block_group_cache_done(cache);
11047 if (ret) {
11048 btrfs_put_block_group(cache);
11049 break;
11050 }
11051 }
11052 ret = btrfs_trim_block_group(cache,
11053 &group_trimmed,
11054 start,
11055 end,
11056 range->minlen);
11057
11058 trimmed += group_trimmed;
11059 if (ret) {
11060 btrfs_put_block_group(cache);
11061 break;
11062 }
11063 }
11064
11065 cache = next_block_group(fs_info, cache);
11066 }
11067
11068 mutex_lock(&fs_info->fs_devices->device_list_mutex);
11069 devices = &fs_info->fs_devices->alloc_list;
11070 list_for_each_entry(device, devices, dev_alloc_list) {
11071 ret = btrfs_trim_free_extents(device, range->minlen,
11072 &group_trimmed);
11073 if (ret)
11074 break;
11075
11076 trimmed += group_trimmed;
11077 }
11078 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11079
11080 range->len = trimmed;
11081 return ret;
11082}
11083
11084/*
11085 * btrfs_{start,end}_write_no_snapshotting() are similar to
11086 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11087 * data into the page cache through nocow before the subvolume is snapshoted,
11088 * but flush the data into disk after the snapshot creation, or to prevent
11089 * operations while snapshotting is ongoing and that cause the snapshot to be
11090 * inconsistent (writes followed by expanding truncates for example).
11091 */
11092void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11093{
11094 percpu_counter_dec(&root->subv_writers->counter);
11095 /*
11096 * Make sure counter is updated before we wake up waiters.
11097 */
11098 smp_mb();
11099 if (waitqueue_active(&root->subv_writers->wait))
11100 wake_up(&root->subv_writers->wait);
11101}
11102
11103int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11104{
11105 if (atomic_read(&root->will_be_snapshotted))
11106 return 0;
11107
11108 percpu_counter_inc(&root->subv_writers->counter);
11109 /*
11110 * Make sure counter is updated before we check for snapshot creation.
11111 */
11112 smp_mb();
11113 if (atomic_read(&root->will_be_snapshotted)) {
11114 btrfs_end_write_no_snapshotting(root);
11115 return 0;
11116 }
11117 return 1;
11118}
11119
11120void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11121{
11122 while (true) {
11123 int ret;
11124
11125 ret = btrfs_start_write_no_snapshotting(root);
11126 if (ret)
11127 break;
11128 wait_var_event(&root->will_be_snapshotted,
11129 !atomic_read(&root->will_be_snapshotted));
11130 }
11131}