Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/signal.h>
   8#include <linux/pagemap.h>
   9#include <linux/writeback.h>
  10#include <linux/blkdev.h>
  11#include <linux/sort.h>
  12#include <linux/rcupdate.h>
  13#include <linux/kthread.h>
  14#include <linux/slab.h>
  15#include <linux/ratelimit.h>
  16#include <linux/percpu_counter.h>
  17#include <linux/lockdep.h>
  18#include <linux/crc32c.h>
  19#include "misc.h"
  20#include "tree-log.h"
  21#include "disk-io.h"
  22#include "print-tree.h"
  23#include "volumes.h"
  24#include "raid56.h"
  25#include "locking.h"
  26#include "free-space-cache.h"
  27#include "free-space-tree.h"
 
  28#include "sysfs.h"
  29#include "qgroup.h"
  30#include "ref-verify.h"
  31#include "space-info.h"
  32#include "block-rsv.h"
  33#include "delalloc-space.h"
  34#include "block-group.h"
  35
  36#undef SCRAMBLE_DELAYED_REFS
  37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  38
 
 
 
  39static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  40			       struct btrfs_delayed_ref_node *node, u64 parent,
  41			       u64 root_objectid, u64 owner_objectid,
  42			       u64 owner_offset, int refs_to_drop,
  43			       struct btrfs_delayed_extent_op *extra_op);
 
  44static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  45				    struct extent_buffer *leaf,
  46				    struct btrfs_extent_item *ei);
  47static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
 
  48				      u64 parent, u64 root_objectid,
  49				      u64 flags, u64 owner, u64 offset,
  50				      struct btrfs_key *ins, int ref_mod);
  51static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  52				     struct btrfs_delayed_ref_node *node,
  53				     struct btrfs_delayed_extent_op *extent_op);
 
 
 
 
 
  54static int find_next_key(struct btrfs_path *path, int level,
  55			 struct btrfs_key *key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56
  57static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
  58{
  59	return (cache->flags & bits) == bits;
  60}
  61
  62int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
  63			      u64 start, u64 num_bytes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64{
  65	u64 end = start + num_bytes - 1;
  66	set_extent_bits(&fs_info->freed_extents[0],
  67			start, end, EXTENT_UPTODATE);
  68	set_extent_bits(&fs_info->freed_extents[1],
  69			start, end, EXTENT_UPTODATE);
  70	return 0;
  71}
  72
  73void btrfs_free_excluded_extents(struct btrfs_block_group_cache *cache)
 
  74{
  75	struct btrfs_fs_info *fs_info = cache->fs_info;
  76	u64 start, end;
  77
  78	start = cache->key.objectid;
  79	end = start + cache->key.offset - 1;
  80
  81	clear_extent_bits(&fs_info->freed_extents[0],
  82			  start, end, EXTENT_UPTODATE);
  83	clear_extent_bits(&fs_info->freed_extents[1],
  84			  start, end, EXTENT_UPTODATE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85}
  86
  87static u64 generic_ref_to_space_flags(struct btrfs_ref *ref)
 
 
  88{
  89	if (ref->type == BTRFS_REF_METADATA) {
  90		if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
  91			return BTRFS_BLOCK_GROUP_SYSTEM;
 
 
 
 
 
 
 
 
  92		else
  93			return BTRFS_BLOCK_GROUP_METADATA;
  94	}
  95	return BTRFS_BLOCK_GROUP_DATA;
  96}
 
  97
  98static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
  99			     struct btrfs_ref *ref)
 
 
 
 
 
 100{
 101	struct btrfs_space_info *space_info;
 102	u64 flags = generic_ref_to_space_flags(ref);
 103
 104	space_info = btrfs_find_space_info(fs_info, flags);
 105	ASSERT(space_info);
 106	percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len,
 107		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108}
 109
 110static void sub_pinned_bytes(struct btrfs_fs_info *fs_info,
 111			     struct btrfs_ref *ref)
 112{
 113	struct btrfs_space_info *space_info;
 114	u64 flags = generic_ref_to_space_flags(ref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115
 116	space_info = btrfs_find_space_info(fs_info, flags);
 117	ASSERT(space_info);
 118	percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len,
 119		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 120}
 121
 122/* simple helper to search for an existing data extent at a given offset */
 123int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
 124{
 125	int ret;
 126	struct btrfs_key key;
 127	struct btrfs_path *path;
 128
 129	path = btrfs_alloc_path();
 130	if (!path)
 131		return -ENOMEM;
 132
 133	key.objectid = start;
 134	key.offset = len;
 135	key.type = BTRFS_EXTENT_ITEM_KEY;
 136	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
 
 137	btrfs_free_path(path);
 138	return ret;
 139}
 140
 141/*
 142 * helper function to lookup reference count and flags of a tree block.
 143 *
 144 * the head node for delayed ref is used to store the sum of all the
 145 * reference count modifications queued up in the rbtree. the head
 146 * node may also store the extent flags to set. This way you can check
 147 * to see what the reference count and extent flags would be if all of
 148 * the delayed refs are not processed.
 149 */
 150int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
 151			     struct btrfs_fs_info *fs_info, u64 bytenr,
 152			     u64 offset, int metadata, u64 *refs, u64 *flags)
 153{
 154	struct btrfs_delayed_ref_head *head;
 155	struct btrfs_delayed_ref_root *delayed_refs;
 156	struct btrfs_path *path;
 157	struct btrfs_extent_item *ei;
 158	struct extent_buffer *leaf;
 159	struct btrfs_key key;
 160	u32 item_size;
 161	u64 num_refs;
 162	u64 extent_flags;
 163	int ret;
 164
 165	/*
 166	 * If we don't have skinny metadata, don't bother doing anything
 167	 * different
 168	 */
 169	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
 170		offset = fs_info->nodesize;
 171		metadata = 0;
 172	}
 173
 174	path = btrfs_alloc_path();
 175	if (!path)
 176		return -ENOMEM;
 177
 178	if (!trans) {
 179		path->skip_locking = 1;
 180		path->search_commit_root = 1;
 181	}
 182
 183search_again:
 184	key.objectid = bytenr;
 185	key.offset = offset;
 186	if (metadata)
 187		key.type = BTRFS_METADATA_ITEM_KEY;
 188	else
 189		key.type = BTRFS_EXTENT_ITEM_KEY;
 190
 191	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
 
 192	if (ret < 0)
 193		goto out_free;
 194
 195	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
 196		if (path->slots[0]) {
 197			path->slots[0]--;
 198			btrfs_item_key_to_cpu(path->nodes[0], &key,
 199					      path->slots[0]);
 200			if (key.objectid == bytenr &&
 201			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 202			    key.offset == fs_info->nodesize)
 203				ret = 0;
 204		}
 205	}
 206
 207	if (ret == 0) {
 208		leaf = path->nodes[0];
 209		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 210		if (item_size >= sizeof(*ei)) {
 211			ei = btrfs_item_ptr(leaf, path->slots[0],
 212					    struct btrfs_extent_item);
 213			num_refs = btrfs_extent_refs(leaf, ei);
 214			extent_flags = btrfs_extent_flags(leaf, ei);
 215		} else {
 216			ret = -EINVAL;
 217			btrfs_print_v0_err(fs_info);
 218			if (trans)
 219				btrfs_abort_transaction(trans, ret);
 220			else
 221				btrfs_handle_fs_error(fs_info, ret, NULL);
 222
 223			goto out_free;
 
 
 
 224		}
 225
 226		BUG_ON(num_refs == 0);
 227	} else {
 228		num_refs = 0;
 229		extent_flags = 0;
 230		ret = 0;
 231	}
 232
 233	if (!trans)
 234		goto out;
 235
 236	delayed_refs = &trans->transaction->delayed_refs;
 237	spin_lock(&delayed_refs->lock);
 238	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
 239	if (head) {
 240		if (!mutex_trylock(&head->mutex)) {
 241			refcount_inc(&head->refs);
 242			spin_unlock(&delayed_refs->lock);
 243
 244			btrfs_release_path(path);
 245
 246			/*
 247			 * Mutex was contended, block until it's released and try
 248			 * again
 249			 */
 250			mutex_lock(&head->mutex);
 251			mutex_unlock(&head->mutex);
 252			btrfs_put_delayed_ref_head(head);
 253			goto search_again;
 254		}
 255		spin_lock(&head->lock);
 256		if (head->extent_op && head->extent_op->update_flags)
 257			extent_flags |= head->extent_op->flags_to_set;
 258		else
 259			BUG_ON(num_refs == 0);
 260
 261		num_refs += head->ref_mod;
 262		spin_unlock(&head->lock);
 263		mutex_unlock(&head->mutex);
 264	}
 265	spin_unlock(&delayed_refs->lock);
 266out:
 267	WARN_ON(num_refs == 0);
 268	if (refs)
 269		*refs = num_refs;
 270	if (flags)
 271		*flags = extent_flags;
 272out_free:
 273	btrfs_free_path(path);
 274	return ret;
 275}
 276
 277/*
 278 * Back reference rules.  Back refs have three main goals:
 279 *
 280 * 1) differentiate between all holders of references to an extent so that
 281 *    when a reference is dropped we can make sure it was a valid reference
 282 *    before freeing the extent.
 283 *
 284 * 2) Provide enough information to quickly find the holders of an extent
 285 *    if we notice a given block is corrupted or bad.
 286 *
 287 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
 288 *    maintenance.  This is actually the same as #2, but with a slightly
 289 *    different use case.
 290 *
 291 * There are two kinds of back refs. The implicit back refs is optimized
 292 * for pointers in non-shared tree blocks. For a given pointer in a block,
 293 * back refs of this kind provide information about the block's owner tree
 294 * and the pointer's key. These information allow us to find the block by
 295 * b-tree searching. The full back refs is for pointers in tree blocks not
 296 * referenced by their owner trees. The location of tree block is recorded
 297 * in the back refs. Actually the full back refs is generic, and can be
 298 * used in all cases the implicit back refs is used. The major shortcoming
 299 * of the full back refs is its overhead. Every time a tree block gets
 300 * COWed, we have to update back refs entry for all pointers in it.
 301 *
 302 * For a newly allocated tree block, we use implicit back refs for
 303 * pointers in it. This means most tree related operations only involve
 304 * implicit back refs. For a tree block created in old transaction, the
 305 * only way to drop a reference to it is COW it. So we can detect the
 306 * event that tree block loses its owner tree's reference and do the
 307 * back refs conversion.
 308 *
 309 * When a tree block is COWed through a tree, there are four cases:
 310 *
 311 * The reference count of the block is one and the tree is the block's
 312 * owner tree. Nothing to do in this case.
 313 *
 314 * The reference count of the block is one and the tree is not the
 315 * block's owner tree. In this case, full back refs is used for pointers
 316 * in the block. Remove these full back refs, add implicit back refs for
 317 * every pointers in the new block.
 318 *
 319 * The reference count of the block is greater than one and the tree is
 320 * the block's owner tree. In this case, implicit back refs is used for
 321 * pointers in the block. Add full back refs for every pointers in the
 322 * block, increase lower level extents' reference counts. The original
 323 * implicit back refs are entailed to the new block.
 324 *
 325 * The reference count of the block is greater than one and the tree is
 326 * not the block's owner tree. Add implicit back refs for every pointer in
 327 * the new block, increase lower level extents' reference count.
 328 *
 329 * Back Reference Key composing:
 330 *
 331 * The key objectid corresponds to the first byte in the extent,
 332 * The key type is used to differentiate between types of back refs.
 333 * There are different meanings of the key offset for different types
 334 * of back refs.
 335 *
 336 * File extents can be referenced by:
 337 *
 338 * - multiple snapshots, subvolumes, or different generations in one subvol
 339 * - different files inside a single subvolume
 340 * - different offsets inside a file (bookend extents in file.c)
 341 *
 342 * The extent ref structure for the implicit back refs has fields for:
 343 *
 344 * - Objectid of the subvolume root
 345 * - objectid of the file holding the reference
 346 * - original offset in the file
 347 * - how many bookend extents
 348 *
 349 * The key offset for the implicit back refs is hash of the first
 350 * three fields.
 351 *
 352 * The extent ref structure for the full back refs has field for:
 353 *
 354 * - number of pointers in the tree leaf
 355 *
 356 * The key offset for the implicit back refs is the first byte of
 357 * the tree leaf
 358 *
 359 * When a file extent is allocated, The implicit back refs is used.
 360 * the fields are filled in:
 361 *
 362 *     (root_key.objectid, inode objectid, offset in file, 1)
 363 *
 364 * When a file extent is removed file truncation, we find the
 365 * corresponding implicit back refs and check the following fields:
 366 *
 367 *     (btrfs_header_owner(leaf), inode objectid, offset in file)
 368 *
 369 * Btree extents can be referenced by:
 370 *
 371 * - Different subvolumes
 372 *
 373 * Both the implicit back refs and the full back refs for tree blocks
 374 * only consist of key. The key offset for the implicit back refs is
 375 * objectid of block's owner tree. The key offset for the full back refs
 376 * is the first byte of parent block.
 377 *
 378 * When implicit back refs is used, information about the lowest key and
 379 * level of the tree block are required. These information are stored in
 380 * tree block info structure.
 381 */
 382
 383/*
 384 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
 385 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
 386 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
 387 */
 388int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
 389				     struct btrfs_extent_inline_ref *iref,
 390				     enum btrfs_inline_ref_type is_data)
 391{
 392	int type = btrfs_extent_inline_ref_type(eb, iref);
 393	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
 394
 395	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
 396	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
 397	    type == BTRFS_SHARED_DATA_REF_KEY ||
 398	    type == BTRFS_EXTENT_DATA_REF_KEY) {
 399		if (is_data == BTRFS_REF_TYPE_BLOCK) {
 400			if (type == BTRFS_TREE_BLOCK_REF_KEY)
 401				return type;
 402			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
 403				ASSERT(eb->fs_info);
 404				/*
 405				 * Every shared one has parent tree
 406				 * block, which must be aligned to
 407				 * nodesize.
 408				 */
 409				if (offset &&
 410				    IS_ALIGNED(offset, eb->fs_info->nodesize))
 411					return type;
 412			}
 413		} else if (is_data == BTRFS_REF_TYPE_DATA) {
 414			if (type == BTRFS_EXTENT_DATA_REF_KEY)
 415				return type;
 416			if (type == BTRFS_SHARED_DATA_REF_KEY) {
 417				ASSERT(eb->fs_info);
 418				/*
 419				 * Every shared one has parent tree
 420				 * block, which must be aligned to
 421				 * nodesize.
 422				 */
 423				if (offset &&
 424				    IS_ALIGNED(offset, eb->fs_info->nodesize))
 425					return type;
 426			}
 427		} else {
 428			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
 429			return type;
 
 
 
 
 
 
 
 
 430		}
 431	}
 
 
 
 
 
 
 
 
 
 
 
 432
 433	btrfs_print_leaf((struct extent_buffer *)eb);
 434	btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
 435		  eb->start, type);
 436	WARN_ON(1);
 437
 438	return BTRFS_REF_TYPE_INVALID;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439}
 
 440
 441u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
 442{
 443	u32 high_crc = ~(u32)0;
 444	u32 low_crc = ~(u32)0;
 445	__le64 lenum;
 446
 447	lenum = cpu_to_le64(root_objectid);
 448	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
 449	lenum = cpu_to_le64(owner);
 450	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
 451	lenum = cpu_to_le64(offset);
 452	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
 453
 454	return ((u64)high_crc << 31) ^ (u64)low_crc;
 455}
 456
 457static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
 458				     struct btrfs_extent_data_ref *ref)
 459{
 460	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
 461				    btrfs_extent_data_ref_objectid(leaf, ref),
 462				    btrfs_extent_data_ref_offset(leaf, ref));
 463}
 464
 465static int match_extent_data_ref(struct extent_buffer *leaf,
 466				 struct btrfs_extent_data_ref *ref,
 467				 u64 root_objectid, u64 owner, u64 offset)
 468{
 469	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
 470	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
 471	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
 472		return 0;
 473	return 1;
 474}
 475
 476static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
 
 477					   struct btrfs_path *path,
 478					   u64 bytenr, u64 parent,
 479					   u64 root_objectid,
 480					   u64 owner, u64 offset)
 481{
 482	struct btrfs_root *root = trans->fs_info->extent_root;
 483	struct btrfs_key key;
 484	struct btrfs_extent_data_ref *ref;
 485	struct extent_buffer *leaf;
 486	u32 nritems;
 487	int ret;
 488	int recow;
 489	int err = -ENOENT;
 490
 491	key.objectid = bytenr;
 492	if (parent) {
 493		key.type = BTRFS_SHARED_DATA_REF_KEY;
 494		key.offset = parent;
 495	} else {
 496		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 497		key.offset = hash_extent_data_ref(root_objectid,
 498						  owner, offset);
 499	}
 500again:
 501	recow = 0;
 502	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 503	if (ret < 0) {
 504		err = ret;
 505		goto fail;
 506	}
 507
 508	if (parent) {
 509		if (!ret)
 510			return 0;
 
 
 
 
 
 
 
 
 
 
 
 511		goto fail;
 512	}
 513
 514	leaf = path->nodes[0];
 515	nritems = btrfs_header_nritems(leaf);
 516	while (1) {
 517		if (path->slots[0] >= nritems) {
 518			ret = btrfs_next_leaf(root, path);
 519			if (ret < 0)
 520				err = ret;
 521			if (ret)
 522				goto fail;
 523
 524			leaf = path->nodes[0];
 525			nritems = btrfs_header_nritems(leaf);
 526			recow = 1;
 527		}
 528
 529		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 530		if (key.objectid != bytenr ||
 531		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
 532			goto fail;
 533
 534		ref = btrfs_item_ptr(leaf, path->slots[0],
 535				     struct btrfs_extent_data_ref);
 536
 537		if (match_extent_data_ref(leaf, ref, root_objectid,
 538					  owner, offset)) {
 539			if (recow) {
 540				btrfs_release_path(path);
 541				goto again;
 542			}
 543			err = 0;
 544			break;
 545		}
 546		path->slots[0]++;
 547	}
 548fail:
 549	return err;
 550}
 551
 552static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
 
 553					   struct btrfs_path *path,
 554					   u64 bytenr, u64 parent,
 555					   u64 root_objectid, u64 owner,
 556					   u64 offset, int refs_to_add)
 557{
 558	struct btrfs_root *root = trans->fs_info->extent_root;
 559	struct btrfs_key key;
 560	struct extent_buffer *leaf;
 561	u32 size;
 562	u32 num_refs;
 563	int ret;
 564
 565	key.objectid = bytenr;
 566	if (parent) {
 567		key.type = BTRFS_SHARED_DATA_REF_KEY;
 568		key.offset = parent;
 569		size = sizeof(struct btrfs_shared_data_ref);
 570	} else {
 571		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 572		key.offset = hash_extent_data_ref(root_objectid,
 573						  owner, offset);
 574		size = sizeof(struct btrfs_extent_data_ref);
 575	}
 576
 577	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
 578	if (ret && ret != -EEXIST)
 579		goto fail;
 580
 581	leaf = path->nodes[0];
 582	if (parent) {
 583		struct btrfs_shared_data_ref *ref;
 584		ref = btrfs_item_ptr(leaf, path->slots[0],
 585				     struct btrfs_shared_data_ref);
 586		if (ret == 0) {
 587			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
 588		} else {
 589			num_refs = btrfs_shared_data_ref_count(leaf, ref);
 590			num_refs += refs_to_add;
 591			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
 592		}
 593	} else {
 594		struct btrfs_extent_data_ref *ref;
 595		while (ret == -EEXIST) {
 596			ref = btrfs_item_ptr(leaf, path->slots[0],
 597					     struct btrfs_extent_data_ref);
 598			if (match_extent_data_ref(leaf, ref, root_objectid,
 599						  owner, offset))
 600				break;
 601			btrfs_release_path(path);
 602			key.offset++;
 603			ret = btrfs_insert_empty_item(trans, root, path, &key,
 604						      size);
 605			if (ret && ret != -EEXIST)
 606				goto fail;
 607
 608			leaf = path->nodes[0];
 609		}
 610		ref = btrfs_item_ptr(leaf, path->slots[0],
 611				     struct btrfs_extent_data_ref);
 612		if (ret == 0) {
 613			btrfs_set_extent_data_ref_root(leaf, ref,
 614						       root_objectid);
 615			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
 616			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
 617			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
 618		} else {
 619			num_refs = btrfs_extent_data_ref_count(leaf, ref);
 620			num_refs += refs_to_add;
 621			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
 622		}
 623	}
 624	btrfs_mark_buffer_dirty(leaf);
 625	ret = 0;
 626fail:
 627	btrfs_release_path(path);
 628	return ret;
 629}
 630
 631static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
 
 632					   struct btrfs_path *path,
 633					   int refs_to_drop, int *last_ref)
 634{
 635	struct btrfs_key key;
 636	struct btrfs_extent_data_ref *ref1 = NULL;
 637	struct btrfs_shared_data_ref *ref2 = NULL;
 638	struct extent_buffer *leaf;
 639	u32 num_refs = 0;
 640	int ret = 0;
 641
 642	leaf = path->nodes[0];
 643	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 644
 645	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 646		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 647				      struct btrfs_extent_data_ref);
 648		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 649	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 650		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 651				      struct btrfs_shared_data_ref);
 652		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 653	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
 654		btrfs_print_v0_err(trans->fs_info);
 655		btrfs_abort_transaction(trans, -EINVAL);
 656		return -EINVAL;
 
 
 
 657	} else {
 658		BUG();
 659	}
 660
 661	BUG_ON(num_refs < refs_to_drop);
 662	num_refs -= refs_to_drop;
 663
 664	if (num_refs == 0) {
 665		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
 666		*last_ref = 1;
 667	} else {
 668		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
 669			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
 670		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
 671			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
 
 
 
 
 
 
 
 
 672		btrfs_mark_buffer_dirty(leaf);
 673	}
 674	return ret;
 675}
 676
 677static noinline u32 extent_data_ref_count(struct btrfs_path *path,
 678					  struct btrfs_extent_inline_ref *iref)
 679{
 680	struct btrfs_key key;
 681	struct extent_buffer *leaf;
 682	struct btrfs_extent_data_ref *ref1;
 683	struct btrfs_shared_data_ref *ref2;
 684	u32 num_refs = 0;
 685	int type;
 686
 687	leaf = path->nodes[0];
 688	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 689
 690	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
 691	if (iref) {
 692		/*
 693		 * If type is invalid, we should have bailed out earlier than
 694		 * this call.
 695		 */
 696		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
 697		ASSERT(type != BTRFS_REF_TYPE_INVALID);
 698		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 699			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
 700			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 701		} else {
 702			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
 703			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 704		}
 705	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 706		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 707				      struct btrfs_extent_data_ref);
 708		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 709	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 710		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 711				      struct btrfs_shared_data_ref);
 712		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 
 
 
 
 
 
 
 713	} else {
 714		WARN_ON(1);
 715	}
 716	return num_refs;
 717}
 718
 719static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
 
 720					  struct btrfs_path *path,
 721					  u64 bytenr, u64 parent,
 722					  u64 root_objectid)
 723{
 724	struct btrfs_root *root = trans->fs_info->extent_root;
 725	struct btrfs_key key;
 726	int ret;
 727
 728	key.objectid = bytenr;
 729	if (parent) {
 730		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 731		key.offset = parent;
 732	} else {
 733		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 734		key.offset = root_objectid;
 735	}
 736
 737	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 738	if (ret > 0)
 739		ret = -ENOENT;
 
 
 
 
 
 
 
 
 
 740	return ret;
 741}
 742
 743static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
 
 744					  struct btrfs_path *path,
 745					  u64 bytenr, u64 parent,
 746					  u64 root_objectid)
 747{
 748	struct btrfs_key key;
 749	int ret;
 750
 751	key.objectid = bytenr;
 752	if (parent) {
 753		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 754		key.offset = parent;
 755	} else {
 756		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 757		key.offset = root_objectid;
 758	}
 759
 760	ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
 761				      path, &key, 0);
 762	btrfs_release_path(path);
 763	return ret;
 764}
 765
 766static inline int extent_ref_type(u64 parent, u64 owner)
 767{
 768	int type;
 769	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 770		if (parent > 0)
 771			type = BTRFS_SHARED_BLOCK_REF_KEY;
 772		else
 773			type = BTRFS_TREE_BLOCK_REF_KEY;
 774	} else {
 775		if (parent > 0)
 776			type = BTRFS_SHARED_DATA_REF_KEY;
 777		else
 778			type = BTRFS_EXTENT_DATA_REF_KEY;
 779	}
 780	return type;
 781}
 782
 783static int find_next_key(struct btrfs_path *path, int level,
 784			 struct btrfs_key *key)
 785
 786{
 787	for (; level < BTRFS_MAX_LEVEL; level++) {
 788		if (!path->nodes[level])
 789			break;
 790		if (path->slots[level] + 1 >=
 791		    btrfs_header_nritems(path->nodes[level]))
 792			continue;
 793		if (level == 0)
 794			btrfs_item_key_to_cpu(path->nodes[level], key,
 795					      path->slots[level] + 1);
 796		else
 797			btrfs_node_key_to_cpu(path->nodes[level], key,
 798					      path->slots[level] + 1);
 799		return 0;
 800	}
 801	return 1;
 802}
 803
 804/*
 805 * look for inline back ref. if back ref is found, *ref_ret is set
 806 * to the address of inline back ref, and 0 is returned.
 807 *
 808 * if back ref isn't found, *ref_ret is set to the address where it
 809 * should be inserted, and -ENOENT is returned.
 810 *
 811 * if insert is true and there are too many inline back refs, the path
 812 * points to the extent item, and -EAGAIN is returned.
 813 *
 814 * NOTE: inline back refs are ordered in the same way that back ref
 815 *	 items in the tree are ordered.
 816 */
 817static noinline_for_stack
 818int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
 
 819				 struct btrfs_path *path,
 820				 struct btrfs_extent_inline_ref **ref_ret,
 821				 u64 bytenr, u64 num_bytes,
 822				 u64 parent, u64 root_objectid,
 823				 u64 owner, u64 offset, int insert)
 824{
 825	struct btrfs_fs_info *fs_info = trans->fs_info;
 826	struct btrfs_root *root = fs_info->extent_root;
 827	struct btrfs_key key;
 828	struct extent_buffer *leaf;
 829	struct btrfs_extent_item *ei;
 830	struct btrfs_extent_inline_ref *iref;
 831	u64 flags;
 832	u64 item_size;
 833	unsigned long ptr;
 834	unsigned long end;
 835	int extra_size;
 836	int type;
 837	int want;
 838	int ret;
 839	int err = 0;
 840	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 841	int needed;
 842
 843	key.objectid = bytenr;
 844	key.type = BTRFS_EXTENT_ITEM_KEY;
 845	key.offset = num_bytes;
 846
 847	want = extent_ref_type(parent, owner);
 848	if (insert) {
 849		extra_size = btrfs_extent_inline_ref_size(want);
 850		path->keep_locks = 1;
 851	} else
 852		extra_size = -1;
 853
 854	/*
 855	 * Owner is our level, so we can just add one to get the level for the
 856	 * block we are interested in.
 857	 */
 858	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
 859		key.type = BTRFS_METADATA_ITEM_KEY;
 860		key.offset = owner;
 861	}
 862
 863again:
 864	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
 865	if (ret < 0) {
 866		err = ret;
 867		goto out;
 868	}
 869
 870	/*
 871	 * We may be a newly converted file system which still has the old fat
 872	 * extent entries for metadata, so try and see if we have one of those.
 873	 */
 874	if (ret > 0 && skinny_metadata) {
 875		skinny_metadata = false;
 876		if (path->slots[0]) {
 877			path->slots[0]--;
 878			btrfs_item_key_to_cpu(path->nodes[0], &key,
 879					      path->slots[0]);
 880			if (key.objectid == bytenr &&
 881			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 882			    key.offset == num_bytes)
 883				ret = 0;
 884		}
 885		if (ret) {
 886			key.objectid = bytenr;
 887			key.type = BTRFS_EXTENT_ITEM_KEY;
 888			key.offset = num_bytes;
 889			btrfs_release_path(path);
 890			goto again;
 891		}
 892	}
 893
 894	if (ret && !insert) {
 895		err = -ENOENT;
 896		goto out;
 897	} else if (WARN_ON(ret)) {
 898		err = -EIO;
 899		goto out;
 900	}
 901
 902	leaf = path->nodes[0];
 903	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 904	if (unlikely(item_size < sizeof(*ei))) {
 905		err = -EINVAL;
 906		btrfs_print_v0_err(fs_info);
 907		btrfs_abort_transaction(trans, err);
 908		goto out;
 
 
 
 
 
 
 
 
 
 909	}
 
 
 910
 911	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 912	flags = btrfs_extent_flags(leaf, ei);
 913
 914	ptr = (unsigned long)(ei + 1);
 915	end = (unsigned long)ei + item_size;
 916
 917	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
 918		ptr += sizeof(struct btrfs_tree_block_info);
 919		BUG_ON(ptr > end);
 920	}
 921
 922	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
 923		needed = BTRFS_REF_TYPE_DATA;
 924	else
 925		needed = BTRFS_REF_TYPE_BLOCK;
 926
 927	err = -ENOENT;
 928	while (1) {
 929		if (ptr >= end) {
 930			WARN_ON(ptr > end);
 931			break;
 932		}
 933		iref = (struct btrfs_extent_inline_ref *)ptr;
 934		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
 935		if (type == BTRFS_REF_TYPE_INVALID) {
 936			err = -EUCLEAN;
 937			goto out;
 938		}
 939
 940		if (want < type)
 941			break;
 942		if (want > type) {
 943			ptr += btrfs_extent_inline_ref_size(type);
 944			continue;
 945		}
 946
 947		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 948			struct btrfs_extent_data_ref *dref;
 949			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 950			if (match_extent_data_ref(leaf, dref, root_objectid,
 951						  owner, offset)) {
 952				err = 0;
 953				break;
 954			}
 955			if (hash_extent_data_ref_item(leaf, dref) <
 956			    hash_extent_data_ref(root_objectid, owner, offset))
 957				break;
 958		} else {
 959			u64 ref_offset;
 960			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
 961			if (parent > 0) {
 962				if (parent == ref_offset) {
 963					err = 0;
 964					break;
 965				}
 966				if (ref_offset < parent)
 967					break;
 968			} else {
 969				if (root_objectid == ref_offset) {
 970					err = 0;
 971					break;
 972				}
 973				if (ref_offset < root_objectid)
 974					break;
 975			}
 976		}
 977		ptr += btrfs_extent_inline_ref_size(type);
 978	}
 979	if (err == -ENOENT && insert) {
 980		if (item_size + extra_size >=
 981		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
 982			err = -EAGAIN;
 983			goto out;
 984		}
 985		/*
 986		 * To add new inline back ref, we have to make sure
 987		 * there is no corresponding back ref item.
 988		 * For simplicity, we just do not add new inline back
 989		 * ref if there is any kind of item for this block
 990		 */
 991		if (find_next_key(path, 0, &key) == 0 &&
 992		    key.objectid == bytenr &&
 993		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
 994			err = -EAGAIN;
 995			goto out;
 996		}
 997	}
 998	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
 999out:
1000	if (insert) {
1001		path->keep_locks = 0;
1002		btrfs_unlock_up_safe(path, 1);
1003	}
1004	return err;
1005}
1006
1007/*
1008 * helper to add new inline back ref
1009 */
1010static noinline_for_stack
1011void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1012				 struct btrfs_path *path,
1013				 struct btrfs_extent_inline_ref *iref,
1014				 u64 parent, u64 root_objectid,
1015				 u64 owner, u64 offset, int refs_to_add,
1016				 struct btrfs_delayed_extent_op *extent_op)
1017{
1018	struct extent_buffer *leaf;
1019	struct btrfs_extent_item *ei;
1020	unsigned long ptr;
1021	unsigned long end;
1022	unsigned long item_offset;
1023	u64 refs;
1024	int size;
1025	int type;
1026
1027	leaf = path->nodes[0];
1028	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1029	item_offset = (unsigned long)iref - (unsigned long)ei;
1030
1031	type = extent_ref_type(parent, owner);
1032	size = btrfs_extent_inline_ref_size(type);
1033
1034	btrfs_extend_item(path, size);
1035
1036	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1037	refs = btrfs_extent_refs(leaf, ei);
1038	refs += refs_to_add;
1039	btrfs_set_extent_refs(leaf, ei, refs);
1040	if (extent_op)
1041		__run_delayed_extent_op(extent_op, leaf, ei);
1042
1043	ptr = (unsigned long)ei + item_offset;
1044	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1045	if (ptr < end - size)
1046		memmove_extent_buffer(leaf, ptr + size, ptr,
1047				      end - size - ptr);
1048
1049	iref = (struct btrfs_extent_inline_ref *)ptr;
1050	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1051	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1052		struct btrfs_extent_data_ref *dref;
1053		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1054		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1055		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1056		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1057		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1058	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1059		struct btrfs_shared_data_ref *sref;
1060		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1061		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1062		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1063	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1064		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1065	} else {
1066		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1067	}
1068	btrfs_mark_buffer_dirty(leaf);
1069}
1070
1071static int lookup_extent_backref(struct btrfs_trans_handle *trans,
 
1072				 struct btrfs_path *path,
1073				 struct btrfs_extent_inline_ref **ref_ret,
1074				 u64 bytenr, u64 num_bytes, u64 parent,
1075				 u64 root_objectid, u64 owner, u64 offset)
1076{
1077	int ret;
1078
1079	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1080					   num_bytes, parent, root_objectid,
1081					   owner, offset, 0);
1082	if (ret != -ENOENT)
1083		return ret;
1084
1085	btrfs_release_path(path);
1086	*ref_ret = NULL;
1087
1088	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1089		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1090					    root_objectid);
1091	} else {
1092		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1093					     root_objectid, owner, offset);
1094	}
1095	return ret;
1096}
1097
1098/*
1099 * helper to update/remove inline back ref
1100 */
1101static noinline_for_stack
1102void update_inline_extent_backref(struct btrfs_path *path,
 
1103				  struct btrfs_extent_inline_ref *iref,
1104				  int refs_to_mod,
1105				  struct btrfs_delayed_extent_op *extent_op,
1106				  int *last_ref)
1107{
1108	struct extent_buffer *leaf = path->nodes[0];
1109	struct btrfs_extent_item *ei;
1110	struct btrfs_extent_data_ref *dref = NULL;
1111	struct btrfs_shared_data_ref *sref = NULL;
1112	unsigned long ptr;
1113	unsigned long end;
1114	u32 item_size;
1115	int size;
1116	int type;
1117	u64 refs;
1118
 
1119	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120	refs = btrfs_extent_refs(leaf, ei);
1121	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1122	refs += refs_to_mod;
1123	btrfs_set_extent_refs(leaf, ei, refs);
1124	if (extent_op)
1125		__run_delayed_extent_op(extent_op, leaf, ei);
1126
1127	/*
1128	 * If type is invalid, we should have bailed out after
1129	 * lookup_inline_extent_backref().
1130	 */
1131	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1132	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1133
1134	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1135		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1136		refs = btrfs_extent_data_ref_count(leaf, dref);
1137	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1138		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1139		refs = btrfs_shared_data_ref_count(leaf, sref);
1140	} else {
1141		refs = 1;
1142		BUG_ON(refs_to_mod != -1);
1143	}
1144
1145	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1146	refs += refs_to_mod;
1147
1148	if (refs > 0) {
1149		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1150			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1151		else
1152			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1153	} else {
1154		*last_ref = 1;
1155		size =  btrfs_extent_inline_ref_size(type);
1156		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1157		ptr = (unsigned long)iref;
1158		end = (unsigned long)ei + item_size;
1159		if (ptr + size < end)
1160			memmove_extent_buffer(leaf, ptr, ptr + size,
1161					      end - ptr - size);
1162		item_size -= size;
1163		btrfs_truncate_item(path, item_size, 1);
1164	}
1165	btrfs_mark_buffer_dirty(leaf);
1166}
1167
1168static noinline_for_stack
1169int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
 
1170				 struct btrfs_path *path,
1171				 u64 bytenr, u64 num_bytes, u64 parent,
1172				 u64 root_objectid, u64 owner,
1173				 u64 offset, int refs_to_add,
1174				 struct btrfs_delayed_extent_op *extent_op)
1175{
1176	struct btrfs_extent_inline_ref *iref;
1177	int ret;
1178
1179	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1180					   num_bytes, parent, root_objectid,
1181					   owner, offset, 1);
1182	if (ret == 0) {
1183		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1184		update_inline_extent_backref(path, iref, refs_to_add,
1185					     extent_op, NULL);
1186	} else if (ret == -ENOENT) {
1187		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1188					    root_objectid, owner, offset,
1189					    refs_to_add, extent_op);
1190		ret = 0;
1191	}
1192	return ret;
1193}
1194
1195static int insert_extent_backref(struct btrfs_trans_handle *trans,
 
1196				 struct btrfs_path *path,
1197				 u64 bytenr, u64 parent, u64 root_objectid,
1198				 u64 owner, u64 offset, int refs_to_add)
1199{
1200	int ret;
1201	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1202		BUG_ON(refs_to_add != 1);
1203		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1204					    root_objectid);
1205	} else {
1206		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1207					     root_objectid, owner, offset,
1208					     refs_to_add);
1209	}
1210	return ret;
1211}
1212
1213static int remove_extent_backref(struct btrfs_trans_handle *trans,
 
1214				 struct btrfs_path *path,
1215				 struct btrfs_extent_inline_ref *iref,
1216				 int refs_to_drop, int is_data, int *last_ref)
1217{
1218	int ret = 0;
1219
1220	BUG_ON(!is_data && refs_to_drop != 1);
1221	if (iref) {
1222		update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1223					     last_ref);
1224	} else if (is_data) {
1225		ret = remove_extent_data_ref(trans, path, refs_to_drop,
1226					     last_ref);
1227	} else {
1228		*last_ref = 1;
1229		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1230	}
1231	return ret;
1232}
1233
 
1234static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1235			       u64 *discarded_bytes)
1236{
1237	int j, ret = 0;
1238	u64 bytes_left, end;
1239	u64 aligned_start = ALIGN(start, 1 << 9);
1240
1241	if (WARN_ON(start != aligned_start)) {
1242		len -= aligned_start - start;
1243		len = round_down(len, 1 << 9);
1244		start = aligned_start;
1245	}
1246
1247	*discarded_bytes = 0;
1248
1249	if (!len)
1250		return 0;
1251
1252	end = start + len;
1253	bytes_left = len;
1254
1255	/* Skip any superblocks on this device. */
1256	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1257		u64 sb_start = btrfs_sb_offset(j);
1258		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1259		u64 size = sb_start - start;
1260
1261		if (!in_range(sb_start, start, bytes_left) &&
1262		    !in_range(sb_end, start, bytes_left) &&
1263		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1264			continue;
1265
1266		/*
1267		 * Superblock spans beginning of range.  Adjust start and
1268		 * try again.
1269		 */
1270		if (sb_start <= start) {
1271			start += sb_end - start;
1272			if (start > end) {
1273				bytes_left = 0;
1274				break;
1275			}
1276			bytes_left = end - start;
1277			continue;
1278		}
1279
1280		if (size) {
1281			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1282						   GFP_NOFS, 0);
1283			if (!ret)
1284				*discarded_bytes += size;
1285			else if (ret != -EOPNOTSUPP)
1286				return ret;
1287		}
1288
1289		start = sb_end;
1290		if (start > end) {
1291			bytes_left = 0;
1292			break;
1293		}
1294		bytes_left = end - start;
1295	}
1296
1297	if (bytes_left) {
1298		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1299					   GFP_NOFS, 0);
1300		if (!ret)
1301			*discarded_bytes += bytes_left;
1302	}
1303	return ret;
1304}
1305
1306int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1307			 u64 num_bytes, u64 *actual_bytes)
1308{
1309	int ret;
1310	u64 discarded_bytes = 0;
1311	struct btrfs_bio *bbio = NULL;
1312
1313
1314	/*
1315	 * Avoid races with device replace and make sure our bbio has devices
1316	 * associated to its stripes that don't go away while we are discarding.
1317	 */
1318	btrfs_bio_counter_inc_blocked(fs_info);
1319	/* Tell the block device(s) that the sectors can be discarded */
1320	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1321			      &bbio, 0);
1322	/* Error condition is -ENOMEM */
1323	if (!ret) {
1324		struct btrfs_bio_stripe *stripe = bbio->stripes;
1325		int i;
1326
1327
1328		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1329			u64 bytes;
1330			struct request_queue *req_q;
1331
1332			if (!stripe->dev->bdev) {
1333				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1334				continue;
1335			}
1336			req_q = bdev_get_queue(stripe->dev->bdev);
1337			if (!blk_queue_discard(req_q))
1338				continue;
1339
1340			ret = btrfs_issue_discard(stripe->dev->bdev,
1341						  stripe->physical,
1342						  stripe->length,
1343						  &bytes);
1344			if (!ret)
1345				discarded_bytes += bytes;
1346			else if (ret != -EOPNOTSUPP)
1347				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1348
1349			/*
1350			 * Just in case we get back EOPNOTSUPP for some reason,
1351			 * just ignore the return value so we don't screw up
1352			 * people calling discard_extent.
1353			 */
1354			ret = 0;
1355		}
1356		btrfs_put_bbio(bbio);
1357	}
1358	btrfs_bio_counter_dec(fs_info);
1359
1360	if (actual_bytes)
1361		*actual_bytes = discarded_bytes;
1362
1363
1364	if (ret == -EOPNOTSUPP)
1365		ret = 0;
1366	return ret;
1367}
1368
1369/* Can return -ENOMEM */
1370int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1371			 struct btrfs_ref *generic_ref)
 
 
1372{
1373	struct btrfs_fs_info *fs_info = trans->fs_info;
1374	int old_ref_mod, new_ref_mod;
1375	int ret;
 
1376
1377	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1378	       generic_ref->action);
1379	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1380	       generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1381
1382	if (generic_ref->type == BTRFS_REF_METADATA)
1383		ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
1384				NULL, &old_ref_mod, &new_ref_mod);
1385	else
1386		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
1387						 &old_ref_mod, &new_ref_mod);
1388
1389	btrfs_ref_tree_mod(fs_info, generic_ref);
1390
1391	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
1392		sub_pinned_bytes(fs_info, generic_ref);
1393
 
 
 
 
 
 
 
 
 
 
 
1394	return ret;
1395}
1396
1397/*
1398 * __btrfs_inc_extent_ref - insert backreference for a given extent
1399 *
1400 * @trans:	    Handle of transaction
1401 *
1402 * @node:	    The delayed ref node used to get the bytenr/length for
1403 *		    extent whose references are incremented.
1404 *
1405 * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1406 *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1407 *		    bytenr of the parent block. Since new extents are always
1408 *		    created with indirect references, this will only be the case
1409 *		    when relocating a shared extent. In that case, root_objectid
1410 *		    will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1411 *		    be 0
1412 *
1413 * @root_objectid:  The id of the root where this modification has originated,
1414 *		    this can be either one of the well-known metadata trees or
1415 *		    the subvolume id which references this extent.
1416 *
1417 * @owner:	    For data extents it is the inode number of the owning file.
1418 *		    For metadata extents this parameter holds the level in the
1419 *		    tree of the extent.
1420 *
1421 * @offset:	    For metadata extents the offset is ignored and is currently
1422 *		    always passed as 0. For data extents it is the fileoffset
1423 *		    this extent belongs to.
1424 *
1425 * @refs_to_add     Number of references to add
1426 *
1427 * @extent_op       Pointer to a structure, holding information necessary when
1428 *                  updating a tree block's flags
1429 *
1430 */
1431static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
 
1432				  struct btrfs_delayed_ref_node *node,
1433				  u64 parent, u64 root_objectid,
1434				  u64 owner, u64 offset, int refs_to_add,
1435				  struct btrfs_delayed_extent_op *extent_op)
1436{
 
1437	struct btrfs_path *path;
1438	struct extent_buffer *leaf;
1439	struct btrfs_extent_item *item;
1440	struct btrfs_key key;
1441	u64 bytenr = node->bytenr;
1442	u64 num_bytes = node->num_bytes;
1443	u64 refs;
1444	int ret;
1445
1446	path = btrfs_alloc_path();
1447	if (!path)
1448		return -ENOMEM;
1449
1450	path->reada = READA_FORWARD;
1451	path->leave_spinning = 1;
1452	/* this will setup the path even if it fails to insert the back ref */
1453	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1454					   parent, root_objectid, owner,
1455					   offset, refs_to_add, extent_op);
 
1456	if ((ret < 0 && ret != -EAGAIN) || !ret)
1457		goto out;
1458
1459	/*
1460	 * Ok we had -EAGAIN which means we didn't have space to insert and
1461	 * inline extent ref, so just update the reference count and add a
1462	 * normal backref.
1463	 */
1464	leaf = path->nodes[0];
1465	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1466	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1467	refs = btrfs_extent_refs(leaf, item);
1468	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1469	if (extent_op)
1470		__run_delayed_extent_op(extent_op, leaf, item);
1471
1472	btrfs_mark_buffer_dirty(leaf);
1473	btrfs_release_path(path);
1474
1475	path->reada = READA_FORWARD;
1476	path->leave_spinning = 1;
1477	/* now insert the actual backref */
1478	ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
 
1479				    owner, offset, refs_to_add);
1480	if (ret)
1481		btrfs_abort_transaction(trans, ret);
1482out:
1483	btrfs_free_path(path);
1484	return ret;
1485}
1486
1487static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
 
1488				struct btrfs_delayed_ref_node *node,
1489				struct btrfs_delayed_extent_op *extent_op,
1490				int insert_reserved)
1491{
1492	int ret = 0;
1493	struct btrfs_delayed_data_ref *ref;
1494	struct btrfs_key ins;
1495	u64 parent = 0;
1496	u64 ref_root = 0;
1497	u64 flags = 0;
1498
1499	ins.objectid = node->bytenr;
1500	ins.offset = node->num_bytes;
1501	ins.type = BTRFS_EXTENT_ITEM_KEY;
1502
1503	ref = btrfs_delayed_node_to_data_ref(node);
1504	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1505
1506	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1507		parent = ref->parent;
1508	ref_root = ref->root;
1509
1510	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1511		if (extent_op)
1512			flags |= extent_op->flags_to_set;
1513		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1514						 flags, ref->objectid,
1515						 ref->offset, &ins,
1516						 node->ref_mod);
1517	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1518		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1519					     ref->objectid, ref->offset,
1520					     node->ref_mod, extent_op);
 
1521	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1522		ret = __btrfs_free_extent(trans, node, parent,
1523					  ref_root, ref->objectid,
1524					  ref->offset, node->ref_mod,
1525					  extent_op);
1526	} else {
1527		BUG();
1528	}
1529	return ret;
1530}
1531
1532static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1533				    struct extent_buffer *leaf,
1534				    struct btrfs_extent_item *ei)
1535{
1536	u64 flags = btrfs_extent_flags(leaf, ei);
1537	if (extent_op->update_flags) {
1538		flags |= extent_op->flags_to_set;
1539		btrfs_set_extent_flags(leaf, ei, flags);
1540	}
1541
1542	if (extent_op->update_key) {
1543		struct btrfs_tree_block_info *bi;
1544		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1545		bi = (struct btrfs_tree_block_info *)(ei + 1);
1546		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1547	}
1548}
1549
1550static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1551				 struct btrfs_delayed_ref_head *head,
 
1552				 struct btrfs_delayed_extent_op *extent_op)
1553{
1554	struct btrfs_fs_info *fs_info = trans->fs_info;
1555	struct btrfs_key key;
1556	struct btrfs_path *path;
1557	struct btrfs_extent_item *ei;
1558	struct extent_buffer *leaf;
1559	u32 item_size;
1560	int ret;
1561	int err = 0;
1562	int metadata = !extent_op->is_data;
1563
1564	if (trans->aborted)
1565		return 0;
1566
1567	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1568		metadata = 0;
1569
1570	path = btrfs_alloc_path();
1571	if (!path)
1572		return -ENOMEM;
1573
1574	key.objectid = head->bytenr;
1575
1576	if (metadata) {
1577		key.type = BTRFS_METADATA_ITEM_KEY;
1578		key.offset = extent_op->level;
1579	} else {
1580		key.type = BTRFS_EXTENT_ITEM_KEY;
1581		key.offset = head->num_bytes;
1582	}
1583
1584again:
1585	path->reada = READA_FORWARD;
1586	path->leave_spinning = 1;
1587	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
 
1588	if (ret < 0) {
1589		err = ret;
1590		goto out;
1591	}
1592	if (ret > 0) {
1593		if (metadata) {
1594			if (path->slots[0] > 0) {
1595				path->slots[0]--;
1596				btrfs_item_key_to_cpu(path->nodes[0], &key,
1597						      path->slots[0]);
1598				if (key.objectid == head->bytenr &&
1599				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1600				    key.offset == head->num_bytes)
1601					ret = 0;
1602			}
1603			if (ret > 0) {
1604				btrfs_release_path(path);
1605				metadata = 0;
1606
1607				key.objectid = head->bytenr;
1608				key.offset = head->num_bytes;
1609				key.type = BTRFS_EXTENT_ITEM_KEY;
1610				goto again;
1611			}
1612		} else {
1613			err = -EIO;
1614			goto out;
1615		}
1616	}
1617
1618	leaf = path->nodes[0];
1619	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1620
1621	if (unlikely(item_size < sizeof(*ei))) {
1622		err = -EINVAL;
1623		btrfs_print_v0_err(fs_info);
1624		btrfs_abort_transaction(trans, err);
1625		goto out;
 
 
 
 
1626	}
1627
 
1628	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1629	__run_delayed_extent_op(extent_op, leaf, ei);
1630
1631	btrfs_mark_buffer_dirty(leaf);
1632out:
1633	btrfs_free_path(path);
1634	return err;
1635}
1636
1637static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
 
1638				struct btrfs_delayed_ref_node *node,
1639				struct btrfs_delayed_extent_op *extent_op,
1640				int insert_reserved)
1641{
1642	int ret = 0;
1643	struct btrfs_delayed_tree_ref *ref;
 
1644	u64 parent = 0;
1645	u64 ref_root = 0;
 
 
1646
1647	ref = btrfs_delayed_node_to_tree_ref(node);
1648	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1649
1650	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1651		parent = ref->parent;
1652	ref_root = ref->root;
1653
1654	if (node->ref_mod != 1) {
1655		btrfs_err(trans->fs_info,
1656	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1657			  node->bytenr, node->ref_mod, node->action, ref_root,
1658			  parent);
1659		return -EIO;
 
1660	}
 
 
1661	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1662		BUG_ON(!extent_op || !extent_op->update_flags);
1663		ret = alloc_reserved_tree_block(trans, node, extent_op);
 
 
 
 
1664	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1665		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1666					     ref->level, 0, 1, extent_op);
 
 
1667	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1668		ret = __btrfs_free_extent(trans, node, parent, ref_root,
 
1669					  ref->level, 0, 1, extent_op);
1670	} else {
1671		BUG();
1672	}
1673	return ret;
1674}
1675
1676/* helper function to actually process a single delayed ref entry */
1677static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
 
1678			       struct btrfs_delayed_ref_node *node,
1679			       struct btrfs_delayed_extent_op *extent_op,
1680			       int insert_reserved)
1681{
1682	int ret = 0;
1683
1684	if (trans->aborted) {
1685		if (insert_reserved)
1686			btrfs_pin_extent(trans->fs_info, node->bytenr,
1687					 node->num_bytes, 1);
1688		return 0;
1689	}
1690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1691	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1692	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1693		ret = run_delayed_tree_ref(trans, node, extent_op,
1694					   insert_reserved);
1695	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1696		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1697		ret = run_delayed_data_ref(trans, node, extent_op,
1698					   insert_reserved);
1699	else
1700		BUG();
1701	if (ret && insert_reserved)
1702		btrfs_pin_extent(trans->fs_info, node->bytenr,
1703				 node->num_bytes, 1);
1704	return ret;
1705}
1706
1707static inline struct btrfs_delayed_ref_node *
1708select_delayed_ref(struct btrfs_delayed_ref_head *head)
1709{
1710	struct btrfs_delayed_ref_node *ref;
1711
1712	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1713		return NULL;
1714
1715	/*
1716	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1717	 * This is to prevent a ref count from going down to zero, which deletes
1718	 * the extent item from the extent tree, when there still are references
1719	 * to add, which would fail because they would not find the extent item.
1720	 */
1721	if (!list_empty(&head->ref_add_list))
1722		return list_first_entry(&head->ref_add_list,
1723				struct btrfs_delayed_ref_node, add_list);
1724
1725	ref = rb_entry(rb_first_cached(&head->ref_tree),
1726		       struct btrfs_delayed_ref_node, ref_node);
1727	ASSERT(list_empty(&ref->add_list));
1728	return ref;
1729}
1730
1731static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1732				      struct btrfs_delayed_ref_head *head)
1733{
1734	spin_lock(&delayed_refs->lock);
1735	head->processing = 0;
1736	delayed_refs->num_heads_ready++;
1737	spin_unlock(&delayed_refs->lock);
1738	btrfs_delayed_ref_unlock(head);
1739}
1740
1741static struct btrfs_delayed_extent_op *cleanup_extent_op(
1742				struct btrfs_delayed_ref_head *head)
1743{
1744	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1745
1746	if (!extent_op)
1747		return NULL;
1748
1749	if (head->must_insert_reserved) {
1750		head->extent_op = NULL;
1751		btrfs_free_delayed_extent_op(extent_op);
1752		return NULL;
1753	}
1754	return extent_op;
1755}
1756
1757static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1758				     struct btrfs_delayed_ref_head *head)
1759{
1760	struct btrfs_delayed_extent_op *extent_op;
1761	int ret;
1762
1763	extent_op = cleanup_extent_op(head);
1764	if (!extent_op)
1765		return 0;
1766	head->extent_op = NULL;
1767	spin_unlock(&head->lock);
1768	ret = run_delayed_extent_op(trans, head, extent_op);
1769	btrfs_free_delayed_extent_op(extent_op);
1770	return ret ? ret : 1;
1771}
1772
1773void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1774				  struct btrfs_delayed_ref_root *delayed_refs,
1775				  struct btrfs_delayed_ref_head *head)
1776{
1777	int nr_items = 1;	/* Dropping this ref head update. */
1778
1779	if (head->total_ref_mod < 0) {
1780		struct btrfs_space_info *space_info;
1781		u64 flags;
1782
1783		if (head->is_data)
1784			flags = BTRFS_BLOCK_GROUP_DATA;
1785		else if (head->is_system)
1786			flags = BTRFS_BLOCK_GROUP_SYSTEM;
1787		else
1788			flags = BTRFS_BLOCK_GROUP_METADATA;
1789		space_info = btrfs_find_space_info(fs_info, flags);
1790		ASSERT(space_info);
1791		percpu_counter_add_batch(&space_info->total_bytes_pinned,
1792				   -head->num_bytes,
1793				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
1794
1795		/*
1796		 * We had csum deletions accounted for in our delayed refs rsv,
1797		 * we need to drop the csum leaves for this update from our
1798		 * delayed_refs_rsv.
1799		 */
1800		if (head->is_data) {
1801			spin_lock(&delayed_refs->lock);
1802			delayed_refs->pending_csums -= head->num_bytes;
1803			spin_unlock(&delayed_refs->lock);
1804			nr_items += btrfs_csum_bytes_to_leaves(fs_info,
1805				head->num_bytes);
1806		}
1807	}
1808
1809	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1810}
1811
1812static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1813			    struct btrfs_delayed_ref_head *head)
1814{
1815
1816	struct btrfs_fs_info *fs_info = trans->fs_info;
1817	struct btrfs_delayed_ref_root *delayed_refs;
1818	int ret;
1819
1820	delayed_refs = &trans->transaction->delayed_refs;
1821
1822	ret = run_and_cleanup_extent_op(trans, head);
1823	if (ret < 0) {
1824		unselect_delayed_ref_head(delayed_refs, head);
1825		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1826		return ret;
1827	} else if (ret) {
1828		return ret;
1829	}
1830
1831	/*
1832	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1833	 * and then re-check to make sure nobody got added.
1834	 */
1835	spin_unlock(&head->lock);
1836	spin_lock(&delayed_refs->lock);
1837	spin_lock(&head->lock);
1838	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1839		spin_unlock(&head->lock);
1840		spin_unlock(&delayed_refs->lock);
1841		return 1;
1842	}
1843	btrfs_delete_ref_head(delayed_refs, head);
1844	spin_unlock(&head->lock);
1845	spin_unlock(&delayed_refs->lock);
1846
1847	if (head->must_insert_reserved) {
1848		btrfs_pin_extent(fs_info, head->bytenr,
1849				 head->num_bytes, 1);
1850		if (head->is_data) {
1851			ret = btrfs_del_csums(trans, fs_info, head->bytenr,
1852					      head->num_bytes);
1853		}
1854	}
1855
1856	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1857
1858	trace_run_delayed_ref_head(fs_info, head, 0);
1859	btrfs_delayed_ref_unlock(head);
1860	btrfs_put_delayed_ref_head(head);
1861	return 0;
1862}
1863
1864static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1865					struct btrfs_trans_handle *trans)
1866{
1867	struct btrfs_delayed_ref_root *delayed_refs =
1868		&trans->transaction->delayed_refs;
1869	struct btrfs_delayed_ref_head *head = NULL;
1870	int ret;
1871
1872	spin_lock(&delayed_refs->lock);
1873	head = btrfs_select_ref_head(delayed_refs);
1874	if (!head) {
1875		spin_unlock(&delayed_refs->lock);
1876		return head;
1877	}
1878
1879	/*
1880	 * Grab the lock that says we are going to process all the refs for
1881	 * this head
1882	 */
1883	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1884	spin_unlock(&delayed_refs->lock);
1885
1886	/*
1887	 * We may have dropped the spin lock to get the head mutex lock, and
1888	 * that might have given someone else time to free the head.  If that's
1889	 * true, it has been removed from our list and we can move on.
1890	 */
1891	if (ret == -EAGAIN)
1892		head = ERR_PTR(-EAGAIN);
1893
1894	return head;
1895}
1896
1897static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1898				    struct btrfs_delayed_ref_head *locked_ref,
1899				    unsigned long *run_refs)
1900{
1901	struct btrfs_fs_info *fs_info = trans->fs_info;
1902	struct btrfs_delayed_ref_root *delayed_refs;
1903	struct btrfs_delayed_extent_op *extent_op;
1904	struct btrfs_delayed_ref_node *ref;
1905	int must_insert_reserved = 0;
1906	int ret;
1907
1908	delayed_refs = &trans->transaction->delayed_refs;
1909
1910	lockdep_assert_held(&locked_ref->mutex);
1911	lockdep_assert_held(&locked_ref->lock);
1912
1913	while ((ref = select_delayed_ref(locked_ref))) {
1914		if (ref->seq &&
1915		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1916			spin_unlock(&locked_ref->lock);
1917			unselect_delayed_ref_head(delayed_refs, locked_ref);
1918			return -EAGAIN;
1919		}
1920
1921		(*run_refs)++;
1922		ref->in_tree = 0;
1923		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1924		RB_CLEAR_NODE(&ref->ref_node);
1925		if (!list_empty(&ref->add_list))
1926			list_del(&ref->add_list);
1927		/*
1928		 * When we play the delayed ref, also correct the ref_mod on
1929		 * head
1930		 */
1931		switch (ref->action) {
1932		case BTRFS_ADD_DELAYED_REF:
1933		case BTRFS_ADD_DELAYED_EXTENT:
1934			locked_ref->ref_mod -= ref->ref_mod;
1935			break;
1936		case BTRFS_DROP_DELAYED_REF:
1937			locked_ref->ref_mod += ref->ref_mod;
1938			break;
1939		default:
1940			WARN_ON(1);
1941		}
1942		atomic_dec(&delayed_refs->num_entries);
1943
1944		/*
1945		 * Record the must_insert_reserved flag before we drop the
1946		 * spin lock.
1947		 */
1948		must_insert_reserved = locked_ref->must_insert_reserved;
1949		locked_ref->must_insert_reserved = 0;
1950
1951		extent_op = locked_ref->extent_op;
1952		locked_ref->extent_op = NULL;
1953		spin_unlock(&locked_ref->lock);
1954
1955		ret = run_one_delayed_ref(trans, ref, extent_op,
1956					  must_insert_reserved);
1957
1958		btrfs_free_delayed_extent_op(extent_op);
1959		if (ret) {
1960			unselect_delayed_ref_head(delayed_refs, locked_ref);
1961			btrfs_put_delayed_ref(ref);
1962			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1963				    ret);
1964			return ret;
1965		}
1966
1967		btrfs_put_delayed_ref(ref);
1968		cond_resched();
1969
1970		spin_lock(&locked_ref->lock);
1971		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1972	}
1973
1974	return 0;
 
1975}
1976
1977/*
1978 * Returns 0 on success or if called with an already aborted transaction.
1979 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1980 */
1981static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
 
1982					     unsigned long nr)
1983{
1984	struct btrfs_fs_info *fs_info = trans->fs_info;
1985	struct btrfs_delayed_ref_root *delayed_refs;
 
1986	struct btrfs_delayed_ref_head *locked_ref = NULL;
 
 
1987	ktime_t start = ktime_get();
1988	int ret;
1989	unsigned long count = 0;
1990	unsigned long actual_count = 0;
 
1991
1992	delayed_refs = &trans->transaction->delayed_refs;
1993	do {
1994		if (!locked_ref) {
1995			locked_ref = btrfs_obtain_ref_head(trans);
1996			if (IS_ERR_OR_NULL(locked_ref)) {
1997				if (PTR_ERR(locked_ref) == -EAGAIN) {
1998					continue;
1999				} else {
2000					break;
2001				}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2002			}
2003			count++;
2004		}
 
2005		/*
2006		 * We need to try and merge add/drops of the same ref since we
2007		 * can run into issues with relocate dropping the implicit ref
2008		 * and then it being added back again before the drop can
2009		 * finish.  If we merged anything we need to re-loop so we can
2010		 * get a good ref.
2011		 * Or we can get node references of the same type that weren't
2012		 * merged when created due to bumps in the tree mod seq, and
2013		 * we need to merge them to prevent adding an inline extent
2014		 * backref before dropping it (triggering a BUG_ON at
2015		 * insert_inline_extent_backref()).
2016		 */
2017		spin_lock(&locked_ref->lock);
2018		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
 
2019
2020		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2021						      &actual_count);
2022		if (ret < 0 && ret != -EAGAIN) {
2023			/*
2024			 * Error, btrfs_run_delayed_refs_for_head already
2025			 * unlocked everything so just bail out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2026			 */
2027			return ret;
2028		} else if (!ret) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2029			/*
2030			 * Success, perform the usual cleanup of a processed
2031			 * head
 
2032			 */
2033			ret = cleanup_ref_head(trans, locked_ref);
2034			if (ret > 0 ) {
2035				/* We dropped our lock, we need to loop. */
2036				ret = 0;
 
 
 
2037				continue;
2038			} else if (ret) {
2039				return ret;
2040			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2041		}
2042
2043		/*
2044		 * Either success case or btrfs_run_delayed_refs_for_head
2045		 * returned -EAGAIN, meaning we need to select another head
 
 
2046		 */
2047
2048		locked_ref = NULL;
 
 
 
 
 
 
 
 
 
 
2049		cond_resched();
2050	} while ((nr != -1 && count < nr) || locked_ref);
2051
2052	/*
2053	 * We don't want to include ref heads since we can have empty ref heads
2054	 * and those will drastically skew our runtime down since we just do
2055	 * accounting, no actual extent tree updates.
2056	 */
2057	if (actual_count > 0) {
2058		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2059		u64 avg;
2060
2061		/*
2062		 * We weigh the current average higher than our current runtime
2063		 * to avoid large swings in the average.
2064		 */
2065		spin_lock(&delayed_refs->lock);
2066		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2067		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2068		spin_unlock(&delayed_refs->lock);
2069	}
2070	return 0;
2071}
2072
2073#ifdef SCRAMBLE_DELAYED_REFS
2074/*
2075 * Normally delayed refs get processed in ascending bytenr order. This
2076 * correlates in most cases to the order added. To expose dependencies on this
2077 * order, we start to process the tree in the middle instead of the beginning
2078 */
2079static u64 find_middle(struct rb_root *root)
2080{
2081	struct rb_node *n = root->rb_node;
2082	struct btrfs_delayed_ref_node *entry;
2083	int alt = 1;
2084	u64 middle;
2085	u64 first = 0, last = 0;
2086
2087	n = rb_first(root);
2088	if (n) {
2089		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2090		first = entry->bytenr;
2091	}
2092	n = rb_last(root);
2093	if (n) {
2094		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2095		last = entry->bytenr;
2096	}
2097	n = root->rb_node;
2098
2099	while (n) {
2100		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2101		WARN_ON(!entry->in_tree);
2102
2103		middle = entry->bytenr;
2104
2105		if (alt)
2106			n = n->rb_left;
2107		else
2108			n = n->rb_right;
2109
2110		alt = 1 - alt;
2111	}
2112	return middle;
2113}
2114#endif
2115
2116static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2117{
2118	u64 num_bytes;
2119
2120	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2121			     sizeof(struct btrfs_extent_inline_ref));
2122	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2123		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2124
2125	/*
2126	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2127	 * closer to what we're really going to want to use.
2128	 */
2129	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2130}
2131
2132/*
2133 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2134 * would require to store the csums for that many bytes.
2135 */
2136u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2137{
2138	u64 csum_size;
2139	u64 num_csums_per_leaf;
2140	u64 num_csums;
2141
2142	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2143	num_csums_per_leaf = div64_u64(csum_size,
2144			(u64)btrfs_super_csum_size(fs_info->super_copy));
2145	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2146	num_csums += num_csums_per_leaf - 1;
2147	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2148	return num_csums;
2149}
2150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2151/*
2152 * this starts processing the delayed reference count updates and
2153 * extent insertions we have queued up so far.  count can be
2154 * 0, which means to process everything in the tree at the start
2155 * of the run (but not newly added entries), or it can be some target
2156 * number you'd like to process.
2157 *
2158 * Returns 0 on success or if called with an aborted transaction
2159 * Returns <0 on error and aborts the transaction
2160 */
2161int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2162			   unsigned long count)
2163{
2164	struct btrfs_fs_info *fs_info = trans->fs_info;
2165	struct rb_node *node;
2166	struct btrfs_delayed_ref_root *delayed_refs;
2167	struct btrfs_delayed_ref_head *head;
2168	int ret;
2169	int run_all = count == (unsigned long)-1;
 
2170
2171	/* We'll clean this up in btrfs_cleanup_transaction */
2172	if (trans->aborted)
2173		return 0;
2174
2175	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2176		return 0;
2177
 
 
 
2178	delayed_refs = &trans->transaction->delayed_refs;
2179	if (count == 0)
2180		count = atomic_read(&delayed_refs->num_entries) * 2;
2181
2182again:
2183#ifdef SCRAMBLE_DELAYED_REFS
2184	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2185#endif
2186	ret = __btrfs_run_delayed_refs(trans, count);
 
2187	if (ret < 0) {
2188		btrfs_abort_transaction(trans, ret);
2189		return ret;
2190	}
2191
2192	if (run_all) {
2193		btrfs_create_pending_block_groups(trans);
 
2194
2195		spin_lock(&delayed_refs->lock);
2196		node = rb_first_cached(&delayed_refs->href_root);
2197		if (!node) {
2198			spin_unlock(&delayed_refs->lock);
2199			goto out;
2200		}
2201		head = rb_entry(node, struct btrfs_delayed_ref_head,
2202				href_node);
2203		refcount_inc(&head->refs);
2204		spin_unlock(&delayed_refs->lock);
2205
2206		/* Mutex was contended, block until it's released and retry. */
2207		mutex_lock(&head->mutex);
2208		mutex_unlock(&head->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
2209
2210		btrfs_put_delayed_ref_head(head);
 
 
 
 
 
 
 
 
2211		cond_resched();
2212		goto again;
2213	}
2214out:
 
 
2215	return 0;
2216}
2217
2218int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
 
2219				u64 bytenr, u64 num_bytes, u64 flags,
2220				int level, int is_data)
2221{
2222	struct btrfs_delayed_extent_op *extent_op;
2223	int ret;
2224
2225	extent_op = btrfs_alloc_delayed_extent_op();
2226	if (!extent_op)
2227		return -ENOMEM;
2228
2229	extent_op->flags_to_set = flags;
2230	extent_op->update_flags = true;
2231	extent_op->update_key = false;
2232	extent_op->is_data = is_data ? true : false;
2233	extent_op->level = level;
2234
2235	ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
 
2236	if (ret)
2237		btrfs_free_delayed_extent_op(extent_op);
2238	return ret;
2239}
2240
2241static noinline int check_delayed_ref(struct btrfs_root *root,
 
2242				      struct btrfs_path *path,
2243				      u64 objectid, u64 offset, u64 bytenr)
2244{
2245	struct btrfs_delayed_ref_head *head;
2246	struct btrfs_delayed_ref_node *ref;
2247	struct btrfs_delayed_data_ref *data_ref;
2248	struct btrfs_delayed_ref_root *delayed_refs;
2249	struct btrfs_transaction *cur_trans;
2250	struct rb_node *node;
2251	int ret = 0;
2252
2253	spin_lock(&root->fs_info->trans_lock);
2254	cur_trans = root->fs_info->running_transaction;
2255	if (cur_trans)
2256		refcount_inc(&cur_trans->use_count);
2257	spin_unlock(&root->fs_info->trans_lock);
2258	if (!cur_trans)
2259		return 0;
2260
2261	delayed_refs = &cur_trans->delayed_refs;
2262	spin_lock(&delayed_refs->lock);
2263	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2264	if (!head) {
2265		spin_unlock(&delayed_refs->lock);
2266		btrfs_put_transaction(cur_trans);
2267		return 0;
2268	}
2269
2270	if (!mutex_trylock(&head->mutex)) {
2271		refcount_inc(&head->refs);
2272		spin_unlock(&delayed_refs->lock);
2273
2274		btrfs_release_path(path);
2275
2276		/*
2277		 * Mutex was contended, block until it's released and let
2278		 * caller try again
2279		 */
2280		mutex_lock(&head->mutex);
2281		mutex_unlock(&head->mutex);
2282		btrfs_put_delayed_ref_head(head);
2283		btrfs_put_transaction(cur_trans);
2284		return -EAGAIN;
2285	}
2286	spin_unlock(&delayed_refs->lock);
2287
2288	spin_lock(&head->lock);
2289	/*
2290	 * XXX: We should replace this with a proper search function in the
2291	 * future.
2292	 */
2293	for (node = rb_first_cached(&head->ref_tree); node;
2294	     node = rb_next(node)) {
2295		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2296		/* If it's a shared ref we know a cross reference exists */
2297		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2298			ret = 1;
2299			break;
2300		}
2301
2302		data_ref = btrfs_delayed_node_to_data_ref(ref);
2303
2304		/*
2305		 * If our ref doesn't match the one we're currently looking at
2306		 * then we have a cross reference.
2307		 */
2308		if (data_ref->root != root->root_key.objectid ||
2309		    data_ref->objectid != objectid ||
2310		    data_ref->offset != offset) {
2311			ret = 1;
2312			break;
2313		}
2314	}
2315	spin_unlock(&head->lock);
2316	mutex_unlock(&head->mutex);
2317	btrfs_put_transaction(cur_trans);
2318	return ret;
2319}
2320
2321static noinline int check_committed_ref(struct btrfs_root *root,
 
2322					struct btrfs_path *path,
2323					u64 objectid, u64 offset, u64 bytenr)
2324{
2325	struct btrfs_fs_info *fs_info = root->fs_info;
2326	struct btrfs_root *extent_root = fs_info->extent_root;
2327	struct extent_buffer *leaf;
2328	struct btrfs_extent_data_ref *ref;
2329	struct btrfs_extent_inline_ref *iref;
2330	struct btrfs_extent_item *ei;
2331	struct btrfs_key key;
2332	u32 item_size;
2333	int type;
2334	int ret;
2335
2336	key.objectid = bytenr;
2337	key.offset = (u64)-1;
2338	key.type = BTRFS_EXTENT_ITEM_KEY;
2339
2340	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2341	if (ret < 0)
2342		goto out;
2343	BUG_ON(ret == 0); /* Corruption */
2344
2345	ret = -ENOENT;
2346	if (path->slots[0] == 0)
2347		goto out;
2348
2349	path->slots[0]--;
2350	leaf = path->nodes[0];
2351	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2352
2353	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2354		goto out;
2355
2356	ret = 1;
2357	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 
 
 
 
 
 
2358	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2359
2360	/* If extent item has more than 1 inline ref then it's shared */
2361	if (item_size != sizeof(*ei) +
2362	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2363		goto out;
2364
2365	/* If extent created before last snapshot => it's definitely shared */
2366	if (btrfs_extent_generation(leaf, ei) <=
2367	    btrfs_root_last_snapshot(&root->root_item))
2368		goto out;
2369
2370	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2371
2372	/* If this extent has SHARED_DATA_REF then it's shared */
2373	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2374	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2375		goto out;
2376
2377	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2378	if (btrfs_extent_refs(leaf, ei) !=
2379	    btrfs_extent_data_ref_count(leaf, ref) ||
2380	    btrfs_extent_data_ref_root(leaf, ref) !=
2381	    root->root_key.objectid ||
2382	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2383	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2384		goto out;
2385
2386	ret = 0;
2387out:
2388	return ret;
2389}
2390
2391int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2392			  u64 bytenr)
 
2393{
2394	struct btrfs_path *path;
2395	int ret;
 
2396
2397	path = btrfs_alloc_path();
2398	if (!path)
2399		return -ENOMEM;
2400
2401	do {
2402		ret = check_committed_ref(root, path, objectid,
2403					  offset, bytenr);
2404		if (ret && ret != -ENOENT)
2405			goto out;
2406
2407		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2408	} while (ret == -EAGAIN);
 
 
 
 
 
 
2409
 
 
2410out:
2411	btrfs_free_path(path);
2412	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2413		WARN_ON(ret > 0);
2414	return ret;
2415}
2416
2417static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2418			   struct btrfs_root *root,
2419			   struct extent_buffer *buf,
2420			   int full_backref, int inc)
2421{
2422	struct btrfs_fs_info *fs_info = root->fs_info;
2423	u64 bytenr;
2424	u64 num_bytes;
2425	u64 parent;
2426	u64 ref_root;
2427	u32 nritems;
2428	struct btrfs_key key;
2429	struct btrfs_file_extent_item *fi;
2430	struct btrfs_ref generic_ref = { 0 };
2431	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2432	int i;
2433	int action;
2434	int level;
2435	int ret = 0;
 
 
 
2436
2437	if (btrfs_is_testing(fs_info))
2438		return 0;
2439
2440	ref_root = btrfs_header_owner(buf);
2441	nritems = btrfs_header_nritems(buf);
2442	level = btrfs_header_level(buf);
2443
2444	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
2445		return 0;
2446
 
 
 
 
 
2447	if (full_backref)
2448		parent = buf->start;
2449	else
2450		parent = 0;
2451	if (inc)
2452		action = BTRFS_ADD_DELAYED_REF;
2453	else
2454		action = BTRFS_DROP_DELAYED_REF;
2455
2456	for (i = 0; i < nritems; i++) {
2457		if (level == 0) {
2458			btrfs_item_key_to_cpu(buf, &key, i);
2459			if (key.type != BTRFS_EXTENT_DATA_KEY)
2460				continue;
2461			fi = btrfs_item_ptr(buf, i,
2462					    struct btrfs_file_extent_item);
2463			if (btrfs_file_extent_type(buf, fi) ==
2464			    BTRFS_FILE_EXTENT_INLINE)
2465				continue;
2466			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2467			if (bytenr == 0)
2468				continue;
2469
2470			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2471			key.offset -= btrfs_file_extent_offset(buf, fi);
2472			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2473					       num_bytes, parent);
2474			generic_ref.real_root = root->root_key.objectid;
2475			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2476					    key.offset);
2477			generic_ref.skip_qgroup = for_reloc;
2478			if (inc)
2479				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2480			else
2481				ret = btrfs_free_extent(trans, &generic_ref);
2482			if (ret)
2483				goto fail;
2484		} else {
2485			bytenr = btrfs_node_blockptr(buf, i);
2486			num_bytes = fs_info->nodesize;
2487			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2488					       num_bytes, parent);
2489			generic_ref.real_root = root->root_key.objectid;
2490			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
2491			generic_ref.skip_qgroup = for_reloc;
2492			if (inc)
2493				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2494			else
2495				ret = btrfs_free_extent(trans, &generic_ref);
2496			if (ret)
2497				goto fail;
2498		}
2499	}
2500	return 0;
2501fail:
2502	return ret;
2503}
2504
2505int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2506		  struct extent_buffer *buf, int full_backref)
2507{
2508	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2509}
2510
2511int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2512		  struct extent_buffer *buf, int full_backref)
2513{
2514	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2515}
2516
2517int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2518{
2519	struct btrfs_block_group_cache *block_group;
2520	int readonly = 0;
2521
2522	block_group = btrfs_lookup_block_group(fs_info, bytenr);
2523	if (!block_group || block_group->ro)
2524		readonly = 1;
2525	if (block_group)
2526		btrfs_put_block_group(block_group);
2527	return readonly;
2528}
2529
2530static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2531{
2532	struct btrfs_fs_info *fs_info = root->fs_info;
2533	u64 flags;
2534	u64 ret;
2535
2536	if (data)
2537		flags = BTRFS_BLOCK_GROUP_DATA;
2538	else if (root == fs_info->chunk_root)
2539		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2540	else
2541		flags = BTRFS_BLOCK_GROUP_METADATA;
2542
2543	ret = btrfs_get_alloc_profile(fs_info, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2544	return ret;
2545}
2546
2547static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2548{
2549	struct btrfs_block_group_cache *cache;
2550	u64 bytenr;
2551
2552	spin_lock(&fs_info->block_group_cache_lock);
2553	bytenr = fs_info->first_logical_byte;
2554	spin_unlock(&fs_info->block_group_cache_lock);
2555
2556	if (bytenr < (u64)-1)
2557		return bytenr;
2558
2559	cache = btrfs_lookup_first_block_group(fs_info, search_start);
2560	if (!cache)
2561		return 0;
2562
2563	bytenr = cache->key.objectid;
2564	btrfs_put_block_group(cache);
2565
2566	return bytenr;
2567}
2568
2569static int pin_down_extent(struct btrfs_block_group_cache *cache,
 
2570			   u64 bytenr, u64 num_bytes, int reserved)
2571{
2572	struct btrfs_fs_info *fs_info = cache->fs_info;
2573
2574	spin_lock(&cache->space_info->lock);
2575	spin_lock(&cache->lock);
2576	cache->pinned += num_bytes;
2577	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2578					     num_bytes);
2579	if (reserved) {
2580		cache->reserved -= num_bytes;
2581		cache->space_info->bytes_reserved -= num_bytes;
2582	}
2583	spin_unlock(&cache->lock);
2584	spin_unlock(&cache->space_info->lock);
2585
2586	percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
2587		    num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2588	set_extent_dirty(fs_info->pinned_extents, bytenr,
2589			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
 
 
2590	return 0;
2591}
2592
2593/*
2594 * this function must be called within transaction
2595 */
2596int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
2597		     u64 bytenr, u64 num_bytes, int reserved)
2598{
2599	struct btrfs_block_group_cache *cache;
2600
2601	cache = btrfs_lookup_block_group(fs_info, bytenr);
2602	BUG_ON(!cache); /* Logic error */
2603
2604	pin_down_extent(cache, bytenr, num_bytes, reserved);
2605
2606	btrfs_put_block_group(cache);
2607	return 0;
2608}
2609
2610/*
2611 * this function must be called within transaction
2612 */
2613int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
2614				    u64 bytenr, u64 num_bytes)
2615{
2616	struct btrfs_block_group_cache *cache;
2617	int ret;
2618
2619	cache = btrfs_lookup_block_group(fs_info, bytenr);
2620	if (!cache)
2621		return -EINVAL;
2622
2623	/*
2624	 * pull in the free space cache (if any) so that our pin
2625	 * removes the free space from the cache.  We have load_only set
2626	 * to one because the slow code to read in the free extents does check
2627	 * the pinned extents.
2628	 */
2629	btrfs_cache_block_group(cache, 1);
2630
2631	pin_down_extent(cache, bytenr, num_bytes, 0);
2632
2633	/* remove us from the free space cache (if we're there at all) */
2634	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2635	btrfs_put_block_group(cache);
2636	return ret;
2637}
2638
2639static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2640				   u64 start, u64 num_bytes)
2641{
2642	int ret;
2643	struct btrfs_block_group_cache *block_group;
2644	struct btrfs_caching_control *caching_ctl;
2645
2646	block_group = btrfs_lookup_block_group(fs_info, start);
2647	if (!block_group)
2648		return -EINVAL;
2649
2650	btrfs_cache_block_group(block_group, 0);
2651	caching_ctl = btrfs_get_caching_control(block_group);
2652
2653	if (!caching_ctl) {
2654		/* Logic error */
2655		BUG_ON(!btrfs_block_group_cache_done(block_group));
2656		ret = btrfs_remove_free_space(block_group, start, num_bytes);
2657	} else {
2658		mutex_lock(&caching_ctl->mutex);
2659
2660		if (start >= caching_ctl->progress) {
2661			ret = btrfs_add_excluded_extent(fs_info, start,
2662							num_bytes);
2663		} else if (start + num_bytes <= caching_ctl->progress) {
2664			ret = btrfs_remove_free_space(block_group,
2665						      start, num_bytes);
2666		} else {
2667			num_bytes = caching_ctl->progress - start;
2668			ret = btrfs_remove_free_space(block_group,
2669						      start, num_bytes);
2670			if (ret)
2671				goto out_lock;
2672
2673			num_bytes = (start + num_bytes) -
2674				caching_ctl->progress;
2675			start = caching_ctl->progress;
2676			ret = btrfs_add_excluded_extent(fs_info, start,
2677							num_bytes);
2678		}
2679out_lock:
2680		mutex_unlock(&caching_ctl->mutex);
2681		btrfs_put_caching_control(caching_ctl);
2682	}
2683	btrfs_put_block_group(block_group);
2684	return ret;
2685}
2686
2687int btrfs_exclude_logged_extents(struct extent_buffer *eb)
 
2688{
2689	struct btrfs_fs_info *fs_info = eb->fs_info;
2690	struct btrfs_file_extent_item *item;
2691	struct btrfs_key key;
2692	int found_type;
2693	int i;
2694	int ret = 0;
2695
2696	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2697		return 0;
2698
2699	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2700		btrfs_item_key_to_cpu(eb, &key, i);
2701		if (key.type != BTRFS_EXTENT_DATA_KEY)
2702			continue;
2703		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2704		found_type = btrfs_file_extent_type(eb, item);
2705		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2706			continue;
2707		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2708			continue;
2709		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2710		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2711		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2712		if (ret)
2713			break;
2714	}
2715
2716	return ret;
2717}
2718
2719static void
2720btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2721{
2722	atomic_inc(&bg->reservations);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2723}
2724
2725void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
 
2726{
 
2727	struct btrfs_caching_control *next;
2728	struct btrfs_caching_control *caching_ctl;
2729	struct btrfs_block_group_cache *cache;
2730
2731	down_write(&fs_info->commit_root_sem);
2732
2733	list_for_each_entry_safe(caching_ctl, next,
2734				 &fs_info->caching_block_groups, list) {
2735		cache = caching_ctl->block_group;
2736		if (btrfs_block_group_cache_done(cache)) {
2737			cache->last_byte_to_unpin = (u64)-1;
2738			list_del_init(&caching_ctl->list);
2739			btrfs_put_caching_control(caching_ctl);
2740		} else {
2741			cache->last_byte_to_unpin = caching_ctl->progress;
2742		}
2743	}
2744
2745	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
2746		fs_info->pinned_extents = &fs_info->freed_extents[1];
2747	else
2748		fs_info->pinned_extents = &fs_info->freed_extents[0];
2749
2750	up_write(&fs_info->commit_root_sem);
2751
2752	btrfs_update_global_block_rsv(fs_info);
2753}
2754
2755/*
2756 * Returns the free cluster for the given space info and sets empty_cluster to
2757 * what it should be based on the mount options.
2758 */
2759static struct btrfs_free_cluster *
2760fetch_cluster_info(struct btrfs_fs_info *fs_info,
2761		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2762{
2763	struct btrfs_free_cluster *ret = NULL;
 
2764
2765	*empty_cluster = 0;
2766	if (btrfs_mixed_space_info(space_info))
2767		return ret;
2768
 
 
2769	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2770		ret = &fs_info->meta_alloc_cluster;
2771		if (btrfs_test_opt(fs_info, SSD))
2772			*empty_cluster = SZ_2M;
2773		else
2774			*empty_cluster = SZ_64K;
2775	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2776		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2777		*empty_cluster = SZ_2M;
2778		ret = &fs_info->data_alloc_cluster;
2779	}
2780
2781	return ret;
2782}
2783
2784static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2785			      u64 start, u64 end,
2786			      const bool return_free_space)
2787{
 
2788	struct btrfs_block_group_cache *cache = NULL;
2789	struct btrfs_space_info *space_info;
2790	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2791	struct btrfs_free_cluster *cluster = NULL;
2792	u64 len;
2793	u64 total_unpinned = 0;
2794	u64 empty_cluster = 0;
2795	bool readonly;
2796
2797	while (start <= end) {
2798		readonly = false;
2799		if (!cache ||
2800		    start >= cache->key.objectid + cache->key.offset) {
2801			if (cache)
2802				btrfs_put_block_group(cache);
2803			total_unpinned = 0;
2804			cache = btrfs_lookup_block_group(fs_info, start);
2805			BUG_ON(!cache); /* Logic error */
2806
2807			cluster = fetch_cluster_info(fs_info,
2808						     cache->space_info,
2809						     &empty_cluster);
2810			empty_cluster <<= 1;
2811		}
2812
2813		len = cache->key.objectid + cache->key.offset - start;
2814		len = min(len, end + 1 - start);
2815
2816		if (start < cache->last_byte_to_unpin) {
2817			len = min(len, cache->last_byte_to_unpin - start);
2818			if (return_free_space)
2819				btrfs_add_free_space(cache, start, len);
2820		}
2821
2822		start += len;
2823		total_unpinned += len;
2824		space_info = cache->space_info;
2825
2826		/*
2827		 * If this space cluster has been marked as fragmented and we've
2828		 * unpinned enough in this block group to potentially allow a
2829		 * cluster to be created inside of it go ahead and clear the
2830		 * fragmented check.
2831		 */
2832		if (cluster && cluster->fragmented &&
2833		    total_unpinned > empty_cluster) {
2834			spin_lock(&cluster->lock);
2835			cluster->fragmented = 0;
2836			spin_unlock(&cluster->lock);
2837		}
2838
2839		spin_lock(&space_info->lock);
2840		spin_lock(&cache->lock);
2841		cache->pinned -= len;
2842		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2843		space_info->max_extent_size = 0;
2844		percpu_counter_add_batch(&space_info->total_bytes_pinned,
2845			    -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2846		if (cache->ro) {
2847			space_info->bytes_readonly += len;
2848			readonly = true;
2849		}
2850		spin_unlock(&cache->lock);
2851		if (!readonly && return_free_space &&
2852		    global_rsv->space_info == space_info) {
2853			u64 to_add = len;
2854
2855			spin_lock(&global_rsv->lock);
2856			if (!global_rsv->full) {
2857				to_add = min(len, global_rsv->size -
2858					     global_rsv->reserved);
2859				global_rsv->reserved += to_add;
2860				btrfs_space_info_update_bytes_may_use(fs_info,
2861						space_info, to_add);
2862				if (global_rsv->reserved >= global_rsv->size)
2863					global_rsv->full = 1;
2864				len -= to_add;
2865			}
2866			spin_unlock(&global_rsv->lock);
2867			/* Add to any tickets we may have */
2868			if (len)
2869				btrfs_try_granting_tickets(fs_info,
2870							   space_info);
2871		}
2872		spin_unlock(&space_info->lock);
2873	}
2874
2875	if (cache)
2876		btrfs_put_block_group(cache);
2877	return 0;
2878}
2879
2880int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
 
2881{
2882	struct btrfs_fs_info *fs_info = trans->fs_info;
2883	struct btrfs_block_group_cache *block_group, *tmp;
2884	struct list_head *deleted_bgs;
2885	struct extent_io_tree *unpin;
2886	u64 start;
2887	u64 end;
2888	int ret;
2889
2890	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
2891		unpin = &fs_info->freed_extents[1];
2892	else
2893		unpin = &fs_info->freed_extents[0];
2894
2895	while (!trans->aborted) {
2896		struct extent_state *cached_state = NULL;
2897
2898		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2899		ret = find_first_extent_bit(unpin, 0, &start, &end,
2900					    EXTENT_DIRTY, &cached_state);
2901		if (ret) {
2902			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2903			break;
2904		}
2905
2906		if (btrfs_test_opt(fs_info, DISCARD))
2907			ret = btrfs_discard_extent(fs_info, start,
2908						   end + 1 - start, NULL);
2909
2910		clear_extent_dirty(unpin, start, end, &cached_state);
2911		unpin_extent_range(fs_info, start, end, true);
2912		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2913		free_extent_state(cached_state);
2914		cond_resched();
2915	}
2916
2917	/*
2918	 * Transaction is finished.  We don't need the lock anymore.  We
2919	 * do need to clean up the block groups in case of a transaction
2920	 * abort.
2921	 */
2922	deleted_bgs = &trans->transaction->deleted_bgs;
2923	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2924		u64 trimmed = 0;
2925
2926		ret = -EROFS;
2927		if (!trans->aborted)
2928			ret = btrfs_discard_extent(fs_info,
2929						   block_group->key.objectid,
2930						   block_group->key.offset,
2931						   &trimmed);
2932
2933		list_del_init(&block_group->bg_list);
2934		btrfs_put_block_group_trimming(block_group);
2935		btrfs_put_block_group(block_group);
2936
2937		if (ret) {
2938			const char *errstr = btrfs_decode_error(ret);
2939			btrfs_warn(fs_info,
2940			   "discard failed while removing blockgroup: errno=%d %s",
2941				   ret, errstr);
2942		}
2943	}
2944
2945	return 0;
2946}
2947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2948static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2949			       struct btrfs_delayed_ref_node *node, u64 parent,
2950			       u64 root_objectid, u64 owner_objectid,
2951			       u64 owner_offset, int refs_to_drop,
2952			       struct btrfs_delayed_extent_op *extent_op)
 
2953{
2954	struct btrfs_fs_info *info = trans->fs_info;
2955	struct btrfs_key key;
2956	struct btrfs_path *path;
 
2957	struct btrfs_root *extent_root = info->extent_root;
2958	struct extent_buffer *leaf;
2959	struct btrfs_extent_item *ei;
2960	struct btrfs_extent_inline_ref *iref;
2961	int ret;
2962	int is_data;
2963	int extent_slot = 0;
2964	int found_extent = 0;
2965	int num_to_del = 1;
2966	u32 item_size;
2967	u64 refs;
2968	u64 bytenr = node->bytenr;
2969	u64 num_bytes = node->num_bytes;
2970	int last_ref = 0;
2971	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
 
2972
2973	path = btrfs_alloc_path();
2974	if (!path)
2975		return -ENOMEM;
2976
2977	path->reada = READA_FORWARD;
2978	path->leave_spinning = 1;
2979
2980	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2981	BUG_ON(!is_data && refs_to_drop != 1);
2982
2983	if (is_data)
2984		skinny_metadata = false;
2985
2986	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2987				    parent, root_objectid, owner_objectid,
 
2988				    owner_offset);
2989	if (ret == 0) {
2990		extent_slot = path->slots[0];
2991		while (extent_slot >= 0) {
2992			btrfs_item_key_to_cpu(path->nodes[0], &key,
2993					      extent_slot);
2994			if (key.objectid != bytenr)
2995				break;
2996			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2997			    key.offset == num_bytes) {
2998				found_extent = 1;
2999				break;
3000			}
3001			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3002			    key.offset == owner_objectid) {
3003				found_extent = 1;
3004				break;
3005			}
3006			if (path->slots[0] - extent_slot > 5)
3007				break;
3008			extent_slot--;
3009		}
3010
 
 
 
 
3011		if (!found_extent) {
3012			BUG_ON(iref);
3013			ret = remove_extent_backref(trans, path, NULL,
3014						    refs_to_drop,
3015						    is_data, &last_ref);
3016			if (ret) {
3017				btrfs_abort_transaction(trans, ret);
3018				goto out;
3019			}
3020			btrfs_release_path(path);
3021			path->leave_spinning = 1;
3022
3023			key.objectid = bytenr;
3024			key.type = BTRFS_EXTENT_ITEM_KEY;
3025			key.offset = num_bytes;
3026
3027			if (!is_data && skinny_metadata) {
3028				key.type = BTRFS_METADATA_ITEM_KEY;
3029				key.offset = owner_objectid;
3030			}
3031
3032			ret = btrfs_search_slot(trans, extent_root,
3033						&key, path, -1, 1);
3034			if (ret > 0 && skinny_metadata && path->slots[0]) {
3035				/*
3036				 * Couldn't find our skinny metadata item,
3037				 * see if we have ye olde extent item.
3038				 */
3039				path->slots[0]--;
3040				btrfs_item_key_to_cpu(path->nodes[0], &key,
3041						      path->slots[0]);
3042				if (key.objectid == bytenr &&
3043				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3044				    key.offset == num_bytes)
3045					ret = 0;
3046			}
3047
3048			if (ret > 0 && skinny_metadata) {
3049				skinny_metadata = false;
3050				key.objectid = bytenr;
3051				key.type = BTRFS_EXTENT_ITEM_KEY;
3052				key.offset = num_bytes;
3053				btrfs_release_path(path);
3054				ret = btrfs_search_slot(trans, extent_root,
3055							&key, path, -1, 1);
3056			}
3057
3058			if (ret) {
3059				btrfs_err(info,
3060					  "umm, got %d back from search, was looking for %llu",
3061					  ret, bytenr);
3062				if (ret > 0)
3063					btrfs_print_leaf(path->nodes[0]);
 
3064			}
3065			if (ret < 0) {
3066				btrfs_abort_transaction(trans, ret);
3067				goto out;
3068			}
3069			extent_slot = path->slots[0];
3070		}
3071	} else if (WARN_ON(ret == -ENOENT)) {
3072		btrfs_print_leaf(path->nodes[0]);
3073		btrfs_err(info,
3074			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3075			bytenr, parent, root_objectid, owner_objectid,
3076			owner_offset);
3077		btrfs_abort_transaction(trans, ret);
3078		goto out;
3079	} else {
3080		btrfs_abort_transaction(trans, ret);
3081		goto out;
3082	}
3083
3084	leaf = path->nodes[0];
3085	item_size = btrfs_item_size_nr(leaf, extent_slot);
3086	if (unlikely(item_size < sizeof(*ei))) {
3087		ret = -EINVAL;
3088		btrfs_print_v0_err(info);
3089		btrfs_abort_transaction(trans, ret);
3090		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3091	}
 
 
3092	ei = btrfs_item_ptr(leaf, extent_slot,
3093			    struct btrfs_extent_item);
3094	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3095	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3096		struct btrfs_tree_block_info *bi;
3097		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
3098		bi = (struct btrfs_tree_block_info *)(ei + 1);
3099		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3100	}
3101
3102	refs = btrfs_extent_refs(leaf, ei);
3103	if (refs < refs_to_drop) {
3104		btrfs_err(info,
3105			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
3106			  refs_to_drop, refs, bytenr);
3107		ret = -EINVAL;
3108		btrfs_abort_transaction(trans, ret);
3109		goto out;
3110	}
3111	refs -= refs_to_drop;
3112
3113	if (refs > 0) {
3114		if (extent_op)
3115			__run_delayed_extent_op(extent_op, leaf, ei);
3116		/*
3117		 * In the case of inline back ref, reference count will
3118		 * be updated by remove_extent_backref
3119		 */
3120		if (iref) {
3121			BUG_ON(!found_extent);
3122		} else {
3123			btrfs_set_extent_refs(leaf, ei, refs);
3124			btrfs_mark_buffer_dirty(leaf);
3125		}
3126		if (found_extent) {
3127			ret = remove_extent_backref(trans, path, iref,
3128						    refs_to_drop, is_data,
3129						    &last_ref);
3130			if (ret) {
3131				btrfs_abort_transaction(trans, ret);
3132				goto out;
3133			}
3134		}
 
 
3135	} else {
3136		if (found_extent) {
3137			BUG_ON(is_data && refs_to_drop !=
3138			       extent_data_ref_count(path, iref));
3139			if (iref) {
3140				BUG_ON(path->slots[0] != extent_slot);
3141			} else {
3142				BUG_ON(path->slots[0] != extent_slot + 1);
3143				path->slots[0] = extent_slot;
3144				num_to_del = 2;
3145			}
3146		}
3147
3148		last_ref = 1;
3149		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3150				      num_to_del);
3151		if (ret) {
3152			btrfs_abort_transaction(trans, ret);
3153			goto out;
3154		}
3155		btrfs_release_path(path);
3156
3157		if (is_data) {
3158			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
3159			if (ret) {
3160				btrfs_abort_transaction(trans, ret);
3161				goto out;
3162			}
3163		}
3164
3165		ret = add_to_free_space_tree(trans, bytenr, num_bytes);
 
3166		if (ret) {
3167			btrfs_abort_transaction(trans, ret);
3168			goto out;
3169		}
3170
3171		ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3172		if (ret) {
3173			btrfs_abort_transaction(trans, ret);
3174			goto out;
3175		}
3176	}
3177	btrfs_release_path(path);
3178
3179out:
3180	btrfs_free_path(path);
3181	return ret;
3182}
3183
3184/*
3185 * when we free an block, it is possible (and likely) that we free the last
3186 * delayed ref for that extent as well.  This searches the delayed ref tree for
3187 * a given extent, and if there are no other delayed refs to be processed, it
3188 * removes it from the tree.
3189 */
3190static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3191				      u64 bytenr)
3192{
3193	struct btrfs_delayed_ref_head *head;
3194	struct btrfs_delayed_ref_root *delayed_refs;
3195	int ret = 0;
3196
3197	delayed_refs = &trans->transaction->delayed_refs;
3198	spin_lock(&delayed_refs->lock);
3199	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3200	if (!head)
3201		goto out_delayed_unlock;
3202
3203	spin_lock(&head->lock);
3204	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3205		goto out;
3206
3207	if (cleanup_extent_op(head) != NULL)
3208		goto out;
 
 
 
 
3209
3210	/*
3211	 * waiting for the lock here would deadlock.  If someone else has it
3212	 * locked they are already in the process of dropping it anyway
3213	 */
3214	if (!mutex_trylock(&head->mutex))
3215		goto out;
3216
3217	btrfs_delete_ref_head(delayed_refs, head);
3218	head->processing = 0;
 
 
 
 
 
 
3219
 
 
 
 
 
 
 
 
3220	spin_unlock(&head->lock);
3221	spin_unlock(&delayed_refs->lock);
3222
3223	BUG_ON(head->extent_op);
3224	if (head->must_insert_reserved)
3225		ret = 1;
3226
3227	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3228	mutex_unlock(&head->mutex);
3229	btrfs_put_delayed_ref_head(head);
3230	return ret;
3231out:
3232	spin_unlock(&head->lock);
3233
3234out_delayed_unlock:
3235	spin_unlock(&delayed_refs->lock);
3236	return 0;
3237}
3238
3239void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3240			   struct btrfs_root *root,
3241			   struct extent_buffer *buf,
3242			   u64 parent, int last_ref)
3243{
3244	struct btrfs_fs_info *fs_info = root->fs_info;
3245	struct btrfs_ref generic_ref = { 0 };
3246	int pin = 1;
3247	int ret;
3248
3249	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3250			       buf->start, buf->len, parent);
3251	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3252			    root->root_key.objectid);
3253
3254	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3255		int old_ref_mod, new_ref_mod;
3256
3257		btrfs_ref_tree_mod(fs_info, &generic_ref);
3258		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
3259						 &old_ref_mod, &new_ref_mod);
3260		BUG_ON(ret); /* -ENOMEM */
3261		pin = old_ref_mod >= 0 && new_ref_mod < 0;
3262	}
3263
3264	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
 
 
 
3265		struct btrfs_block_group_cache *cache;
3266
3267		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3268			ret = check_ref_cleanup(trans, buf->start);
3269			if (!ret)
3270				goto out;
3271		}
3272
3273		pin = 0;
3274		cache = btrfs_lookup_block_group(fs_info, buf->start);
3275
3276		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3277			pin_down_extent(cache, buf->start, buf->len, 1);
3278			btrfs_put_block_group(cache);
3279			goto out;
3280		}
3281
3282		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3283
3284		btrfs_add_free_space(cache, buf->start, buf->len);
3285		btrfs_free_reserved_bytes(cache, buf->len, 0);
3286		btrfs_put_block_group(cache);
3287		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
 
3288	}
3289out:
3290	if (pin)
3291		add_pinned_bytes(fs_info, &generic_ref);
 
 
3292
3293	if (last_ref) {
3294		/*
3295		 * Deleting the buffer, clear the corrupt flag since it doesn't
3296		 * matter anymore.
3297		 */
3298		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3299	}
3300}
3301
3302/* Can return -ENOMEM */
3303int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
 
 
3304{
3305	struct btrfs_fs_info *fs_info = trans->fs_info;
3306	int old_ref_mod, new_ref_mod;
3307	int ret;
 
3308
3309	if (btrfs_is_testing(fs_info))
3310		return 0;
3311
 
 
3312	/*
3313	 * tree log blocks never actually go into the extent allocation
3314	 * tree, just update pinning info and exit early.
3315	 */
3316	if ((ref->type == BTRFS_REF_METADATA &&
3317	     ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3318	    (ref->type == BTRFS_REF_DATA &&
3319	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3320		/* unlocks the pinned mutex */
3321		btrfs_pin_extent(fs_info, ref->bytenr, ref->len, 1);
3322		old_ref_mod = new_ref_mod = 0;
3323		ret = 0;
3324	} else if (ref->type == BTRFS_REF_METADATA) {
3325		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
3326						 &old_ref_mod, &new_ref_mod);
3327	} else {
3328		ret = btrfs_add_delayed_data_ref(trans, ref, 0,
3329						 &old_ref_mod, &new_ref_mod);
3330	}
3331
3332	if (!((ref->type == BTRFS_REF_METADATA &&
3333	       ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3334	      (ref->type == BTRFS_REF_DATA &&
3335	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3336		btrfs_ref_tree_mod(fs_info, ref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3337
3338	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
3339		add_pinned_bytes(fs_info, ref);
 
3340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3341	return ret;
3342}
3343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3344enum btrfs_loop_type {
3345	LOOP_CACHING_NOWAIT,
3346	LOOP_CACHING_WAIT,
3347	LOOP_ALLOC_CHUNK,
3348	LOOP_NO_EMPTY_SIZE,
3349};
3350
3351static inline void
3352btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
3353		       int delalloc)
3354{
3355	if (delalloc)
3356		down_read(&cache->data_rwsem);
3357}
3358
3359static inline void
3360btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
3361		       int delalloc)
3362{
3363	btrfs_get_block_group(cache);
3364	if (delalloc)
3365		down_read(&cache->data_rwsem);
3366}
3367
3368static struct btrfs_block_group_cache *
3369btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
3370		   struct btrfs_free_cluster *cluster,
3371		   int delalloc)
3372{
3373	struct btrfs_block_group_cache *used_bg = NULL;
3374
 
3375	spin_lock(&cluster->refill_lock);
3376	while (1) {
3377		used_bg = cluster->block_group;
3378		if (!used_bg)
3379			return NULL;
3380
3381		if (used_bg == block_group)
3382			return used_bg;
3383
3384		btrfs_get_block_group(used_bg);
 
 
3385
3386		if (!delalloc)
3387			return used_bg;
 
3388
3389		if (down_read_trylock(&used_bg->data_rwsem))
3390			return used_bg;
3391
3392		spin_unlock(&cluster->refill_lock);
3393
3394		/* We should only have one-level nested. */
3395		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3396
3397		spin_lock(&cluster->refill_lock);
3398		if (used_bg == cluster->block_group)
3399			return used_bg;
3400
3401		up_read(&used_bg->data_rwsem);
3402		btrfs_put_block_group(used_bg);
3403	}
 
3404}
3405
3406static inline void
3407btrfs_release_block_group(struct btrfs_block_group_cache *cache,
3408			 int delalloc)
3409{
3410	if (delalloc)
3411		up_read(&cache->data_rwsem);
3412	btrfs_put_block_group(cache);
3413}
3414
3415/*
3416 * Structure used internally for find_free_extent() function.  Wraps needed
3417 * parameters.
3418 */
3419struct find_free_extent_ctl {
3420	/* Basic allocation info */
3421	u64 ram_bytes;
3422	u64 num_bytes;
3423	u64 empty_size;
3424	u64 flags;
3425	int delalloc;
3426
3427	/* Where to start the search inside the bg */
3428	u64 search_start;
3429
3430	/* For clustered allocation */
3431	u64 empty_cluster;
3432
3433	bool have_caching_bg;
3434	bool orig_have_caching_bg;
3435
3436	/* RAID index, converted from flags */
3437	int index;
3438
3439	/*
3440	 * Current loop number, check find_free_extent_update_loop() for details
3441	 */
3442	int loop;
3443
3444	/*
3445	 * Whether we're refilling a cluster, if true we need to re-search
3446	 * current block group but don't try to refill the cluster again.
3447	 */
3448	bool retry_clustered;
3449
3450	/*
3451	 * Whether we're updating free space cache, if true we need to re-search
3452	 * current block group but don't try updating free space cache again.
3453	 */
3454	bool retry_unclustered;
3455
3456	/* If current block group is cached */
3457	int cached;
3458
3459	/* Max contiguous hole found */
3460	u64 max_extent_size;
3461
3462	/* Total free space from free space cache, not always contiguous */
3463	u64 total_free_space;
3464
3465	/* Found result */
3466	u64 found_offset;
3467};
3468
3469
3470/*
3471 * Helper function for find_free_extent().
3472 *
3473 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3474 * Return -EAGAIN to inform caller that we need to re-search this block group
3475 * Return >0 to inform caller that we find nothing
3476 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3477 */
3478static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
3479		struct btrfs_free_cluster *last_ptr,
3480		struct find_free_extent_ctl *ffe_ctl,
3481		struct btrfs_block_group_cache **cluster_bg_ret)
3482{
3483	struct btrfs_block_group_cache *cluster_bg;
3484	u64 aligned_cluster;
3485	u64 offset;
3486	int ret;
3487
3488	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3489	if (!cluster_bg)
3490		goto refill_cluster;
3491	if (cluster_bg != bg && (cluster_bg->ro ||
3492	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3493		goto release_cluster;
3494
3495	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3496			ffe_ctl->num_bytes, cluster_bg->key.objectid,
3497			&ffe_ctl->max_extent_size);
3498	if (offset) {
3499		/* We have a block, we're done */
3500		spin_unlock(&last_ptr->refill_lock);
3501		trace_btrfs_reserve_extent_cluster(cluster_bg,
3502				ffe_ctl->search_start, ffe_ctl->num_bytes);
3503		*cluster_bg_ret = cluster_bg;
3504		ffe_ctl->found_offset = offset;
3505		return 0;
3506	}
3507	WARN_ON(last_ptr->block_group != cluster_bg);
3508
3509release_cluster:
3510	/*
3511	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3512	 * lets just skip it and let the allocator find whatever block it can
3513	 * find. If we reach this point, we will have tried the cluster
3514	 * allocator plenty of times and not have found anything, so we are
3515	 * likely way too fragmented for the clustering stuff to find anything.
3516	 *
3517	 * However, if the cluster is taken from the current block group,
3518	 * release the cluster first, so that we stand a better chance of
3519	 * succeeding in the unclustered allocation.
3520	 */
3521	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3522		spin_unlock(&last_ptr->refill_lock);
3523		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3524		return -ENOENT;
3525	}
3526
3527	/* This cluster didn't work out, free it and start over */
3528	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3529
3530	if (cluster_bg != bg)
3531		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3532
3533refill_cluster:
3534	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3535		spin_unlock(&last_ptr->refill_lock);
3536		return -ENOENT;
3537	}
3538
3539	aligned_cluster = max_t(u64,
3540			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3541			bg->full_stripe_len);
3542	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3543			ffe_ctl->num_bytes, aligned_cluster);
3544	if (ret == 0) {
3545		/* Now pull our allocation out of this cluster */
3546		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3547				ffe_ctl->num_bytes, ffe_ctl->search_start,
3548				&ffe_ctl->max_extent_size);
3549		if (offset) {
3550			/* We found one, proceed */
3551			spin_unlock(&last_ptr->refill_lock);
3552			trace_btrfs_reserve_extent_cluster(bg,
3553					ffe_ctl->search_start,
3554					ffe_ctl->num_bytes);
3555			ffe_ctl->found_offset = offset;
3556			return 0;
3557		}
3558	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3559		   !ffe_ctl->retry_clustered) {
3560		spin_unlock(&last_ptr->refill_lock);
3561
3562		ffe_ctl->retry_clustered = true;
3563		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3564				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3565		return -EAGAIN;
3566	}
3567	/*
3568	 * At this point we either didn't find a cluster or we weren't able to
3569	 * allocate a block from our cluster.  Free the cluster we've been
3570	 * trying to use, and go to the next block group.
3571	 */
3572	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3573	spin_unlock(&last_ptr->refill_lock);
3574	return 1;
3575}
3576
3577/*
3578 * Return >0 to inform caller that we find nothing
3579 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3580 * Return -EAGAIN to inform caller that we need to re-search this block group
3581 */
3582static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg,
3583		struct btrfs_free_cluster *last_ptr,
3584		struct find_free_extent_ctl *ffe_ctl)
3585{
3586	u64 offset;
3587
3588	/*
3589	 * We are doing an unclustered allocation, set the fragmented flag so
3590	 * we don't bother trying to setup a cluster again until we get more
3591	 * space.
3592	 */
3593	if (unlikely(last_ptr)) {
3594		spin_lock(&last_ptr->lock);
3595		last_ptr->fragmented = 1;
3596		spin_unlock(&last_ptr->lock);
3597	}
3598	if (ffe_ctl->cached) {
3599		struct btrfs_free_space_ctl *free_space_ctl;
3600
3601		free_space_ctl = bg->free_space_ctl;
3602		spin_lock(&free_space_ctl->tree_lock);
3603		if (free_space_ctl->free_space <
3604		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3605		    ffe_ctl->empty_size) {
3606			ffe_ctl->total_free_space = max_t(u64,
3607					ffe_ctl->total_free_space,
3608					free_space_ctl->free_space);
3609			spin_unlock(&free_space_ctl->tree_lock);
3610			return 1;
3611		}
3612		spin_unlock(&free_space_ctl->tree_lock);
3613	}
3614
3615	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3616			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3617			&ffe_ctl->max_extent_size);
3618
3619	/*
3620	 * If we didn't find a chunk, and we haven't failed on this block group
3621	 * before, and this block group is in the middle of caching and we are
3622	 * ok with waiting, then go ahead and wait for progress to be made, and
3623	 * set @retry_unclustered to true.
3624	 *
3625	 * If @retry_unclustered is true then we've already waited on this
3626	 * block group once and should move on to the next block group.
3627	 */
3628	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3629	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3630		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3631						      ffe_ctl->empty_size);
3632		ffe_ctl->retry_unclustered = true;
3633		return -EAGAIN;
3634	} else if (!offset) {
3635		return 1;
3636	}
3637	ffe_ctl->found_offset = offset;
3638	return 0;
3639}
3640
3641/*
3642 * Return >0 means caller needs to re-search for free extent
3643 * Return 0 means we have the needed free extent.
3644 * Return <0 means we failed to locate any free extent.
3645 */
3646static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3647					struct btrfs_free_cluster *last_ptr,
3648					struct btrfs_key *ins,
3649					struct find_free_extent_ctl *ffe_ctl,
3650					int full_search, bool use_cluster)
3651{
3652	struct btrfs_root *root = fs_info->extent_root;
3653	int ret;
3654
3655	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3656	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3657		ffe_ctl->orig_have_caching_bg = true;
3658
3659	if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3660	    ffe_ctl->have_caching_bg)
3661		return 1;
3662
3663	if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3664		return 1;
3665
3666	if (ins->objectid) {
3667		if (!use_cluster && last_ptr) {
3668			spin_lock(&last_ptr->lock);
3669			last_ptr->window_start = ins->objectid;
3670			spin_unlock(&last_ptr->lock);
3671		}
3672		return 0;
3673	}
3674
3675	/*
3676	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3677	 *			caching kthreads as we move along
3678	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3679	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3680	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3681	 *		       again
3682	 */
3683	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3684		ffe_ctl->index = 0;
3685		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
3686			/*
3687			 * We want to skip the LOOP_CACHING_WAIT step if we
3688			 * don't have any uncached bgs and we've already done a
3689			 * full search through.
3690			 */
3691			if (ffe_ctl->orig_have_caching_bg || !full_search)
3692				ffe_ctl->loop = LOOP_CACHING_WAIT;
3693			else
3694				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
3695		} else {
3696			ffe_ctl->loop++;
3697		}
3698
3699		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3700			struct btrfs_trans_handle *trans;
3701			int exist = 0;
3702
3703			trans = current->journal_info;
3704			if (trans)
3705				exist = 1;
3706			else
3707				trans = btrfs_join_transaction(root);
3708
3709			if (IS_ERR(trans)) {
3710				ret = PTR_ERR(trans);
3711				return ret;
3712			}
3713
3714			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3715						CHUNK_ALLOC_FORCE);
3716
3717			/*
3718			 * If we can't allocate a new chunk we've already looped
3719			 * through at least once, move on to the NO_EMPTY_SIZE
3720			 * case.
3721			 */
3722			if (ret == -ENOSPC)
3723				ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3724
3725			/* Do not bail out on ENOSPC since we can do more. */
3726			if (ret < 0 && ret != -ENOSPC)
3727				btrfs_abort_transaction(trans, ret);
3728			else
3729				ret = 0;
3730			if (!exist)
3731				btrfs_end_transaction(trans);
3732			if (ret)
3733				return ret;
3734		}
3735
3736		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
3737			/*
3738			 * Don't loop again if we already have no empty_size and
3739			 * no empty_cluster.
3740			 */
3741			if (ffe_ctl->empty_size == 0 &&
3742			    ffe_ctl->empty_cluster == 0)
3743				return -ENOSPC;
3744			ffe_ctl->empty_size = 0;
3745			ffe_ctl->empty_cluster = 0;
3746		}
3747		return 1;
3748	}
3749	return -ENOSPC;
3750}
3751
3752/*
3753 * walks the btree of allocated extents and find a hole of a given size.
3754 * The key ins is changed to record the hole:
3755 * ins->objectid == start position
3756 * ins->flags = BTRFS_EXTENT_ITEM_KEY
3757 * ins->offset == the size of the hole.
3758 * Any available blocks before search_start are skipped.
3759 *
3760 * If there is no suitable free space, we will record the max size of
3761 * the free space extent currently.
3762 *
3763 * The overall logic and call chain:
3764 *
3765 * find_free_extent()
3766 * |- Iterate through all block groups
3767 * |  |- Get a valid block group
3768 * |  |- Try to do clustered allocation in that block group
3769 * |  |- Try to do unclustered allocation in that block group
3770 * |  |- Check if the result is valid
3771 * |  |  |- If valid, then exit
3772 * |  |- Jump to next block group
3773 * |
3774 * |- Push harder to find free extents
3775 *    |- If not found, re-iterate all block groups
3776 */
3777static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
3778				u64 ram_bytes, u64 num_bytes, u64 empty_size,
3779				u64 hint_byte, struct btrfs_key *ins,
3780				u64 flags, int delalloc)
3781{
3782	int ret = 0;
 
3783	struct btrfs_free_cluster *last_ptr = NULL;
3784	struct btrfs_block_group_cache *block_group = NULL;
3785	struct find_free_extent_ctl ffe_ctl = {0};
 
 
3786	struct btrfs_space_info *space_info;
 
 
 
 
 
 
3787	bool use_cluster = true;
 
 
3788	bool full_search = false;
3789
3790	WARN_ON(num_bytes < fs_info->sectorsize);
3791
3792	ffe_ctl.ram_bytes = ram_bytes;
3793	ffe_ctl.num_bytes = num_bytes;
3794	ffe_ctl.empty_size = empty_size;
3795	ffe_ctl.flags = flags;
3796	ffe_ctl.search_start = 0;
3797	ffe_ctl.retry_clustered = false;
3798	ffe_ctl.retry_unclustered = false;
3799	ffe_ctl.delalloc = delalloc;
3800	ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
3801	ffe_ctl.have_caching_bg = false;
3802	ffe_ctl.orig_have_caching_bg = false;
3803	ffe_ctl.found_offset = 0;
3804
3805	ins->type = BTRFS_EXTENT_ITEM_KEY;
3806	ins->objectid = 0;
3807	ins->offset = 0;
3808
3809	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3810
3811	space_info = btrfs_find_space_info(fs_info, flags);
3812	if (!space_info) {
3813		btrfs_err(fs_info, "No space info for %llu", flags);
3814		return -ENOSPC;
3815	}
3816
3817	/*
3818	 * If our free space is heavily fragmented we may not be able to make
3819	 * big contiguous allocations, so instead of doing the expensive search
3820	 * for free space, simply return ENOSPC with our max_extent_size so we
3821	 * can go ahead and search for a more manageable chunk.
3822	 *
3823	 * If our max_extent_size is large enough for our allocation simply
3824	 * disable clustering since we will likely not be able to find enough
3825	 * space to create a cluster and induce latency trying.
3826	 */
3827	if (unlikely(space_info->max_extent_size)) {
3828		spin_lock(&space_info->lock);
3829		if (space_info->max_extent_size &&
3830		    num_bytes > space_info->max_extent_size) {
3831			ins->offset = space_info->max_extent_size;
3832			spin_unlock(&space_info->lock);
3833			return -ENOSPC;
3834		} else if (space_info->max_extent_size) {
3835			use_cluster = false;
3836		}
3837		spin_unlock(&space_info->lock);
3838	}
3839
3840	last_ptr = fetch_cluster_info(fs_info, space_info,
3841				      &ffe_ctl.empty_cluster);
3842	if (last_ptr) {
3843		spin_lock(&last_ptr->lock);
3844		if (last_ptr->block_group)
3845			hint_byte = last_ptr->window_start;
3846		if (last_ptr->fragmented) {
3847			/*
3848			 * We still set window_start so we can keep track of the
3849			 * last place we found an allocation to try and save
3850			 * some time.
3851			 */
3852			hint_byte = last_ptr->window_start;
3853			use_cluster = false;
3854		}
3855		spin_unlock(&last_ptr->lock);
3856	}
3857
3858	ffe_ctl.search_start = max(ffe_ctl.search_start,
3859				   first_logical_byte(fs_info, 0));
3860	ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
3861	if (ffe_ctl.search_start == hint_byte) {
3862		block_group = btrfs_lookup_block_group(fs_info,
3863						       ffe_ctl.search_start);
3864		/*
3865		 * we don't want to use the block group if it doesn't match our
3866		 * allocation bits, or if its not cached.
3867		 *
3868		 * However if we are re-searching with an ideal block group
3869		 * picked out then we don't care that the block group is cached.
3870		 */
3871		if (block_group && block_group_bits(block_group, flags) &&
3872		    block_group->cached != BTRFS_CACHE_NO) {
3873			down_read(&space_info->groups_sem);
3874			if (list_empty(&block_group->list) ||
3875			    block_group->ro) {
3876				/*
3877				 * someone is removing this block group,
3878				 * we can't jump into the have_block_group
3879				 * target because our list pointers are not
3880				 * valid
3881				 */
3882				btrfs_put_block_group(block_group);
3883				up_read(&space_info->groups_sem);
3884			} else {
3885				ffe_ctl.index = btrfs_bg_flags_to_raid_index(
3886						block_group->flags);
3887				btrfs_lock_block_group(block_group, delalloc);
3888				goto have_block_group;
3889			}
3890		} else if (block_group) {
3891			btrfs_put_block_group(block_group);
3892		}
3893	}
3894search:
3895	ffe_ctl.have_caching_bg = false;
3896	if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
3897	    ffe_ctl.index == 0)
3898		full_search = true;
3899	down_read(&space_info->groups_sem);
3900	list_for_each_entry(block_group,
3901			    &space_info->block_groups[ffe_ctl.index], list) {
3902		/* If the block group is read-only, we can skip it entirely. */
3903		if (unlikely(block_group->ro))
3904			continue;
3905
3906		btrfs_grab_block_group(block_group, delalloc);
3907		ffe_ctl.search_start = block_group->key.objectid;
3908
3909		/*
3910		 * this can happen if we end up cycling through all the
3911		 * raid types, but we want to make sure we only allocate
3912		 * for the proper type.
3913		 */
3914		if (!block_group_bits(block_group, flags)) {
3915			u64 extra = BTRFS_BLOCK_GROUP_DUP |
3916				BTRFS_BLOCK_GROUP_RAID1_MASK |
3917				BTRFS_BLOCK_GROUP_RAID56_MASK |
 
3918				BTRFS_BLOCK_GROUP_RAID10;
3919
3920			/*
3921			 * if they asked for extra copies and this block group
3922			 * doesn't provide them, bail.  This does allow us to
3923			 * fill raid0 from raid1.
3924			 */
3925			if ((flags & extra) && !(block_group->flags & extra))
3926				goto loop;
3927
3928			/*
3929			 * This block group has different flags than we want.
3930			 * It's possible that we have MIXED_GROUP flag but no
3931			 * block group is mixed.  Just skip such block group.
3932			 */
3933			btrfs_release_block_group(block_group, delalloc);
3934			continue;
3935		}
3936
3937have_block_group:
3938		ffe_ctl.cached = btrfs_block_group_cache_done(block_group);
3939		if (unlikely(!ffe_ctl.cached)) {
3940			ffe_ctl.have_caching_bg = true;
3941			ret = btrfs_cache_block_group(block_group, 0);
3942			BUG_ON(ret < 0);
3943			ret = 0;
3944		}
3945
3946		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
3947			goto loop;
 
 
3948
3949		/*
3950		 * Ok we want to try and use the cluster allocator, so
3951		 * lets look there
3952		 */
3953		if (last_ptr && use_cluster) {
3954			struct btrfs_block_group_cache *cluster_bg = NULL;
3955
3956			ret = find_free_extent_clustered(block_group, last_ptr,
3957							 &ffe_ctl, &cluster_bg);
3958
3959			if (ret == 0) {
3960				if (cluster_bg && cluster_bg != block_group) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3961					btrfs_release_block_group(block_group,
3962								  delalloc);
3963					block_group = cluster_bg;
3964				}
3965				goto checks;
3966			} else if (ret == -EAGAIN) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3967				goto have_block_group;
3968			} else if (ret > 0) {
3969				goto loop;
3970			}
3971			/* ret == -ENOENT case falls through */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3972		}
 
3973
3974		ret = find_free_extent_unclustered(block_group, last_ptr,
3975						   &ffe_ctl);
3976		if (ret == -EAGAIN)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3977			goto have_block_group;
3978		else if (ret > 0)
3979			goto loop;
3980		/* ret == 0 case falls through */
3981checks:
3982		ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
3983					     fs_info->stripesize);
3984
3985		/* move on to the next group */
3986		if (ffe_ctl.search_start + num_bytes >
3987		    block_group->key.objectid + block_group->key.offset) {
3988			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
3989					     num_bytes);
3990			goto loop;
3991		}
3992
3993		if (ffe_ctl.found_offset < ffe_ctl.search_start)
3994			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
3995				ffe_ctl.search_start - ffe_ctl.found_offset);
 
3996
3997		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
3998				num_bytes, delalloc);
3999		if (ret == -EAGAIN) {
4000			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4001					     num_bytes);
4002			goto loop;
4003		}
4004		btrfs_inc_block_group_reservations(block_group);
4005
4006		/* we are all good, lets return */
4007		ins->objectid = ffe_ctl.search_start;
4008		ins->offset = num_bytes;
4009
4010		trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4011					   num_bytes);
4012		btrfs_release_block_group(block_group, delalloc);
4013		break;
4014loop:
4015		ffe_ctl.retry_clustered = false;
4016		ffe_ctl.retry_unclustered = false;
4017		BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4018		       ffe_ctl.index);
4019		btrfs_release_block_group(block_group, delalloc);
4020		cond_resched();
4021	}
4022	up_read(&space_info->groups_sem);
4023
4024	ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
4025					   full_search, use_cluster);
4026	if (ret > 0)
 
 
 
 
 
4027		goto search;
4028
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4029	if (ret == -ENOSPC) {
4030		/*
4031		 * Use ffe_ctl->total_free_space as fallback if we can't find
4032		 * any contiguous hole.
4033		 */
4034		if (!ffe_ctl.max_extent_size)
4035			ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4036		spin_lock(&space_info->lock);
4037		space_info->max_extent_size = ffe_ctl.max_extent_size;
4038		spin_unlock(&space_info->lock);
4039		ins->offset = ffe_ctl.max_extent_size;
4040	}
4041	return ret;
4042}
4043
4044/*
4045 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4046 *			  hole that is at least as big as @num_bytes.
4047 *
4048 * @root           -	The root that will contain this extent
4049 *
4050 * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4051 *			is used for accounting purposes. This value differs
4052 *			from @num_bytes only in the case of compressed extents.
4053 *
4054 * @num_bytes      -	Number of bytes to allocate on-disk.
4055 *
4056 * @min_alloc_size -	Indicates the minimum amount of space that the
4057 *			allocator should try to satisfy. In some cases
4058 *			@num_bytes may be larger than what is required and if
4059 *			the filesystem is fragmented then allocation fails.
4060 *			However, the presence of @min_alloc_size gives a
4061 *			chance to try and satisfy the smaller allocation.
4062 *
4063 * @empty_size     -	A hint that you plan on doing more COW. This is the
4064 *			size in bytes the allocator should try to find free
4065 *			next to the block it returns.  This is just a hint and
4066 *			may be ignored by the allocator.
4067 *
4068 * @hint_byte      -	Hint to the allocator to start searching above the byte
4069 *			address passed. It might be ignored.
4070 *
4071 * @ins            -	This key is modified to record the found hole. It will
4072 *			have the following values:
4073 *			ins->objectid == start position
4074 *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4075 *			ins->offset == the size of the hole.
4076 *
4077 * @is_data        -	Boolean flag indicating whether an extent is
4078 *			allocated for data (true) or metadata (false)
4079 *
4080 * @delalloc       -	Boolean flag indicating whether this allocation is for
4081 *			delalloc or not. If 'true' data_rwsem of block groups
4082 *			is going to be acquired.
4083 *
4084 *
4085 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4086 * case -ENOSPC is returned then @ins->offset will contain the size of the
4087 * largest available hole the allocator managed to find.
4088 */
4089int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4090			 u64 num_bytes, u64 min_alloc_size,
4091			 u64 empty_size, u64 hint_byte,
4092			 struct btrfs_key *ins, int is_data, int delalloc)
4093{
4094	struct btrfs_fs_info *fs_info = root->fs_info;
4095	bool final_tried = num_bytes == min_alloc_size;
4096	u64 flags;
4097	int ret;
4098
4099	flags = get_alloc_profile_by_root(root, is_data);
4100again:
4101	WARN_ON(num_bytes < fs_info->sectorsize);
4102	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
4103			       hint_byte, ins, flags, delalloc);
4104	if (!ret && !is_data) {
4105		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4106	} else if (ret == -ENOSPC) {
4107		if (!final_tried && ins->offset) {
4108			num_bytes = min(num_bytes >> 1, ins->offset);
4109			num_bytes = round_down(num_bytes,
4110					       fs_info->sectorsize);
4111			num_bytes = max(num_bytes, min_alloc_size);
4112			ram_bytes = num_bytes;
4113			if (num_bytes == min_alloc_size)
4114				final_tried = true;
4115			goto again;
4116		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4117			struct btrfs_space_info *sinfo;
4118
4119			sinfo = btrfs_find_space_info(fs_info, flags);
4120			btrfs_err(fs_info,
4121				  "allocation failed flags %llu, wanted %llu",
4122				  flags, num_bytes);
4123			if (sinfo)
4124				btrfs_dump_space_info(fs_info, sinfo,
4125						      num_bytes, 1);
4126		}
4127	}
4128
4129	return ret;
4130}
4131
4132static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4133					u64 start, u64 len,
4134					int pin, int delalloc)
4135{
4136	struct btrfs_block_group_cache *cache;
4137	int ret = 0;
4138
4139	cache = btrfs_lookup_block_group(fs_info, start);
4140	if (!cache) {
4141		btrfs_err(fs_info, "Unable to find block group for %llu",
4142			  start);
4143		return -ENOSPC;
4144	}
4145
4146	if (pin)
4147		pin_down_extent(cache, start, len, 1);
4148	else {
4149		if (btrfs_test_opt(fs_info, DISCARD))
4150			ret = btrfs_discard_extent(fs_info, start, len, NULL);
4151		btrfs_add_free_space(cache, start, len);
4152		btrfs_free_reserved_bytes(cache, len, delalloc);
4153		trace_btrfs_reserved_extent_free(fs_info, start, len);
4154	}
4155
4156	btrfs_put_block_group(cache);
 
 
 
4157	return ret;
4158}
4159
4160int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4161			       u64 start, u64 len, int delalloc)
4162{
4163	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
4164}
4165
4166int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
4167				       u64 start, u64 len)
4168{
4169	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
4170}
4171
4172static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
 
4173				      u64 parent, u64 root_objectid,
4174				      u64 flags, u64 owner, u64 offset,
4175				      struct btrfs_key *ins, int ref_mod)
4176{
4177	struct btrfs_fs_info *fs_info = trans->fs_info;
4178	int ret;
 
4179	struct btrfs_extent_item *extent_item;
4180	struct btrfs_extent_inline_ref *iref;
4181	struct btrfs_path *path;
4182	struct extent_buffer *leaf;
4183	int type;
4184	u32 size;
4185
4186	if (parent > 0)
4187		type = BTRFS_SHARED_DATA_REF_KEY;
4188	else
4189		type = BTRFS_EXTENT_DATA_REF_KEY;
4190
4191	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4192
4193	path = btrfs_alloc_path();
4194	if (!path)
4195		return -ENOMEM;
4196
4197	path->leave_spinning = 1;
4198	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4199				      ins, size);
4200	if (ret) {
4201		btrfs_free_path(path);
4202		return ret;
4203	}
4204
4205	leaf = path->nodes[0];
4206	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4207				     struct btrfs_extent_item);
4208	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4209	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4210	btrfs_set_extent_flags(leaf, extent_item,
4211			       flags | BTRFS_EXTENT_FLAG_DATA);
4212
4213	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4214	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4215	if (parent > 0) {
4216		struct btrfs_shared_data_ref *ref;
4217		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4218		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4219		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4220	} else {
4221		struct btrfs_extent_data_ref *ref;
4222		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4223		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4224		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4225		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4226		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4227	}
4228
4229	btrfs_mark_buffer_dirty(path->nodes[0]);
4230	btrfs_free_path(path);
4231
4232	ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
 
4233	if (ret)
4234		return ret;
4235
4236	ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4237	if (ret) { /* -ENOENT, logic error */
4238		btrfs_err(fs_info, "update block group failed for %llu %llu",
4239			ins->objectid, ins->offset);
4240		BUG();
4241	}
4242	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4243	return ret;
4244}
4245
4246static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4247				     struct btrfs_delayed_ref_node *node,
4248				     struct btrfs_delayed_extent_op *extent_op)
 
 
4249{
4250	struct btrfs_fs_info *fs_info = trans->fs_info;
4251	int ret;
 
4252	struct btrfs_extent_item *extent_item;
4253	struct btrfs_key extent_key;
4254	struct btrfs_tree_block_info *block_info;
4255	struct btrfs_extent_inline_ref *iref;
4256	struct btrfs_path *path;
4257	struct extent_buffer *leaf;
4258	struct btrfs_delayed_tree_ref *ref;
4259	u32 size = sizeof(*extent_item) + sizeof(*iref);
4260	u64 num_bytes;
4261	u64 flags = extent_op->flags_to_set;
4262	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4263
4264	ref = btrfs_delayed_node_to_tree_ref(node);
4265
4266	extent_key.objectid = node->bytenr;
4267	if (skinny_metadata) {
4268		extent_key.offset = ref->level;
4269		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4270		num_bytes = fs_info->nodesize;
4271	} else {
4272		extent_key.offset = node->num_bytes;
4273		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4274		size += sizeof(*block_info);
4275		num_bytes = node->num_bytes;
4276	}
4277
4278	path = btrfs_alloc_path();
4279	if (!path)
 
 
4280		return -ENOMEM;
 
4281
4282	path->leave_spinning = 1;
4283	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4284				      &extent_key, size);
4285	if (ret) {
4286		btrfs_free_path(path);
 
 
4287		return ret;
4288	}
4289
4290	leaf = path->nodes[0];
4291	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4292				     struct btrfs_extent_item);
4293	btrfs_set_extent_refs(leaf, extent_item, 1);
4294	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4295	btrfs_set_extent_flags(leaf, extent_item,
4296			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4297
4298	if (skinny_metadata) {
4299		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
 
4300	} else {
4301		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4302		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4303		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4304		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4305	}
4306
4307	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4308		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4309		btrfs_set_extent_inline_ref_type(leaf, iref,
4310						 BTRFS_SHARED_BLOCK_REF_KEY);
4311		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4312	} else {
4313		btrfs_set_extent_inline_ref_type(leaf, iref,
4314						 BTRFS_TREE_BLOCK_REF_KEY);
4315		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4316	}
4317
4318	btrfs_mark_buffer_dirty(leaf);
4319	btrfs_free_path(path);
4320
4321	ret = remove_from_free_space_tree(trans, extent_key.objectid,
4322					  num_bytes);
4323	if (ret)
4324		return ret;
4325
4326	ret = btrfs_update_block_group(trans, extent_key.objectid,
4327				       fs_info->nodesize, 1);
4328	if (ret) { /* -ENOENT, logic error */
4329		btrfs_err(fs_info, "update block group failed for %llu %llu",
4330			extent_key.objectid, extent_key.offset);
4331		BUG();
4332	}
4333
4334	trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4335					  fs_info->nodesize);
4336	return ret;
4337}
4338
4339int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4340				     struct btrfs_root *root, u64 owner,
 
4341				     u64 offset, u64 ram_bytes,
4342				     struct btrfs_key *ins)
4343{
4344	struct btrfs_ref generic_ref = { 0 };
4345	int ret;
4346
4347	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4348
4349	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4350			       ins->objectid, ins->offset, 0);
4351	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
4352	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4353	ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
4354					 ram_bytes, NULL, NULL);
4355	return ret;
4356}
4357
4358/*
4359 * this is used by the tree logging recovery code.  It records that
4360 * an extent has been allocated and makes sure to clear the free
4361 * space cache bits as well
4362 */
4363int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
 
4364				   u64 root_objectid, u64 owner, u64 offset,
4365				   struct btrfs_key *ins)
4366{
4367	struct btrfs_fs_info *fs_info = trans->fs_info;
4368	int ret;
4369	struct btrfs_block_group_cache *block_group;
4370	struct btrfs_space_info *space_info;
4371
4372	/*
4373	 * Mixed block groups will exclude before processing the log so we only
4374	 * need to do the exclude dance if this fs isn't mixed.
4375	 */
4376	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4377		ret = __exclude_logged_extent(fs_info, ins->objectid,
4378					      ins->offset);
4379		if (ret)
4380			return ret;
4381	}
4382
4383	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4384	if (!block_group)
4385		return -EINVAL;
4386
4387	space_info = block_group->space_info;
4388	spin_lock(&space_info->lock);
4389	spin_lock(&block_group->lock);
4390	space_info->bytes_reserved += ins->offset;
4391	block_group->reserved += ins->offset;
4392	spin_unlock(&block_group->lock);
4393	spin_unlock(&space_info->lock);
4394
4395	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4396					 offset, ins, 1);
4397	btrfs_put_block_group(block_group);
4398	return ret;
4399}
4400
4401static struct extent_buffer *
4402btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4403		      u64 bytenr, int level, u64 owner)
4404{
4405	struct btrfs_fs_info *fs_info = root->fs_info;
4406	struct extent_buffer *buf;
4407
4408	buf = btrfs_find_create_tree_block(fs_info, bytenr);
4409	if (IS_ERR(buf))
4410		return buf;
4411
4412	/*
4413	 * Extra safety check in case the extent tree is corrupted and extent
4414	 * allocator chooses to use a tree block which is already used and
4415	 * locked.
4416	 */
4417	if (buf->lock_owner == current->pid) {
4418		btrfs_err_rl(fs_info,
4419"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4420			buf->start, btrfs_header_owner(buf), current->pid);
4421		free_extent_buffer(buf);
4422		return ERR_PTR(-EUCLEAN);
4423	}
4424
4425	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
4426	btrfs_tree_lock(buf);
4427	btrfs_clean_tree_block(buf);
4428	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4429
4430	btrfs_set_lock_blocking_write(buf);
4431	set_extent_buffer_uptodate(buf);
4432
4433	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4434	btrfs_set_header_level(buf, level);
4435	btrfs_set_header_bytenr(buf, buf->start);
4436	btrfs_set_header_generation(buf, trans->transid);
4437	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4438	btrfs_set_header_owner(buf, owner);
4439	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4440	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4441	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4442		buf->log_index = root->log_transid % 2;
4443		/*
4444		 * we allow two log transactions at a time, use different
4445		 * EXTENT bit to differentiate dirty pages.
4446		 */
4447		if (buf->log_index == 0)
4448			set_extent_dirty(&root->dirty_log_pages, buf->start,
4449					buf->start + buf->len - 1, GFP_NOFS);
4450		else
4451			set_extent_new(&root->dirty_log_pages, buf->start,
4452					buf->start + buf->len - 1);
4453	} else {
4454		buf->log_index = -1;
4455		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4456			 buf->start + buf->len - 1, GFP_NOFS);
4457	}
4458	trans->dirty = true;
4459	/* this returns a buffer locked for blocking */
4460	return buf;
4461}
4462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4463/*
4464 * finds a free extent and does all the dirty work required for allocation
4465 * returns the tree buffer or an ERR_PTR on error.
4466 */
4467struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4468					     struct btrfs_root *root,
4469					     u64 parent, u64 root_objectid,
4470					     const struct btrfs_disk_key *key,
4471					     int level, u64 hint,
4472					     u64 empty_size)
4473{
4474	struct btrfs_fs_info *fs_info = root->fs_info;
4475	struct btrfs_key ins;
4476	struct btrfs_block_rsv *block_rsv;
4477	struct extent_buffer *buf;
4478	struct btrfs_delayed_extent_op *extent_op;
4479	struct btrfs_ref generic_ref = { 0 };
4480	u64 flags = 0;
4481	int ret;
4482	u32 blocksize = fs_info->nodesize;
4483	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 
4484
4485#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4486	if (btrfs_is_testing(fs_info)) {
4487		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4488					    level, root_objectid);
4489		if (!IS_ERR(buf))
4490			root->alloc_bytenr += blocksize;
4491		return buf;
4492	}
4493#endif
4494
4495	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4496	if (IS_ERR(block_rsv))
4497		return ERR_CAST(block_rsv);
4498
4499	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4500				   empty_size, hint, &ins, 0, 0);
4501	if (ret)
4502		goto out_unuse;
4503
4504	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4505				    root_objectid);
4506	if (IS_ERR(buf)) {
4507		ret = PTR_ERR(buf);
4508		goto out_free_reserved;
4509	}
4510
4511	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4512		if (parent == 0)
4513			parent = ins.objectid;
4514		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4515	} else
4516		BUG_ON(parent > 0);
4517
4518	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4519		extent_op = btrfs_alloc_delayed_extent_op();
4520		if (!extent_op) {
4521			ret = -ENOMEM;
4522			goto out_free_buf;
4523		}
4524		if (key)
4525			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4526		else
4527			memset(&extent_op->key, 0, sizeof(extent_op->key));
4528		extent_op->flags_to_set = flags;
4529		extent_op->update_key = skinny_metadata ? false : true;
4530		extent_op->update_flags = true;
4531		extent_op->is_data = false;
4532		extent_op->level = level;
4533
4534		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4535				       ins.objectid, ins.offset, parent);
4536		generic_ref.real_root = root->root_key.objectid;
4537		btrfs_init_tree_ref(&generic_ref, level, root_objectid);
4538		btrfs_ref_tree_mod(fs_info, &generic_ref);
4539		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
4540						 extent_op, NULL, NULL);
4541		if (ret)
4542			goto out_free_delayed;
4543	}
4544	return buf;
4545
4546out_free_delayed:
4547	btrfs_free_delayed_extent_op(extent_op);
4548out_free_buf:
4549	free_extent_buffer(buf);
4550out_free_reserved:
4551	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4552out_unuse:
4553	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4554	return ERR_PTR(ret);
4555}
4556
4557struct walk_control {
4558	u64 refs[BTRFS_MAX_LEVEL];
4559	u64 flags[BTRFS_MAX_LEVEL];
4560	struct btrfs_key update_progress;
4561	struct btrfs_key drop_progress;
4562	int drop_level;
4563	int stage;
4564	int level;
4565	int shared_level;
4566	int update_ref;
4567	int keep_locks;
4568	int reada_slot;
4569	int reada_count;
4570	int restarted;
4571};
4572
4573#define DROP_REFERENCE	1
4574#define UPDATE_BACKREF	2
4575
4576static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4577				     struct btrfs_root *root,
4578				     struct walk_control *wc,
4579				     struct btrfs_path *path)
4580{
4581	struct btrfs_fs_info *fs_info = root->fs_info;
4582	u64 bytenr;
4583	u64 generation;
4584	u64 refs;
4585	u64 flags;
4586	u32 nritems;
 
4587	struct btrfs_key key;
4588	struct extent_buffer *eb;
4589	int ret;
4590	int slot;
4591	int nread = 0;
4592
4593	if (path->slots[wc->level] < wc->reada_slot) {
4594		wc->reada_count = wc->reada_count * 2 / 3;
4595		wc->reada_count = max(wc->reada_count, 2);
4596	} else {
4597		wc->reada_count = wc->reada_count * 3 / 2;
4598		wc->reada_count = min_t(int, wc->reada_count,
4599					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4600	}
4601
4602	eb = path->nodes[wc->level];
4603	nritems = btrfs_header_nritems(eb);
 
4604
4605	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4606		if (nread >= wc->reada_count)
4607			break;
4608
4609		cond_resched();
4610		bytenr = btrfs_node_blockptr(eb, slot);
4611		generation = btrfs_node_ptr_generation(eb, slot);
4612
4613		if (slot == path->slots[wc->level])
4614			goto reada;
4615
4616		if (wc->stage == UPDATE_BACKREF &&
4617		    generation <= root->root_key.offset)
4618			continue;
4619
4620		/* We don't lock the tree block, it's OK to be racy here */
4621		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
4622					       wc->level - 1, 1, &refs,
4623					       &flags);
4624		/* We don't care about errors in readahead. */
4625		if (ret < 0)
4626			continue;
4627		BUG_ON(refs == 0);
4628
4629		if (wc->stage == DROP_REFERENCE) {
4630			if (refs == 1)
4631				goto reada;
4632
4633			if (wc->level == 1 &&
4634			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4635				continue;
4636			if (!wc->update_ref ||
4637			    generation <= root->root_key.offset)
4638				continue;
4639			btrfs_node_key_to_cpu(eb, &key, slot);
4640			ret = btrfs_comp_cpu_keys(&key,
4641						  &wc->update_progress);
4642			if (ret < 0)
4643				continue;
4644		} else {
4645			if (wc->level == 1 &&
4646			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4647				continue;
4648		}
4649reada:
4650		readahead_tree_block(fs_info, bytenr);
4651		nread++;
4652	}
4653	wc->reada_slot = slot;
4654}
4655
4656/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4657 * helper to process tree block while walking down the tree.
4658 *
4659 * when wc->stage == UPDATE_BACKREF, this function updates
4660 * back refs for pointers in the block.
4661 *
4662 * NOTE: return value 1 means we should stop walking down.
4663 */
4664static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4665				   struct btrfs_root *root,
4666				   struct btrfs_path *path,
4667				   struct walk_control *wc, int lookup_info)
4668{
4669	struct btrfs_fs_info *fs_info = root->fs_info;
4670	int level = wc->level;
4671	struct extent_buffer *eb = path->nodes[level];
4672	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4673	int ret;
4674
4675	if (wc->stage == UPDATE_BACKREF &&
4676	    btrfs_header_owner(eb) != root->root_key.objectid)
4677		return 1;
4678
4679	/*
4680	 * when reference count of tree block is 1, it won't increase
4681	 * again. once full backref flag is set, we never clear it.
4682	 */
4683	if (lookup_info &&
4684	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
4685	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
4686		BUG_ON(!path->locks[level]);
4687		ret = btrfs_lookup_extent_info(trans, fs_info,
4688					       eb->start, level, 1,
4689					       &wc->refs[level],
4690					       &wc->flags[level]);
4691		BUG_ON(ret == -ENOMEM);
4692		if (ret)
4693			return ret;
4694		BUG_ON(wc->refs[level] == 0);
4695	}
4696
4697	if (wc->stage == DROP_REFERENCE) {
4698		if (wc->refs[level] > 1)
4699			return 1;
4700
4701		if (path->locks[level] && !wc->keep_locks) {
4702			btrfs_tree_unlock_rw(eb, path->locks[level]);
4703			path->locks[level] = 0;
4704		}
4705		return 0;
4706	}
4707
4708	/* wc->stage == UPDATE_BACKREF */
4709	if (!(wc->flags[level] & flag)) {
4710		BUG_ON(!path->locks[level]);
4711		ret = btrfs_inc_ref(trans, root, eb, 1);
4712		BUG_ON(ret); /* -ENOMEM */
4713		ret = btrfs_dec_ref(trans, root, eb, 0);
4714		BUG_ON(ret); /* -ENOMEM */
4715		ret = btrfs_set_disk_extent_flags(trans, eb->start,
4716						  eb->len, flag,
4717						  btrfs_header_level(eb), 0);
4718		BUG_ON(ret); /* -ENOMEM */
4719		wc->flags[level] |= flag;
4720	}
4721
4722	/*
4723	 * the block is shared by multiple trees, so it's not good to
4724	 * keep the tree lock
4725	 */
4726	if (path->locks[level] && level > 0) {
4727		btrfs_tree_unlock_rw(eb, path->locks[level]);
4728		path->locks[level] = 0;
4729	}
4730	return 0;
4731}
4732
4733/*
4734 * This is used to verify a ref exists for this root to deal with a bug where we
4735 * would have a drop_progress key that hadn't been updated properly.
4736 */
4737static int check_ref_exists(struct btrfs_trans_handle *trans,
4738			    struct btrfs_root *root, u64 bytenr, u64 parent,
4739			    int level)
4740{
4741	struct btrfs_path *path;
4742	struct btrfs_extent_inline_ref *iref;
4743	int ret;
4744
4745	path = btrfs_alloc_path();
4746	if (!path)
4747		return -ENOMEM;
4748
4749	ret = lookup_extent_backref(trans, path, &iref, bytenr,
4750				    root->fs_info->nodesize, parent,
4751				    root->root_key.objectid, level, 0);
4752	btrfs_free_path(path);
4753	if (ret == -ENOENT)
4754		return 0;
4755	if (ret < 0)
4756		return ret;
4757	return 1;
4758}
4759
4760/*
4761 * helper to process tree block pointer.
4762 *
4763 * when wc->stage == DROP_REFERENCE, this function checks
4764 * reference count of the block pointed to. if the block
4765 * is shared and we need update back refs for the subtree
4766 * rooted at the block, this function changes wc->stage to
4767 * UPDATE_BACKREF. if the block is shared and there is no
4768 * need to update back, this function drops the reference
4769 * to the block.
4770 *
4771 * NOTE: return value 1 means we should stop walking down.
4772 */
4773static noinline int do_walk_down(struct btrfs_trans_handle *trans,
4774				 struct btrfs_root *root,
4775				 struct btrfs_path *path,
4776				 struct walk_control *wc, int *lookup_info)
4777{
4778	struct btrfs_fs_info *fs_info = root->fs_info;
4779	u64 bytenr;
4780	u64 generation;
4781	u64 parent;
 
4782	struct btrfs_key key;
4783	struct btrfs_key first_key;
4784	struct btrfs_ref ref = { 0 };
4785	struct extent_buffer *next;
4786	int level = wc->level;
4787	int reada = 0;
4788	int ret = 0;
4789	bool need_account = false;
4790
4791	generation = btrfs_node_ptr_generation(path->nodes[level],
4792					       path->slots[level]);
4793	/*
4794	 * if the lower level block was created before the snapshot
4795	 * was created, we know there is no need to update back refs
4796	 * for the subtree
4797	 */
4798	if (wc->stage == UPDATE_BACKREF &&
4799	    generation <= root->root_key.offset) {
4800		*lookup_info = 1;
4801		return 1;
4802	}
4803
4804	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
4805	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
4806			      path->slots[level]);
4807
4808	next = find_extent_buffer(fs_info, bytenr);
4809	if (!next) {
4810		next = btrfs_find_create_tree_block(fs_info, bytenr);
4811		if (IS_ERR(next))
4812			return PTR_ERR(next);
4813
4814		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
4815					       level - 1);
4816		reada = 1;
4817	}
4818	btrfs_tree_lock(next);
4819	btrfs_set_lock_blocking_write(next);
4820
4821	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
4822				       &wc->refs[level - 1],
4823				       &wc->flags[level - 1]);
4824	if (ret < 0)
4825		goto out_unlock;
 
 
4826
4827	if (unlikely(wc->refs[level - 1] == 0)) {
4828		btrfs_err(fs_info, "Missing references.");
4829		ret = -EIO;
4830		goto out_unlock;
4831	}
4832	*lookup_info = 0;
4833
4834	if (wc->stage == DROP_REFERENCE) {
4835		if (wc->refs[level - 1] > 1) {
4836			need_account = true;
4837			if (level == 1 &&
4838			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4839				goto skip;
4840
4841			if (!wc->update_ref ||
4842			    generation <= root->root_key.offset)
4843				goto skip;
4844
4845			btrfs_node_key_to_cpu(path->nodes[level], &key,
4846					      path->slots[level]);
4847			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
4848			if (ret < 0)
4849				goto skip;
4850
4851			wc->stage = UPDATE_BACKREF;
4852			wc->shared_level = level - 1;
4853		}
4854	} else {
4855		if (level == 1 &&
4856		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4857			goto skip;
4858	}
4859
4860	if (!btrfs_buffer_uptodate(next, generation, 0)) {
4861		btrfs_tree_unlock(next);
4862		free_extent_buffer(next);
4863		next = NULL;
4864		*lookup_info = 1;
4865	}
4866
4867	if (!next) {
4868		if (reada && level == 1)
4869			reada_walk_down(trans, root, wc, path);
4870		next = read_tree_block(fs_info, bytenr, generation, level - 1,
4871				       &first_key);
4872		if (IS_ERR(next)) {
4873			return PTR_ERR(next);
4874		} else if (!extent_buffer_uptodate(next)) {
4875			free_extent_buffer(next);
4876			return -EIO;
4877		}
4878		btrfs_tree_lock(next);
4879		btrfs_set_lock_blocking_write(next);
4880	}
4881
4882	level--;
4883	ASSERT(level == btrfs_header_level(next));
4884	if (level != btrfs_header_level(next)) {
4885		btrfs_err(root->fs_info, "mismatched level");
4886		ret = -EIO;
4887		goto out_unlock;
4888	}
4889	path->nodes[level] = next;
4890	path->slots[level] = 0;
4891	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
4892	wc->level = level;
4893	if (wc->level == 1)
4894		wc->reada_slot = 0;
4895	return 0;
4896skip:
4897	wc->refs[level - 1] = 0;
4898	wc->flags[level - 1] = 0;
4899	if (wc->stage == DROP_REFERENCE) {
4900		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
4901			parent = path->nodes[level]->start;
4902		} else {
4903			ASSERT(root->root_key.objectid ==
4904			       btrfs_header_owner(path->nodes[level]));
4905			if (root->root_key.objectid !=
4906			    btrfs_header_owner(path->nodes[level])) {
4907				btrfs_err(root->fs_info,
4908						"mismatched block owner");
4909				ret = -EIO;
4910				goto out_unlock;
4911			}
4912			parent = 0;
4913		}
4914
4915		/*
4916		 * If we had a drop_progress we need to verify the refs are set
4917		 * as expected.  If we find our ref then we know that from here
4918		 * on out everything should be correct, and we can clear the
4919		 * ->restarted flag.
4920		 */
4921		if (wc->restarted) {
4922			ret = check_ref_exists(trans, root, bytenr, parent,
4923					       level - 1);
4924			if (ret < 0)
4925				goto out_unlock;
4926			if (ret == 0)
4927				goto no_delete;
4928			ret = 0;
4929			wc->restarted = 0;
4930		}
4931
4932		/*
4933		 * Reloc tree doesn't contribute to qgroup numbers, and we have
4934		 * already accounted them at merge time (replace_path),
4935		 * thus we could skip expensive subtree trace here.
4936		 */
4937		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
4938		    need_account) {
4939			ret = btrfs_qgroup_trace_subtree(trans, next,
4940							 generation, level - 1);
4941			if (ret) {
4942				btrfs_err_rl(fs_info,
4943					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
4944					     ret);
 
 
4945			}
4946		}
4947
4948		/*
4949		 * We need to update the next key in our walk control so we can
4950		 * update the drop_progress key accordingly.  We don't care if
4951		 * find_next_key doesn't find a key because that means we're at
4952		 * the end and are going to clean up now.
4953		 */
4954		wc->drop_level = level;
4955		find_next_key(path, level, &wc->drop_progress);
4956
4957		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
4958				       fs_info->nodesize, parent);
4959		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
4960		ret = btrfs_free_extent(trans, &ref);
4961		if (ret)
4962			goto out_unlock;
4963	}
4964no_delete:
4965	*lookup_info = 1;
4966	ret = 1;
4967
4968out_unlock:
4969	btrfs_tree_unlock(next);
4970	free_extent_buffer(next);
4971
4972	return ret;
4973}
4974
4975/*
4976 * helper to process tree block while walking up the tree.
4977 *
4978 * when wc->stage == DROP_REFERENCE, this function drops
4979 * reference count on the block.
4980 *
4981 * when wc->stage == UPDATE_BACKREF, this function changes
4982 * wc->stage back to DROP_REFERENCE if we changed wc->stage
4983 * to UPDATE_BACKREF previously while processing the block.
4984 *
4985 * NOTE: return value 1 means we should stop walking up.
4986 */
4987static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
4988				 struct btrfs_root *root,
4989				 struct btrfs_path *path,
4990				 struct walk_control *wc)
4991{
4992	struct btrfs_fs_info *fs_info = root->fs_info;
4993	int ret;
4994	int level = wc->level;
4995	struct extent_buffer *eb = path->nodes[level];
4996	u64 parent = 0;
4997
4998	if (wc->stage == UPDATE_BACKREF) {
4999		BUG_ON(wc->shared_level < level);
5000		if (level < wc->shared_level)
5001			goto out;
5002
5003		ret = find_next_key(path, level + 1, &wc->update_progress);
5004		if (ret > 0)
5005			wc->update_ref = 0;
5006
5007		wc->stage = DROP_REFERENCE;
5008		wc->shared_level = -1;
5009		path->slots[level] = 0;
5010
5011		/*
5012		 * check reference count again if the block isn't locked.
5013		 * we should start walking down the tree again if reference
5014		 * count is one.
5015		 */
5016		if (!path->locks[level]) {
5017			BUG_ON(level == 0);
5018			btrfs_tree_lock(eb);
5019			btrfs_set_lock_blocking_write(eb);
5020			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5021
5022			ret = btrfs_lookup_extent_info(trans, fs_info,
5023						       eb->start, level, 1,
5024						       &wc->refs[level],
5025						       &wc->flags[level]);
5026			if (ret < 0) {
5027				btrfs_tree_unlock_rw(eb, path->locks[level]);
5028				path->locks[level] = 0;
5029				return ret;
5030			}
5031			BUG_ON(wc->refs[level] == 0);
5032			if (wc->refs[level] == 1) {
5033				btrfs_tree_unlock_rw(eb, path->locks[level]);
5034				path->locks[level] = 0;
5035				return 1;
5036			}
5037		}
5038	}
5039
5040	/* wc->stage == DROP_REFERENCE */
5041	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5042
5043	if (wc->refs[level] == 1) {
5044		if (level == 0) {
5045			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5046				ret = btrfs_dec_ref(trans, root, eb, 1);
5047			else
5048				ret = btrfs_dec_ref(trans, root, eb, 0);
5049			BUG_ON(ret); /* -ENOMEM */
5050			if (is_fstree(root->root_key.objectid)) {
5051				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5052				if (ret) {
5053					btrfs_err_rl(fs_info,
5054	"error %d accounting leaf items, quota is out of sync, rescan required",
5055					     ret);
5056				}
5057			}
5058		}
5059		/* make block locked assertion in btrfs_clean_tree_block happy */
5060		if (!path->locks[level] &&
5061		    btrfs_header_generation(eb) == trans->transid) {
5062			btrfs_tree_lock(eb);
5063			btrfs_set_lock_blocking_write(eb);
5064			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5065		}
5066		btrfs_clean_tree_block(eb);
5067	}
5068
5069	if (eb == root->node) {
5070		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5071			parent = eb->start;
5072		else if (root->root_key.objectid != btrfs_header_owner(eb))
5073			goto owner_mismatch;
 
5074	} else {
5075		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5076			parent = path->nodes[level + 1]->start;
5077		else if (root->root_key.objectid !=
5078			 btrfs_header_owner(path->nodes[level + 1]))
5079			goto owner_mismatch;
5080	}
5081
5082	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5083out:
5084	wc->refs[level] = 0;
5085	wc->flags[level] = 0;
5086	return 0;
5087
5088owner_mismatch:
5089	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5090		     btrfs_header_owner(eb), root->root_key.objectid);
5091	return -EUCLEAN;
5092}
5093
5094static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5095				   struct btrfs_root *root,
5096				   struct btrfs_path *path,
5097				   struct walk_control *wc)
5098{
5099	int level = wc->level;
5100	int lookup_info = 1;
5101	int ret;
5102
5103	while (level >= 0) {
5104		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5105		if (ret > 0)
5106			break;
5107
5108		if (level == 0)
5109			break;
5110
5111		if (path->slots[level] >=
5112		    btrfs_header_nritems(path->nodes[level]))
5113			break;
5114
5115		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5116		if (ret > 0) {
5117			path->slots[level]++;
5118			continue;
5119		} else if (ret < 0)
5120			return ret;
5121		level = wc->level;
5122	}
5123	return 0;
5124}
5125
5126static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5127				 struct btrfs_root *root,
5128				 struct btrfs_path *path,
5129				 struct walk_control *wc, int max_level)
5130{
5131	int level = wc->level;
5132	int ret;
5133
5134	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5135	while (level < max_level && path->nodes[level]) {
5136		wc->level = level;
5137		if (path->slots[level] + 1 <
5138		    btrfs_header_nritems(path->nodes[level])) {
5139			path->slots[level]++;
5140			return 0;
5141		} else {
5142			ret = walk_up_proc(trans, root, path, wc);
5143			if (ret > 0)
5144				return 0;
5145			if (ret < 0)
5146				return ret;
5147
5148			if (path->locks[level]) {
5149				btrfs_tree_unlock_rw(path->nodes[level],
5150						     path->locks[level]);
5151				path->locks[level] = 0;
5152			}
5153			free_extent_buffer(path->nodes[level]);
5154			path->nodes[level] = NULL;
5155			level++;
5156		}
5157	}
5158	return 1;
5159}
5160
5161/*
5162 * drop a subvolume tree.
5163 *
5164 * this function traverses the tree freeing any blocks that only
5165 * referenced by the tree.
5166 *
5167 * when a shared tree block is found. this function decreases its
5168 * reference count by one. if update_ref is true, this function
5169 * also make sure backrefs for the shared block and all lower level
5170 * blocks are properly updated.
5171 *
5172 * If called with for_reloc == 0, may exit early with -EAGAIN
5173 */
5174int btrfs_drop_snapshot(struct btrfs_root *root,
5175			 struct btrfs_block_rsv *block_rsv, int update_ref,
5176			 int for_reloc)
5177{
5178	struct btrfs_fs_info *fs_info = root->fs_info;
5179	struct btrfs_path *path;
5180	struct btrfs_trans_handle *trans;
5181	struct btrfs_root *tree_root = fs_info->tree_root;
5182	struct btrfs_root_item *root_item = &root->root_item;
5183	struct walk_control *wc;
5184	struct btrfs_key key;
5185	int err = 0;
5186	int ret;
5187	int level;
5188	bool root_dropped = false;
5189
5190	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5191
5192	path = btrfs_alloc_path();
5193	if (!path) {
5194		err = -ENOMEM;
5195		goto out;
5196	}
5197
5198	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5199	if (!wc) {
5200		btrfs_free_path(path);
5201		err = -ENOMEM;
5202		goto out;
5203	}
5204
5205	trans = btrfs_start_transaction(tree_root, 0);
5206	if (IS_ERR(trans)) {
5207		err = PTR_ERR(trans);
5208		goto out_free;
5209	}
5210
5211	err = btrfs_run_delayed_items(trans);
5212	if (err)
5213		goto out_end_trans;
5214
5215	if (block_rsv)
5216		trans->block_rsv = block_rsv;
5217
5218	/*
5219	 * This will help us catch people modifying the fs tree while we're
5220	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5221	 * dropped as we unlock the root node and parent nodes as we walk down
5222	 * the tree, assuming nothing will change.  If something does change
5223	 * then we'll have stale information and drop references to blocks we've
5224	 * already dropped.
5225	 */
5226	set_bit(BTRFS_ROOT_DELETING, &root->state);
5227	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5228		level = btrfs_header_level(root->node);
5229		path->nodes[level] = btrfs_lock_root_node(root);
5230		btrfs_set_lock_blocking_write(path->nodes[level]);
5231		path->slots[level] = 0;
5232		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5233		memset(&wc->update_progress, 0,
5234		       sizeof(wc->update_progress));
5235	} else {
5236		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5237		memcpy(&wc->update_progress, &key,
5238		       sizeof(wc->update_progress));
5239
5240		level = root_item->drop_level;
5241		BUG_ON(level == 0);
5242		path->lowest_level = level;
5243		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5244		path->lowest_level = 0;
5245		if (ret < 0) {
5246			err = ret;
5247			goto out_end_trans;
5248		}
5249		WARN_ON(ret > 0);
5250
5251		/*
5252		 * unlock our path, this is safe because only this
5253		 * function is allowed to delete this snapshot
5254		 */
5255		btrfs_unlock_up_safe(path, 0);
5256
5257		level = btrfs_header_level(root->node);
5258		while (1) {
5259			btrfs_tree_lock(path->nodes[level]);
5260			btrfs_set_lock_blocking_write(path->nodes[level]);
5261			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5262
5263			ret = btrfs_lookup_extent_info(trans, fs_info,
5264						path->nodes[level]->start,
5265						level, 1, &wc->refs[level],
5266						&wc->flags[level]);
5267			if (ret < 0) {
5268				err = ret;
5269				goto out_end_trans;
5270			}
5271			BUG_ON(wc->refs[level] == 0);
5272
5273			if (level == root_item->drop_level)
5274				break;
5275
5276			btrfs_tree_unlock(path->nodes[level]);
5277			path->locks[level] = 0;
5278			WARN_ON(wc->refs[level] != 1);
5279			level--;
5280		}
5281	}
5282
5283	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5284	wc->level = level;
5285	wc->shared_level = -1;
5286	wc->stage = DROP_REFERENCE;
5287	wc->update_ref = update_ref;
5288	wc->keep_locks = 0;
5289	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
 
5290
5291	while (1) {
5292
5293		ret = walk_down_tree(trans, root, path, wc);
5294		if (ret < 0) {
5295			err = ret;
5296			break;
5297		}
5298
5299		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5300		if (ret < 0) {
5301			err = ret;
5302			break;
5303		}
5304
5305		if (ret > 0) {
5306			BUG_ON(wc->stage != DROP_REFERENCE);
5307			break;
5308		}
5309
5310		if (wc->stage == DROP_REFERENCE) {
5311			wc->drop_level = wc->level;
5312			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5313					      &wc->drop_progress,
5314					      path->slots[wc->drop_level]);
5315		}
5316		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5317				      &wc->drop_progress);
5318		root_item->drop_level = wc->drop_level;
5319
5320		BUG_ON(wc->level == 0);
5321		if (btrfs_should_end_transaction(trans) ||
5322		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5323			ret = btrfs_update_root(trans, tree_root,
5324						&root->root_key,
5325						root_item);
5326			if (ret) {
5327				btrfs_abort_transaction(trans, ret);
5328				err = ret;
5329				goto out_end_trans;
5330			}
5331
5332			btrfs_end_transaction_throttle(trans);
5333			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5334				btrfs_debug(fs_info,
5335					    "drop snapshot early exit");
5336				err = -EAGAIN;
5337				goto out_free;
5338			}
5339
5340			trans = btrfs_start_transaction(tree_root, 0);
5341			if (IS_ERR(trans)) {
5342				err = PTR_ERR(trans);
5343				goto out_free;
5344			}
5345			if (block_rsv)
5346				trans->block_rsv = block_rsv;
5347		}
5348	}
5349	btrfs_release_path(path);
5350	if (err)
5351		goto out_end_trans;
5352
5353	ret = btrfs_del_root(trans, &root->root_key);
5354	if (ret) {
5355		btrfs_abort_transaction(trans, ret);
5356		err = ret;
5357		goto out_end_trans;
5358	}
5359
5360	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5361		ret = btrfs_find_root(tree_root, &root->root_key, path,
5362				      NULL, NULL);
5363		if (ret < 0) {
5364			btrfs_abort_transaction(trans, ret);
5365			err = ret;
5366			goto out_end_trans;
5367		} else if (ret > 0) {
5368			/* if we fail to delete the orphan item this time
5369			 * around, it'll get picked up the next time.
5370			 *
5371			 * The most common failure here is just -ENOENT.
5372			 */
5373			btrfs_del_orphan_item(trans, tree_root,
5374					      root->root_key.objectid);
5375		}
5376	}
5377
5378	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
5379		btrfs_add_dropped_root(trans, root);
5380	} else {
5381		free_extent_buffer(root->node);
5382		free_extent_buffer(root->commit_root);
5383		btrfs_put_fs_root(root);
5384	}
5385	root_dropped = true;
5386out_end_trans:
5387	btrfs_end_transaction_throttle(trans);
5388out_free:
5389	kfree(wc);
5390	btrfs_free_path(path);
5391out:
5392	/*
5393	 * So if we need to stop dropping the snapshot for whatever reason we
5394	 * need to make sure to add it back to the dead root list so that we
5395	 * keep trying to do the work later.  This also cleans up roots if we
5396	 * don't have it in the radix (like when we recover after a power fail
5397	 * or unmount) so we don't leak memory.
5398	 */
5399	if (!for_reloc && !root_dropped)
5400		btrfs_add_dead_root(root);
5401	if (err && err != -EAGAIN)
5402		btrfs_handle_fs_error(fs_info, err, NULL);
5403	return err;
5404}
5405
5406/*
5407 * drop subtree rooted at tree block 'node'.
5408 *
5409 * NOTE: this function will unlock and release tree block 'node'
5410 * only used by relocation code
5411 */
5412int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5413			struct btrfs_root *root,
5414			struct extent_buffer *node,
5415			struct extent_buffer *parent)
5416{
5417	struct btrfs_fs_info *fs_info = root->fs_info;
5418	struct btrfs_path *path;
5419	struct walk_control *wc;
5420	int level;
5421	int parent_level;
5422	int ret = 0;
5423	int wret;
5424
5425	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5426
5427	path = btrfs_alloc_path();
5428	if (!path)
5429		return -ENOMEM;
5430
5431	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5432	if (!wc) {
5433		btrfs_free_path(path);
5434		return -ENOMEM;
5435	}
5436
5437	btrfs_assert_tree_locked(parent);
5438	parent_level = btrfs_header_level(parent);
5439	extent_buffer_get(parent);
5440	path->nodes[parent_level] = parent;
5441	path->slots[parent_level] = btrfs_header_nritems(parent);
5442
5443	btrfs_assert_tree_locked(node);
5444	level = btrfs_header_level(node);
5445	path->nodes[level] = node;
5446	path->slots[level] = 0;
5447	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5448
5449	wc->refs[parent_level] = 1;
5450	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5451	wc->level = level;
5452	wc->shared_level = -1;
5453	wc->stage = DROP_REFERENCE;
5454	wc->update_ref = 0;
5455	wc->keep_locks = 1;
5456	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
 
5457
5458	while (1) {
5459		wret = walk_down_tree(trans, root, path, wc);
5460		if (wret < 0) {
5461			ret = wret;
5462			break;
5463		}
5464
5465		wret = walk_up_tree(trans, root, path, wc, parent_level);
5466		if (wret < 0)
5467			ret = wret;
5468		if (wret != 0)
5469			break;
5470	}
5471
5472	kfree(wc);
5473	btrfs_free_path(path);
5474	return ret;
5475}
5476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5477/*
5478 * helper to account the unused space of all the readonly block group in the
5479 * space_info. takes mirrors into account.
5480 */
5481u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5482{
5483	struct btrfs_block_group_cache *block_group;
5484	u64 free_bytes = 0;
5485	int factor;
5486
5487	/* It's df, we don't care if it's racy */
5488	if (list_empty(&sinfo->ro_bgs))
5489		return 0;
5490
5491	spin_lock(&sinfo->lock);
5492	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5493		spin_lock(&block_group->lock);
5494
5495		if (!block_group->ro) {
5496			spin_unlock(&block_group->lock);
5497			continue;
5498		}
5499
5500		factor = btrfs_bg_type_to_factor(block_group->flags);
 
 
 
 
 
 
5501		free_bytes += (block_group->key.offset -
5502			       btrfs_block_group_used(&block_group->item)) *
5503			       factor;
5504
5505		spin_unlock(&block_group->lock);
5506	}
5507	spin_unlock(&sinfo->lock);
5508
5509	return free_bytes;
5510}
5511
5512int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5513				   u64 start, u64 end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5514{
5515	return unpin_extent_range(fs_info, start, end, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5516}
5517
5518/*
5519 * It used to be that old block groups would be left around forever.
5520 * Iterating over them would be enough to trim unused space.  Since we
5521 * now automatically remove them, we also need to iterate over unallocated
5522 * space.
5523 *
5524 * We don't want a transaction for this since the discard may take a
5525 * substantial amount of time.  We don't require that a transaction be
5526 * running, but we do need to take a running transaction into account
5527 * to ensure that we're not discarding chunks that were released or
5528 * allocated in the current transaction.
5529 *
5530 * Holding the chunks lock will prevent other threads from allocating
5531 * or releasing chunks, but it won't prevent a running transaction
5532 * from committing and releasing the memory that the pending chunks
5533 * list head uses.  For that, we need to take a reference to the
5534 * transaction and hold the commit root sem.  We only need to hold
5535 * it while performing the free space search since we have already
5536 * held back allocations.
5537 */
5538static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
 
5539{
5540	u64 start = SZ_1M, len = 0, end = 0;
5541	int ret;
5542
5543	*trimmed = 0;
5544
5545	/* Discard not supported = nothing to do. */
5546	if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5547		return 0;
5548
5549	/* Not writable = nothing to do. */
5550	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5551		return 0;
5552
5553	/* No free space = nothing to do. */
5554	if (device->total_bytes <= device->bytes_used)
5555		return 0;
5556
5557	ret = 0;
5558
5559	while (1) {
5560		struct btrfs_fs_info *fs_info = device->fs_info;
 
5561		u64 bytes;
5562
5563		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5564		if (ret)
5565			break;
5566
5567		find_first_clear_extent_bit(&device->alloc_state, start,
5568					    &start, &end,
5569					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
5570
5571		/* Ensure we skip the reserved area in the first 1M */
5572		start = max_t(u64, start, SZ_1M);
5573
5574		/*
5575		 * If find_first_clear_extent_bit find a range that spans the
5576		 * end of the device it will set end to -1, in this case it's up
5577		 * to the caller to trim the value to the size of the device.
5578		 */
5579		end = min(end, device->total_bytes - 1);
5580
5581		len = end - start + 1;
 
 
 
 
 
 
 
 
 
5582
5583		/* We didn't find any extents */
5584		if (!len) {
5585			mutex_unlock(&fs_info->chunk_mutex);
5586			ret = 0;
 
5587			break;
5588		}
5589
5590		ret = btrfs_issue_discard(device->bdev, start, len,
5591					  &bytes);
5592		if (!ret)
5593			set_extent_bits(&device->alloc_state, start,
5594					start + bytes - 1,
5595					CHUNK_TRIMMED);
5596		mutex_unlock(&fs_info->chunk_mutex);
5597
5598		if (ret)
5599			break;
5600
5601		start += len;
5602		*trimmed += bytes;
5603
5604		if (fatal_signal_pending(current)) {
5605			ret = -ERESTARTSYS;
5606			break;
5607		}
5608
5609		cond_resched();
5610	}
5611
5612	return ret;
5613}
5614
5615/*
5616 * Trim the whole filesystem by:
5617 * 1) trimming the free space in each block group
5618 * 2) trimming the unallocated space on each device
5619 *
5620 * This will also continue trimming even if a block group or device encounters
5621 * an error.  The return value will be the last error, or 0 if nothing bad
5622 * happens.
5623 */
5624int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
5625{
 
5626	struct btrfs_block_group_cache *cache = NULL;
5627	struct btrfs_device *device;
5628	struct list_head *devices;
5629	u64 group_trimmed;
5630	u64 range_end = U64_MAX;
5631	u64 start;
5632	u64 end;
5633	u64 trimmed = 0;
5634	u64 bg_failed = 0;
5635	u64 dev_failed = 0;
5636	int bg_ret = 0;
5637	int dev_ret = 0;
5638	int ret = 0;
5639
5640	/*
5641	 * Check range overflow if range->len is set.
5642	 * The default range->len is U64_MAX.
5643	 */
5644	if (range->len != U64_MAX &&
5645	    check_add_overflow(range->start, range->len, &range_end))
5646		return -EINVAL;
 
5647
5648	cache = btrfs_lookup_first_block_group(fs_info, range->start);
5649	for (; cache; cache = btrfs_next_block_group(cache)) {
5650		if (cache->key.objectid >= range_end) {
5651			btrfs_put_block_group(cache);
5652			break;
5653		}
5654
5655		start = max(range->start, cache->key.objectid);
5656		end = min(range_end, cache->key.objectid + cache->key.offset);
 
5657
5658		if (end - start >= range->minlen) {
5659			if (!btrfs_block_group_cache_done(cache)) {
5660				ret = btrfs_cache_block_group(cache, 0);
5661				if (ret) {
5662					bg_failed++;
5663					bg_ret = ret;
5664					continue;
5665				}
5666				ret = btrfs_wait_block_group_cache_done(cache);
5667				if (ret) {
5668					bg_failed++;
5669					bg_ret = ret;
5670					continue;
5671				}
5672			}
5673			ret = btrfs_trim_block_group(cache,
5674						     &group_trimmed,
5675						     start,
5676						     end,
5677						     range->minlen);
5678
5679			trimmed += group_trimmed;
5680			if (ret) {
5681				bg_failed++;
5682				bg_ret = ret;
5683				continue;
5684			}
5685		}
 
 
5686	}
5687
5688	if (bg_failed)
5689		btrfs_warn(fs_info,
5690			"failed to trim %llu block group(s), last error %d",
5691			bg_failed, bg_ret);
5692	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5693	devices = &fs_info->fs_devices->devices;
5694	list_for_each_entry(device, devices, dev_list) {
5695		ret = btrfs_trim_free_extents(device, &group_trimmed);
5696		if (ret) {
5697			dev_failed++;
5698			dev_ret = ret;
5699			break;
5700		}
5701
5702		trimmed += group_trimmed;
5703	}
5704	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5705
5706	if (dev_failed)
5707		btrfs_warn(fs_info,
5708			"failed to trim %llu device(s), last error %d",
5709			dev_failed, dev_ret);
5710	range->len = trimmed;
5711	if (bg_ret)
5712		return bg_ret;
5713	return dev_ret;
5714}
5715
5716/*
5717 * btrfs_{start,end}_write_no_snapshotting() are similar to
5718 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
5719 * data into the page cache through nocow before the subvolume is snapshoted,
5720 * but flush the data into disk after the snapshot creation, or to prevent
5721 * operations while snapshotting is ongoing and that cause the snapshot to be
5722 * inconsistent (writes followed by expanding truncates for example).
5723 */
5724void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
5725{
5726	percpu_counter_dec(&root->subv_writers->counter);
5727	cond_wake_up(&root->subv_writers->wait);
 
 
 
 
 
5728}
5729
5730int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
5731{
5732	if (atomic_read(&root->will_be_snapshotted))
5733		return 0;
5734
5735	percpu_counter_inc(&root->subv_writers->counter);
5736	/*
5737	 * Make sure counter is updated before we check for snapshot creation.
5738	 */
5739	smp_mb();
5740	if (atomic_read(&root->will_be_snapshotted)) {
5741		btrfs_end_write_no_snapshotting(root);
5742		return 0;
5743	}
5744	return 1;
5745}
5746
 
 
 
 
 
 
5747void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
5748{
5749	while (true) {
5750		int ret;
5751
5752		ret = btrfs_start_write_no_snapshotting(root);
5753		if (ret)
5754			break;
5755		wait_var_event(&root->will_be_snapshotted,
5756			       !atomic_read(&root->will_be_snapshotted));
 
5757	}
5758}
v4.6
 
    1/*
    2 * Copyright (C) 2007 Oracle.  All rights reserved.
    3 *
    4 * This program is free software; you can redistribute it and/or
    5 * modify it under the terms of the GNU General Public
    6 * License v2 as published by the Free Software Foundation.
    7 *
    8 * This program is distributed in the hope that it will be useful,
    9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
   10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   11 * General Public License for more details.
   12 *
   13 * You should have received a copy of the GNU General Public
   14 * License along with this program; if not, write to the
   15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
   16 * Boston, MA 021110-1307, USA.
   17 */
 
   18#include <linux/sched.h>
 
   19#include <linux/pagemap.h>
   20#include <linux/writeback.h>
   21#include <linux/blkdev.h>
   22#include <linux/sort.h>
   23#include <linux/rcupdate.h>
   24#include <linux/kthread.h>
   25#include <linux/slab.h>
   26#include <linux/ratelimit.h>
   27#include <linux/percpu_counter.h>
   28#include "hash.h"
 
 
   29#include "tree-log.h"
   30#include "disk-io.h"
   31#include "print-tree.h"
   32#include "volumes.h"
   33#include "raid56.h"
   34#include "locking.h"
   35#include "free-space-cache.h"
   36#include "free-space-tree.h"
   37#include "math.h"
   38#include "sysfs.h"
   39#include "qgroup.h"
 
 
 
 
 
   40
   41#undef SCRAMBLE_DELAYED_REFS
   42
   43/*
   44 * control flags for do_chunk_alloc's force field
   45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
   46 * if we really need one.
   47 *
   48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
   49 * if we have very few chunks already allocated.  This is
   50 * used as part of the clustering code to help make sure
   51 * we have a good pool of storage to cluster in, without
   52 * filling the FS with empty chunks
   53 *
   54 * CHUNK_ALLOC_FORCE means it must try to allocate one
   55 *
   56 */
   57enum {
   58	CHUNK_ALLOC_NO_FORCE = 0,
   59	CHUNK_ALLOC_LIMITED = 1,
   60	CHUNK_ALLOC_FORCE = 2,
   61};
   62
   63/*
   64 * Control how reservations are dealt with.
   65 *
   66 * RESERVE_FREE - freeing a reservation.
   67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
   68 *   ENOSPC accounting
   69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
   70 *   bytes_may_use as the ENOSPC accounting is done elsewhere
   71 */
   72enum {
   73	RESERVE_FREE = 0,
   74	RESERVE_ALLOC = 1,
   75	RESERVE_ALLOC_NO_ACCOUNT = 2,
   76};
   77
   78static int update_block_group(struct btrfs_trans_handle *trans,
   79			      struct btrfs_root *root, u64 bytenr,
   80			      u64 num_bytes, int alloc);
   81static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
   82				struct btrfs_root *root,
   83				struct btrfs_delayed_ref_node *node, u64 parent,
   84				u64 root_objectid, u64 owner_objectid,
   85				u64 owner_offset, int refs_to_drop,
   86				struct btrfs_delayed_extent_op *extra_op);
   87static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
   88				    struct extent_buffer *leaf,
   89				    struct btrfs_extent_item *ei);
   90static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
   91				      struct btrfs_root *root,
   92				      u64 parent, u64 root_objectid,
   93				      u64 flags, u64 owner, u64 offset,
   94				      struct btrfs_key *ins, int ref_mod);
   95static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
   96				     struct btrfs_root *root,
   97				     u64 parent, u64 root_objectid,
   98				     u64 flags, struct btrfs_disk_key *key,
   99				     int level, struct btrfs_key *ins);
  100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  101			  struct btrfs_root *extent_root, u64 flags,
  102			  int force);
  103static int find_next_key(struct btrfs_path *path, int level,
  104			 struct btrfs_key *key);
  105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
  106			    int dump_block_groups);
  107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
  108				       u64 num_bytes, int reserve,
  109				       int delalloc);
  110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
  111			       u64 num_bytes);
  112int btrfs_pin_extent(struct btrfs_root *root,
  113		     u64 bytenr, u64 num_bytes, int reserved);
  114
  115static noinline int
  116block_group_cache_done(struct btrfs_block_group_cache *cache)
  117{
  118	smp_mb();
  119	return cache->cached == BTRFS_CACHE_FINISHED ||
  120		cache->cached == BTRFS_CACHE_ERROR;
  121}
  122
  123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
  124{
  125	return (cache->flags & bits) == bits;
  126}
  127
  128void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
  129{
  130	atomic_inc(&cache->count);
  131}
  132
  133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
  134{
  135	if (atomic_dec_and_test(&cache->count)) {
  136		WARN_ON(cache->pinned > 0);
  137		WARN_ON(cache->reserved > 0);
  138		kfree(cache->free_space_ctl);
  139		kfree(cache);
  140	}
  141}
  142
  143/*
  144 * this adds the block group to the fs_info rb tree for the block group
  145 * cache
  146 */
  147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
  148				struct btrfs_block_group_cache *block_group)
  149{
  150	struct rb_node **p;
  151	struct rb_node *parent = NULL;
  152	struct btrfs_block_group_cache *cache;
  153
  154	spin_lock(&info->block_group_cache_lock);
  155	p = &info->block_group_cache_tree.rb_node;
  156
  157	while (*p) {
  158		parent = *p;
  159		cache = rb_entry(parent, struct btrfs_block_group_cache,
  160				 cache_node);
  161		if (block_group->key.objectid < cache->key.objectid) {
  162			p = &(*p)->rb_left;
  163		} else if (block_group->key.objectid > cache->key.objectid) {
  164			p = &(*p)->rb_right;
  165		} else {
  166			spin_unlock(&info->block_group_cache_lock);
  167			return -EEXIST;
  168		}
  169	}
  170
  171	rb_link_node(&block_group->cache_node, parent, p);
  172	rb_insert_color(&block_group->cache_node,
  173			&info->block_group_cache_tree);
  174
  175	if (info->first_logical_byte > block_group->key.objectid)
  176		info->first_logical_byte = block_group->key.objectid;
  177
  178	spin_unlock(&info->block_group_cache_lock);
  179
  180	return 0;
  181}
  182
  183/*
  184 * This will return the block group at or after bytenr if contains is 0, else
  185 * it will return the block group that contains the bytenr
  186 */
  187static struct btrfs_block_group_cache *
  188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
  189			      int contains)
  190{
  191	struct btrfs_block_group_cache *cache, *ret = NULL;
  192	struct rb_node *n;
  193	u64 end, start;
  194
  195	spin_lock(&info->block_group_cache_lock);
  196	n = info->block_group_cache_tree.rb_node;
  197
  198	while (n) {
  199		cache = rb_entry(n, struct btrfs_block_group_cache,
  200				 cache_node);
  201		end = cache->key.objectid + cache->key.offset - 1;
  202		start = cache->key.objectid;
  203
  204		if (bytenr < start) {
  205			if (!contains && (!ret || start < ret->key.objectid))
  206				ret = cache;
  207			n = n->rb_left;
  208		} else if (bytenr > start) {
  209			if (contains && bytenr <= end) {
  210				ret = cache;
  211				break;
  212			}
  213			n = n->rb_right;
  214		} else {
  215			ret = cache;
  216			break;
  217		}
  218	}
  219	if (ret) {
  220		btrfs_get_block_group(ret);
  221		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
  222			info->first_logical_byte = ret->key.objectid;
  223	}
  224	spin_unlock(&info->block_group_cache_lock);
  225
  226	return ret;
  227}
  228
  229static int add_excluded_extent(struct btrfs_root *root,
  230			       u64 start, u64 num_bytes)
  231{
  232	u64 end = start + num_bytes - 1;
  233	set_extent_bits(&root->fs_info->freed_extents[0],
  234			start, end, EXTENT_UPTODATE, GFP_NOFS);
  235	set_extent_bits(&root->fs_info->freed_extents[1],
  236			start, end, EXTENT_UPTODATE, GFP_NOFS);
  237	return 0;
  238}
  239
  240static void free_excluded_extents(struct btrfs_root *root,
  241				  struct btrfs_block_group_cache *cache)
  242{
 
  243	u64 start, end;
  244
  245	start = cache->key.objectid;
  246	end = start + cache->key.offset - 1;
  247
  248	clear_extent_bits(&root->fs_info->freed_extents[0],
  249			  start, end, EXTENT_UPTODATE, GFP_NOFS);
  250	clear_extent_bits(&root->fs_info->freed_extents[1],
  251			  start, end, EXTENT_UPTODATE, GFP_NOFS);
  252}
  253
  254static int exclude_super_stripes(struct btrfs_root *root,
  255				 struct btrfs_block_group_cache *cache)
  256{
  257	u64 bytenr;
  258	u64 *logical;
  259	int stripe_len;
  260	int i, nr, ret;
  261
  262	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
  263		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
  264		cache->bytes_super += stripe_len;
  265		ret = add_excluded_extent(root, cache->key.objectid,
  266					  stripe_len);
  267		if (ret)
  268			return ret;
  269	}
  270
  271	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
  272		bytenr = btrfs_sb_offset(i);
  273		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
  274				       cache->key.objectid, bytenr,
  275				       0, &logical, &nr, &stripe_len);
  276		if (ret)
  277			return ret;
  278
  279		while (nr--) {
  280			u64 start, len;
  281
  282			if (logical[nr] > cache->key.objectid +
  283			    cache->key.offset)
  284				continue;
  285
  286			if (logical[nr] + stripe_len <= cache->key.objectid)
  287				continue;
  288
  289			start = logical[nr];
  290			if (start < cache->key.objectid) {
  291				start = cache->key.objectid;
  292				len = (logical[nr] + stripe_len) - start;
  293			} else {
  294				len = min_t(u64, stripe_len,
  295					    cache->key.objectid +
  296					    cache->key.offset - start);
  297			}
  298
  299			cache->bytes_super += len;
  300			ret = add_excluded_extent(root, start, len);
  301			if (ret) {
  302				kfree(logical);
  303				return ret;
  304			}
  305		}
  306
  307		kfree(logical);
  308	}
  309	return 0;
  310}
  311
  312static struct btrfs_caching_control *
  313get_caching_control(struct btrfs_block_group_cache *cache)
  314{
  315	struct btrfs_caching_control *ctl;
  316
  317	spin_lock(&cache->lock);
  318	if (!cache->caching_ctl) {
  319		spin_unlock(&cache->lock);
  320		return NULL;
  321	}
  322
  323	ctl = cache->caching_ctl;
  324	atomic_inc(&ctl->count);
  325	spin_unlock(&cache->lock);
  326	return ctl;
  327}
  328
  329static void put_caching_control(struct btrfs_caching_control *ctl)
  330{
  331	if (atomic_dec_and_test(&ctl->count))
  332		kfree(ctl);
  333}
  334
  335#ifdef CONFIG_BTRFS_DEBUG
  336static void fragment_free_space(struct btrfs_root *root,
  337				struct btrfs_block_group_cache *block_group)
  338{
  339	u64 start = block_group->key.objectid;
  340	u64 len = block_group->key.offset;
  341	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
  342		root->nodesize : root->sectorsize;
  343	u64 step = chunk << 1;
  344
  345	while (len > chunk) {
  346		btrfs_remove_free_space(block_group, start, chunk);
  347		start += step;
  348		if (len < step)
  349			len = 0;
  350		else
  351			len -= step;
  352	}
 
  353}
  354#endif
  355
  356/*
  357 * this is only called by cache_block_group, since we could have freed extents
  358 * we need to check the pinned_extents for any extents that can't be used yet
  359 * since their free space will be released as soon as the transaction commits.
  360 */
  361u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
  362		       struct btrfs_fs_info *info, u64 start, u64 end)
  363{
  364	u64 extent_start, extent_end, size, total_added = 0;
  365	int ret;
  366
  367	while (start < end) {
  368		ret = find_first_extent_bit(info->pinned_extents, start,
  369					    &extent_start, &extent_end,
  370					    EXTENT_DIRTY | EXTENT_UPTODATE,
  371					    NULL);
  372		if (ret)
  373			break;
  374
  375		if (extent_start <= start) {
  376			start = extent_end + 1;
  377		} else if (extent_start > start && extent_start < end) {
  378			size = extent_start - start;
  379			total_added += size;
  380			ret = btrfs_add_free_space(block_group, start,
  381						   size);
  382			BUG_ON(ret); /* -ENOMEM or logic error */
  383			start = extent_end + 1;
  384		} else {
  385			break;
  386		}
  387	}
  388
  389	if (start < end) {
  390		size = end - start;
  391		total_added += size;
  392		ret = btrfs_add_free_space(block_group, start, size);
  393		BUG_ON(ret); /* -ENOMEM or logic error */
  394	}
  395
  396	return total_added;
  397}
  398
  399static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
 
  400{
  401	struct btrfs_block_group_cache *block_group;
  402	struct btrfs_fs_info *fs_info;
  403	struct btrfs_root *extent_root;
  404	struct btrfs_path *path;
  405	struct extent_buffer *leaf;
  406	struct btrfs_key key;
  407	u64 total_found = 0;
  408	u64 last = 0;
  409	u32 nritems;
  410	int ret;
  411	bool wakeup = true;
  412
  413	block_group = caching_ctl->block_group;
  414	fs_info = block_group->fs_info;
  415	extent_root = fs_info->extent_root;
  416
  417	path = btrfs_alloc_path();
  418	if (!path)
  419		return -ENOMEM;
  420
  421	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
  422
  423#ifdef CONFIG_BTRFS_DEBUG
  424	/*
  425	 * If we're fragmenting we don't want to make anybody think we can
  426	 * allocate from this block group until we've had a chance to fragment
  427	 * the free space.
  428	 */
  429	if (btrfs_should_fragment_free_space(extent_root, block_group))
  430		wakeup = false;
  431#endif
  432	/*
  433	 * We don't want to deadlock with somebody trying to allocate a new
  434	 * extent for the extent root while also trying to search the extent
  435	 * root to add free space.  So we skip locking and search the commit
  436	 * root, since its read-only
  437	 */
  438	path->skip_locking = 1;
  439	path->search_commit_root = 1;
  440	path->reada = READA_FORWARD;
  441
  442	key.objectid = last;
  443	key.offset = 0;
  444	key.type = BTRFS_EXTENT_ITEM_KEY;
  445
  446next:
  447	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
  448	if (ret < 0)
  449		goto out;
  450
  451	leaf = path->nodes[0];
  452	nritems = btrfs_header_nritems(leaf);
  453
  454	while (1) {
  455		if (btrfs_fs_closing(fs_info) > 1) {
  456			last = (u64)-1;
  457			break;
  458		}
  459
  460		if (path->slots[0] < nritems) {
  461			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  462		} else {
  463			ret = find_next_key(path, 0, &key);
  464			if (ret)
  465				break;
  466
  467			if (need_resched() ||
  468			    rwsem_is_contended(&fs_info->commit_root_sem)) {
  469				if (wakeup)
  470					caching_ctl->progress = last;
  471				btrfs_release_path(path);
  472				up_read(&fs_info->commit_root_sem);
  473				mutex_unlock(&caching_ctl->mutex);
  474				cond_resched();
  475				mutex_lock(&caching_ctl->mutex);
  476				down_read(&fs_info->commit_root_sem);
  477				goto next;
  478			}
  479
  480			ret = btrfs_next_leaf(extent_root, path);
  481			if (ret < 0)
  482				goto out;
  483			if (ret)
  484				break;
  485			leaf = path->nodes[0];
  486			nritems = btrfs_header_nritems(leaf);
  487			continue;
  488		}
  489
  490		if (key.objectid < last) {
  491			key.objectid = last;
  492			key.offset = 0;
  493			key.type = BTRFS_EXTENT_ITEM_KEY;
  494
  495			if (wakeup)
  496				caching_ctl->progress = last;
  497			btrfs_release_path(path);
  498			goto next;
  499		}
  500
  501		if (key.objectid < block_group->key.objectid) {
  502			path->slots[0]++;
  503			continue;
  504		}
  505
  506		if (key.objectid >= block_group->key.objectid +
  507		    block_group->key.offset)
  508			break;
  509
  510		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
  511		    key.type == BTRFS_METADATA_ITEM_KEY) {
  512			total_found += add_new_free_space(block_group,
  513							  fs_info, last,
  514							  key.objectid);
  515			if (key.type == BTRFS_METADATA_ITEM_KEY)
  516				last = key.objectid +
  517					fs_info->tree_root->nodesize;
  518			else
  519				last = key.objectid + key.offset;
  520
  521			if (total_found > CACHING_CTL_WAKE_UP) {
  522				total_found = 0;
  523				if (wakeup)
  524					wake_up(&caching_ctl->wait);
  525			}
  526		}
  527		path->slots[0]++;
  528	}
  529	ret = 0;
  530
  531	total_found += add_new_free_space(block_group, fs_info, last,
  532					  block_group->key.objectid +
  533					  block_group->key.offset);
  534	caching_ctl->progress = (u64)-1;
  535
  536out:
  537	btrfs_free_path(path);
  538	return ret;
  539}
  540
  541static noinline void caching_thread(struct btrfs_work *work)
  542{
  543	struct btrfs_block_group_cache *block_group;
  544	struct btrfs_fs_info *fs_info;
  545	struct btrfs_caching_control *caching_ctl;
  546	struct btrfs_root *extent_root;
  547	int ret;
  548
  549	caching_ctl = container_of(work, struct btrfs_caching_control, work);
  550	block_group = caching_ctl->block_group;
  551	fs_info = block_group->fs_info;
  552	extent_root = fs_info->extent_root;
  553
  554	mutex_lock(&caching_ctl->mutex);
  555	down_read(&fs_info->commit_root_sem);
  556
  557	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
  558		ret = load_free_space_tree(caching_ctl);
  559	else
  560		ret = load_extent_tree_free(caching_ctl);
  561
  562	spin_lock(&block_group->lock);
  563	block_group->caching_ctl = NULL;
  564	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
  565	spin_unlock(&block_group->lock);
  566
  567#ifdef CONFIG_BTRFS_DEBUG
  568	if (btrfs_should_fragment_free_space(extent_root, block_group)) {
  569		u64 bytes_used;
  570
  571		spin_lock(&block_group->space_info->lock);
  572		spin_lock(&block_group->lock);
  573		bytes_used = block_group->key.offset -
  574			btrfs_block_group_used(&block_group->item);
  575		block_group->space_info->bytes_used += bytes_used >> 1;
  576		spin_unlock(&block_group->lock);
  577		spin_unlock(&block_group->space_info->lock);
  578		fragment_free_space(extent_root, block_group);
  579	}
  580#endif
  581
  582	caching_ctl->progress = (u64)-1;
  583
  584	up_read(&fs_info->commit_root_sem);
  585	free_excluded_extents(fs_info->extent_root, block_group);
  586	mutex_unlock(&caching_ctl->mutex);
  587
  588	wake_up(&caching_ctl->wait);
  589
  590	put_caching_control(caching_ctl);
  591	btrfs_put_block_group(block_group);
  592}
  593
  594static int cache_block_group(struct btrfs_block_group_cache *cache,
  595			     int load_cache_only)
  596{
  597	DEFINE_WAIT(wait);
  598	struct btrfs_fs_info *fs_info = cache->fs_info;
  599	struct btrfs_caching_control *caching_ctl;
  600	int ret = 0;
  601
  602	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
  603	if (!caching_ctl)
  604		return -ENOMEM;
  605
  606	INIT_LIST_HEAD(&caching_ctl->list);
  607	mutex_init(&caching_ctl->mutex);
  608	init_waitqueue_head(&caching_ctl->wait);
  609	caching_ctl->block_group = cache;
  610	caching_ctl->progress = cache->key.objectid;
  611	atomic_set(&caching_ctl->count, 1);
  612	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
  613			caching_thread, NULL, NULL);
  614
  615	spin_lock(&cache->lock);
  616	/*
  617	 * This should be a rare occasion, but this could happen I think in the
  618	 * case where one thread starts to load the space cache info, and then
  619	 * some other thread starts a transaction commit which tries to do an
  620	 * allocation while the other thread is still loading the space cache
  621	 * info.  The previous loop should have kept us from choosing this block
  622	 * group, but if we've moved to the state where we will wait on caching
  623	 * block groups we need to first check if we're doing a fast load here,
  624	 * so we can wait for it to finish, otherwise we could end up allocating
  625	 * from a block group who's cache gets evicted for one reason or
  626	 * another.
  627	 */
  628	while (cache->cached == BTRFS_CACHE_FAST) {
  629		struct btrfs_caching_control *ctl;
  630
  631		ctl = cache->caching_ctl;
  632		atomic_inc(&ctl->count);
  633		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
  634		spin_unlock(&cache->lock);
  635
  636		schedule();
  637
  638		finish_wait(&ctl->wait, &wait);
  639		put_caching_control(ctl);
  640		spin_lock(&cache->lock);
  641	}
  642
  643	if (cache->cached != BTRFS_CACHE_NO) {
  644		spin_unlock(&cache->lock);
  645		kfree(caching_ctl);
  646		return 0;
  647	}
  648	WARN_ON(cache->caching_ctl);
  649	cache->caching_ctl = caching_ctl;
  650	cache->cached = BTRFS_CACHE_FAST;
  651	spin_unlock(&cache->lock);
  652
  653	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
  654		mutex_lock(&caching_ctl->mutex);
  655		ret = load_free_space_cache(fs_info, cache);
  656
  657		spin_lock(&cache->lock);
  658		if (ret == 1) {
  659			cache->caching_ctl = NULL;
  660			cache->cached = BTRFS_CACHE_FINISHED;
  661			cache->last_byte_to_unpin = (u64)-1;
  662			caching_ctl->progress = (u64)-1;
  663		} else {
  664			if (load_cache_only) {
  665				cache->caching_ctl = NULL;
  666				cache->cached = BTRFS_CACHE_NO;
  667			} else {
  668				cache->cached = BTRFS_CACHE_STARTED;
  669				cache->has_caching_ctl = 1;
  670			}
  671		}
  672		spin_unlock(&cache->lock);
  673#ifdef CONFIG_BTRFS_DEBUG
  674		if (ret == 1 &&
  675		    btrfs_should_fragment_free_space(fs_info->extent_root,
  676						     cache)) {
  677			u64 bytes_used;
  678
  679			spin_lock(&cache->space_info->lock);
  680			spin_lock(&cache->lock);
  681			bytes_used = cache->key.offset -
  682				btrfs_block_group_used(&cache->item);
  683			cache->space_info->bytes_used += bytes_used >> 1;
  684			spin_unlock(&cache->lock);
  685			spin_unlock(&cache->space_info->lock);
  686			fragment_free_space(fs_info->extent_root, cache);
  687		}
  688#endif
  689		mutex_unlock(&caching_ctl->mutex);
  690
  691		wake_up(&caching_ctl->wait);
  692		if (ret == 1) {
  693			put_caching_control(caching_ctl);
  694			free_excluded_extents(fs_info->extent_root, cache);
  695			return 0;
  696		}
  697	} else {
  698		/*
  699		 * We're either using the free space tree or no caching at all.
  700		 * Set cached to the appropriate value and wakeup any waiters.
  701		 */
  702		spin_lock(&cache->lock);
  703		if (load_cache_only) {
  704			cache->caching_ctl = NULL;
  705			cache->cached = BTRFS_CACHE_NO;
  706		} else {
  707			cache->cached = BTRFS_CACHE_STARTED;
  708			cache->has_caching_ctl = 1;
  709		}
  710		spin_unlock(&cache->lock);
  711		wake_up(&caching_ctl->wait);
  712	}
  713
  714	if (load_cache_only) {
  715		put_caching_control(caching_ctl);
  716		return 0;
  717	}
  718
  719	down_write(&fs_info->commit_root_sem);
  720	atomic_inc(&caching_ctl->count);
  721	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
  722	up_write(&fs_info->commit_root_sem);
  723
  724	btrfs_get_block_group(cache);
  725
  726	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
  727
  728	return ret;
  729}
  730
  731/*
  732 * return the block group that starts at or after bytenr
  733 */
  734static struct btrfs_block_group_cache *
  735btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
  736{
  737	struct btrfs_block_group_cache *cache;
  738
  739	cache = block_group_cache_tree_search(info, bytenr, 0);
  740
  741	return cache;
  742}
  743
  744/*
  745 * return the block group that contains the given bytenr
  746 */
  747struct btrfs_block_group_cache *btrfs_lookup_block_group(
  748						 struct btrfs_fs_info *info,
  749						 u64 bytenr)
  750{
  751	struct btrfs_block_group_cache *cache;
  752
  753	cache = block_group_cache_tree_search(info, bytenr, 1);
  754
  755	return cache;
  756}
  757
  758static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
  759						  u64 flags)
  760{
  761	struct list_head *head = &info->space_info;
  762	struct btrfs_space_info *found;
  763
  764	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
  765
  766	rcu_read_lock();
  767	list_for_each_entry_rcu(found, head, list) {
  768		if (found->flags & flags) {
  769			rcu_read_unlock();
  770			return found;
  771		}
  772	}
  773	rcu_read_unlock();
  774	return NULL;
  775}
  776
  777/*
  778 * after adding space to the filesystem, we need to clear the full flags
  779 * on all the space infos.
  780 */
  781void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
  782{
  783	struct list_head *head = &info->space_info;
  784	struct btrfs_space_info *found;
  785
  786	rcu_read_lock();
  787	list_for_each_entry_rcu(found, head, list)
  788		found->full = 0;
  789	rcu_read_unlock();
  790}
  791
  792/* simple helper to search for an existing data extent at a given offset */
  793int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
  794{
  795	int ret;
  796	struct btrfs_key key;
  797	struct btrfs_path *path;
  798
  799	path = btrfs_alloc_path();
  800	if (!path)
  801		return -ENOMEM;
  802
  803	key.objectid = start;
  804	key.offset = len;
  805	key.type = BTRFS_EXTENT_ITEM_KEY;
  806	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
  807				0, 0);
  808	btrfs_free_path(path);
  809	return ret;
  810}
  811
  812/*
  813 * helper function to lookup reference count and flags of a tree block.
  814 *
  815 * the head node for delayed ref is used to store the sum of all the
  816 * reference count modifications queued up in the rbtree. the head
  817 * node may also store the extent flags to set. This way you can check
  818 * to see what the reference count and extent flags would be if all of
  819 * the delayed refs are not processed.
  820 */
  821int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
  822			     struct btrfs_root *root, u64 bytenr,
  823			     u64 offset, int metadata, u64 *refs, u64 *flags)
  824{
  825	struct btrfs_delayed_ref_head *head;
  826	struct btrfs_delayed_ref_root *delayed_refs;
  827	struct btrfs_path *path;
  828	struct btrfs_extent_item *ei;
  829	struct extent_buffer *leaf;
  830	struct btrfs_key key;
  831	u32 item_size;
  832	u64 num_refs;
  833	u64 extent_flags;
  834	int ret;
  835
  836	/*
  837	 * If we don't have skinny metadata, don't bother doing anything
  838	 * different
  839	 */
  840	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
  841		offset = root->nodesize;
  842		metadata = 0;
  843	}
  844
  845	path = btrfs_alloc_path();
  846	if (!path)
  847		return -ENOMEM;
  848
  849	if (!trans) {
  850		path->skip_locking = 1;
  851		path->search_commit_root = 1;
  852	}
  853
  854search_again:
  855	key.objectid = bytenr;
  856	key.offset = offset;
  857	if (metadata)
  858		key.type = BTRFS_METADATA_ITEM_KEY;
  859	else
  860		key.type = BTRFS_EXTENT_ITEM_KEY;
  861
  862	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
  863				&key, path, 0, 0);
  864	if (ret < 0)
  865		goto out_free;
  866
  867	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
  868		if (path->slots[0]) {
  869			path->slots[0]--;
  870			btrfs_item_key_to_cpu(path->nodes[0], &key,
  871					      path->slots[0]);
  872			if (key.objectid == bytenr &&
  873			    key.type == BTRFS_EXTENT_ITEM_KEY &&
  874			    key.offset == root->nodesize)
  875				ret = 0;
  876		}
  877	}
  878
  879	if (ret == 0) {
  880		leaf = path->nodes[0];
  881		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  882		if (item_size >= sizeof(*ei)) {
  883			ei = btrfs_item_ptr(leaf, path->slots[0],
  884					    struct btrfs_extent_item);
  885			num_refs = btrfs_extent_refs(leaf, ei);
  886			extent_flags = btrfs_extent_flags(leaf, ei);
  887		} else {
  888#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  889			struct btrfs_extent_item_v0 *ei0;
  890			BUG_ON(item_size != sizeof(*ei0));
  891			ei0 = btrfs_item_ptr(leaf, path->slots[0],
  892					     struct btrfs_extent_item_v0);
  893			num_refs = btrfs_extent_refs_v0(leaf, ei0);
  894			/* FIXME: this isn't correct for data */
  895			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  896#else
  897			BUG();
  898#endif
  899		}
 
  900		BUG_ON(num_refs == 0);
  901	} else {
  902		num_refs = 0;
  903		extent_flags = 0;
  904		ret = 0;
  905	}
  906
  907	if (!trans)
  908		goto out;
  909
  910	delayed_refs = &trans->transaction->delayed_refs;
  911	spin_lock(&delayed_refs->lock);
  912	head = btrfs_find_delayed_ref_head(trans, bytenr);
  913	if (head) {
  914		if (!mutex_trylock(&head->mutex)) {
  915			atomic_inc(&head->node.refs);
  916			spin_unlock(&delayed_refs->lock);
  917
  918			btrfs_release_path(path);
  919
  920			/*
  921			 * Mutex was contended, block until it's released and try
  922			 * again
  923			 */
  924			mutex_lock(&head->mutex);
  925			mutex_unlock(&head->mutex);
  926			btrfs_put_delayed_ref(&head->node);
  927			goto search_again;
  928		}
  929		spin_lock(&head->lock);
  930		if (head->extent_op && head->extent_op->update_flags)
  931			extent_flags |= head->extent_op->flags_to_set;
  932		else
  933			BUG_ON(num_refs == 0);
  934
  935		num_refs += head->node.ref_mod;
  936		spin_unlock(&head->lock);
  937		mutex_unlock(&head->mutex);
  938	}
  939	spin_unlock(&delayed_refs->lock);
  940out:
  941	WARN_ON(num_refs == 0);
  942	if (refs)
  943		*refs = num_refs;
  944	if (flags)
  945		*flags = extent_flags;
  946out_free:
  947	btrfs_free_path(path);
  948	return ret;
  949}
  950
  951/*
  952 * Back reference rules.  Back refs have three main goals:
  953 *
  954 * 1) differentiate between all holders of references to an extent so that
  955 *    when a reference is dropped we can make sure it was a valid reference
  956 *    before freeing the extent.
  957 *
  958 * 2) Provide enough information to quickly find the holders of an extent
  959 *    if we notice a given block is corrupted or bad.
  960 *
  961 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
  962 *    maintenance.  This is actually the same as #2, but with a slightly
  963 *    different use case.
  964 *
  965 * There are two kinds of back refs. The implicit back refs is optimized
  966 * for pointers in non-shared tree blocks. For a given pointer in a block,
  967 * back refs of this kind provide information about the block's owner tree
  968 * and the pointer's key. These information allow us to find the block by
  969 * b-tree searching. The full back refs is for pointers in tree blocks not
  970 * referenced by their owner trees. The location of tree block is recorded
  971 * in the back refs. Actually the full back refs is generic, and can be
  972 * used in all cases the implicit back refs is used. The major shortcoming
  973 * of the full back refs is its overhead. Every time a tree block gets
  974 * COWed, we have to update back refs entry for all pointers in it.
  975 *
  976 * For a newly allocated tree block, we use implicit back refs for
  977 * pointers in it. This means most tree related operations only involve
  978 * implicit back refs. For a tree block created in old transaction, the
  979 * only way to drop a reference to it is COW it. So we can detect the
  980 * event that tree block loses its owner tree's reference and do the
  981 * back refs conversion.
  982 *
  983 * When a tree block is COW'd through a tree, there are four cases:
  984 *
  985 * The reference count of the block is one and the tree is the block's
  986 * owner tree. Nothing to do in this case.
  987 *
  988 * The reference count of the block is one and the tree is not the
  989 * block's owner tree. In this case, full back refs is used for pointers
  990 * in the block. Remove these full back refs, add implicit back refs for
  991 * every pointers in the new block.
  992 *
  993 * The reference count of the block is greater than one and the tree is
  994 * the block's owner tree. In this case, implicit back refs is used for
  995 * pointers in the block. Add full back refs for every pointers in the
  996 * block, increase lower level extents' reference counts. The original
  997 * implicit back refs are entailed to the new block.
  998 *
  999 * The reference count of the block is greater than one and the tree is
 1000 * not the block's owner tree. Add implicit back refs for every pointer in
 1001 * the new block, increase lower level extents' reference count.
 1002 *
 1003 * Back Reference Key composing:
 1004 *
 1005 * The key objectid corresponds to the first byte in the extent,
 1006 * The key type is used to differentiate between types of back refs.
 1007 * There are different meanings of the key offset for different types
 1008 * of back refs.
 1009 *
 1010 * File extents can be referenced by:
 1011 *
 1012 * - multiple snapshots, subvolumes, or different generations in one subvol
 1013 * - different files inside a single subvolume
 1014 * - different offsets inside a file (bookend extents in file.c)
 1015 *
 1016 * The extent ref structure for the implicit back refs has fields for:
 1017 *
 1018 * - Objectid of the subvolume root
 1019 * - objectid of the file holding the reference
 1020 * - original offset in the file
 1021 * - how many bookend extents
 1022 *
 1023 * The key offset for the implicit back refs is hash of the first
 1024 * three fields.
 1025 *
 1026 * The extent ref structure for the full back refs has field for:
 1027 *
 1028 * - number of pointers in the tree leaf
 1029 *
 1030 * The key offset for the implicit back refs is the first byte of
 1031 * the tree leaf
 1032 *
 1033 * When a file extent is allocated, The implicit back refs is used.
 1034 * the fields are filled in:
 1035 *
 1036 *     (root_key.objectid, inode objectid, offset in file, 1)
 1037 *
 1038 * When a file extent is removed file truncation, we find the
 1039 * corresponding implicit back refs and check the following fields:
 1040 *
 1041 *     (btrfs_header_owner(leaf), inode objectid, offset in file)
 1042 *
 1043 * Btree extents can be referenced by:
 1044 *
 1045 * - Different subvolumes
 1046 *
 1047 * Both the implicit back refs and the full back refs for tree blocks
 1048 * only consist of key. The key offset for the implicit back refs is
 1049 * objectid of block's owner tree. The key offset for the full back refs
 1050 * is the first byte of parent block.
 1051 *
 1052 * When implicit back refs is used, information about the lowest key and
 1053 * level of the tree block are required. These information are stored in
 1054 * tree block info structure.
 1055 */
 1056
 1057#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 1058static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
 1059				  struct btrfs_root *root,
 1060				  struct btrfs_path *path,
 1061				  u64 owner, u32 extra_size)
 1062{
 1063	struct btrfs_extent_item *item;
 1064	struct btrfs_extent_item_v0 *ei0;
 1065	struct btrfs_extent_ref_v0 *ref0;
 1066	struct btrfs_tree_block_info *bi;
 1067	struct extent_buffer *leaf;
 1068	struct btrfs_key key;
 1069	struct btrfs_key found_key;
 1070	u32 new_size = sizeof(*item);
 1071	u64 refs;
 1072	int ret;
 1073
 1074	leaf = path->nodes[0];
 1075	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
 1076
 1077	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 1078	ei0 = btrfs_item_ptr(leaf, path->slots[0],
 1079			     struct btrfs_extent_item_v0);
 1080	refs = btrfs_extent_refs_v0(leaf, ei0);
 1081
 1082	if (owner == (u64)-1) {
 1083		while (1) {
 1084			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 1085				ret = btrfs_next_leaf(root, path);
 1086				if (ret < 0)
 1087					return ret;
 1088				BUG_ON(ret > 0); /* Corruption */
 1089				leaf = path->nodes[0];
 
 
 
 
 
 
 
 
 
 
 1090			}
 1091			btrfs_item_key_to_cpu(leaf, &found_key,
 1092					      path->slots[0]);
 1093			BUG_ON(key.objectid != found_key.objectid);
 1094			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
 1095				path->slots[0]++;
 1096				continue;
 1097			}
 1098			ref0 = btrfs_item_ptr(leaf, path->slots[0],
 1099					      struct btrfs_extent_ref_v0);
 1100			owner = btrfs_ref_objectid_v0(leaf, ref0);
 1101			break;
 1102		}
 1103	}
 1104	btrfs_release_path(path);
 1105
 1106	if (owner < BTRFS_FIRST_FREE_OBJECTID)
 1107		new_size += sizeof(*bi);
 1108
 1109	new_size -= sizeof(*ei0);
 1110	ret = btrfs_search_slot(trans, root, &key, path,
 1111				new_size + extra_size, 1);
 1112	if (ret < 0)
 1113		return ret;
 1114	BUG_ON(ret); /* Corruption */
 1115
 1116	btrfs_extend_item(root, path, new_size);
 
 
 
 1117
 1118	leaf = path->nodes[0];
 1119	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 1120	btrfs_set_extent_refs(leaf, item, refs);
 1121	/* FIXME: get real generation */
 1122	btrfs_set_extent_generation(leaf, item, 0);
 1123	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 1124		btrfs_set_extent_flags(leaf, item,
 1125				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
 1126				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
 1127		bi = (struct btrfs_tree_block_info *)(item + 1);
 1128		/* FIXME: get first key of the block */
 1129		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
 1130		btrfs_set_tree_block_level(leaf, bi, (int)owner);
 1131	} else {
 1132		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
 1133	}
 1134	btrfs_mark_buffer_dirty(leaf);
 1135	return 0;
 1136}
 1137#endif
 1138
 1139static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
 1140{
 1141	u32 high_crc = ~(u32)0;
 1142	u32 low_crc = ~(u32)0;
 1143	__le64 lenum;
 1144
 1145	lenum = cpu_to_le64(root_objectid);
 1146	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
 1147	lenum = cpu_to_le64(owner);
 1148	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
 1149	lenum = cpu_to_le64(offset);
 1150	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
 1151
 1152	return ((u64)high_crc << 31) ^ (u64)low_crc;
 1153}
 1154
 1155static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
 1156				     struct btrfs_extent_data_ref *ref)
 1157{
 1158	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
 1159				    btrfs_extent_data_ref_objectid(leaf, ref),
 1160				    btrfs_extent_data_ref_offset(leaf, ref));
 1161}
 1162
 1163static int match_extent_data_ref(struct extent_buffer *leaf,
 1164				 struct btrfs_extent_data_ref *ref,
 1165				 u64 root_objectid, u64 owner, u64 offset)
 1166{
 1167	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
 1168	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
 1169	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
 1170		return 0;
 1171	return 1;
 1172}
 1173
 1174static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
 1175					   struct btrfs_root *root,
 1176					   struct btrfs_path *path,
 1177					   u64 bytenr, u64 parent,
 1178					   u64 root_objectid,
 1179					   u64 owner, u64 offset)
 1180{
 
 1181	struct btrfs_key key;
 1182	struct btrfs_extent_data_ref *ref;
 1183	struct extent_buffer *leaf;
 1184	u32 nritems;
 1185	int ret;
 1186	int recow;
 1187	int err = -ENOENT;
 1188
 1189	key.objectid = bytenr;
 1190	if (parent) {
 1191		key.type = BTRFS_SHARED_DATA_REF_KEY;
 1192		key.offset = parent;
 1193	} else {
 1194		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 1195		key.offset = hash_extent_data_ref(root_objectid,
 1196						  owner, offset);
 1197	}
 1198again:
 1199	recow = 0;
 1200	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 1201	if (ret < 0) {
 1202		err = ret;
 1203		goto fail;
 1204	}
 1205
 1206	if (parent) {
 1207		if (!ret)
 1208			return 0;
 1209#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 1210		key.type = BTRFS_EXTENT_REF_V0_KEY;
 1211		btrfs_release_path(path);
 1212		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 1213		if (ret < 0) {
 1214			err = ret;
 1215			goto fail;
 1216		}
 1217		if (!ret)
 1218			return 0;
 1219#endif
 1220		goto fail;
 1221	}
 1222
 1223	leaf = path->nodes[0];
 1224	nritems = btrfs_header_nritems(leaf);
 1225	while (1) {
 1226		if (path->slots[0] >= nritems) {
 1227			ret = btrfs_next_leaf(root, path);
 1228			if (ret < 0)
 1229				err = ret;
 1230			if (ret)
 1231				goto fail;
 1232
 1233			leaf = path->nodes[0];
 1234			nritems = btrfs_header_nritems(leaf);
 1235			recow = 1;
 1236		}
 1237
 1238		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 1239		if (key.objectid != bytenr ||
 1240		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
 1241			goto fail;
 1242
 1243		ref = btrfs_item_ptr(leaf, path->slots[0],
 1244				     struct btrfs_extent_data_ref);
 1245
 1246		if (match_extent_data_ref(leaf, ref, root_objectid,
 1247					  owner, offset)) {
 1248			if (recow) {
 1249				btrfs_release_path(path);
 1250				goto again;
 1251			}
 1252			err = 0;
 1253			break;
 1254		}
 1255		path->slots[0]++;
 1256	}
 1257fail:
 1258	return err;
 1259}
 1260
 1261static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
 1262					   struct btrfs_root *root,
 1263					   struct btrfs_path *path,
 1264					   u64 bytenr, u64 parent,
 1265					   u64 root_objectid, u64 owner,
 1266					   u64 offset, int refs_to_add)
 1267{
 
 1268	struct btrfs_key key;
 1269	struct extent_buffer *leaf;
 1270	u32 size;
 1271	u32 num_refs;
 1272	int ret;
 1273
 1274	key.objectid = bytenr;
 1275	if (parent) {
 1276		key.type = BTRFS_SHARED_DATA_REF_KEY;
 1277		key.offset = parent;
 1278		size = sizeof(struct btrfs_shared_data_ref);
 1279	} else {
 1280		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 1281		key.offset = hash_extent_data_ref(root_objectid,
 1282						  owner, offset);
 1283		size = sizeof(struct btrfs_extent_data_ref);
 1284	}
 1285
 1286	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
 1287	if (ret && ret != -EEXIST)
 1288		goto fail;
 1289
 1290	leaf = path->nodes[0];
 1291	if (parent) {
 1292		struct btrfs_shared_data_ref *ref;
 1293		ref = btrfs_item_ptr(leaf, path->slots[0],
 1294				     struct btrfs_shared_data_ref);
 1295		if (ret == 0) {
 1296			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
 1297		} else {
 1298			num_refs = btrfs_shared_data_ref_count(leaf, ref);
 1299			num_refs += refs_to_add;
 1300			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
 1301		}
 1302	} else {
 1303		struct btrfs_extent_data_ref *ref;
 1304		while (ret == -EEXIST) {
 1305			ref = btrfs_item_ptr(leaf, path->slots[0],
 1306					     struct btrfs_extent_data_ref);
 1307			if (match_extent_data_ref(leaf, ref, root_objectid,
 1308						  owner, offset))
 1309				break;
 1310			btrfs_release_path(path);
 1311			key.offset++;
 1312			ret = btrfs_insert_empty_item(trans, root, path, &key,
 1313						      size);
 1314			if (ret && ret != -EEXIST)
 1315				goto fail;
 1316
 1317			leaf = path->nodes[0];
 1318		}
 1319		ref = btrfs_item_ptr(leaf, path->slots[0],
 1320				     struct btrfs_extent_data_ref);
 1321		if (ret == 0) {
 1322			btrfs_set_extent_data_ref_root(leaf, ref,
 1323						       root_objectid);
 1324			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
 1325			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
 1326			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
 1327		} else {
 1328			num_refs = btrfs_extent_data_ref_count(leaf, ref);
 1329			num_refs += refs_to_add;
 1330			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
 1331		}
 1332	}
 1333	btrfs_mark_buffer_dirty(leaf);
 1334	ret = 0;
 1335fail:
 1336	btrfs_release_path(path);
 1337	return ret;
 1338}
 1339
 1340static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
 1341					   struct btrfs_root *root,
 1342					   struct btrfs_path *path,
 1343					   int refs_to_drop, int *last_ref)
 1344{
 1345	struct btrfs_key key;
 1346	struct btrfs_extent_data_ref *ref1 = NULL;
 1347	struct btrfs_shared_data_ref *ref2 = NULL;
 1348	struct extent_buffer *leaf;
 1349	u32 num_refs = 0;
 1350	int ret = 0;
 1351
 1352	leaf = path->nodes[0];
 1353	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 1354
 1355	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 1356		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 1357				      struct btrfs_extent_data_ref);
 1358		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 1359	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 1360		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 1361				      struct btrfs_shared_data_ref);
 1362		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 1363#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 1364	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 1365		struct btrfs_extent_ref_v0 *ref0;
 1366		ref0 = btrfs_item_ptr(leaf, path->slots[0],
 1367				      struct btrfs_extent_ref_v0);
 1368		num_refs = btrfs_ref_count_v0(leaf, ref0);
 1369#endif
 1370	} else {
 1371		BUG();
 1372	}
 1373
 1374	BUG_ON(num_refs < refs_to_drop);
 1375	num_refs -= refs_to_drop;
 1376
 1377	if (num_refs == 0) {
 1378		ret = btrfs_del_item(trans, root, path);
 1379		*last_ref = 1;
 1380	} else {
 1381		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
 1382			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
 1383		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
 1384			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
 1385#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 1386		else {
 1387			struct btrfs_extent_ref_v0 *ref0;
 1388			ref0 = btrfs_item_ptr(leaf, path->slots[0],
 1389					struct btrfs_extent_ref_v0);
 1390			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
 1391		}
 1392#endif
 1393		btrfs_mark_buffer_dirty(leaf);
 1394	}
 1395	return ret;
 1396}
 1397
 1398static noinline u32 extent_data_ref_count(struct btrfs_path *path,
 1399					  struct btrfs_extent_inline_ref *iref)
 1400{
 1401	struct btrfs_key key;
 1402	struct extent_buffer *leaf;
 1403	struct btrfs_extent_data_ref *ref1;
 1404	struct btrfs_shared_data_ref *ref2;
 1405	u32 num_refs = 0;
 
 1406
 1407	leaf = path->nodes[0];
 1408	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 
 
 1409	if (iref) {
 1410		if (btrfs_extent_inline_ref_type(leaf, iref) ==
 1411		    BTRFS_EXTENT_DATA_REF_KEY) {
 
 
 
 
 
 1412			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
 1413			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 1414		} else {
 1415			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
 1416			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 1417		}
 1418	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 1419		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 1420				      struct btrfs_extent_data_ref);
 1421		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 1422	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 1423		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 1424				      struct btrfs_shared_data_ref);
 1425		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 1426#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 1427	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 1428		struct btrfs_extent_ref_v0 *ref0;
 1429		ref0 = btrfs_item_ptr(leaf, path->slots[0],
 1430				      struct btrfs_extent_ref_v0);
 1431		num_refs = btrfs_ref_count_v0(leaf, ref0);
 1432#endif
 1433	} else {
 1434		WARN_ON(1);
 1435	}
 1436	return num_refs;
 1437}
 1438
 1439static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
 1440					  struct btrfs_root *root,
 1441					  struct btrfs_path *path,
 1442					  u64 bytenr, u64 parent,
 1443					  u64 root_objectid)
 1444{
 
 1445	struct btrfs_key key;
 1446	int ret;
 1447
 1448	key.objectid = bytenr;
 1449	if (parent) {
 1450		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 1451		key.offset = parent;
 1452	} else {
 1453		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 1454		key.offset = root_objectid;
 1455	}
 1456
 1457	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 1458	if (ret > 0)
 1459		ret = -ENOENT;
 1460#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 1461	if (ret == -ENOENT && parent) {
 1462		btrfs_release_path(path);
 1463		key.type = BTRFS_EXTENT_REF_V0_KEY;
 1464		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 1465		if (ret > 0)
 1466			ret = -ENOENT;
 1467	}
 1468#endif
 1469	return ret;
 1470}
 1471
 1472static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
 1473					  struct btrfs_root *root,
 1474					  struct btrfs_path *path,
 1475					  u64 bytenr, u64 parent,
 1476					  u64 root_objectid)
 1477{
 1478	struct btrfs_key key;
 1479	int ret;
 1480
 1481	key.objectid = bytenr;
 1482	if (parent) {
 1483		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 1484		key.offset = parent;
 1485	} else {
 1486		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 1487		key.offset = root_objectid;
 1488	}
 1489
 1490	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
 
 1491	btrfs_release_path(path);
 1492	return ret;
 1493}
 1494
 1495static inline int extent_ref_type(u64 parent, u64 owner)
 1496{
 1497	int type;
 1498	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 1499		if (parent > 0)
 1500			type = BTRFS_SHARED_BLOCK_REF_KEY;
 1501		else
 1502			type = BTRFS_TREE_BLOCK_REF_KEY;
 1503	} else {
 1504		if (parent > 0)
 1505			type = BTRFS_SHARED_DATA_REF_KEY;
 1506		else
 1507			type = BTRFS_EXTENT_DATA_REF_KEY;
 1508	}
 1509	return type;
 1510}
 1511
 1512static int find_next_key(struct btrfs_path *path, int level,
 1513			 struct btrfs_key *key)
 1514
 1515{
 1516	for (; level < BTRFS_MAX_LEVEL; level++) {
 1517		if (!path->nodes[level])
 1518			break;
 1519		if (path->slots[level] + 1 >=
 1520		    btrfs_header_nritems(path->nodes[level]))
 1521			continue;
 1522		if (level == 0)
 1523			btrfs_item_key_to_cpu(path->nodes[level], key,
 1524					      path->slots[level] + 1);
 1525		else
 1526			btrfs_node_key_to_cpu(path->nodes[level], key,
 1527					      path->slots[level] + 1);
 1528		return 0;
 1529	}
 1530	return 1;
 1531}
 1532
 1533/*
 1534 * look for inline back ref. if back ref is found, *ref_ret is set
 1535 * to the address of inline back ref, and 0 is returned.
 1536 *
 1537 * if back ref isn't found, *ref_ret is set to the address where it
 1538 * should be inserted, and -ENOENT is returned.
 1539 *
 1540 * if insert is true and there are too many inline back refs, the path
 1541 * points to the extent item, and -EAGAIN is returned.
 1542 *
 1543 * NOTE: inline back refs are ordered in the same way that back ref
 1544 *	 items in the tree are ordered.
 1545 */
 1546static noinline_for_stack
 1547int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
 1548				 struct btrfs_root *root,
 1549				 struct btrfs_path *path,
 1550				 struct btrfs_extent_inline_ref **ref_ret,
 1551				 u64 bytenr, u64 num_bytes,
 1552				 u64 parent, u64 root_objectid,
 1553				 u64 owner, u64 offset, int insert)
 1554{
 
 
 1555	struct btrfs_key key;
 1556	struct extent_buffer *leaf;
 1557	struct btrfs_extent_item *ei;
 1558	struct btrfs_extent_inline_ref *iref;
 1559	u64 flags;
 1560	u64 item_size;
 1561	unsigned long ptr;
 1562	unsigned long end;
 1563	int extra_size;
 1564	int type;
 1565	int want;
 1566	int ret;
 1567	int err = 0;
 1568	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
 1569						 SKINNY_METADATA);
 1570
 1571	key.objectid = bytenr;
 1572	key.type = BTRFS_EXTENT_ITEM_KEY;
 1573	key.offset = num_bytes;
 1574
 1575	want = extent_ref_type(parent, owner);
 1576	if (insert) {
 1577		extra_size = btrfs_extent_inline_ref_size(want);
 1578		path->keep_locks = 1;
 1579	} else
 1580		extra_size = -1;
 1581
 1582	/*
 1583	 * Owner is our parent level, so we can just add one to get the level
 1584	 * for the block we are interested in.
 1585	 */
 1586	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
 1587		key.type = BTRFS_METADATA_ITEM_KEY;
 1588		key.offset = owner;
 1589	}
 1590
 1591again:
 1592	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
 1593	if (ret < 0) {
 1594		err = ret;
 1595		goto out;
 1596	}
 1597
 1598	/*
 1599	 * We may be a newly converted file system which still has the old fat
 1600	 * extent entries for metadata, so try and see if we have one of those.
 1601	 */
 1602	if (ret > 0 && skinny_metadata) {
 1603		skinny_metadata = false;
 1604		if (path->slots[0]) {
 1605			path->slots[0]--;
 1606			btrfs_item_key_to_cpu(path->nodes[0], &key,
 1607					      path->slots[0]);
 1608			if (key.objectid == bytenr &&
 1609			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 1610			    key.offset == num_bytes)
 1611				ret = 0;
 1612		}
 1613		if (ret) {
 1614			key.objectid = bytenr;
 1615			key.type = BTRFS_EXTENT_ITEM_KEY;
 1616			key.offset = num_bytes;
 1617			btrfs_release_path(path);
 1618			goto again;
 1619		}
 1620	}
 1621
 1622	if (ret && !insert) {
 1623		err = -ENOENT;
 1624		goto out;
 1625	} else if (WARN_ON(ret)) {
 1626		err = -EIO;
 1627		goto out;
 1628	}
 1629
 1630	leaf = path->nodes[0];
 1631	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 1632#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 1633	if (item_size < sizeof(*ei)) {
 1634		if (!insert) {
 1635			err = -ENOENT;
 1636			goto out;
 1637		}
 1638		ret = convert_extent_item_v0(trans, root, path, owner,
 1639					     extra_size);
 1640		if (ret < 0) {
 1641			err = ret;
 1642			goto out;
 1643		}
 1644		leaf = path->nodes[0];
 1645		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 1646	}
 1647#endif
 1648	BUG_ON(item_size < sizeof(*ei));
 1649
 1650	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 1651	flags = btrfs_extent_flags(leaf, ei);
 1652
 1653	ptr = (unsigned long)(ei + 1);
 1654	end = (unsigned long)ei + item_size;
 1655
 1656	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
 1657		ptr += sizeof(struct btrfs_tree_block_info);
 1658		BUG_ON(ptr > end);
 1659	}
 1660
 
 
 
 
 
 1661	err = -ENOENT;
 1662	while (1) {
 1663		if (ptr >= end) {
 1664			WARN_ON(ptr > end);
 1665			break;
 1666		}
 1667		iref = (struct btrfs_extent_inline_ref *)ptr;
 1668		type = btrfs_extent_inline_ref_type(leaf, iref);
 
 
 
 
 
 1669		if (want < type)
 1670			break;
 1671		if (want > type) {
 1672			ptr += btrfs_extent_inline_ref_size(type);
 1673			continue;
 1674		}
 1675
 1676		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 1677			struct btrfs_extent_data_ref *dref;
 1678			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 1679			if (match_extent_data_ref(leaf, dref, root_objectid,
 1680						  owner, offset)) {
 1681				err = 0;
 1682				break;
 1683			}
 1684			if (hash_extent_data_ref_item(leaf, dref) <
 1685			    hash_extent_data_ref(root_objectid, owner, offset))
 1686				break;
 1687		} else {
 1688			u64 ref_offset;
 1689			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
 1690			if (parent > 0) {
 1691				if (parent == ref_offset) {
 1692					err = 0;
 1693					break;
 1694				}
 1695				if (ref_offset < parent)
 1696					break;
 1697			} else {
 1698				if (root_objectid == ref_offset) {
 1699					err = 0;
 1700					break;
 1701				}
 1702				if (ref_offset < root_objectid)
 1703					break;
 1704			}
 1705		}
 1706		ptr += btrfs_extent_inline_ref_size(type);
 1707	}
 1708	if (err == -ENOENT && insert) {
 1709		if (item_size + extra_size >=
 1710		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
 1711			err = -EAGAIN;
 1712			goto out;
 1713		}
 1714		/*
 1715		 * To add new inline back ref, we have to make sure
 1716		 * there is no corresponding back ref item.
 1717		 * For simplicity, we just do not add new inline back
 1718		 * ref if there is any kind of item for this block
 1719		 */
 1720		if (find_next_key(path, 0, &key) == 0 &&
 1721		    key.objectid == bytenr &&
 1722		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
 1723			err = -EAGAIN;
 1724			goto out;
 1725		}
 1726	}
 1727	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
 1728out:
 1729	if (insert) {
 1730		path->keep_locks = 0;
 1731		btrfs_unlock_up_safe(path, 1);
 1732	}
 1733	return err;
 1734}
 1735
 1736/*
 1737 * helper to add new inline back ref
 1738 */
 1739static noinline_for_stack
 1740void setup_inline_extent_backref(struct btrfs_root *root,
 1741				 struct btrfs_path *path,
 1742				 struct btrfs_extent_inline_ref *iref,
 1743				 u64 parent, u64 root_objectid,
 1744				 u64 owner, u64 offset, int refs_to_add,
 1745				 struct btrfs_delayed_extent_op *extent_op)
 1746{
 1747	struct extent_buffer *leaf;
 1748	struct btrfs_extent_item *ei;
 1749	unsigned long ptr;
 1750	unsigned long end;
 1751	unsigned long item_offset;
 1752	u64 refs;
 1753	int size;
 1754	int type;
 1755
 1756	leaf = path->nodes[0];
 1757	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 1758	item_offset = (unsigned long)iref - (unsigned long)ei;
 1759
 1760	type = extent_ref_type(parent, owner);
 1761	size = btrfs_extent_inline_ref_size(type);
 1762
 1763	btrfs_extend_item(root, path, size);
 1764
 1765	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 1766	refs = btrfs_extent_refs(leaf, ei);
 1767	refs += refs_to_add;
 1768	btrfs_set_extent_refs(leaf, ei, refs);
 1769	if (extent_op)
 1770		__run_delayed_extent_op(extent_op, leaf, ei);
 1771
 1772	ptr = (unsigned long)ei + item_offset;
 1773	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
 1774	if (ptr < end - size)
 1775		memmove_extent_buffer(leaf, ptr + size, ptr,
 1776				      end - size - ptr);
 1777
 1778	iref = (struct btrfs_extent_inline_ref *)ptr;
 1779	btrfs_set_extent_inline_ref_type(leaf, iref, type);
 1780	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 1781		struct btrfs_extent_data_ref *dref;
 1782		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 1783		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
 1784		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
 1785		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
 1786		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
 1787	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
 1788		struct btrfs_shared_data_ref *sref;
 1789		sref = (struct btrfs_shared_data_ref *)(iref + 1);
 1790		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
 1791		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
 1792	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
 1793		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
 1794	} else {
 1795		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
 1796	}
 1797	btrfs_mark_buffer_dirty(leaf);
 1798}
 1799
 1800static int lookup_extent_backref(struct btrfs_trans_handle *trans,
 1801				 struct btrfs_root *root,
 1802				 struct btrfs_path *path,
 1803				 struct btrfs_extent_inline_ref **ref_ret,
 1804				 u64 bytenr, u64 num_bytes, u64 parent,
 1805				 u64 root_objectid, u64 owner, u64 offset)
 1806{
 1807	int ret;
 1808
 1809	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
 1810					   bytenr, num_bytes, parent,
 1811					   root_objectid, owner, offset, 0);
 1812	if (ret != -ENOENT)
 1813		return ret;
 1814
 1815	btrfs_release_path(path);
 1816	*ref_ret = NULL;
 1817
 1818	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 1819		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
 1820					    root_objectid);
 1821	} else {
 1822		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
 1823					     root_objectid, owner, offset);
 1824	}
 1825	return ret;
 1826}
 1827
 1828/*
 1829 * helper to update/remove inline back ref
 1830 */
 1831static noinline_for_stack
 1832void update_inline_extent_backref(struct btrfs_root *root,
 1833				  struct btrfs_path *path,
 1834				  struct btrfs_extent_inline_ref *iref,
 1835				  int refs_to_mod,
 1836				  struct btrfs_delayed_extent_op *extent_op,
 1837				  int *last_ref)
 1838{
 1839	struct extent_buffer *leaf;
 1840	struct btrfs_extent_item *ei;
 1841	struct btrfs_extent_data_ref *dref = NULL;
 1842	struct btrfs_shared_data_ref *sref = NULL;
 1843	unsigned long ptr;
 1844	unsigned long end;
 1845	u32 item_size;
 1846	int size;
 1847	int type;
 1848	u64 refs;
 1849
 1850	leaf = path->nodes[0];
 1851	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 1852	refs = btrfs_extent_refs(leaf, ei);
 1853	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
 1854	refs += refs_to_mod;
 1855	btrfs_set_extent_refs(leaf, ei, refs);
 1856	if (extent_op)
 1857		__run_delayed_extent_op(extent_op, leaf, ei);
 1858
 1859	type = btrfs_extent_inline_ref_type(leaf, iref);
 
 
 
 
 
 1860
 1861	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 1862		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 1863		refs = btrfs_extent_data_ref_count(leaf, dref);
 1864	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
 1865		sref = (struct btrfs_shared_data_ref *)(iref + 1);
 1866		refs = btrfs_shared_data_ref_count(leaf, sref);
 1867	} else {
 1868		refs = 1;
 1869		BUG_ON(refs_to_mod != -1);
 1870	}
 1871
 1872	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
 1873	refs += refs_to_mod;
 1874
 1875	if (refs > 0) {
 1876		if (type == BTRFS_EXTENT_DATA_REF_KEY)
 1877			btrfs_set_extent_data_ref_count(leaf, dref, refs);
 1878		else
 1879			btrfs_set_shared_data_ref_count(leaf, sref, refs);
 1880	} else {
 1881		*last_ref = 1;
 1882		size =  btrfs_extent_inline_ref_size(type);
 1883		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 1884		ptr = (unsigned long)iref;
 1885		end = (unsigned long)ei + item_size;
 1886		if (ptr + size < end)
 1887			memmove_extent_buffer(leaf, ptr, ptr + size,
 1888					      end - ptr - size);
 1889		item_size -= size;
 1890		btrfs_truncate_item(root, path, item_size, 1);
 1891	}
 1892	btrfs_mark_buffer_dirty(leaf);
 1893}
 1894
 1895static noinline_for_stack
 1896int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
 1897				 struct btrfs_root *root,
 1898				 struct btrfs_path *path,
 1899				 u64 bytenr, u64 num_bytes, u64 parent,
 1900				 u64 root_objectid, u64 owner,
 1901				 u64 offset, int refs_to_add,
 1902				 struct btrfs_delayed_extent_op *extent_op)
 1903{
 1904	struct btrfs_extent_inline_ref *iref;
 1905	int ret;
 1906
 1907	ret = lookup_inline_extent_backref(trans, root, path, &iref,
 1908					   bytenr, num_bytes, parent,
 1909					   root_objectid, owner, offset, 1);
 1910	if (ret == 0) {
 1911		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
 1912		update_inline_extent_backref(root, path, iref,
 1913					     refs_to_add, extent_op, NULL);
 1914	} else if (ret == -ENOENT) {
 1915		setup_inline_extent_backref(root, path, iref, parent,
 1916					    root_objectid, owner, offset,
 1917					    refs_to_add, extent_op);
 1918		ret = 0;
 1919	}
 1920	return ret;
 1921}
 1922
 1923static int insert_extent_backref(struct btrfs_trans_handle *trans,
 1924				 struct btrfs_root *root,
 1925				 struct btrfs_path *path,
 1926				 u64 bytenr, u64 parent, u64 root_objectid,
 1927				 u64 owner, u64 offset, int refs_to_add)
 1928{
 1929	int ret;
 1930	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 1931		BUG_ON(refs_to_add != 1);
 1932		ret = insert_tree_block_ref(trans, root, path, bytenr,
 1933					    parent, root_objectid);
 1934	} else {
 1935		ret = insert_extent_data_ref(trans, root, path, bytenr,
 1936					     parent, root_objectid,
 1937					     owner, offset, refs_to_add);
 1938	}
 1939	return ret;
 1940}
 1941
 1942static int remove_extent_backref(struct btrfs_trans_handle *trans,
 1943				 struct btrfs_root *root,
 1944				 struct btrfs_path *path,
 1945				 struct btrfs_extent_inline_ref *iref,
 1946				 int refs_to_drop, int is_data, int *last_ref)
 1947{
 1948	int ret = 0;
 1949
 1950	BUG_ON(!is_data && refs_to_drop != 1);
 1951	if (iref) {
 1952		update_inline_extent_backref(root, path, iref,
 1953					     -refs_to_drop, NULL, last_ref);
 1954	} else if (is_data) {
 1955		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
 1956					     last_ref);
 1957	} else {
 1958		*last_ref = 1;
 1959		ret = btrfs_del_item(trans, root, path);
 1960	}
 1961	return ret;
 1962}
 1963
 1964#define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
 1965static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
 1966			       u64 *discarded_bytes)
 1967{
 1968	int j, ret = 0;
 1969	u64 bytes_left, end;
 1970	u64 aligned_start = ALIGN(start, 1 << 9);
 1971
 1972	if (WARN_ON(start != aligned_start)) {
 1973		len -= aligned_start - start;
 1974		len = round_down(len, 1 << 9);
 1975		start = aligned_start;
 1976	}
 1977
 1978	*discarded_bytes = 0;
 1979
 1980	if (!len)
 1981		return 0;
 1982
 1983	end = start + len;
 1984	bytes_left = len;
 1985
 1986	/* Skip any superblocks on this device. */
 1987	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
 1988		u64 sb_start = btrfs_sb_offset(j);
 1989		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
 1990		u64 size = sb_start - start;
 1991
 1992		if (!in_range(sb_start, start, bytes_left) &&
 1993		    !in_range(sb_end, start, bytes_left) &&
 1994		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
 1995			continue;
 1996
 1997		/*
 1998		 * Superblock spans beginning of range.  Adjust start and
 1999		 * try again.
 2000		 */
 2001		if (sb_start <= start) {
 2002			start += sb_end - start;
 2003			if (start > end) {
 2004				bytes_left = 0;
 2005				break;
 2006			}
 2007			bytes_left = end - start;
 2008			continue;
 2009		}
 2010
 2011		if (size) {
 2012			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
 2013						   GFP_NOFS, 0);
 2014			if (!ret)
 2015				*discarded_bytes += size;
 2016			else if (ret != -EOPNOTSUPP)
 2017				return ret;
 2018		}
 2019
 2020		start = sb_end;
 2021		if (start > end) {
 2022			bytes_left = 0;
 2023			break;
 2024		}
 2025		bytes_left = end - start;
 2026	}
 2027
 2028	if (bytes_left) {
 2029		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
 2030					   GFP_NOFS, 0);
 2031		if (!ret)
 2032			*discarded_bytes += bytes_left;
 2033	}
 2034	return ret;
 2035}
 2036
 2037int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
 2038			 u64 num_bytes, u64 *actual_bytes)
 2039{
 2040	int ret;
 2041	u64 discarded_bytes = 0;
 2042	struct btrfs_bio *bbio = NULL;
 2043
 2044
 
 
 
 
 
 2045	/* Tell the block device(s) that the sectors can be discarded */
 2046	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
 2047			      bytenr, &num_bytes, &bbio, 0);
 2048	/* Error condition is -ENOMEM */
 2049	if (!ret) {
 2050		struct btrfs_bio_stripe *stripe = bbio->stripes;
 2051		int i;
 2052
 2053
 2054		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
 2055			u64 bytes;
 2056			if (!stripe->dev->can_discard)
 
 
 
 
 
 
 
 2057				continue;
 2058
 2059			ret = btrfs_issue_discard(stripe->dev->bdev,
 2060						  stripe->physical,
 2061						  stripe->length,
 2062						  &bytes);
 2063			if (!ret)
 2064				discarded_bytes += bytes;
 2065			else if (ret != -EOPNOTSUPP)
 2066				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
 2067
 2068			/*
 2069			 * Just in case we get back EOPNOTSUPP for some reason,
 2070			 * just ignore the return value so we don't screw up
 2071			 * people calling discard_extent.
 2072			 */
 2073			ret = 0;
 2074		}
 2075		btrfs_put_bbio(bbio);
 2076	}
 
 2077
 2078	if (actual_bytes)
 2079		*actual_bytes = discarded_bytes;
 2080
 2081
 2082	if (ret == -EOPNOTSUPP)
 2083		ret = 0;
 2084	return ret;
 2085}
 2086
 2087/* Can return -ENOMEM */
 2088int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
 2089			 struct btrfs_root *root,
 2090			 u64 bytenr, u64 num_bytes, u64 parent,
 2091			 u64 root_objectid, u64 owner, u64 offset)
 2092{
 
 
 2093	int ret;
 2094	struct btrfs_fs_info *fs_info = root->fs_info;
 2095
 2096	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
 2097	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2098
 2099	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 2100		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
 2101					num_bytes,
 2102					parent, root_objectid, (int)owner,
 2103					BTRFS_ADD_DELAYED_REF, NULL);
 2104	} else {
 2105		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
 2106					num_bytes, parent, root_objectid,
 2107					owner, offset, 0,
 2108					BTRFS_ADD_DELAYED_REF, NULL);
 2109	}
 2110	return ret;
 2111}
 2112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2113static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
 2114				  struct btrfs_root *root,
 2115				  struct btrfs_delayed_ref_node *node,
 2116				  u64 parent, u64 root_objectid,
 2117				  u64 owner, u64 offset, int refs_to_add,
 2118				  struct btrfs_delayed_extent_op *extent_op)
 2119{
 2120	struct btrfs_fs_info *fs_info = root->fs_info;
 2121	struct btrfs_path *path;
 2122	struct extent_buffer *leaf;
 2123	struct btrfs_extent_item *item;
 2124	struct btrfs_key key;
 2125	u64 bytenr = node->bytenr;
 2126	u64 num_bytes = node->num_bytes;
 2127	u64 refs;
 2128	int ret;
 2129
 2130	path = btrfs_alloc_path();
 2131	if (!path)
 2132		return -ENOMEM;
 2133
 2134	path->reada = READA_FORWARD;
 2135	path->leave_spinning = 1;
 2136	/* this will setup the path even if it fails to insert the back ref */
 2137	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
 2138					   bytenr, num_bytes, parent,
 2139					   root_objectid, owner, offset,
 2140					   refs_to_add, extent_op);
 2141	if ((ret < 0 && ret != -EAGAIN) || !ret)
 2142		goto out;
 2143
 2144	/*
 2145	 * Ok we had -EAGAIN which means we didn't have space to insert and
 2146	 * inline extent ref, so just update the reference count and add a
 2147	 * normal backref.
 2148	 */
 2149	leaf = path->nodes[0];
 2150	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 2151	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 2152	refs = btrfs_extent_refs(leaf, item);
 2153	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
 2154	if (extent_op)
 2155		__run_delayed_extent_op(extent_op, leaf, item);
 2156
 2157	btrfs_mark_buffer_dirty(leaf);
 2158	btrfs_release_path(path);
 2159
 2160	path->reada = READA_FORWARD;
 2161	path->leave_spinning = 1;
 2162	/* now insert the actual backref */
 2163	ret = insert_extent_backref(trans, root->fs_info->extent_root,
 2164				    path, bytenr, parent, root_objectid,
 2165				    owner, offset, refs_to_add);
 2166	if (ret)
 2167		btrfs_abort_transaction(trans, root, ret);
 2168out:
 2169	btrfs_free_path(path);
 2170	return ret;
 2171}
 2172
 2173static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
 2174				struct btrfs_root *root,
 2175				struct btrfs_delayed_ref_node *node,
 2176				struct btrfs_delayed_extent_op *extent_op,
 2177				int insert_reserved)
 2178{
 2179	int ret = 0;
 2180	struct btrfs_delayed_data_ref *ref;
 2181	struct btrfs_key ins;
 2182	u64 parent = 0;
 2183	u64 ref_root = 0;
 2184	u64 flags = 0;
 2185
 2186	ins.objectid = node->bytenr;
 2187	ins.offset = node->num_bytes;
 2188	ins.type = BTRFS_EXTENT_ITEM_KEY;
 2189
 2190	ref = btrfs_delayed_node_to_data_ref(node);
 2191	trace_run_delayed_data_ref(node, ref, node->action);
 2192
 2193	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
 2194		parent = ref->parent;
 2195	ref_root = ref->root;
 2196
 2197	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
 2198		if (extent_op)
 2199			flags |= extent_op->flags_to_set;
 2200		ret = alloc_reserved_file_extent(trans, root,
 2201						 parent, ref_root, flags,
 2202						 ref->objectid, ref->offset,
 2203						 &ins, node->ref_mod);
 2204	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
 2205		ret = __btrfs_inc_extent_ref(trans, root, node, parent,
 2206					     ref_root, ref->objectid,
 2207					     ref->offset, node->ref_mod,
 2208					     extent_op);
 2209	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
 2210		ret = __btrfs_free_extent(trans, root, node, parent,
 2211					  ref_root, ref->objectid,
 2212					  ref->offset, node->ref_mod,
 2213					  extent_op);
 2214	} else {
 2215		BUG();
 2216	}
 2217	return ret;
 2218}
 2219
 2220static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
 2221				    struct extent_buffer *leaf,
 2222				    struct btrfs_extent_item *ei)
 2223{
 2224	u64 flags = btrfs_extent_flags(leaf, ei);
 2225	if (extent_op->update_flags) {
 2226		flags |= extent_op->flags_to_set;
 2227		btrfs_set_extent_flags(leaf, ei, flags);
 2228	}
 2229
 2230	if (extent_op->update_key) {
 2231		struct btrfs_tree_block_info *bi;
 2232		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
 2233		bi = (struct btrfs_tree_block_info *)(ei + 1);
 2234		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
 2235	}
 2236}
 2237
 2238static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
 2239				 struct btrfs_root *root,
 2240				 struct btrfs_delayed_ref_node *node,
 2241				 struct btrfs_delayed_extent_op *extent_op)
 2242{
 
 2243	struct btrfs_key key;
 2244	struct btrfs_path *path;
 2245	struct btrfs_extent_item *ei;
 2246	struct extent_buffer *leaf;
 2247	u32 item_size;
 2248	int ret;
 2249	int err = 0;
 2250	int metadata = !extent_op->is_data;
 2251
 2252	if (trans->aborted)
 2253		return 0;
 2254
 2255	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
 2256		metadata = 0;
 2257
 2258	path = btrfs_alloc_path();
 2259	if (!path)
 2260		return -ENOMEM;
 2261
 2262	key.objectid = node->bytenr;
 2263
 2264	if (metadata) {
 2265		key.type = BTRFS_METADATA_ITEM_KEY;
 2266		key.offset = extent_op->level;
 2267	} else {
 2268		key.type = BTRFS_EXTENT_ITEM_KEY;
 2269		key.offset = node->num_bytes;
 2270	}
 2271
 2272again:
 2273	path->reada = READA_FORWARD;
 2274	path->leave_spinning = 1;
 2275	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
 2276				path, 0, 1);
 2277	if (ret < 0) {
 2278		err = ret;
 2279		goto out;
 2280	}
 2281	if (ret > 0) {
 2282		if (metadata) {
 2283			if (path->slots[0] > 0) {
 2284				path->slots[0]--;
 2285				btrfs_item_key_to_cpu(path->nodes[0], &key,
 2286						      path->slots[0]);
 2287				if (key.objectid == node->bytenr &&
 2288				    key.type == BTRFS_EXTENT_ITEM_KEY &&
 2289				    key.offset == node->num_bytes)
 2290					ret = 0;
 2291			}
 2292			if (ret > 0) {
 2293				btrfs_release_path(path);
 2294				metadata = 0;
 2295
 2296				key.objectid = node->bytenr;
 2297				key.offset = node->num_bytes;
 2298				key.type = BTRFS_EXTENT_ITEM_KEY;
 2299				goto again;
 2300			}
 2301		} else {
 2302			err = -EIO;
 2303			goto out;
 2304		}
 2305	}
 2306
 2307	leaf = path->nodes[0];
 2308	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 2309#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 2310	if (item_size < sizeof(*ei)) {
 2311		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
 2312					     path, (u64)-1, 0);
 2313		if (ret < 0) {
 2314			err = ret;
 2315			goto out;
 2316		}
 2317		leaf = path->nodes[0];
 2318		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 2319	}
 2320#endif
 2321	BUG_ON(item_size < sizeof(*ei));
 2322	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 2323	__run_delayed_extent_op(extent_op, leaf, ei);
 2324
 2325	btrfs_mark_buffer_dirty(leaf);
 2326out:
 2327	btrfs_free_path(path);
 2328	return err;
 2329}
 2330
 2331static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
 2332				struct btrfs_root *root,
 2333				struct btrfs_delayed_ref_node *node,
 2334				struct btrfs_delayed_extent_op *extent_op,
 2335				int insert_reserved)
 2336{
 2337	int ret = 0;
 2338	struct btrfs_delayed_tree_ref *ref;
 2339	struct btrfs_key ins;
 2340	u64 parent = 0;
 2341	u64 ref_root = 0;
 2342	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
 2343						 SKINNY_METADATA);
 2344
 2345	ref = btrfs_delayed_node_to_tree_ref(node);
 2346	trace_run_delayed_tree_ref(node, ref, node->action);
 2347
 2348	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
 2349		parent = ref->parent;
 2350	ref_root = ref->root;
 2351
 2352	ins.objectid = node->bytenr;
 2353	if (skinny_metadata) {
 2354		ins.offset = ref->level;
 2355		ins.type = BTRFS_METADATA_ITEM_KEY;
 2356	} else {
 2357		ins.offset = node->num_bytes;
 2358		ins.type = BTRFS_EXTENT_ITEM_KEY;
 2359	}
 2360
 2361	BUG_ON(node->ref_mod != 1);
 2362	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
 2363		BUG_ON(!extent_op || !extent_op->update_flags);
 2364		ret = alloc_reserved_tree_block(trans, root,
 2365						parent, ref_root,
 2366						extent_op->flags_to_set,
 2367						&extent_op->key,
 2368						ref->level, &ins);
 2369	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
 2370		ret = __btrfs_inc_extent_ref(trans, root, node,
 2371					     parent, ref_root,
 2372					     ref->level, 0, 1,
 2373					     extent_op);
 2374	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
 2375		ret = __btrfs_free_extent(trans, root, node,
 2376					  parent, ref_root,
 2377					  ref->level, 0, 1, extent_op);
 2378	} else {
 2379		BUG();
 2380	}
 2381	return ret;
 2382}
 2383
 2384/* helper function to actually process a single delayed ref entry */
 2385static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
 2386			       struct btrfs_root *root,
 2387			       struct btrfs_delayed_ref_node *node,
 2388			       struct btrfs_delayed_extent_op *extent_op,
 2389			       int insert_reserved)
 2390{
 2391	int ret = 0;
 2392
 2393	if (trans->aborted) {
 2394		if (insert_reserved)
 2395			btrfs_pin_extent(root, node->bytenr,
 2396					 node->num_bytes, 1);
 2397		return 0;
 2398	}
 2399
 2400	if (btrfs_delayed_ref_is_head(node)) {
 2401		struct btrfs_delayed_ref_head *head;
 2402		/*
 2403		 * we've hit the end of the chain and we were supposed
 2404		 * to insert this extent into the tree.  But, it got
 2405		 * deleted before we ever needed to insert it, so all
 2406		 * we have to do is clean up the accounting
 2407		 */
 2408		BUG_ON(extent_op);
 2409		head = btrfs_delayed_node_to_head(node);
 2410		trace_run_delayed_ref_head(node, head, node->action);
 2411
 2412		if (insert_reserved) {
 2413			btrfs_pin_extent(root, node->bytenr,
 2414					 node->num_bytes, 1);
 2415			if (head->is_data) {
 2416				ret = btrfs_del_csums(trans, root,
 2417						      node->bytenr,
 2418						      node->num_bytes);
 2419			}
 2420		}
 2421
 2422		/* Also free its reserved qgroup space */
 2423		btrfs_qgroup_free_delayed_ref(root->fs_info,
 2424					      head->qgroup_ref_root,
 2425					      head->qgroup_reserved);
 2426		return ret;
 2427	}
 2428
 2429	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
 2430	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
 2431		ret = run_delayed_tree_ref(trans, root, node, extent_op,
 2432					   insert_reserved);
 2433	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
 2434		 node->type == BTRFS_SHARED_DATA_REF_KEY)
 2435		ret = run_delayed_data_ref(trans, root, node, extent_op,
 2436					   insert_reserved);
 2437	else
 2438		BUG();
 
 
 
 2439	return ret;
 2440}
 2441
 2442static inline struct btrfs_delayed_ref_node *
 2443select_delayed_ref(struct btrfs_delayed_ref_head *head)
 2444{
 2445	struct btrfs_delayed_ref_node *ref;
 2446
 2447	if (list_empty(&head->ref_list))
 2448		return NULL;
 2449
 2450	/*
 2451	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
 2452	 * This is to prevent a ref count from going down to zero, which deletes
 2453	 * the extent item from the extent tree, when there still are references
 2454	 * to add, which would fail because they would not find the extent item.
 2455	 */
 2456	list_for_each_entry(ref, &head->ref_list, list) {
 2457		if (ref->action == BTRFS_ADD_DELAYED_REF)
 2458			return ref;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2459	}
 2460
 2461	return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
 2462			  list);
 2463}
 2464
 2465/*
 2466 * Returns 0 on success or if called with an already aborted transaction.
 2467 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
 2468 */
 2469static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
 2470					     struct btrfs_root *root,
 2471					     unsigned long nr)
 2472{
 
 2473	struct btrfs_delayed_ref_root *delayed_refs;
 2474	struct btrfs_delayed_ref_node *ref;
 2475	struct btrfs_delayed_ref_head *locked_ref = NULL;
 2476	struct btrfs_delayed_extent_op *extent_op;
 2477	struct btrfs_fs_info *fs_info = root->fs_info;
 2478	ktime_t start = ktime_get();
 2479	int ret;
 2480	unsigned long count = 0;
 2481	unsigned long actual_count = 0;
 2482	int must_insert_reserved = 0;
 2483
 2484	delayed_refs = &trans->transaction->delayed_refs;
 2485	while (1) {
 2486		if (!locked_ref) {
 2487			if (count >= nr)
 2488				break;
 2489
 2490			spin_lock(&delayed_refs->lock);
 2491			locked_ref = btrfs_select_ref_head(trans);
 2492			if (!locked_ref) {
 2493				spin_unlock(&delayed_refs->lock);
 2494				break;
 2495			}
 2496
 2497			/* grab the lock that says we are going to process
 2498			 * all the refs for this head */
 2499			ret = btrfs_delayed_ref_lock(trans, locked_ref);
 2500			spin_unlock(&delayed_refs->lock);
 2501			/*
 2502			 * we may have dropped the spin lock to get the head
 2503			 * mutex lock, and that might have given someone else
 2504			 * time to free the head.  If that's true, it has been
 2505			 * removed from our list and we can move on.
 2506			 */
 2507			if (ret == -EAGAIN) {
 2508				locked_ref = NULL;
 2509				count++;
 2510				continue;
 2511			}
 
 2512		}
 2513
 2514		/*
 2515		 * We need to try and merge add/drops of the same ref since we
 2516		 * can run into issues with relocate dropping the implicit ref
 2517		 * and then it being added back again before the drop can
 2518		 * finish.  If we merged anything we need to re-loop so we can
 2519		 * get a good ref.
 2520		 * Or we can get node references of the same type that weren't
 2521		 * merged when created due to bumps in the tree mod seq, and
 2522		 * we need to merge them to prevent adding an inline extent
 2523		 * backref before dropping it (triggering a BUG_ON at
 2524		 * insert_inline_extent_backref()).
 2525		 */
 2526		spin_lock(&locked_ref->lock);
 2527		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
 2528					 locked_ref);
 2529
 2530		/*
 2531		 * locked_ref is the head node, so we have to go one
 2532		 * node back for any delayed ref updates
 2533		 */
 2534		ref = select_delayed_ref(locked_ref);
 2535
 2536		if (ref && ref->seq &&
 2537		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
 2538			spin_unlock(&locked_ref->lock);
 2539			btrfs_delayed_ref_unlock(locked_ref);
 2540			spin_lock(&delayed_refs->lock);
 2541			locked_ref->processing = 0;
 2542			delayed_refs->num_heads_ready++;
 2543			spin_unlock(&delayed_refs->lock);
 2544			locked_ref = NULL;
 2545			cond_resched();
 2546			count++;
 2547			continue;
 2548		}
 2549
 2550		/*
 2551		 * record the must insert reserved flag before we
 2552		 * drop the spin lock.
 2553		 */
 2554		must_insert_reserved = locked_ref->must_insert_reserved;
 2555		locked_ref->must_insert_reserved = 0;
 2556
 2557		extent_op = locked_ref->extent_op;
 2558		locked_ref->extent_op = NULL;
 2559
 2560		if (!ref) {
 2561
 2562
 2563			/* All delayed refs have been processed, Go ahead
 2564			 * and send the head node to run_one_delayed_ref,
 2565			 * so that any accounting fixes can happen
 2566			 */
 2567			ref = &locked_ref->node;
 2568
 2569			if (extent_op && must_insert_reserved) {
 2570				btrfs_free_delayed_extent_op(extent_op);
 2571				extent_op = NULL;
 2572			}
 2573
 2574			if (extent_op) {
 2575				spin_unlock(&locked_ref->lock);
 2576				ret = run_delayed_extent_op(trans, root,
 2577							    ref, extent_op);
 2578				btrfs_free_delayed_extent_op(extent_op);
 2579
 2580				if (ret) {
 2581					/*
 2582					 * Need to reset must_insert_reserved if
 2583					 * there was an error so the abort stuff
 2584					 * can cleanup the reserved space
 2585					 * properly.
 2586					 */
 2587					if (must_insert_reserved)
 2588						locked_ref->must_insert_reserved = 1;
 2589					locked_ref->processing = 0;
 2590					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
 2591					btrfs_delayed_ref_unlock(locked_ref);
 2592					return ret;
 2593				}
 2594				continue;
 2595			}
 2596
 2597			/*
 2598			 * Need to drop our head ref lock and re-aqcuire the
 2599			 * delayed ref lock and then re-check to make sure
 2600			 * nobody got added.
 2601			 */
 2602			spin_unlock(&locked_ref->lock);
 2603			spin_lock(&delayed_refs->lock);
 2604			spin_lock(&locked_ref->lock);
 2605			if (!list_empty(&locked_ref->ref_list) ||
 2606			    locked_ref->extent_op) {
 2607				spin_unlock(&locked_ref->lock);
 2608				spin_unlock(&delayed_refs->lock);
 2609				continue;
 
 
 2610			}
 2611			ref->in_tree = 0;
 2612			delayed_refs->num_heads--;
 2613			rb_erase(&locked_ref->href_node,
 2614				 &delayed_refs->href_root);
 2615			spin_unlock(&delayed_refs->lock);
 2616		} else {
 2617			actual_count++;
 2618			ref->in_tree = 0;
 2619			list_del(&ref->list);
 2620		}
 2621		atomic_dec(&delayed_refs->num_entries);
 2622
 2623		if (!btrfs_delayed_ref_is_head(ref)) {
 2624			/*
 2625			 * when we play the delayed ref, also correct the
 2626			 * ref_mod on head
 2627			 */
 2628			switch (ref->action) {
 2629			case BTRFS_ADD_DELAYED_REF:
 2630			case BTRFS_ADD_DELAYED_EXTENT:
 2631				locked_ref->node.ref_mod -= ref->ref_mod;
 2632				break;
 2633			case BTRFS_DROP_DELAYED_REF:
 2634				locked_ref->node.ref_mod += ref->ref_mod;
 2635				break;
 2636			default:
 2637				WARN_ON(1);
 2638			}
 2639		}
 2640		spin_unlock(&locked_ref->lock);
 2641
 2642		ret = run_one_delayed_ref(trans, root, ref, extent_op,
 2643					  must_insert_reserved);
 2644
 2645		btrfs_free_delayed_extent_op(extent_op);
 2646		if (ret) {
 2647			locked_ref->processing = 0;
 2648			btrfs_delayed_ref_unlock(locked_ref);
 2649			btrfs_put_delayed_ref(ref);
 2650			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
 2651			return ret;
 2652		}
 2653
 2654		/*
 2655		 * If this node is a head, that means all the refs in this head
 2656		 * have been dealt with, and we will pick the next head to deal
 2657		 * with, so we must unlock the head and drop it from the cluster
 2658		 * list before we release it.
 2659		 */
 2660		if (btrfs_delayed_ref_is_head(ref)) {
 2661			if (locked_ref->is_data &&
 2662			    locked_ref->total_ref_mod < 0) {
 2663				spin_lock(&delayed_refs->lock);
 2664				delayed_refs->pending_csums -= ref->num_bytes;
 2665				spin_unlock(&delayed_refs->lock);
 2666			}
 2667			btrfs_delayed_ref_unlock(locked_ref);
 2668			locked_ref = NULL;
 2669		}
 2670		btrfs_put_delayed_ref(ref);
 2671		count++;
 2672		cond_resched();
 2673	}
 2674
 2675	/*
 2676	 * We don't want to include ref heads since we can have empty ref heads
 2677	 * and those will drastically skew our runtime down since we just do
 2678	 * accounting, no actual extent tree updates.
 2679	 */
 2680	if (actual_count > 0) {
 2681		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
 2682		u64 avg;
 2683
 2684		/*
 2685		 * We weigh the current average higher than our current runtime
 2686		 * to avoid large swings in the average.
 2687		 */
 2688		spin_lock(&delayed_refs->lock);
 2689		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
 2690		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
 2691		spin_unlock(&delayed_refs->lock);
 2692	}
 2693	return 0;
 2694}
 2695
 2696#ifdef SCRAMBLE_DELAYED_REFS
 2697/*
 2698 * Normally delayed refs get processed in ascending bytenr order. This
 2699 * correlates in most cases to the order added. To expose dependencies on this
 2700 * order, we start to process the tree in the middle instead of the beginning
 2701 */
 2702static u64 find_middle(struct rb_root *root)
 2703{
 2704	struct rb_node *n = root->rb_node;
 2705	struct btrfs_delayed_ref_node *entry;
 2706	int alt = 1;
 2707	u64 middle;
 2708	u64 first = 0, last = 0;
 2709
 2710	n = rb_first(root);
 2711	if (n) {
 2712		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
 2713		first = entry->bytenr;
 2714	}
 2715	n = rb_last(root);
 2716	if (n) {
 2717		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
 2718		last = entry->bytenr;
 2719	}
 2720	n = root->rb_node;
 2721
 2722	while (n) {
 2723		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
 2724		WARN_ON(!entry->in_tree);
 2725
 2726		middle = entry->bytenr;
 2727
 2728		if (alt)
 2729			n = n->rb_left;
 2730		else
 2731			n = n->rb_right;
 2732
 2733		alt = 1 - alt;
 2734	}
 2735	return middle;
 2736}
 2737#endif
 2738
 2739static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
 2740{
 2741	u64 num_bytes;
 2742
 2743	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
 2744			     sizeof(struct btrfs_extent_inline_ref));
 2745	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
 2746		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
 2747
 2748	/*
 2749	 * We don't ever fill up leaves all the way so multiply by 2 just to be
 2750	 * closer to what we're really going to want to ouse.
 2751	 */
 2752	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
 2753}
 2754
 2755/*
 2756 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
 2757 * would require to store the csums for that many bytes.
 2758 */
 2759u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
 2760{
 2761	u64 csum_size;
 2762	u64 num_csums_per_leaf;
 2763	u64 num_csums;
 2764
 2765	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
 2766	num_csums_per_leaf = div64_u64(csum_size,
 2767			(u64)btrfs_super_csum_size(root->fs_info->super_copy));
 2768	num_csums = div64_u64(csum_bytes, root->sectorsize);
 2769	num_csums += num_csums_per_leaf - 1;
 2770	num_csums = div64_u64(num_csums, num_csums_per_leaf);
 2771	return num_csums;
 2772}
 2773
 2774int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
 2775				       struct btrfs_root *root)
 2776{
 2777	struct btrfs_block_rsv *global_rsv;
 2778	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
 2779	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
 2780	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
 2781	u64 num_bytes, num_dirty_bgs_bytes;
 2782	int ret = 0;
 2783
 2784	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 2785	num_heads = heads_to_leaves(root, num_heads);
 2786	if (num_heads > 1)
 2787		num_bytes += (num_heads - 1) * root->nodesize;
 2788	num_bytes <<= 1;
 2789	num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
 2790	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
 2791							     num_dirty_bgs);
 2792	global_rsv = &root->fs_info->global_block_rsv;
 2793
 2794	/*
 2795	 * If we can't allocate any more chunks lets make sure we have _lots_ of
 2796	 * wiggle room since running delayed refs can create more delayed refs.
 2797	 */
 2798	if (global_rsv->space_info->full) {
 2799		num_dirty_bgs_bytes <<= 1;
 2800		num_bytes <<= 1;
 2801	}
 2802
 2803	spin_lock(&global_rsv->lock);
 2804	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
 2805		ret = 1;
 2806	spin_unlock(&global_rsv->lock);
 2807	return ret;
 2808}
 2809
 2810int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
 2811				       struct btrfs_root *root)
 2812{
 2813	struct btrfs_fs_info *fs_info = root->fs_info;
 2814	u64 num_entries =
 2815		atomic_read(&trans->transaction->delayed_refs.num_entries);
 2816	u64 avg_runtime;
 2817	u64 val;
 2818
 2819	smp_mb();
 2820	avg_runtime = fs_info->avg_delayed_ref_runtime;
 2821	val = num_entries * avg_runtime;
 2822	if (num_entries * avg_runtime >= NSEC_PER_SEC)
 2823		return 1;
 2824	if (val >= NSEC_PER_SEC / 2)
 2825		return 2;
 2826
 2827	return btrfs_check_space_for_delayed_refs(trans, root);
 2828}
 2829
 2830struct async_delayed_refs {
 2831	struct btrfs_root *root;
 2832	int count;
 2833	int error;
 2834	int sync;
 2835	struct completion wait;
 2836	struct btrfs_work work;
 2837};
 2838
 2839static void delayed_ref_async_start(struct btrfs_work *work)
 2840{
 2841	struct async_delayed_refs *async;
 2842	struct btrfs_trans_handle *trans;
 2843	int ret;
 2844
 2845	async = container_of(work, struct async_delayed_refs, work);
 2846
 2847	trans = btrfs_join_transaction(async->root);
 2848	if (IS_ERR(trans)) {
 2849		async->error = PTR_ERR(trans);
 2850		goto done;
 2851	}
 2852
 2853	/*
 2854	 * trans->sync means that when we call end_transaciton, we won't
 2855	 * wait on delayed refs
 2856	 */
 2857	trans->sync = true;
 2858	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
 2859	if (ret)
 2860		async->error = ret;
 2861
 2862	ret = btrfs_end_transaction(trans, async->root);
 2863	if (ret && !async->error)
 2864		async->error = ret;
 2865done:
 2866	if (async->sync)
 2867		complete(&async->wait);
 2868	else
 2869		kfree(async);
 2870}
 2871
 2872int btrfs_async_run_delayed_refs(struct btrfs_root *root,
 2873				 unsigned long count, int wait)
 2874{
 2875	struct async_delayed_refs *async;
 2876	int ret;
 2877
 2878	async = kmalloc(sizeof(*async), GFP_NOFS);
 2879	if (!async)
 2880		return -ENOMEM;
 2881
 2882	async->root = root->fs_info->tree_root;
 2883	async->count = count;
 2884	async->error = 0;
 2885	if (wait)
 2886		async->sync = 1;
 2887	else
 2888		async->sync = 0;
 2889	init_completion(&async->wait);
 2890
 2891	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
 2892			delayed_ref_async_start, NULL, NULL);
 2893
 2894	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
 2895
 2896	if (wait) {
 2897		wait_for_completion(&async->wait);
 2898		ret = async->error;
 2899		kfree(async);
 2900		return ret;
 2901	}
 2902	return 0;
 2903}
 2904
 2905/*
 2906 * this starts processing the delayed reference count updates and
 2907 * extent insertions we have queued up so far.  count can be
 2908 * 0, which means to process everything in the tree at the start
 2909 * of the run (but not newly added entries), or it can be some target
 2910 * number you'd like to process.
 2911 *
 2912 * Returns 0 on success or if called with an aborted transaction
 2913 * Returns <0 on error and aborts the transaction
 2914 */
 2915int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
 2916			   struct btrfs_root *root, unsigned long count)
 2917{
 
 2918	struct rb_node *node;
 2919	struct btrfs_delayed_ref_root *delayed_refs;
 2920	struct btrfs_delayed_ref_head *head;
 2921	int ret;
 2922	int run_all = count == (unsigned long)-1;
 2923	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
 2924
 2925	/* We'll clean this up in btrfs_cleanup_transaction */
 2926	if (trans->aborted)
 2927		return 0;
 2928
 2929	if (root->fs_info->creating_free_space_tree)
 2930		return 0;
 2931
 2932	if (root == root->fs_info->extent_root)
 2933		root = root->fs_info->tree_root;
 2934
 2935	delayed_refs = &trans->transaction->delayed_refs;
 2936	if (count == 0)
 2937		count = atomic_read(&delayed_refs->num_entries) * 2;
 2938
 2939again:
 2940#ifdef SCRAMBLE_DELAYED_REFS
 2941	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
 2942#endif
 2943	trans->can_flush_pending_bgs = false;
 2944	ret = __btrfs_run_delayed_refs(trans, root, count);
 2945	if (ret < 0) {
 2946		btrfs_abort_transaction(trans, root, ret);
 2947		return ret;
 2948	}
 2949
 2950	if (run_all) {
 2951		if (!list_empty(&trans->new_bgs))
 2952			btrfs_create_pending_block_groups(trans, root);
 2953
 2954		spin_lock(&delayed_refs->lock);
 2955		node = rb_first(&delayed_refs->href_root);
 2956		if (!node) {
 2957			spin_unlock(&delayed_refs->lock);
 2958			goto out;
 2959		}
 2960		count = (unsigned long)-1;
 
 
 
 2961
 2962		while (node) {
 2963			head = rb_entry(node, struct btrfs_delayed_ref_head,
 2964					href_node);
 2965			if (btrfs_delayed_ref_is_head(&head->node)) {
 2966				struct btrfs_delayed_ref_node *ref;
 2967
 2968				ref = &head->node;
 2969				atomic_inc(&ref->refs);
 2970
 2971				spin_unlock(&delayed_refs->lock);
 2972				/*
 2973				 * Mutex was contended, block until it's
 2974				 * released and try again
 2975				 */
 2976				mutex_lock(&head->mutex);
 2977				mutex_unlock(&head->mutex);
 2978
 2979				btrfs_put_delayed_ref(ref);
 2980				cond_resched();
 2981				goto again;
 2982			} else {
 2983				WARN_ON(1);
 2984			}
 2985			node = rb_next(node);
 2986		}
 2987		spin_unlock(&delayed_refs->lock);
 2988		cond_resched();
 2989		goto again;
 2990	}
 2991out:
 2992	assert_qgroups_uptodate(trans);
 2993	trans->can_flush_pending_bgs = can_flush_pending_bgs;
 2994	return 0;
 2995}
 2996
 2997int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
 2998				struct btrfs_root *root,
 2999				u64 bytenr, u64 num_bytes, u64 flags,
 3000				int level, int is_data)
 3001{
 3002	struct btrfs_delayed_extent_op *extent_op;
 3003	int ret;
 3004
 3005	extent_op = btrfs_alloc_delayed_extent_op();
 3006	if (!extent_op)
 3007		return -ENOMEM;
 3008
 3009	extent_op->flags_to_set = flags;
 3010	extent_op->update_flags = true;
 3011	extent_op->update_key = false;
 3012	extent_op->is_data = is_data ? true : false;
 3013	extent_op->level = level;
 3014
 3015	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
 3016					  num_bytes, extent_op);
 3017	if (ret)
 3018		btrfs_free_delayed_extent_op(extent_op);
 3019	return ret;
 3020}
 3021
 3022static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
 3023				      struct btrfs_root *root,
 3024				      struct btrfs_path *path,
 3025				      u64 objectid, u64 offset, u64 bytenr)
 3026{
 3027	struct btrfs_delayed_ref_head *head;
 3028	struct btrfs_delayed_ref_node *ref;
 3029	struct btrfs_delayed_data_ref *data_ref;
 3030	struct btrfs_delayed_ref_root *delayed_refs;
 
 
 3031	int ret = 0;
 3032
 3033	delayed_refs = &trans->transaction->delayed_refs;
 
 
 
 
 
 
 
 
 3034	spin_lock(&delayed_refs->lock);
 3035	head = btrfs_find_delayed_ref_head(trans, bytenr);
 3036	if (!head) {
 3037		spin_unlock(&delayed_refs->lock);
 
 3038		return 0;
 3039	}
 3040
 3041	if (!mutex_trylock(&head->mutex)) {
 3042		atomic_inc(&head->node.refs);
 3043		spin_unlock(&delayed_refs->lock);
 3044
 3045		btrfs_release_path(path);
 3046
 3047		/*
 3048		 * Mutex was contended, block until it's released and let
 3049		 * caller try again
 3050		 */
 3051		mutex_lock(&head->mutex);
 3052		mutex_unlock(&head->mutex);
 3053		btrfs_put_delayed_ref(&head->node);
 
 3054		return -EAGAIN;
 3055	}
 3056	spin_unlock(&delayed_refs->lock);
 3057
 3058	spin_lock(&head->lock);
 3059	list_for_each_entry(ref, &head->ref_list, list) {
 
 
 
 
 
 
 3060		/* If it's a shared ref we know a cross reference exists */
 3061		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
 3062			ret = 1;
 3063			break;
 3064		}
 3065
 3066		data_ref = btrfs_delayed_node_to_data_ref(ref);
 3067
 3068		/*
 3069		 * If our ref doesn't match the one we're currently looking at
 3070		 * then we have a cross reference.
 3071		 */
 3072		if (data_ref->root != root->root_key.objectid ||
 3073		    data_ref->objectid != objectid ||
 3074		    data_ref->offset != offset) {
 3075			ret = 1;
 3076			break;
 3077		}
 3078	}
 3079	spin_unlock(&head->lock);
 3080	mutex_unlock(&head->mutex);
 
 3081	return ret;
 3082}
 3083
 3084static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
 3085					struct btrfs_root *root,
 3086					struct btrfs_path *path,
 3087					u64 objectid, u64 offset, u64 bytenr)
 3088{
 3089	struct btrfs_root *extent_root = root->fs_info->extent_root;
 
 3090	struct extent_buffer *leaf;
 3091	struct btrfs_extent_data_ref *ref;
 3092	struct btrfs_extent_inline_ref *iref;
 3093	struct btrfs_extent_item *ei;
 3094	struct btrfs_key key;
 3095	u32 item_size;
 
 3096	int ret;
 3097
 3098	key.objectid = bytenr;
 3099	key.offset = (u64)-1;
 3100	key.type = BTRFS_EXTENT_ITEM_KEY;
 3101
 3102	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 3103	if (ret < 0)
 3104		goto out;
 3105	BUG_ON(ret == 0); /* Corruption */
 3106
 3107	ret = -ENOENT;
 3108	if (path->slots[0] == 0)
 3109		goto out;
 3110
 3111	path->slots[0]--;
 3112	leaf = path->nodes[0];
 3113	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 3114
 3115	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
 3116		goto out;
 3117
 3118	ret = 1;
 3119	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 3120#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 3121	if (item_size < sizeof(*ei)) {
 3122		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 3123		goto out;
 3124	}
 3125#endif
 3126	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 3127
 
 3128	if (item_size != sizeof(*ei) +
 3129	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
 3130		goto out;
 3131
 
 3132	if (btrfs_extent_generation(leaf, ei) <=
 3133	    btrfs_root_last_snapshot(&root->root_item))
 3134		goto out;
 3135
 3136	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
 3137	if (btrfs_extent_inline_ref_type(leaf, iref) !=
 3138	    BTRFS_EXTENT_DATA_REF_KEY)
 
 
 3139		goto out;
 3140
 3141	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
 3142	if (btrfs_extent_refs(leaf, ei) !=
 3143	    btrfs_extent_data_ref_count(leaf, ref) ||
 3144	    btrfs_extent_data_ref_root(leaf, ref) !=
 3145	    root->root_key.objectid ||
 3146	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
 3147	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
 3148		goto out;
 3149
 3150	ret = 0;
 3151out:
 3152	return ret;
 3153}
 3154
 3155int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
 3156			  struct btrfs_root *root,
 3157			  u64 objectid, u64 offset, u64 bytenr)
 3158{
 3159	struct btrfs_path *path;
 3160	int ret;
 3161	int ret2;
 3162
 3163	path = btrfs_alloc_path();
 3164	if (!path)
 3165		return -ENOENT;
 3166
 3167	do {
 3168		ret = check_committed_ref(trans, root, path, objectid,
 3169					  offset, bytenr);
 3170		if (ret && ret != -ENOENT)
 3171			goto out;
 3172
 3173		ret2 = check_delayed_ref(trans, root, path, objectid,
 3174					 offset, bytenr);
 3175	} while (ret2 == -EAGAIN);
 3176
 3177	if (ret2 && ret2 != -ENOENT) {
 3178		ret = ret2;
 3179		goto out;
 3180	}
 3181
 3182	if (ret != -ENOENT || ret2 != -ENOENT)
 3183		ret = 0;
 3184out:
 3185	btrfs_free_path(path);
 3186	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
 3187		WARN_ON(ret > 0);
 3188	return ret;
 3189}
 3190
 3191static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
 3192			   struct btrfs_root *root,
 3193			   struct extent_buffer *buf,
 3194			   int full_backref, int inc)
 3195{
 
 3196	u64 bytenr;
 3197	u64 num_bytes;
 3198	u64 parent;
 3199	u64 ref_root;
 3200	u32 nritems;
 3201	struct btrfs_key key;
 3202	struct btrfs_file_extent_item *fi;
 
 
 3203	int i;
 
 3204	int level;
 3205	int ret = 0;
 3206	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
 3207			    u64, u64, u64, u64, u64, u64);
 3208
 3209
 3210	if (btrfs_test_is_dummy_root(root))
 3211		return 0;
 3212
 3213	ref_root = btrfs_header_owner(buf);
 3214	nritems = btrfs_header_nritems(buf);
 3215	level = btrfs_header_level(buf);
 3216
 3217	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
 3218		return 0;
 3219
 3220	if (inc)
 3221		process_func = btrfs_inc_extent_ref;
 3222	else
 3223		process_func = btrfs_free_extent;
 3224
 3225	if (full_backref)
 3226		parent = buf->start;
 3227	else
 3228		parent = 0;
 
 
 
 
 3229
 3230	for (i = 0; i < nritems; i++) {
 3231		if (level == 0) {
 3232			btrfs_item_key_to_cpu(buf, &key, i);
 3233			if (key.type != BTRFS_EXTENT_DATA_KEY)
 3234				continue;
 3235			fi = btrfs_item_ptr(buf, i,
 3236					    struct btrfs_file_extent_item);
 3237			if (btrfs_file_extent_type(buf, fi) ==
 3238			    BTRFS_FILE_EXTENT_INLINE)
 3239				continue;
 3240			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
 3241			if (bytenr == 0)
 3242				continue;
 3243
 3244			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
 3245			key.offset -= btrfs_file_extent_offset(buf, fi);
 3246			ret = process_func(trans, root, bytenr, num_bytes,
 3247					   parent, ref_root, key.objectid,
 3248					   key.offset);
 
 
 
 
 
 
 
 3249			if (ret)
 3250				goto fail;
 3251		} else {
 3252			bytenr = btrfs_node_blockptr(buf, i);
 3253			num_bytes = root->nodesize;
 3254			ret = process_func(trans, root, bytenr, num_bytes,
 3255					   parent, ref_root, level - 1, 0);
 
 
 
 
 
 
 
 3256			if (ret)
 3257				goto fail;
 3258		}
 3259	}
 3260	return 0;
 3261fail:
 3262	return ret;
 3263}
 3264
 3265int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 3266		  struct extent_buffer *buf, int full_backref)
 3267{
 3268	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
 3269}
 3270
 3271int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 3272		  struct extent_buffer *buf, int full_backref)
 3273{
 3274	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
 3275}
 3276
 3277static int write_one_cache_group(struct btrfs_trans_handle *trans,
 3278				 struct btrfs_root *root,
 3279				 struct btrfs_path *path,
 3280				 struct btrfs_block_group_cache *cache)
 3281{
 3282	int ret;
 3283	struct btrfs_root *extent_root = root->fs_info->extent_root;
 3284	unsigned long bi;
 3285	struct extent_buffer *leaf;
 3286
 3287	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
 3288	if (ret) {
 3289		if (ret > 0)
 3290			ret = -ENOENT;
 3291		goto fail;
 3292	}
 3293
 3294	leaf = path->nodes[0];
 3295	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
 3296	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
 3297	btrfs_mark_buffer_dirty(leaf);
 3298fail:
 3299	btrfs_release_path(path);
 3300	return ret;
 3301
 3302}
 3303
 3304static struct btrfs_block_group_cache *
 3305next_block_group(struct btrfs_root *root,
 3306		 struct btrfs_block_group_cache *cache)
 3307{
 3308	struct rb_node *node;
 3309
 3310	spin_lock(&root->fs_info->block_group_cache_lock);
 3311
 3312	/* If our block group was removed, we need a full search. */
 3313	if (RB_EMPTY_NODE(&cache->cache_node)) {
 3314		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
 3315
 3316		spin_unlock(&root->fs_info->block_group_cache_lock);
 3317		btrfs_put_block_group(cache);
 3318		cache = btrfs_lookup_first_block_group(root->fs_info,
 3319						       next_bytenr);
 3320		return cache;
 3321	}
 3322	node = rb_next(&cache->cache_node);
 3323	btrfs_put_block_group(cache);
 3324	if (node) {
 3325		cache = rb_entry(node, struct btrfs_block_group_cache,
 3326				 cache_node);
 3327		btrfs_get_block_group(cache);
 3328	} else
 3329		cache = NULL;
 3330	spin_unlock(&root->fs_info->block_group_cache_lock);
 3331	return cache;
 3332}
 3333
 3334static int cache_save_setup(struct btrfs_block_group_cache *block_group,
 3335			    struct btrfs_trans_handle *trans,
 3336			    struct btrfs_path *path)
 3337{
 3338	struct btrfs_root *root = block_group->fs_info->tree_root;
 3339	struct inode *inode = NULL;
 3340	u64 alloc_hint = 0;
 3341	int dcs = BTRFS_DC_ERROR;
 3342	u64 num_pages = 0;
 3343	int retries = 0;
 3344	int ret = 0;
 3345
 3346	/*
 3347	 * If this block group is smaller than 100 megs don't bother caching the
 3348	 * block group.
 3349	 */
 3350	if (block_group->key.offset < (100 * SZ_1M)) {
 3351		spin_lock(&block_group->lock);
 3352		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
 3353		spin_unlock(&block_group->lock);
 3354		return 0;
 3355	}
 3356
 3357	if (trans->aborted)
 3358		return 0;
 3359again:
 3360	inode = lookup_free_space_inode(root, block_group, path);
 3361	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
 3362		ret = PTR_ERR(inode);
 3363		btrfs_release_path(path);
 3364		goto out;
 3365	}
 3366
 3367	if (IS_ERR(inode)) {
 3368		BUG_ON(retries);
 3369		retries++;
 3370
 3371		if (block_group->ro)
 3372			goto out_free;
 3373
 3374		ret = create_free_space_inode(root, trans, block_group, path);
 3375		if (ret)
 3376			goto out_free;
 3377		goto again;
 3378	}
 3379
 3380	/* We've already setup this transaction, go ahead and exit */
 3381	if (block_group->cache_generation == trans->transid &&
 3382	    i_size_read(inode)) {
 3383		dcs = BTRFS_DC_SETUP;
 3384		goto out_put;
 3385	}
 3386
 3387	/*
 3388	 * We want to set the generation to 0, that way if anything goes wrong
 3389	 * from here on out we know not to trust this cache when we load up next
 3390	 * time.
 3391	 */
 3392	BTRFS_I(inode)->generation = 0;
 3393	ret = btrfs_update_inode(trans, root, inode);
 3394	if (ret) {
 3395		/*
 3396		 * So theoretically we could recover from this, simply set the
 3397		 * super cache generation to 0 so we know to invalidate the
 3398		 * cache, but then we'd have to keep track of the block groups
 3399		 * that fail this way so we know we _have_ to reset this cache
 3400		 * before the next commit or risk reading stale cache.  So to
 3401		 * limit our exposure to horrible edge cases lets just abort the
 3402		 * transaction, this only happens in really bad situations
 3403		 * anyway.
 3404		 */
 3405		btrfs_abort_transaction(trans, root, ret);
 3406		goto out_put;
 3407	}
 3408	WARN_ON(ret);
 3409
 3410	if (i_size_read(inode) > 0) {
 3411		ret = btrfs_check_trunc_cache_free_space(root,
 3412					&root->fs_info->global_block_rsv);
 3413		if (ret)
 3414			goto out_put;
 3415
 3416		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
 3417		if (ret)
 3418			goto out_put;
 3419	}
 3420
 3421	spin_lock(&block_group->lock);
 3422	if (block_group->cached != BTRFS_CACHE_FINISHED ||
 3423	    !btrfs_test_opt(root, SPACE_CACHE)) {
 3424		/*
 3425		 * don't bother trying to write stuff out _if_
 3426		 * a) we're not cached,
 3427		 * b) we're with nospace_cache mount option.
 3428		 */
 3429		dcs = BTRFS_DC_WRITTEN;
 3430		spin_unlock(&block_group->lock);
 3431		goto out_put;
 3432	}
 3433	spin_unlock(&block_group->lock);
 3434
 3435	/*
 3436	 * We hit an ENOSPC when setting up the cache in this transaction, just
 3437	 * skip doing the setup, we've already cleared the cache so we're safe.
 3438	 */
 3439	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
 3440		ret = -ENOSPC;
 3441		goto out_put;
 3442	}
 3443
 3444	/*
 3445	 * Try to preallocate enough space based on how big the block group is.
 3446	 * Keep in mind this has to include any pinned space which could end up
 3447	 * taking up quite a bit since it's not folded into the other space
 3448	 * cache.
 3449	 */
 3450	num_pages = div_u64(block_group->key.offset, SZ_256M);
 3451	if (!num_pages)
 3452		num_pages = 1;
 3453
 3454	num_pages *= 16;
 3455	num_pages *= PAGE_SIZE;
 3456
 3457	ret = btrfs_check_data_free_space(inode, 0, num_pages);
 3458	if (ret)
 3459		goto out_put;
 3460
 3461	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
 3462					      num_pages, num_pages,
 3463					      &alloc_hint);
 3464	/*
 3465	 * Our cache requires contiguous chunks so that we don't modify a bunch
 3466	 * of metadata or split extents when writing the cache out, which means
 3467	 * we can enospc if we are heavily fragmented in addition to just normal
 3468	 * out of space conditions.  So if we hit this just skip setting up any
 3469	 * other block groups for this transaction, maybe we'll unpin enough
 3470	 * space the next time around.
 3471	 */
 3472	if (!ret)
 3473		dcs = BTRFS_DC_SETUP;
 3474	else if (ret == -ENOSPC)
 3475		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
 3476	btrfs_free_reserved_data_space(inode, 0, num_pages);
 3477
 3478out_put:
 3479	iput(inode);
 3480out_free:
 3481	btrfs_release_path(path);
 3482out:
 3483	spin_lock(&block_group->lock);
 3484	if (!ret && dcs == BTRFS_DC_SETUP)
 3485		block_group->cache_generation = trans->transid;
 3486	block_group->disk_cache_state = dcs;
 3487	spin_unlock(&block_group->lock);
 3488
 3489	return ret;
 3490}
 3491
 3492int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
 3493			    struct btrfs_root *root)
 3494{
 3495	struct btrfs_block_group_cache *cache, *tmp;
 3496	struct btrfs_transaction *cur_trans = trans->transaction;
 3497	struct btrfs_path *path;
 3498
 3499	if (list_empty(&cur_trans->dirty_bgs) ||
 3500	    !btrfs_test_opt(root, SPACE_CACHE))
 3501		return 0;
 3502
 3503	path = btrfs_alloc_path();
 3504	if (!path)
 3505		return -ENOMEM;
 3506
 3507	/* Could add new block groups, use _safe just in case */
 3508	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
 3509				 dirty_list) {
 3510		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
 3511			cache_save_setup(cache, trans, path);
 3512	}
 3513
 3514	btrfs_free_path(path);
 3515	return 0;
 3516}
 3517
 3518/*
 3519 * transaction commit does final block group cache writeback during a
 3520 * critical section where nothing is allowed to change the FS.  This is
 3521 * required in order for the cache to actually match the block group,
 3522 * but can introduce a lot of latency into the commit.
 3523 *
 3524 * So, btrfs_start_dirty_block_groups is here to kick off block group
 3525 * cache IO.  There's a chance we'll have to redo some of it if the
 3526 * block group changes again during the commit, but it greatly reduces
 3527 * the commit latency by getting rid of the easy block groups while
 3528 * we're still allowing others to join the commit.
 3529 */
 3530int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
 3531				   struct btrfs_root *root)
 3532{
 3533	struct btrfs_block_group_cache *cache;
 3534	struct btrfs_transaction *cur_trans = trans->transaction;
 3535	int ret = 0;
 3536	int should_put;
 3537	struct btrfs_path *path = NULL;
 3538	LIST_HEAD(dirty);
 3539	struct list_head *io = &cur_trans->io_bgs;
 3540	int num_started = 0;
 3541	int loops = 0;
 3542
 3543	spin_lock(&cur_trans->dirty_bgs_lock);
 3544	if (list_empty(&cur_trans->dirty_bgs)) {
 3545		spin_unlock(&cur_trans->dirty_bgs_lock);
 3546		return 0;
 3547	}
 3548	list_splice_init(&cur_trans->dirty_bgs, &dirty);
 3549	spin_unlock(&cur_trans->dirty_bgs_lock);
 3550
 3551again:
 3552	/*
 3553	 * make sure all the block groups on our dirty list actually
 3554	 * exist
 3555	 */
 3556	btrfs_create_pending_block_groups(trans, root);
 3557
 3558	if (!path) {
 3559		path = btrfs_alloc_path();
 3560		if (!path)
 3561			return -ENOMEM;
 3562	}
 3563
 3564	/*
 3565	 * cache_write_mutex is here only to save us from balance or automatic
 3566	 * removal of empty block groups deleting this block group while we are
 3567	 * writing out the cache
 3568	 */
 3569	mutex_lock(&trans->transaction->cache_write_mutex);
 3570	while (!list_empty(&dirty)) {
 3571		cache = list_first_entry(&dirty,
 3572					 struct btrfs_block_group_cache,
 3573					 dirty_list);
 3574		/*
 3575		 * this can happen if something re-dirties a block
 3576		 * group that is already under IO.  Just wait for it to
 3577		 * finish and then do it all again
 3578		 */
 3579		if (!list_empty(&cache->io_list)) {
 3580			list_del_init(&cache->io_list);
 3581			btrfs_wait_cache_io(root, trans, cache,
 3582					    &cache->io_ctl, path,
 3583					    cache->key.objectid);
 3584			btrfs_put_block_group(cache);
 3585		}
 3586
 3587
 3588		/*
 3589		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
 3590		 * if it should update the cache_state.  Don't delete
 3591		 * until after we wait.
 3592		 *
 3593		 * Since we're not running in the commit critical section
 3594		 * we need the dirty_bgs_lock to protect from update_block_group
 3595		 */
 3596		spin_lock(&cur_trans->dirty_bgs_lock);
 3597		list_del_init(&cache->dirty_list);
 3598		spin_unlock(&cur_trans->dirty_bgs_lock);
 3599
 3600		should_put = 1;
 3601
 3602		cache_save_setup(cache, trans, path);
 3603
 3604		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
 3605			cache->io_ctl.inode = NULL;
 3606			ret = btrfs_write_out_cache(root, trans, cache, path);
 3607			if (ret == 0 && cache->io_ctl.inode) {
 3608				num_started++;
 3609				should_put = 0;
 3610
 3611				/*
 3612				 * the cache_write_mutex is protecting
 3613				 * the io_list
 3614				 */
 3615				list_add_tail(&cache->io_list, io);
 3616			} else {
 3617				/*
 3618				 * if we failed to write the cache, the
 3619				 * generation will be bad and life goes on
 3620				 */
 3621				ret = 0;
 3622			}
 3623		}
 3624		if (!ret) {
 3625			ret = write_one_cache_group(trans, root, path, cache);
 3626			/*
 3627			 * Our block group might still be attached to the list
 3628			 * of new block groups in the transaction handle of some
 3629			 * other task (struct btrfs_trans_handle->new_bgs). This
 3630			 * means its block group item isn't yet in the extent
 3631			 * tree. If this happens ignore the error, as we will
 3632			 * try again later in the critical section of the
 3633			 * transaction commit.
 3634			 */
 3635			if (ret == -ENOENT) {
 3636				ret = 0;
 3637				spin_lock(&cur_trans->dirty_bgs_lock);
 3638				if (list_empty(&cache->dirty_list)) {
 3639					list_add_tail(&cache->dirty_list,
 3640						      &cur_trans->dirty_bgs);
 3641					btrfs_get_block_group(cache);
 3642				}
 3643				spin_unlock(&cur_trans->dirty_bgs_lock);
 3644			} else if (ret) {
 3645				btrfs_abort_transaction(trans, root, ret);
 3646			}
 3647		}
 3648
 3649		/* if its not on the io list, we need to put the block group */
 3650		if (should_put)
 3651			btrfs_put_block_group(cache);
 3652
 3653		if (ret)
 3654			break;
 3655
 3656		/*
 3657		 * Avoid blocking other tasks for too long. It might even save
 3658		 * us from writing caches for block groups that are going to be
 3659		 * removed.
 3660		 */
 3661		mutex_unlock(&trans->transaction->cache_write_mutex);
 3662		mutex_lock(&trans->transaction->cache_write_mutex);
 3663	}
 3664	mutex_unlock(&trans->transaction->cache_write_mutex);
 3665
 3666	/*
 3667	 * go through delayed refs for all the stuff we've just kicked off
 3668	 * and then loop back (just once)
 3669	 */
 3670	ret = btrfs_run_delayed_refs(trans, root, 0);
 3671	if (!ret && loops == 0) {
 3672		loops++;
 3673		spin_lock(&cur_trans->dirty_bgs_lock);
 3674		list_splice_init(&cur_trans->dirty_bgs, &dirty);
 3675		/*
 3676		 * dirty_bgs_lock protects us from concurrent block group
 3677		 * deletes too (not just cache_write_mutex).
 3678		 */
 3679		if (!list_empty(&dirty)) {
 3680			spin_unlock(&cur_trans->dirty_bgs_lock);
 3681			goto again;
 3682		}
 3683		spin_unlock(&cur_trans->dirty_bgs_lock);
 3684	}
 3685
 3686	btrfs_free_path(path);
 3687	return ret;
 3688}
 3689
 3690int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
 3691				   struct btrfs_root *root)
 3692{
 3693	struct btrfs_block_group_cache *cache;
 3694	struct btrfs_transaction *cur_trans = trans->transaction;
 3695	int ret = 0;
 3696	int should_put;
 3697	struct btrfs_path *path;
 3698	struct list_head *io = &cur_trans->io_bgs;
 3699	int num_started = 0;
 3700
 3701	path = btrfs_alloc_path();
 3702	if (!path)
 3703		return -ENOMEM;
 3704
 3705	/*
 3706	 * Even though we are in the critical section of the transaction commit,
 3707	 * we can still have concurrent tasks adding elements to this
 3708	 * transaction's list of dirty block groups. These tasks correspond to
 3709	 * endio free space workers started when writeback finishes for a
 3710	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
 3711	 * allocate new block groups as a result of COWing nodes of the root
 3712	 * tree when updating the free space inode. The writeback for the space
 3713	 * caches is triggered by an earlier call to
 3714	 * btrfs_start_dirty_block_groups() and iterations of the following
 3715	 * loop.
 3716	 * Also we want to do the cache_save_setup first and then run the
 3717	 * delayed refs to make sure we have the best chance at doing this all
 3718	 * in one shot.
 3719	 */
 3720	spin_lock(&cur_trans->dirty_bgs_lock);
 3721	while (!list_empty(&cur_trans->dirty_bgs)) {
 3722		cache = list_first_entry(&cur_trans->dirty_bgs,
 3723					 struct btrfs_block_group_cache,
 3724					 dirty_list);
 3725
 3726		/*
 3727		 * this can happen if cache_save_setup re-dirties a block
 3728		 * group that is already under IO.  Just wait for it to
 3729		 * finish and then do it all again
 3730		 */
 3731		if (!list_empty(&cache->io_list)) {
 3732			spin_unlock(&cur_trans->dirty_bgs_lock);
 3733			list_del_init(&cache->io_list);
 3734			btrfs_wait_cache_io(root, trans, cache,
 3735					    &cache->io_ctl, path,
 3736					    cache->key.objectid);
 3737			btrfs_put_block_group(cache);
 3738			spin_lock(&cur_trans->dirty_bgs_lock);
 3739		}
 3740
 3741		/*
 3742		 * don't remove from the dirty list until after we've waited
 3743		 * on any pending IO
 3744		 */
 3745		list_del_init(&cache->dirty_list);
 3746		spin_unlock(&cur_trans->dirty_bgs_lock);
 3747		should_put = 1;
 3748
 3749		cache_save_setup(cache, trans, path);
 3750
 3751		if (!ret)
 3752			ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
 3753
 3754		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
 3755			cache->io_ctl.inode = NULL;
 3756			ret = btrfs_write_out_cache(root, trans, cache, path);
 3757			if (ret == 0 && cache->io_ctl.inode) {
 3758				num_started++;
 3759				should_put = 0;
 3760				list_add_tail(&cache->io_list, io);
 3761			} else {
 3762				/*
 3763				 * if we failed to write the cache, the
 3764				 * generation will be bad and life goes on
 3765				 */
 3766				ret = 0;
 3767			}
 3768		}
 3769		if (!ret) {
 3770			ret = write_one_cache_group(trans, root, path, cache);
 3771			/*
 3772			 * One of the free space endio workers might have
 3773			 * created a new block group while updating a free space
 3774			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
 3775			 * and hasn't released its transaction handle yet, in
 3776			 * which case the new block group is still attached to
 3777			 * its transaction handle and its creation has not
 3778			 * finished yet (no block group item in the extent tree
 3779			 * yet, etc). If this is the case, wait for all free
 3780			 * space endio workers to finish and retry. This is a
 3781			 * a very rare case so no need for a more efficient and
 3782			 * complex approach.
 3783			 */
 3784			if (ret == -ENOENT) {
 3785				wait_event(cur_trans->writer_wait,
 3786				   atomic_read(&cur_trans->num_writers) == 1);
 3787				ret = write_one_cache_group(trans, root, path,
 3788							    cache);
 3789			}
 3790			if (ret)
 3791				btrfs_abort_transaction(trans, root, ret);
 3792		}
 3793
 3794		/* if its not on the io list, we need to put the block group */
 3795		if (should_put)
 3796			btrfs_put_block_group(cache);
 3797		spin_lock(&cur_trans->dirty_bgs_lock);
 3798	}
 3799	spin_unlock(&cur_trans->dirty_bgs_lock);
 3800
 3801	while (!list_empty(io)) {
 3802		cache = list_first_entry(io, struct btrfs_block_group_cache,
 3803					 io_list);
 3804		list_del_init(&cache->io_list);
 3805		btrfs_wait_cache_io(root, trans, cache,
 3806				    &cache->io_ctl, path, cache->key.objectid);
 3807		btrfs_put_block_group(cache);
 3808	}
 3809
 3810	btrfs_free_path(path);
 3811	return ret;
 3812}
 3813
 3814int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
 3815{
 3816	struct btrfs_block_group_cache *block_group;
 3817	int readonly = 0;
 3818
 3819	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
 3820	if (!block_group || block_group->ro)
 3821		readonly = 1;
 3822	if (block_group)
 3823		btrfs_put_block_group(block_group);
 3824	return readonly;
 3825}
 3826
 3827static const char *alloc_name(u64 flags)
 3828{
 3829	switch (flags) {
 3830	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
 3831		return "mixed";
 3832	case BTRFS_BLOCK_GROUP_METADATA:
 3833		return "metadata";
 3834	case BTRFS_BLOCK_GROUP_DATA:
 3835		return "data";
 3836	case BTRFS_BLOCK_GROUP_SYSTEM:
 3837		return "system";
 3838	default:
 3839		WARN_ON(1);
 3840		return "invalid-combination";
 3841	};
 3842}
 3843
 3844static int update_space_info(struct btrfs_fs_info *info, u64 flags,
 3845			     u64 total_bytes, u64 bytes_used,
 3846			     struct btrfs_space_info **space_info)
 3847{
 3848	struct btrfs_space_info *found;
 3849	int i;
 3850	int factor;
 3851	int ret;
 3852
 3853	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
 3854		     BTRFS_BLOCK_GROUP_RAID10))
 3855		factor = 2;
 3856	else
 3857		factor = 1;
 3858
 3859	found = __find_space_info(info, flags);
 3860	if (found) {
 3861		spin_lock(&found->lock);
 3862		found->total_bytes += total_bytes;
 3863		found->disk_total += total_bytes * factor;
 3864		found->bytes_used += bytes_used;
 3865		found->disk_used += bytes_used * factor;
 3866		if (total_bytes > 0)
 3867			found->full = 0;
 3868		spin_unlock(&found->lock);
 3869		*space_info = found;
 3870		return 0;
 3871	}
 3872	found = kzalloc(sizeof(*found), GFP_NOFS);
 3873	if (!found)
 3874		return -ENOMEM;
 3875
 3876	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
 3877	if (ret) {
 3878		kfree(found);
 3879		return ret;
 3880	}
 3881
 3882	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 3883		INIT_LIST_HEAD(&found->block_groups[i]);
 3884	init_rwsem(&found->groups_sem);
 3885	spin_lock_init(&found->lock);
 3886	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
 3887	found->total_bytes = total_bytes;
 3888	found->disk_total = total_bytes * factor;
 3889	found->bytes_used = bytes_used;
 3890	found->disk_used = bytes_used * factor;
 3891	found->bytes_pinned = 0;
 3892	found->bytes_reserved = 0;
 3893	found->bytes_readonly = 0;
 3894	found->bytes_may_use = 0;
 3895	found->full = 0;
 3896	found->max_extent_size = 0;
 3897	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
 3898	found->chunk_alloc = 0;
 3899	found->flush = 0;
 3900	init_waitqueue_head(&found->wait);
 3901	INIT_LIST_HEAD(&found->ro_bgs);
 3902
 3903	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
 3904				    info->space_info_kobj, "%s",
 3905				    alloc_name(found->flags));
 3906	if (ret) {
 3907		kfree(found);
 3908		return ret;
 3909	}
 3910
 3911	*space_info = found;
 3912	list_add_rcu(&found->list, &info->space_info);
 3913	if (flags & BTRFS_BLOCK_GROUP_DATA)
 3914		info->data_sinfo = found;
 3915
 3916	return ret;
 3917}
 3918
 3919static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
 3920{
 3921	u64 extra_flags = chunk_to_extended(flags) &
 3922				BTRFS_EXTENDED_PROFILE_MASK;
 3923
 3924	write_seqlock(&fs_info->profiles_lock);
 3925	if (flags & BTRFS_BLOCK_GROUP_DATA)
 3926		fs_info->avail_data_alloc_bits |= extra_flags;
 3927	if (flags & BTRFS_BLOCK_GROUP_METADATA)
 3928		fs_info->avail_metadata_alloc_bits |= extra_flags;
 3929	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 3930		fs_info->avail_system_alloc_bits |= extra_flags;
 3931	write_sequnlock(&fs_info->profiles_lock);
 3932}
 3933
 3934/*
 3935 * returns target flags in extended format or 0 if restripe for this
 3936 * chunk_type is not in progress
 3937 *
 3938 * should be called with either volume_mutex or balance_lock held
 3939 */
 3940static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
 3941{
 3942	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
 3943	u64 target = 0;
 3944
 3945	if (!bctl)
 3946		return 0;
 3947
 3948	if (flags & BTRFS_BLOCK_GROUP_DATA &&
 3949	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
 3950		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
 3951	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
 3952		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
 3953		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
 3954	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
 3955		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
 3956		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
 3957	}
 3958
 3959	return target;
 3960}
 3961
 3962/*
 3963 * @flags: available profiles in extended format (see ctree.h)
 3964 *
 3965 * Returns reduced profile in chunk format.  If profile changing is in
 3966 * progress (either running or paused) picks the target profile (if it's
 3967 * already available), otherwise falls back to plain reducing.
 3968 */
 3969static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
 3970{
 3971	u64 num_devices = root->fs_info->fs_devices->rw_devices;
 3972	u64 target;
 3973	u64 raid_type;
 3974	u64 allowed = 0;
 3975
 3976	/*
 3977	 * see if restripe for this chunk_type is in progress, if so
 3978	 * try to reduce to the target profile
 3979	 */
 3980	spin_lock(&root->fs_info->balance_lock);
 3981	target = get_restripe_target(root->fs_info, flags);
 3982	if (target) {
 3983		/* pick target profile only if it's already available */
 3984		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
 3985			spin_unlock(&root->fs_info->balance_lock);
 3986			return extended_to_chunk(target);
 3987		}
 3988	}
 3989	spin_unlock(&root->fs_info->balance_lock);
 3990
 3991	/* First, mask out the RAID levels which aren't possible */
 3992	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
 3993		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
 3994			allowed |= btrfs_raid_group[raid_type];
 3995	}
 3996	allowed &= flags;
 3997
 3998	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
 3999		allowed = BTRFS_BLOCK_GROUP_RAID6;
 4000	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
 4001		allowed = BTRFS_BLOCK_GROUP_RAID5;
 4002	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
 4003		allowed = BTRFS_BLOCK_GROUP_RAID10;
 4004	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
 4005		allowed = BTRFS_BLOCK_GROUP_RAID1;
 4006	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
 4007		allowed = BTRFS_BLOCK_GROUP_RAID0;
 4008
 4009	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
 4010
 4011	return extended_to_chunk(flags | allowed);
 4012}
 4013
 4014static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
 4015{
 4016	unsigned seq;
 4017	u64 flags;
 4018
 4019	do {
 4020		flags = orig_flags;
 4021		seq = read_seqbegin(&root->fs_info->profiles_lock);
 4022
 4023		if (flags & BTRFS_BLOCK_GROUP_DATA)
 4024			flags |= root->fs_info->avail_data_alloc_bits;
 4025		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 4026			flags |= root->fs_info->avail_system_alloc_bits;
 4027		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
 4028			flags |= root->fs_info->avail_metadata_alloc_bits;
 4029	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
 4030
 4031	return btrfs_reduce_alloc_profile(root, flags);
 4032}
 4033
 4034u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
 4035{
 
 4036	u64 flags;
 4037	u64 ret;
 4038
 4039	if (data)
 4040		flags = BTRFS_BLOCK_GROUP_DATA;
 4041	else if (root == root->fs_info->chunk_root)
 4042		flags = BTRFS_BLOCK_GROUP_SYSTEM;
 4043	else
 4044		flags = BTRFS_BLOCK_GROUP_METADATA;
 4045
 4046	ret = get_alloc_profile(root, flags);
 4047	return ret;
 4048}
 4049
 4050int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
 4051{
 4052	struct btrfs_space_info *data_sinfo;
 4053	struct btrfs_root *root = BTRFS_I(inode)->root;
 4054	struct btrfs_fs_info *fs_info = root->fs_info;
 4055	u64 used;
 4056	int ret = 0;
 4057	int need_commit = 2;
 4058	int have_pinned_space;
 4059
 4060	/* make sure bytes are sectorsize aligned */
 4061	bytes = ALIGN(bytes, root->sectorsize);
 4062
 4063	if (btrfs_is_free_space_inode(inode)) {
 4064		need_commit = 0;
 4065		ASSERT(current->journal_info);
 4066	}
 4067
 4068	data_sinfo = fs_info->data_sinfo;
 4069	if (!data_sinfo)
 4070		goto alloc;
 4071
 4072again:
 4073	/* make sure we have enough space to handle the data first */
 4074	spin_lock(&data_sinfo->lock);
 4075	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
 4076		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
 4077		data_sinfo->bytes_may_use;
 4078
 4079	if (used + bytes > data_sinfo->total_bytes) {
 4080		struct btrfs_trans_handle *trans;
 4081
 4082		/*
 4083		 * if we don't have enough free bytes in this space then we need
 4084		 * to alloc a new chunk.
 4085		 */
 4086		if (!data_sinfo->full) {
 4087			u64 alloc_target;
 4088
 4089			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
 4090			spin_unlock(&data_sinfo->lock);
 4091alloc:
 4092			alloc_target = btrfs_get_alloc_profile(root, 1);
 4093			/*
 4094			 * It is ugly that we don't call nolock join
 4095			 * transaction for the free space inode case here.
 4096			 * But it is safe because we only do the data space
 4097			 * reservation for the free space cache in the
 4098			 * transaction context, the common join transaction
 4099			 * just increase the counter of the current transaction
 4100			 * handler, doesn't try to acquire the trans_lock of
 4101			 * the fs.
 4102			 */
 4103			trans = btrfs_join_transaction(root);
 4104			if (IS_ERR(trans))
 4105				return PTR_ERR(trans);
 4106
 4107			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
 4108					     alloc_target,
 4109					     CHUNK_ALLOC_NO_FORCE);
 4110			btrfs_end_transaction(trans, root);
 4111			if (ret < 0) {
 4112				if (ret != -ENOSPC)
 4113					return ret;
 4114				else {
 4115					have_pinned_space = 1;
 4116					goto commit_trans;
 4117				}
 4118			}
 4119
 4120			if (!data_sinfo)
 4121				data_sinfo = fs_info->data_sinfo;
 4122
 4123			goto again;
 4124		}
 4125
 4126		/*
 4127		 * If we don't have enough pinned space to deal with this
 4128		 * allocation, and no removed chunk in current transaction,
 4129		 * don't bother committing the transaction.
 4130		 */
 4131		have_pinned_space = percpu_counter_compare(
 4132			&data_sinfo->total_bytes_pinned,
 4133			used + bytes - data_sinfo->total_bytes);
 4134		spin_unlock(&data_sinfo->lock);
 4135
 4136		/* commit the current transaction and try again */
 4137commit_trans:
 4138		if (need_commit &&
 4139		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
 4140			need_commit--;
 4141
 4142			if (need_commit > 0) {
 4143				btrfs_start_delalloc_roots(fs_info, 0, -1);
 4144				btrfs_wait_ordered_roots(fs_info, -1);
 4145			}
 4146
 4147			trans = btrfs_join_transaction(root);
 4148			if (IS_ERR(trans))
 4149				return PTR_ERR(trans);
 4150			if (have_pinned_space >= 0 ||
 4151			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
 4152				     &trans->transaction->flags) ||
 4153			    need_commit > 0) {
 4154				ret = btrfs_commit_transaction(trans, root);
 4155				if (ret)
 4156					return ret;
 4157				/*
 4158				 * The cleaner kthread might still be doing iput
 4159				 * operations. Wait for it to finish so that
 4160				 * more space is released.
 4161				 */
 4162				mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
 4163				mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
 4164				goto again;
 4165			} else {
 4166				btrfs_end_transaction(trans, root);
 4167			}
 4168		}
 4169
 4170		trace_btrfs_space_reservation(root->fs_info,
 4171					      "space_info:enospc",
 4172					      data_sinfo->flags, bytes, 1);
 4173		return -ENOSPC;
 4174	}
 4175	data_sinfo->bytes_may_use += bytes;
 4176	trace_btrfs_space_reservation(root->fs_info, "space_info",
 4177				      data_sinfo->flags, bytes, 1);
 4178	spin_unlock(&data_sinfo->lock);
 4179
 4180	return ret;
 4181}
 4182
 4183/*
 4184 * New check_data_free_space() with ability for precious data reservation
 4185 * Will replace old btrfs_check_data_free_space(), but for patch split,
 4186 * add a new function first and then replace it.
 4187 */
 4188int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
 4189{
 4190	struct btrfs_root *root = BTRFS_I(inode)->root;
 4191	int ret;
 4192
 4193	/* align the range */
 4194	len = round_up(start + len, root->sectorsize) -
 4195	      round_down(start, root->sectorsize);
 4196	start = round_down(start, root->sectorsize);
 4197
 4198	ret = btrfs_alloc_data_chunk_ondemand(inode, len);
 4199	if (ret < 0)
 4200		return ret;
 4201
 4202	/*
 4203	 * Use new btrfs_qgroup_reserve_data to reserve precious data space
 4204	 *
 4205	 * TODO: Find a good method to avoid reserve data space for NOCOW
 4206	 * range, but don't impact performance on quota disable case.
 4207	 */
 4208	ret = btrfs_qgroup_reserve_data(inode, start, len);
 4209	return ret;
 4210}
 4211
 4212/*
 4213 * Called if we need to clear a data reservation for this inode
 4214 * Normally in a error case.
 4215 *
 4216 * This one will *NOT* use accurate qgroup reserved space API, just for case
 4217 * which we can't sleep and is sure it won't affect qgroup reserved space.
 4218 * Like clear_bit_hook().
 4219 */
 4220void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
 4221					    u64 len)
 4222{
 4223	struct btrfs_root *root = BTRFS_I(inode)->root;
 4224	struct btrfs_space_info *data_sinfo;
 4225
 4226	/* Make sure the range is aligned to sectorsize */
 4227	len = round_up(start + len, root->sectorsize) -
 4228	      round_down(start, root->sectorsize);
 4229	start = round_down(start, root->sectorsize);
 4230
 4231	data_sinfo = root->fs_info->data_sinfo;
 4232	spin_lock(&data_sinfo->lock);
 4233	if (WARN_ON(data_sinfo->bytes_may_use < len))
 4234		data_sinfo->bytes_may_use = 0;
 4235	else
 4236		data_sinfo->bytes_may_use -= len;
 4237	trace_btrfs_space_reservation(root->fs_info, "space_info",
 4238				      data_sinfo->flags, len, 0);
 4239	spin_unlock(&data_sinfo->lock);
 4240}
 4241
 4242/*
 4243 * Called if we need to clear a data reservation for this inode
 4244 * Normally in a error case.
 4245 *
 4246 * This one will handle the per-indoe data rsv map for accurate reserved
 4247 * space framework.
 4248 */
 4249void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
 4250{
 4251	btrfs_free_reserved_data_space_noquota(inode, start, len);
 4252	btrfs_qgroup_free_data(inode, start, len);
 4253}
 4254
 4255static void force_metadata_allocation(struct btrfs_fs_info *info)
 4256{
 4257	struct list_head *head = &info->space_info;
 4258	struct btrfs_space_info *found;
 4259
 4260	rcu_read_lock();
 4261	list_for_each_entry_rcu(found, head, list) {
 4262		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
 4263			found->force_alloc = CHUNK_ALLOC_FORCE;
 4264	}
 4265	rcu_read_unlock();
 4266}
 4267
 4268static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
 4269{
 4270	return (global->size << 1);
 4271}
 4272
 4273static int should_alloc_chunk(struct btrfs_root *root,
 4274			      struct btrfs_space_info *sinfo, int force)
 4275{
 4276	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
 4277	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
 4278	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
 4279	u64 thresh;
 4280
 4281	if (force == CHUNK_ALLOC_FORCE)
 4282		return 1;
 4283
 4284	/*
 4285	 * We need to take into account the global rsv because for all intents
 4286	 * and purposes it's used space.  Don't worry about locking the
 4287	 * global_rsv, it doesn't change except when the transaction commits.
 4288	 */
 4289	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
 4290		num_allocated += calc_global_rsv_need_space(global_rsv);
 4291
 4292	/*
 4293	 * in limited mode, we want to have some free space up to
 4294	 * about 1% of the FS size.
 4295	 */
 4296	if (force == CHUNK_ALLOC_LIMITED) {
 4297		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
 4298		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
 4299
 4300		if (num_bytes - num_allocated < thresh)
 4301			return 1;
 4302	}
 4303
 4304	if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
 4305		return 0;
 4306	return 1;
 4307}
 4308
 4309static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
 4310{
 4311	u64 num_dev;
 4312
 4313	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
 4314		    BTRFS_BLOCK_GROUP_RAID0 |
 4315		    BTRFS_BLOCK_GROUP_RAID5 |
 4316		    BTRFS_BLOCK_GROUP_RAID6))
 4317		num_dev = root->fs_info->fs_devices->rw_devices;
 4318	else if (type & BTRFS_BLOCK_GROUP_RAID1)
 4319		num_dev = 2;
 4320	else
 4321		num_dev = 1;	/* DUP or single */
 4322
 4323	return num_dev;
 4324}
 4325
 4326/*
 4327 * If @is_allocation is true, reserve space in the system space info necessary
 4328 * for allocating a chunk, otherwise if it's false, reserve space necessary for
 4329 * removing a chunk.
 4330 */
 4331void check_system_chunk(struct btrfs_trans_handle *trans,
 4332			struct btrfs_root *root,
 4333			u64 type)
 4334{
 4335	struct btrfs_space_info *info;
 4336	u64 left;
 4337	u64 thresh;
 4338	int ret = 0;
 4339	u64 num_devs;
 4340
 4341	/*
 4342	 * Needed because we can end up allocating a system chunk and for an
 4343	 * atomic and race free space reservation in the chunk block reserve.
 4344	 */
 4345	ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
 4346
 4347	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
 4348	spin_lock(&info->lock);
 4349	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
 4350		info->bytes_reserved - info->bytes_readonly -
 4351		info->bytes_may_use;
 4352	spin_unlock(&info->lock);
 4353
 4354	num_devs = get_profile_num_devs(root, type);
 4355
 4356	/* num_devs device items to update and 1 chunk item to add or remove */
 4357	thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
 4358		btrfs_calc_trans_metadata_size(root, 1);
 4359
 4360	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
 4361		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
 4362			left, thresh, type);
 4363		dump_space_info(info, 0, 0);
 4364	}
 4365
 4366	if (left < thresh) {
 4367		u64 flags;
 4368
 4369		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
 4370		/*
 4371		 * Ignore failure to create system chunk. We might end up not
 4372		 * needing it, as we might not need to COW all nodes/leafs from
 4373		 * the paths we visit in the chunk tree (they were already COWed
 4374		 * or created in the current transaction for example).
 4375		 */
 4376		ret = btrfs_alloc_chunk(trans, root, flags);
 4377	}
 4378
 4379	if (!ret) {
 4380		ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
 4381					  &root->fs_info->chunk_block_rsv,
 4382					  thresh, BTRFS_RESERVE_NO_FLUSH);
 4383		if (!ret)
 4384			trans->chunk_bytes_reserved += thresh;
 4385	}
 4386}
 4387
 4388static int do_chunk_alloc(struct btrfs_trans_handle *trans,
 4389			  struct btrfs_root *extent_root, u64 flags, int force)
 4390{
 4391	struct btrfs_space_info *space_info;
 4392	struct btrfs_fs_info *fs_info = extent_root->fs_info;
 4393	int wait_for_alloc = 0;
 4394	int ret = 0;
 4395
 4396	/* Don't re-enter if we're already allocating a chunk */
 4397	if (trans->allocating_chunk)
 4398		return -ENOSPC;
 4399
 4400	space_info = __find_space_info(extent_root->fs_info, flags);
 4401	if (!space_info) {
 4402		ret = update_space_info(extent_root->fs_info, flags,
 4403					0, 0, &space_info);
 4404		BUG_ON(ret); /* -ENOMEM */
 4405	}
 4406	BUG_ON(!space_info); /* Logic error */
 4407
 4408again:
 4409	spin_lock(&space_info->lock);
 4410	if (force < space_info->force_alloc)
 4411		force = space_info->force_alloc;
 4412	if (space_info->full) {
 4413		if (should_alloc_chunk(extent_root, space_info, force))
 4414			ret = -ENOSPC;
 4415		else
 4416			ret = 0;
 4417		spin_unlock(&space_info->lock);
 4418		return ret;
 4419	}
 4420
 4421	if (!should_alloc_chunk(extent_root, space_info, force)) {
 4422		spin_unlock(&space_info->lock);
 4423		return 0;
 4424	} else if (space_info->chunk_alloc) {
 4425		wait_for_alloc = 1;
 4426	} else {
 4427		space_info->chunk_alloc = 1;
 4428	}
 4429
 4430	spin_unlock(&space_info->lock);
 4431
 4432	mutex_lock(&fs_info->chunk_mutex);
 4433
 4434	/*
 4435	 * The chunk_mutex is held throughout the entirety of a chunk
 4436	 * allocation, so once we've acquired the chunk_mutex we know that the
 4437	 * other guy is done and we need to recheck and see if we should
 4438	 * allocate.
 4439	 */
 4440	if (wait_for_alloc) {
 4441		mutex_unlock(&fs_info->chunk_mutex);
 4442		wait_for_alloc = 0;
 4443		goto again;
 4444	}
 4445
 4446	trans->allocating_chunk = true;
 4447
 4448	/*
 4449	 * If we have mixed data/metadata chunks we want to make sure we keep
 4450	 * allocating mixed chunks instead of individual chunks.
 4451	 */
 4452	if (btrfs_mixed_space_info(space_info))
 4453		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
 4454
 4455	/*
 4456	 * if we're doing a data chunk, go ahead and make sure that
 4457	 * we keep a reasonable number of metadata chunks allocated in the
 4458	 * FS as well.
 4459	 */
 4460	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
 4461		fs_info->data_chunk_allocations++;
 4462		if (!(fs_info->data_chunk_allocations %
 4463		      fs_info->metadata_ratio))
 4464			force_metadata_allocation(fs_info);
 4465	}
 4466
 4467	/*
 4468	 * Check if we have enough space in SYSTEM chunk because we may need
 4469	 * to update devices.
 4470	 */
 4471	check_system_chunk(trans, extent_root, flags);
 4472
 4473	ret = btrfs_alloc_chunk(trans, extent_root, flags);
 4474	trans->allocating_chunk = false;
 4475
 4476	spin_lock(&space_info->lock);
 4477	if (ret < 0 && ret != -ENOSPC)
 4478		goto out;
 4479	if (ret)
 4480		space_info->full = 1;
 4481	else
 4482		ret = 1;
 4483
 4484	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
 4485out:
 4486	space_info->chunk_alloc = 0;
 4487	spin_unlock(&space_info->lock);
 4488	mutex_unlock(&fs_info->chunk_mutex);
 4489	/*
 4490	 * When we allocate a new chunk we reserve space in the chunk block
 4491	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
 4492	 * add new nodes/leafs to it if we end up needing to do it when
 4493	 * inserting the chunk item and updating device items as part of the
 4494	 * second phase of chunk allocation, performed by
 4495	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
 4496	 * large number of new block groups to create in our transaction
 4497	 * handle's new_bgs list to avoid exhausting the chunk block reserve
 4498	 * in extreme cases - like having a single transaction create many new
 4499	 * block groups when starting to write out the free space caches of all
 4500	 * the block groups that were made dirty during the lifetime of the
 4501	 * transaction.
 4502	 */
 4503	if (trans->can_flush_pending_bgs &&
 4504	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
 4505		btrfs_create_pending_block_groups(trans, trans->root);
 4506		btrfs_trans_release_chunk_metadata(trans);
 4507	}
 4508	return ret;
 4509}
 4510
 4511static int can_overcommit(struct btrfs_root *root,
 4512			  struct btrfs_space_info *space_info, u64 bytes,
 4513			  enum btrfs_reserve_flush_enum flush)
 4514{
 4515	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
 4516	u64 profile = btrfs_get_alloc_profile(root, 0);
 4517	u64 space_size;
 4518	u64 avail;
 4519	u64 used;
 4520
 4521	used = space_info->bytes_used + space_info->bytes_reserved +
 4522		space_info->bytes_pinned + space_info->bytes_readonly;
 4523
 4524	/*
 4525	 * We only want to allow over committing if we have lots of actual space
 4526	 * free, but if we don't have enough space to handle the global reserve
 4527	 * space then we could end up having a real enospc problem when trying
 4528	 * to allocate a chunk or some other such important allocation.
 4529	 */
 4530	spin_lock(&global_rsv->lock);
 4531	space_size = calc_global_rsv_need_space(global_rsv);
 4532	spin_unlock(&global_rsv->lock);
 4533	if (used + space_size >= space_info->total_bytes)
 4534		return 0;
 4535
 4536	used += space_info->bytes_may_use;
 4537
 4538	spin_lock(&root->fs_info->free_chunk_lock);
 4539	avail = root->fs_info->free_chunk_space;
 4540	spin_unlock(&root->fs_info->free_chunk_lock);
 4541
 4542	/*
 4543	 * If we have dup, raid1 or raid10 then only half of the free
 4544	 * space is actually useable.  For raid56, the space info used
 4545	 * doesn't include the parity drive, so we don't have to
 4546	 * change the math
 4547	 */
 4548	if (profile & (BTRFS_BLOCK_GROUP_DUP |
 4549		       BTRFS_BLOCK_GROUP_RAID1 |
 4550		       BTRFS_BLOCK_GROUP_RAID10))
 4551		avail >>= 1;
 4552
 4553	/*
 4554	 * If we aren't flushing all things, let us overcommit up to
 4555	 * 1/2th of the space. If we can flush, don't let us overcommit
 4556	 * too much, let it overcommit up to 1/8 of the space.
 4557	 */
 4558	if (flush == BTRFS_RESERVE_FLUSH_ALL)
 4559		avail >>= 3;
 4560	else
 4561		avail >>= 1;
 4562
 4563	if (used + bytes < space_info->total_bytes + avail)
 4564		return 1;
 4565	return 0;
 4566}
 4567
 4568static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
 4569					 unsigned long nr_pages, int nr_items)
 4570{
 4571	struct super_block *sb = root->fs_info->sb;
 4572
 4573	if (down_read_trylock(&sb->s_umount)) {
 4574		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
 4575		up_read(&sb->s_umount);
 4576	} else {
 4577		/*
 4578		 * We needn't worry the filesystem going from r/w to r/o though
 4579		 * we don't acquire ->s_umount mutex, because the filesystem
 4580		 * should guarantee the delalloc inodes list be empty after
 4581		 * the filesystem is readonly(all dirty pages are written to
 4582		 * the disk).
 4583		 */
 4584		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
 4585		if (!current->journal_info)
 4586			btrfs_wait_ordered_roots(root->fs_info, nr_items);
 4587	}
 4588}
 4589
 4590static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
 4591{
 4592	u64 bytes;
 4593	int nr;
 4594
 4595	bytes = btrfs_calc_trans_metadata_size(root, 1);
 4596	nr = (int)div64_u64(to_reclaim, bytes);
 4597	if (!nr)
 4598		nr = 1;
 4599	return nr;
 4600}
 4601
 4602#define EXTENT_SIZE_PER_ITEM	SZ_256K
 4603
 4604/*
 4605 * shrink metadata reservation for delalloc
 4606 */
 4607static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
 4608			    bool wait_ordered)
 4609{
 4610	struct btrfs_block_rsv *block_rsv;
 4611	struct btrfs_space_info *space_info;
 4612	struct btrfs_trans_handle *trans;
 4613	u64 delalloc_bytes;
 4614	u64 max_reclaim;
 4615	long time_left;
 4616	unsigned long nr_pages;
 4617	int loops;
 4618	int items;
 4619	enum btrfs_reserve_flush_enum flush;
 4620
 4621	/* Calc the number of the pages we need flush for space reservation */
 4622	items = calc_reclaim_items_nr(root, to_reclaim);
 4623	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
 4624
 4625	trans = (struct btrfs_trans_handle *)current->journal_info;
 4626	block_rsv = &root->fs_info->delalloc_block_rsv;
 4627	space_info = block_rsv->space_info;
 4628
 4629	delalloc_bytes = percpu_counter_sum_positive(
 4630						&root->fs_info->delalloc_bytes);
 4631	if (delalloc_bytes == 0) {
 4632		if (trans)
 4633			return;
 4634		if (wait_ordered)
 4635			btrfs_wait_ordered_roots(root->fs_info, items);
 4636		return;
 4637	}
 4638
 4639	loops = 0;
 4640	while (delalloc_bytes && loops < 3) {
 4641		max_reclaim = min(delalloc_bytes, to_reclaim);
 4642		nr_pages = max_reclaim >> PAGE_SHIFT;
 4643		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
 4644		/*
 4645		 * We need to wait for the async pages to actually start before
 4646		 * we do anything.
 4647		 */
 4648		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
 4649		if (!max_reclaim)
 4650			goto skip_async;
 4651
 4652		if (max_reclaim <= nr_pages)
 4653			max_reclaim = 0;
 4654		else
 4655			max_reclaim -= nr_pages;
 4656
 4657		wait_event(root->fs_info->async_submit_wait,
 4658			   atomic_read(&root->fs_info->async_delalloc_pages) <=
 4659			   (int)max_reclaim);
 4660skip_async:
 4661		if (!trans)
 4662			flush = BTRFS_RESERVE_FLUSH_ALL;
 4663		else
 4664			flush = BTRFS_RESERVE_NO_FLUSH;
 4665		spin_lock(&space_info->lock);
 4666		if (can_overcommit(root, space_info, orig, flush)) {
 4667			spin_unlock(&space_info->lock);
 4668			break;
 4669		}
 4670		spin_unlock(&space_info->lock);
 4671
 4672		loops++;
 4673		if (wait_ordered && !trans) {
 4674			btrfs_wait_ordered_roots(root->fs_info, items);
 4675		} else {
 4676			time_left = schedule_timeout_killable(1);
 4677			if (time_left)
 4678				break;
 4679		}
 4680		delalloc_bytes = percpu_counter_sum_positive(
 4681						&root->fs_info->delalloc_bytes);
 4682	}
 4683}
 4684
 4685/**
 4686 * maybe_commit_transaction - possibly commit the transaction if its ok to
 4687 * @root - the root we're allocating for
 4688 * @bytes - the number of bytes we want to reserve
 4689 * @force - force the commit
 4690 *
 4691 * This will check to make sure that committing the transaction will actually
 4692 * get us somewhere and then commit the transaction if it does.  Otherwise it
 4693 * will return -ENOSPC.
 4694 */
 4695static int may_commit_transaction(struct btrfs_root *root,
 4696				  struct btrfs_space_info *space_info,
 4697				  u64 bytes, int force)
 4698{
 4699	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
 4700	struct btrfs_trans_handle *trans;
 4701
 4702	trans = (struct btrfs_trans_handle *)current->journal_info;
 4703	if (trans)
 4704		return -EAGAIN;
 4705
 4706	if (force)
 4707		goto commit;
 4708
 4709	/* See if there is enough pinned space to make this reservation */
 4710	if (percpu_counter_compare(&space_info->total_bytes_pinned,
 4711				   bytes) >= 0)
 4712		goto commit;
 4713
 4714	/*
 4715	 * See if there is some space in the delayed insertion reservation for
 4716	 * this reservation.
 4717	 */
 4718	if (space_info != delayed_rsv->space_info)
 4719		return -ENOSPC;
 4720
 4721	spin_lock(&delayed_rsv->lock);
 4722	if (percpu_counter_compare(&space_info->total_bytes_pinned,
 4723				   bytes - delayed_rsv->size) >= 0) {
 4724		spin_unlock(&delayed_rsv->lock);
 4725		return -ENOSPC;
 4726	}
 4727	spin_unlock(&delayed_rsv->lock);
 4728
 4729commit:
 4730	trans = btrfs_join_transaction(root);
 4731	if (IS_ERR(trans))
 4732		return -ENOSPC;
 4733
 4734	return btrfs_commit_transaction(trans, root);
 4735}
 4736
 4737enum flush_state {
 4738	FLUSH_DELAYED_ITEMS_NR	=	1,
 4739	FLUSH_DELAYED_ITEMS	=	2,
 4740	FLUSH_DELALLOC		=	3,
 4741	FLUSH_DELALLOC_WAIT	=	4,
 4742	ALLOC_CHUNK		=	5,
 4743	COMMIT_TRANS		=	6,
 4744};
 4745
 4746static int flush_space(struct btrfs_root *root,
 4747		       struct btrfs_space_info *space_info, u64 num_bytes,
 4748		       u64 orig_bytes, int state)
 4749{
 4750	struct btrfs_trans_handle *trans;
 4751	int nr;
 4752	int ret = 0;
 4753
 4754	switch (state) {
 4755	case FLUSH_DELAYED_ITEMS_NR:
 4756	case FLUSH_DELAYED_ITEMS:
 4757		if (state == FLUSH_DELAYED_ITEMS_NR)
 4758			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
 4759		else
 4760			nr = -1;
 4761
 4762		trans = btrfs_join_transaction(root);
 4763		if (IS_ERR(trans)) {
 4764			ret = PTR_ERR(trans);
 4765			break;
 4766		}
 4767		ret = btrfs_run_delayed_items_nr(trans, root, nr);
 4768		btrfs_end_transaction(trans, root);
 4769		break;
 4770	case FLUSH_DELALLOC:
 4771	case FLUSH_DELALLOC_WAIT:
 4772		shrink_delalloc(root, num_bytes * 2, orig_bytes,
 4773				state == FLUSH_DELALLOC_WAIT);
 4774		break;
 4775	case ALLOC_CHUNK:
 4776		trans = btrfs_join_transaction(root);
 4777		if (IS_ERR(trans)) {
 4778			ret = PTR_ERR(trans);
 4779			break;
 4780		}
 4781		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
 4782				     btrfs_get_alloc_profile(root, 0),
 4783				     CHUNK_ALLOC_NO_FORCE);
 4784		btrfs_end_transaction(trans, root);
 4785		if (ret == -ENOSPC)
 4786			ret = 0;
 4787		break;
 4788	case COMMIT_TRANS:
 4789		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
 4790		break;
 4791	default:
 4792		ret = -ENOSPC;
 4793		break;
 4794	}
 4795
 4796	return ret;
 4797}
 4798
 4799static inline u64
 4800btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
 4801				 struct btrfs_space_info *space_info)
 4802{
 4803	u64 used;
 4804	u64 expected;
 4805	u64 to_reclaim;
 4806
 4807	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
 4808	spin_lock(&space_info->lock);
 4809	if (can_overcommit(root, space_info, to_reclaim,
 4810			   BTRFS_RESERVE_FLUSH_ALL)) {
 4811		to_reclaim = 0;
 4812		goto out;
 4813	}
 4814
 4815	used = space_info->bytes_used + space_info->bytes_reserved +
 4816	       space_info->bytes_pinned + space_info->bytes_readonly +
 4817	       space_info->bytes_may_use;
 4818	if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
 4819		expected = div_factor_fine(space_info->total_bytes, 95);
 4820	else
 4821		expected = div_factor_fine(space_info->total_bytes, 90);
 4822
 4823	if (used > expected)
 4824		to_reclaim = used - expected;
 4825	else
 4826		to_reclaim = 0;
 4827	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
 4828				     space_info->bytes_reserved);
 4829out:
 4830	spin_unlock(&space_info->lock);
 4831
 4832	return to_reclaim;
 4833}
 4834
 4835static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
 4836					struct btrfs_fs_info *fs_info, u64 used)
 4837{
 4838	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
 4839
 4840	/* If we're just plain full then async reclaim just slows us down. */
 4841	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
 4842		return 0;
 4843
 4844	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
 4845		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
 4846}
 4847
 4848static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
 4849				       struct btrfs_fs_info *fs_info,
 4850				       int flush_state)
 4851{
 4852	u64 used;
 4853
 4854	spin_lock(&space_info->lock);
 4855	/*
 4856	 * We run out of space and have not got any free space via flush_space,
 4857	 * so don't bother doing async reclaim.
 4858	 */
 4859	if (flush_state > COMMIT_TRANS && space_info->full) {
 4860		spin_unlock(&space_info->lock);
 4861		return 0;
 4862	}
 4863
 4864	used = space_info->bytes_used + space_info->bytes_reserved +
 4865	       space_info->bytes_pinned + space_info->bytes_readonly +
 4866	       space_info->bytes_may_use;
 4867	if (need_do_async_reclaim(space_info, fs_info, used)) {
 4868		spin_unlock(&space_info->lock);
 4869		return 1;
 4870	}
 4871	spin_unlock(&space_info->lock);
 4872
 4873	return 0;
 4874}
 4875
 4876static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
 4877{
 4878	struct btrfs_fs_info *fs_info;
 4879	struct btrfs_space_info *space_info;
 4880	u64 to_reclaim;
 4881	int flush_state;
 4882
 4883	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
 4884	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 4885
 4886	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
 4887						      space_info);
 4888	if (!to_reclaim)
 4889		return;
 4890
 4891	flush_state = FLUSH_DELAYED_ITEMS_NR;
 4892	do {
 4893		flush_space(fs_info->fs_root, space_info, to_reclaim,
 4894			    to_reclaim, flush_state);
 4895		flush_state++;
 4896		if (!btrfs_need_do_async_reclaim(space_info, fs_info,
 4897						 flush_state))
 4898			return;
 4899	} while (flush_state < COMMIT_TRANS);
 4900}
 4901
 4902void btrfs_init_async_reclaim_work(struct work_struct *work)
 4903{
 4904	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
 4905}
 4906
 4907/**
 4908 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
 4909 * @root - the root we're allocating for
 4910 * @block_rsv - the block_rsv we're allocating for
 4911 * @orig_bytes - the number of bytes we want
 4912 * @flush - whether or not we can flush to make our reservation
 4913 *
 4914 * This will reserve orgi_bytes number of bytes from the space info associated
 4915 * with the block_rsv.  If there is not enough space it will make an attempt to
 4916 * flush out space to make room.  It will do this by flushing delalloc if
 4917 * possible or committing the transaction.  If flush is 0 then no attempts to
 4918 * regain reservations will be made and this will fail if there is not enough
 4919 * space already.
 4920 */
 4921static int reserve_metadata_bytes(struct btrfs_root *root,
 4922				  struct btrfs_block_rsv *block_rsv,
 4923				  u64 orig_bytes,
 4924				  enum btrfs_reserve_flush_enum flush)
 4925{
 4926	struct btrfs_space_info *space_info = block_rsv->space_info;
 4927	u64 used;
 4928	u64 num_bytes = orig_bytes;
 4929	int flush_state = FLUSH_DELAYED_ITEMS_NR;
 4930	int ret = 0;
 4931	bool flushing = false;
 4932
 4933again:
 4934	ret = 0;
 4935	spin_lock(&space_info->lock);
 4936	/*
 4937	 * We only want to wait if somebody other than us is flushing and we
 4938	 * are actually allowed to flush all things.
 4939	 */
 4940	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
 4941	       space_info->flush) {
 4942		spin_unlock(&space_info->lock);
 4943		/*
 4944		 * If we have a trans handle we can't wait because the flusher
 4945		 * may have to commit the transaction, which would mean we would
 4946		 * deadlock since we are waiting for the flusher to finish, but
 4947		 * hold the current transaction open.
 4948		 */
 4949		if (current->journal_info)
 4950			return -EAGAIN;
 4951		ret = wait_event_killable(space_info->wait, !space_info->flush);
 4952		/* Must have been killed, return */
 4953		if (ret)
 4954			return -EINTR;
 4955
 4956		spin_lock(&space_info->lock);
 4957	}
 4958
 4959	ret = -ENOSPC;
 4960	used = space_info->bytes_used + space_info->bytes_reserved +
 4961		space_info->bytes_pinned + space_info->bytes_readonly +
 4962		space_info->bytes_may_use;
 4963
 4964	/*
 4965	 * The idea here is that we've not already over-reserved the block group
 4966	 * then we can go ahead and save our reservation first and then start
 4967	 * flushing if we need to.  Otherwise if we've already overcommitted
 4968	 * lets start flushing stuff first and then come back and try to make
 4969	 * our reservation.
 4970	 */
 4971	if (used <= space_info->total_bytes) {
 4972		if (used + orig_bytes <= space_info->total_bytes) {
 4973			space_info->bytes_may_use += orig_bytes;
 4974			trace_btrfs_space_reservation(root->fs_info,
 4975				"space_info", space_info->flags, orig_bytes, 1);
 4976			ret = 0;
 4977		} else {
 4978			/*
 4979			 * Ok set num_bytes to orig_bytes since we aren't
 4980			 * overocmmitted, this way we only try and reclaim what
 4981			 * we need.
 4982			 */
 4983			num_bytes = orig_bytes;
 4984		}
 4985	} else {
 4986		/*
 4987		 * Ok we're over committed, set num_bytes to the overcommitted
 4988		 * amount plus the amount of bytes that we need for this
 4989		 * reservation.
 4990		 */
 4991		num_bytes = used - space_info->total_bytes +
 4992			(orig_bytes * 2);
 4993	}
 4994
 4995	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
 4996		space_info->bytes_may_use += orig_bytes;
 4997		trace_btrfs_space_reservation(root->fs_info, "space_info",
 4998					      space_info->flags, orig_bytes,
 4999					      1);
 5000		ret = 0;
 5001	}
 5002
 5003	/*
 5004	 * Couldn't make our reservation, save our place so while we're trying
 5005	 * to reclaim space we can actually use it instead of somebody else
 5006	 * stealing it from us.
 5007	 *
 5008	 * We make the other tasks wait for the flush only when we can flush
 5009	 * all things.
 5010	 */
 5011	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
 5012		flushing = true;
 5013		space_info->flush = 1;
 5014	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
 5015		used += orig_bytes;
 5016		/*
 5017		 * We will do the space reservation dance during log replay,
 5018		 * which means we won't have fs_info->fs_root set, so don't do
 5019		 * the async reclaim as we will panic.
 5020		 */
 5021		if (!root->fs_info->log_root_recovering &&
 5022		    need_do_async_reclaim(space_info, root->fs_info, used) &&
 5023		    !work_busy(&root->fs_info->async_reclaim_work))
 5024			queue_work(system_unbound_wq,
 5025				   &root->fs_info->async_reclaim_work);
 5026	}
 5027	spin_unlock(&space_info->lock);
 5028
 5029	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
 5030		goto out;
 5031
 5032	ret = flush_space(root, space_info, num_bytes, orig_bytes,
 5033			  flush_state);
 5034	flush_state++;
 5035
 5036	/*
 5037	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
 5038	 * would happen. So skip delalloc flush.
 5039	 */
 5040	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
 5041	    (flush_state == FLUSH_DELALLOC ||
 5042	     flush_state == FLUSH_DELALLOC_WAIT))
 5043		flush_state = ALLOC_CHUNK;
 5044
 5045	if (!ret)
 5046		goto again;
 5047	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
 5048		 flush_state < COMMIT_TRANS)
 5049		goto again;
 5050	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
 5051		 flush_state <= COMMIT_TRANS)
 5052		goto again;
 5053
 5054out:
 5055	if (ret == -ENOSPC &&
 5056	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
 5057		struct btrfs_block_rsv *global_rsv =
 5058			&root->fs_info->global_block_rsv;
 5059
 5060		if (block_rsv != global_rsv &&
 5061		    !block_rsv_use_bytes(global_rsv, orig_bytes))
 5062			ret = 0;
 5063	}
 5064	if (ret == -ENOSPC)
 5065		trace_btrfs_space_reservation(root->fs_info,
 5066					      "space_info:enospc",
 5067					      space_info->flags, orig_bytes, 1);
 5068	if (flushing) {
 5069		spin_lock(&space_info->lock);
 5070		space_info->flush = 0;
 5071		wake_up_all(&space_info->wait);
 5072		spin_unlock(&space_info->lock);
 5073	}
 5074	return ret;
 5075}
 5076
 5077static struct btrfs_block_rsv *get_block_rsv(
 5078					const struct btrfs_trans_handle *trans,
 5079					const struct btrfs_root *root)
 5080{
 5081	struct btrfs_block_rsv *block_rsv = NULL;
 5082
 5083	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
 5084	    (root == root->fs_info->csum_root && trans->adding_csums) ||
 5085	     (root == root->fs_info->uuid_root))
 5086		block_rsv = trans->block_rsv;
 5087
 5088	if (!block_rsv)
 5089		block_rsv = root->block_rsv;
 5090
 5091	if (!block_rsv)
 5092		block_rsv = &root->fs_info->empty_block_rsv;
 5093
 5094	return block_rsv;
 5095}
 5096
 5097static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
 5098			       u64 num_bytes)
 5099{
 5100	int ret = -ENOSPC;
 5101	spin_lock(&block_rsv->lock);
 5102	if (block_rsv->reserved >= num_bytes) {
 5103		block_rsv->reserved -= num_bytes;
 5104		if (block_rsv->reserved < block_rsv->size)
 5105			block_rsv->full = 0;
 5106		ret = 0;
 5107	}
 5108	spin_unlock(&block_rsv->lock);
 5109	return ret;
 5110}
 5111
 5112static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
 5113				u64 num_bytes, int update_size)
 5114{
 5115	spin_lock(&block_rsv->lock);
 5116	block_rsv->reserved += num_bytes;
 5117	if (update_size)
 5118		block_rsv->size += num_bytes;
 5119	else if (block_rsv->reserved >= block_rsv->size)
 5120		block_rsv->full = 1;
 5121	spin_unlock(&block_rsv->lock);
 5122}
 5123
 5124int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
 5125			     struct btrfs_block_rsv *dest, u64 num_bytes,
 5126			     int min_factor)
 5127{
 5128	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 5129	u64 min_bytes;
 5130
 5131	if (global_rsv->space_info != dest->space_info)
 5132		return -ENOSPC;
 5133
 5134	spin_lock(&global_rsv->lock);
 5135	min_bytes = div_factor(global_rsv->size, min_factor);
 5136	if (global_rsv->reserved < min_bytes + num_bytes) {
 5137		spin_unlock(&global_rsv->lock);
 5138		return -ENOSPC;
 5139	}
 5140	global_rsv->reserved -= num_bytes;
 5141	if (global_rsv->reserved < global_rsv->size)
 5142		global_rsv->full = 0;
 5143	spin_unlock(&global_rsv->lock);
 5144
 5145	block_rsv_add_bytes(dest, num_bytes, 1);
 5146	return 0;
 5147}
 5148
 5149static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
 5150				    struct btrfs_block_rsv *block_rsv,
 5151				    struct btrfs_block_rsv *dest, u64 num_bytes)
 5152{
 5153	struct btrfs_space_info *space_info = block_rsv->space_info;
 5154
 5155	spin_lock(&block_rsv->lock);
 5156	if (num_bytes == (u64)-1)
 5157		num_bytes = block_rsv->size;
 5158	block_rsv->size -= num_bytes;
 5159	if (block_rsv->reserved >= block_rsv->size) {
 5160		num_bytes = block_rsv->reserved - block_rsv->size;
 5161		block_rsv->reserved = block_rsv->size;
 5162		block_rsv->full = 1;
 5163	} else {
 5164		num_bytes = 0;
 5165	}
 5166	spin_unlock(&block_rsv->lock);
 5167
 5168	if (num_bytes > 0) {
 5169		if (dest) {
 5170			spin_lock(&dest->lock);
 5171			if (!dest->full) {
 5172				u64 bytes_to_add;
 5173
 5174				bytes_to_add = dest->size - dest->reserved;
 5175				bytes_to_add = min(num_bytes, bytes_to_add);
 5176				dest->reserved += bytes_to_add;
 5177				if (dest->reserved >= dest->size)
 5178					dest->full = 1;
 5179				num_bytes -= bytes_to_add;
 5180			}
 5181			spin_unlock(&dest->lock);
 5182		}
 5183		if (num_bytes) {
 5184			spin_lock(&space_info->lock);
 5185			space_info->bytes_may_use -= num_bytes;
 5186			trace_btrfs_space_reservation(fs_info, "space_info",
 5187					space_info->flags, num_bytes, 0);
 5188			spin_unlock(&space_info->lock);
 5189		}
 5190	}
 5191}
 5192
 5193static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
 5194				   struct btrfs_block_rsv *dst, u64 num_bytes)
 5195{
 5196	int ret;
 5197
 5198	ret = block_rsv_use_bytes(src, num_bytes);
 5199	if (ret)
 5200		return ret;
 5201
 5202	block_rsv_add_bytes(dst, num_bytes, 1);
 5203	return 0;
 5204}
 5205
 5206void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
 5207{
 5208	memset(rsv, 0, sizeof(*rsv));
 5209	spin_lock_init(&rsv->lock);
 5210	rsv->type = type;
 5211}
 5212
 5213struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
 5214					      unsigned short type)
 5215{
 5216	struct btrfs_block_rsv *block_rsv;
 5217	struct btrfs_fs_info *fs_info = root->fs_info;
 5218
 5219	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
 5220	if (!block_rsv)
 5221		return NULL;
 5222
 5223	btrfs_init_block_rsv(block_rsv, type);
 5224	block_rsv->space_info = __find_space_info(fs_info,
 5225						  BTRFS_BLOCK_GROUP_METADATA);
 5226	return block_rsv;
 5227}
 5228
 5229void btrfs_free_block_rsv(struct btrfs_root *root,
 5230			  struct btrfs_block_rsv *rsv)
 5231{
 5232	if (!rsv)
 5233		return;
 5234	btrfs_block_rsv_release(root, rsv, (u64)-1);
 5235	kfree(rsv);
 5236}
 5237
 5238void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
 5239{
 5240	kfree(rsv);
 5241}
 5242
 5243int btrfs_block_rsv_add(struct btrfs_root *root,
 5244			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
 5245			enum btrfs_reserve_flush_enum flush)
 5246{
 5247	int ret;
 5248
 5249	if (num_bytes == 0)
 5250		return 0;
 5251
 5252	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
 5253	if (!ret) {
 5254		block_rsv_add_bytes(block_rsv, num_bytes, 1);
 5255		return 0;
 5256	}
 5257
 5258	return ret;
 5259}
 5260
 5261int btrfs_block_rsv_check(struct btrfs_root *root,
 5262			  struct btrfs_block_rsv *block_rsv, int min_factor)
 5263{
 5264	u64 num_bytes = 0;
 5265	int ret = -ENOSPC;
 5266
 5267	if (!block_rsv)
 5268		return 0;
 5269
 5270	spin_lock(&block_rsv->lock);
 5271	num_bytes = div_factor(block_rsv->size, min_factor);
 5272	if (block_rsv->reserved >= num_bytes)
 5273		ret = 0;
 5274	spin_unlock(&block_rsv->lock);
 5275
 5276	return ret;
 5277}
 5278
 5279int btrfs_block_rsv_refill(struct btrfs_root *root,
 5280			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
 5281			   enum btrfs_reserve_flush_enum flush)
 5282{
 5283	u64 num_bytes = 0;
 5284	int ret = -ENOSPC;
 5285
 5286	if (!block_rsv)
 5287		return 0;
 5288
 5289	spin_lock(&block_rsv->lock);
 5290	num_bytes = min_reserved;
 5291	if (block_rsv->reserved >= num_bytes)
 5292		ret = 0;
 5293	else
 5294		num_bytes -= block_rsv->reserved;
 5295	spin_unlock(&block_rsv->lock);
 5296
 5297	if (!ret)
 5298		return 0;
 5299
 5300	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
 5301	if (!ret) {
 5302		block_rsv_add_bytes(block_rsv, num_bytes, 0);
 5303		return 0;
 5304	}
 5305
 5306	return ret;
 5307}
 5308
 5309int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
 5310			    struct btrfs_block_rsv *dst_rsv,
 5311			    u64 num_bytes)
 5312{
 5313	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
 5314}
 5315
 5316void btrfs_block_rsv_release(struct btrfs_root *root,
 5317			     struct btrfs_block_rsv *block_rsv,
 5318			     u64 num_bytes)
 5319{
 5320	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
 5321	if (global_rsv == block_rsv ||
 5322	    block_rsv->space_info != global_rsv->space_info)
 5323		global_rsv = NULL;
 5324	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
 5325				num_bytes);
 5326}
 5327
 5328/*
 5329 * helper to calculate size of global block reservation.
 5330 * the desired value is sum of space used by extent tree,
 5331 * checksum tree and root tree
 5332 */
 5333static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
 5334{
 5335	struct btrfs_space_info *sinfo;
 5336	u64 num_bytes;
 5337	u64 meta_used;
 5338	u64 data_used;
 5339	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
 5340
 5341	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
 5342	spin_lock(&sinfo->lock);
 5343	data_used = sinfo->bytes_used;
 5344	spin_unlock(&sinfo->lock);
 5345
 5346	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 5347	spin_lock(&sinfo->lock);
 5348	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
 5349		data_used = 0;
 5350	meta_used = sinfo->bytes_used;
 5351	spin_unlock(&sinfo->lock);
 5352
 5353	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
 5354		    csum_size * 2;
 5355	num_bytes += div_u64(data_used + meta_used, 50);
 5356
 5357	if (num_bytes * 3 > meta_used)
 5358		num_bytes = div_u64(meta_used, 3);
 5359
 5360	return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
 5361}
 5362
 5363static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
 5364{
 5365	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
 5366	struct btrfs_space_info *sinfo = block_rsv->space_info;
 5367	u64 num_bytes;
 5368
 5369	num_bytes = calc_global_metadata_size(fs_info);
 5370
 5371	spin_lock(&sinfo->lock);
 5372	spin_lock(&block_rsv->lock);
 5373
 5374	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
 5375
 5376	if (block_rsv->reserved < block_rsv->size) {
 5377		num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
 5378			sinfo->bytes_reserved + sinfo->bytes_readonly +
 5379			sinfo->bytes_may_use;
 5380		if (sinfo->total_bytes > num_bytes) {
 5381			num_bytes = sinfo->total_bytes - num_bytes;
 5382			num_bytes = min(num_bytes,
 5383					block_rsv->size - block_rsv->reserved);
 5384			block_rsv->reserved += num_bytes;
 5385			sinfo->bytes_may_use += num_bytes;
 5386			trace_btrfs_space_reservation(fs_info, "space_info",
 5387						      sinfo->flags, num_bytes,
 5388						      1);
 5389		}
 5390	} else if (block_rsv->reserved > block_rsv->size) {
 5391		num_bytes = block_rsv->reserved - block_rsv->size;
 5392		sinfo->bytes_may_use -= num_bytes;
 5393		trace_btrfs_space_reservation(fs_info, "space_info",
 5394				      sinfo->flags, num_bytes, 0);
 5395		block_rsv->reserved = block_rsv->size;
 5396	}
 5397
 5398	if (block_rsv->reserved == block_rsv->size)
 5399		block_rsv->full = 1;
 5400	else
 5401		block_rsv->full = 0;
 5402
 5403	spin_unlock(&block_rsv->lock);
 5404	spin_unlock(&sinfo->lock);
 5405}
 5406
 5407static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
 5408{
 5409	struct btrfs_space_info *space_info;
 5410
 5411	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
 5412	fs_info->chunk_block_rsv.space_info = space_info;
 5413
 5414	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 5415	fs_info->global_block_rsv.space_info = space_info;
 5416	fs_info->delalloc_block_rsv.space_info = space_info;
 5417	fs_info->trans_block_rsv.space_info = space_info;
 5418	fs_info->empty_block_rsv.space_info = space_info;
 5419	fs_info->delayed_block_rsv.space_info = space_info;
 5420
 5421	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
 5422	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
 5423	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
 5424	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
 5425	if (fs_info->quota_root)
 5426		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
 5427	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
 5428
 5429	update_global_block_rsv(fs_info);
 5430}
 5431
 5432static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
 5433{
 5434	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
 5435				(u64)-1);
 5436	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
 5437	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
 5438	WARN_ON(fs_info->trans_block_rsv.size > 0);
 5439	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
 5440	WARN_ON(fs_info->chunk_block_rsv.size > 0);
 5441	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
 5442	WARN_ON(fs_info->delayed_block_rsv.size > 0);
 5443	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
 5444}
 5445
 5446void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
 5447				  struct btrfs_root *root)
 5448{
 5449	if (!trans->block_rsv)
 5450		return;
 5451
 5452	if (!trans->bytes_reserved)
 5453		return;
 5454
 5455	trace_btrfs_space_reservation(root->fs_info, "transaction",
 5456				      trans->transid, trans->bytes_reserved, 0);
 5457	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
 5458	trans->bytes_reserved = 0;
 5459}
 5460
 5461/*
 5462 * To be called after all the new block groups attached to the transaction
 5463 * handle have been created (btrfs_create_pending_block_groups()).
 5464 */
 5465void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
 5466{
 5467	struct btrfs_fs_info *fs_info = trans->root->fs_info;
 5468
 5469	if (!trans->chunk_bytes_reserved)
 5470		return;
 5471
 5472	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
 5473
 5474	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
 5475				trans->chunk_bytes_reserved);
 5476	trans->chunk_bytes_reserved = 0;
 5477}
 5478
 5479/* Can only return 0 or -ENOSPC */
 5480int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
 5481				  struct inode *inode)
 5482{
 5483	struct btrfs_root *root = BTRFS_I(inode)->root;
 5484	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
 5485	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
 5486
 5487	/*
 5488	 * We need to hold space in order to delete our orphan item once we've
 5489	 * added it, so this takes the reservation so we can release it later
 5490	 * when we are truly done with the orphan item.
 5491	 */
 5492	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 5493	trace_btrfs_space_reservation(root->fs_info, "orphan",
 5494				      btrfs_ino(inode), num_bytes, 1);
 5495	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
 5496}
 5497
 5498void btrfs_orphan_release_metadata(struct inode *inode)
 5499{
 5500	struct btrfs_root *root = BTRFS_I(inode)->root;
 5501	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 5502	trace_btrfs_space_reservation(root->fs_info, "orphan",
 5503				      btrfs_ino(inode), num_bytes, 0);
 5504	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
 5505}
 5506
 5507/*
 5508 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
 5509 * root: the root of the parent directory
 5510 * rsv: block reservation
 5511 * items: the number of items that we need do reservation
 5512 * qgroup_reserved: used to return the reserved size in qgroup
 5513 *
 5514 * This function is used to reserve the space for snapshot/subvolume
 5515 * creation and deletion. Those operations are different with the
 5516 * common file/directory operations, they change two fs/file trees
 5517 * and root tree, the number of items that the qgroup reserves is
 5518 * different with the free space reservation. So we can not use
 5519 * the space reseravtion mechanism in start_transaction().
 5520 */
 5521int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
 5522				     struct btrfs_block_rsv *rsv,
 5523				     int items,
 5524				     u64 *qgroup_reserved,
 5525				     bool use_global_rsv)
 5526{
 5527	u64 num_bytes;
 5528	int ret;
 5529	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
 5530
 5531	if (root->fs_info->quota_enabled) {
 5532		/* One for parent inode, two for dir entries */
 5533		num_bytes = 3 * root->nodesize;
 5534		ret = btrfs_qgroup_reserve_meta(root, num_bytes);
 5535		if (ret)
 5536			return ret;
 5537	} else {
 5538		num_bytes = 0;
 5539	}
 5540
 5541	*qgroup_reserved = num_bytes;
 5542
 5543	num_bytes = btrfs_calc_trans_metadata_size(root, items);
 5544	rsv->space_info = __find_space_info(root->fs_info,
 5545					    BTRFS_BLOCK_GROUP_METADATA);
 5546	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
 5547				  BTRFS_RESERVE_FLUSH_ALL);
 5548
 5549	if (ret == -ENOSPC && use_global_rsv)
 5550		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
 5551
 5552	if (ret && *qgroup_reserved)
 5553		btrfs_qgroup_free_meta(root, *qgroup_reserved);
 5554
 5555	return ret;
 5556}
 5557
 5558void btrfs_subvolume_release_metadata(struct btrfs_root *root,
 5559				      struct btrfs_block_rsv *rsv,
 5560				      u64 qgroup_reserved)
 5561{
 5562	btrfs_block_rsv_release(root, rsv, (u64)-1);
 5563}
 5564
 5565/**
 5566 * drop_outstanding_extent - drop an outstanding extent
 5567 * @inode: the inode we're dropping the extent for
 5568 * @num_bytes: the number of bytes we're relaseing.
 5569 *
 5570 * This is called when we are freeing up an outstanding extent, either called
 5571 * after an error or after an extent is written.  This will return the number of
 5572 * reserved extents that need to be freed.  This must be called with
 5573 * BTRFS_I(inode)->lock held.
 5574 */
 5575static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
 5576{
 5577	unsigned drop_inode_space = 0;
 5578	unsigned dropped_extents = 0;
 5579	unsigned num_extents = 0;
 5580
 5581	num_extents = (unsigned)div64_u64(num_bytes +
 5582					  BTRFS_MAX_EXTENT_SIZE - 1,
 5583					  BTRFS_MAX_EXTENT_SIZE);
 5584	ASSERT(num_extents);
 5585	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
 5586	BTRFS_I(inode)->outstanding_extents -= num_extents;
 5587
 5588	if (BTRFS_I(inode)->outstanding_extents == 0 &&
 5589	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
 5590			       &BTRFS_I(inode)->runtime_flags))
 5591		drop_inode_space = 1;
 5592
 5593	/*
 5594	 * If we have more or the same amount of outsanding extents than we have
 5595	 * reserved then we need to leave the reserved extents count alone.
 5596	 */
 5597	if (BTRFS_I(inode)->outstanding_extents >=
 5598	    BTRFS_I(inode)->reserved_extents)
 5599		return drop_inode_space;
 5600
 5601	dropped_extents = BTRFS_I(inode)->reserved_extents -
 5602		BTRFS_I(inode)->outstanding_extents;
 5603	BTRFS_I(inode)->reserved_extents -= dropped_extents;
 5604	return dropped_extents + drop_inode_space;
 5605}
 5606
 5607/**
 5608 * calc_csum_metadata_size - return the amount of metada space that must be
 5609 *	reserved/free'd for the given bytes.
 5610 * @inode: the inode we're manipulating
 5611 * @num_bytes: the number of bytes in question
 5612 * @reserve: 1 if we are reserving space, 0 if we are freeing space
 5613 *
 5614 * This adjusts the number of csum_bytes in the inode and then returns the
 5615 * correct amount of metadata that must either be reserved or freed.  We
 5616 * calculate how many checksums we can fit into one leaf and then divide the
 5617 * number of bytes that will need to be checksumed by this value to figure out
 5618 * how many checksums will be required.  If we are adding bytes then the number
 5619 * may go up and we will return the number of additional bytes that must be
 5620 * reserved.  If it is going down we will return the number of bytes that must
 5621 * be freed.
 5622 *
 5623 * This must be called with BTRFS_I(inode)->lock held.
 5624 */
 5625static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
 5626				   int reserve)
 5627{
 5628	struct btrfs_root *root = BTRFS_I(inode)->root;
 5629	u64 old_csums, num_csums;
 5630
 5631	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
 5632	    BTRFS_I(inode)->csum_bytes == 0)
 5633		return 0;
 5634
 5635	old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
 5636	if (reserve)
 5637		BTRFS_I(inode)->csum_bytes += num_bytes;
 5638	else
 5639		BTRFS_I(inode)->csum_bytes -= num_bytes;
 5640	num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
 5641
 5642	/* No change, no need to reserve more */
 5643	if (old_csums == num_csums)
 5644		return 0;
 5645
 5646	if (reserve)
 5647		return btrfs_calc_trans_metadata_size(root,
 5648						      num_csums - old_csums);
 5649
 5650	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
 5651}
 5652
 5653int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
 5654{
 5655	struct btrfs_root *root = BTRFS_I(inode)->root;
 5656	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
 5657	u64 to_reserve = 0;
 5658	u64 csum_bytes;
 5659	unsigned nr_extents = 0;
 5660	int extra_reserve = 0;
 5661	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
 5662	int ret = 0;
 5663	bool delalloc_lock = true;
 5664	u64 to_free = 0;
 5665	unsigned dropped;
 5666
 5667	/* If we are a free space inode we need to not flush since we will be in
 5668	 * the middle of a transaction commit.  We also don't need the delalloc
 5669	 * mutex since we won't race with anybody.  We need this mostly to make
 5670	 * lockdep shut its filthy mouth.
 5671	 */
 5672	if (btrfs_is_free_space_inode(inode)) {
 5673		flush = BTRFS_RESERVE_NO_FLUSH;
 5674		delalloc_lock = false;
 5675	}
 5676
 5677	if (flush != BTRFS_RESERVE_NO_FLUSH &&
 5678	    btrfs_transaction_in_commit(root->fs_info))
 5679		schedule_timeout(1);
 5680
 5681	if (delalloc_lock)
 5682		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
 5683
 5684	num_bytes = ALIGN(num_bytes, root->sectorsize);
 5685
 5686	spin_lock(&BTRFS_I(inode)->lock);
 5687	nr_extents = (unsigned)div64_u64(num_bytes +
 5688					 BTRFS_MAX_EXTENT_SIZE - 1,
 5689					 BTRFS_MAX_EXTENT_SIZE);
 5690	BTRFS_I(inode)->outstanding_extents += nr_extents;
 5691	nr_extents = 0;
 5692
 5693	if (BTRFS_I(inode)->outstanding_extents >
 5694	    BTRFS_I(inode)->reserved_extents)
 5695		nr_extents = BTRFS_I(inode)->outstanding_extents -
 5696			BTRFS_I(inode)->reserved_extents;
 5697
 5698	/*
 5699	 * Add an item to reserve for updating the inode when we complete the
 5700	 * delalloc io.
 5701	 */
 5702	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
 5703		      &BTRFS_I(inode)->runtime_flags)) {
 5704		nr_extents++;
 5705		extra_reserve = 1;
 5706	}
 5707
 5708	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
 5709	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
 5710	csum_bytes = BTRFS_I(inode)->csum_bytes;
 5711	spin_unlock(&BTRFS_I(inode)->lock);
 5712
 5713	if (root->fs_info->quota_enabled) {
 5714		ret = btrfs_qgroup_reserve_meta(root,
 5715				nr_extents * root->nodesize);
 5716		if (ret)
 5717			goto out_fail;
 5718	}
 5719
 5720	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
 5721	if (unlikely(ret)) {
 5722		btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
 5723		goto out_fail;
 5724	}
 5725
 5726	spin_lock(&BTRFS_I(inode)->lock);
 5727	if (extra_reserve) {
 5728		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
 5729			&BTRFS_I(inode)->runtime_flags);
 5730		nr_extents--;
 5731	}
 5732	BTRFS_I(inode)->reserved_extents += nr_extents;
 5733	spin_unlock(&BTRFS_I(inode)->lock);
 5734
 5735	if (delalloc_lock)
 5736		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
 5737
 5738	if (to_reserve)
 5739		trace_btrfs_space_reservation(root->fs_info, "delalloc",
 5740					      btrfs_ino(inode), to_reserve, 1);
 5741	block_rsv_add_bytes(block_rsv, to_reserve, 1);
 5742
 5743	return 0;
 5744
 5745out_fail:
 5746	spin_lock(&BTRFS_I(inode)->lock);
 5747	dropped = drop_outstanding_extent(inode, num_bytes);
 5748	/*
 5749	 * If the inodes csum_bytes is the same as the original
 5750	 * csum_bytes then we know we haven't raced with any free()ers
 5751	 * so we can just reduce our inodes csum bytes and carry on.
 5752	 */
 5753	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
 5754		calc_csum_metadata_size(inode, num_bytes, 0);
 5755	} else {
 5756		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
 5757		u64 bytes;
 5758
 5759		/*
 5760		 * This is tricky, but first we need to figure out how much we
 5761		 * free'd from any free-ers that occurred during this
 5762		 * reservation, so we reset ->csum_bytes to the csum_bytes
 5763		 * before we dropped our lock, and then call the free for the
 5764		 * number of bytes that were freed while we were trying our
 5765		 * reservation.
 5766		 */
 5767		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
 5768		BTRFS_I(inode)->csum_bytes = csum_bytes;
 5769		to_free = calc_csum_metadata_size(inode, bytes, 0);
 5770
 5771
 5772		/*
 5773		 * Now we need to see how much we would have freed had we not
 5774		 * been making this reservation and our ->csum_bytes were not
 5775		 * artificially inflated.
 5776		 */
 5777		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
 5778		bytes = csum_bytes - orig_csum_bytes;
 5779		bytes = calc_csum_metadata_size(inode, bytes, 0);
 5780
 5781		/*
 5782		 * Now reset ->csum_bytes to what it should be.  If bytes is
 5783		 * more than to_free then we would have free'd more space had we
 5784		 * not had an artificially high ->csum_bytes, so we need to free
 5785		 * the remainder.  If bytes is the same or less then we don't
 5786		 * need to do anything, the other free-ers did the correct
 5787		 * thing.
 5788		 */
 5789		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
 5790		if (bytes > to_free)
 5791			to_free = bytes - to_free;
 5792		else
 5793			to_free = 0;
 5794	}
 5795	spin_unlock(&BTRFS_I(inode)->lock);
 5796	if (dropped)
 5797		to_free += btrfs_calc_trans_metadata_size(root, dropped);
 5798
 5799	if (to_free) {
 5800		btrfs_block_rsv_release(root, block_rsv, to_free);
 5801		trace_btrfs_space_reservation(root->fs_info, "delalloc",
 5802					      btrfs_ino(inode), to_free, 0);
 5803	}
 5804	if (delalloc_lock)
 5805		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
 5806	return ret;
 5807}
 5808
 5809/**
 5810 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
 5811 * @inode: the inode to release the reservation for
 5812 * @num_bytes: the number of bytes we're releasing
 5813 *
 5814 * This will release the metadata reservation for an inode.  This can be called
 5815 * once we complete IO for a given set of bytes to release their metadata
 5816 * reservations.
 5817 */
 5818void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
 5819{
 5820	struct btrfs_root *root = BTRFS_I(inode)->root;
 5821	u64 to_free = 0;
 5822	unsigned dropped;
 5823
 5824	num_bytes = ALIGN(num_bytes, root->sectorsize);
 5825	spin_lock(&BTRFS_I(inode)->lock);
 5826	dropped = drop_outstanding_extent(inode, num_bytes);
 5827
 5828	if (num_bytes)
 5829		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
 5830	spin_unlock(&BTRFS_I(inode)->lock);
 5831	if (dropped > 0)
 5832		to_free += btrfs_calc_trans_metadata_size(root, dropped);
 5833
 5834	if (btrfs_test_is_dummy_root(root))
 5835		return;
 5836
 5837	trace_btrfs_space_reservation(root->fs_info, "delalloc",
 5838				      btrfs_ino(inode), to_free, 0);
 5839
 5840	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
 5841				to_free);
 5842}
 5843
 5844/**
 5845 * btrfs_delalloc_reserve_space - reserve data and metadata space for
 5846 * delalloc
 5847 * @inode: inode we're writing to
 5848 * @start: start range we are writing to
 5849 * @len: how long the range we are writing to
 5850 *
 5851 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
 5852 *
 5853 * This will do the following things
 5854 *
 5855 * o reserve space in data space info for num bytes
 5856 *   and reserve precious corresponding qgroup space
 5857 *   (Done in check_data_free_space)
 5858 *
 5859 * o reserve space for metadata space, based on the number of outstanding
 5860 *   extents and how much csums will be needed
 5861 *   also reserve metadata space in a per root over-reserve method.
 5862 * o add to the inodes->delalloc_bytes
 5863 * o add it to the fs_info's delalloc inodes list.
 5864 *   (Above 3 all done in delalloc_reserve_metadata)
 5865 *
 5866 * Return 0 for success
 5867 * Return <0 for error(-ENOSPC or -EQUOT)
 5868 */
 5869int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
 5870{
 5871	int ret;
 5872
 5873	ret = btrfs_check_data_free_space(inode, start, len);
 5874	if (ret < 0)
 5875		return ret;
 5876	ret = btrfs_delalloc_reserve_metadata(inode, len);
 5877	if (ret < 0)
 5878		btrfs_free_reserved_data_space(inode, start, len);
 5879	return ret;
 5880}
 5881
 5882/**
 5883 * btrfs_delalloc_release_space - release data and metadata space for delalloc
 5884 * @inode: inode we're releasing space for
 5885 * @start: start position of the space already reserved
 5886 * @len: the len of the space already reserved
 5887 *
 5888 * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
 5889 * called in the case that we don't need the metadata AND data reservations
 5890 * anymore.  So if there is an error or we insert an inline extent.
 5891 *
 5892 * This function will release the metadata space that was not used and will
 5893 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
 5894 * list if there are no delalloc bytes left.
 5895 * Also it will handle the qgroup reserved space.
 5896 */
 5897void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
 5898{
 5899	btrfs_delalloc_release_metadata(inode, len);
 5900	btrfs_free_reserved_data_space(inode, start, len);
 5901}
 5902
 5903static int update_block_group(struct btrfs_trans_handle *trans,
 5904			      struct btrfs_root *root, u64 bytenr,
 5905			      u64 num_bytes, int alloc)
 5906{
 5907	struct btrfs_block_group_cache *cache = NULL;
 5908	struct btrfs_fs_info *info = root->fs_info;
 5909	u64 total = num_bytes;
 5910	u64 old_val;
 5911	u64 byte_in_group;
 5912	int factor;
 5913
 5914	/* block accounting for super block */
 5915	spin_lock(&info->delalloc_root_lock);
 5916	old_val = btrfs_super_bytes_used(info->super_copy);
 5917	if (alloc)
 5918		old_val += num_bytes;
 5919	else
 5920		old_val -= num_bytes;
 5921	btrfs_set_super_bytes_used(info->super_copy, old_val);
 5922	spin_unlock(&info->delalloc_root_lock);
 5923
 5924	while (total) {
 5925		cache = btrfs_lookup_block_group(info, bytenr);
 5926		if (!cache)
 5927			return -ENOENT;
 5928		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
 5929				    BTRFS_BLOCK_GROUP_RAID1 |
 5930				    BTRFS_BLOCK_GROUP_RAID10))
 5931			factor = 2;
 5932		else
 5933			factor = 1;
 5934		/*
 5935		 * If this block group has free space cache written out, we
 5936		 * need to make sure to load it if we are removing space.  This
 5937		 * is because we need the unpinning stage to actually add the
 5938		 * space back to the block group, otherwise we will leak space.
 5939		 */
 5940		if (!alloc && cache->cached == BTRFS_CACHE_NO)
 5941			cache_block_group(cache, 1);
 5942
 5943		byte_in_group = bytenr - cache->key.objectid;
 5944		WARN_ON(byte_in_group > cache->key.offset);
 5945
 5946		spin_lock(&cache->space_info->lock);
 5947		spin_lock(&cache->lock);
 5948
 5949		if (btrfs_test_opt(root, SPACE_CACHE) &&
 5950		    cache->disk_cache_state < BTRFS_DC_CLEAR)
 5951			cache->disk_cache_state = BTRFS_DC_CLEAR;
 5952
 5953		old_val = btrfs_block_group_used(&cache->item);
 5954		num_bytes = min(total, cache->key.offset - byte_in_group);
 5955		if (alloc) {
 5956			old_val += num_bytes;
 5957			btrfs_set_block_group_used(&cache->item, old_val);
 5958			cache->reserved -= num_bytes;
 5959			cache->space_info->bytes_reserved -= num_bytes;
 5960			cache->space_info->bytes_used += num_bytes;
 5961			cache->space_info->disk_used += num_bytes * factor;
 5962			spin_unlock(&cache->lock);
 5963			spin_unlock(&cache->space_info->lock);
 5964		} else {
 5965			old_val -= num_bytes;
 5966			btrfs_set_block_group_used(&cache->item, old_val);
 5967			cache->pinned += num_bytes;
 5968			cache->space_info->bytes_pinned += num_bytes;
 5969			cache->space_info->bytes_used -= num_bytes;
 5970			cache->space_info->disk_used -= num_bytes * factor;
 5971			spin_unlock(&cache->lock);
 5972			spin_unlock(&cache->space_info->lock);
 5973
 5974			set_extent_dirty(info->pinned_extents,
 5975					 bytenr, bytenr + num_bytes - 1,
 5976					 GFP_NOFS | __GFP_NOFAIL);
 5977		}
 5978
 5979		spin_lock(&trans->transaction->dirty_bgs_lock);
 5980		if (list_empty(&cache->dirty_list)) {
 5981			list_add_tail(&cache->dirty_list,
 5982				      &trans->transaction->dirty_bgs);
 5983				trans->transaction->num_dirty_bgs++;
 5984			btrfs_get_block_group(cache);
 5985		}
 5986		spin_unlock(&trans->transaction->dirty_bgs_lock);
 5987
 5988		/*
 5989		 * No longer have used bytes in this block group, queue it for
 5990		 * deletion. We do this after adding the block group to the
 5991		 * dirty list to avoid races between cleaner kthread and space
 5992		 * cache writeout.
 5993		 */
 5994		if (!alloc && old_val == 0) {
 5995			spin_lock(&info->unused_bgs_lock);
 5996			if (list_empty(&cache->bg_list)) {
 5997				btrfs_get_block_group(cache);
 5998				list_add_tail(&cache->bg_list,
 5999					      &info->unused_bgs);
 6000			}
 6001			spin_unlock(&info->unused_bgs_lock);
 6002		}
 6003
 6004		btrfs_put_block_group(cache);
 6005		total -= num_bytes;
 6006		bytenr += num_bytes;
 6007	}
 6008	return 0;
 6009}
 6010
 6011static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
 6012{
 6013	struct btrfs_block_group_cache *cache;
 6014	u64 bytenr;
 6015
 6016	spin_lock(&root->fs_info->block_group_cache_lock);
 6017	bytenr = root->fs_info->first_logical_byte;
 6018	spin_unlock(&root->fs_info->block_group_cache_lock);
 6019
 6020	if (bytenr < (u64)-1)
 6021		return bytenr;
 6022
 6023	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
 6024	if (!cache)
 6025		return 0;
 6026
 6027	bytenr = cache->key.objectid;
 6028	btrfs_put_block_group(cache);
 6029
 6030	return bytenr;
 6031}
 6032
 6033static int pin_down_extent(struct btrfs_root *root,
 6034			   struct btrfs_block_group_cache *cache,
 6035			   u64 bytenr, u64 num_bytes, int reserved)
 6036{
 
 
 6037	spin_lock(&cache->space_info->lock);
 6038	spin_lock(&cache->lock);
 6039	cache->pinned += num_bytes;
 6040	cache->space_info->bytes_pinned += num_bytes;
 
 6041	if (reserved) {
 6042		cache->reserved -= num_bytes;
 6043		cache->space_info->bytes_reserved -= num_bytes;
 6044	}
 6045	spin_unlock(&cache->lock);
 6046	spin_unlock(&cache->space_info->lock);
 6047
 6048	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
 
 
 6049			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
 6050	if (reserved)
 6051		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
 6052	return 0;
 6053}
 6054
 6055/*
 6056 * this function must be called within transaction
 6057 */
 6058int btrfs_pin_extent(struct btrfs_root *root,
 6059		     u64 bytenr, u64 num_bytes, int reserved)
 6060{
 6061	struct btrfs_block_group_cache *cache;
 6062
 6063	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
 6064	BUG_ON(!cache); /* Logic error */
 6065
 6066	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
 6067
 6068	btrfs_put_block_group(cache);
 6069	return 0;
 6070}
 6071
 6072/*
 6073 * this function must be called within transaction
 6074 */
 6075int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
 6076				    u64 bytenr, u64 num_bytes)
 6077{
 6078	struct btrfs_block_group_cache *cache;
 6079	int ret;
 6080
 6081	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
 6082	if (!cache)
 6083		return -EINVAL;
 6084
 6085	/*
 6086	 * pull in the free space cache (if any) so that our pin
 6087	 * removes the free space from the cache.  We have load_only set
 6088	 * to one because the slow code to read in the free extents does check
 6089	 * the pinned extents.
 6090	 */
 6091	cache_block_group(cache, 1);
 6092
 6093	pin_down_extent(root, cache, bytenr, num_bytes, 0);
 6094
 6095	/* remove us from the free space cache (if we're there at all) */
 6096	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
 6097	btrfs_put_block_group(cache);
 6098	return ret;
 6099}
 6100
 6101static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
 
 6102{
 6103	int ret;
 6104	struct btrfs_block_group_cache *block_group;
 6105	struct btrfs_caching_control *caching_ctl;
 6106
 6107	block_group = btrfs_lookup_block_group(root->fs_info, start);
 6108	if (!block_group)
 6109		return -EINVAL;
 6110
 6111	cache_block_group(block_group, 0);
 6112	caching_ctl = get_caching_control(block_group);
 6113
 6114	if (!caching_ctl) {
 6115		/* Logic error */
 6116		BUG_ON(!block_group_cache_done(block_group));
 6117		ret = btrfs_remove_free_space(block_group, start, num_bytes);
 6118	} else {
 6119		mutex_lock(&caching_ctl->mutex);
 6120
 6121		if (start >= caching_ctl->progress) {
 6122			ret = add_excluded_extent(root, start, num_bytes);
 
 6123		} else if (start + num_bytes <= caching_ctl->progress) {
 6124			ret = btrfs_remove_free_space(block_group,
 6125						      start, num_bytes);
 6126		} else {
 6127			num_bytes = caching_ctl->progress - start;
 6128			ret = btrfs_remove_free_space(block_group,
 6129						      start, num_bytes);
 6130			if (ret)
 6131				goto out_lock;
 6132
 6133			num_bytes = (start + num_bytes) -
 6134				caching_ctl->progress;
 6135			start = caching_ctl->progress;
 6136			ret = add_excluded_extent(root, start, num_bytes);
 
 6137		}
 6138out_lock:
 6139		mutex_unlock(&caching_ctl->mutex);
 6140		put_caching_control(caching_ctl);
 6141	}
 6142	btrfs_put_block_group(block_group);
 6143	return ret;
 6144}
 6145
 6146int btrfs_exclude_logged_extents(struct btrfs_root *log,
 6147				 struct extent_buffer *eb)
 6148{
 
 6149	struct btrfs_file_extent_item *item;
 6150	struct btrfs_key key;
 6151	int found_type;
 6152	int i;
 
 6153
 6154	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
 6155		return 0;
 6156
 6157	for (i = 0; i < btrfs_header_nritems(eb); i++) {
 6158		btrfs_item_key_to_cpu(eb, &key, i);
 6159		if (key.type != BTRFS_EXTENT_DATA_KEY)
 6160			continue;
 6161		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
 6162		found_type = btrfs_file_extent_type(eb, item);
 6163		if (found_type == BTRFS_FILE_EXTENT_INLINE)
 6164			continue;
 6165		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 6166			continue;
 6167		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 6168		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 6169		__exclude_logged_extent(log, key.objectid, key.offset);
 
 
 6170	}
 6171
 6172	return 0;
 6173}
 6174
 6175/**
 6176 * btrfs_update_reserved_bytes - update the block_group and space info counters
 6177 * @cache:	The cache we are manipulating
 6178 * @num_bytes:	The number of bytes in question
 6179 * @reserve:	One of the reservation enums
 6180 * @delalloc:   The blocks are allocated for the delalloc write
 6181 *
 6182 * This is called by the allocator when it reserves space, or by somebody who is
 6183 * freeing space that was never actually used on disk.  For example if you
 6184 * reserve some space for a new leaf in transaction A and before transaction A
 6185 * commits you free that leaf, you call this with reserve set to 0 in order to
 6186 * clear the reservation.
 6187 *
 6188 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
 6189 * ENOSPC accounting.  For data we handle the reservation through clearing the
 6190 * delalloc bits in the io_tree.  We have to do this since we could end up
 6191 * allocating less disk space for the amount of data we have reserved in the
 6192 * case of compression.
 6193 *
 6194 * If this is a reservation and the block group has become read only we cannot
 6195 * make the reservation and return -EAGAIN, otherwise this function always
 6196 * succeeds.
 6197 */
 6198static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
 6199				       u64 num_bytes, int reserve, int delalloc)
 6200{
 6201	struct btrfs_space_info *space_info = cache->space_info;
 6202	int ret = 0;
 6203
 6204	spin_lock(&space_info->lock);
 6205	spin_lock(&cache->lock);
 6206	if (reserve != RESERVE_FREE) {
 6207		if (cache->ro) {
 6208			ret = -EAGAIN;
 6209		} else {
 6210			cache->reserved += num_bytes;
 6211			space_info->bytes_reserved += num_bytes;
 6212			if (reserve == RESERVE_ALLOC) {
 6213				trace_btrfs_space_reservation(cache->fs_info,
 6214						"space_info", space_info->flags,
 6215						num_bytes, 0);
 6216				space_info->bytes_may_use -= num_bytes;
 6217			}
 6218
 6219			if (delalloc)
 6220				cache->delalloc_bytes += num_bytes;
 6221		}
 6222	} else {
 6223		if (cache->ro)
 6224			space_info->bytes_readonly += num_bytes;
 6225		cache->reserved -= num_bytes;
 6226		space_info->bytes_reserved -= num_bytes;
 6227
 6228		if (delalloc)
 6229			cache->delalloc_bytes -= num_bytes;
 6230	}
 6231	spin_unlock(&cache->lock);
 6232	spin_unlock(&space_info->lock);
 6233	return ret;
 6234}
 6235
 6236void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
 6237				struct btrfs_root *root)
 6238{
 6239	struct btrfs_fs_info *fs_info = root->fs_info;
 6240	struct btrfs_caching_control *next;
 6241	struct btrfs_caching_control *caching_ctl;
 6242	struct btrfs_block_group_cache *cache;
 6243
 6244	down_write(&fs_info->commit_root_sem);
 6245
 6246	list_for_each_entry_safe(caching_ctl, next,
 6247				 &fs_info->caching_block_groups, list) {
 6248		cache = caching_ctl->block_group;
 6249		if (block_group_cache_done(cache)) {
 6250			cache->last_byte_to_unpin = (u64)-1;
 6251			list_del_init(&caching_ctl->list);
 6252			put_caching_control(caching_ctl);
 6253		} else {
 6254			cache->last_byte_to_unpin = caching_ctl->progress;
 6255		}
 6256	}
 6257
 6258	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
 6259		fs_info->pinned_extents = &fs_info->freed_extents[1];
 6260	else
 6261		fs_info->pinned_extents = &fs_info->freed_extents[0];
 6262
 6263	up_write(&fs_info->commit_root_sem);
 6264
 6265	update_global_block_rsv(fs_info);
 6266}
 6267
 6268/*
 6269 * Returns the free cluster for the given space info and sets empty_cluster to
 6270 * what it should be based on the mount options.
 6271 */
 6272static struct btrfs_free_cluster *
 6273fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
 6274		   u64 *empty_cluster)
 6275{
 6276	struct btrfs_free_cluster *ret = NULL;
 6277	bool ssd = btrfs_test_opt(root, SSD);
 6278
 6279	*empty_cluster = 0;
 6280	if (btrfs_mixed_space_info(space_info))
 6281		return ret;
 6282
 6283	if (ssd)
 6284		*empty_cluster = SZ_2M;
 6285	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
 6286		ret = &root->fs_info->meta_alloc_cluster;
 6287		if (!ssd)
 
 
 6288			*empty_cluster = SZ_64K;
 6289	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
 6290		ret = &root->fs_info->data_alloc_cluster;
 
 
 6291	}
 6292
 6293	return ret;
 6294}
 6295
 6296static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
 
 6297			      const bool return_free_space)
 6298{
 6299	struct btrfs_fs_info *fs_info = root->fs_info;
 6300	struct btrfs_block_group_cache *cache = NULL;
 6301	struct btrfs_space_info *space_info;
 6302	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 6303	struct btrfs_free_cluster *cluster = NULL;
 6304	u64 len;
 6305	u64 total_unpinned = 0;
 6306	u64 empty_cluster = 0;
 6307	bool readonly;
 6308
 6309	while (start <= end) {
 6310		readonly = false;
 6311		if (!cache ||
 6312		    start >= cache->key.objectid + cache->key.offset) {
 6313			if (cache)
 6314				btrfs_put_block_group(cache);
 6315			total_unpinned = 0;
 6316			cache = btrfs_lookup_block_group(fs_info, start);
 6317			BUG_ON(!cache); /* Logic error */
 6318
 6319			cluster = fetch_cluster_info(root,
 6320						     cache->space_info,
 6321						     &empty_cluster);
 6322			empty_cluster <<= 1;
 6323		}
 6324
 6325		len = cache->key.objectid + cache->key.offset - start;
 6326		len = min(len, end + 1 - start);
 6327
 6328		if (start < cache->last_byte_to_unpin) {
 6329			len = min(len, cache->last_byte_to_unpin - start);
 6330			if (return_free_space)
 6331				btrfs_add_free_space(cache, start, len);
 6332		}
 6333
 6334		start += len;
 6335		total_unpinned += len;
 6336		space_info = cache->space_info;
 6337
 6338		/*
 6339		 * If this space cluster has been marked as fragmented and we've
 6340		 * unpinned enough in this block group to potentially allow a
 6341		 * cluster to be created inside of it go ahead and clear the
 6342		 * fragmented check.
 6343		 */
 6344		if (cluster && cluster->fragmented &&
 6345		    total_unpinned > empty_cluster) {
 6346			spin_lock(&cluster->lock);
 6347			cluster->fragmented = 0;
 6348			spin_unlock(&cluster->lock);
 6349		}
 6350
 6351		spin_lock(&space_info->lock);
 6352		spin_lock(&cache->lock);
 6353		cache->pinned -= len;
 6354		space_info->bytes_pinned -= len;
 6355		space_info->max_extent_size = 0;
 6356		percpu_counter_add(&space_info->total_bytes_pinned, -len);
 
 6357		if (cache->ro) {
 6358			space_info->bytes_readonly += len;
 6359			readonly = true;
 6360		}
 6361		spin_unlock(&cache->lock);
 6362		if (!readonly && global_rsv->space_info == space_info) {
 
 
 
 6363			spin_lock(&global_rsv->lock);
 6364			if (!global_rsv->full) {
 6365				len = min(len, global_rsv->size -
 6366					  global_rsv->reserved);
 6367				global_rsv->reserved += len;
 6368				space_info->bytes_may_use += len;
 
 6369				if (global_rsv->reserved >= global_rsv->size)
 6370					global_rsv->full = 1;
 
 6371			}
 6372			spin_unlock(&global_rsv->lock);
 
 
 
 
 6373		}
 6374		spin_unlock(&space_info->lock);
 6375	}
 6376
 6377	if (cache)
 6378		btrfs_put_block_group(cache);
 6379	return 0;
 6380}
 6381
 6382int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
 6383			       struct btrfs_root *root)
 6384{
 6385	struct btrfs_fs_info *fs_info = root->fs_info;
 6386	struct btrfs_block_group_cache *block_group, *tmp;
 6387	struct list_head *deleted_bgs;
 6388	struct extent_io_tree *unpin;
 6389	u64 start;
 6390	u64 end;
 6391	int ret;
 6392
 6393	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
 6394		unpin = &fs_info->freed_extents[1];
 6395	else
 6396		unpin = &fs_info->freed_extents[0];
 6397
 6398	while (!trans->aborted) {
 
 
 6399		mutex_lock(&fs_info->unused_bg_unpin_mutex);
 6400		ret = find_first_extent_bit(unpin, 0, &start, &end,
 6401					    EXTENT_DIRTY, NULL);
 6402		if (ret) {
 6403			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
 6404			break;
 6405		}
 6406
 6407		if (btrfs_test_opt(root, DISCARD))
 6408			ret = btrfs_discard_extent(root, start,
 6409						   end + 1 - start, NULL);
 6410
 6411		clear_extent_dirty(unpin, start, end, GFP_NOFS);
 6412		unpin_extent_range(root, start, end, true);
 6413		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
 
 6414		cond_resched();
 6415	}
 6416
 6417	/*
 6418	 * Transaction is finished.  We don't need the lock anymore.  We
 6419	 * do need to clean up the block groups in case of a transaction
 6420	 * abort.
 6421	 */
 6422	deleted_bgs = &trans->transaction->deleted_bgs;
 6423	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
 6424		u64 trimmed = 0;
 6425
 6426		ret = -EROFS;
 6427		if (!trans->aborted)
 6428			ret = btrfs_discard_extent(root,
 6429						   block_group->key.objectid,
 6430						   block_group->key.offset,
 6431						   &trimmed);
 6432
 6433		list_del_init(&block_group->bg_list);
 6434		btrfs_put_block_group_trimming(block_group);
 6435		btrfs_put_block_group(block_group);
 6436
 6437		if (ret) {
 6438			const char *errstr = btrfs_decode_error(ret);
 6439			btrfs_warn(fs_info,
 6440				   "Discard failed while removing blockgroup: errno=%d %s\n",
 6441				   ret, errstr);
 6442		}
 6443	}
 6444
 6445	return 0;
 6446}
 6447
 6448static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
 6449			     u64 owner, u64 root_objectid)
 6450{
 6451	struct btrfs_space_info *space_info;
 6452	u64 flags;
 6453
 6454	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 6455		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
 6456			flags = BTRFS_BLOCK_GROUP_SYSTEM;
 6457		else
 6458			flags = BTRFS_BLOCK_GROUP_METADATA;
 6459	} else {
 6460		flags = BTRFS_BLOCK_GROUP_DATA;
 6461	}
 6462
 6463	space_info = __find_space_info(fs_info, flags);
 6464	BUG_ON(!space_info); /* Logic bug */
 6465	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
 6466}
 6467
 6468
 6469static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
 6470				struct btrfs_root *root,
 6471				struct btrfs_delayed_ref_node *node, u64 parent,
 6472				u64 root_objectid, u64 owner_objectid,
 6473				u64 owner_offset, int refs_to_drop,
 6474				struct btrfs_delayed_extent_op *extent_op)
 6475{
 
 6476	struct btrfs_key key;
 6477	struct btrfs_path *path;
 6478	struct btrfs_fs_info *info = root->fs_info;
 6479	struct btrfs_root *extent_root = info->extent_root;
 6480	struct extent_buffer *leaf;
 6481	struct btrfs_extent_item *ei;
 6482	struct btrfs_extent_inline_ref *iref;
 6483	int ret;
 6484	int is_data;
 6485	int extent_slot = 0;
 6486	int found_extent = 0;
 6487	int num_to_del = 1;
 6488	u32 item_size;
 6489	u64 refs;
 6490	u64 bytenr = node->bytenr;
 6491	u64 num_bytes = node->num_bytes;
 6492	int last_ref = 0;
 6493	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
 6494						 SKINNY_METADATA);
 6495
 6496	path = btrfs_alloc_path();
 6497	if (!path)
 6498		return -ENOMEM;
 6499
 6500	path->reada = READA_FORWARD;
 6501	path->leave_spinning = 1;
 6502
 6503	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
 6504	BUG_ON(!is_data && refs_to_drop != 1);
 6505
 6506	if (is_data)
 6507		skinny_metadata = 0;
 6508
 6509	ret = lookup_extent_backref(trans, extent_root, path, &iref,
 6510				    bytenr, num_bytes, parent,
 6511				    root_objectid, owner_objectid,
 6512				    owner_offset);
 6513	if (ret == 0) {
 6514		extent_slot = path->slots[0];
 6515		while (extent_slot >= 0) {
 6516			btrfs_item_key_to_cpu(path->nodes[0], &key,
 6517					      extent_slot);
 6518			if (key.objectid != bytenr)
 6519				break;
 6520			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
 6521			    key.offset == num_bytes) {
 6522				found_extent = 1;
 6523				break;
 6524			}
 6525			if (key.type == BTRFS_METADATA_ITEM_KEY &&
 6526			    key.offset == owner_objectid) {
 6527				found_extent = 1;
 6528				break;
 6529			}
 6530			if (path->slots[0] - extent_slot > 5)
 6531				break;
 6532			extent_slot--;
 6533		}
 6534#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 6535		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
 6536		if (found_extent && item_size < sizeof(*ei))
 6537			found_extent = 0;
 6538#endif
 6539		if (!found_extent) {
 6540			BUG_ON(iref);
 6541			ret = remove_extent_backref(trans, extent_root, path,
 6542						    NULL, refs_to_drop,
 6543						    is_data, &last_ref);
 6544			if (ret) {
 6545				btrfs_abort_transaction(trans, extent_root, ret);
 6546				goto out;
 6547			}
 6548			btrfs_release_path(path);
 6549			path->leave_spinning = 1;
 6550
 6551			key.objectid = bytenr;
 6552			key.type = BTRFS_EXTENT_ITEM_KEY;
 6553			key.offset = num_bytes;
 6554
 6555			if (!is_data && skinny_metadata) {
 6556				key.type = BTRFS_METADATA_ITEM_KEY;
 6557				key.offset = owner_objectid;
 6558			}
 6559
 6560			ret = btrfs_search_slot(trans, extent_root,
 6561						&key, path, -1, 1);
 6562			if (ret > 0 && skinny_metadata && path->slots[0]) {
 6563				/*
 6564				 * Couldn't find our skinny metadata item,
 6565				 * see if we have ye olde extent item.
 6566				 */
 6567				path->slots[0]--;
 6568				btrfs_item_key_to_cpu(path->nodes[0], &key,
 6569						      path->slots[0]);
 6570				if (key.objectid == bytenr &&
 6571				    key.type == BTRFS_EXTENT_ITEM_KEY &&
 6572				    key.offset == num_bytes)
 6573					ret = 0;
 6574			}
 6575
 6576			if (ret > 0 && skinny_metadata) {
 6577				skinny_metadata = false;
 6578				key.objectid = bytenr;
 6579				key.type = BTRFS_EXTENT_ITEM_KEY;
 6580				key.offset = num_bytes;
 6581				btrfs_release_path(path);
 6582				ret = btrfs_search_slot(trans, extent_root,
 6583							&key, path, -1, 1);
 6584			}
 6585
 6586			if (ret) {
 6587				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
 6588					ret, bytenr);
 
 6589				if (ret > 0)
 6590					btrfs_print_leaf(extent_root,
 6591							 path->nodes[0]);
 6592			}
 6593			if (ret < 0) {
 6594				btrfs_abort_transaction(trans, extent_root, ret);
 6595				goto out;
 6596			}
 6597			extent_slot = path->slots[0];
 6598		}
 6599	} else if (WARN_ON(ret == -ENOENT)) {
 6600		btrfs_print_leaf(extent_root, path->nodes[0]);
 6601		btrfs_err(info,
 6602			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
 6603			bytenr, parent, root_objectid, owner_objectid,
 6604			owner_offset);
 6605		btrfs_abort_transaction(trans, extent_root, ret);
 6606		goto out;
 6607	} else {
 6608		btrfs_abort_transaction(trans, extent_root, ret);
 6609		goto out;
 6610	}
 6611
 6612	leaf = path->nodes[0];
 6613	item_size = btrfs_item_size_nr(leaf, extent_slot);
 6614#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 6615	if (item_size < sizeof(*ei)) {
 6616		BUG_ON(found_extent || extent_slot != path->slots[0]);
 6617		ret = convert_extent_item_v0(trans, extent_root, path,
 6618					     owner_objectid, 0);
 6619		if (ret < 0) {
 6620			btrfs_abort_transaction(trans, extent_root, ret);
 6621			goto out;
 6622		}
 6623
 6624		btrfs_release_path(path);
 6625		path->leave_spinning = 1;
 6626
 6627		key.objectid = bytenr;
 6628		key.type = BTRFS_EXTENT_ITEM_KEY;
 6629		key.offset = num_bytes;
 6630
 6631		ret = btrfs_search_slot(trans, extent_root, &key, path,
 6632					-1, 1);
 6633		if (ret) {
 6634			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
 6635				ret, bytenr);
 6636			btrfs_print_leaf(extent_root, path->nodes[0]);
 6637		}
 6638		if (ret < 0) {
 6639			btrfs_abort_transaction(trans, extent_root, ret);
 6640			goto out;
 6641		}
 6642
 6643		extent_slot = path->slots[0];
 6644		leaf = path->nodes[0];
 6645		item_size = btrfs_item_size_nr(leaf, extent_slot);
 6646	}
 6647#endif
 6648	BUG_ON(item_size < sizeof(*ei));
 6649	ei = btrfs_item_ptr(leaf, extent_slot,
 6650			    struct btrfs_extent_item);
 6651	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
 6652	    key.type == BTRFS_EXTENT_ITEM_KEY) {
 6653		struct btrfs_tree_block_info *bi;
 6654		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
 6655		bi = (struct btrfs_tree_block_info *)(ei + 1);
 6656		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
 6657	}
 6658
 6659	refs = btrfs_extent_refs(leaf, ei);
 6660	if (refs < refs_to_drop) {
 6661		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
 6662			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
 
 6663		ret = -EINVAL;
 6664		btrfs_abort_transaction(trans, extent_root, ret);
 6665		goto out;
 6666	}
 6667	refs -= refs_to_drop;
 6668
 6669	if (refs > 0) {
 6670		if (extent_op)
 6671			__run_delayed_extent_op(extent_op, leaf, ei);
 6672		/*
 6673		 * In the case of inline back ref, reference count will
 6674		 * be updated by remove_extent_backref
 6675		 */
 6676		if (iref) {
 6677			BUG_ON(!found_extent);
 6678		} else {
 6679			btrfs_set_extent_refs(leaf, ei, refs);
 6680			btrfs_mark_buffer_dirty(leaf);
 6681		}
 6682		if (found_extent) {
 6683			ret = remove_extent_backref(trans, extent_root, path,
 6684						    iref, refs_to_drop,
 6685						    is_data, &last_ref);
 6686			if (ret) {
 6687				btrfs_abort_transaction(trans, extent_root, ret);
 6688				goto out;
 6689			}
 6690		}
 6691		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
 6692				 root_objectid);
 6693	} else {
 6694		if (found_extent) {
 6695			BUG_ON(is_data && refs_to_drop !=
 6696			       extent_data_ref_count(path, iref));
 6697			if (iref) {
 6698				BUG_ON(path->slots[0] != extent_slot);
 6699			} else {
 6700				BUG_ON(path->slots[0] != extent_slot + 1);
 6701				path->slots[0] = extent_slot;
 6702				num_to_del = 2;
 6703			}
 6704		}
 6705
 6706		last_ref = 1;
 6707		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
 6708				      num_to_del);
 6709		if (ret) {
 6710			btrfs_abort_transaction(trans, extent_root, ret);
 6711			goto out;
 6712		}
 6713		btrfs_release_path(path);
 6714
 6715		if (is_data) {
 6716			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
 6717			if (ret) {
 6718				btrfs_abort_transaction(trans, extent_root, ret);
 6719				goto out;
 6720			}
 6721		}
 6722
 6723		ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
 6724					     num_bytes);
 6725		if (ret) {
 6726			btrfs_abort_transaction(trans, extent_root, ret);
 6727			goto out;
 6728		}
 6729
 6730		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
 6731		if (ret) {
 6732			btrfs_abort_transaction(trans, extent_root, ret);
 6733			goto out;
 6734		}
 6735	}
 6736	btrfs_release_path(path);
 6737
 6738out:
 6739	btrfs_free_path(path);
 6740	return ret;
 6741}
 6742
 6743/*
 6744 * when we free an block, it is possible (and likely) that we free the last
 6745 * delayed ref for that extent as well.  This searches the delayed ref tree for
 6746 * a given extent, and if there are no other delayed refs to be processed, it
 6747 * removes it from the tree.
 6748 */
 6749static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
 6750				      struct btrfs_root *root, u64 bytenr)
 6751{
 6752	struct btrfs_delayed_ref_head *head;
 6753	struct btrfs_delayed_ref_root *delayed_refs;
 6754	int ret = 0;
 6755
 6756	delayed_refs = &trans->transaction->delayed_refs;
 6757	spin_lock(&delayed_refs->lock);
 6758	head = btrfs_find_delayed_ref_head(trans, bytenr);
 6759	if (!head)
 6760		goto out_delayed_unlock;
 6761
 6762	spin_lock(&head->lock);
 6763	if (!list_empty(&head->ref_list))
 6764		goto out;
 6765
 6766	if (head->extent_op) {
 6767		if (!head->must_insert_reserved)
 6768			goto out;
 6769		btrfs_free_delayed_extent_op(head->extent_op);
 6770		head->extent_op = NULL;
 6771	}
 6772
 6773	/*
 6774	 * waiting for the lock here would deadlock.  If someone else has it
 6775	 * locked they are already in the process of dropping it anyway
 6776	 */
 6777	if (!mutex_trylock(&head->mutex))
 6778		goto out;
 6779
 6780	/*
 6781	 * at this point we have a head with no other entries.  Go
 6782	 * ahead and process it.
 6783	 */
 6784	head->node.in_tree = 0;
 6785	rb_erase(&head->href_node, &delayed_refs->href_root);
 6786
 6787	atomic_dec(&delayed_refs->num_entries);
 6788
 6789	/*
 6790	 * we don't take a ref on the node because we're removing it from the
 6791	 * tree, so we just steal the ref the tree was holding.
 6792	 */
 6793	delayed_refs->num_heads--;
 6794	if (head->processing == 0)
 6795		delayed_refs->num_heads_ready--;
 6796	head->processing = 0;
 6797	spin_unlock(&head->lock);
 6798	spin_unlock(&delayed_refs->lock);
 6799
 6800	BUG_ON(head->extent_op);
 6801	if (head->must_insert_reserved)
 6802		ret = 1;
 6803
 
 6804	mutex_unlock(&head->mutex);
 6805	btrfs_put_delayed_ref(&head->node);
 6806	return ret;
 6807out:
 6808	spin_unlock(&head->lock);
 6809
 6810out_delayed_unlock:
 6811	spin_unlock(&delayed_refs->lock);
 6812	return 0;
 6813}
 6814
 6815void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
 6816			   struct btrfs_root *root,
 6817			   struct extent_buffer *buf,
 6818			   u64 parent, int last_ref)
 6819{
 
 
 6820	int pin = 1;
 6821	int ret;
 6822
 
 
 
 
 
 6823	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
 6824		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
 6825					buf->start, buf->len,
 6826					parent, root->root_key.objectid,
 6827					btrfs_header_level(buf),
 6828					BTRFS_DROP_DELAYED_REF, NULL);
 6829		BUG_ON(ret); /* -ENOMEM */
 
 6830	}
 6831
 6832	if (!last_ref)
 6833		return;
 6834
 6835	if (btrfs_header_generation(buf) == trans->transid) {
 6836		struct btrfs_block_group_cache *cache;
 6837
 6838		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
 6839			ret = check_ref_cleanup(trans, root, buf->start);
 6840			if (!ret)
 6841				goto out;
 6842		}
 6843
 6844		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
 
 6845
 6846		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
 6847			pin_down_extent(root, cache, buf->start, buf->len, 1);
 6848			btrfs_put_block_group(cache);
 6849			goto out;
 6850		}
 6851
 6852		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
 6853
 6854		btrfs_add_free_space(cache, buf->start, buf->len);
 6855		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
 6856		btrfs_put_block_group(cache);
 6857		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
 6858		pin = 0;
 6859	}
 6860out:
 6861	if (pin)
 6862		add_pinned_bytes(root->fs_info, buf->len,
 6863				 btrfs_header_level(buf),
 6864				 root->root_key.objectid);
 6865
 6866	/*
 6867	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
 6868	 * anymore.
 6869	 */
 6870	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
 
 
 6871}
 6872
 6873/* Can return -ENOMEM */
 6874int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 6875		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
 6876		      u64 owner, u64 offset)
 6877{
 
 
 6878	int ret;
 6879	struct btrfs_fs_info *fs_info = root->fs_info;
 6880
 6881	if (btrfs_test_is_dummy_root(root))
 6882		return 0;
 6883
 6884	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
 6885
 6886	/*
 6887	 * tree log blocks never actually go into the extent allocation
 6888	 * tree, just update pinning info and exit early.
 6889	 */
 6890	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
 6891		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
 
 
 6892		/* unlocks the pinned mutex */
 6893		btrfs_pin_extent(root, bytenr, num_bytes, 1);
 
 6894		ret = 0;
 6895	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 6896		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
 6897					num_bytes,
 6898					parent, root_objectid, (int)owner,
 6899					BTRFS_DROP_DELAYED_REF, NULL);
 6900	} else {
 6901		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
 6902						num_bytes,
 6903						parent, root_objectid, owner,
 6904						offset, 0,
 6905						BTRFS_DROP_DELAYED_REF, NULL);
 6906	}
 6907	return ret;
 6908}
 6909
 6910/*
 6911 * when we wait for progress in the block group caching, its because
 6912 * our allocation attempt failed at least once.  So, we must sleep
 6913 * and let some progress happen before we try again.
 6914 *
 6915 * This function will sleep at least once waiting for new free space to
 6916 * show up, and then it will check the block group free space numbers
 6917 * for our min num_bytes.  Another option is to have it go ahead
 6918 * and look in the rbtree for a free extent of a given size, but this
 6919 * is a good start.
 6920 *
 6921 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
 6922 * any of the information in this block group.
 6923 */
 6924static noinline void
 6925wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
 6926				u64 num_bytes)
 6927{
 6928	struct btrfs_caching_control *caching_ctl;
 6929
 6930	caching_ctl = get_caching_control(cache);
 6931	if (!caching_ctl)
 6932		return;
 6933
 6934	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
 6935		   (cache->free_space_ctl->free_space >= num_bytes));
 6936
 6937	put_caching_control(caching_ctl);
 6938}
 6939
 6940static noinline int
 6941wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
 6942{
 6943	struct btrfs_caching_control *caching_ctl;
 6944	int ret = 0;
 6945
 6946	caching_ctl = get_caching_control(cache);
 6947	if (!caching_ctl)
 6948		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
 6949
 6950	wait_event(caching_ctl->wait, block_group_cache_done(cache));
 6951	if (cache->cached == BTRFS_CACHE_ERROR)
 6952		ret = -EIO;
 6953	put_caching_control(caching_ctl);
 6954	return ret;
 6955}
 6956
 6957int __get_raid_index(u64 flags)
 6958{
 6959	if (flags & BTRFS_BLOCK_GROUP_RAID10)
 6960		return BTRFS_RAID_RAID10;
 6961	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
 6962		return BTRFS_RAID_RAID1;
 6963	else if (flags & BTRFS_BLOCK_GROUP_DUP)
 6964		return BTRFS_RAID_DUP;
 6965	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
 6966		return BTRFS_RAID_RAID0;
 6967	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
 6968		return BTRFS_RAID_RAID5;
 6969	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
 6970		return BTRFS_RAID_RAID6;
 6971
 6972	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
 6973}
 6974
 6975int get_block_group_index(struct btrfs_block_group_cache *cache)
 6976{
 6977	return __get_raid_index(cache->flags);
 6978}
 6979
 6980static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
 6981	[BTRFS_RAID_RAID10]	= "raid10",
 6982	[BTRFS_RAID_RAID1]	= "raid1",
 6983	[BTRFS_RAID_DUP]	= "dup",
 6984	[BTRFS_RAID_RAID0]	= "raid0",
 6985	[BTRFS_RAID_SINGLE]	= "single",
 6986	[BTRFS_RAID_RAID5]	= "raid5",
 6987	[BTRFS_RAID_RAID6]	= "raid6",
 6988};
 6989
 6990static const char *get_raid_name(enum btrfs_raid_types type)
 6991{
 6992	if (type >= BTRFS_NR_RAID_TYPES)
 6993		return NULL;
 6994
 6995	return btrfs_raid_type_names[type];
 6996}
 6997
 6998enum btrfs_loop_type {
 6999	LOOP_CACHING_NOWAIT = 0,
 7000	LOOP_CACHING_WAIT = 1,
 7001	LOOP_ALLOC_CHUNK = 2,
 7002	LOOP_NO_EMPTY_SIZE = 3,
 7003};
 7004
 7005static inline void
 7006btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
 7007		       int delalloc)
 7008{
 7009	if (delalloc)
 7010		down_read(&cache->data_rwsem);
 7011}
 7012
 7013static inline void
 7014btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
 7015		       int delalloc)
 7016{
 7017	btrfs_get_block_group(cache);
 7018	if (delalloc)
 7019		down_read(&cache->data_rwsem);
 7020}
 7021
 7022static struct btrfs_block_group_cache *
 7023btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
 7024		   struct btrfs_free_cluster *cluster,
 7025		   int delalloc)
 7026{
 7027	struct btrfs_block_group_cache *used_bg = NULL;
 7028	bool locked = false;
 7029again:
 7030	spin_lock(&cluster->refill_lock);
 7031	if (locked) {
 7032		if (used_bg == cluster->block_group)
 
 
 
 
 7033			return used_bg;
 7034
 7035		up_read(&used_bg->data_rwsem);
 7036		btrfs_put_block_group(used_bg);
 7037	}
 7038
 7039	used_bg = cluster->block_group;
 7040	if (!used_bg)
 7041		return NULL;
 7042
 7043	if (used_bg == block_group)
 7044		return used_bg;
 7045
 7046	btrfs_get_block_group(used_bg);
 7047
 7048	if (!delalloc)
 7049		return used_bg;
 7050
 7051	if (down_read_trylock(&used_bg->data_rwsem))
 7052		return used_bg;
 
 7053
 7054	spin_unlock(&cluster->refill_lock);
 7055	down_read(&used_bg->data_rwsem);
 7056	locked = true;
 7057	goto again;
 7058}
 7059
 7060static inline void
 7061btrfs_release_block_group(struct btrfs_block_group_cache *cache,
 7062			 int delalloc)
 7063{
 7064	if (delalloc)
 7065		up_read(&cache->data_rwsem);
 7066	btrfs_put_block_group(cache);
 7067}
 7068
 7069/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7070 * walks the btree of allocated extents and find a hole of a given size.
 7071 * The key ins is changed to record the hole:
 7072 * ins->objectid == start position
 7073 * ins->flags = BTRFS_EXTENT_ITEM_KEY
 7074 * ins->offset == the size of the hole.
 7075 * Any available blocks before search_start are skipped.
 7076 *
 7077 * If there is no suitable free space, we will record the max size of
 7078 * the free space extent currently.
 7079 */
 7080static noinline int find_free_extent(struct btrfs_root *orig_root,
 7081				     u64 num_bytes, u64 empty_size,
 7082				     u64 hint_byte, struct btrfs_key *ins,
 7083				     u64 flags, int delalloc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7084{
 7085	int ret = 0;
 7086	struct btrfs_root *root = orig_root->fs_info->extent_root;
 7087	struct btrfs_free_cluster *last_ptr = NULL;
 7088	struct btrfs_block_group_cache *block_group = NULL;
 7089	u64 search_start = 0;
 7090	u64 max_extent_size = 0;
 7091	u64 empty_cluster = 0;
 7092	struct btrfs_space_info *space_info;
 7093	int loop = 0;
 7094	int index = __get_raid_index(flags);
 7095	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
 7096		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
 7097	bool failed_cluster_refill = false;
 7098	bool failed_alloc = false;
 7099	bool use_cluster = true;
 7100	bool have_caching_bg = false;
 7101	bool orig_have_caching_bg = false;
 7102	bool full_search = false;
 7103
 7104	WARN_ON(num_bytes < root->sectorsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7105	ins->type = BTRFS_EXTENT_ITEM_KEY;
 7106	ins->objectid = 0;
 7107	ins->offset = 0;
 7108
 7109	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
 7110
 7111	space_info = __find_space_info(root->fs_info, flags);
 7112	if (!space_info) {
 7113		btrfs_err(root->fs_info, "No space info for %llu", flags);
 7114		return -ENOSPC;
 7115	}
 7116
 7117	/*
 7118	 * If our free space is heavily fragmented we may not be able to make
 7119	 * big contiguous allocations, so instead of doing the expensive search
 7120	 * for free space, simply return ENOSPC with our max_extent_size so we
 7121	 * can go ahead and search for a more manageable chunk.
 7122	 *
 7123	 * If our max_extent_size is large enough for our allocation simply
 7124	 * disable clustering since we will likely not be able to find enough
 7125	 * space to create a cluster and induce latency trying.
 7126	 */
 7127	if (unlikely(space_info->max_extent_size)) {
 7128		spin_lock(&space_info->lock);
 7129		if (space_info->max_extent_size &&
 7130		    num_bytes > space_info->max_extent_size) {
 7131			ins->offset = space_info->max_extent_size;
 7132			spin_unlock(&space_info->lock);
 7133			return -ENOSPC;
 7134		} else if (space_info->max_extent_size) {
 7135			use_cluster = false;
 7136		}
 7137		spin_unlock(&space_info->lock);
 7138	}
 7139
 7140	last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
 
 7141	if (last_ptr) {
 7142		spin_lock(&last_ptr->lock);
 7143		if (last_ptr->block_group)
 7144			hint_byte = last_ptr->window_start;
 7145		if (last_ptr->fragmented) {
 7146			/*
 7147			 * We still set window_start so we can keep track of the
 7148			 * last place we found an allocation to try and save
 7149			 * some time.
 7150			 */
 7151			hint_byte = last_ptr->window_start;
 7152			use_cluster = false;
 7153		}
 7154		spin_unlock(&last_ptr->lock);
 7155	}
 7156
 7157	search_start = max(search_start, first_logical_byte(root, 0));
 7158	search_start = max(search_start, hint_byte);
 7159	if (search_start == hint_byte) {
 7160		block_group = btrfs_lookup_block_group(root->fs_info,
 7161						       search_start);
 
 7162		/*
 7163		 * we don't want to use the block group if it doesn't match our
 7164		 * allocation bits, or if its not cached.
 7165		 *
 7166		 * However if we are re-searching with an ideal block group
 7167		 * picked out then we don't care that the block group is cached.
 7168		 */
 7169		if (block_group && block_group_bits(block_group, flags) &&
 7170		    block_group->cached != BTRFS_CACHE_NO) {
 7171			down_read(&space_info->groups_sem);
 7172			if (list_empty(&block_group->list) ||
 7173			    block_group->ro) {
 7174				/*
 7175				 * someone is removing this block group,
 7176				 * we can't jump into the have_block_group
 7177				 * target because our list pointers are not
 7178				 * valid
 7179				 */
 7180				btrfs_put_block_group(block_group);
 7181				up_read(&space_info->groups_sem);
 7182			} else {
 7183				index = get_block_group_index(block_group);
 
 7184				btrfs_lock_block_group(block_group, delalloc);
 7185				goto have_block_group;
 7186			}
 7187		} else if (block_group) {
 7188			btrfs_put_block_group(block_group);
 7189		}
 7190	}
 7191search:
 7192	have_caching_bg = false;
 7193	if (index == 0 || index == __get_raid_index(flags))
 
 7194		full_search = true;
 7195	down_read(&space_info->groups_sem);
 7196	list_for_each_entry(block_group, &space_info->block_groups[index],
 7197			    list) {
 7198		u64 offset;
 7199		int cached;
 
 7200
 7201		btrfs_grab_block_group(block_group, delalloc);
 7202		search_start = block_group->key.objectid;
 7203
 7204		/*
 7205		 * this can happen if we end up cycling through all the
 7206		 * raid types, but we want to make sure we only allocate
 7207		 * for the proper type.
 7208		 */
 7209		if (!block_group_bits(block_group, flags)) {
 7210		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
 7211				BTRFS_BLOCK_GROUP_RAID1 |
 7212				BTRFS_BLOCK_GROUP_RAID5 |
 7213				BTRFS_BLOCK_GROUP_RAID6 |
 7214				BTRFS_BLOCK_GROUP_RAID10;
 7215
 7216			/*
 7217			 * if they asked for extra copies and this block group
 7218			 * doesn't provide them, bail.  This does allow us to
 7219			 * fill raid0 from raid1.
 7220			 */
 7221			if ((flags & extra) && !(block_group->flags & extra))
 7222				goto loop;
 
 
 
 
 
 
 
 
 7223		}
 7224
 7225have_block_group:
 7226		cached = block_group_cache_done(block_group);
 7227		if (unlikely(!cached)) {
 7228			have_caching_bg = true;
 7229			ret = cache_block_group(block_group, 0);
 7230			BUG_ON(ret < 0);
 7231			ret = 0;
 7232		}
 7233
 7234		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
 7235			goto loop;
 7236		if (unlikely(block_group->ro))
 7237			goto loop;
 7238
 7239		/*
 7240		 * Ok we want to try and use the cluster allocator, so
 7241		 * lets look there
 7242		 */
 7243		if (last_ptr && use_cluster) {
 7244			struct btrfs_block_group_cache *used_block_group;
 7245			unsigned long aligned_cluster;
 7246			/*
 7247			 * the refill lock keeps out other
 7248			 * people trying to start a new cluster
 7249			 */
 7250			used_block_group = btrfs_lock_cluster(block_group,
 7251							      last_ptr,
 7252							      delalloc);
 7253			if (!used_block_group)
 7254				goto refill_cluster;
 7255
 7256			if (used_block_group != block_group &&
 7257			    (used_block_group->ro ||
 7258			     !block_group_bits(used_block_group, flags)))
 7259				goto release_cluster;
 7260
 7261			offset = btrfs_alloc_from_cluster(used_block_group,
 7262						last_ptr,
 7263						num_bytes,
 7264						used_block_group->key.objectid,
 7265						&max_extent_size);
 7266			if (offset) {
 7267				/* we have a block, we're done */
 7268				spin_unlock(&last_ptr->refill_lock);
 7269				trace_btrfs_reserve_extent_cluster(root,
 7270						used_block_group,
 7271						search_start, num_bytes);
 7272				if (used_block_group != block_group) {
 7273					btrfs_release_block_group(block_group,
 7274								  delalloc);
 7275					block_group = used_block_group;
 7276				}
 7277				goto checks;
 7278			}
 7279
 7280			WARN_ON(last_ptr->block_group != used_block_group);
 7281release_cluster:
 7282			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
 7283			 * set up a new clusters, so lets just skip it
 7284			 * and let the allocator find whatever block
 7285			 * it can find.  If we reach this point, we
 7286			 * will have tried the cluster allocator
 7287			 * plenty of times and not have found
 7288			 * anything, so we are likely way too
 7289			 * fragmented for the clustering stuff to find
 7290			 * anything.
 7291			 *
 7292			 * However, if the cluster is taken from the
 7293			 * current block group, release the cluster
 7294			 * first, so that we stand a better chance of
 7295			 * succeeding in the unclustered
 7296			 * allocation.  */
 7297			if (loop >= LOOP_NO_EMPTY_SIZE &&
 7298			    used_block_group != block_group) {
 7299				spin_unlock(&last_ptr->refill_lock);
 7300				btrfs_release_block_group(used_block_group,
 7301							  delalloc);
 7302				goto unclustered_alloc;
 7303			}
 7304
 7305			/*
 7306			 * this cluster didn't work out, free it and
 7307			 * start over
 7308			 */
 7309			btrfs_return_cluster_to_free_space(NULL, last_ptr);
 7310
 7311			if (used_block_group != block_group)
 7312				btrfs_release_block_group(used_block_group,
 7313							  delalloc);
 7314refill_cluster:
 7315			if (loop >= LOOP_NO_EMPTY_SIZE) {
 7316				spin_unlock(&last_ptr->refill_lock);
 7317				goto unclustered_alloc;
 7318			}
 7319
 7320			aligned_cluster = max_t(unsigned long,
 7321						empty_cluster + empty_size,
 7322					      block_group->full_stripe_len);
 7323
 7324			/* allocate a cluster in this block group */
 7325			ret = btrfs_find_space_cluster(root, block_group,
 7326						       last_ptr, search_start,
 7327						       num_bytes,
 7328						       aligned_cluster);
 7329			if (ret == 0) {
 7330				/*
 7331				 * now pull our allocation out of this
 7332				 * cluster
 7333				 */
 7334				offset = btrfs_alloc_from_cluster(block_group,
 7335							last_ptr,
 7336							num_bytes,
 7337							search_start,
 7338							&max_extent_size);
 7339				if (offset) {
 7340					/* we found one, proceed */
 7341					spin_unlock(&last_ptr->refill_lock);
 7342					trace_btrfs_reserve_extent_cluster(root,
 7343						block_group, search_start,
 7344						num_bytes);
 7345					goto checks;
 7346				}
 7347			} else if (!cached && loop > LOOP_CACHING_NOWAIT
 7348				   && !failed_cluster_refill) {
 7349				spin_unlock(&last_ptr->refill_lock);
 7350
 7351				failed_cluster_refill = true;
 7352				wait_block_group_cache_progress(block_group,
 7353				       num_bytes + empty_cluster + empty_size);
 7354				goto have_block_group;
 
 
 7355			}
 7356
 7357			/*
 7358			 * at this point we either didn't find a cluster
 7359			 * or we weren't able to allocate a block from our
 7360			 * cluster.  Free the cluster we've been trying
 7361			 * to use, and go to the next block group
 7362			 */
 7363			btrfs_return_cluster_to_free_space(NULL, last_ptr);
 7364			spin_unlock(&last_ptr->refill_lock);
 7365			goto loop;
 7366		}
 7367
 7368unclustered_alloc:
 7369		/*
 7370		 * We are doing an unclustered alloc, set the fragmented flag so
 7371		 * we don't bother trying to setup a cluster again until we get
 7372		 * more space.
 7373		 */
 7374		if (unlikely(last_ptr)) {
 7375			spin_lock(&last_ptr->lock);
 7376			last_ptr->fragmented = 1;
 7377			spin_unlock(&last_ptr->lock);
 7378		}
 7379		spin_lock(&block_group->free_space_ctl->tree_lock);
 7380		if (cached &&
 7381		    block_group->free_space_ctl->free_space <
 7382		    num_bytes + empty_cluster + empty_size) {
 7383			if (block_group->free_space_ctl->free_space >
 7384			    max_extent_size)
 7385				max_extent_size =
 7386					block_group->free_space_ctl->free_space;
 7387			spin_unlock(&block_group->free_space_ctl->tree_lock);
 7388			goto loop;
 7389		}
 7390		spin_unlock(&block_group->free_space_ctl->tree_lock);
 7391
 7392		offset = btrfs_find_space_for_alloc(block_group, search_start,
 7393						    num_bytes, empty_size,
 7394						    &max_extent_size);
 7395		/*
 7396		 * If we didn't find a chunk, and we haven't failed on this
 7397		 * block group before, and this block group is in the middle of
 7398		 * caching and we are ok with waiting, then go ahead and wait
 7399		 * for progress to be made, and set failed_alloc to true.
 7400		 *
 7401		 * If failed_alloc is true then we've already waited on this
 7402		 * block group once and should move on to the next block group.
 7403		 */
 7404		if (!offset && !failed_alloc && !cached &&
 7405		    loop > LOOP_CACHING_NOWAIT) {
 7406			wait_block_group_cache_progress(block_group,
 7407						num_bytes + empty_size);
 7408			failed_alloc = true;
 7409			goto have_block_group;
 7410		} else if (!offset) {
 7411			goto loop;
 7412		}
 7413checks:
 7414		search_start = ALIGN(offset, root->stripesize);
 
 7415
 7416		/* move on to the next group */
 7417		if (search_start + num_bytes >
 7418		    block_group->key.objectid + block_group->key.offset) {
 7419			btrfs_add_free_space(block_group, offset, num_bytes);
 
 7420			goto loop;
 7421		}
 7422
 7423		if (offset < search_start)
 7424			btrfs_add_free_space(block_group, offset,
 7425					     search_start - offset);
 7426		BUG_ON(offset > search_start);
 7427
 7428		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
 7429						  alloc_type, delalloc);
 7430		if (ret == -EAGAIN) {
 7431			btrfs_add_free_space(block_group, offset, num_bytes);
 
 7432			goto loop;
 7433		}
 
 7434
 7435		/* we are all good, lets return */
 7436		ins->objectid = search_start;
 7437		ins->offset = num_bytes;
 7438
 7439		trace_btrfs_reserve_extent(orig_root, block_group,
 7440					   search_start, num_bytes);
 7441		btrfs_release_block_group(block_group, delalloc);
 7442		break;
 7443loop:
 7444		failed_cluster_refill = false;
 7445		failed_alloc = false;
 7446		BUG_ON(index != get_block_group_index(block_group));
 
 7447		btrfs_release_block_group(block_group, delalloc);
 
 7448	}
 7449	up_read(&space_info->groups_sem);
 7450
 7451	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
 7452		&& !orig_have_caching_bg)
 7453		orig_have_caching_bg = true;
 7454
 7455	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
 7456		goto search;
 7457
 7458	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
 7459		goto search;
 7460
 7461	/*
 7462	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
 7463	 *			caching kthreads as we move along
 7464	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
 7465	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
 7466	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
 7467	 *			again
 7468	 */
 7469	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
 7470		index = 0;
 7471		if (loop == LOOP_CACHING_NOWAIT) {
 7472			/*
 7473			 * We want to skip the LOOP_CACHING_WAIT step if we
 7474			 * don't have any unached bgs and we've alrelady done a
 7475			 * full search through.
 7476			 */
 7477			if (orig_have_caching_bg || !full_search)
 7478				loop = LOOP_CACHING_WAIT;
 7479			else
 7480				loop = LOOP_ALLOC_CHUNK;
 7481		} else {
 7482			loop++;
 7483		}
 7484
 7485		if (loop == LOOP_ALLOC_CHUNK) {
 7486			struct btrfs_trans_handle *trans;
 7487			int exist = 0;
 7488
 7489			trans = current->journal_info;
 7490			if (trans)
 7491				exist = 1;
 7492			else
 7493				trans = btrfs_join_transaction(root);
 7494
 7495			if (IS_ERR(trans)) {
 7496				ret = PTR_ERR(trans);
 7497				goto out;
 7498			}
 7499
 7500			ret = do_chunk_alloc(trans, root, flags,
 7501					     CHUNK_ALLOC_FORCE);
 7502
 7503			/*
 7504			 * If we can't allocate a new chunk we've already looped
 7505			 * through at least once, move on to the NO_EMPTY_SIZE
 7506			 * case.
 7507			 */
 7508			if (ret == -ENOSPC)
 7509				loop = LOOP_NO_EMPTY_SIZE;
 7510
 7511			/*
 7512			 * Do not bail out on ENOSPC since we
 7513			 * can do more things.
 7514			 */
 7515			if (ret < 0 && ret != -ENOSPC)
 7516				btrfs_abort_transaction(trans,
 7517							root, ret);
 7518			else
 7519				ret = 0;
 7520			if (!exist)
 7521				btrfs_end_transaction(trans, root);
 7522			if (ret)
 7523				goto out;
 7524		}
 7525
 7526		if (loop == LOOP_NO_EMPTY_SIZE) {
 7527			/*
 7528			 * Don't loop again if we already have no empty_size and
 7529			 * no empty_cluster.
 7530			 */
 7531			if (empty_size == 0 &&
 7532			    empty_cluster == 0) {
 7533				ret = -ENOSPC;
 7534				goto out;
 7535			}
 7536			empty_size = 0;
 7537			empty_cluster = 0;
 7538		}
 7539
 7540		goto search;
 7541	} else if (!ins->objectid) {
 7542		ret = -ENOSPC;
 7543	} else if (ins->objectid) {
 7544		if (!use_cluster && last_ptr) {
 7545			spin_lock(&last_ptr->lock);
 7546			last_ptr->window_start = ins->objectid;
 7547			spin_unlock(&last_ptr->lock);
 7548		}
 7549		ret = 0;
 7550	}
 7551out:
 7552	if (ret == -ENOSPC) {
 
 
 
 
 
 
 7553		spin_lock(&space_info->lock);
 7554		space_info->max_extent_size = max_extent_size;
 7555		spin_unlock(&space_info->lock);
 7556		ins->offset = max_extent_size;
 7557	}
 7558	return ret;
 7559}
 7560
 7561static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
 7562			    int dump_block_groups)
 7563{
 7564	struct btrfs_block_group_cache *cache;
 7565	int index = 0;
 7566
 7567	spin_lock(&info->lock);
 7568	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
 7569	       info->flags,
 7570	       info->total_bytes - info->bytes_used - info->bytes_pinned -
 7571	       info->bytes_reserved - info->bytes_readonly,
 7572	       (info->full) ? "" : "not ");
 7573	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
 7574	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
 7575	       info->total_bytes, info->bytes_used, info->bytes_pinned,
 7576	       info->bytes_reserved, info->bytes_may_use,
 7577	       info->bytes_readonly);
 7578	spin_unlock(&info->lock);
 7579
 7580	if (!dump_block_groups)
 7581		return;
 7582
 7583	down_read(&info->groups_sem);
 7584again:
 7585	list_for_each_entry(cache, &info->block_groups[index], list) {
 7586		spin_lock(&cache->lock);
 7587		printk(KERN_INFO "BTRFS: "
 7588			   "block group %llu has %llu bytes, "
 7589			   "%llu used %llu pinned %llu reserved %s\n",
 7590		       cache->key.objectid, cache->key.offset,
 7591		       btrfs_block_group_used(&cache->item), cache->pinned,
 7592		       cache->reserved, cache->ro ? "[readonly]" : "");
 7593		btrfs_dump_free_space(cache, bytes);
 7594		spin_unlock(&cache->lock);
 7595	}
 7596	if (++index < BTRFS_NR_RAID_TYPES)
 7597		goto again;
 7598	up_read(&info->groups_sem);
 7599}
 7600
 7601int btrfs_reserve_extent(struct btrfs_root *root,
 
 
 
 
 
 7602			 u64 num_bytes, u64 min_alloc_size,
 7603			 u64 empty_size, u64 hint_byte,
 7604			 struct btrfs_key *ins, int is_data, int delalloc)
 7605{
 
 7606	bool final_tried = num_bytes == min_alloc_size;
 7607	u64 flags;
 7608	int ret;
 7609
 7610	flags = btrfs_get_alloc_profile(root, is_data);
 7611again:
 7612	WARN_ON(num_bytes < root->sectorsize);
 7613	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
 7614			       flags, delalloc);
 7615
 7616	if (ret == -ENOSPC) {
 
 7617		if (!final_tried && ins->offset) {
 7618			num_bytes = min(num_bytes >> 1, ins->offset);
 7619			num_bytes = round_down(num_bytes, root->sectorsize);
 
 7620			num_bytes = max(num_bytes, min_alloc_size);
 
 7621			if (num_bytes == min_alloc_size)
 7622				final_tried = true;
 7623			goto again;
 7624		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
 7625			struct btrfs_space_info *sinfo;
 7626
 7627			sinfo = __find_space_info(root->fs_info, flags);
 7628			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
 7629				flags, num_bytes);
 
 7630			if (sinfo)
 7631				dump_space_info(sinfo, num_bytes, 1);
 
 7632		}
 7633	}
 7634
 7635	return ret;
 7636}
 7637
 7638static int __btrfs_free_reserved_extent(struct btrfs_root *root,
 7639					u64 start, u64 len,
 7640					int pin, int delalloc)
 7641{
 7642	struct btrfs_block_group_cache *cache;
 7643	int ret = 0;
 7644
 7645	cache = btrfs_lookup_block_group(root->fs_info, start);
 7646	if (!cache) {
 7647		btrfs_err(root->fs_info, "Unable to find block group for %llu",
 7648			start);
 7649		return -ENOSPC;
 7650	}
 7651
 7652	if (pin)
 7653		pin_down_extent(root, cache, start, len, 1);
 7654	else {
 7655		if (btrfs_test_opt(root, DISCARD))
 7656			ret = btrfs_discard_extent(root, start, len, NULL);
 7657		btrfs_add_free_space(cache, start, len);
 7658		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
 
 7659	}
 7660
 7661	btrfs_put_block_group(cache);
 7662
 7663	trace_btrfs_reserved_extent_free(root, start, len);
 7664
 7665	return ret;
 7666}
 7667
 7668int btrfs_free_reserved_extent(struct btrfs_root *root,
 7669			       u64 start, u64 len, int delalloc)
 7670{
 7671	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
 7672}
 7673
 7674int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
 7675				       u64 start, u64 len)
 7676{
 7677	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
 7678}
 7679
 7680static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
 7681				      struct btrfs_root *root,
 7682				      u64 parent, u64 root_objectid,
 7683				      u64 flags, u64 owner, u64 offset,
 7684				      struct btrfs_key *ins, int ref_mod)
 7685{
 
 7686	int ret;
 7687	struct btrfs_fs_info *fs_info = root->fs_info;
 7688	struct btrfs_extent_item *extent_item;
 7689	struct btrfs_extent_inline_ref *iref;
 7690	struct btrfs_path *path;
 7691	struct extent_buffer *leaf;
 7692	int type;
 7693	u32 size;
 7694
 7695	if (parent > 0)
 7696		type = BTRFS_SHARED_DATA_REF_KEY;
 7697	else
 7698		type = BTRFS_EXTENT_DATA_REF_KEY;
 7699
 7700	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
 7701
 7702	path = btrfs_alloc_path();
 7703	if (!path)
 7704		return -ENOMEM;
 7705
 7706	path->leave_spinning = 1;
 7707	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
 7708				      ins, size);
 7709	if (ret) {
 7710		btrfs_free_path(path);
 7711		return ret;
 7712	}
 7713
 7714	leaf = path->nodes[0];
 7715	extent_item = btrfs_item_ptr(leaf, path->slots[0],
 7716				     struct btrfs_extent_item);
 7717	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
 7718	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
 7719	btrfs_set_extent_flags(leaf, extent_item,
 7720			       flags | BTRFS_EXTENT_FLAG_DATA);
 7721
 7722	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
 7723	btrfs_set_extent_inline_ref_type(leaf, iref, type);
 7724	if (parent > 0) {
 7725		struct btrfs_shared_data_ref *ref;
 7726		ref = (struct btrfs_shared_data_ref *)(iref + 1);
 7727		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
 7728		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
 7729	} else {
 7730		struct btrfs_extent_data_ref *ref;
 7731		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
 7732		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
 7733		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
 7734		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
 7735		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
 7736	}
 7737
 7738	btrfs_mark_buffer_dirty(path->nodes[0]);
 7739	btrfs_free_path(path);
 7740
 7741	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
 7742					  ins->offset);
 7743	if (ret)
 7744		return ret;
 7745
 7746	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
 7747	if (ret) { /* -ENOENT, logic error */
 7748		btrfs_err(fs_info, "update block group failed for %llu %llu",
 7749			ins->objectid, ins->offset);
 7750		BUG();
 7751	}
 7752	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
 7753	return ret;
 7754}
 7755
 7756static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
 7757				     struct btrfs_root *root,
 7758				     u64 parent, u64 root_objectid,
 7759				     u64 flags, struct btrfs_disk_key *key,
 7760				     int level, struct btrfs_key *ins)
 7761{
 
 7762	int ret;
 7763	struct btrfs_fs_info *fs_info = root->fs_info;
 7764	struct btrfs_extent_item *extent_item;
 
 7765	struct btrfs_tree_block_info *block_info;
 7766	struct btrfs_extent_inline_ref *iref;
 7767	struct btrfs_path *path;
 7768	struct extent_buffer *leaf;
 
 7769	u32 size = sizeof(*extent_item) + sizeof(*iref);
 7770	u64 num_bytes = ins->offset;
 7771	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
 7772						 SKINNY_METADATA);
 7773
 7774	if (!skinny_metadata)
 
 
 
 
 
 
 
 
 
 7775		size += sizeof(*block_info);
 
 
 7776
 7777	path = btrfs_alloc_path();
 7778	if (!path) {
 7779		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
 7780						   root->nodesize);
 7781		return -ENOMEM;
 7782	}
 7783
 7784	path->leave_spinning = 1;
 7785	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
 7786				      ins, size);
 7787	if (ret) {
 7788		btrfs_free_path(path);
 7789		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
 7790						   root->nodesize);
 7791		return ret;
 7792	}
 7793
 7794	leaf = path->nodes[0];
 7795	extent_item = btrfs_item_ptr(leaf, path->slots[0],
 7796				     struct btrfs_extent_item);
 7797	btrfs_set_extent_refs(leaf, extent_item, 1);
 7798	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
 7799	btrfs_set_extent_flags(leaf, extent_item,
 7800			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
 7801
 7802	if (skinny_metadata) {
 7803		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
 7804		num_bytes = root->nodesize;
 7805	} else {
 7806		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
 7807		btrfs_set_tree_block_key(leaf, block_info, key);
 7808		btrfs_set_tree_block_level(leaf, block_info, level);
 7809		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
 7810	}
 7811
 7812	if (parent > 0) {
 7813		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 7814		btrfs_set_extent_inline_ref_type(leaf, iref,
 7815						 BTRFS_SHARED_BLOCK_REF_KEY);
 7816		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
 7817	} else {
 7818		btrfs_set_extent_inline_ref_type(leaf, iref,
 7819						 BTRFS_TREE_BLOCK_REF_KEY);
 7820		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
 7821	}
 7822
 7823	btrfs_mark_buffer_dirty(leaf);
 7824	btrfs_free_path(path);
 7825
 7826	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
 7827					  num_bytes);
 7828	if (ret)
 7829		return ret;
 7830
 7831	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
 7832				 1);
 7833	if (ret) { /* -ENOENT, logic error */
 7834		btrfs_err(fs_info, "update block group failed for %llu %llu",
 7835			ins->objectid, ins->offset);
 7836		BUG();
 7837	}
 7838
 7839	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
 
 7840	return ret;
 7841}
 7842
 7843int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
 7844				     struct btrfs_root *root,
 7845				     u64 root_objectid, u64 owner,
 7846				     u64 offset, u64 ram_bytes,
 7847				     struct btrfs_key *ins)
 7848{
 
 7849	int ret;
 7850
 7851	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
 7852
 7853	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
 7854					 ins->offset, 0,
 7855					 root_objectid, owner, offset,
 7856					 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
 7857					 NULL);
 
 7858	return ret;
 7859}
 7860
 7861/*
 7862 * this is used by the tree logging recovery code.  It records that
 7863 * an extent has been allocated and makes sure to clear the free
 7864 * space cache bits as well
 7865 */
 7866int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
 7867				   struct btrfs_root *root,
 7868				   u64 root_objectid, u64 owner, u64 offset,
 7869				   struct btrfs_key *ins)
 7870{
 
 7871	int ret;
 7872	struct btrfs_block_group_cache *block_group;
 
 7873
 7874	/*
 7875	 * Mixed block groups will exclude before processing the log so we only
 7876	 * need to do the exlude dance if this fs isn't mixed.
 7877	 */
 7878	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
 7879		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
 
 7880		if (ret)
 7881			return ret;
 7882	}
 7883
 7884	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
 7885	if (!block_group)
 7886		return -EINVAL;
 7887
 7888	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
 7889					  RESERVE_ALLOC_NO_ACCOUNT, 0);
 7890	BUG_ON(ret); /* logic error */
 7891	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
 7892					 0, owner, offset, ins, 1);
 
 
 
 
 
 7893	btrfs_put_block_group(block_group);
 7894	return ret;
 7895}
 7896
 7897static struct extent_buffer *
 7898btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 7899		      u64 bytenr, int level)
 7900{
 
 7901	struct extent_buffer *buf;
 7902
 7903	buf = btrfs_find_create_tree_block(root, bytenr);
 7904	if (!buf)
 7905		return ERR_PTR(-ENOMEM);
 7906	btrfs_set_header_generation(buf, trans->transid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 7907	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
 7908	btrfs_tree_lock(buf);
 7909	clean_tree_block(trans, root->fs_info, buf);
 7910	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
 7911
 7912	btrfs_set_lock_blocking(buf);
 7913	set_extent_buffer_uptodate(buf);
 7914
 
 
 
 
 
 
 
 
 7915	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
 7916		buf->log_index = root->log_transid % 2;
 7917		/*
 7918		 * we allow two log transactions at a time, use different
 7919		 * EXENT bit to differentiate dirty pages.
 7920		 */
 7921		if (buf->log_index == 0)
 7922			set_extent_dirty(&root->dirty_log_pages, buf->start,
 7923					buf->start + buf->len - 1, GFP_NOFS);
 7924		else
 7925			set_extent_new(&root->dirty_log_pages, buf->start,
 7926					buf->start + buf->len - 1, GFP_NOFS);
 7927	} else {
 7928		buf->log_index = -1;
 7929		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
 7930			 buf->start + buf->len - 1, GFP_NOFS);
 7931	}
 7932	trans->blocks_used++;
 7933	/* this returns a buffer locked for blocking */
 7934	return buf;
 7935}
 7936
 7937static struct btrfs_block_rsv *
 7938use_block_rsv(struct btrfs_trans_handle *trans,
 7939	      struct btrfs_root *root, u32 blocksize)
 7940{
 7941	struct btrfs_block_rsv *block_rsv;
 7942	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
 7943	int ret;
 7944	bool global_updated = false;
 7945
 7946	block_rsv = get_block_rsv(trans, root);
 7947
 7948	if (unlikely(block_rsv->size == 0))
 7949		goto try_reserve;
 7950again:
 7951	ret = block_rsv_use_bytes(block_rsv, blocksize);
 7952	if (!ret)
 7953		return block_rsv;
 7954
 7955	if (block_rsv->failfast)
 7956		return ERR_PTR(ret);
 7957
 7958	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
 7959		global_updated = true;
 7960		update_global_block_rsv(root->fs_info);
 7961		goto again;
 7962	}
 7963
 7964	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
 7965		static DEFINE_RATELIMIT_STATE(_rs,
 7966				DEFAULT_RATELIMIT_INTERVAL * 10,
 7967				/*DEFAULT_RATELIMIT_BURST*/ 1);
 7968		if (__ratelimit(&_rs))
 7969			WARN(1, KERN_DEBUG
 7970				"BTRFS: block rsv returned %d\n", ret);
 7971	}
 7972try_reserve:
 7973	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
 7974				     BTRFS_RESERVE_NO_FLUSH);
 7975	if (!ret)
 7976		return block_rsv;
 7977	/*
 7978	 * If we couldn't reserve metadata bytes try and use some from
 7979	 * the global reserve if its space type is the same as the global
 7980	 * reservation.
 7981	 */
 7982	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
 7983	    block_rsv->space_info == global_rsv->space_info) {
 7984		ret = block_rsv_use_bytes(global_rsv, blocksize);
 7985		if (!ret)
 7986			return global_rsv;
 7987	}
 7988	return ERR_PTR(ret);
 7989}
 7990
 7991static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
 7992			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
 7993{
 7994	block_rsv_add_bytes(block_rsv, blocksize, 0);
 7995	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
 7996}
 7997
 7998/*
 7999 * finds a free extent and does all the dirty work required for allocation
 8000 * returns the tree buffer or an ERR_PTR on error.
 8001 */
 8002struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
 8003					struct btrfs_root *root,
 8004					u64 parent, u64 root_objectid,
 8005					struct btrfs_disk_key *key, int level,
 8006					u64 hint, u64 empty_size)
 
 8007{
 
 8008	struct btrfs_key ins;
 8009	struct btrfs_block_rsv *block_rsv;
 8010	struct extent_buffer *buf;
 8011	struct btrfs_delayed_extent_op *extent_op;
 
 8012	u64 flags = 0;
 8013	int ret;
 8014	u32 blocksize = root->nodesize;
 8015	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
 8016						 SKINNY_METADATA);
 8017
 8018	if (btrfs_test_is_dummy_root(root)) {
 
 8019		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
 8020					    level);
 8021		if (!IS_ERR(buf))
 8022			root->alloc_bytenr += blocksize;
 8023		return buf;
 8024	}
 
 8025
 8026	block_rsv = use_block_rsv(trans, root, blocksize);
 8027	if (IS_ERR(block_rsv))
 8028		return ERR_CAST(block_rsv);
 8029
 8030	ret = btrfs_reserve_extent(root, blocksize, blocksize,
 8031				   empty_size, hint, &ins, 0, 0);
 8032	if (ret)
 8033		goto out_unuse;
 8034
 8035	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
 
 8036	if (IS_ERR(buf)) {
 8037		ret = PTR_ERR(buf);
 8038		goto out_free_reserved;
 8039	}
 8040
 8041	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
 8042		if (parent == 0)
 8043			parent = ins.objectid;
 8044		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 8045	} else
 8046		BUG_ON(parent > 0);
 8047
 8048	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
 8049		extent_op = btrfs_alloc_delayed_extent_op();
 8050		if (!extent_op) {
 8051			ret = -ENOMEM;
 8052			goto out_free_buf;
 8053		}
 8054		if (key)
 8055			memcpy(&extent_op->key, key, sizeof(extent_op->key));
 8056		else
 8057			memset(&extent_op->key, 0, sizeof(extent_op->key));
 8058		extent_op->flags_to_set = flags;
 8059		extent_op->update_key = skinny_metadata ? false : true;
 8060		extent_op->update_flags = true;
 8061		extent_op->is_data = false;
 8062		extent_op->level = level;
 8063
 8064		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
 8065						 ins.objectid, ins.offset,
 8066						 parent, root_objectid, level,
 8067						 BTRFS_ADD_DELAYED_EXTENT,
 8068						 extent_op);
 
 
 8069		if (ret)
 8070			goto out_free_delayed;
 8071	}
 8072	return buf;
 8073
 8074out_free_delayed:
 8075	btrfs_free_delayed_extent_op(extent_op);
 8076out_free_buf:
 8077	free_extent_buffer(buf);
 8078out_free_reserved:
 8079	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
 8080out_unuse:
 8081	unuse_block_rsv(root->fs_info, block_rsv, blocksize);
 8082	return ERR_PTR(ret);
 8083}
 8084
 8085struct walk_control {
 8086	u64 refs[BTRFS_MAX_LEVEL];
 8087	u64 flags[BTRFS_MAX_LEVEL];
 8088	struct btrfs_key update_progress;
 
 
 8089	int stage;
 8090	int level;
 8091	int shared_level;
 8092	int update_ref;
 8093	int keep_locks;
 8094	int reada_slot;
 8095	int reada_count;
 8096	int for_reloc;
 8097};
 8098
 8099#define DROP_REFERENCE	1
 8100#define UPDATE_BACKREF	2
 8101
 8102static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
 8103				     struct btrfs_root *root,
 8104				     struct walk_control *wc,
 8105				     struct btrfs_path *path)
 8106{
 
 8107	u64 bytenr;
 8108	u64 generation;
 8109	u64 refs;
 8110	u64 flags;
 8111	u32 nritems;
 8112	u32 blocksize;
 8113	struct btrfs_key key;
 8114	struct extent_buffer *eb;
 8115	int ret;
 8116	int slot;
 8117	int nread = 0;
 8118
 8119	if (path->slots[wc->level] < wc->reada_slot) {
 8120		wc->reada_count = wc->reada_count * 2 / 3;
 8121		wc->reada_count = max(wc->reada_count, 2);
 8122	} else {
 8123		wc->reada_count = wc->reada_count * 3 / 2;
 8124		wc->reada_count = min_t(int, wc->reada_count,
 8125					BTRFS_NODEPTRS_PER_BLOCK(root));
 8126	}
 8127
 8128	eb = path->nodes[wc->level];
 8129	nritems = btrfs_header_nritems(eb);
 8130	blocksize = root->nodesize;
 8131
 8132	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
 8133		if (nread >= wc->reada_count)
 8134			break;
 8135
 8136		cond_resched();
 8137		bytenr = btrfs_node_blockptr(eb, slot);
 8138		generation = btrfs_node_ptr_generation(eb, slot);
 8139
 8140		if (slot == path->slots[wc->level])
 8141			goto reada;
 8142
 8143		if (wc->stage == UPDATE_BACKREF &&
 8144		    generation <= root->root_key.offset)
 8145			continue;
 8146
 8147		/* We don't lock the tree block, it's OK to be racy here */
 8148		ret = btrfs_lookup_extent_info(trans, root, bytenr,
 8149					       wc->level - 1, 1, &refs,
 8150					       &flags);
 8151		/* We don't care about errors in readahead. */
 8152		if (ret < 0)
 8153			continue;
 8154		BUG_ON(refs == 0);
 8155
 8156		if (wc->stage == DROP_REFERENCE) {
 8157			if (refs == 1)
 8158				goto reada;
 8159
 8160			if (wc->level == 1 &&
 8161			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
 8162				continue;
 8163			if (!wc->update_ref ||
 8164			    generation <= root->root_key.offset)
 8165				continue;
 8166			btrfs_node_key_to_cpu(eb, &key, slot);
 8167			ret = btrfs_comp_cpu_keys(&key,
 8168						  &wc->update_progress);
 8169			if (ret < 0)
 8170				continue;
 8171		} else {
 8172			if (wc->level == 1 &&
 8173			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
 8174				continue;
 8175		}
 8176reada:
 8177		readahead_tree_block(root, bytenr);
 8178		nread++;
 8179	}
 8180	wc->reada_slot = slot;
 8181}
 8182
 8183/*
 8184 * These may not be seen by the usual inc/dec ref code so we have to
 8185 * add them here.
 8186 */
 8187static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
 8188				     struct btrfs_root *root, u64 bytenr,
 8189				     u64 num_bytes)
 8190{
 8191	struct btrfs_qgroup_extent_record *qrecord;
 8192	struct btrfs_delayed_ref_root *delayed_refs;
 8193
 8194	qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
 8195	if (!qrecord)
 8196		return -ENOMEM;
 8197
 8198	qrecord->bytenr = bytenr;
 8199	qrecord->num_bytes = num_bytes;
 8200	qrecord->old_roots = NULL;
 8201
 8202	delayed_refs = &trans->transaction->delayed_refs;
 8203	spin_lock(&delayed_refs->lock);
 8204	if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
 8205		kfree(qrecord);
 8206	spin_unlock(&delayed_refs->lock);
 8207
 8208	return 0;
 8209}
 8210
 8211static int account_leaf_items(struct btrfs_trans_handle *trans,
 8212			      struct btrfs_root *root,
 8213			      struct extent_buffer *eb)
 8214{
 8215	int nr = btrfs_header_nritems(eb);
 8216	int i, extent_type, ret;
 8217	struct btrfs_key key;
 8218	struct btrfs_file_extent_item *fi;
 8219	u64 bytenr, num_bytes;
 8220
 8221	/* We can be called directly from walk_up_proc() */
 8222	if (!root->fs_info->quota_enabled)
 8223		return 0;
 8224
 8225	for (i = 0; i < nr; i++) {
 8226		btrfs_item_key_to_cpu(eb, &key, i);
 8227
 8228		if (key.type != BTRFS_EXTENT_DATA_KEY)
 8229			continue;
 8230
 8231		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
 8232		/* filter out non qgroup-accountable extents  */
 8233		extent_type = btrfs_file_extent_type(eb, fi);
 8234
 8235		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
 8236			continue;
 8237
 8238		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
 8239		if (!bytenr)
 8240			continue;
 8241
 8242		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
 8243
 8244		ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
 8245		if (ret)
 8246			return ret;
 8247	}
 8248	return 0;
 8249}
 8250
 8251/*
 8252 * Walk up the tree from the bottom, freeing leaves and any interior
 8253 * nodes which have had all slots visited. If a node (leaf or
 8254 * interior) is freed, the node above it will have it's slot
 8255 * incremented. The root node will never be freed.
 8256 *
 8257 * At the end of this function, we should have a path which has all
 8258 * slots incremented to the next position for a search. If we need to
 8259 * read a new node it will be NULL and the node above it will have the
 8260 * correct slot selected for a later read.
 8261 *
 8262 * If we increment the root nodes slot counter past the number of
 8263 * elements, 1 is returned to signal completion of the search.
 8264 */
 8265static int adjust_slots_upwards(struct btrfs_root *root,
 8266				struct btrfs_path *path, int root_level)
 8267{
 8268	int level = 0;
 8269	int nr, slot;
 8270	struct extent_buffer *eb;
 8271
 8272	if (root_level == 0)
 8273		return 1;
 8274
 8275	while (level <= root_level) {
 8276		eb = path->nodes[level];
 8277		nr = btrfs_header_nritems(eb);
 8278		path->slots[level]++;
 8279		slot = path->slots[level];
 8280		if (slot >= nr || level == 0) {
 8281			/*
 8282			 * Don't free the root -  we will detect this
 8283			 * condition after our loop and return a
 8284			 * positive value for caller to stop walking the tree.
 8285			 */
 8286			if (level != root_level) {
 8287				btrfs_tree_unlock_rw(eb, path->locks[level]);
 8288				path->locks[level] = 0;
 8289
 8290				free_extent_buffer(eb);
 8291				path->nodes[level] = NULL;
 8292				path->slots[level] = 0;
 8293			}
 8294		} else {
 8295			/*
 8296			 * We have a valid slot to walk back down
 8297			 * from. Stop here so caller can process these
 8298			 * new nodes.
 8299			 */
 8300			break;
 8301		}
 8302
 8303		level++;
 8304	}
 8305
 8306	eb = path->nodes[root_level];
 8307	if (path->slots[root_level] >= btrfs_header_nritems(eb))
 8308		return 1;
 8309
 8310	return 0;
 8311}
 8312
 8313/*
 8314 * root_eb is the subtree root and is locked before this function is called.
 8315 */
 8316static int account_shared_subtree(struct btrfs_trans_handle *trans,
 8317				  struct btrfs_root *root,
 8318				  struct extent_buffer *root_eb,
 8319				  u64 root_gen,
 8320				  int root_level)
 8321{
 8322	int ret = 0;
 8323	int level;
 8324	struct extent_buffer *eb = root_eb;
 8325	struct btrfs_path *path = NULL;
 8326
 8327	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
 8328	BUG_ON(root_eb == NULL);
 8329
 8330	if (!root->fs_info->quota_enabled)
 8331		return 0;
 8332
 8333	if (!extent_buffer_uptodate(root_eb)) {
 8334		ret = btrfs_read_buffer(root_eb, root_gen);
 8335		if (ret)
 8336			goto out;
 8337	}
 8338
 8339	if (root_level == 0) {
 8340		ret = account_leaf_items(trans, root, root_eb);
 8341		goto out;
 8342	}
 8343
 8344	path = btrfs_alloc_path();
 8345	if (!path)
 8346		return -ENOMEM;
 8347
 8348	/*
 8349	 * Walk down the tree.  Missing extent blocks are filled in as
 8350	 * we go. Metadata is accounted every time we read a new
 8351	 * extent block.
 8352	 *
 8353	 * When we reach a leaf, we account for file extent items in it,
 8354	 * walk back up the tree (adjusting slot pointers as we go)
 8355	 * and restart the search process.
 8356	 */
 8357	extent_buffer_get(root_eb); /* For path */
 8358	path->nodes[root_level] = root_eb;
 8359	path->slots[root_level] = 0;
 8360	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
 8361walk_down:
 8362	level = root_level;
 8363	while (level >= 0) {
 8364		if (path->nodes[level] == NULL) {
 8365			int parent_slot;
 8366			u64 child_gen;
 8367			u64 child_bytenr;
 8368
 8369			/* We need to get child blockptr/gen from
 8370			 * parent before we can read it. */
 8371			eb = path->nodes[level + 1];
 8372			parent_slot = path->slots[level + 1];
 8373			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
 8374			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
 8375
 8376			eb = read_tree_block(root, child_bytenr, child_gen);
 8377			if (IS_ERR(eb)) {
 8378				ret = PTR_ERR(eb);
 8379				goto out;
 8380			} else if (!extent_buffer_uptodate(eb)) {
 8381				free_extent_buffer(eb);
 8382				ret = -EIO;
 8383				goto out;
 8384			}
 8385
 8386			path->nodes[level] = eb;
 8387			path->slots[level] = 0;
 8388
 8389			btrfs_tree_read_lock(eb);
 8390			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 8391			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
 8392
 8393			ret = record_one_subtree_extent(trans, root, child_bytenr,
 8394							root->nodesize);
 8395			if (ret)
 8396				goto out;
 8397		}
 8398
 8399		if (level == 0) {
 8400			ret = account_leaf_items(trans, root, path->nodes[level]);
 8401			if (ret)
 8402				goto out;
 8403
 8404			/* Nonzero return here means we completed our search */
 8405			ret = adjust_slots_upwards(root, path, root_level);
 8406			if (ret)
 8407				break;
 8408
 8409			/* Restart search with new slots */
 8410			goto walk_down;
 8411		}
 8412
 8413		level--;
 8414	}
 8415
 8416	ret = 0;
 8417out:
 8418	btrfs_free_path(path);
 8419
 8420	return ret;
 8421}
 8422
 8423/*
 8424 * helper to process tree block while walking down the tree.
 8425 *
 8426 * when wc->stage == UPDATE_BACKREF, this function updates
 8427 * back refs for pointers in the block.
 8428 *
 8429 * NOTE: return value 1 means we should stop walking down.
 8430 */
 8431static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
 8432				   struct btrfs_root *root,
 8433				   struct btrfs_path *path,
 8434				   struct walk_control *wc, int lookup_info)
 8435{
 
 8436	int level = wc->level;
 8437	struct extent_buffer *eb = path->nodes[level];
 8438	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 8439	int ret;
 8440
 8441	if (wc->stage == UPDATE_BACKREF &&
 8442	    btrfs_header_owner(eb) != root->root_key.objectid)
 8443		return 1;
 8444
 8445	/*
 8446	 * when reference count of tree block is 1, it won't increase
 8447	 * again. once full backref flag is set, we never clear it.
 8448	 */
 8449	if (lookup_info &&
 8450	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
 8451	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
 8452		BUG_ON(!path->locks[level]);
 8453		ret = btrfs_lookup_extent_info(trans, root,
 8454					       eb->start, level, 1,
 8455					       &wc->refs[level],
 8456					       &wc->flags[level]);
 8457		BUG_ON(ret == -ENOMEM);
 8458		if (ret)
 8459			return ret;
 8460		BUG_ON(wc->refs[level] == 0);
 8461	}
 8462
 8463	if (wc->stage == DROP_REFERENCE) {
 8464		if (wc->refs[level] > 1)
 8465			return 1;
 8466
 8467		if (path->locks[level] && !wc->keep_locks) {
 8468			btrfs_tree_unlock_rw(eb, path->locks[level]);
 8469			path->locks[level] = 0;
 8470		}
 8471		return 0;
 8472	}
 8473
 8474	/* wc->stage == UPDATE_BACKREF */
 8475	if (!(wc->flags[level] & flag)) {
 8476		BUG_ON(!path->locks[level]);
 8477		ret = btrfs_inc_ref(trans, root, eb, 1);
 8478		BUG_ON(ret); /* -ENOMEM */
 8479		ret = btrfs_dec_ref(trans, root, eb, 0);
 8480		BUG_ON(ret); /* -ENOMEM */
 8481		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
 8482						  eb->len, flag,
 8483						  btrfs_header_level(eb), 0);
 8484		BUG_ON(ret); /* -ENOMEM */
 8485		wc->flags[level] |= flag;
 8486	}
 8487
 8488	/*
 8489	 * the block is shared by multiple trees, so it's not good to
 8490	 * keep the tree lock
 8491	 */
 8492	if (path->locks[level] && level > 0) {
 8493		btrfs_tree_unlock_rw(eb, path->locks[level]);
 8494		path->locks[level] = 0;
 8495	}
 8496	return 0;
 8497}
 8498
 8499/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8500 * helper to process tree block pointer.
 8501 *
 8502 * when wc->stage == DROP_REFERENCE, this function checks
 8503 * reference count of the block pointed to. if the block
 8504 * is shared and we need update back refs for the subtree
 8505 * rooted at the block, this function changes wc->stage to
 8506 * UPDATE_BACKREF. if the block is shared and there is no
 8507 * need to update back, this function drops the reference
 8508 * to the block.
 8509 *
 8510 * NOTE: return value 1 means we should stop walking down.
 8511 */
 8512static noinline int do_walk_down(struct btrfs_trans_handle *trans,
 8513				 struct btrfs_root *root,
 8514				 struct btrfs_path *path,
 8515				 struct walk_control *wc, int *lookup_info)
 8516{
 
 8517	u64 bytenr;
 8518	u64 generation;
 8519	u64 parent;
 8520	u32 blocksize;
 8521	struct btrfs_key key;
 
 
 8522	struct extent_buffer *next;
 8523	int level = wc->level;
 8524	int reada = 0;
 8525	int ret = 0;
 8526	bool need_account = false;
 8527
 8528	generation = btrfs_node_ptr_generation(path->nodes[level],
 8529					       path->slots[level]);
 8530	/*
 8531	 * if the lower level block was created before the snapshot
 8532	 * was created, we know there is no need to update back refs
 8533	 * for the subtree
 8534	 */
 8535	if (wc->stage == UPDATE_BACKREF &&
 8536	    generation <= root->root_key.offset) {
 8537		*lookup_info = 1;
 8538		return 1;
 8539	}
 8540
 8541	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
 8542	blocksize = root->nodesize;
 
 8543
 8544	next = btrfs_find_tree_block(root->fs_info, bytenr);
 8545	if (!next) {
 8546		next = btrfs_find_create_tree_block(root, bytenr);
 8547		if (!next)
 8548			return -ENOMEM;
 
 8549		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
 8550					       level - 1);
 8551		reada = 1;
 8552	}
 8553	btrfs_tree_lock(next);
 8554	btrfs_set_lock_blocking(next);
 8555
 8556	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
 8557				       &wc->refs[level - 1],
 8558				       &wc->flags[level - 1]);
 8559	if (ret < 0) {
 8560		btrfs_tree_unlock(next);
 8561		return ret;
 8562	}
 8563
 8564	if (unlikely(wc->refs[level - 1] == 0)) {
 8565		btrfs_err(root->fs_info, "Missing references.");
 8566		BUG();
 
 8567	}
 8568	*lookup_info = 0;
 8569
 8570	if (wc->stage == DROP_REFERENCE) {
 8571		if (wc->refs[level - 1] > 1) {
 8572			need_account = true;
 8573			if (level == 1 &&
 8574			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
 8575				goto skip;
 8576
 8577			if (!wc->update_ref ||
 8578			    generation <= root->root_key.offset)
 8579				goto skip;
 8580
 8581			btrfs_node_key_to_cpu(path->nodes[level], &key,
 8582					      path->slots[level]);
 8583			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
 8584			if (ret < 0)
 8585				goto skip;
 8586
 8587			wc->stage = UPDATE_BACKREF;
 8588			wc->shared_level = level - 1;
 8589		}
 8590	} else {
 8591		if (level == 1 &&
 8592		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
 8593			goto skip;
 8594	}
 8595
 8596	if (!btrfs_buffer_uptodate(next, generation, 0)) {
 8597		btrfs_tree_unlock(next);
 8598		free_extent_buffer(next);
 8599		next = NULL;
 8600		*lookup_info = 1;
 8601	}
 8602
 8603	if (!next) {
 8604		if (reada && level == 1)
 8605			reada_walk_down(trans, root, wc, path);
 8606		next = read_tree_block(root, bytenr, generation);
 
 8607		if (IS_ERR(next)) {
 8608			return PTR_ERR(next);
 8609		} else if (!extent_buffer_uptodate(next)) {
 8610			free_extent_buffer(next);
 8611			return -EIO;
 8612		}
 8613		btrfs_tree_lock(next);
 8614		btrfs_set_lock_blocking(next);
 8615	}
 8616
 8617	level--;
 8618	BUG_ON(level != btrfs_header_level(next));
 
 
 
 
 
 8619	path->nodes[level] = next;
 8620	path->slots[level] = 0;
 8621	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 8622	wc->level = level;
 8623	if (wc->level == 1)
 8624		wc->reada_slot = 0;
 8625	return 0;
 8626skip:
 8627	wc->refs[level - 1] = 0;
 8628	wc->flags[level - 1] = 0;
 8629	if (wc->stage == DROP_REFERENCE) {
 8630		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 8631			parent = path->nodes[level]->start;
 8632		} else {
 8633			BUG_ON(root->root_key.objectid !=
 8634			       btrfs_header_owner(path->nodes[level]));
 
 
 
 
 
 
 
 8635			parent = 0;
 8636		}
 8637
 8638		if (need_account) {
 8639			ret = account_shared_subtree(trans, root, next,
 8640						     generation, level - 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8641			if (ret) {
 8642				btrfs_err_rl(root->fs_info,
 8643					"Error "
 8644					"%d accounting shared subtree. Quota "
 8645					"is out of sync, rescan required.",
 8646					ret);
 8647			}
 8648		}
 8649		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
 8650				root->root_key.objectid, level - 1, 0);
 8651		BUG_ON(ret); /* -ENOMEM */
 
 
 
 
 
 
 
 
 
 
 
 
 
 8652	}
 
 
 
 
 
 8653	btrfs_tree_unlock(next);
 8654	free_extent_buffer(next);
 8655	*lookup_info = 1;
 8656	return 1;
 8657}
 8658
 8659/*
 8660 * helper to process tree block while walking up the tree.
 8661 *
 8662 * when wc->stage == DROP_REFERENCE, this function drops
 8663 * reference count on the block.
 8664 *
 8665 * when wc->stage == UPDATE_BACKREF, this function changes
 8666 * wc->stage back to DROP_REFERENCE if we changed wc->stage
 8667 * to UPDATE_BACKREF previously while processing the block.
 8668 *
 8669 * NOTE: return value 1 means we should stop walking up.
 8670 */
 8671static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
 8672				 struct btrfs_root *root,
 8673				 struct btrfs_path *path,
 8674				 struct walk_control *wc)
 8675{
 
 8676	int ret;
 8677	int level = wc->level;
 8678	struct extent_buffer *eb = path->nodes[level];
 8679	u64 parent = 0;
 8680
 8681	if (wc->stage == UPDATE_BACKREF) {
 8682		BUG_ON(wc->shared_level < level);
 8683		if (level < wc->shared_level)
 8684			goto out;
 8685
 8686		ret = find_next_key(path, level + 1, &wc->update_progress);
 8687		if (ret > 0)
 8688			wc->update_ref = 0;
 8689
 8690		wc->stage = DROP_REFERENCE;
 8691		wc->shared_level = -1;
 8692		path->slots[level] = 0;
 8693
 8694		/*
 8695		 * check reference count again if the block isn't locked.
 8696		 * we should start walking down the tree again if reference
 8697		 * count is one.
 8698		 */
 8699		if (!path->locks[level]) {
 8700			BUG_ON(level == 0);
 8701			btrfs_tree_lock(eb);
 8702			btrfs_set_lock_blocking(eb);
 8703			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 8704
 8705			ret = btrfs_lookup_extent_info(trans, root,
 8706						       eb->start, level, 1,
 8707						       &wc->refs[level],
 8708						       &wc->flags[level]);
 8709			if (ret < 0) {
 8710				btrfs_tree_unlock_rw(eb, path->locks[level]);
 8711				path->locks[level] = 0;
 8712				return ret;
 8713			}
 8714			BUG_ON(wc->refs[level] == 0);
 8715			if (wc->refs[level] == 1) {
 8716				btrfs_tree_unlock_rw(eb, path->locks[level]);
 8717				path->locks[level] = 0;
 8718				return 1;
 8719			}
 8720		}
 8721	}
 8722
 8723	/* wc->stage == DROP_REFERENCE */
 8724	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
 8725
 8726	if (wc->refs[level] == 1) {
 8727		if (level == 0) {
 8728			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
 8729				ret = btrfs_dec_ref(trans, root, eb, 1);
 8730			else
 8731				ret = btrfs_dec_ref(trans, root, eb, 0);
 8732			BUG_ON(ret); /* -ENOMEM */
 8733			ret = account_leaf_items(trans, root, eb);
 8734			if (ret) {
 8735				btrfs_err_rl(root->fs_info,
 8736					"error "
 8737					"%d accounting leaf items. Quota "
 8738					"is out of sync, rescan required.",
 8739					ret);
 8740			}
 8741		}
 8742		/* make block locked assertion in clean_tree_block happy */
 8743		if (!path->locks[level] &&
 8744		    btrfs_header_generation(eb) == trans->transid) {
 8745			btrfs_tree_lock(eb);
 8746			btrfs_set_lock_blocking(eb);
 8747			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 8748		}
 8749		clean_tree_block(trans, root->fs_info, eb);
 8750	}
 8751
 8752	if (eb == root->node) {
 8753		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
 8754			parent = eb->start;
 8755		else
 8756			BUG_ON(root->root_key.objectid !=
 8757			       btrfs_header_owner(eb));
 8758	} else {
 8759		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
 8760			parent = path->nodes[level + 1]->start;
 8761		else
 8762			BUG_ON(root->root_key.objectid !=
 8763			       btrfs_header_owner(path->nodes[level + 1]));
 8764	}
 8765
 8766	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
 8767out:
 8768	wc->refs[level] = 0;
 8769	wc->flags[level] = 0;
 8770	return 0;
 
 
 
 
 
 8771}
 8772
 8773static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
 8774				   struct btrfs_root *root,
 8775				   struct btrfs_path *path,
 8776				   struct walk_control *wc)
 8777{
 8778	int level = wc->level;
 8779	int lookup_info = 1;
 8780	int ret;
 8781
 8782	while (level >= 0) {
 8783		ret = walk_down_proc(trans, root, path, wc, lookup_info);
 8784		if (ret > 0)
 8785			break;
 8786
 8787		if (level == 0)
 8788			break;
 8789
 8790		if (path->slots[level] >=
 8791		    btrfs_header_nritems(path->nodes[level]))
 8792			break;
 8793
 8794		ret = do_walk_down(trans, root, path, wc, &lookup_info);
 8795		if (ret > 0) {
 8796			path->slots[level]++;
 8797			continue;
 8798		} else if (ret < 0)
 8799			return ret;
 8800		level = wc->level;
 8801	}
 8802	return 0;
 8803}
 8804
 8805static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
 8806				 struct btrfs_root *root,
 8807				 struct btrfs_path *path,
 8808				 struct walk_control *wc, int max_level)
 8809{
 8810	int level = wc->level;
 8811	int ret;
 8812
 8813	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
 8814	while (level < max_level && path->nodes[level]) {
 8815		wc->level = level;
 8816		if (path->slots[level] + 1 <
 8817		    btrfs_header_nritems(path->nodes[level])) {
 8818			path->slots[level]++;
 8819			return 0;
 8820		} else {
 8821			ret = walk_up_proc(trans, root, path, wc);
 8822			if (ret > 0)
 8823				return 0;
 
 
 8824
 8825			if (path->locks[level]) {
 8826				btrfs_tree_unlock_rw(path->nodes[level],
 8827						     path->locks[level]);
 8828				path->locks[level] = 0;
 8829			}
 8830			free_extent_buffer(path->nodes[level]);
 8831			path->nodes[level] = NULL;
 8832			level++;
 8833		}
 8834	}
 8835	return 1;
 8836}
 8837
 8838/*
 8839 * drop a subvolume tree.
 8840 *
 8841 * this function traverses the tree freeing any blocks that only
 8842 * referenced by the tree.
 8843 *
 8844 * when a shared tree block is found. this function decreases its
 8845 * reference count by one. if update_ref is true, this function
 8846 * also make sure backrefs for the shared block and all lower level
 8847 * blocks are properly updated.
 8848 *
 8849 * If called with for_reloc == 0, may exit early with -EAGAIN
 8850 */
 8851int btrfs_drop_snapshot(struct btrfs_root *root,
 8852			 struct btrfs_block_rsv *block_rsv, int update_ref,
 8853			 int for_reloc)
 8854{
 
 8855	struct btrfs_path *path;
 8856	struct btrfs_trans_handle *trans;
 8857	struct btrfs_root *tree_root = root->fs_info->tree_root;
 8858	struct btrfs_root_item *root_item = &root->root_item;
 8859	struct walk_control *wc;
 8860	struct btrfs_key key;
 8861	int err = 0;
 8862	int ret;
 8863	int level;
 8864	bool root_dropped = false;
 8865
 8866	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
 8867
 8868	path = btrfs_alloc_path();
 8869	if (!path) {
 8870		err = -ENOMEM;
 8871		goto out;
 8872	}
 8873
 8874	wc = kzalloc(sizeof(*wc), GFP_NOFS);
 8875	if (!wc) {
 8876		btrfs_free_path(path);
 8877		err = -ENOMEM;
 8878		goto out;
 8879	}
 8880
 8881	trans = btrfs_start_transaction(tree_root, 0);
 8882	if (IS_ERR(trans)) {
 8883		err = PTR_ERR(trans);
 8884		goto out_free;
 8885	}
 8886
 
 
 
 
 8887	if (block_rsv)
 8888		trans->block_rsv = block_rsv;
 8889
 
 
 
 
 
 
 
 
 
 8890	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
 8891		level = btrfs_header_level(root->node);
 8892		path->nodes[level] = btrfs_lock_root_node(root);
 8893		btrfs_set_lock_blocking(path->nodes[level]);
 8894		path->slots[level] = 0;
 8895		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 8896		memset(&wc->update_progress, 0,
 8897		       sizeof(wc->update_progress));
 8898	} else {
 8899		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
 8900		memcpy(&wc->update_progress, &key,
 8901		       sizeof(wc->update_progress));
 8902
 8903		level = root_item->drop_level;
 8904		BUG_ON(level == 0);
 8905		path->lowest_level = level;
 8906		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 8907		path->lowest_level = 0;
 8908		if (ret < 0) {
 8909			err = ret;
 8910			goto out_end_trans;
 8911		}
 8912		WARN_ON(ret > 0);
 8913
 8914		/*
 8915		 * unlock our path, this is safe because only this
 8916		 * function is allowed to delete this snapshot
 8917		 */
 8918		btrfs_unlock_up_safe(path, 0);
 8919
 8920		level = btrfs_header_level(root->node);
 8921		while (1) {
 8922			btrfs_tree_lock(path->nodes[level]);
 8923			btrfs_set_lock_blocking(path->nodes[level]);
 8924			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 8925
 8926			ret = btrfs_lookup_extent_info(trans, root,
 8927						path->nodes[level]->start,
 8928						level, 1, &wc->refs[level],
 8929						&wc->flags[level]);
 8930			if (ret < 0) {
 8931				err = ret;
 8932				goto out_end_trans;
 8933			}
 8934			BUG_ON(wc->refs[level] == 0);
 8935
 8936			if (level == root_item->drop_level)
 8937				break;
 8938
 8939			btrfs_tree_unlock(path->nodes[level]);
 8940			path->locks[level] = 0;
 8941			WARN_ON(wc->refs[level] != 1);
 8942			level--;
 8943		}
 8944	}
 8945
 
 8946	wc->level = level;
 8947	wc->shared_level = -1;
 8948	wc->stage = DROP_REFERENCE;
 8949	wc->update_ref = update_ref;
 8950	wc->keep_locks = 0;
 8951	wc->for_reloc = for_reloc;
 8952	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
 8953
 8954	while (1) {
 8955
 8956		ret = walk_down_tree(trans, root, path, wc);
 8957		if (ret < 0) {
 8958			err = ret;
 8959			break;
 8960		}
 8961
 8962		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
 8963		if (ret < 0) {
 8964			err = ret;
 8965			break;
 8966		}
 8967
 8968		if (ret > 0) {
 8969			BUG_ON(wc->stage != DROP_REFERENCE);
 8970			break;
 8971		}
 8972
 8973		if (wc->stage == DROP_REFERENCE) {
 8974			level = wc->level;
 8975			btrfs_node_key(path->nodes[level],
 8976				       &root_item->drop_progress,
 8977				       path->slots[level]);
 8978			root_item->drop_level = level;
 8979		}
 
 
 8980
 8981		BUG_ON(wc->level == 0);
 8982		if (btrfs_should_end_transaction(trans, tree_root) ||
 8983		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
 8984			ret = btrfs_update_root(trans, tree_root,
 8985						&root->root_key,
 8986						root_item);
 8987			if (ret) {
 8988				btrfs_abort_transaction(trans, tree_root, ret);
 8989				err = ret;
 8990				goto out_end_trans;
 8991			}
 8992
 8993			btrfs_end_transaction_throttle(trans, tree_root);
 8994			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
 8995				pr_debug("BTRFS: drop snapshot early exit\n");
 
 8996				err = -EAGAIN;
 8997				goto out_free;
 8998			}
 8999
 9000			trans = btrfs_start_transaction(tree_root, 0);
 9001			if (IS_ERR(trans)) {
 9002				err = PTR_ERR(trans);
 9003				goto out_free;
 9004			}
 9005			if (block_rsv)
 9006				trans->block_rsv = block_rsv;
 9007		}
 9008	}
 9009	btrfs_release_path(path);
 9010	if (err)
 9011		goto out_end_trans;
 9012
 9013	ret = btrfs_del_root(trans, tree_root, &root->root_key);
 9014	if (ret) {
 9015		btrfs_abort_transaction(trans, tree_root, ret);
 
 9016		goto out_end_trans;
 9017	}
 9018
 9019	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
 9020		ret = btrfs_find_root(tree_root, &root->root_key, path,
 9021				      NULL, NULL);
 9022		if (ret < 0) {
 9023			btrfs_abort_transaction(trans, tree_root, ret);
 9024			err = ret;
 9025			goto out_end_trans;
 9026		} else if (ret > 0) {
 9027			/* if we fail to delete the orphan item this time
 9028			 * around, it'll get picked up the next time.
 9029			 *
 9030			 * The most common failure here is just -ENOENT.
 9031			 */
 9032			btrfs_del_orphan_item(trans, tree_root,
 9033					      root->root_key.objectid);
 9034		}
 9035	}
 9036
 9037	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
 9038		btrfs_add_dropped_root(trans, root);
 9039	} else {
 9040		free_extent_buffer(root->node);
 9041		free_extent_buffer(root->commit_root);
 9042		btrfs_put_fs_root(root);
 9043	}
 9044	root_dropped = true;
 9045out_end_trans:
 9046	btrfs_end_transaction_throttle(trans, tree_root);
 9047out_free:
 9048	kfree(wc);
 9049	btrfs_free_path(path);
 9050out:
 9051	/*
 9052	 * So if we need to stop dropping the snapshot for whatever reason we
 9053	 * need to make sure to add it back to the dead root list so that we
 9054	 * keep trying to do the work later.  This also cleans up roots if we
 9055	 * don't have it in the radix (like when we recover after a power fail
 9056	 * or unmount) so we don't leak memory.
 9057	 */
 9058	if (!for_reloc && root_dropped == false)
 9059		btrfs_add_dead_root(root);
 9060	if (err && err != -EAGAIN)
 9061		btrfs_std_error(root->fs_info, err, NULL);
 9062	return err;
 9063}
 9064
 9065/*
 9066 * drop subtree rooted at tree block 'node'.
 9067 *
 9068 * NOTE: this function will unlock and release tree block 'node'
 9069 * only used by relocation code
 9070 */
 9071int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
 9072			struct btrfs_root *root,
 9073			struct extent_buffer *node,
 9074			struct extent_buffer *parent)
 9075{
 
 9076	struct btrfs_path *path;
 9077	struct walk_control *wc;
 9078	int level;
 9079	int parent_level;
 9080	int ret = 0;
 9081	int wret;
 9082
 9083	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
 9084
 9085	path = btrfs_alloc_path();
 9086	if (!path)
 9087		return -ENOMEM;
 9088
 9089	wc = kzalloc(sizeof(*wc), GFP_NOFS);
 9090	if (!wc) {
 9091		btrfs_free_path(path);
 9092		return -ENOMEM;
 9093	}
 9094
 9095	btrfs_assert_tree_locked(parent);
 9096	parent_level = btrfs_header_level(parent);
 9097	extent_buffer_get(parent);
 9098	path->nodes[parent_level] = parent;
 9099	path->slots[parent_level] = btrfs_header_nritems(parent);
 9100
 9101	btrfs_assert_tree_locked(node);
 9102	level = btrfs_header_level(node);
 9103	path->nodes[level] = node;
 9104	path->slots[level] = 0;
 9105	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 9106
 9107	wc->refs[parent_level] = 1;
 9108	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 9109	wc->level = level;
 9110	wc->shared_level = -1;
 9111	wc->stage = DROP_REFERENCE;
 9112	wc->update_ref = 0;
 9113	wc->keep_locks = 1;
 9114	wc->for_reloc = 1;
 9115	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
 9116
 9117	while (1) {
 9118		wret = walk_down_tree(trans, root, path, wc);
 9119		if (wret < 0) {
 9120			ret = wret;
 9121			break;
 9122		}
 9123
 9124		wret = walk_up_tree(trans, root, path, wc, parent_level);
 9125		if (wret < 0)
 9126			ret = wret;
 9127		if (wret != 0)
 9128			break;
 9129	}
 9130
 9131	kfree(wc);
 9132	btrfs_free_path(path);
 9133	return ret;
 9134}
 9135
 9136static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
 9137{
 9138	u64 num_devices;
 9139	u64 stripped;
 9140
 9141	/*
 9142	 * if restripe for this chunk_type is on pick target profile and
 9143	 * return, otherwise do the usual balance
 9144	 */
 9145	stripped = get_restripe_target(root->fs_info, flags);
 9146	if (stripped)
 9147		return extended_to_chunk(stripped);
 9148
 9149	num_devices = root->fs_info->fs_devices->rw_devices;
 9150
 9151	stripped = BTRFS_BLOCK_GROUP_RAID0 |
 9152		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
 9153		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
 9154
 9155	if (num_devices == 1) {
 9156		stripped |= BTRFS_BLOCK_GROUP_DUP;
 9157		stripped = flags & ~stripped;
 9158
 9159		/* turn raid0 into single device chunks */
 9160		if (flags & BTRFS_BLOCK_GROUP_RAID0)
 9161			return stripped;
 9162
 9163		/* turn mirroring into duplication */
 9164		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
 9165			     BTRFS_BLOCK_GROUP_RAID10))
 9166			return stripped | BTRFS_BLOCK_GROUP_DUP;
 9167	} else {
 9168		/* they already had raid on here, just return */
 9169		if (flags & stripped)
 9170			return flags;
 9171
 9172		stripped |= BTRFS_BLOCK_GROUP_DUP;
 9173		stripped = flags & ~stripped;
 9174
 9175		/* switch duplicated blocks with raid1 */
 9176		if (flags & BTRFS_BLOCK_GROUP_DUP)
 9177			return stripped | BTRFS_BLOCK_GROUP_RAID1;
 9178
 9179		/* this is drive concat, leave it alone */
 9180	}
 9181
 9182	return flags;
 9183}
 9184
 9185static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
 9186{
 9187	struct btrfs_space_info *sinfo = cache->space_info;
 9188	u64 num_bytes;
 9189	u64 min_allocable_bytes;
 9190	int ret = -ENOSPC;
 9191
 9192	/*
 9193	 * We need some metadata space and system metadata space for
 9194	 * allocating chunks in some corner cases until we force to set
 9195	 * it to be readonly.
 9196	 */
 9197	if ((sinfo->flags &
 9198	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
 9199	    !force)
 9200		min_allocable_bytes = SZ_1M;
 9201	else
 9202		min_allocable_bytes = 0;
 9203
 9204	spin_lock(&sinfo->lock);
 9205	spin_lock(&cache->lock);
 9206
 9207	if (cache->ro) {
 9208		cache->ro++;
 9209		ret = 0;
 9210		goto out;
 9211	}
 9212
 9213	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
 9214		    cache->bytes_super - btrfs_block_group_used(&cache->item);
 9215
 9216	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
 9217	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
 9218	    min_allocable_bytes <= sinfo->total_bytes) {
 9219		sinfo->bytes_readonly += num_bytes;
 9220		cache->ro++;
 9221		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
 9222		ret = 0;
 9223	}
 9224out:
 9225	spin_unlock(&cache->lock);
 9226	spin_unlock(&sinfo->lock);
 9227	return ret;
 9228}
 9229
 9230int btrfs_inc_block_group_ro(struct btrfs_root *root,
 9231			     struct btrfs_block_group_cache *cache)
 9232
 9233{
 9234	struct btrfs_trans_handle *trans;
 9235	u64 alloc_flags;
 9236	int ret;
 9237
 9238again:
 9239	trans = btrfs_join_transaction(root);
 9240	if (IS_ERR(trans))
 9241		return PTR_ERR(trans);
 9242
 9243	/*
 9244	 * we're not allowed to set block groups readonly after the dirty
 9245	 * block groups cache has started writing.  If it already started,
 9246	 * back off and let this transaction commit
 9247	 */
 9248	mutex_lock(&root->fs_info->ro_block_group_mutex);
 9249	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
 9250		u64 transid = trans->transid;
 9251
 9252		mutex_unlock(&root->fs_info->ro_block_group_mutex);
 9253		btrfs_end_transaction(trans, root);
 9254
 9255		ret = btrfs_wait_for_commit(root, transid);
 9256		if (ret)
 9257			return ret;
 9258		goto again;
 9259	}
 9260
 9261	/*
 9262	 * if we are changing raid levels, try to allocate a corresponding
 9263	 * block group with the new raid level.
 9264	 */
 9265	alloc_flags = update_block_group_flags(root, cache->flags);
 9266	if (alloc_flags != cache->flags) {
 9267		ret = do_chunk_alloc(trans, root, alloc_flags,
 9268				     CHUNK_ALLOC_FORCE);
 9269		/*
 9270		 * ENOSPC is allowed here, we may have enough space
 9271		 * already allocated at the new raid level to
 9272		 * carry on
 9273		 */
 9274		if (ret == -ENOSPC)
 9275			ret = 0;
 9276		if (ret < 0)
 9277			goto out;
 9278	}
 9279
 9280	ret = inc_block_group_ro(cache, 0);
 9281	if (!ret)
 9282		goto out;
 9283	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
 9284	ret = do_chunk_alloc(trans, root, alloc_flags,
 9285			     CHUNK_ALLOC_FORCE);
 9286	if (ret < 0)
 9287		goto out;
 9288	ret = inc_block_group_ro(cache, 0);
 9289out:
 9290	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
 9291		alloc_flags = update_block_group_flags(root, cache->flags);
 9292		lock_chunks(root->fs_info->chunk_root);
 9293		check_system_chunk(trans, root, alloc_flags);
 9294		unlock_chunks(root->fs_info->chunk_root);
 9295	}
 9296	mutex_unlock(&root->fs_info->ro_block_group_mutex);
 9297
 9298	btrfs_end_transaction(trans, root);
 9299	return ret;
 9300}
 9301
 9302int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
 9303			    struct btrfs_root *root, u64 type)
 9304{
 9305	u64 alloc_flags = get_alloc_profile(root, type);
 9306	return do_chunk_alloc(trans, root, alloc_flags,
 9307			      CHUNK_ALLOC_FORCE);
 9308}
 9309
 9310/*
 9311 * helper to account the unused space of all the readonly block group in the
 9312 * space_info. takes mirrors into account.
 9313 */
 9314u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
 9315{
 9316	struct btrfs_block_group_cache *block_group;
 9317	u64 free_bytes = 0;
 9318	int factor;
 9319
 9320	/* It's df, we don't care if it's racey */
 9321	if (list_empty(&sinfo->ro_bgs))
 9322		return 0;
 9323
 9324	spin_lock(&sinfo->lock);
 9325	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
 9326		spin_lock(&block_group->lock);
 9327
 9328		if (!block_group->ro) {
 9329			spin_unlock(&block_group->lock);
 9330			continue;
 9331		}
 9332
 9333		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
 9334					  BTRFS_BLOCK_GROUP_RAID10 |
 9335					  BTRFS_BLOCK_GROUP_DUP))
 9336			factor = 2;
 9337		else
 9338			factor = 1;
 9339
 9340		free_bytes += (block_group->key.offset -
 9341			       btrfs_block_group_used(&block_group->item)) *
 9342			       factor;
 9343
 9344		spin_unlock(&block_group->lock);
 9345	}
 9346	spin_unlock(&sinfo->lock);
 9347
 9348	return free_bytes;
 9349}
 9350
 9351void btrfs_dec_block_group_ro(struct btrfs_root *root,
 9352			      struct btrfs_block_group_cache *cache)
 9353{
 9354	struct btrfs_space_info *sinfo = cache->space_info;
 9355	u64 num_bytes;
 9356
 9357	BUG_ON(!cache->ro);
 9358
 9359	spin_lock(&sinfo->lock);
 9360	spin_lock(&cache->lock);
 9361	if (!--cache->ro) {
 9362		num_bytes = cache->key.offset - cache->reserved -
 9363			    cache->pinned - cache->bytes_super -
 9364			    btrfs_block_group_used(&cache->item);
 9365		sinfo->bytes_readonly -= num_bytes;
 9366		list_del_init(&cache->ro_list);
 9367	}
 9368	spin_unlock(&cache->lock);
 9369	spin_unlock(&sinfo->lock);
 9370}
 9371
 9372/*
 9373 * checks to see if its even possible to relocate this block group.
 9374 *
 9375 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
 9376 * ok to go ahead and try.
 9377 */
 9378int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
 9379{
 9380	struct btrfs_block_group_cache *block_group;
 9381	struct btrfs_space_info *space_info;
 9382	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 9383	struct btrfs_device *device;
 9384	struct btrfs_trans_handle *trans;
 9385	u64 min_free;
 9386	u64 dev_min = 1;
 9387	u64 dev_nr = 0;
 9388	u64 target;
 9389	int debug;
 9390	int index;
 9391	int full = 0;
 9392	int ret = 0;
 9393
 9394	debug = btrfs_test_opt(root, ENOSPC_DEBUG);
 9395
 9396	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
 9397
 9398	/* odd, couldn't find the block group, leave it alone */
 9399	if (!block_group) {
 9400		if (debug)
 9401			btrfs_warn(root->fs_info,
 9402				   "can't find block group for bytenr %llu",
 9403				   bytenr);
 9404		return -1;
 9405	}
 9406
 9407	min_free = btrfs_block_group_used(&block_group->item);
 9408
 9409	/* no bytes used, we're good */
 9410	if (!min_free)
 9411		goto out;
 9412
 9413	space_info = block_group->space_info;
 9414	spin_lock(&space_info->lock);
 9415
 9416	full = space_info->full;
 9417
 9418	/*
 9419	 * if this is the last block group we have in this space, we can't
 9420	 * relocate it unless we're able to allocate a new chunk below.
 9421	 *
 9422	 * Otherwise, we need to make sure we have room in the space to handle
 9423	 * all of the extents from this block group.  If we can, we're good
 9424	 */
 9425	if ((space_info->total_bytes != block_group->key.offset) &&
 9426	    (space_info->bytes_used + space_info->bytes_reserved +
 9427	     space_info->bytes_pinned + space_info->bytes_readonly +
 9428	     min_free < space_info->total_bytes)) {
 9429		spin_unlock(&space_info->lock);
 9430		goto out;
 9431	}
 9432	spin_unlock(&space_info->lock);
 9433
 9434	/*
 9435	 * ok we don't have enough space, but maybe we have free space on our
 9436	 * devices to allocate new chunks for relocation, so loop through our
 9437	 * alloc devices and guess if we have enough space.  if this block
 9438	 * group is going to be restriped, run checks against the target
 9439	 * profile instead of the current one.
 9440	 */
 9441	ret = -1;
 9442
 9443	/*
 9444	 * index:
 9445	 *      0: raid10
 9446	 *      1: raid1
 9447	 *      2: dup
 9448	 *      3: raid0
 9449	 *      4: single
 9450	 */
 9451	target = get_restripe_target(root->fs_info, block_group->flags);
 9452	if (target) {
 9453		index = __get_raid_index(extended_to_chunk(target));
 9454	} else {
 9455		/*
 9456		 * this is just a balance, so if we were marked as full
 9457		 * we know there is no space for a new chunk
 9458		 */
 9459		if (full) {
 9460			if (debug)
 9461				btrfs_warn(root->fs_info,
 9462					"no space to alloc new chunk for block group %llu",
 9463					block_group->key.objectid);
 9464			goto out;
 9465		}
 9466
 9467		index = get_block_group_index(block_group);
 9468	}
 9469
 9470	if (index == BTRFS_RAID_RAID10) {
 9471		dev_min = 4;
 9472		/* Divide by 2 */
 9473		min_free >>= 1;
 9474	} else if (index == BTRFS_RAID_RAID1) {
 9475		dev_min = 2;
 9476	} else if (index == BTRFS_RAID_DUP) {
 9477		/* Multiply by 2 */
 9478		min_free <<= 1;
 9479	} else if (index == BTRFS_RAID_RAID0) {
 9480		dev_min = fs_devices->rw_devices;
 9481		min_free = div64_u64(min_free, dev_min);
 9482	}
 9483
 9484	/* We need to do this so that we can look at pending chunks */
 9485	trans = btrfs_join_transaction(root);
 9486	if (IS_ERR(trans)) {
 9487		ret = PTR_ERR(trans);
 9488		goto out;
 9489	}
 9490
 9491	mutex_lock(&root->fs_info->chunk_mutex);
 9492	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
 9493		u64 dev_offset;
 9494
 9495		/*
 9496		 * check to make sure we can actually find a chunk with enough
 9497		 * space to fit our block group in.
 9498		 */
 9499		if (device->total_bytes > device->bytes_used + min_free &&
 9500		    !device->is_tgtdev_for_dev_replace) {
 9501			ret = find_free_dev_extent(trans, device, min_free,
 9502						   &dev_offset, NULL);
 9503			if (!ret)
 9504				dev_nr++;
 9505
 9506			if (dev_nr >= dev_min)
 9507				break;
 9508
 9509			ret = -1;
 9510		}
 9511	}
 9512	if (debug && ret == -1)
 9513		btrfs_warn(root->fs_info,
 9514			"no space to allocate a new chunk for block group %llu",
 9515			block_group->key.objectid);
 9516	mutex_unlock(&root->fs_info->chunk_mutex);
 9517	btrfs_end_transaction(trans, root);
 9518out:
 9519	btrfs_put_block_group(block_group);
 9520	return ret;
 9521}
 9522
 9523static int find_first_block_group(struct btrfs_root *root,
 9524		struct btrfs_path *path, struct btrfs_key *key)
 9525{
 9526	int ret = 0;
 9527	struct btrfs_key found_key;
 9528	struct extent_buffer *leaf;
 9529	int slot;
 9530
 9531	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 9532	if (ret < 0)
 9533		goto out;
 9534
 9535	while (1) {
 9536		slot = path->slots[0];
 9537		leaf = path->nodes[0];
 9538		if (slot >= btrfs_header_nritems(leaf)) {
 9539			ret = btrfs_next_leaf(root, path);
 9540			if (ret == 0)
 9541				continue;
 9542			if (ret < 0)
 9543				goto out;
 9544			break;
 9545		}
 9546		btrfs_item_key_to_cpu(leaf, &found_key, slot);
 9547
 9548		if (found_key.objectid >= key->objectid &&
 9549		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
 9550			ret = 0;
 9551			goto out;
 9552		}
 9553		path->slots[0]++;
 9554	}
 9555out:
 9556	return ret;
 9557}
 9558
 9559void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
 9560{
 9561	struct btrfs_block_group_cache *block_group;
 9562	u64 last = 0;
 9563
 9564	while (1) {
 9565		struct inode *inode;
 9566
 9567		block_group = btrfs_lookup_first_block_group(info, last);
 9568		while (block_group) {
 9569			spin_lock(&block_group->lock);
 9570			if (block_group->iref)
 9571				break;
 9572			spin_unlock(&block_group->lock);
 9573			block_group = next_block_group(info->tree_root,
 9574						       block_group);
 9575		}
 9576		if (!block_group) {
 9577			if (last == 0)
 9578				break;
 9579			last = 0;
 9580			continue;
 9581		}
 9582
 9583		inode = block_group->inode;
 9584		block_group->iref = 0;
 9585		block_group->inode = NULL;
 9586		spin_unlock(&block_group->lock);
 9587		iput(inode);
 9588		last = block_group->key.objectid + block_group->key.offset;
 9589		btrfs_put_block_group(block_group);
 9590	}
 9591}
 9592
 9593int btrfs_free_block_groups(struct btrfs_fs_info *info)
 9594{
 9595	struct btrfs_block_group_cache *block_group;
 9596	struct btrfs_space_info *space_info;
 9597	struct btrfs_caching_control *caching_ctl;
 9598	struct rb_node *n;
 9599
 9600	down_write(&info->commit_root_sem);
 9601	while (!list_empty(&info->caching_block_groups)) {
 9602		caching_ctl = list_entry(info->caching_block_groups.next,
 9603					 struct btrfs_caching_control, list);
 9604		list_del(&caching_ctl->list);
 9605		put_caching_control(caching_ctl);
 9606	}
 9607	up_write(&info->commit_root_sem);
 9608
 9609	spin_lock(&info->unused_bgs_lock);
 9610	while (!list_empty(&info->unused_bgs)) {
 9611		block_group = list_first_entry(&info->unused_bgs,
 9612					       struct btrfs_block_group_cache,
 9613					       bg_list);
 9614		list_del_init(&block_group->bg_list);
 9615		btrfs_put_block_group(block_group);
 9616	}
 9617	spin_unlock(&info->unused_bgs_lock);
 9618
 9619	spin_lock(&info->block_group_cache_lock);
 9620	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
 9621		block_group = rb_entry(n, struct btrfs_block_group_cache,
 9622				       cache_node);
 9623		rb_erase(&block_group->cache_node,
 9624			 &info->block_group_cache_tree);
 9625		RB_CLEAR_NODE(&block_group->cache_node);
 9626		spin_unlock(&info->block_group_cache_lock);
 9627
 9628		down_write(&block_group->space_info->groups_sem);
 9629		list_del(&block_group->list);
 9630		up_write(&block_group->space_info->groups_sem);
 9631
 9632		if (block_group->cached == BTRFS_CACHE_STARTED)
 9633			wait_block_group_cache_done(block_group);
 9634
 9635		/*
 9636		 * We haven't cached this block group, which means we could
 9637		 * possibly have excluded extents on this block group.
 9638		 */
 9639		if (block_group->cached == BTRFS_CACHE_NO ||
 9640		    block_group->cached == BTRFS_CACHE_ERROR)
 9641			free_excluded_extents(info->extent_root, block_group);
 9642
 9643		btrfs_remove_free_space_cache(block_group);
 9644		btrfs_put_block_group(block_group);
 9645
 9646		spin_lock(&info->block_group_cache_lock);
 9647	}
 9648	spin_unlock(&info->block_group_cache_lock);
 9649
 9650	/* now that all the block groups are freed, go through and
 9651	 * free all the space_info structs.  This is only called during
 9652	 * the final stages of unmount, and so we know nobody is
 9653	 * using them.  We call synchronize_rcu() once before we start,
 9654	 * just to be on the safe side.
 9655	 */
 9656	synchronize_rcu();
 9657
 9658	release_global_block_rsv(info);
 9659
 9660	while (!list_empty(&info->space_info)) {
 9661		int i;
 9662
 9663		space_info = list_entry(info->space_info.next,
 9664					struct btrfs_space_info,
 9665					list);
 9666		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
 9667			if (WARN_ON(space_info->bytes_pinned > 0 ||
 9668			    space_info->bytes_reserved > 0 ||
 9669			    space_info->bytes_may_use > 0)) {
 9670				dump_space_info(space_info, 0, 0);
 9671			}
 9672		}
 9673		list_del(&space_info->list);
 9674		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
 9675			struct kobject *kobj;
 9676			kobj = space_info->block_group_kobjs[i];
 9677			space_info->block_group_kobjs[i] = NULL;
 9678			if (kobj) {
 9679				kobject_del(kobj);
 9680				kobject_put(kobj);
 9681			}
 9682		}
 9683		kobject_del(&space_info->kobj);
 9684		kobject_put(&space_info->kobj);
 9685	}
 9686	return 0;
 9687}
 9688
 9689static void __link_block_group(struct btrfs_space_info *space_info,
 9690			       struct btrfs_block_group_cache *cache)
 9691{
 9692	int index = get_block_group_index(cache);
 9693	bool first = false;
 9694
 9695	down_write(&space_info->groups_sem);
 9696	if (list_empty(&space_info->block_groups[index]))
 9697		first = true;
 9698	list_add_tail(&cache->list, &space_info->block_groups[index]);
 9699	up_write(&space_info->groups_sem);
 9700
 9701	if (first) {
 9702		struct raid_kobject *rkobj;
 9703		int ret;
 9704
 9705		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
 9706		if (!rkobj)
 9707			goto out_err;
 9708		rkobj->raid_type = index;
 9709		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
 9710		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
 9711				  "%s", get_raid_name(index));
 9712		if (ret) {
 9713			kobject_put(&rkobj->kobj);
 9714			goto out_err;
 9715		}
 9716		space_info->block_group_kobjs[index] = &rkobj->kobj;
 9717	}
 9718
 9719	return;
 9720out_err:
 9721	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
 9722}
 9723
 9724static struct btrfs_block_group_cache *
 9725btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
 9726{
 9727	struct btrfs_block_group_cache *cache;
 9728
 9729	cache = kzalloc(sizeof(*cache), GFP_NOFS);
 9730	if (!cache)
 9731		return NULL;
 9732
 9733	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
 9734					GFP_NOFS);
 9735	if (!cache->free_space_ctl) {
 9736		kfree(cache);
 9737		return NULL;
 9738	}
 9739
 9740	cache->key.objectid = start;
 9741	cache->key.offset = size;
 9742	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
 9743
 9744	cache->sectorsize = root->sectorsize;
 9745	cache->fs_info = root->fs_info;
 9746	cache->full_stripe_len = btrfs_full_stripe_len(root,
 9747					       &root->fs_info->mapping_tree,
 9748					       start);
 9749	set_free_space_tree_thresholds(cache);
 9750
 9751	atomic_set(&cache->count, 1);
 9752	spin_lock_init(&cache->lock);
 9753	init_rwsem(&cache->data_rwsem);
 9754	INIT_LIST_HEAD(&cache->list);
 9755	INIT_LIST_HEAD(&cache->cluster_list);
 9756	INIT_LIST_HEAD(&cache->bg_list);
 9757	INIT_LIST_HEAD(&cache->ro_list);
 9758	INIT_LIST_HEAD(&cache->dirty_list);
 9759	INIT_LIST_HEAD(&cache->io_list);
 9760	btrfs_init_free_space_ctl(cache);
 9761	atomic_set(&cache->trimming, 0);
 9762	mutex_init(&cache->free_space_lock);
 9763
 9764	return cache;
 9765}
 9766
 9767int btrfs_read_block_groups(struct btrfs_root *root)
 9768{
 9769	struct btrfs_path *path;
 9770	int ret;
 9771	struct btrfs_block_group_cache *cache;
 9772	struct btrfs_fs_info *info = root->fs_info;
 9773	struct btrfs_space_info *space_info;
 9774	struct btrfs_key key;
 9775	struct btrfs_key found_key;
 9776	struct extent_buffer *leaf;
 9777	int need_clear = 0;
 9778	u64 cache_gen;
 9779
 9780	root = info->extent_root;
 9781	key.objectid = 0;
 9782	key.offset = 0;
 9783	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
 9784	path = btrfs_alloc_path();
 9785	if (!path)
 9786		return -ENOMEM;
 9787	path->reada = READA_FORWARD;
 9788
 9789	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
 9790	if (btrfs_test_opt(root, SPACE_CACHE) &&
 9791	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
 9792		need_clear = 1;
 9793	if (btrfs_test_opt(root, CLEAR_CACHE))
 9794		need_clear = 1;
 9795
 9796	while (1) {
 9797		ret = find_first_block_group(root, path, &key);
 9798		if (ret > 0)
 9799			break;
 9800		if (ret != 0)
 9801			goto error;
 9802
 9803		leaf = path->nodes[0];
 9804		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 9805
 9806		cache = btrfs_create_block_group_cache(root, found_key.objectid,
 9807						       found_key.offset);
 9808		if (!cache) {
 9809			ret = -ENOMEM;
 9810			goto error;
 9811		}
 9812
 9813		if (need_clear) {
 9814			/*
 9815			 * When we mount with old space cache, we need to
 9816			 * set BTRFS_DC_CLEAR and set dirty flag.
 9817			 *
 9818			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
 9819			 *    truncate the old free space cache inode and
 9820			 *    setup a new one.
 9821			 * b) Setting 'dirty flag' makes sure that we flush
 9822			 *    the new space cache info onto disk.
 9823			 */
 9824			if (btrfs_test_opt(root, SPACE_CACHE))
 9825				cache->disk_cache_state = BTRFS_DC_CLEAR;
 9826		}
 9827
 9828		read_extent_buffer(leaf, &cache->item,
 9829				   btrfs_item_ptr_offset(leaf, path->slots[0]),
 9830				   sizeof(cache->item));
 9831		cache->flags = btrfs_block_group_flags(&cache->item);
 9832
 9833		key.objectid = found_key.objectid + found_key.offset;
 9834		btrfs_release_path(path);
 9835
 9836		/*
 9837		 * We need to exclude the super stripes now so that the space
 9838		 * info has super bytes accounted for, otherwise we'll think
 9839		 * we have more space than we actually do.
 9840		 */
 9841		ret = exclude_super_stripes(root, cache);
 9842		if (ret) {
 9843			/*
 9844			 * We may have excluded something, so call this just in
 9845			 * case.
 9846			 */
 9847			free_excluded_extents(root, cache);
 9848			btrfs_put_block_group(cache);
 9849			goto error;
 9850		}
 9851
 9852		/*
 9853		 * check for two cases, either we are full, and therefore
 9854		 * don't need to bother with the caching work since we won't
 9855		 * find any space, or we are empty, and we can just add all
 9856		 * the space in and be done with it.  This saves us _alot_ of
 9857		 * time, particularly in the full case.
 9858		 */
 9859		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
 9860			cache->last_byte_to_unpin = (u64)-1;
 9861			cache->cached = BTRFS_CACHE_FINISHED;
 9862			free_excluded_extents(root, cache);
 9863		} else if (btrfs_block_group_used(&cache->item) == 0) {
 9864			cache->last_byte_to_unpin = (u64)-1;
 9865			cache->cached = BTRFS_CACHE_FINISHED;
 9866			add_new_free_space(cache, root->fs_info,
 9867					   found_key.objectid,
 9868					   found_key.objectid +
 9869					   found_key.offset);
 9870			free_excluded_extents(root, cache);
 9871		}
 9872
 9873		ret = btrfs_add_block_group_cache(root->fs_info, cache);
 9874		if (ret) {
 9875			btrfs_remove_free_space_cache(cache);
 9876			btrfs_put_block_group(cache);
 9877			goto error;
 9878		}
 9879
 9880		ret = update_space_info(info, cache->flags, found_key.offset,
 9881					btrfs_block_group_used(&cache->item),
 9882					&space_info);
 9883		if (ret) {
 9884			btrfs_remove_free_space_cache(cache);
 9885			spin_lock(&info->block_group_cache_lock);
 9886			rb_erase(&cache->cache_node,
 9887				 &info->block_group_cache_tree);
 9888			RB_CLEAR_NODE(&cache->cache_node);
 9889			spin_unlock(&info->block_group_cache_lock);
 9890			btrfs_put_block_group(cache);
 9891			goto error;
 9892		}
 9893
 9894		cache->space_info = space_info;
 9895		spin_lock(&cache->space_info->lock);
 9896		cache->space_info->bytes_readonly += cache->bytes_super;
 9897		spin_unlock(&cache->space_info->lock);
 9898
 9899		__link_block_group(space_info, cache);
 9900
 9901		set_avail_alloc_bits(root->fs_info, cache->flags);
 9902		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
 9903			inc_block_group_ro(cache, 1);
 9904		} else if (btrfs_block_group_used(&cache->item) == 0) {
 9905			spin_lock(&info->unused_bgs_lock);
 9906			/* Should always be true but just in case. */
 9907			if (list_empty(&cache->bg_list)) {
 9908				btrfs_get_block_group(cache);
 9909				list_add_tail(&cache->bg_list,
 9910					      &info->unused_bgs);
 9911			}
 9912			spin_unlock(&info->unused_bgs_lock);
 9913		}
 9914	}
 9915
 9916	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
 9917		if (!(get_alloc_profile(root, space_info->flags) &
 9918		      (BTRFS_BLOCK_GROUP_RAID10 |
 9919		       BTRFS_BLOCK_GROUP_RAID1 |
 9920		       BTRFS_BLOCK_GROUP_RAID5 |
 9921		       BTRFS_BLOCK_GROUP_RAID6 |
 9922		       BTRFS_BLOCK_GROUP_DUP)))
 9923			continue;
 9924		/*
 9925		 * avoid allocating from un-mirrored block group if there are
 9926		 * mirrored block groups.
 9927		 */
 9928		list_for_each_entry(cache,
 9929				&space_info->block_groups[BTRFS_RAID_RAID0],
 9930				list)
 9931			inc_block_group_ro(cache, 1);
 9932		list_for_each_entry(cache,
 9933				&space_info->block_groups[BTRFS_RAID_SINGLE],
 9934				list)
 9935			inc_block_group_ro(cache, 1);
 9936	}
 9937
 9938	init_global_block_rsv(info);
 9939	ret = 0;
 9940error:
 9941	btrfs_free_path(path);
 9942	return ret;
 9943}
 9944
 9945void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
 9946				       struct btrfs_root *root)
 9947{
 9948	struct btrfs_block_group_cache *block_group, *tmp;
 9949	struct btrfs_root *extent_root = root->fs_info->extent_root;
 9950	struct btrfs_block_group_item item;
 9951	struct btrfs_key key;
 9952	int ret = 0;
 9953	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
 9954
 9955	trans->can_flush_pending_bgs = false;
 9956	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
 9957		if (ret)
 9958			goto next;
 9959
 9960		spin_lock(&block_group->lock);
 9961		memcpy(&item, &block_group->item, sizeof(item));
 9962		memcpy(&key, &block_group->key, sizeof(key));
 9963		spin_unlock(&block_group->lock);
 9964
 9965		ret = btrfs_insert_item(trans, extent_root, &key, &item,
 9966					sizeof(item));
 9967		if (ret)
 9968			btrfs_abort_transaction(trans, extent_root, ret);
 9969		ret = btrfs_finish_chunk_alloc(trans, extent_root,
 9970					       key.objectid, key.offset);
 9971		if (ret)
 9972			btrfs_abort_transaction(trans, extent_root, ret);
 9973		add_block_group_free_space(trans, root->fs_info, block_group);
 9974		/* already aborted the transaction if it failed. */
 9975next:
 9976		list_del_init(&block_group->bg_list);
 9977	}
 9978	trans->can_flush_pending_bgs = can_flush_pending_bgs;
 9979}
 9980
 9981int btrfs_make_block_group(struct btrfs_trans_handle *trans,
 9982			   struct btrfs_root *root, u64 bytes_used,
 9983			   u64 type, u64 chunk_objectid, u64 chunk_offset,
 9984			   u64 size)
 9985{
 9986	int ret;
 9987	struct btrfs_root *extent_root;
 9988	struct btrfs_block_group_cache *cache;
 9989
 9990	extent_root = root->fs_info->extent_root;
 9991
 9992	btrfs_set_log_full_commit(root->fs_info, trans);
 9993
 9994	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
 9995	if (!cache)
 9996		return -ENOMEM;
 9997
 9998	btrfs_set_block_group_used(&cache->item, bytes_used);
 9999	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10000	btrfs_set_block_group_flags(&cache->item, type);
10001
10002	cache->flags = type;
10003	cache->last_byte_to_unpin = (u64)-1;
10004	cache->cached = BTRFS_CACHE_FINISHED;
10005	cache->needs_free_space = 1;
10006	ret = exclude_super_stripes(root, cache);
10007	if (ret) {
10008		/*
10009		 * We may have excluded something, so call this just in
10010		 * case.
10011		 */
10012		free_excluded_extents(root, cache);
10013		btrfs_put_block_group(cache);
10014		return ret;
10015	}
10016
10017	add_new_free_space(cache, root->fs_info, chunk_offset,
10018			   chunk_offset + size);
10019
10020	free_excluded_extents(root, cache);
10021
10022#ifdef CONFIG_BTRFS_DEBUG
10023	if (btrfs_should_fragment_free_space(root, cache)) {
10024		u64 new_bytes_used = size - bytes_used;
10025
10026		bytes_used += new_bytes_used >> 1;
10027		fragment_free_space(root, cache);
10028	}
10029#endif
10030	/*
10031	 * Call to ensure the corresponding space_info object is created and
10032	 * assigned to our block group, but don't update its counters just yet.
10033	 * We want our bg to be added to the rbtree with its ->space_info set.
10034	 */
10035	ret = update_space_info(root->fs_info, cache->flags, 0, 0,
10036				&cache->space_info);
10037	if (ret) {
10038		btrfs_remove_free_space_cache(cache);
10039		btrfs_put_block_group(cache);
10040		return ret;
10041	}
10042
10043	ret = btrfs_add_block_group_cache(root->fs_info, cache);
10044	if (ret) {
10045		btrfs_remove_free_space_cache(cache);
10046		btrfs_put_block_group(cache);
10047		return ret;
10048	}
10049
10050	/*
10051	 * Now that our block group has its ->space_info set and is inserted in
10052	 * the rbtree, update the space info's counters.
10053	 */
10054	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10055				&cache->space_info);
10056	if (ret) {
10057		btrfs_remove_free_space_cache(cache);
10058		spin_lock(&root->fs_info->block_group_cache_lock);
10059		rb_erase(&cache->cache_node,
10060			 &root->fs_info->block_group_cache_tree);
10061		RB_CLEAR_NODE(&cache->cache_node);
10062		spin_unlock(&root->fs_info->block_group_cache_lock);
10063		btrfs_put_block_group(cache);
10064		return ret;
10065	}
10066	update_global_block_rsv(root->fs_info);
10067
10068	spin_lock(&cache->space_info->lock);
10069	cache->space_info->bytes_readonly += cache->bytes_super;
10070	spin_unlock(&cache->space_info->lock);
10071
10072	__link_block_group(cache->space_info, cache);
10073
10074	list_add_tail(&cache->bg_list, &trans->new_bgs);
10075
10076	set_avail_alloc_bits(extent_root->fs_info, type);
10077
10078	return 0;
10079}
10080
10081static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10082{
10083	u64 extra_flags = chunk_to_extended(flags) &
10084				BTRFS_EXTENDED_PROFILE_MASK;
10085
10086	write_seqlock(&fs_info->profiles_lock);
10087	if (flags & BTRFS_BLOCK_GROUP_DATA)
10088		fs_info->avail_data_alloc_bits &= ~extra_flags;
10089	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10090		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10091	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10092		fs_info->avail_system_alloc_bits &= ~extra_flags;
10093	write_sequnlock(&fs_info->profiles_lock);
10094}
10095
10096int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10097			     struct btrfs_root *root, u64 group_start,
10098			     struct extent_map *em)
10099{
10100	struct btrfs_path *path;
10101	struct btrfs_block_group_cache *block_group;
10102	struct btrfs_free_cluster *cluster;
10103	struct btrfs_root *tree_root = root->fs_info->tree_root;
10104	struct btrfs_key key;
10105	struct inode *inode;
10106	struct kobject *kobj = NULL;
10107	int ret;
10108	int index;
10109	int factor;
10110	struct btrfs_caching_control *caching_ctl = NULL;
10111	bool remove_em;
10112
10113	root = root->fs_info->extent_root;
10114
10115	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10116	BUG_ON(!block_group);
10117	BUG_ON(!block_group->ro);
10118
10119	/*
10120	 * Free the reserved super bytes from this block group before
10121	 * remove it.
10122	 */
10123	free_excluded_extents(root, block_group);
10124
10125	memcpy(&key, &block_group->key, sizeof(key));
10126	index = get_block_group_index(block_group);
10127	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10128				  BTRFS_BLOCK_GROUP_RAID1 |
10129				  BTRFS_BLOCK_GROUP_RAID10))
10130		factor = 2;
10131	else
10132		factor = 1;
10133
10134	/* make sure this block group isn't part of an allocation cluster */
10135	cluster = &root->fs_info->data_alloc_cluster;
10136	spin_lock(&cluster->refill_lock);
10137	btrfs_return_cluster_to_free_space(block_group, cluster);
10138	spin_unlock(&cluster->refill_lock);
10139
10140	/*
10141	 * make sure this block group isn't part of a metadata
10142	 * allocation cluster
10143	 */
10144	cluster = &root->fs_info->meta_alloc_cluster;
10145	spin_lock(&cluster->refill_lock);
10146	btrfs_return_cluster_to_free_space(block_group, cluster);
10147	spin_unlock(&cluster->refill_lock);
10148
10149	path = btrfs_alloc_path();
10150	if (!path) {
10151		ret = -ENOMEM;
10152		goto out;
10153	}
10154
10155	/*
10156	 * get the inode first so any iput calls done for the io_list
10157	 * aren't the final iput (no unlinks allowed now)
10158	 */
10159	inode = lookup_free_space_inode(tree_root, block_group, path);
10160
10161	mutex_lock(&trans->transaction->cache_write_mutex);
10162	/*
10163	 * make sure our free spache cache IO is done before remove the
10164	 * free space inode
10165	 */
10166	spin_lock(&trans->transaction->dirty_bgs_lock);
10167	if (!list_empty(&block_group->io_list)) {
10168		list_del_init(&block_group->io_list);
10169
10170		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10171
10172		spin_unlock(&trans->transaction->dirty_bgs_lock);
10173		btrfs_wait_cache_io(root, trans, block_group,
10174				    &block_group->io_ctl, path,
10175				    block_group->key.objectid);
10176		btrfs_put_block_group(block_group);
10177		spin_lock(&trans->transaction->dirty_bgs_lock);
10178	}
10179
10180	if (!list_empty(&block_group->dirty_list)) {
10181		list_del_init(&block_group->dirty_list);
10182		btrfs_put_block_group(block_group);
10183	}
10184	spin_unlock(&trans->transaction->dirty_bgs_lock);
10185	mutex_unlock(&trans->transaction->cache_write_mutex);
10186
10187	if (!IS_ERR(inode)) {
10188		ret = btrfs_orphan_add(trans, inode);
10189		if (ret) {
10190			btrfs_add_delayed_iput(inode);
10191			goto out;
10192		}
10193		clear_nlink(inode);
10194		/* One for the block groups ref */
10195		spin_lock(&block_group->lock);
10196		if (block_group->iref) {
10197			block_group->iref = 0;
10198			block_group->inode = NULL;
10199			spin_unlock(&block_group->lock);
10200			iput(inode);
10201		} else {
10202			spin_unlock(&block_group->lock);
10203		}
10204		/* One for our lookup ref */
10205		btrfs_add_delayed_iput(inode);
10206	}
10207
10208	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10209	key.offset = block_group->key.objectid;
10210	key.type = 0;
10211
10212	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10213	if (ret < 0)
10214		goto out;
10215	if (ret > 0)
10216		btrfs_release_path(path);
10217	if (ret == 0) {
10218		ret = btrfs_del_item(trans, tree_root, path);
10219		if (ret)
10220			goto out;
10221		btrfs_release_path(path);
10222	}
10223
10224	spin_lock(&root->fs_info->block_group_cache_lock);
10225	rb_erase(&block_group->cache_node,
10226		 &root->fs_info->block_group_cache_tree);
10227	RB_CLEAR_NODE(&block_group->cache_node);
10228
10229	if (root->fs_info->first_logical_byte == block_group->key.objectid)
10230		root->fs_info->first_logical_byte = (u64)-1;
10231	spin_unlock(&root->fs_info->block_group_cache_lock);
10232
10233	down_write(&block_group->space_info->groups_sem);
10234	/*
10235	 * we must use list_del_init so people can check to see if they
10236	 * are still on the list after taking the semaphore
10237	 */
10238	list_del_init(&block_group->list);
10239	if (list_empty(&block_group->space_info->block_groups[index])) {
10240		kobj = block_group->space_info->block_group_kobjs[index];
10241		block_group->space_info->block_group_kobjs[index] = NULL;
10242		clear_avail_alloc_bits(root->fs_info, block_group->flags);
10243	}
10244	up_write(&block_group->space_info->groups_sem);
10245	if (kobj) {
10246		kobject_del(kobj);
10247		kobject_put(kobj);
10248	}
10249
10250	if (block_group->has_caching_ctl)
10251		caching_ctl = get_caching_control(block_group);
10252	if (block_group->cached == BTRFS_CACHE_STARTED)
10253		wait_block_group_cache_done(block_group);
10254	if (block_group->has_caching_ctl) {
10255		down_write(&root->fs_info->commit_root_sem);
10256		if (!caching_ctl) {
10257			struct btrfs_caching_control *ctl;
10258
10259			list_for_each_entry(ctl,
10260				    &root->fs_info->caching_block_groups, list)
10261				if (ctl->block_group == block_group) {
10262					caching_ctl = ctl;
10263					atomic_inc(&caching_ctl->count);
10264					break;
10265				}
10266		}
10267		if (caching_ctl)
10268			list_del_init(&caching_ctl->list);
10269		up_write(&root->fs_info->commit_root_sem);
10270		if (caching_ctl) {
10271			/* Once for the caching bgs list and once for us. */
10272			put_caching_control(caching_ctl);
10273			put_caching_control(caching_ctl);
10274		}
10275	}
10276
10277	spin_lock(&trans->transaction->dirty_bgs_lock);
10278	if (!list_empty(&block_group->dirty_list)) {
10279		WARN_ON(1);
10280	}
10281	if (!list_empty(&block_group->io_list)) {
10282		WARN_ON(1);
10283	}
10284	spin_unlock(&trans->transaction->dirty_bgs_lock);
10285	btrfs_remove_free_space_cache(block_group);
10286
10287	spin_lock(&block_group->space_info->lock);
10288	list_del_init(&block_group->ro_list);
10289
10290	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10291		WARN_ON(block_group->space_info->total_bytes
10292			< block_group->key.offset);
10293		WARN_ON(block_group->space_info->bytes_readonly
10294			< block_group->key.offset);
10295		WARN_ON(block_group->space_info->disk_total
10296			< block_group->key.offset * factor);
10297	}
10298	block_group->space_info->total_bytes -= block_group->key.offset;
10299	block_group->space_info->bytes_readonly -= block_group->key.offset;
10300	block_group->space_info->disk_total -= block_group->key.offset * factor;
10301
10302	spin_unlock(&block_group->space_info->lock);
10303
10304	memcpy(&key, &block_group->key, sizeof(key));
10305
10306	lock_chunks(root);
10307	if (!list_empty(&em->list)) {
10308		/* We're in the transaction->pending_chunks list. */
10309		free_extent_map(em);
10310	}
10311	spin_lock(&block_group->lock);
10312	block_group->removed = 1;
10313	/*
10314	 * At this point trimming can't start on this block group, because we
10315	 * removed the block group from the tree fs_info->block_group_cache_tree
10316	 * so no one can't find it anymore and even if someone already got this
10317	 * block group before we removed it from the rbtree, they have already
10318	 * incremented block_group->trimming - if they didn't, they won't find
10319	 * any free space entries because we already removed them all when we
10320	 * called btrfs_remove_free_space_cache().
10321	 *
10322	 * And we must not remove the extent map from the fs_info->mapping_tree
10323	 * to prevent the same logical address range and physical device space
10324	 * ranges from being reused for a new block group. This is because our
10325	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10326	 * completely transactionless, so while it is trimming a range the
10327	 * currently running transaction might finish and a new one start,
10328	 * allowing for new block groups to be created that can reuse the same
10329	 * physical device locations unless we take this special care.
10330	 *
10331	 * There may also be an implicit trim operation if the file system
10332	 * is mounted with -odiscard. The same protections must remain
10333	 * in place until the extents have been discarded completely when
10334	 * the transaction commit has completed.
10335	 */
10336	remove_em = (atomic_read(&block_group->trimming) == 0);
10337	/*
10338	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10339	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10340	 * before checking block_group->removed).
10341	 */
10342	if (!remove_em) {
10343		/*
10344		 * Our em might be in trans->transaction->pending_chunks which
10345		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10346		 * and so is the fs_info->pinned_chunks list.
10347		 *
10348		 * So at this point we must be holding the chunk_mutex to avoid
10349		 * any races with chunk allocation (more specifically at
10350		 * volumes.c:contains_pending_extent()), to ensure it always
10351		 * sees the em, either in the pending_chunks list or in the
10352		 * pinned_chunks list.
10353		 */
10354		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10355	}
10356	spin_unlock(&block_group->lock);
10357
10358	if (remove_em) {
10359		struct extent_map_tree *em_tree;
10360
10361		em_tree = &root->fs_info->mapping_tree.map_tree;
10362		write_lock(&em_tree->lock);
10363		/*
10364		 * The em might be in the pending_chunks list, so make sure the
10365		 * chunk mutex is locked, since remove_extent_mapping() will
10366		 * delete us from that list.
10367		 */
10368		remove_extent_mapping(em_tree, em);
10369		write_unlock(&em_tree->lock);
10370		/* once for the tree */
10371		free_extent_map(em);
10372	}
10373
10374	unlock_chunks(root);
10375
10376	ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10377	if (ret)
10378		goto out;
10379
10380	btrfs_put_block_group(block_group);
10381	btrfs_put_block_group(block_group);
10382
10383	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10384	if (ret > 0)
10385		ret = -EIO;
10386	if (ret < 0)
10387		goto out;
10388
10389	ret = btrfs_del_item(trans, root, path);
10390out:
10391	btrfs_free_path(path);
10392	return ret;
10393}
10394
10395struct btrfs_trans_handle *
10396btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10397				     const u64 chunk_offset)
10398{
10399	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10400	struct extent_map *em;
10401	struct map_lookup *map;
10402	unsigned int num_items;
10403
10404	read_lock(&em_tree->lock);
10405	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10406	read_unlock(&em_tree->lock);
10407	ASSERT(em && em->start == chunk_offset);
10408
10409	/*
10410	 * We need to reserve 3 + N units from the metadata space info in order
10411	 * to remove a block group (done at btrfs_remove_chunk() and at
10412	 * btrfs_remove_block_group()), which are used for:
10413	 *
10414	 * 1 unit for adding the free space inode's orphan (located in the tree
10415	 * of tree roots).
10416	 * 1 unit for deleting the block group item (located in the extent
10417	 * tree).
10418	 * 1 unit for deleting the free space item (located in tree of tree
10419	 * roots).
10420	 * N units for deleting N device extent items corresponding to each
10421	 * stripe (located in the device tree).
10422	 *
10423	 * In order to remove a block group we also need to reserve units in the
10424	 * system space info in order to update the chunk tree (update one or
10425	 * more device items and remove one chunk item), but this is done at
10426	 * btrfs_remove_chunk() through a call to check_system_chunk().
10427	 */
10428	map = em->map_lookup;
10429	num_items = 3 + map->num_stripes;
10430	free_extent_map(em);
10431
10432	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10433							   num_items, 1);
10434}
10435
10436/*
10437 * Process the unused_bgs list and remove any that don't have any allocated
10438 * space inside of them.
10439 */
10440void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10441{
10442	struct btrfs_block_group_cache *block_group;
10443	struct btrfs_space_info *space_info;
10444	struct btrfs_root *root = fs_info->extent_root;
10445	struct btrfs_trans_handle *trans;
10446	int ret = 0;
10447
10448	if (!fs_info->open)
10449		return;
10450
10451	spin_lock(&fs_info->unused_bgs_lock);
10452	while (!list_empty(&fs_info->unused_bgs)) {
10453		u64 start, end;
10454		int trimming;
10455
10456		block_group = list_first_entry(&fs_info->unused_bgs,
10457					       struct btrfs_block_group_cache,
10458					       bg_list);
10459		list_del_init(&block_group->bg_list);
10460
10461		space_info = block_group->space_info;
10462
10463		if (ret || btrfs_mixed_space_info(space_info)) {
10464			btrfs_put_block_group(block_group);
10465			continue;
10466		}
10467		spin_unlock(&fs_info->unused_bgs_lock);
10468
10469		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10470
10471		/* Don't want to race with allocators so take the groups_sem */
10472		down_write(&space_info->groups_sem);
10473		spin_lock(&block_group->lock);
10474		if (block_group->reserved ||
10475		    btrfs_block_group_used(&block_group->item) ||
10476		    block_group->ro ||
10477		    list_is_singular(&block_group->list)) {
10478			/*
10479			 * We want to bail if we made new allocations or have
10480			 * outstanding allocations in this block group.  We do
10481			 * the ro check in case balance is currently acting on
10482			 * this block group.
10483			 */
10484			spin_unlock(&block_group->lock);
10485			up_write(&space_info->groups_sem);
10486			goto next;
10487		}
10488		spin_unlock(&block_group->lock);
10489
10490		/* We don't want to force the issue, only flip if it's ok. */
10491		ret = inc_block_group_ro(block_group, 0);
10492		up_write(&space_info->groups_sem);
10493		if (ret < 0) {
10494			ret = 0;
10495			goto next;
10496		}
10497
10498		/*
10499		 * Want to do this before we do anything else so we can recover
10500		 * properly if we fail to join the transaction.
10501		 */
10502		trans = btrfs_start_trans_remove_block_group(fs_info,
10503						     block_group->key.objectid);
10504		if (IS_ERR(trans)) {
10505			btrfs_dec_block_group_ro(root, block_group);
10506			ret = PTR_ERR(trans);
10507			goto next;
10508		}
10509
10510		/*
10511		 * We could have pending pinned extents for this block group,
10512		 * just delete them, we don't care about them anymore.
10513		 */
10514		start = block_group->key.objectid;
10515		end = start + block_group->key.offset - 1;
10516		/*
10517		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10518		 * btrfs_finish_extent_commit(). If we are at transaction N,
10519		 * another task might be running finish_extent_commit() for the
10520		 * previous transaction N - 1, and have seen a range belonging
10521		 * to the block group in freed_extents[] before we were able to
10522		 * clear the whole block group range from freed_extents[]. This
10523		 * means that task can lookup for the block group after we
10524		 * unpinned it from freed_extents[] and removed it, leading to
10525		 * a BUG_ON() at btrfs_unpin_extent_range().
10526		 */
10527		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10528		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10529				  EXTENT_DIRTY, GFP_NOFS);
10530		if (ret) {
10531			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10532			btrfs_dec_block_group_ro(root, block_group);
10533			goto end_trans;
10534		}
10535		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10536				  EXTENT_DIRTY, GFP_NOFS);
10537		if (ret) {
10538			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10539			btrfs_dec_block_group_ro(root, block_group);
10540			goto end_trans;
10541		}
10542		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10543
10544		/* Reset pinned so btrfs_put_block_group doesn't complain */
10545		spin_lock(&space_info->lock);
10546		spin_lock(&block_group->lock);
10547
10548		space_info->bytes_pinned -= block_group->pinned;
10549		space_info->bytes_readonly += block_group->pinned;
10550		percpu_counter_add(&space_info->total_bytes_pinned,
10551				   -block_group->pinned);
10552		block_group->pinned = 0;
10553
10554		spin_unlock(&block_group->lock);
10555		spin_unlock(&space_info->lock);
10556
10557		/* DISCARD can flip during remount */
10558		trimming = btrfs_test_opt(root, DISCARD);
10559
10560		/* Implicit trim during transaction commit. */
10561		if (trimming)
10562			btrfs_get_block_group_trimming(block_group);
10563
10564		/*
10565		 * Btrfs_remove_chunk will abort the transaction if things go
10566		 * horribly wrong.
10567		 */
10568		ret = btrfs_remove_chunk(trans, root,
10569					 block_group->key.objectid);
10570
10571		if (ret) {
10572			if (trimming)
10573				btrfs_put_block_group_trimming(block_group);
10574			goto end_trans;
10575		}
10576
10577		/*
10578		 * If we're not mounted with -odiscard, we can just forget
10579		 * about this block group. Otherwise we'll need to wait
10580		 * until transaction commit to do the actual discard.
10581		 */
10582		if (trimming) {
10583			spin_lock(&fs_info->unused_bgs_lock);
10584			/*
10585			 * A concurrent scrub might have added us to the list
10586			 * fs_info->unused_bgs, so use a list_move operation
10587			 * to add the block group to the deleted_bgs list.
10588			 */
10589			list_move(&block_group->bg_list,
10590				  &trans->transaction->deleted_bgs);
10591			spin_unlock(&fs_info->unused_bgs_lock);
10592			btrfs_get_block_group(block_group);
10593		}
10594end_trans:
10595		btrfs_end_transaction(trans, root);
10596next:
10597		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10598		btrfs_put_block_group(block_group);
10599		spin_lock(&fs_info->unused_bgs_lock);
10600	}
10601	spin_unlock(&fs_info->unused_bgs_lock);
10602}
10603
10604int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10605{
10606	struct btrfs_space_info *space_info;
10607	struct btrfs_super_block *disk_super;
10608	u64 features;
10609	u64 flags;
10610	int mixed = 0;
10611	int ret;
10612
10613	disk_super = fs_info->super_copy;
10614	if (!btrfs_super_root(disk_super))
10615		return -EINVAL;
10616
10617	features = btrfs_super_incompat_flags(disk_super);
10618	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10619		mixed = 1;
10620
10621	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10622	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10623	if (ret)
10624		goto out;
10625
10626	if (mixed) {
10627		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10628		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10629	} else {
10630		flags = BTRFS_BLOCK_GROUP_METADATA;
10631		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10632		if (ret)
10633			goto out;
10634
10635		flags = BTRFS_BLOCK_GROUP_DATA;
10636		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10637	}
10638out:
10639	return ret;
10640}
10641
10642int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10643{
10644	return unpin_extent_range(root, start, end, false);
10645}
10646
10647/*
10648 * It used to be that old block groups would be left around forever.
10649 * Iterating over them would be enough to trim unused space.  Since we
10650 * now automatically remove them, we also need to iterate over unallocated
10651 * space.
10652 *
10653 * We don't want a transaction for this since the discard may take a
10654 * substantial amount of time.  We don't require that a transaction be
10655 * running, but we do need to take a running transaction into account
10656 * to ensure that we're not discarding chunks that were released in
10657 * the current transaction.
10658 *
10659 * Holding the chunks lock will prevent other threads from allocating
10660 * or releasing chunks, but it won't prevent a running transaction
10661 * from committing and releasing the memory that the pending chunks
10662 * list head uses.  For that, we need to take a reference to the
10663 * transaction.
 
 
10664 */
10665static int btrfs_trim_free_extents(struct btrfs_device *device,
10666				   u64 minlen, u64 *trimmed)
10667{
10668	u64 start = 0, len = 0;
10669	int ret;
10670
10671	*trimmed = 0;
10672
10673	/* Not writeable = nothing to do. */
10674	if (!device->writeable)
 
 
 
 
10675		return 0;
10676
10677	/* No free space = nothing to do. */
10678	if (device->total_bytes <= device->bytes_used)
10679		return 0;
10680
10681	ret = 0;
10682
10683	while (1) {
10684		struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10685		struct btrfs_transaction *trans;
10686		u64 bytes;
10687
10688		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10689		if (ret)
10690			return ret;
 
 
 
 
 
 
 
10691
10692		down_read(&fs_info->commit_root_sem);
 
 
 
 
 
10693
10694		spin_lock(&fs_info->trans_lock);
10695		trans = fs_info->running_transaction;
10696		if (trans)
10697			atomic_inc(&trans->use_count);
10698		spin_unlock(&fs_info->trans_lock);
10699
10700		ret = find_free_dev_extent_start(trans, device, minlen, start,
10701						 &start, &len);
10702		if (trans)
10703			btrfs_put_transaction(trans);
10704
10705		if (ret) {
10706			up_read(&fs_info->commit_root_sem);
10707			mutex_unlock(&fs_info->chunk_mutex);
10708			if (ret == -ENOSPC)
10709				ret = 0;
10710			break;
10711		}
10712
10713		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10714		up_read(&fs_info->commit_root_sem);
 
 
 
 
10715		mutex_unlock(&fs_info->chunk_mutex);
10716
10717		if (ret)
10718			break;
10719
10720		start += len;
10721		*trimmed += bytes;
10722
10723		if (fatal_signal_pending(current)) {
10724			ret = -ERESTARTSYS;
10725			break;
10726		}
10727
10728		cond_resched();
10729	}
10730
10731	return ret;
10732}
10733
10734int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
 
 
 
 
 
 
 
 
 
10735{
10736	struct btrfs_fs_info *fs_info = root->fs_info;
10737	struct btrfs_block_group_cache *cache = NULL;
10738	struct btrfs_device *device;
10739	struct list_head *devices;
10740	u64 group_trimmed;
 
10741	u64 start;
10742	u64 end;
10743	u64 trimmed = 0;
10744	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
 
 
 
10745	int ret = 0;
10746
10747	/*
10748	 * try to trim all FS space, our block group may start from non-zero.
 
10749	 */
10750	if (range->len == total_bytes)
10751		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10752	else
10753		cache = btrfs_lookup_block_group(fs_info, range->start);
10754
10755	while (cache) {
10756		if (cache->key.objectid >= (range->start + range->len)) {
 
10757			btrfs_put_block_group(cache);
10758			break;
10759		}
10760
10761		start = max(range->start, cache->key.objectid);
10762		end = min(range->start + range->len,
10763				cache->key.objectid + cache->key.offset);
10764
10765		if (end - start >= range->minlen) {
10766			if (!block_group_cache_done(cache)) {
10767				ret = cache_block_group(cache, 0);
10768				if (ret) {
10769					btrfs_put_block_group(cache);
10770					break;
 
10771				}
10772				ret = wait_block_group_cache_done(cache);
10773				if (ret) {
10774					btrfs_put_block_group(cache);
10775					break;
 
10776				}
10777			}
10778			ret = btrfs_trim_block_group(cache,
10779						     &group_trimmed,
10780						     start,
10781						     end,
10782						     range->minlen);
10783
10784			trimmed += group_trimmed;
10785			if (ret) {
10786				btrfs_put_block_group(cache);
10787				break;
 
10788			}
10789		}
10790
10791		cache = next_block_group(fs_info->tree_root, cache);
10792	}
10793
10794	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10795	devices = &root->fs_info->fs_devices->alloc_list;
10796	list_for_each_entry(device, devices, dev_alloc_list) {
10797		ret = btrfs_trim_free_extents(device, range->minlen,
10798					      &group_trimmed);
10799		if (ret)
 
 
 
 
 
10800			break;
 
10801
10802		trimmed += group_trimmed;
10803	}
10804	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10805
 
 
 
 
10806	range->len = trimmed;
10807	return ret;
 
 
10808}
10809
10810/*
10811 * btrfs_{start,end}_write_no_snapshoting() are similar to
10812 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10813 * data into the page cache through nocow before the subvolume is snapshoted,
10814 * but flush the data into disk after the snapshot creation, or to prevent
10815 * operations while snapshoting is ongoing and that cause the snapshot to be
10816 * inconsistent (writes followed by expanding truncates for example).
10817 */
10818void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10819{
10820	percpu_counter_dec(&root->subv_writers->counter);
10821	/*
10822	 * Make sure counter is updated before we wake up waiters.
10823	 */
10824	smp_mb();
10825	if (waitqueue_active(&root->subv_writers->wait))
10826		wake_up(&root->subv_writers->wait);
10827}
10828
10829int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10830{
10831	if (atomic_read(&root->will_be_snapshoted))
10832		return 0;
10833
10834	percpu_counter_inc(&root->subv_writers->counter);
10835	/*
10836	 * Make sure counter is updated before we check for snapshot creation.
10837	 */
10838	smp_mb();
10839	if (atomic_read(&root->will_be_snapshoted)) {
10840		btrfs_end_write_no_snapshoting(root);
10841		return 0;
10842	}
10843	return 1;
10844}
10845
10846static int wait_snapshoting_atomic_t(atomic_t *a)
10847{
10848	schedule();
10849	return 0;
10850}
10851
10852void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10853{
10854	while (true) {
10855		int ret;
10856
10857		ret = btrfs_start_write_no_snapshoting(root);
10858		if (ret)
10859			break;
10860		wait_on_atomic_t(&root->will_be_snapshoted,
10861				 wait_snapshoting_atomic_t,
10862				 TASK_UNINTERRUPTIBLE);
10863	}
10864}