Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic hugetlb support.
   4 * (C) Nadia Yvette Chambers, April 2004
   5 */
   6#include <linux/list.h>
   7#include <linux/init.h>
   8#include <linux/mm.h>
   9#include <linux/seq_file.h>
  10#include <linux/sysctl.h>
  11#include <linux/highmem.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/nodemask.h>
  14#include <linux/pagemap.h>
  15#include <linux/mempolicy.h>
  16#include <linux/compiler.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/memblock.h>
  20#include <linux/sysfs.h>
  21#include <linux/slab.h>
 
  22#include <linux/mmdebug.h>
  23#include <linux/sched/signal.h>
  24#include <linux/rmap.h>
  25#include <linux/string_helpers.h>
  26#include <linux/swap.h>
  27#include <linux/swapops.h>
  28#include <linux/jhash.h>
  29#include <linux/numa.h>
 
 
  30
  31#include <asm/page.h>
  32#include <asm/pgtable.h>
  33#include <asm/tlb.h>
  34
  35#include <linux/io.h>
  36#include <linux/hugetlb.h>
  37#include <linux/hugetlb_cgroup.h>
  38#include <linux/node.h>
  39#include <linux/userfaultfd_k.h>
  40#include <linux/page_owner.h>
  41#include "internal.h"
  42
  43int hugetlb_max_hstate __read_mostly;
  44unsigned int default_hstate_idx;
  45struct hstate hstates[HUGE_MAX_HSTATE];
 
 
 
 
 
 
  46/*
  47 * Minimum page order among possible hugepage sizes, set to a proper value
  48 * at boot time.
  49 */
  50static unsigned int minimum_order __read_mostly = UINT_MAX;
  51
  52__initdata LIST_HEAD(huge_boot_pages);
  53
  54/* for command line parsing */
  55static struct hstate * __initdata parsed_hstate;
  56static unsigned long __initdata default_hstate_max_huge_pages;
  57static unsigned long __initdata default_hstate_size;
  58static bool __initdata parsed_valid_hugepagesz = true;
 
  59
  60/*
  61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  62 * free_huge_pages, and surplus_huge_pages.
  63 */
  64DEFINE_SPINLOCK(hugetlb_lock);
  65
  66/*
  67 * Serializes faults on the same logical page.  This is used to
  68 * prevent spurious OOMs when the hugepage pool is fully utilized.
  69 */
  70static int num_fault_mutexes;
  71struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  72
  73/* Forward declaration */
  74static int hugetlb_acct_memory(struct hstate *h, long delta);
  75
  76static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  77{
  78	bool free = (spool->count == 0) && (spool->used_hpages == 0);
  79
  80	spin_unlock(&spool->lock);
  81
  82	/* If no pages are used, and no other handles to the subpool
  83	 * remain, give up any reservations mased on minimum size and
  84	 * free the subpool */
  85	if (free) {
  86		if (spool->min_hpages != -1)
  87			hugetlb_acct_memory(spool->hstate,
  88						-spool->min_hpages);
  89		kfree(spool);
  90	}
  91}
  92
  93struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  94						long min_hpages)
  95{
  96	struct hugepage_subpool *spool;
  97
  98	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  99	if (!spool)
 100		return NULL;
 101
 102	spin_lock_init(&spool->lock);
 103	spool->count = 1;
 104	spool->max_hpages = max_hpages;
 105	spool->hstate = h;
 106	spool->min_hpages = min_hpages;
 107
 108	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 109		kfree(spool);
 110		return NULL;
 111	}
 112	spool->rsv_hpages = min_hpages;
 113
 114	return spool;
 115}
 116
 117void hugepage_put_subpool(struct hugepage_subpool *spool)
 118{
 119	spin_lock(&spool->lock);
 120	BUG_ON(!spool->count);
 121	spool->count--;
 122	unlock_or_release_subpool(spool);
 123}
 124
 125/*
 126 * Subpool accounting for allocating and reserving pages.
 127 * Return -ENOMEM if there are not enough resources to satisfy the
 128 * the request.  Otherwise, return the number of pages by which the
 129 * global pools must be adjusted (upward).  The returned value may
 130 * only be different than the passed value (delta) in the case where
 131 * a subpool minimum size must be manitained.
 132 */
 133static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 134				      long delta)
 135{
 136	long ret = delta;
 137
 138	if (!spool)
 139		return ret;
 140
 141	spin_lock(&spool->lock);
 142
 143	if (spool->max_hpages != -1) {		/* maximum size accounting */
 144		if ((spool->used_hpages + delta) <= spool->max_hpages)
 145			spool->used_hpages += delta;
 146		else {
 147			ret = -ENOMEM;
 148			goto unlock_ret;
 149		}
 150	}
 151
 152	/* minimum size accounting */
 153	if (spool->min_hpages != -1 && spool->rsv_hpages) {
 154		if (delta > spool->rsv_hpages) {
 155			/*
 156			 * Asking for more reserves than those already taken on
 157			 * behalf of subpool.  Return difference.
 158			 */
 159			ret = delta - spool->rsv_hpages;
 160			spool->rsv_hpages = 0;
 161		} else {
 162			ret = 0;	/* reserves already accounted for */
 163			spool->rsv_hpages -= delta;
 164		}
 165	}
 166
 167unlock_ret:
 168	spin_unlock(&spool->lock);
 169	return ret;
 170}
 171
 172/*
 173 * Subpool accounting for freeing and unreserving pages.
 174 * Return the number of global page reservations that must be dropped.
 175 * The return value may only be different than the passed value (delta)
 176 * in the case where a subpool minimum size must be maintained.
 177 */
 178static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 179				       long delta)
 180{
 181	long ret = delta;
 182
 183	if (!spool)
 184		return delta;
 185
 186	spin_lock(&spool->lock);
 187
 188	if (spool->max_hpages != -1)		/* maximum size accounting */
 189		spool->used_hpages -= delta;
 190
 191	 /* minimum size accounting */
 192	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 193		if (spool->rsv_hpages + delta <= spool->min_hpages)
 194			ret = 0;
 195		else
 196			ret = spool->rsv_hpages + delta - spool->min_hpages;
 197
 198		spool->rsv_hpages += delta;
 199		if (spool->rsv_hpages > spool->min_hpages)
 200			spool->rsv_hpages = spool->min_hpages;
 201	}
 202
 203	/*
 204	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
 205	 * quota reference, free it now.
 206	 */
 207	unlock_or_release_subpool(spool);
 208
 209	return ret;
 210}
 211
 212static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 213{
 214	return HUGETLBFS_SB(inode->i_sb)->spool;
 215}
 216
 217static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 218{
 219	return subpool_inode(file_inode(vma->vm_file));
 220}
 221
 222/*
 223 * Region tracking -- allows tracking of reservations and instantiated pages
 224 *                    across the pages in a mapping.
 225 *
 226 * The region data structures are embedded into a resv_map and protected
 227 * by a resv_map's lock.  The set of regions within the resv_map represent
 228 * reservations for huge pages, or huge pages that have already been
 229 * instantiated within the map.  The from and to elements are huge page
 230 * indicies into the associated mapping.  from indicates the starting index
 231 * of the region.  to represents the first index past the end of  the region.
 232 *
 233 * For example, a file region structure with from == 0 and to == 4 represents
 234 * four huge pages in a mapping.  It is important to note that the to element
 235 * represents the first element past the end of the region. This is used in
 236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 237 *
 238 * Interval notation of the form [from, to) will be used to indicate that
 239 * the endpoint from is inclusive and to is exclusive.
 240 */
 241struct file_region {
 242	struct list_head link;
 243	long from;
 244	long to;
 245};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 246
 247/*
 248 * Add the huge page range represented by [f, t) to the reserve
 249 * map.  In the normal case, existing regions will be expanded
 250 * to accommodate the specified range.  Sufficient regions should
 251 * exist for expansion due to the previous call to region_chg
 252 * with the same range.  However, it is possible that region_del
 253 * could have been called after region_chg and modifed the map
 254 * in such a way that no region exists to be expanded.  In this
 255 * case, pull a region descriptor from the cache associated with
 256 * the map and use that for the new range.
 257 *
 258 * Return the number of new huge pages added to the map.  This
 259 * number is greater than or equal to zero.
 260 */
 261static long region_add(struct resv_map *resv, long f, long t)
 
 
 
 
 
 
 
 
 262{
 263	struct list_head *head = &resv->regions;
 264	struct file_region *rg, *nrg, *trg;
 265	long add = 0;
 266
 267	spin_lock(&resv->lock);
 268	/* Locate the region we are either in or before. */
 269	list_for_each_entry(rg, head, link)
 270		if (f <= rg->to)
 271			break;
 
 272
 273	/*
 274	 * If no region exists which can be expanded to include the
 275	 * specified range, the list must have been modified by an
 276	 * interleving call to region_del().  Pull a region descriptor
 277	 * from the cache and use it for this range.
 278	 */
 279	if (&rg->link == head || t < rg->from) {
 280		VM_BUG_ON(resv->region_cache_count <= 0);
 281
 282		resv->region_cache_count--;
 283		nrg = list_first_entry(&resv->region_cache, struct file_region,
 284					link);
 285		list_del(&nrg->link);
 286
 287		nrg->from = f;
 288		nrg->to = t;
 289		list_add(&nrg->link, rg->link.prev);
 290
 291		add += t - f;
 292		goto out_locked;
 293	}
 294
 295	/* Round our left edge to the current segment if it encloses us. */
 296	if (f > rg->from)
 297		f = rg->from;
 298
 299	/* Check for and consume any regions we now overlap with. */
 300	nrg = rg;
 301	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 302		if (&rg->link == head)
 303			break;
 304		if (rg->from > t)
 305			break;
 306
 307		/* If this area reaches higher then extend our area to
 308		 * include it completely.  If this is not the first area
 309		 * which we intend to reuse, free it. */
 310		if (rg->to > t)
 311			t = rg->to;
 312		if (rg != nrg) {
 313			/* Decrement return value by the deleted range.
 314			 * Another range will span this area so that by
 315			 * end of routine add will be >= zero
 316			 */
 317			add -= (rg->to - rg->from);
 318			list_del(&rg->link);
 319			kfree(rg);
 320		}
 
 
 321	}
 322
 323	add += (nrg->from - f);		/* Added to beginning of region */
 324	nrg->from = f;
 325	add += t - nrg->to;		/* Added to end of region */
 326	nrg->to = t;
 327
 328out_locked:
 329	resv->adds_in_progress--;
 330	spin_unlock(&resv->lock);
 331	VM_BUG_ON(add < 0);
 332	return add;
 333}
 334
 335/*
 336 * Examine the existing reserve map and determine how many
 337 * huge pages in the specified range [f, t) are NOT currently
 338 * represented.  This routine is called before a subsequent
 339 * call to region_add that will actually modify the reserve
 340 * map to add the specified range [f, t).  region_chg does
 341 * not change the number of huge pages represented by the
 342 * map.  However, if the existing regions in the map can not
 343 * be expanded to represent the new range, a new file_region
 344 * structure is added to the map as a placeholder.  This is
 345 * so that the subsequent region_add call will have all the
 346 * regions it needs and will not fail.
 347 *
 348 * Upon entry, region_chg will also examine the cache of region descriptors
 349 * associated with the map.  If there are not enough descriptors cached, one
 350 * will be allocated for the in progress add operation.
 351 *
 352 * Returns the number of huge pages that need to be added to the existing
 353 * reservation map for the range [f, t).  This number is greater or equal to
 354 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 355 * is needed and can not be allocated.
 356 */
 357static long region_chg(struct resv_map *resv, long f, long t)
 
 358{
 359	struct list_head *head = &resv->regions;
 360	struct file_region *rg, *nrg = NULL;
 361	long chg = 0;
 362
 363retry:
 364	spin_lock(&resv->lock);
 365retry_locked:
 366	resv->adds_in_progress++;
 367
 368	/*
 369	 * Check for sufficient descriptors in the cache to accommodate
 370	 * the number of in progress add operations.
 371	 */
 372	if (resv->adds_in_progress > resv->region_cache_count) {
 373		struct file_region *trg;
 374
 375		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
 376		/* Must drop lock to allocate a new descriptor. */
 377		resv->adds_in_progress--;
 378		spin_unlock(&resv->lock);
 379
 380		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 381		if (!trg) {
 382			kfree(nrg);
 383			return -ENOMEM;
 384		}
 385
 386		spin_lock(&resv->lock);
 387		list_add(&trg->link, &resv->region_cache);
 388		resv->region_cache_count++;
 389		goto retry_locked;
 390	}
 391
 392	/* Locate the region we are before or in. */
 393	list_for_each_entry(rg, head, link)
 394		if (f <= rg->to)
 395			break;
 396
 397	/* If we are below the current region then a new region is required.
 398	 * Subtle, allocate a new region at the position but make it zero
 399	 * size such that we can guarantee to record the reservation. */
 400	if (&rg->link == head || t < rg->from) {
 401		if (!nrg) {
 402			resv->adds_in_progress--;
 403			spin_unlock(&resv->lock);
 404			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 405			if (!nrg)
 406				return -ENOMEM;
 407
 408			nrg->from = f;
 409			nrg->to   = f;
 410			INIT_LIST_HEAD(&nrg->link);
 411			goto retry;
 412		}
 413
 414		list_add(&nrg->link, rg->link.prev);
 415		chg = t - f;
 416		goto out_nrg;
 417	}
 418
 419	/* Round our left edge to the current segment if it encloses us. */
 420	if (f > rg->from)
 421		f = rg->from;
 422	chg = t - f;
 423
 424	/* Check for and consume any regions we now overlap with. */
 425	list_for_each_entry(rg, rg->link.prev, link) {
 426		if (&rg->link == head)
 427			break;
 428		if (rg->from > t)
 429			goto out;
 430
 431		/* We overlap with this area, if it extends further than
 432		 * us then we must extend ourselves.  Account for its
 433		 * existing reservation. */
 434		if (rg->to > t) {
 435			chg += rg->to - t;
 436			t = rg->to;
 437		}
 438		chg -= rg->to - rg->from;
 439	}
 440
 441out:
 442	spin_unlock(&resv->lock);
 443	/*  We already know we raced and no longer need the new region */
 444	kfree(nrg);
 445	return chg;
 446out_nrg:
 447	spin_unlock(&resv->lock);
 448	return chg;
 449}
 450
 451/*
 452 * Abort the in progress add operation.  The adds_in_progress field
 453 * of the resv_map keeps track of the operations in progress between
 454 * calls to region_chg and region_add.  Operations are sometimes
 455 * aborted after the call to region_chg.  In such cases, region_abort
 456 * is called to decrement the adds_in_progress counter.
 
 
 457 *
 458 * NOTE: The range arguments [f, t) are not needed or used in this
 459 * routine.  They are kept to make reading the calling code easier as
 460 * arguments will match the associated region_chg call.
 461 */
 462static void region_abort(struct resv_map *resv, long f, long t)
 
 463{
 464	spin_lock(&resv->lock);
 465	VM_BUG_ON(!resv->region_cache_count);
 466	resv->adds_in_progress--;
 467	spin_unlock(&resv->lock);
 468}
 469
 470/*
 471 * Delete the specified range [f, t) from the reserve map.  If the
 472 * t parameter is LONG_MAX, this indicates that ALL regions after f
 473 * should be deleted.  Locate the regions which intersect [f, t)
 474 * and either trim, delete or split the existing regions.
 475 *
 476 * Returns the number of huge pages deleted from the reserve map.
 477 * In the normal case, the return value is zero or more.  In the
 478 * case where a region must be split, a new region descriptor must
 479 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 480 * NOTE: If the parameter t == LONG_MAX, then we will never split
 481 * a region and possibly return -ENOMEM.  Callers specifying
 482 * t == LONG_MAX do not need to check for -ENOMEM error.
 483 */
 484static long region_del(struct resv_map *resv, long f, long t)
 485{
 486	struct list_head *head = &resv->regions;
 487	struct file_region *rg, *trg;
 488	struct file_region *nrg = NULL;
 489	long del = 0;
 490
 491retry:
 492	spin_lock(&resv->lock);
 493	list_for_each_entry_safe(rg, trg, head, link) {
 494		/*
 495		 * Skip regions before the range to be deleted.  file_region
 496		 * ranges are normally of the form [from, to).  However, there
 497		 * may be a "placeholder" entry in the map which is of the form
 498		 * (from, to) with from == to.  Check for placeholder entries
 499		 * at the beginning of the range to be deleted.
 500		 */
 501		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 502			continue;
 503
 504		if (rg->from >= t)
 505			break;
 506
 507		if (f > rg->from && t < rg->to) { /* Must split region */
 508			/*
 509			 * Check for an entry in the cache before dropping
 510			 * lock and attempting allocation.
 511			 */
 512			if (!nrg &&
 513			    resv->region_cache_count > resv->adds_in_progress) {
 514				nrg = list_first_entry(&resv->region_cache,
 515							struct file_region,
 516							link);
 517				list_del(&nrg->link);
 518				resv->region_cache_count--;
 519			}
 520
 521			if (!nrg) {
 522				spin_unlock(&resv->lock);
 523				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 524				if (!nrg)
 525					return -ENOMEM;
 526				goto retry;
 527			}
 528
 529			del += t - f;
 530
 531			/* New entry for end of split region */
 532			nrg->from = t;
 533			nrg->to = rg->to;
 
 
 
 534			INIT_LIST_HEAD(&nrg->link);
 535
 536			/* Original entry is trimmed */
 537			rg->to = f;
 538
 
 
 
 539			list_add(&nrg->link, &rg->link);
 540			nrg = NULL;
 541			break;
 542		}
 543
 544		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 545			del += rg->to - rg->from;
 
 
 546			list_del(&rg->link);
 547			kfree(rg);
 548			continue;
 549		}
 550
 551		if (f <= rg->from) {	/* Trim beginning of region */
 552			del += t - rg->from;
 553			rg->from = t;
 
 
 
 554		} else {		/* Trim end of region */
 555			del += rg->to - f;
 556			rg->to = f;
 
 
 
 557		}
 558	}
 559
 560	spin_unlock(&resv->lock);
 561	kfree(nrg);
 562	return del;
 563}
 564
 565/*
 566 * A rare out of memory error was encountered which prevented removal of
 567 * the reserve map region for a page.  The huge page itself was free'ed
 568 * and removed from the page cache.  This routine will adjust the subpool
 569 * usage count, and the global reserve count if needed.  By incrementing
 570 * these counts, the reserve map entry which could not be deleted will
 571 * appear as a "reserved" entry instead of simply dangling with incorrect
 572 * counts.
 573 */
 574void hugetlb_fix_reserve_counts(struct inode *inode)
 575{
 576	struct hugepage_subpool *spool = subpool_inode(inode);
 577	long rsv_adjust;
 578
 579	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 580	if (rsv_adjust) {
 581		struct hstate *h = hstate_inode(inode);
 582
 583		hugetlb_acct_memory(h, 1);
 584	}
 585}
 586
 587/*
 588 * Count and return the number of huge pages in the reserve map
 589 * that intersect with the range [f, t).
 590 */
 591static long region_count(struct resv_map *resv, long f, long t)
 592{
 593	struct list_head *head = &resv->regions;
 594	struct file_region *rg;
 595	long chg = 0;
 596
 597	spin_lock(&resv->lock);
 598	/* Locate each segment we overlap with, and count that overlap. */
 599	list_for_each_entry(rg, head, link) {
 600		long seg_from;
 601		long seg_to;
 602
 603		if (rg->to <= f)
 604			continue;
 605		if (rg->from >= t)
 606			break;
 607
 608		seg_from = max(rg->from, f);
 609		seg_to = min(rg->to, t);
 610
 611		chg += seg_to - seg_from;
 612	}
 613	spin_unlock(&resv->lock);
 614
 615	return chg;
 616}
 617
 618/*
 619 * Convert the address within this vma to the page offset within
 620 * the mapping, in pagecache page units; huge pages here.
 621 */
 622static pgoff_t vma_hugecache_offset(struct hstate *h,
 623			struct vm_area_struct *vma, unsigned long address)
 624{
 625	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 626			(vma->vm_pgoff >> huge_page_order(h));
 627}
 628
 629pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 630				     unsigned long address)
 631{
 632	return vma_hugecache_offset(hstate_vma(vma), vma, address);
 633}
 634EXPORT_SYMBOL_GPL(linear_hugepage_index);
 635
 636/*
 637 * Return the size of the pages allocated when backing a VMA. In the majority
 638 * cases this will be same size as used by the page table entries.
 639 */
 640unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 641{
 642	if (vma->vm_ops && vma->vm_ops->pagesize)
 643		return vma->vm_ops->pagesize(vma);
 644	return PAGE_SIZE;
 645}
 646EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 647
 648/*
 649 * Return the page size being used by the MMU to back a VMA. In the majority
 650 * of cases, the page size used by the kernel matches the MMU size. On
 651 * architectures where it differs, an architecture-specific 'strong'
 652 * version of this symbol is required.
 653 */
 654__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 655{
 656	return vma_kernel_pagesize(vma);
 657}
 658
 659/*
 660 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 661 * bits of the reservation map pointer, which are always clear due to
 662 * alignment.
 663 */
 664#define HPAGE_RESV_OWNER    (1UL << 0)
 665#define HPAGE_RESV_UNMAPPED (1UL << 1)
 666#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 667
 668/*
 669 * These helpers are used to track how many pages are reserved for
 670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 671 * is guaranteed to have their future faults succeed.
 672 *
 673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 674 * the reserve counters are updated with the hugetlb_lock held. It is safe
 675 * to reset the VMA at fork() time as it is not in use yet and there is no
 676 * chance of the global counters getting corrupted as a result of the values.
 677 *
 678 * The private mapping reservation is represented in a subtly different
 679 * manner to a shared mapping.  A shared mapping has a region map associated
 680 * with the underlying file, this region map represents the backing file
 681 * pages which have ever had a reservation assigned which this persists even
 682 * after the page is instantiated.  A private mapping has a region map
 683 * associated with the original mmap which is attached to all VMAs which
 684 * reference it, this region map represents those offsets which have consumed
 685 * reservation ie. where pages have been instantiated.
 686 */
 687static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 688{
 689	return (unsigned long)vma->vm_private_data;
 690}
 691
 692static void set_vma_private_data(struct vm_area_struct *vma,
 693							unsigned long value)
 694{
 695	vma->vm_private_data = (void *)value;
 696}
 697
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698struct resv_map *resv_map_alloc(void)
 699{
 700	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 701	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 702
 703	if (!resv_map || !rg) {
 704		kfree(resv_map);
 705		kfree(rg);
 706		return NULL;
 707	}
 708
 709	kref_init(&resv_map->refs);
 710	spin_lock_init(&resv_map->lock);
 711	INIT_LIST_HEAD(&resv_map->regions);
 712
 713	resv_map->adds_in_progress = 0;
 
 
 
 
 
 
 
 714
 715	INIT_LIST_HEAD(&resv_map->region_cache);
 716	list_add(&rg->link, &resv_map->region_cache);
 717	resv_map->region_cache_count = 1;
 718
 719	return resv_map;
 720}
 721
 722void resv_map_release(struct kref *ref)
 723{
 724	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 725	struct list_head *head = &resv_map->region_cache;
 726	struct file_region *rg, *trg;
 727
 728	/* Clear out any active regions before we release the map. */
 729	region_del(resv_map, 0, LONG_MAX);
 730
 731	/* ... and any entries left in the cache */
 732	list_for_each_entry_safe(rg, trg, head, link) {
 733		list_del(&rg->link);
 734		kfree(rg);
 735	}
 736
 737	VM_BUG_ON(resv_map->adds_in_progress);
 738
 739	kfree(resv_map);
 740}
 741
 742static inline struct resv_map *inode_resv_map(struct inode *inode)
 743{
 744	/*
 745	 * At inode evict time, i_mapping may not point to the original
 746	 * address space within the inode.  This original address space
 747	 * contains the pointer to the resv_map.  So, always use the
 748	 * address space embedded within the inode.
 749	 * The VERY common case is inode->mapping == &inode->i_data but,
 750	 * this may not be true for device special inodes.
 751	 */
 752	return (struct resv_map *)(&inode->i_data)->private_data;
 753}
 754
 755static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 756{
 757	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 758	if (vma->vm_flags & VM_MAYSHARE) {
 759		struct address_space *mapping = vma->vm_file->f_mapping;
 760		struct inode *inode = mapping->host;
 761
 762		return inode_resv_map(inode);
 763
 764	} else {
 765		return (struct resv_map *)(get_vma_private_data(vma) &
 766							~HPAGE_RESV_MASK);
 767	}
 768}
 769
 770static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 771{
 772	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 773	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 774
 775	set_vma_private_data(vma, (get_vma_private_data(vma) &
 776				HPAGE_RESV_MASK) | (unsigned long)map);
 777}
 778
 779static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 780{
 781	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 782	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 783
 784	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 785}
 786
 787static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 788{
 789	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 790
 791	return (get_vma_private_data(vma) & flag) != 0;
 792}
 793
 794/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 795void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 796{
 797	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 798	if (!(vma->vm_flags & VM_MAYSHARE))
 799		vma->vm_private_data = (void *)0;
 800}
 801
 802/* Returns true if the VMA has associated reserve pages */
 803static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 804{
 805	if (vma->vm_flags & VM_NORESERVE) {
 806		/*
 807		 * This address is already reserved by other process(chg == 0),
 808		 * so, we should decrement reserved count. Without decrementing,
 809		 * reserve count remains after releasing inode, because this
 810		 * allocated page will go into page cache and is regarded as
 811		 * coming from reserved pool in releasing step.  Currently, we
 812		 * don't have any other solution to deal with this situation
 813		 * properly, so add work-around here.
 814		 */
 815		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 816			return true;
 817		else
 818			return false;
 819	}
 820
 821	/* Shared mappings always use reserves */
 822	if (vma->vm_flags & VM_MAYSHARE) {
 823		/*
 824		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 825		 * be a region map for all pages.  The only situation where
 826		 * there is no region map is if a hole was punched via
 827		 * fallocate.  In this case, there really are no reverves to
 828		 * use.  This situation is indicated if chg != 0.
 829		 */
 830		if (chg)
 831			return false;
 832		else
 833			return true;
 834	}
 835
 836	/*
 837	 * Only the process that called mmap() has reserves for
 838	 * private mappings.
 839	 */
 840	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 841		/*
 842		 * Like the shared case above, a hole punch or truncate
 843		 * could have been performed on the private mapping.
 844		 * Examine the value of chg to determine if reserves
 845		 * actually exist or were previously consumed.
 846		 * Very Subtle - The value of chg comes from a previous
 847		 * call to vma_needs_reserves().  The reserve map for
 848		 * private mappings has different (opposite) semantics
 849		 * than that of shared mappings.  vma_needs_reserves()
 850		 * has already taken this difference in semantics into
 851		 * account.  Therefore, the meaning of chg is the same
 852		 * as in the shared case above.  Code could easily be
 853		 * combined, but keeping it separate draws attention to
 854		 * subtle differences.
 855		 */
 856		if (chg)
 857			return false;
 858		else
 859			return true;
 860	}
 861
 862	return false;
 863}
 864
 865static void enqueue_huge_page(struct hstate *h, struct page *page)
 866{
 867	int nid = page_to_nid(page);
 868	list_move(&page->lru, &h->hugepage_freelists[nid]);
 869	h->free_huge_pages++;
 870	h->free_huge_pages_node[nid]++;
 871}
 872
 873static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
 874{
 875	struct page *page;
 
 
 
 
 
 876
 877	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 878		if (!PageHWPoison(page))
 879			break;
 
 
 880	/*
 881	 * if 'non-isolated free hugepage' not found on the list,
 882	 * the allocation fails.
 883	 */
 884	if (&h->hugepage_freelists[nid] == &page->lru)
 885		return NULL;
 886	list_move(&page->lru, &h->hugepage_activelist);
 887	set_page_refcounted(page);
 888	h->free_huge_pages--;
 889	h->free_huge_pages_node[nid]--;
 890	return page;
 891}
 892
 893static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
 894		nodemask_t *nmask)
 895{
 896	unsigned int cpuset_mems_cookie;
 897	struct zonelist *zonelist;
 898	struct zone *zone;
 899	struct zoneref *z;
 900	int node = NUMA_NO_NODE;
 901
 902	zonelist = node_zonelist(nid, gfp_mask);
 903
 904retry_cpuset:
 905	cpuset_mems_cookie = read_mems_allowed_begin();
 906	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
 907		struct page *page;
 908
 909		if (!cpuset_zone_allowed(zone, gfp_mask))
 910			continue;
 911		/*
 912		 * no need to ask again on the same node. Pool is node rather than
 913		 * zone aware
 914		 */
 915		if (zone_to_nid(zone) == node)
 916			continue;
 917		node = zone_to_nid(zone);
 918
 919		page = dequeue_huge_page_node_exact(h, node);
 920		if (page)
 921			return page;
 922	}
 923	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
 924		goto retry_cpuset;
 925
 926	return NULL;
 927}
 928
 929/* Movability of hugepages depends on migration support. */
 930static inline gfp_t htlb_alloc_mask(struct hstate *h)
 931{
 932	if (hugepage_movable_supported(h))
 933		return GFP_HIGHUSER_MOVABLE;
 934	else
 935		return GFP_HIGHUSER;
 936}
 937
 938static struct page *dequeue_huge_page_vma(struct hstate *h,
 939				struct vm_area_struct *vma,
 940				unsigned long address, int avoid_reserve,
 941				long chg)
 942{
 943	struct page *page;
 944	struct mempolicy *mpol;
 945	gfp_t gfp_mask;
 946	nodemask_t *nodemask;
 947	int nid;
 948
 949	/*
 950	 * A child process with MAP_PRIVATE mappings created by their parent
 951	 * have no page reserves. This check ensures that reservations are
 952	 * not "stolen". The child may still get SIGKILLed
 953	 */
 954	if (!vma_has_reserves(vma, chg) &&
 955			h->free_huge_pages - h->resv_huge_pages == 0)
 956		goto err;
 957
 958	/* If reserves cannot be used, ensure enough pages are in the pool */
 959	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 960		goto err;
 961
 962	gfp_mask = htlb_alloc_mask(h);
 963	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
 964	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
 965	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
 966		SetPagePrivate(page);
 967		h->resv_huge_pages--;
 968	}
 969
 970	mpol_cond_put(mpol);
 971	return page;
 972
 973err:
 974	return NULL;
 975}
 976
 977/*
 978 * common helper functions for hstate_next_node_to_{alloc|free}.
 979 * We may have allocated or freed a huge page based on a different
 980 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 981 * be outside of *nodes_allowed.  Ensure that we use an allowed
 982 * node for alloc or free.
 983 */
 984static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 985{
 986	nid = next_node_in(nid, *nodes_allowed);
 987	VM_BUG_ON(nid >= MAX_NUMNODES);
 988
 989	return nid;
 990}
 991
 992static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 993{
 994	if (!node_isset(nid, *nodes_allowed))
 995		nid = next_node_allowed(nid, nodes_allowed);
 996	return nid;
 997}
 998
 999/*
1000 * returns the previously saved node ["this node"] from which to
1001 * allocate a persistent huge page for the pool and advance the
1002 * next node from which to allocate, handling wrap at end of node
1003 * mask.
1004 */
1005static int hstate_next_node_to_alloc(struct hstate *h,
1006					nodemask_t *nodes_allowed)
1007{
1008	int nid;
1009
1010	VM_BUG_ON(!nodes_allowed);
1011
1012	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1013	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1014
1015	return nid;
1016}
1017
1018/*
1019 * helper for free_pool_huge_page() - return the previously saved
1020 * node ["this node"] from which to free a huge page.  Advance the
1021 * next node id whether or not we find a free huge page to free so
1022 * that the next attempt to free addresses the next node.
1023 */
1024static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1025{
1026	int nid;
1027
1028	VM_BUG_ON(!nodes_allowed);
1029
1030	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1031	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1032
1033	return nid;
1034}
1035
1036#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1037	for (nr_nodes = nodes_weight(*mask);				\
1038		nr_nodes > 0 &&						\
1039		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1040		nr_nodes--)
1041
1042#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1043	for (nr_nodes = nodes_weight(*mask);				\
1044		nr_nodes > 0 &&						\
1045		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1046		nr_nodes--)
1047
1048#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1049static void destroy_compound_gigantic_page(struct page *page,
1050					unsigned int order)
1051{
1052	int i;
1053	int nr_pages = 1 << order;
1054	struct page *p = page + 1;
1055
1056	atomic_set(compound_mapcount_ptr(page), 0);
 
 
 
1057	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1058		clear_compound_head(p);
1059		set_page_refcounted(p);
1060	}
1061
1062	set_compound_order(page, 0);
1063	__ClearPageHead(page);
1064}
1065
1066static void free_gigantic_page(struct page *page, unsigned int order)
1067{
 
 
 
 
 
 
 
 
 
1068	free_contig_range(page_to_pfn(page), 1 << order);
1069}
1070
1071#ifdef CONFIG_CONTIG_ALLOC
1072static int __alloc_gigantic_page(unsigned long start_pfn,
1073				unsigned long nr_pages, gfp_t gfp_mask)
1074{
1075	unsigned long end_pfn = start_pfn + nr_pages;
1076	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1077				  gfp_mask);
1078}
1079
1080static bool pfn_range_valid_gigantic(struct zone *z,
1081			unsigned long start_pfn, unsigned long nr_pages)
1082{
1083	unsigned long i, end_pfn = start_pfn + nr_pages;
1084	struct page *page;
1085
1086	for (i = start_pfn; i < end_pfn; i++) {
1087		page = pfn_to_online_page(i);
1088		if (!page)
1089			return false;
1090
1091		if (page_zone(page) != z)
1092			return false;
1093
1094		if (PageReserved(page))
1095			return false;
1096
1097		if (page_count(page) > 0)
1098			return false;
1099
1100		if (PageHuge(page))
1101			return false;
1102	}
1103
1104	return true;
1105}
1106
1107static bool zone_spans_last_pfn(const struct zone *zone,
1108			unsigned long start_pfn, unsigned long nr_pages)
1109{
1110	unsigned long last_pfn = start_pfn + nr_pages - 1;
1111	return zone_spans_pfn(zone, last_pfn);
1112}
1113
1114static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1115		int nid, nodemask_t *nodemask)
1116{
1117	unsigned int order = huge_page_order(h);
1118	unsigned long nr_pages = 1 << order;
1119	unsigned long ret, pfn, flags;
1120	struct zonelist *zonelist;
1121	struct zone *zone;
1122	struct zoneref *z;
1123
1124	zonelist = node_zonelist(nid, gfp_mask);
1125	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1126		spin_lock_irqsave(&zone->lock, flags);
 
1127
1128		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1129		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1130			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1131				/*
1132				 * We release the zone lock here because
1133				 * alloc_contig_range() will also lock the zone
1134				 * at some point. If there's an allocation
1135				 * spinning on this lock, it may win the race
1136				 * and cause alloc_contig_range() to fail...
1137				 */
1138				spin_unlock_irqrestore(&zone->lock, flags);
1139				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1140				if (!ret)
1141					return pfn_to_page(pfn);
1142				spin_lock_irqsave(&zone->lock, flags);
 
1143			}
1144			pfn += nr_pages;
1145		}
1146
1147		spin_unlock_irqrestore(&zone->lock, flags);
1148	}
 
1149
1150	return NULL;
1151}
1152
1153static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1154static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1155#else /* !CONFIG_CONTIG_ALLOC */
1156static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1157					int nid, nodemask_t *nodemask)
1158{
1159	return NULL;
1160}
1161#endif /* CONFIG_CONTIG_ALLOC */
1162
1163#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1164static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1165					int nid, nodemask_t *nodemask)
1166{
1167	return NULL;
1168}
1169static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1170static inline void destroy_compound_gigantic_page(struct page *page,
1171						unsigned int order) { }
1172#endif
1173
1174static void update_and_free_page(struct hstate *h, struct page *page)
1175{
1176	int i;
1177
1178	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1179		return;
1180
1181	h->nr_huge_pages--;
1182	h->nr_huge_pages_node[page_to_nid(page)]--;
1183	for (i = 0; i < pages_per_huge_page(h); i++) {
1184		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1185				1 << PG_referenced | 1 << PG_dirty |
1186				1 << PG_active | 1 << PG_private |
1187				1 << PG_writeback);
1188	}
1189	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
 
1190	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1191	set_page_refcounted(page);
1192	if (hstate_is_gigantic(h)) {
 
 
 
 
 
1193		destroy_compound_gigantic_page(page, huge_page_order(h));
1194		free_gigantic_page(page, huge_page_order(h));
 
1195	} else {
1196		__free_pages(page, huge_page_order(h));
1197	}
1198}
1199
1200struct hstate *size_to_hstate(unsigned long size)
1201{
1202	struct hstate *h;
1203
1204	for_each_hstate(h) {
1205		if (huge_page_size(h) == size)
1206			return h;
1207	}
1208	return NULL;
1209}
1210
1211/*
1212 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1213 * to hstate->hugepage_activelist.)
1214 *
1215 * This function can be called for tail pages, but never returns true for them.
1216 */
1217bool page_huge_active(struct page *page)
1218{
1219	VM_BUG_ON_PAGE(!PageHuge(page), page);
1220	return PageHead(page) && PagePrivate(&page[1]);
1221}
1222
1223/* never called for tail page */
1224static void set_page_huge_active(struct page *page)
1225{
1226	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227	SetPagePrivate(&page[1]);
1228}
1229
1230static void clear_page_huge_active(struct page *page)
1231{
1232	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1233	ClearPagePrivate(&page[1]);
1234}
1235
1236/*
1237 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1238 * code
1239 */
1240static inline bool PageHugeTemporary(struct page *page)
1241{
1242	if (!PageHuge(page))
1243		return false;
1244
1245	return (unsigned long)page[2].mapping == -1U;
1246}
1247
1248static inline void SetPageHugeTemporary(struct page *page)
1249{
1250	page[2].mapping = (void *)-1U;
1251}
1252
1253static inline void ClearPageHugeTemporary(struct page *page)
1254{
1255	page[2].mapping = NULL;
1256}
1257
1258void free_huge_page(struct page *page)
1259{
1260	/*
1261	 * Can't pass hstate in here because it is called from the
1262	 * compound page destructor.
1263	 */
1264	struct hstate *h = page_hstate(page);
1265	int nid = page_to_nid(page);
1266	struct hugepage_subpool *spool =
1267		(struct hugepage_subpool *)page_private(page);
1268	bool restore_reserve;
1269
1270	VM_BUG_ON_PAGE(page_count(page), page);
1271	VM_BUG_ON_PAGE(page_mapcount(page), page);
1272
1273	set_page_private(page, 0);
1274	page->mapping = NULL;
1275	restore_reserve = PagePrivate(page);
1276	ClearPagePrivate(page);
1277
1278	/*
1279	 * If PagePrivate() was set on page, page allocation consumed a
1280	 * reservation.  If the page was associated with a subpool, there
1281	 * would have been a page reserved in the subpool before allocation
1282	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1283	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1284	 * remove the reserved page from the subpool.
1285	 */
1286	if (!restore_reserve) {
1287		/*
1288		 * A return code of zero implies that the subpool will be
1289		 * under its minimum size if the reservation is not restored
1290		 * after page is free.  Therefore, force restore_reserve
1291		 * operation.
1292		 */
1293		if (hugepage_subpool_put_pages(spool, 1) == 0)
1294			restore_reserve = true;
1295	}
1296
1297	spin_lock(&hugetlb_lock);
1298	clear_page_huge_active(page);
1299	hugetlb_cgroup_uncharge_page(hstate_index(h),
1300				     pages_per_huge_page(h), page);
 
 
1301	if (restore_reserve)
1302		h->resv_huge_pages++;
1303
1304	if (PageHugeTemporary(page)) {
1305		list_del(&page->lru);
1306		ClearPageHugeTemporary(page);
1307		update_and_free_page(h, page);
1308	} else if (h->surplus_huge_pages_node[nid]) {
1309		/* remove the page from active list */
1310		list_del(&page->lru);
1311		update_and_free_page(h, page);
1312		h->surplus_huge_pages--;
1313		h->surplus_huge_pages_node[nid]--;
1314	} else {
1315		arch_clear_hugepage_flags(page);
1316		enqueue_huge_page(h, page);
1317	}
1318	spin_unlock(&hugetlb_lock);
1319}
1320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1321static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1322{
1323	INIT_LIST_HEAD(&page->lru);
1324	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1325	spin_lock(&hugetlb_lock);
1326	set_hugetlb_cgroup(page, NULL);
 
1327	h->nr_huge_pages++;
1328	h->nr_huge_pages_node[nid]++;
1329	spin_unlock(&hugetlb_lock);
1330}
1331
1332static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1333{
1334	int i;
1335	int nr_pages = 1 << order;
1336	struct page *p = page + 1;
1337
1338	/* we rely on prep_new_huge_page to set the destructor */
1339	set_compound_order(page, order);
1340	__ClearPageReserved(page);
1341	__SetPageHead(page);
1342	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1343		/*
1344		 * For gigantic hugepages allocated through bootmem at
1345		 * boot, it's safer to be consistent with the not-gigantic
1346		 * hugepages and clear the PG_reserved bit from all tail pages
1347		 * too.  Otherwse drivers using get_user_pages() to access tail
1348		 * pages may get the reference counting wrong if they see
1349		 * PG_reserved set on a tail page (despite the head page not
1350		 * having PG_reserved set).  Enforcing this consistency between
1351		 * head and tail pages allows drivers to optimize away a check
1352		 * on the head page when they need know if put_page() is needed
1353		 * after get_user_pages().
1354		 */
1355		__ClearPageReserved(p);
1356		set_page_count(p, 0);
1357		set_compound_head(p, page);
1358	}
1359	atomic_set(compound_mapcount_ptr(page), -1);
 
 
 
1360}
1361
1362/*
1363 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1364 * transparent huge pages.  See the PageTransHuge() documentation for more
1365 * details.
1366 */
1367int PageHuge(struct page *page)
1368{
1369	if (!PageCompound(page))
1370		return 0;
1371
1372	page = compound_head(page);
1373	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1374}
1375EXPORT_SYMBOL_GPL(PageHuge);
1376
1377/*
1378 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1379 * normal or transparent huge pages.
1380 */
1381int PageHeadHuge(struct page *page_head)
1382{
1383	if (!PageHead(page_head))
1384		return 0;
1385
1386	return get_compound_page_dtor(page_head) == free_huge_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1387}
1388
1389pgoff_t __basepage_index(struct page *page)
1390{
1391	struct page *page_head = compound_head(page);
1392	pgoff_t index = page_index(page_head);
1393	unsigned long compound_idx;
1394
1395	if (!PageHuge(page_head))
1396		return page_index(page);
1397
1398	if (compound_order(page_head) >= MAX_ORDER)
1399		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1400	else
1401		compound_idx = page - page_head;
1402
1403	return (index << compound_order(page_head)) + compound_idx;
1404}
1405
1406static struct page *alloc_buddy_huge_page(struct hstate *h,
1407		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1408		nodemask_t *node_alloc_noretry)
1409{
1410	int order = huge_page_order(h);
1411	struct page *page;
1412	bool alloc_try_hard = true;
1413
1414	/*
1415	 * By default we always try hard to allocate the page with
1416	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1417	 * a loop (to adjust global huge page counts) and previous allocation
1418	 * failed, do not continue to try hard on the same node.  Use the
1419	 * node_alloc_noretry bitmap to manage this state information.
1420	 */
1421	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1422		alloc_try_hard = false;
1423	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1424	if (alloc_try_hard)
1425		gfp_mask |= __GFP_RETRY_MAYFAIL;
1426	if (nid == NUMA_NO_NODE)
1427		nid = numa_mem_id();
1428	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1429	if (page)
1430		__count_vm_event(HTLB_BUDDY_PGALLOC);
1431	else
1432		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1433
1434	/*
1435	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1436	 * indicates an overall state change.  Clear bit so that we resume
1437	 * normal 'try hard' allocations.
1438	 */
1439	if (node_alloc_noretry && page && !alloc_try_hard)
1440		node_clear(nid, *node_alloc_noretry);
1441
1442	/*
1443	 * If we tried hard to get a page but failed, set bit so that
1444	 * subsequent attempts will not try as hard until there is an
1445	 * overall state change.
1446	 */
1447	if (node_alloc_noretry && !page && alloc_try_hard)
1448		node_set(nid, *node_alloc_noretry);
1449
1450	return page;
1451}
1452
1453/*
1454 * Common helper to allocate a fresh hugetlb page. All specific allocators
1455 * should use this function to get new hugetlb pages
1456 */
1457static struct page *alloc_fresh_huge_page(struct hstate *h,
1458		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1459		nodemask_t *node_alloc_noretry)
1460{
1461	struct page *page;
1462
1463	if (hstate_is_gigantic(h))
1464		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1465	else
1466		page = alloc_buddy_huge_page(h, gfp_mask,
1467				nid, nmask, node_alloc_noretry);
1468	if (!page)
1469		return NULL;
1470
1471	if (hstate_is_gigantic(h))
1472		prep_compound_gigantic_page(page, huge_page_order(h));
1473	prep_new_huge_page(h, page, page_to_nid(page));
1474
1475	return page;
1476}
1477
1478/*
1479 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1480 * manner.
1481 */
1482static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1483				nodemask_t *node_alloc_noretry)
1484{
1485	struct page *page;
1486	int nr_nodes, node;
1487	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1488
1489	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1490		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1491						node_alloc_noretry);
1492		if (page)
1493			break;
1494	}
1495
1496	if (!page)
1497		return 0;
1498
1499	put_page(page); /* free it into the hugepage allocator */
1500
1501	return 1;
1502}
1503
1504/*
1505 * Free huge page from pool from next node to free.
1506 * Attempt to keep persistent huge pages more or less
1507 * balanced over allowed nodes.
1508 * Called with hugetlb_lock locked.
1509 */
1510static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1511							 bool acct_surplus)
1512{
1513	int nr_nodes, node;
1514	int ret = 0;
1515
1516	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1517		/*
1518		 * If we're returning unused surplus pages, only examine
1519		 * nodes with surplus pages.
1520		 */
1521		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1522		    !list_empty(&h->hugepage_freelists[node])) {
1523			struct page *page =
1524				list_entry(h->hugepage_freelists[node].next,
1525					  struct page, lru);
1526			list_del(&page->lru);
1527			h->free_huge_pages--;
1528			h->free_huge_pages_node[node]--;
1529			if (acct_surplus) {
1530				h->surplus_huge_pages--;
1531				h->surplus_huge_pages_node[node]--;
1532			}
1533			update_and_free_page(h, page);
1534			ret = 1;
1535			break;
1536		}
1537	}
1538
1539	return ret;
1540}
1541
1542/*
1543 * Dissolve a given free hugepage into free buddy pages. This function does
1544 * nothing for in-use hugepages and non-hugepages.
1545 * This function returns values like below:
1546 *
1547 *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1548 *          (allocated or reserved.)
1549 *       0: successfully dissolved free hugepages or the page is not a
1550 *          hugepage (considered as already dissolved)
1551 */
1552int dissolve_free_huge_page(struct page *page)
1553{
1554	int rc = -EBUSY;
1555
1556	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1557	if (!PageHuge(page))
1558		return 0;
1559
1560	spin_lock(&hugetlb_lock);
1561	if (!PageHuge(page)) {
1562		rc = 0;
1563		goto out;
1564	}
1565
1566	if (!page_count(page)) {
1567		struct page *head = compound_head(page);
1568		struct hstate *h = page_hstate(head);
1569		int nid = page_to_nid(head);
1570		if (h->free_huge_pages - h->resv_huge_pages == 0)
1571			goto out;
1572		/*
1573		 * Move PageHWPoison flag from head page to the raw error page,
1574		 * which makes any subpages rather than the error page reusable.
1575		 */
1576		if (PageHWPoison(head) && page != head) {
1577			SetPageHWPoison(page);
1578			ClearPageHWPoison(head);
1579		}
1580		list_del(&head->lru);
1581		h->free_huge_pages--;
1582		h->free_huge_pages_node[nid]--;
1583		h->max_huge_pages--;
1584		update_and_free_page(h, head);
1585		rc = 0;
1586	}
1587out:
1588	spin_unlock(&hugetlb_lock);
1589	return rc;
1590}
1591
1592/*
1593 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1594 * make specified memory blocks removable from the system.
1595 * Note that this will dissolve a free gigantic hugepage completely, if any
1596 * part of it lies within the given range.
1597 * Also note that if dissolve_free_huge_page() returns with an error, all
1598 * free hugepages that were dissolved before that error are lost.
1599 */
1600int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1601{
1602	unsigned long pfn;
1603	struct page *page;
1604	int rc = 0;
1605
1606	if (!hugepages_supported())
1607		return rc;
1608
1609	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1610		page = pfn_to_page(pfn);
1611		rc = dissolve_free_huge_page(page);
1612		if (rc)
1613			break;
1614	}
1615
1616	return rc;
1617}
1618
1619/*
1620 * Allocates a fresh surplus page from the page allocator.
1621 */
1622static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1623		int nid, nodemask_t *nmask)
1624{
1625	struct page *page = NULL;
1626
1627	if (hstate_is_gigantic(h))
1628		return NULL;
1629
1630	spin_lock(&hugetlb_lock);
1631	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1632		goto out_unlock;
1633	spin_unlock(&hugetlb_lock);
1634
1635	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1636	if (!page)
1637		return NULL;
1638
1639	spin_lock(&hugetlb_lock);
1640	/*
1641	 * We could have raced with the pool size change.
1642	 * Double check that and simply deallocate the new page
1643	 * if we would end up overcommiting the surpluses. Abuse
1644	 * temporary page to workaround the nasty free_huge_page
1645	 * codeflow
1646	 */
1647	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1648		SetPageHugeTemporary(page);
1649		spin_unlock(&hugetlb_lock);
1650		put_page(page);
1651		return NULL;
1652	} else {
1653		h->surplus_huge_pages++;
1654		h->surplus_huge_pages_node[page_to_nid(page)]++;
1655	}
1656
1657out_unlock:
1658	spin_unlock(&hugetlb_lock);
1659
1660	return page;
1661}
1662
1663struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1664				     int nid, nodemask_t *nmask)
1665{
1666	struct page *page;
1667
1668	if (hstate_is_gigantic(h))
1669		return NULL;
1670
1671	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1672	if (!page)
1673		return NULL;
1674
1675	/*
1676	 * We do not account these pages as surplus because they are only
1677	 * temporary and will be released properly on the last reference
1678	 */
1679	SetPageHugeTemporary(page);
1680
1681	return page;
1682}
1683
1684/*
1685 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1686 */
1687static
1688struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1689		struct vm_area_struct *vma, unsigned long addr)
1690{
1691	struct page *page;
1692	struct mempolicy *mpol;
1693	gfp_t gfp_mask = htlb_alloc_mask(h);
1694	int nid;
1695	nodemask_t *nodemask;
1696
1697	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1698	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1699	mpol_cond_put(mpol);
1700
1701	return page;
1702}
1703
1704/* page migration callback function */
1705struct page *alloc_huge_page_node(struct hstate *h, int nid)
1706{
1707	gfp_t gfp_mask = htlb_alloc_mask(h);
1708	struct page *page = NULL;
1709
1710	if (nid != NUMA_NO_NODE)
1711		gfp_mask |= __GFP_THISNODE;
1712
1713	spin_lock(&hugetlb_lock);
1714	if (h->free_huge_pages - h->resv_huge_pages > 0)
1715		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1716	spin_unlock(&hugetlb_lock);
1717
1718	if (!page)
1719		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1720
1721	return page;
1722}
1723
1724/* page migration callback function */
1725struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1726		nodemask_t *nmask)
1727{
1728	gfp_t gfp_mask = htlb_alloc_mask(h);
1729
1730	spin_lock(&hugetlb_lock);
1731	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1732		struct page *page;
1733
1734		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1735		if (page) {
1736			spin_unlock(&hugetlb_lock);
1737			return page;
1738		}
1739	}
1740	spin_unlock(&hugetlb_lock);
1741
1742	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1743}
1744
1745/* mempolicy aware migration callback */
1746struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1747		unsigned long address)
1748{
1749	struct mempolicy *mpol;
1750	nodemask_t *nodemask;
1751	struct page *page;
1752	gfp_t gfp_mask;
1753	int node;
1754
1755	gfp_mask = htlb_alloc_mask(h);
1756	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1757	page = alloc_huge_page_nodemask(h, node, nodemask);
1758	mpol_cond_put(mpol);
1759
1760	return page;
1761}
1762
1763/*
1764 * Increase the hugetlb pool such that it can accommodate a reservation
1765 * of size 'delta'.
1766 */
1767static int gather_surplus_pages(struct hstate *h, int delta)
 
1768{
1769	struct list_head surplus_list;
1770	struct page *page, *tmp;
1771	int ret, i;
1772	int needed, allocated;
1773	bool alloc_ok = true;
1774
1775	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1776	if (needed <= 0) {
1777		h->resv_huge_pages += delta;
1778		return 0;
1779	}
1780
1781	allocated = 0;
1782	INIT_LIST_HEAD(&surplus_list);
1783
1784	ret = -ENOMEM;
1785retry:
1786	spin_unlock(&hugetlb_lock);
1787	for (i = 0; i < needed; i++) {
1788		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1789				NUMA_NO_NODE, NULL);
1790		if (!page) {
1791			alloc_ok = false;
1792			break;
1793		}
1794		list_add(&page->lru, &surplus_list);
1795		cond_resched();
1796	}
1797	allocated += i;
1798
1799	/*
1800	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1801	 * because either resv_huge_pages or free_huge_pages may have changed.
1802	 */
1803	spin_lock(&hugetlb_lock);
1804	needed = (h->resv_huge_pages + delta) -
1805			(h->free_huge_pages + allocated);
1806	if (needed > 0) {
1807		if (alloc_ok)
1808			goto retry;
1809		/*
1810		 * We were not able to allocate enough pages to
1811		 * satisfy the entire reservation so we free what
1812		 * we've allocated so far.
1813		 */
1814		goto free;
1815	}
1816	/*
1817	 * The surplus_list now contains _at_least_ the number of extra pages
1818	 * needed to accommodate the reservation.  Add the appropriate number
1819	 * of pages to the hugetlb pool and free the extras back to the buddy
1820	 * allocator.  Commit the entire reservation here to prevent another
1821	 * process from stealing the pages as they are added to the pool but
1822	 * before they are reserved.
1823	 */
1824	needed += allocated;
1825	h->resv_huge_pages += delta;
1826	ret = 0;
1827
1828	/* Free the needed pages to the hugetlb pool */
1829	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1830		if ((--needed) < 0)
1831			break;
1832		/*
1833		 * This page is now managed by the hugetlb allocator and has
1834		 * no users -- drop the buddy allocator's reference.
1835		 */
1836		put_page_testzero(page);
1837		VM_BUG_ON_PAGE(page_count(page), page);
1838		enqueue_huge_page(h, page);
1839	}
1840free:
1841	spin_unlock(&hugetlb_lock);
1842
1843	/* Free unnecessary surplus pages to the buddy allocator */
1844	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1845		put_page(page);
1846	spin_lock(&hugetlb_lock);
1847
1848	return ret;
1849}
1850
1851/*
1852 * This routine has two main purposes:
1853 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1854 *    in unused_resv_pages.  This corresponds to the prior adjustments made
1855 *    to the associated reservation map.
1856 * 2) Free any unused surplus pages that may have been allocated to satisfy
1857 *    the reservation.  As many as unused_resv_pages may be freed.
1858 *
1859 * Called with hugetlb_lock held.  However, the lock could be dropped (and
1860 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1861 * we must make sure nobody else can claim pages we are in the process of
1862 * freeing.  Do this by ensuring resv_huge_page always is greater than the
1863 * number of huge pages we plan to free when dropping the lock.
1864 */
1865static void return_unused_surplus_pages(struct hstate *h,
1866					unsigned long unused_resv_pages)
1867{
1868	unsigned long nr_pages;
1869
1870	/* Cannot return gigantic pages currently */
1871	if (hstate_is_gigantic(h))
1872		goto out;
1873
1874	/*
1875	 * Part (or even all) of the reservation could have been backed
1876	 * by pre-allocated pages. Only free surplus pages.
1877	 */
1878	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1879
1880	/*
1881	 * We want to release as many surplus pages as possible, spread
1882	 * evenly across all nodes with memory. Iterate across these nodes
1883	 * until we can no longer free unreserved surplus pages. This occurs
1884	 * when the nodes with surplus pages have no free pages.
1885	 * free_pool_huge_page() will balance the the freed pages across the
1886	 * on-line nodes with memory and will handle the hstate accounting.
1887	 *
1888	 * Note that we decrement resv_huge_pages as we free the pages.  If
1889	 * we drop the lock, resv_huge_pages will still be sufficiently large
1890	 * to cover subsequent pages we may free.
1891	 */
1892	while (nr_pages--) {
1893		h->resv_huge_pages--;
1894		unused_resv_pages--;
1895		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1896			goto out;
1897		cond_resched_lock(&hugetlb_lock);
1898	}
1899
1900out:
1901	/* Fully uncommit the reservation */
1902	h->resv_huge_pages -= unused_resv_pages;
1903}
1904
1905
1906/*
1907 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1908 * are used by the huge page allocation routines to manage reservations.
1909 *
1910 * vma_needs_reservation is called to determine if the huge page at addr
1911 * within the vma has an associated reservation.  If a reservation is
1912 * needed, the value 1 is returned.  The caller is then responsible for
1913 * managing the global reservation and subpool usage counts.  After
1914 * the huge page has been allocated, vma_commit_reservation is called
1915 * to add the page to the reservation map.  If the page allocation fails,
1916 * the reservation must be ended instead of committed.  vma_end_reservation
1917 * is called in such cases.
1918 *
1919 * In the normal case, vma_commit_reservation returns the same value
1920 * as the preceding vma_needs_reservation call.  The only time this
1921 * is not the case is if a reserve map was changed between calls.  It
1922 * is the responsibility of the caller to notice the difference and
1923 * take appropriate action.
1924 *
1925 * vma_add_reservation is used in error paths where a reservation must
1926 * be restored when a newly allocated huge page must be freed.  It is
1927 * to be called after calling vma_needs_reservation to determine if a
1928 * reservation exists.
1929 */
1930enum vma_resv_mode {
1931	VMA_NEEDS_RESV,
1932	VMA_COMMIT_RESV,
1933	VMA_END_RESV,
1934	VMA_ADD_RESV,
1935};
1936static long __vma_reservation_common(struct hstate *h,
1937				struct vm_area_struct *vma, unsigned long addr,
1938				enum vma_resv_mode mode)
1939{
1940	struct resv_map *resv;
1941	pgoff_t idx;
1942	long ret;
 
1943
1944	resv = vma_resv_map(vma);
1945	if (!resv)
1946		return 1;
1947
1948	idx = vma_hugecache_offset(h, vma, addr);
1949	switch (mode) {
1950	case VMA_NEEDS_RESV:
1951		ret = region_chg(resv, idx, idx + 1);
 
 
 
 
 
1952		break;
1953	case VMA_COMMIT_RESV:
1954		ret = region_add(resv, idx, idx + 1);
 
 
1955		break;
1956	case VMA_END_RESV:
1957		region_abort(resv, idx, idx + 1);
1958		ret = 0;
1959		break;
1960	case VMA_ADD_RESV:
1961		if (vma->vm_flags & VM_MAYSHARE)
1962			ret = region_add(resv, idx, idx + 1);
1963		else {
1964			region_abort(resv, idx, idx + 1);
 
 
1965			ret = region_del(resv, idx, idx + 1);
1966		}
1967		break;
1968	default:
1969		BUG();
1970	}
1971
1972	if (vma->vm_flags & VM_MAYSHARE)
1973		return ret;
1974	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1975		/*
1976		 * In most cases, reserves always exist for private mappings.
1977		 * However, a file associated with mapping could have been
1978		 * hole punched or truncated after reserves were consumed.
1979		 * As subsequent fault on such a range will not use reserves.
1980		 * Subtle - The reserve map for private mappings has the
1981		 * opposite meaning than that of shared mappings.  If NO
1982		 * entry is in the reserve map, it means a reservation exists.
1983		 * If an entry exists in the reserve map, it means the
1984		 * reservation has already been consumed.  As a result, the
1985		 * return value of this routine is the opposite of the
1986		 * value returned from reserve map manipulation routines above.
1987		 */
1988		if (ret)
1989			return 0;
1990		else
1991			return 1;
1992	}
1993	else
1994		return ret < 0 ? ret : 0;
1995}
1996
1997static long vma_needs_reservation(struct hstate *h,
1998			struct vm_area_struct *vma, unsigned long addr)
1999{
2000	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2001}
2002
2003static long vma_commit_reservation(struct hstate *h,
2004			struct vm_area_struct *vma, unsigned long addr)
2005{
2006	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2007}
2008
2009static void vma_end_reservation(struct hstate *h,
2010			struct vm_area_struct *vma, unsigned long addr)
2011{
2012	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2013}
2014
2015static long vma_add_reservation(struct hstate *h,
2016			struct vm_area_struct *vma, unsigned long addr)
2017{
2018	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2019}
2020
2021/*
2022 * This routine is called to restore a reservation on error paths.  In the
2023 * specific error paths, a huge page was allocated (via alloc_huge_page)
2024 * and is about to be freed.  If a reservation for the page existed,
2025 * alloc_huge_page would have consumed the reservation and set PagePrivate
2026 * in the newly allocated page.  When the page is freed via free_huge_page,
2027 * the global reservation count will be incremented if PagePrivate is set.
2028 * However, free_huge_page can not adjust the reserve map.  Adjust the
2029 * reserve map here to be consistent with global reserve count adjustments
2030 * to be made by free_huge_page.
2031 */
2032static void restore_reserve_on_error(struct hstate *h,
2033			struct vm_area_struct *vma, unsigned long address,
2034			struct page *page)
2035{
2036	if (unlikely(PagePrivate(page))) {
2037		long rc = vma_needs_reservation(h, vma, address);
2038
2039		if (unlikely(rc < 0)) {
2040			/*
2041			 * Rare out of memory condition in reserve map
2042			 * manipulation.  Clear PagePrivate so that
2043			 * global reserve count will not be incremented
2044			 * by free_huge_page.  This will make it appear
2045			 * as though the reservation for this page was
2046			 * consumed.  This may prevent the task from
2047			 * faulting in the page at a later time.  This
2048			 * is better than inconsistent global huge page
2049			 * accounting of reserve counts.
2050			 */
2051			ClearPagePrivate(page);
2052		} else if (rc) {
2053			rc = vma_add_reservation(h, vma, address);
2054			if (unlikely(rc < 0))
2055				/*
2056				 * See above comment about rare out of
2057				 * memory condition.
2058				 */
2059				ClearPagePrivate(page);
2060		} else
2061			vma_end_reservation(h, vma, address);
2062	}
2063}
2064
2065struct page *alloc_huge_page(struct vm_area_struct *vma,
2066				    unsigned long addr, int avoid_reserve)
2067{
2068	struct hugepage_subpool *spool = subpool_vma(vma);
2069	struct hstate *h = hstate_vma(vma);
2070	struct page *page;
2071	long map_chg, map_commit;
2072	long gbl_chg;
2073	int ret, idx;
2074	struct hugetlb_cgroup *h_cg;
 
2075
2076	idx = hstate_index(h);
2077	/*
2078	 * Examine the region/reserve map to determine if the process
2079	 * has a reservation for the page to be allocated.  A return
2080	 * code of zero indicates a reservation exists (no change).
2081	 */
2082	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2083	if (map_chg < 0)
2084		return ERR_PTR(-ENOMEM);
2085
2086	/*
2087	 * Processes that did not create the mapping will have no
2088	 * reserves as indicated by the region/reserve map. Check
2089	 * that the allocation will not exceed the subpool limit.
2090	 * Allocations for MAP_NORESERVE mappings also need to be
2091	 * checked against any subpool limit.
2092	 */
2093	if (map_chg || avoid_reserve) {
2094		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2095		if (gbl_chg < 0) {
2096			vma_end_reservation(h, vma, addr);
2097			return ERR_PTR(-ENOSPC);
2098		}
2099
2100		/*
2101		 * Even though there was no reservation in the region/reserve
2102		 * map, there could be reservations associated with the
2103		 * subpool that can be used.  This would be indicated if the
2104		 * return value of hugepage_subpool_get_pages() is zero.
2105		 * However, if avoid_reserve is specified we still avoid even
2106		 * the subpool reservations.
2107		 */
2108		if (avoid_reserve)
2109			gbl_chg = 1;
2110	}
2111
 
 
 
 
 
 
 
 
 
 
2112	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2113	if (ret)
2114		goto out_subpool_put;
2115
2116	spin_lock(&hugetlb_lock);
2117	/*
2118	 * glb_chg is passed to indicate whether or not a page must be taken
2119	 * from the global free pool (global change).  gbl_chg == 0 indicates
2120	 * a reservation exists for the allocation.
2121	 */
2122	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2123	if (!page) {
2124		spin_unlock(&hugetlb_lock);
2125		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2126		if (!page)
2127			goto out_uncharge_cgroup;
2128		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2129			SetPagePrivate(page);
2130			h->resv_huge_pages--;
2131		}
2132		spin_lock(&hugetlb_lock);
2133		list_move(&page->lru, &h->hugepage_activelist);
2134		/* Fall through */
2135	}
2136	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
 
 
 
 
 
 
 
 
2137	spin_unlock(&hugetlb_lock);
2138
2139	set_page_private(page, (unsigned long)spool);
2140
2141	map_commit = vma_commit_reservation(h, vma, addr);
2142	if (unlikely(map_chg > map_commit)) {
2143		/*
2144		 * The page was added to the reservation map between
2145		 * vma_needs_reservation and vma_commit_reservation.
2146		 * This indicates a race with hugetlb_reserve_pages.
2147		 * Adjust for the subpool count incremented above AND
2148		 * in hugetlb_reserve_pages for the same page.  Also,
2149		 * the reservation count added in hugetlb_reserve_pages
2150		 * no longer applies.
2151		 */
2152		long rsv_adjust;
2153
2154		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2155		hugetlb_acct_memory(h, -rsv_adjust);
2156	}
2157	return page;
2158
2159out_uncharge_cgroup:
2160	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
 
 
 
 
2161out_subpool_put:
2162	if (map_chg || avoid_reserve)
2163		hugepage_subpool_put_pages(spool, 1);
2164	vma_end_reservation(h, vma, addr);
2165	return ERR_PTR(-ENOSPC);
2166}
2167
2168int alloc_bootmem_huge_page(struct hstate *h)
2169	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2170int __alloc_bootmem_huge_page(struct hstate *h)
2171{
2172	struct huge_bootmem_page *m;
2173	int nr_nodes, node;
2174
2175	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2176		void *addr;
2177
2178		addr = memblock_alloc_try_nid_raw(
2179				huge_page_size(h), huge_page_size(h),
2180				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2181		if (addr) {
2182			/*
2183			 * Use the beginning of the huge page to store the
2184			 * huge_bootmem_page struct (until gather_bootmem
2185			 * puts them into the mem_map).
2186			 */
2187			m = addr;
2188			goto found;
2189		}
2190	}
2191	return 0;
2192
2193found:
2194	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2195	/* Put them into a private list first because mem_map is not up yet */
2196	INIT_LIST_HEAD(&m->list);
2197	list_add(&m->list, &huge_boot_pages);
2198	m->hstate = h;
2199	return 1;
2200}
2201
2202static void __init prep_compound_huge_page(struct page *page,
2203		unsigned int order)
2204{
2205	if (unlikely(order > (MAX_ORDER - 1)))
2206		prep_compound_gigantic_page(page, order);
2207	else
2208		prep_compound_page(page, order);
2209}
2210
2211/* Put bootmem huge pages into the standard lists after mem_map is up */
2212static void __init gather_bootmem_prealloc(void)
2213{
2214	struct huge_bootmem_page *m;
2215
2216	list_for_each_entry(m, &huge_boot_pages, list) {
2217		struct page *page = virt_to_page(m);
2218		struct hstate *h = m->hstate;
2219
2220		WARN_ON(page_count(page) != 1);
2221		prep_compound_huge_page(page, h->order);
2222		WARN_ON(PageReserved(page));
2223		prep_new_huge_page(h, page, page_to_nid(page));
2224		put_page(page); /* free it into the hugepage allocator */
2225
2226		/*
2227		 * If we had gigantic hugepages allocated at boot time, we need
2228		 * to restore the 'stolen' pages to totalram_pages in order to
2229		 * fix confusing memory reports from free(1) and another
2230		 * side-effects, like CommitLimit going negative.
2231		 */
2232		if (hstate_is_gigantic(h))
2233			adjust_managed_page_count(page, 1 << h->order);
2234		cond_resched();
2235	}
2236}
2237
2238static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2239{
2240	unsigned long i;
2241	nodemask_t *node_alloc_noretry;
2242
2243	if (!hstate_is_gigantic(h)) {
2244		/*
2245		 * Bit mask controlling how hard we retry per-node allocations.
2246		 * Ignore errors as lower level routines can deal with
2247		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2248		 * time, we are likely in bigger trouble.
2249		 */
2250		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2251						GFP_KERNEL);
2252	} else {
2253		/* allocations done at boot time */
2254		node_alloc_noretry = NULL;
2255	}
2256
2257	/* bit mask controlling how hard we retry per-node allocations */
2258	if (node_alloc_noretry)
2259		nodes_clear(*node_alloc_noretry);
2260
2261	for (i = 0; i < h->max_huge_pages; ++i) {
2262		if (hstate_is_gigantic(h)) {
 
 
 
 
2263			if (!alloc_bootmem_huge_page(h))
2264				break;
2265		} else if (!alloc_pool_huge_page(h,
2266					 &node_states[N_MEMORY],
2267					 node_alloc_noretry))
2268			break;
2269		cond_resched();
2270	}
2271	if (i < h->max_huge_pages) {
2272		char buf[32];
2273
2274		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2275		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2276			h->max_huge_pages, buf, i);
2277		h->max_huge_pages = i;
2278	}
2279
2280	kfree(node_alloc_noretry);
2281}
2282
2283static void __init hugetlb_init_hstates(void)
2284{
2285	struct hstate *h;
2286
2287	for_each_hstate(h) {
2288		if (minimum_order > huge_page_order(h))
2289			minimum_order = huge_page_order(h);
2290
2291		/* oversize hugepages were init'ed in early boot */
2292		if (!hstate_is_gigantic(h))
2293			hugetlb_hstate_alloc_pages(h);
2294	}
2295	VM_BUG_ON(minimum_order == UINT_MAX);
2296}
2297
2298static void __init report_hugepages(void)
2299{
2300	struct hstate *h;
2301
2302	for_each_hstate(h) {
2303		char buf[32];
2304
2305		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2306		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2307			buf, h->free_huge_pages);
2308	}
2309}
2310
2311#ifdef CONFIG_HIGHMEM
2312static void try_to_free_low(struct hstate *h, unsigned long count,
2313						nodemask_t *nodes_allowed)
2314{
2315	int i;
2316
2317	if (hstate_is_gigantic(h))
2318		return;
2319
2320	for_each_node_mask(i, *nodes_allowed) {
2321		struct page *page, *next;
2322		struct list_head *freel = &h->hugepage_freelists[i];
2323		list_for_each_entry_safe(page, next, freel, lru) {
2324			if (count >= h->nr_huge_pages)
2325				return;
2326			if (PageHighMem(page))
2327				continue;
2328			list_del(&page->lru);
2329			update_and_free_page(h, page);
2330			h->free_huge_pages--;
2331			h->free_huge_pages_node[page_to_nid(page)]--;
2332		}
2333	}
2334}
2335#else
2336static inline void try_to_free_low(struct hstate *h, unsigned long count,
2337						nodemask_t *nodes_allowed)
2338{
2339}
2340#endif
2341
2342/*
2343 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2344 * balanced by operating on them in a round-robin fashion.
2345 * Returns 1 if an adjustment was made.
2346 */
2347static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2348				int delta)
2349{
2350	int nr_nodes, node;
2351
2352	VM_BUG_ON(delta != -1 && delta != 1);
2353
2354	if (delta < 0) {
2355		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2356			if (h->surplus_huge_pages_node[node])
2357				goto found;
2358		}
2359	} else {
2360		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2361			if (h->surplus_huge_pages_node[node] <
2362					h->nr_huge_pages_node[node])
2363				goto found;
2364		}
2365	}
2366	return 0;
2367
2368found:
2369	h->surplus_huge_pages += delta;
2370	h->surplus_huge_pages_node[node] += delta;
2371	return 1;
2372}
2373
2374#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2375static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2376			      nodemask_t *nodes_allowed)
2377{
2378	unsigned long min_count, ret;
2379	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2380
2381	/*
2382	 * Bit mask controlling how hard we retry per-node allocations.
2383	 * If we can not allocate the bit mask, do not attempt to allocate
2384	 * the requested huge pages.
2385	 */
2386	if (node_alloc_noretry)
2387		nodes_clear(*node_alloc_noretry);
2388	else
2389		return -ENOMEM;
2390
2391	spin_lock(&hugetlb_lock);
2392
2393	/*
2394	 * Check for a node specific request.
2395	 * Changing node specific huge page count may require a corresponding
2396	 * change to the global count.  In any case, the passed node mask
2397	 * (nodes_allowed) will restrict alloc/free to the specified node.
2398	 */
2399	if (nid != NUMA_NO_NODE) {
2400		unsigned long old_count = count;
2401
2402		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2403		/*
2404		 * User may have specified a large count value which caused the
2405		 * above calculation to overflow.  In this case, they wanted
2406		 * to allocate as many huge pages as possible.  Set count to
2407		 * largest possible value to align with their intention.
2408		 */
2409		if (count < old_count)
2410			count = ULONG_MAX;
2411	}
2412
2413	/*
2414	 * Gigantic pages runtime allocation depend on the capability for large
2415	 * page range allocation.
2416	 * If the system does not provide this feature, return an error when
2417	 * the user tries to allocate gigantic pages but let the user free the
2418	 * boottime allocated gigantic pages.
2419	 */
2420	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2421		if (count > persistent_huge_pages(h)) {
2422			spin_unlock(&hugetlb_lock);
2423			NODEMASK_FREE(node_alloc_noretry);
2424			return -EINVAL;
2425		}
2426		/* Fall through to decrease pool */
2427	}
2428
2429	/*
2430	 * Increase the pool size
2431	 * First take pages out of surplus state.  Then make up the
2432	 * remaining difference by allocating fresh huge pages.
2433	 *
2434	 * We might race with alloc_surplus_huge_page() here and be unable
2435	 * to convert a surplus huge page to a normal huge page. That is
2436	 * not critical, though, it just means the overall size of the
2437	 * pool might be one hugepage larger than it needs to be, but
2438	 * within all the constraints specified by the sysctls.
2439	 */
2440	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2441		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2442			break;
2443	}
2444
2445	while (count > persistent_huge_pages(h)) {
2446		/*
2447		 * If this allocation races such that we no longer need the
2448		 * page, free_huge_page will handle it by freeing the page
2449		 * and reducing the surplus.
2450		 */
2451		spin_unlock(&hugetlb_lock);
2452
2453		/* yield cpu to avoid soft lockup */
2454		cond_resched();
2455
2456		ret = alloc_pool_huge_page(h, nodes_allowed,
2457						node_alloc_noretry);
2458		spin_lock(&hugetlb_lock);
2459		if (!ret)
2460			goto out;
2461
2462		/* Bail for signals. Probably ctrl-c from user */
2463		if (signal_pending(current))
2464			goto out;
2465	}
2466
2467	/*
2468	 * Decrease the pool size
2469	 * First return free pages to the buddy allocator (being careful
2470	 * to keep enough around to satisfy reservations).  Then place
2471	 * pages into surplus state as needed so the pool will shrink
2472	 * to the desired size as pages become free.
2473	 *
2474	 * By placing pages into the surplus state independent of the
2475	 * overcommit value, we are allowing the surplus pool size to
2476	 * exceed overcommit. There are few sane options here. Since
2477	 * alloc_surplus_huge_page() is checking the global counter,
2478	 * though, we'll note that we're not allowed to exceed surplus
2479	 * and won't grow the pool anywhere else. Not until one of the
2480	 * sysctls are changed, or the surplus pages go out of use.
2481	 */
2482	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2483	min_count = max(count, min_count);
2484	try_to_free_low(h, min_count, nodes_allowed);
2485	while (min_count < persistent_huge_pages(h)) {
2486		if (!free_pool_huge_page(h, nodes_allowed, 0))
2487			break;
2488		cond_resched_lock(&hugetlb_lock);
2489	}
2490	while (count < persistent_huge_pages(h)) {
2491		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2492			break;
2493	}
2494out:
2495	h->max_huge_pages = persistent_huge_pages(h);
2496	spin_unlock(&hugetlb_lock);
2497
2498	NODEMASK_FREE(node_alloc_noretry);
2499
2500	return 0;
2501}
2502
2503#define HSTATE_ATTR_RO(_name) \
2504	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2505
2506#define HSTATE_ATTR(_name) \
2507	static struct kobj_attribute _name##_attr = \
2508		__ATTR(_name, 0644, _name##_show, _name##_store)
2509
2510static struct kobject *hugepages_kobj;
2511static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2512
2513static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2514
2515static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2516{
2517	int i;
2518
2519	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2520		if (hstate_kobjs[i] == kobj) {
2521			if (nidp)
2522				*nidp = NUMA_NO_NODE;
2523			return &hstates[i];
2524		}
2525
2526	return kobj_to_node_hstate(kobj, nidp);
2527}
2528
2529static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2530					struct kobj_attribute *attr, char *buf)
2531{
2532	struct hstate *h;
2533	unsigned long nr_huge_pages;
2534	int nid;
2535
2536	h = kobj_to_hstate(kobj, &nid);
2537	if (nid == NUMA_NO_NODE)
2538		nr_huge_pages = h->nr_huge_pages;
2539	else
2540		nr_huge_pages = h->nr_huge_pages_node[nid];
2541
2542	return sprintf(buf, "%lu\n", nr_huge_pages);
2543}
2544
2545static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2546					   struct hstate *h, int nid,
2547					   unsigned long count, size_t len)
2548{
2549	int err;
2550	nodemask_t nodes_allowed, *n_mask;
2551
2552	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2553		return -EINVAL;
2554
2555	if (nid == NUMA_NO_NODE) {
2556		/*
2557		 * global hstate attribute
2558		 */
2559		if (!(obey_mempolicy &&
2560				init_nodemask_of_mempolicy(&nodes_allowed)))
2561			n_mask = &node_states[N_MEMORY];
2562		else
2563			n_mask = &nodes_allowed;
2564	} else {
2565		/*
2566		 * Node specific request.  count adjustment happens in
2567		 * set_max_huge_pages() after acquiring hugetlb_lock.
2568		 */
2569		init_nodemask_of_node(&nodes_allowed, nid);
2570		n_mask = &nodes_allowed;
2571	}
2572
2573	err = set_max_huge_pages(h, count, nid, n_mask);
2574
2575	return err ? err : len;
2576}
2577
2578static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2579					 struct kobject *kobj, const char *buf,
2580					 size_t len)
2581{
2582	struct hstate *h;
2583	unsigned long count;
2584	int nid;
2585	int err;
2586
2587	err = kstrtoul(buf, 10, &count);
2588	if (err)
2589		return err;
2590
2591	h = kobj_to_hstate(kobj, &nid);
2592	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2593}
2594
2595static ssize_t nr_hugepages_show(struct kobject *kobj,
2596				       struct kobj_attribute *attr, char *buf)
2597{
2598	return nr_hugepages_show_common(kobj, attr, buf);
2599}
2600
2601static ssize_t nr_hugepages_store(struct kobject *kobj,
2602	       struct kobj_attribute *attr, const char *buf, size_t len)
2603{
2604	return nr_hugepages_store_common(false, kobj, buf, len);
2605}
2606HSTATE_ATTR(nr_hugepages);
2607
2608#ifdef CONFIG_NUMA
2609
2610/*
2611 * hstate attribute for optionally mempolicy-based constraint on persistent
2612 * huge page alloc/free.
2613 */
2614static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2615				       struct kobj_attribute *attr, char *buf)
2616{
2617	return nr_hugepages_show_common(kobj, attr, buf);
2618}
2619
2620static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2621	       struct kobj_attribute *attr, const char *buf, size_t len)
2622{
2623	return nr_hugepages_store_common(true, kobj, buf, len);
2624}
2625HSTATE_ATTR(nr_hugepages_mempolicy);
2626#endif
2627
2628
2629static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2630					struct kobj_attribute *attr, char *buf)
2631{
2632	struct hstate *h = kobj_to_hstate(kobj, NULL);
2633	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2634}
2635
2636static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2637		struct kobj_attribute *attr, const char *buf, size_t count)
2638{
2639	int err;
2640	unsigned long input;
2641	struct hstate *h = kobj_to_hstate(kobj, NULL);
2642
2643	if (hstate_is_gigantic(h))
2644		return -EINVAL;
2645
2646	err = kstrtoul(buf, 10, &input);
2647	if (err)
2648		return err;
2649
2650	spin_lock(&hugetlb_lock);
2651	h->nr_overcommit_huge_pages = input;
2652	spin_unlock(&hugetlb_lock);
2653
2654	return count;
2655}
2656HSTATE_ATTR(nr_overcommit_hugepages);
2657
2658static ssize_t free_hugepages_show(struct kobject *kobj,
2659					struct kobj_attribute *attr, char *buf)
2660{
2661	struct hstate *h;
2662	unsigned long free_huge_pages;
2663	int nid;
2664
2665	h = kobj_to_hstate(kobj, &nid);
2666	if (nid == NUMA_NO_NODE)
2667		free_huge_pages = h->free_huge_pages;
2668	else
2669		free_huge_pages = h->free_huge_pages_node[nid];
2670
2671	return sprintf(buf, "%lu\n", free_huge_pages);
2672}
2673HSTATE_ATTR_RO(free_hugepages);
2674
2675static ssize_t resv_hugepages_show(struct kobject *kobj,
2676					struct kobj_attribute *attr, char *buf)
2677{
2678	struct hstate *h = kobj_to_hstate(kobj, NULL);
2679	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2680}
2681HSTATE_ATTR_RO(resv_hugepages);
2682
2683static ssize_t surplus_hugepages_show(struct kobject *kobj,
2684					struct kobj_attribute *attr, char *buf)
2685{
2686	struct hstate *h;
2687	unsigned long surplus_huge_pages;
2688	int nid;
2689
2690	h = kobj_to_hstate(kobj, &nid);
2691	if (nid == NUMA_NO_NODE)
2692		surplus_huge_pages = h->surplus_huge_pages;
2693	else
2694		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2695
2696	return sprintf(buf, "%lu\n", surplus_huge_pages);
2697}
2698HSTATE_ATTR_RO(surplus_hugepages);
2699
2700static struct attribute *hstate_attrs[] = {
2701	&nr_hugepages_attr.attr,
2702	&nr_overcommit_hugepages_attr.attr,
2703	&free_hugepages_attr.attr,
2704	&resv_hugepages_attr.attr,
2705	&surplus_hugepages_attr.attr,
2706#ifdef CONFIG_NUMA
2707	&nr_hugepages_mempolicy_attr.attr,
2708#endif
2709	NULL,
2710};
2711
2712static const struct attribute_group hstate_attr_group = {
2713	.attrs = hstate_attrs,
2714};
2715
2716static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2717				    struct kobject **hstate_kobjs,
2718				    const struct attribute_group *hstate_attr_group)
2719{
2720	int retval;
2721	int hi = hstate_index(h);
2722
2723	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2724	if (!hstate_kobjs[hi])
2725		return -ENOMEM;
2726
2727	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2728	if (retval)
2729		kobject_put(hstate_kobjs[hi]);
2730
2731	return retval;
2732}
2733
2734static void __init hugetlb_sysfs_init(void)
2735{
2736	struct hstate *h;
2737	int err;
2738
2739	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2740	if (!hugepages_kobj)
2741		return;
2742
2743	for_each_hstate(h) {
2744		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2745					 hstate_kobjs, &hstate_attr_group);
2746		if (err)
2747			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2748	}
2749}
2750
2751#ifdef CONFIG_NUMA
2752
2753/*
2754 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2755 * with node devices in node_devices[] using a parallel array.  The array
2756 * index of a node device or _hstate == node id.
2757 * This is here to avoid any static dependency of the node device driver, in
2758 * the base kernel, on the hugetlb module.
2759 */
2760struct node_hstate {
2761	struct kobject		*hugepages_kobj;
2762	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2763};
2764static struct node_hstate node_hstates[MAX_NUMNODES];
2765
2766/*
2767 * A subset of global hstate attributes for node devices
2768 */
2769static struct attribute *per_node_hstate_attrs[] = {
2770	&nr_hugepages_attr.attr,
2771	&free_hugepages_attr.attr,
2772	&surplus_hugepages_attr.attr,
2773	NULL,
2774};
2775
2776static const struct attribute_group per_node_hstate_attr_group = {
2777	.attrs = per_node_hstate_attrs,
2778};
2779
2780/*
2781 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2782 * Returns node id via non-NULL nidp.
2783 */
2784static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2785{
2786	int nid;
2787
2788	for (nid = 0; nid < nr_node_ids; nid++) {
2789		struct node_hstate *nhs = &node_hstates[nid];
2790		int i;
2791		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2792			if (nhs->hstate_kobjs[i] == kobj) {
2793				if (nidp)
2794					*nidp = nid;
2795				return &hstates[i];
2796			}
2797	}
2798
2799	BUG();
2800	return NULL;
2801}
2802
2803/*
2804 * Unregister hstate attributes from a single node device.
2805 * No-op if no hstate attributes attached.
2806 */
2807static void hugetlb_unregister_node(struct node *node)
2808{
2809	struct hstate *h;
2810	struct node_hstate *nhs = &node_hstates[node->dev.id];
2811
2812	if (!nhs->hugepages_kobj)
2813		return;		/* no hstate attributes */
2814
2815	for_each_hstate(h) {
2816		int idx = hstate_index(h);
2817		if (nhs->hstate_kobjs[idx]) {
2818			kobject_put(nhs->hstate_kobjs[idx]);
2819			nhs->hstate_kobjs[idx] = NULL;
2820		}
2821	}
2822
2823	kobject_put(nhs->hugepages_kobj);
2824	nhs->hugepages_kobj = NULL;
2825}
2826
2827
2828/*
2829 * Register hstate attributes for a single node device.
2830 * No-op if attributes already registered.
2831 */
2832static void hugetlb_register_node(struct node *node)
2833{
2834	struct hstate *h;
2835	struct node_hstate *nhs = &node_hstates[node->dev.id];
2836	int err;
2837
2838	if (nhs->hugepages_kobj)
2839		return;		/* already allocated */
2840
2841	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2842							&node->dev.kobj);
2843	if (!nhs->hugepages_kobj)
2844		return;
2845
2846	for_each_hstate(h) {
2847		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2848						nhs->hstate_kobjs,
2849						&per_node_hstate_attr_group);
2850		if (err) {
2851			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2852				h->name, node->dev.id);
2853			hugetlb_unregister_node(node);
2854			break;
2855		}
2856	}
2857}
2858
2859/*
2860 * hugetlb init time:  register hstate attributes for all registered node
2861 * devices of nodes that have memory.  All on-line nodes should have
2862 * registered their associated device by this time.
2863 */
2864static void __init hugetlb_register_all_nodes(void)
2865{
2866	int nid;
2867
2868	for_each_node_state(nid, N_MEMORY) {
2869		struct node *node = node_devices[nid];
2870		if (node->dev.id == nid)
2871			hugetlb_register_node(node);
2872	}
2873
2874	/*
2875	 * Let the node device driver know we're here so it can
2876	 * [un]register hstate attributes on node hotplug.
2877	 */
2878	register_hugetlbfs_with_node(hugetlb_register_node,
2879				     hugetlb_unregister_node);
2880}
2881#else	/* !CONFIG_NUMA */
2882
2883static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2884{
2885	BUG();
2886	if (nidp)
2887		*nidp = -1;
2888	return NULL;
2889}
2890
2891static void hugetlb_register_all_nodes(void) { }
2892
2893#endif
2894
2895static int __init hugetlb_init(void)
2896{
2897	int i;
2898
2899	if (!hugepages_supported())
 
 
2900		return 0;
 
2901
2902	if (!size_to_hstate(default_hstate_size)) {
2903		if (default_hstate_size != 0) {
2904			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2905			       default_hstate_size, HPAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2906		}
2907
2908		default_hstate_size = HPAGE_SIZE;
2909		if (!size_to_hstate(default_hstate_size))
2910			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2911	}
2912	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2913	if (default_hstate_max_huge_pages) {
2914		if (!default_hstate.max_huge_pages)
2915			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2916	}
2917
 
2918	hugetlb_init_hstates();
2919	gather_bootmem_prealloc();
2920	report_hugepages();
2921
2922	hugetlb_sysfs_init();
2923	hugetlb_register_all_nodes();
2924	hugetlb_cgroup_file_init();
2925
2926#ifdef CONFIG_SMP
2927	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2928#else
2929	num_fault_mutexes = 1;
2930#endif
2931	hugetlb_fault_mutex_table =
2932		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2933			      GFP_KERNEL);
2934	BUG_ON(!hugetlb_fault_mutex_table);
2935
2936	for (i = 0; i < num_fault_mutexes; i++)
2937		mutex_init(&hugetlb_fault_mutex_table[i]);
2938	return 0;
2939}
2940subsys_initcall(hugetlb_init);
2941
2942/* Should be called on processing a hugepagesz=... option */
2943void __init hugetlb_bad_size(void)
2944{
2945	parsed_valid_hugepagesz = false;
2946}
2947
2948void __init hugetlb_add_hstate(unsigned int order)
2949{
2950	struct hstate *h;
2951	unsigned long i;
2952
2953	if (size_to_hstate(PAGE_SIZE << order)) {
2954		pr_warn("hugepagesz= specified twice, ignoring\n");
2955		return;
2956	}
2957	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2958	BUG_ON(order == 0);
2959	h = &hstates[hugetlb_max_hstate++];
2960	h->order = order;
2961	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2962	h->nr_huge_pages = 0;
2963	h->free_huge_pages = 0;
2964	for (i = 0; i < MAX_NUMNODES; ++i)
2965		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2966	INIT_LIST_HEAD(&h->hugepage_activelist);
2967	h->next_nid_to_alloc = first_memory_node;
2968	h->next_nid_to_free = first_memory_node;
2969	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2970					huge_page_size(h)/1024);
2971
2972	parsed_hstate = h;
2973}
2974
2975static int __init hugetlb_nrpages_setup(char *s)
 
 
 
 
 
 
 
2976{
2977	unsigned long *mhp;
2978	static unsigned long *last_mhp;
2979
2980	if (!parsed_valid_hugepagesz) {
2981		pr_warn("hugepages = %s preceded by "
2982			"an unsupported hugepagesz, ignoring\n", s);
2983		parsed_valid_hugepagesz = true;
2984		return 1;
2985	}
 
2986	/*
2987	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2988	 * so this hugepages= parameter goes to the "default hstate".
 
 
2989	 */
2990	else if (!hugetlb_max_hstate)
2991		mhp = &default_hstate_max_huge_pages;
2992	else
2993		mhp = &parsed_hstate->max_huge_pages;
2994
2995	if (mhp == last_mhp) {
2996		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2997		return 1;
2998	}
2999
3000	if (sscanf(s, "%lu", mhp) <= 0)
3001		*mhp = 0;
3002
3003	/*
3004	 * Global state is always initialized later in hugetlb_init.
3005	 * But we need to allocate >= MAX_ORDER hstates here early to still
3006	 * use the bootmem allocator.
3007	 */
3008	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3009		hugetlb_hstate_alloc_pages(parsed_hstate);
3010
3011	last_mhp = mhp;
3012
3013	return 1;
3014}
3015__setup("hugepages=", hugetlb_nrpages_setup);
3016
3017static int __init hugetlb_default_setup(char *s)
 
 
 
 
 
 
 
3018{
3019	default_hstate_size = memparse(s, &s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3020	return 1;
3021}
3022__setup("default_hugepagesz=", hugetlb_default_setup);
3023
3024static unsigned int cpuset_mems_nr(unsigned int *array)
3025{
3026	int node;
3027	unsigned int nr = 0;
 
 
 
 
 
3028
3029	for_each_node_mask(node, cpuset_current_mems_allowed)
3030		nr += array[node];
 
 
 
3031
3032	return nr;
3033}
3034
3035#ifdef CONFIG_SYSCTL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3036static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3037			 struct ctl_table *table, int write,
3038			 void __user *buffer, size_t *length, loff_t *ppos)
3039{
3040	struct hstate *h = &default_hstate;
3041	unsigned long tmp = h->max_huge_pages;
3042	int ret;
3043
3044	if (!hugepages_supported())
3045		return -EOPNOTSUPP;
3046
3047	table->data = &tmp;
3048	table->maxlen = sizeof(unsigned long);
3049	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3050	if (ret)
3051		goto out;
3052
3053	if (write)
3054		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3055						  NUMA_NO_NODE, tmp, *length);
3056out:
3057	return ret;
3058}
3059
3060int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3061			  void __user *buffer, size_t *length, loff_t *ppos)
3062{
3063
3064	return hugetlb_sysctl_handler_common(false, table, write,
3065							buffer, length, ppos);
3066}
3067
3068#ifdef CONFIG_NUMA
3069int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3070			  void __user *buffer, size_t *length, loff_t *ppos)
3071{
3072	return hugetlb_sysctl_handler_common(true, table, write,
3073							buffer, length, ppos);
3074}
3075#endif /* CONFIG_NUMA */
3076
3077int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3078			void __user *buffer,
3079			size_t *length, loff_t *ppos)
3080{
3081	struct hstate *h = &default_hstate;
3082	unsigned long tmp;
3083	int ret;
3084
3085	if (!hugepages_supported())
3086		return -EOPNOTSUPP;
3087
3088	tmp = h->nr_overcommit_huge_pages;
3089
3090	if (write && hstate_is_gigantic(h))
3091		return -EINVAL;
3092
3093	table->data = &tmp;
3094	table->maxlen = sizeof(unsigned long);
3095	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3096	if (ret)
3097		goto out;
3098
3099	if (write) {
3100		spin_lock(&hugetlb_lock);
3101		h->nr_overcommit_huge_pages = tmp;
3102		spin_unlock(&hugetlb_lock);
3103	}
3104out:
3105	return ret;
3106}
3107
3108#endif /* CONFIG_SYSCTL */
3109
3110void hugetlb_report_meminfo(struct seq_file *m)
3111{
3112	struct hstate *h;
3113	unsigned long total = 0;
3114
3115	if (!hugepages_supported())
3116		return;
3117
3118	for_each_hstate(h) {
3119		unsigned long count = h->nr_huge_pages;
3120
3121		total += (PAGE_SIZE << huge_page_order(h)) * count;
3122
3123		if (h == &default_hstate)
3124			seq_printf(m,
3125				   "HugePages_Total:   %5lu\n"
3126				   "HugePages_Free:    %5lu\n"
3127				   "HugePages_Rsvd:    %5lu\n"
3128				   "HugePages_Surp:    %5lu\n"
3129				   "Hugepagesize:   %8lu kB\n",
3130				   count,
3131				   h->free_huge_pages,
3132				   h->resv_huge_pages,
3133				   h->surplus_huge_pages,
3134				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3135	}
3136
3137	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3138}
3139
3140int hugetlb_report_node_meminfo(int nid, char *buf)
3141{
3142	struct hstate *h = &default_hstate;
3143	if (!hugepages_supported())
3144		return 0;
3145	return sprintf(buf,
3146		"Node %d HugePages_Total: %5u\n"
3147		"Node %d HugePages_Free:  %5u\n"
3148		"Node %d HugePages_Surp:  %5u\n",
3149		nid, h->nr_huge_pages_node[nid],
3150		nid, h->free_huge_pages_node[nid],
3151		nid, h->surplus_huge_pages_node[nid]);
3152}
3153
3154void hugetlb_show_meminfo(void)
3155{
3156	struct hstate *h;
3157	int nid;
3158
3159	if (!hugepages_supported())
3160		return;
3161
3162	for_each_node_state(nid, N_MEMORY)
3163		for_each_hstate(h)
3164			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3165				nid,
3166				h->nr_huge_pages_node[nid],
3167				h->free_huge_pages_node[nid],
3168				h->surplus_huge_pages_node[nid],
3169				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3170}
3171
3172void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3173{
3174	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3175		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3176}
3177
3178/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3179unsigned long hugetlb_total_pages(void)
3180{
3181	struct hstate *h;
3182	unsigned long nr_total_pages = 0;
3183
3184	for_each_hstate(h)
3185		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3186	return nr_total_pages;
3187}
3188
3189static int hugetlb_acct_memory(struct hstate *h, long delta)
3190{
3191	int ret = -ENOMEM;
3192
3193	spin_lock(&hugetlb_lock);
3194	/*
3195	 * When cpuset is configured, it breaks the strict hugetlb page
3196	 * reservation as the accounting is done on a global variable. Such
3197	 * reservation is completely rubbish in the presence of cpuset because
3198	 * the reservation is not checked against page availability for the
3199	 * current cpuset. Application can still potentially OOM'ed by kernel
3200	 * with lack of free htlb page in cpuset that the task is in.
3201	 * Attempt to enforce strict accounting with cpuset is almost
3202	 * impossible (or too ugly) because cpuset is too fluid that
3203	 * task or memory node can be dynamically moved between cpusets.
3204	 *
3205	 * The change of semantics for shared hugetlb mapping with cpuset is
3206	 * undesirable. However, in order to preserve some of the semantics,
3207	 * we fall back to check against current free page availability as
3208	 * a best attempt and hopefully to minimize the impact of changing
3209	 * semantics that cpuset has.
 
 
 
 
 
 
3210	 */
3211	if (delta > 0) {
3212		if (gather_surplus_pages(h, delta) < 0)
3213			goto out;
3214
3215		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3216			return_unused_surplus_pages(h, delta);
3217			goto out;
3218		}
3219	}
3220
3221	ret = 0;
3222	if (delta < 0)
3223		return_unused_surplus_pages(h, (unsigned long) -delta);
3224
3225out:
3226	spin_unlock(&hugetlb_lock);
3227	return ret;
3228}
3229
3230static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3231{
3232	struct resv_map *resv = vma_resv_map(vma);
3233
3234	/*
3235	 * This new VMA should share its siblings reservation map if present.
3236	 * The VMA will only ever have a valid reservation map pointer where
3237	 * it is being copied for another still existing VMA.  As that VMA
3238	 * has a reference to the reservation map it cannot disappear until
3239	 * after this open call completes.  It is therefore safe to take a
3240	 * new reference here without additional locking.
3241	 */
3242	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3243		kref_get(&resv->refs);
3244}
3245
3246static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3247{
3248	struct hstate *h = hstate_vma(vma);
3249	struct resv_map *resv = vma_resv_map(vma);
3250	struct hugepage_subpool *spool = subpool_vma(vma);
3251	unsigned long reserve, start, end;
3252	long gbl_reserve;
3253
3254	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3255		return;
3256
3257	start = vma_hugecache_offset(h, vma, vma->vm_start);
3258	end = vma_hugecache_offset(h, vma, vma->vm_end);
3259
3260	reserve = (end - start) - region_count(resv, start, end);
3261
3262	kref_put(&resv->refs, resv_map_release);
3263
3264	if (reserve) {
3265		/*
3266		 * Decrement reserve counts.  The global reserve count may be
3267		 * adjusted if the subpool has a minimum size.
3268		 */
3269		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3270		hugetlb_acct_memory(h, -gbl_reserve);
3271	}
 
 
3272}
3273
3274static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3275{
3276	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3277		return -EINVAL;
3278	return 0;
3279}
3280
3281static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3282{
3283	struct hstate *hstate = hstate_vma(vma);
3284
3285	return 1UL << huge_page_shift(hstate);
3286}
3287
3288/*
3289 * We cannot handle pagefaults against hugetlb pages at all.  They cause
3290 * handle_mm_fault() to try to instantiate regular-sized pages in the
3291 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3292 * this far.
3293 */
3294static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3295{
3296	BUG();
3297	return 0;
3298}
3299
3300/*
3301 * When a new function is introduced to vm_operations_struct and added
3302 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3303 * This is because under System V memory model, mappings created via
3304 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3305 * their original vm_ops are overwritten with shm_vm_ops.
3306 */
3307const struct vm_operations_struct hugetlb_vm_ops = {
3308	.fault = hugetlb_vm_op_fault,
3309	.open = hugetlb_vm_op_open,
3310	.close = hugetlb_vm_op_close,
3311	.split = hugetlb_vm_op_split,
3312	.pagesize = hugetlb_vm_op_pagesize,
3313};
3314
3315static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3316				int writable)
3317{
3318	pte_t entry;
3319
3320	if (writable) {
3321		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3322					 vma->vm_page_prot)));
3323	} else {
3324		entry = huge_pte_wrprotect(mk_huge_pte(page,
3325					   vma->vm_page_prot));
3326	}
3327	entry = pte_mkyoung(entry);
3328	entry = pte_mkhuge(entry);
3329	entry = arch_make_huge_pte(entry, vma, page, writable);
3330
3331	return entry;
3332}
3333
3334static void set_huge_ptep_writable(struct vm_area_struct *vma,
3335				   unsigned long address, pte_t *ptep)
3336{
3337	pte_t entry;
3338
3339	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3340	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3341		update_mmu_cache(vma, address, ptep);
3342}
3343
3344bool is_hugetlb_entry_migration(pte_t pte)
3345{
3346	swp_entry_t swp;
3347
3348	if (huge_pte_none(pte) || pte_present(pte))
3349		return false;
3350	swp = pte_to_swp_entry(pte);
3351	if (non_swap_entry(swp) && is_migration_entry(swp))
3352		return true;
3353	else
3354		return false;
3355}
3356
3357static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3358{
3359	swp_entry_t swp;
3360
3361	if (huge_pte_none(pte) || pte_present(pte))
3362		return 0;
3363	swp = pte_to_swp_entry(pte);
3364	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3365		return 1;
3366	else
3367		return 0;
3368}
3369
3370int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3371			    struct vm_area_struct *vma)
3372{
3373	pte_t *src_pte, *dst_pte, entry, dst_entry;
3374	struct page *ptepage;
3375	unsigned long addr;
3376	int cow;
3377	struct hstate *h = hstate_vma(vma);
3378	unsigned long sz = huge_page_size(h);
 
3379	struct mmu_notifier_range range;
3380	int ret = 0;
3381
3382	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3383
3384	if (cow) {
3385		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3386					vma->vm_start,
3387					vma->vm_end);
3388		mmu_notifier_invalidate_range_start(&range);
 
 
 
 
 
 
 
 
3389	}
3390
3391	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3392		spinlock_t *src_ptl, *dst_ptl;
3393		src_pte = huge_pte_offset(src, addr, sz);
3394		if (!src_pte)
3395			continue;
3396		dst_pte = huge_pte_alloc(dst, addr, sz);
3397		if (!dst_pte) {
3398			ret = -ENOMEM;
3399			break;
3400		}
3401
3402		/*
3403		 * If the pagetables are shared don't copy or take references.
3404		 * dst_pte == src_pte is the common case of src/dest sharing.
3405		 *
3406		 * However, src could have 'unshared' and dst shares with
3407		 * another vma.  If dst_pte !none, this implies sharing.
3408		 * Check here before taking page table lock, and once again
3409		 * after taking the lock below.
3410		 */
3411		dst_entry = huge_ptep_get(dst_pte);
3412		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3413			continue;
3414
3415		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3416		src_ptl = huge_pte_lockptr(h, src, src_pte);
3417		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3418		entry = huge_ptep_get(src_pte);
3419		dst_entry = huge_ptep_get(dst_pte);
3420		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3421			/*
3422			 * Skip if src entry none.  Also, skip in the
3423			 * unlikely case dst entry !none as this implies
3424			 * sharing with another vma.
3425			 */
3426			;
3427		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3428				    is_hugetlb_entry_hwpoisoned(entry))) {
3429			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3430
3431			if (is_write_migration_entry(swp_entry) && cow) {
3432				/*
3433				 * COW mappings require pages in both
3434				 * parent and child to be set to read.
3435				 */
3436				make_migration_entry_read(&swp_entry);
3437				entry = swp_entry_to_pte(swp_entry);
3438				set_huge_swap_pte_at(src, addr, src_pte,
3439						     entry, sz);
3440			}
3441			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3442		} else {
3443			if (cow) {
3444				/*
3445				 * No need to notify as we are downgrading page
3446				 * table protection not changing it to point
3447				 * to a new page.
3448				 *
3449				 * See Documentation/vm/mmu_notifier.rst
3450				 */
3451				huge_ptep_set_wrprotect(src, addr, src_pte);
3452			}
3453			entry = huge_ptep_get(src_pte);
3454			ptepage = pte_page(entry);
3455			get_page(ptepage);
3456			page_dup_rmap(ptepage, true);
3457			set_huge_pte_at(dst, addr, dst_pte, entry);
3458			hugetlb_count_add(pages_per_huge_page(h), dst);
3459		}
3460		spin_unlock(src_ptl);
3461		spin_unlock(dst_ptl);
3462	}
3463
3464	if (cow)
3465		mmu_notifier_invalidate_range_end(&range);
 
 
3466
3467	return ret;
3468}
3469
3470void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3471			    unsigned long start, unsigned long end,
3472			    struct page *ref_page)
3473{
3474	struct mm_struct *mm = vma->vm_mm;
3475	unsigned long address;
3476	pte_t *ptep;
3477	pte_t pte;
3478	spinlock_t *ptl;
3479	struct page *page;
3480	struct hstate *h = hstate_vma(vma);
3481	unsigned long sz = huge_page_size(h);
3482	struct mmu_notifier_range range;
3483
3484	WARN_ON(!is_vm_hugetlb_page(vma));
3485	BUG_ON(start & ~huge_page_mask(h));
3486	BUG_ON(end & ~huge_page_mask(h));
3487
3488	/*
3489	 * This is a hugetlb vma, all the pte entries should point
3490	 * to huge page.
3491	 */
3492	tlb_change_page_size(tlb, sz);
3493	tlb_start_vma(tlb, vma);
3494
3495	/*
3496	 * If sharing possible, alert mmu notifiers of worst case.
3497	 */
3498	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3499				end);
3500	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3501	mmu_notifier_invalidate_range_start(&range);
3502	address = start;
3503	for (; address < end; address += sz) {
3504		ptep = huge_pte_offset(mm, address, sz);
3505		if (!ptep)
3506			continue;
3507
3508		ptl = huge_pte_lock(h, mm, ptep);
3509		if (huge_pmd_unshare(mm, &address, ptep)) {
3510			spin_unlock(ptl);
3511			/*
3512			 * We just unmapped a page of PMDs by clearing a PUD.
3513			 * The caller's TLB flush range should cover this area.
3514			 */
3515			continue;
3516		}
3517
3518		pte = huge_ptep_get(ptep);
3519		if (huge_pte_none(pte)) {
3520			spin_unlock(ptl);
3521			continue;
3522		}
3523
3524		/*
3525		 * Migrating hugepage or HWPoisoned hugepage is already
3526		 * unmapped and its refcount is dropped, so just clear pte here.
3527		 */
3528		if (unlikely(!pte_present(pte))) {
3529			huge_pte_clear(mm, address, ptep, sz);
3530			spin_unlock(ptl);
3531			continue;
3532		}
3533
3534		page = pte_page(pte);
3535		/*
3536		 * If a reference page is supplied, it is because a specific
3537		 * page is being unmapped, not a range. Ensure the page we
3538		 * are about to unmap is the actual page of interest.
3539		 */
3540		if (ref_page) {
3541			if (page != ref_page) {
3542				spin_unlock(ptl);
3543				continue;
3544			}
3545			/*
3546			 * Mark the VMA as having unmapped its page so that
3547			 * future faults in this VMA will fail rather than
3548			 * looking like data was lost
3549			 */
3550			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3551		}
3552
3553		pte = huge_ptep_get_and_clear(mm, address, ptep);
3554		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3555		if (huge_pte_dirty(pte))
3556			set_page_dirty(page);
3557
3558		hugetlb_count_sub(pages_per_huge_page(h), mm);
3559		page_remove_rmap(page, true);
3560
3561		spin_unlock(ptl);
3562		tlb_remove_page_size(tlb, page, huge_page_size(h));
3563		/*
3564		 * Bail out after unmapping reference page if supplied
3565		 */
3566		if (ref_page)
3567			break;
3568	}
3569	mmu_notifier_invalidate_range_end(&range);
3570	tlb_end_vma(tlb, vma);
3571}
3572
3573void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3574			  struct vm_area_struct *vma, unsigned long start,
3575			  unsigned long end, struct page *ref_page)
3576{
3577	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3578
3579	/*
3580	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3581	 * test will fail on a vma being torn down, and not grab a page table
3582	 * on its way out.  We're lucky that the flag has such an appropriate
3583	 * name, and can in fact be safely cleared here. We could clear it
3584	 * before the __unmap_hugepage_range above, but all that's necessary
3585	 * is to clear it before releasing the i_mmap_rwsem. This works
3586	 * because in the context this is called, the VMA is about to be
3587	 * destroyed and the i_mmap_rwsem is held.
3588	 */
3589	vma->vm_flags &= ~VM_MAYSHARE;
3590}
3591
3592void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3593			  unsigned long end, struct page *ref_page)
3594{
3595	struct mm_struct *mm;
3596	struct mmu_gather tlb;
3597	unsigned long tlb_start = start;
3598	unsigned long tlb_end = end;
3599
3600	/*
3601	 * If shared PMDs were possibly used within this vma range, adjust
3602	 * start/end for worst case tlb flushing.
3603	 * Note that we can not be sure if PMDs are shared until we try to
3604	 * unmap pages.  However, we want to make sure TLB flushing covers
3605	 * the largest possible range.
3606	 */
3607	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3608
3609	mm = vma->vm_mm;
3610
3611	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3612	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3613	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3614}
3615
3616/*
3617 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3618 * mappping it owns the reserve page for. The intention is to unmap the page
3619 * from other VMAs and let the children be SIGKILLed if they are faulting the
3620 * same region.
3621 */
3622static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3623			      struct page *page, unsigned long address)
3624{
3625	struct hstate *h = hstate_vma(vma);
3626	struct vm_area_struct *iter_vma;
3627	struct address_space *mapping;
3628	pgoff_t pgoff;
3629
3630	/*
3631	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3632	 * from page cache lookup which is in HPAGE_SIZE units.
3633	 */
3634	address = address & huge_page_mask(h);
3635	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3636			vma->vm_pgoff;
3637	mapping = vma->vm_file->f_mapping;
3638
3639	/*
3640	 * Take the mapping lock for the duration of the table walk. As
3641	 * this mapping should be shared between all the VMAs,
3642	 * __unmap_hugepage_range() is called as the lock is already held
3643	 */
3644	i_mmap_lock_write(mapping);
3645	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3646		/* Do not unmap the current VMA */
3647		if (iter_vma == vma)
3648			continue;
3649
3650		/*
3651		 * Shared VMAs have their own reserves and do not affect
3652		 * MAP_PRIVATE accounting but it is possible that a shared
3653		 * VMA is using the same page so check and skip such VMAs.
3654		 */
3655		if (iter_vma->vm_flags & VM_MAYSHARE)
3656			continue;
3657
3658		/*
3659		 * Unmap the page from other VMAs without their own reserves.
3660		 * They get marked to be SIGKILLed if they fault in these
3661		 * areas. This is because a future no-page fault on this VMA
3662		 * could insert a zeroed page instead of the data existing
3663		 * from the time of fork. This would look like data corruption
3664		 */
3665		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3666			unmap_hugepage_range(iter_vma, address,
3667					     address + huge_page_size(h), page);
3668	}
3669	i_mmap_unlock_write(mapping);
3670}
3671
3672/*
3673 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3674 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3675 * cannot race with other handlers or page migration.
3676 * Keep the pte_same checks anyway to make transition from the mutex easier.
3677 */
3678static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3679		       unsigned long address, pte_t *ptep,
3680		       struct page *pagecache_page, spinlock_t *ptl)
3681{
3682	pte_t pte;
3683	struct hstate *h = hstate_vma(vma);
3684	struct page *old_page, *new_page;
3685	int outside_reserve = 0;
3686	vm_fault_t ret = 0;
3687	unsigned long haddr = address & huge_page_mask(h);
3688	struct mmu_notifier_range range;
3689
3690	pte = huge_ptep_get(ptep);
3691	old_page = pte_page(pte);
3692
3693retry_avoidcopy:
3694	/* If no-one else is actually using this page, avoid the copy
3695	 * and just make the page writable */
3696	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3697		page_move_anon_rmap(old_page, vma);
3698		set_huge_ptep_writable(vma, haddr, ptep);
3699		return 0;
3700	}
3701
3702	/*
3703	 * If the process that created a MAP_PRIVATE mapping is about to
3704	 * perform a COW due to a shared page count, attempt to satisfy
3705	 * the allocation without using the existing reserves. The pagecache
3706	 * page is used to determine if the reserve at this address was
3707	 * consumed or not. If reserves were used, a partial faulted mapping
3708	 * at the time of fork() could consume its reserves on COW instead
3709	 * of the full address range.
3710	 */
3711	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3712			old_page != pagecache_page)
3713		outside_reserve = 1;
3714
3715	get_page(old_page);
3716
3717	/*
3718	 * Drop page table lock as buddy allocator may be called. It will
3719	 * be acquired again before returning to the caller, as expected.
3720	 */
3721	spin_unlock(ptl);
3722	new_page = alloc_huge_page(vma, haddr, outside_reserve);
3723
3724	if (IS_ERR(new_page)) {
3725		/*
3726		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3727		 * it is due to references held by a child and an insufficient
3728		 * huge page pool. To guarantee the original mappers
3729		 * reliability, unmap the page from child processes. The child
3730		 * may get SIGKILLed if it later faults.
3731		 */
3732		if (outside_reserve) {
3733			put_page(old_page);
3734			BUG_ON(huge_pte_none(pte));
3735			unmap_ref_private(mm, vma, old_page, haddr);
3736			BUG_ON(huge_pte_none(pte));
3737			spin_lock(ptl);
3738			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3739			if (likely(ptep &&
3740				   pte_same(huge_ptep_get(ptep), pte)))
3741				goto retry_avoidcopy;
3742			/*
3743			 * race occurs while re-acquiring page table
3744			 * lock, and our job is done.
3745			 */
3746			return 0;
3747		}
3748
3749		ret = vmf_error(PTR_ERR(new_page));
3750		goto out_release_old;
3751	}
3752
3753	/*
3754	 * When the original hugepage is shared one, it does not have
3755	 * anon_vma prepared.
3756	 */
3757	if (unlikely(anon_vma_prepare(vma))) {
3758		ret = VM_FAULT_OOM;
3759		goto out_release_all;
3760	}
3761
3762	copy_user_huge_page(new_page, old_page, address, vma,
3763			    pages_per_huge_page(h));
3764	__SetPageUptodate(new_page);
3765
3766	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3767				haddr + huge_page_size(h));
3768	mmu_notifier_invalidate_range_start(&range);
3769
3770	/*
3771	 * Retake the page table lock to check for racing updates
3772	 * before the page tables are altered
3773	 */
3774	spin_lock(ptl);
3775	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3776	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3777		ClearPagePrivate(new_page);
3778
3779		/* Break COW */
3780		huge_ptep_clear_flush(vma, haddr, ptep);
3781		mmu_notifier_invalidate_range(mm, range.start, range.end);
3782		set_huge_pte_at(mm, haddr, ptep,
3783				make_huge_pte(vma, new_page, 1));
3784		page_remove_rmap(old_page, true);
3785		hugepage_add_new_anon_rmap(new_page, vma, haddr);
3786		set_page_huge_active(new_page);
3787		/* Make the old page be freed below */
3788		new_page = old_page;
3789	}
3790	spin_unlock(ptl);
3791	mmu_notifier_invalidate_range_end(&range);
3792out_release_all:
3793	restore_reserve_on_error(h, vma, haddr, new_page);
3794	put_page(new_page);
3795out_release_old:
3796	put_page(old_page);
3797
3798	spin_lock(ptl); /* Caller expects lock to be held */
3799	return ret;
3800}
3801
3802/* Return the pagecache page at a given address within a VMA */
3803static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3804			struct vm_area_struct *vma, unsigned long address)
3805{
3806	struct address_space *mapping;
3807	pgoff_t idx;
3808
3809	mapping = vma->vm_file->f_mapping;
3810	idx = vma_hugecache_offset(h, vma, address);
3811
3812	return find_lock_page(mapping, idx);
3813}
3814
3815/*
3816 * Return whether there is a pagecache page to back given address within VMA.
3817 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3818 */
3819static bool hugetlbfs_pagecache_present(struct hstate *h,
3820			struct vm_area_struct *vma, unsigned long address)
3821{
3822	struct address_space *mapping;
3823	pgoff_t idx;
3824	struct page *page;
3825
3826	mapping = vma->vm_file->f_mapping;
3827	idx = vma_hugecache_offset(h, vma, address);
3828
3829	page = find_get_page(mapping, idx);
3830	if (page)
3831		put_page(page);
3832	return page != NULL;
3833}
3834
3835int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3836			   pgoff_t idx)
3837{
3838	struct inode *inode = mapping->host;
3839	struct hstate *h = hstate_inode(inode);
3840	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3841
3842	if (err)
3843		return err;
3844	ClearPagePrivate(page);
3845
3846	/*
3847	 * set page dirty so that it will not be removed from cache/file
3848	 * by non-hugetlbfs specific code paths.
3849	 */
3850	set_page_dirty(page);
3851
3852	spin_lock(&inode->i_lock);
3853	inode->i_blocks += blocks_per_huge_page(h);
3854	spin_unlock(&inode->i_lock);
3855	return 0;
3856}
3857
3858static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3859			struct vm_area_struct *vma,
3860			struct address_space *mapping, pgoff_t idx,
3861			unsigned long address, pte_t *ptep, unsigned int flags)
3862{
3863	struct hstate *h = hstate_vma(vma);
3864	vm_fault_t ret = VM_FAULT_SIGBUS;
3865	int anon_rmap = 0;
3866	unsigned long size;
3867	struct page *page;
3868	pte_t new_pte;
3869	spinlock_t *ptl;
3870	unsigned long haddr = address & huge_page_mask(h);
3871	bool new_page = false;
3872
3873	/*
3874	 * Currently, we are forced to kill the process in the event the
3875	 * original mapper has unmapped pages from the child due to a failed
3876	 * COW. Warn that such a situation has occurred as it may not be obvious
3877	 */
3878	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3879		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3880			   current->pid);
3881		return ret;
3882	}
3883
3884	/*
3885	 * Use page lock to guard against racing truncation
3886	 * before we get page_table_lock.
 
3887	 */
 
 
 
 
3888retry:
3889	page = find_lock_page(mapping, idx);
3890	if (!page) {
3891		size = i_size_read(mapping->host) >> huge_page_shift(h);
3892		if (idx >= size)
3893			goto out;
3894
3895		/*
3896		 * Check for page in userfault range
3897		 */
3898		if (userfaultfd_missing(vma)) {
3899			u32 hash;
3900			struct vm_fault vmf = {
3901				.vma = vma,
3902				.address = haddr,
3903				.flags = flags,
3904				/*
3905				 * Hard to debug if it ends up being
3906				 * used by a callee that assumes
3907				 * something about the other
3908				 * uninitialized fields... same as in
3909				 * memory.c
3910				 */
3911			};
3912
3913			/*
3914			 * hugetlb_fault_mutex must be dropped before
3915			 * handling userfault.  Reacquire after handling
3916			 * fault to make calling code simpler.
3917			 */
3918			hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3919			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 
3920			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
 
3921			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3922			goto out;
3923		}
3924
3925		page = alloc_huge_page(vma, haddr, 0);
3926		if (IS_ERR(page)) {
3927			/*
3928			 * Returning error will result in faulting task being
3929			 * sent SIGBUS.  The hugetlb fault mutex prevents two
3930			 * tasks from racing to fault in the same page which
3931			 * could result in false unable to allocate errors.
3932			 * Page migration does not take the fault mutex, but
3933			 * does a clear then write of pte's under page table
3934			 * lock.  Page fault code could race with migration,
3935			 * notice the clear pte and try to allocate a page
3936			 * here.  Before returning error, get ptl and make
3937			 * sure there really is no pte entry.
3938			 */
3939			ptl = huge_pte_lock(h, mm, ptep);
3940			if (!huge_pte_none(huge_ptep_get(ptep))) {
3941				ret = 0;
3942				spin_unlock(ptl);
3943				goto out;
3944			}
3945			spin_unlock(ptl);
3946			ret = vmf_error(PTR_ERR(page));
3947			goto out;
3948		}
3949		clear_huge_page(page, address, pages_per_huge_page(h));
3950		__SetPageUptodate(page);
3951		new_page = true;
3952
3953		if (vma->vm_flags & VM_MAYSHARE) {
3954			int err = huge_add_to_page_cache(page, mapping, idx);
3955			if (err) {
3956				put_page(page);
3957				if (err == -EEXIST)
3958					goto retry;
3959				goto out;
3960			}
3961		} else {
3962			lock_page(page);
3963			if (unlikely(anon_vma_prepare(vma))) {
3964				ret = VM_FAULT_OOM;
3965				goto backout_unlocked;
3966			}
3967			anon_rmap = 1;
3968		}
3969	} else {
3970		/*
3971		 * If memory error occurs between mmap() and fault, some process
3972		 * don't have hwpoisoned swap entry for errored virtual address.
3973		 * So we need to block hugepage fault by PG_hwpoison bit check.
3974		 */
3975		if (unlikely(PageHWPoison(page))) {
3976			ret = VM_FAULT_HWPOISON |
3977				VM_FAULT_SET_HINDEX(hstate_index(h));
3978			goto backout_unlocked;
3979		}
3980	}
3981
3982	/*
3983	 * If we are going to COW a private mapping later, we examine the
3984	 * pending reservations for this page now. This will ensure that
3985	 * any allocations necessary to record that reservation occur outside
3986	 * the spinlock.
3987	 */
3988	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3989		if (vma_needs_reservation(h, vma, haddr) < 0) {
3990			ret = VM_FAULT_OOM;
3991			goto backout_unlocked;
3992		}
3993		/* Just decrements count, does not deallocate */
3994		vma_end_reservation(h, vma, haddr);
3995	}
3996
3997	ptl = huge_pte_lock(h, mm, ptep);
3998	size = i_size_read(mapping->host) >> huge_page_shift(h);
3999	if (idx >= size)
4000		goto backout;
4001
4002	ret = 0;
4003	if (!huge_pte_none(huge_ptep_get(ptep)))
4004		goto backout;
4005
4006	if (anon_rmap) {
4007		ClearPagePrivate(page);
4008		hugepage_add_new_anon_rmap(page, vma, haddr);
4009	} else
4010		page_dup_rmap(page, true);
4011	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4012				&& (vma->vm_flags & VM_SHARED)));
4013	set_huge_pte_at(mm, haddr, ptep, new_pte);
4014
4015	hugetlb_count_add(pages_per_huge_page(h), mm);
4016	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4017		/* Optimization, do the COW without a second fault */
4018		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4019	}
4020
4021	spin_unlock(ptl);
4022
4023	/*
4024	 * Only make newly allocated pages active.  Existing pages found
4025	 * in the pagecache could be !page_huge_active() if they have been
4026	 * isolated for migration.
4027	 */
4028	if (new_page)
4029		set_page_huge_active(page);
4030
4031	unlock_page(page);
4032out:
4033	return ret;
4034
4035backout:
4036	spin_unlock(ptl);
4037backout_unlocked:
4038	unlock_page(page);
4039	restore_reserve_on_error(h, vma, haddr, page);
4040	put_page(page);
4041	goto out;
4042}
4043
4044#ifdef CONFIG_SMP
4045u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4046			    pgoff_t idx, unsigned long address)
4047{
4048	unsigned long key[2];
4049	u32 hash;
4050
4051	key[0] = (unsigned long) mapping;
4052	key[1] = idx;
4053
4054	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
4055
4056	return hash & (num_fault_mutexes - 1);
4057}
4058#else
4059/*
4060 * For uniprocesor systems we always use a single mutex, so just
4061 * return 0 and avoid the hashing overhead.
4062 */
4063u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4064			    pgoff_t idx, unsigned long address)
4065{
4066	return 0;
4067}
4068#endif
4069
4070vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4071			unsigned long address, unsigned int flags)
4072{
4073	pte_t *ptep, entry;
4074	spinlock_t *ptl;
4075	vm_fault_t ret;
4076	u32 hash;
4077	pgoff_t idx;
4078	struct page *page = NULL;
4079	struct page *pagecache_page = NULL;
4080	struct hstate *h = hstate_vma(vma);
4081	struct address_space *mapping;
4082	int need_wait_lock = 0;
4083	unsigned long haddr = address & huge_page_mask(h);
4084
4085	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4086	if (ptep) {
 
 
 
 
 
4087		entry = huge_ptep_get(ptep);
4088		if (unlikely(is_hugetlb_entry_migration(entry))) {
4089			migration_entry_wait_huge(vma, mm, ptep);
4090			return 0;
4091		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4092			return VM_FAULT_HWPOISON_LARGE |
4093				VM_FAULT_SET_HINDEX(hstate_index(h));
4094	} else {
4095		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4096		if (!ptep)
4097			return VM_FAULT_OOM;
4098	}
4099
 
 
 
 
 
 
 
 
 
 
 
4100	mapping = vma->vm_file->f_mapping;
4101	idx = vma_hugecache_offset(h, vma, haddr);
 
 
 
 
 
4102
4103	/*
4104	 * Serialize hugepage allocation and instantiation, so that we don't
4105	 * get spurious allocation failures if two CPUs race to instantiate
4106	 * the same page in the page cache.
4107	 */
4108	hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
 
4109	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4110
4111	entry = huge_ptep_get(ptep);
4112	if (huge_pte_none(entry)) {
4113		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4114		goto out_mutex;
4115	}
4116
4117	ret = 0;
4118
4119	/*
4120	 * entry could be a migration/hwpoison entry at this point, so this
4121	 * check prevents the kernel from going below assuming that we have
4122	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4123	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4124	 * handle it.
4125	 */
4126	if (!pte_present(entry))
4127		goto out_mutex;
4128
4129	/*
4130	 * If we are going to COW the mapping later, we examine the pending
4131	 * reservations for this page now. This will ensure that any
4132	 * allocations necessary to record that reservation occur outside the
4133	 * spinlock. For private mappings, we also lookup the pagecache
4134	 * page now as it is used to determine if a reservation has been
4135	 * consumed.
4136	 */
4137	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4138		if (vma_needs_reservation(h, vma, haddr) < 0) {
4139			ret = VM_FAULT_OOM;
4140			goto out_mutex;
4141		}
4142		/* Just decrements count, does not deallocate */
4143		vma_end_reservation(h, vma, haddr);
4144
4145		if (!(vma->vm_flags & VM_MAYSHARE))
4146			pagecache_page = hugetlbfs_pagecache_page(h,
4147								vma, haddr);
4148	}
4149
4150	ptl = huge_pte_lock(h, mm, ptep);
4151
4152	/* Check for a racing update before calling hugetlb_cow */
4153	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4154		goto out_ptl;
4155
4156	/*
4157	 * hugetlb_cow() requires page locks of pte_page(entry) and
4158	 * pagecache_page, so here we need take the former one
4159	 * when page != pagecache_page or !pagecache_page.
4160	 */
4161	page = pte_page(entry);
4162	if (page != pagecache_page)
4163		if (!trylock_page(page)) {
4164			need_wait_lock = 1;
4165			goto out_ptl;
4166		}
4167
4168	get_page(page);
4169
4170	if (flags & FAULT_FLAG_WRITE) {
4171		if (!huge_pte_write(entry)) {
4172			ret = hugetlb_cow(mm, vma, address, ptep,
4173					  pagecache_page, ptl);
4174			goto out_put_page;
4175		}
4176		entry = huge_pte_mkdirty(entry);
4177	}
4178	entry = pte_mkyoung(entry);
4179	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4180						flags & FAULT_FLAG_WRITE))
4181		update_mmu_cache(vma, haddr, ptep);
4182out_put_page:
4183	if (page != pagecache_page)
4184		unlock_page(page);
4185	put_page(page);
4186out_ptl:
4187	spin_unlock(ptl);
4188
4189	if (pagecache_page) {
4190		unlock_page(pagecache_page);
4191		put_page(pagecache_page);
4192	}
4193out_mutex:
4194	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 
4195	/*
4196	 * Generally it's safe to hold refcount during waiting page lock. But
4197	 * here we just wait to defer the next page fault to avoid busy loop and
4198	 * the page is not used after unlocked before returning from the current
4199	 * page fault. So we are safe from accessing freed page, even if we wait
4200	 * here without taking refcount.
4201	 */
4202	if (need_wait_lock)
4203		wait_on_page_locked(page);
4204	return ret;
4205}
4206
4207/*
4208 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4209 * modifications for huge pages.
4210 */
4211int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4212			    pte_t *dst_pte,
4213			    struct vm_area_struct *dst_vma,
4214			    unsigned long dst_addr,
4215			    unsigned long src_addr,
4216			    struct page **pagep)
4217{
4218	struct address_space *mapping;
4219	pgoff_t idx;
4220	unsigned long size;
4221	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4222	struct hstate *h = hstate_vma(dst_vma);
4223	pte_t _dst_pte;
4224	spinlock_t *ptl;
4225	int ret;
4226	struct page *page;
4227
4228	if (!*pagep) {
4229		ret = -ENOMEM;
4230		page = alloc_huge_page(dst_vma, dst_addr, 0);
4231		if (IS_ERR(page))
4232			goto out;
4233
4234		ret = copy_huge_page_from_user(page,
4235						(const void __user *) src_addr,
4236						pages_per_huge_page(h), false);
4237
4238		/* fallback to copy_from_user outside mmap_sem */
4239		if (unlikely(ret)) {
4240			ret = -ENOENT;
4241			*pagep = page;
4242			/* don't free the page */
4243			goto out;
4244		}
4245	} else {
4246		page = *pagep;
4247		*pagep = NULL;
4248	}
4249
4250	/*
4251	 * The memory barrier inside __SetPageUptodate makes sure that
4252	 * preceding stores to the page contents become visible before
4253	 * the set_pte_at() write.
4254	 */
4255	__SetPageUptodate(page);
4256
4257	mapping = dst_vma->vm_file->f_mapping;
4258	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4259
4260	/*
4261	 * If shared, add to page cache
4262	 */
4263	if (vm_shared) {
4264		size = i_size_read(mapping->host) >> huge_page_shift(h);
4265		ret = -EFAULT;
4266		if (idx >= size)
4267			goto out_release_nounlock;
4268
4269		/*
4270		 * Serialization between remove_inode_hugepages() and
4271		 * huge_add_to_page_cache() below happens through the
4272		 * hugetlb_fault_mutex_table that here must be hold by
4273		 * the caller.
4274		 */
4275		ret = huge_add_to_page_cache(page, mapping, idx);
4276		if (ret)
4277			goto out_release_nounlock;
4278	}
4279
4280	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4281	spin_lock(ptl);
4282
4283	/*
4284	 * Recheck the i_size after holding PT lock to make sure not
4285	 * to leave any page mapped (as page_mapped()) beyond the end
4286	 * of the i_size (remove_inode_hugepages() is strict about
4287	 * enforcing that). If we bail out here, we'll also leave a
4288	 * page in the radix tree in the vm_shared case beyond the end
4289	 * of the i_size, but remove_inode_hugepages() will take care
4290	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4291	 */
4292	size = i_size_read(mapping->host) >> huge_page_shift(h);
4293	ret = -EFAULT;
4294	if (idx >= size)
4295		goto out_release_unlock;
4296
4297	ret = -EEXIST;
4298	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4299		goto out_release_unlock;
4300
4301	if (vm_shared) {
4302		page_dup_rmap(page, true);
4303	} else {
4304		ClearPagePrivate(page);
4305		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4306	}
4307
4308	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4309	if (dst_vma->vm_flags & VM_WRITE)
4310		_dst_pte = huge_pte_mkdirty(_dst_pte);
4311	_dst_pte = pte_mkyoung(_dst_pte);
4312
4313	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4314
4315	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4316					dst_vma->vm_flags & VM_WRITE);
4317	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4318
4319	/* No need to invalidate - it was non-present before */
4320	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4321
4322	spin_unlock(ptl);
4323	set_page_huge_active(page);
4324	if (vm_shared)
4325		unlock_page(page);
4326	ret = 0;
4327out:
4328	return ret;
4329out_release_unlock:
4330	spin_unlock(ptl);
4331	if (vm_shared)
4332		unlock_page(page);
4333out_release_nounlock:
4334	put_page(page);
4335	goto out;
4336}
4337
4338long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4339			 struct page **pages, struct vm_area_struct **vmas,
4340			 unsigned long *position, unsigned long *nr_pages,
4341			 long i, unsigned int flags, int *nonblocking)
4342{
4343	unsigned long pfn_offset;
4344	unsigned long vaddr = *position;
4345	unsigned long remainder = *nr_pages;
4346	struct hstate *h = hstate_vma(vma);
4347	int err = -EFAULT;
4348
4349	while (vaddr < vma->vm_end && remainder) {
4350		pte_t *pte;
4351		spinlock_t *ptl = NULL;
4352		int absent;
4353		struct page *page;
4354
4355		/*
4356		 * If we have a pending SIGKILL, don't keep faulting pages and
4357		 * potentially allocating memory.
4358		 */
4359		if (fatal_signal_pending(current)) {
4360			remainder = 0;
4361			break;
4362		}
4363
4364		/*
4365		 * Some archs (sparc64, sh*) have multiple pte_ts to
4366		 * each hugepage.  We have to make sure we get the
4367		 * first, for the page indexing below to work.
4368		 *
4369		 * Note that page table lock is not held when pte is null.
4370		 */
4371		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4372				      huge_page_size(h));
4373		if (pte)
4374			ptl = huge_pte_lock(h, mm, pte);
4375		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4376
4377		/*
4378		 * When coredumping, it suits get_dump_page if we just return
4379		 * an error where there's an empty slot with no huge pagecache
4380		 * to back it.  This way, we avoid allocating a hugepage, and
4381		 * the sparse dumpfile avoids allocating disk blocks, but its
4382		 * huge holes still show up with zeroes where they need to be.
4383		 */
4384		if (absent && (flags & FOLL_DUMP) &&
4385		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4386			if (pte)
4387				spin_unlock(ptl);
4388			remainder = 0;
4389			break;
4390		}
4391
4392		/*
4393		 * We need call hugetlb_fault for both hugepages under migration
4394		 * (in which case hugetlb_fault waits for the migration,) and
4395		 * hwpoisoned hugepages (in which case we need to prevent the
4396		 * caller from accessing to them.) In order to do this, we use
4397		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4398		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4399		 * both cases, and because we can't follow correct pages
4400		 * directly from any kind of swap entries.
4401		 */
4402		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4403		    ((flags & FOLL_WRITE) &&
4404		      !huge_pte_write(huge_ptep_get(pte)))) {
4405			vm_fault_t ret;
4406			unsigned int fault_flags = 0;
4407
4408			if (pte)
4409				spin_unlock(ptl);
4410			if (flags & FOLL_WRITE)
4411				fault_flags |= FAULT_FLAG_WRITE;
4412			if (nonblocking)
4413				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
 
4414			if (flags & FOLL_NOWAIT)
4415				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4416					FAULT_FLAG_RETRY_NOWAIT;
4417			if (flags & FOLL_TRIED) {
4418				VM_WARN_ON_ONCE(fault_flags &
4419						FAULT_FLAG_ALLOW_RETRY);
 
 
4420				fault_flags |= FAULT_FLAG_TRIED;
4421			}
4422			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4423			if (ret & VM_FAULT_ERROR) {
4424				err = vm_fault_to_errno(ret, flags);
4425				remainder = 0;
4426				break;
4427			}
4428			if (ret & VM_FAULT_RETRY) {
4429				if (nonblocking &&
4430				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4431					*nonblocking = 0;
4432				*nr_pages = 0;
4433				/*
4434				 * VM_FAULT_RETRY must not return an
4435				 * error, it will return zero
4436				 * instead.
4437				 *
4438				 * No need to update "position" as the
4439				 * caller will not check it after
4440				 * *nr_pages is set to 0.
4441				 */
4442				return i;
4443			}
4444			continue;
4445		}
4446
4447		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4448		page = pte_page(huge_ptep_get(pte));
4449
4450		/*
4451		 * Instead of doing 'try_get_page()' below in the same_page
4452		 * loop, just check the count once here.
4453		 */
4454		if (unlikely(page_count(page) <= 0)) {
4455			if (pages) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4456				spin_unlock(ptl);
4457				remainder = 0;
4458				err = -ENOMEM;
4459				break;
4460			}
4461		}
4462same_page:
4463		if (pages) {
4464			pages[i] = mem_map_offset(page, pfn_offset);
4465			get_page(pages[i]);
4466		}
4467
4468		if (vmas)
4469			vmas[i] = vma;
4470
4471		vaddr += PAGE_SIZE;
4472		++pfn_offset;
4473		--remainder;
4474		++i;
4475		if (vaddr < vma->vm_end && remainder &&
4476				pfn_offset < pages_per_huge_page(h)) {
4477			/*
4478			 * We use pfn_offset to avoid touching the pageframes
4479			 * of this compound page.
4480			 */
4481			goto same_page;
4482		}
4483		spin_unlock(ptl);
4484	}
4485	*nr_pages = remainder;
4486	/*
4487	 * setting position is actually required only if remainder is
4488	 * not zero but it's faster not to add a "if (remainder)"
4489	 * branch.
4490	 */
4491	*position = vaddr;
4492
4493	return i ? i : err;
4494}
4495
4496#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4497/*
4498 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4499 * implement this.
4500 */
4501#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4502#endif
4503
4504unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4505		unsigned long address, unsigned long end, pgprot_t newprot)
4506{
4507	struct mm_struct *mm = vma->vm_mm;
4508	unsigned long start = address;
4509	pte_t *ptep;
4510	pte_t pte;
4511	struct hstate *h = hstate_vma(vma);
4512	unsigned long pages = 0;
4513	bool shared_pmd = false;
4514	struct mmu_notifier_range range;
4515
4516	/*
4517	 * In the case of shared PMDs, the area to flush could be beyond
4518	 * start/end.  Set range.start/range.end to cover the maximum possible
4519	 * range if PMD sharing is possible.
4520	 */
4521	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4522				0, vma, mm, start, end);
4523	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4524
4525	BUG_ON(address >= end);
4526	flush_cache_range(vma, range.start, range.end);
4527
4528	mmu_notifier_invalidate_range_start(&range);
4529	i_mmap_lock_write(vma->vm_file->f_mapping);
4530	for (; address < end; address += huge_page_size(h)) {
4531		spinlock_t *ptl;
4532		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4533		if (!ptep)
4534			continue;
4535		ptl = huge_pte_lock(h, mm, ptep);
4536		if (huge_pmd_unshare(mm, &address, ptep)) {
4537			pages++;
4538			spin_unlock(ptl);
4539			shared_pmd = true;
4540			continue;
4541		}
4542		pte = huge_ptep_get(ptep);
4543		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4544			spin_unlock(ptl);
4545			continue;
4546		}
4547		if (unlikely(is_hugetlb_entry_migration(pte))) {
4548			swp_entry_t entry = pte_to_swp_entry(pte);
4549
4550			if (is_write_migration_entry(entry)) {
4551				pte_t newpte;
4552
4553				make_migration_entry_read(&entry);
4554				newpte = swp_entry_to_pte(entry);
4555				set_huge_swap_pte_at(mm, address, ptep,
4556						     newpte, huge_page_size(h));
4557				pages++;
4558			}
4559			spin_unlock(ptl);
4560			continue;
4561		}
4562		if (!huge_pte_none(pte)) {
4563			pte_t old_pte;
4564
4565			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4566			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4567			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4568			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4569			pages++;
4570		}
4571		spin_unlock(ptl);
4572	}
4573	/*
4574	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4575	 * may have cleared our pud entry and done put_page on the page table:
4576	 * once we release i_mmap_rwsem, another task can do the final put_page
4577	 * and that page table be reused and filled with junk.  If we actually
4578	 * did unshare a page of pmds, flush the range corresponding to the pud.
4579	 */
4580	if (shared_pmd)
4581		flush_hugetlb_tlb_range(vma, range.start, range.end);
4582	else
4583		flush_hugetlb_tlb_range(vma, start, end);
4584	/*
4585	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4586	 * page table protection not changing it to point to a new page.
4587	 *
4588	 * See Documentation/vm/mmu_notifier.rst
4589	 */
4590	i_mmap_unlock_write(vma->vm_file->f_mapping);
4591	mmu_notifier_invalidate_range_end(&range);
4592
4593	return pages << h->order;
4594}
4595
4596int hugetlb_reserve_pages(struct inode *inode,
4597					long from, long to,
4598					struct vm_area_struct *vma,
4599					vm_flags_t vm_flags)
4600{
4601	long ret, chg;
4602	struct hstate *h = hstate_inode(inode);
4603	struct hugepage_subpool *spool = subpool_inode(inode);
4604	struct resv_map *resv_map;
4605	long gbl_reserve;
 
4606
4607	/* This should never happen */
4608	if (from > to) {
4609		VM_WARN(1, "%s called with a negative range\n", __func__);
4610		return -EINVAL;
4611	}
4612
4613	/*
4614	 * Only apply hugepage reservation if asked. At fault time, an
4615	 * attempt will be made for VM_NORESERVE to allocate a page
4616	 * without using reserves
4617	 */
4618	if (vm_flags & VM_NORESERVE)
4619		return 0;
4620
4621	/*
4622	 * Shared mappings base their reservation on the number of pages that
4623	 * are already allocated on behalf of the file. Private mappings need
4624	 * to reserve the full area even if read-only as mprotect() may be
4625	 * called to make the mapping read-write. Assume !vma is a shm mapping
4626	 */
4627	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4628		/*
4629		 * resv_map can not be NULL as hugetlb_reserve_pages is only
4630		 * called for inodes for which resv_maps were created (see
4631		 * hugetlbfs_get_inode).
4632		 */
4633		resv_map = inode_resv_map(inode);
4634
4635		chg = region_chg(resv_map, from, to);
4636
4637	} else {
 
4638		resv_map = resv_map_alloc();
4639		if (!resv_map)
4640			return -ENOMEM;
4641
4642		chg = to - from;
4643
4644		set_vma_resv_map(vma, resv_map);
4645		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4646	}
4647
4648	if (chg < 0) {
4649		ret = chg;
4650		goto out_err;
4651	}
4652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4653	/*
4654	 * There must be enough pages in the subpool for the mapping. If
4655	 * the subpool has a minimum size, there may be some global
4656	 * reservations already in place (gbl_reserve).
4657	 */
4658	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4659	if (gbl_reserve < 0) {
4660		ret = -ENOSPC;
4661		goto out_err;
4662	}
4663
4664	/*
4665	 * Check enough hugepages are available for the reservation.
4666	 * Hand the pages back to the subpool if there are not
4667	 */
4668	ret = hugetlb_acct_memory(h, gbl_reserve);
4669	if (ret < 0) {
4670		/* put back original number of pages, chg */
4671		(void)hugepage_subpool_put_pages(spool, chg);
4672		goto out_err;
4673	}
4674
4675	/*
4676	 * Account for the reservations made. Shared mappings record regions
4677	 * that have reservations as they are shared by multiple VMAs.
4678	 * When the last VMA disappears, the region map says how much
4679	 * the reservation was and the page cache tells how much of
4680	 * the reservation was consumed. Private mappings are per-VMA and
4681	 * only the consumed reservations are tracked. When the VMA
4682	 * disappears, the original reservation is the VMA size and the
4683	 * consumed reservations are stored in the map. Hence, nothing
4684	 * else has to be done for private mappings here
4685	 */
4686	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4687		long add = region_add(resv_map, from, to);
4688
4689		if (unlikely(chg > add)) {
 
 
 
4690			/*
4691			 * pages in this range were added to the reserve
4692			 * map between region_chg and region_add.  This
4693			 * indicates a race with alloc_huge_page.  Adjust
4694			 * the subpool and reserve counts modified above
4695			 * based on the difference.
4696			 */
4697			long rsv_adjust;
4698
 
 
 
 
4699			rsv_adjust = hugepage_subpool_put_pages(spool,
4700								chg - add);
4701			hugetlb_acct_memory(h, -rsv_adjust);
4702		}
4703	}
4704	return 0;
 
 
 
 
 
 
4705out_err:
4706	if (!vma || vma->vm_flags & VM_MAYSHARE)
4707		/* Don't call region_abort if region_chg failed */
4708		if (chg >= 0)
4709			region_abort(resv_map, from, to);
 
 
4710	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4711		kref_put(&resv_map->refs, resv_map_release);
4712	return ret;
4713}
4714
4715long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4716								long freed)
4717{
4718	struct hstate *h = hstate_inode(inode);
4719	struct resv_map *resv_map = inode_resv_map(inode);
4720	long chg = 0;
4721	struct hugepage_subpool *spool = subpool_inode(inode);
4722	long gbl_reserve;
4723
4724	/*
4725	 * Since this routine can be called in the evict inode path for all
4726	 * hugetlbfs inodes, resv_map could be NULL.
4727	 */
4728	if (resv_map) {
4729		chg = region_del(resv_map, start, end);
4730		/*
4731		 * region_del() can fail in the rare case where a region
4732		 * must be split and another region descriptor can not be
4733		 * allocated.  If end == LONG_MAX, it will not fail.
4734		 */
4735		if (chg < 0)
4736			return chg;
4737	}
4738
4739	spin_lock(&inode->i_lock);
4740	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4741	spin_unlock(&inode->i_lock);
4742
4743	/*
4744	 * If the subpool has a minimum size, the number of global
4745	 * reservations to be released may be adjusted.
4746	 */
4747	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4748	hugetlb_acct_memory(h, -gbl_reserve);
4749
4750	return 0;
4751}
4752
4753#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4754static unsigned long page_table_shareable(struct vm_area_struct *svma,
4755				struct vm_area_struct *vma,
4756				unsigned long addr, pgoff_t idx)
4757{
4758	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4759				svma->vm_start;
4760	unsigned long sbase = saddr & PUD_MASK;
4761	unsigned long s_end = sbase + PUD_SIZE;
4762
4763	/* Allow segments to share if only one is marked locked */
4764	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4765	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4766
4767	/*
4768	 * match the virtual addresses, permission and the alignment of the
4769	 * page table page.
4770	 */
4771	if (pmd_index(addr) != pmd_index(saddr) ||
4772	    vm_flags != svm_flags ||
4773	    sbase < svma->vm_start || svma->vm_end < s_end)
4774		return 0;
4775
4776	return saddr;
4777}
4778
4779static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4780{
4781	unsigned long base = addr & PUD_MASK;
4782	unsigned long end = base + PUD_SIZE;
4783
4784	/*
4785	 * check on proper vm_flags and page table alignment
4786	 */
4787	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4788		return true;
4789	return false;
4790}
4791
4792/*
4793 * Determine if start,end range within vma could be mapped by shared pmd.
4794 * If yes, adjust start and end to cover range associated with possible
4795 * shared pmd mappings.
4796 */
4797void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4798				unsigned long *start, unsigned long *end)
4799{
4800	unsigned long check_addr = *start;
4801
4802	if (!(vma->vm_flags & VM_MAYSHARE))
4803		return;
4804
4805	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4806		unsigned long a_start = check_addr & PUD_MASK;
4807		unsigned long a_end = a_start + PUD_SIZE;
4808
4809		/*
4810		 * If sharing is possible, adjust start/end if necessary.
4811		 */
4812		if (range_in_vma(vma, a_start, a_end)) {
4813			if (a_start < *start)
4814				*start = a_start;
4815			if (a_end > *end)
4816				*end = a_end;
4817		}
4818	}
4819}
4820
4821/*
4822 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4823 * and returns the corresponding pte. While this is not necessary for the
4824 * !shared pmd case because we can allocate the pmd later as well, it makes the
4825 * code much cleaner. pmd allocation is essential for the shared case because
4826 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4827 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4828 * bad pmd for sharing.
 
 
4829 */
4830pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4831{
4832	struct vm_area_struct *vma = find_vma(mm, addr);
4833	struct address_space *mapping = vma->vm_file->f_mapping;
4834	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4835			vma->vm_pgoff;
4836	struct vm_area_struct *svma;
4837	unsigned long saddr;
4838	pte_t *spte = NULL;
4839	pte_t *pte;
4840	spinlock_t *ptl;
4841
4842	if (!vma_shareable(vma, addr))
4843		return (pte_t *)pmd_alloc(mm, pud, addr);
4844
4845	i_mmap_lock_write(mapping);
4846	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4847		if (svma == vma)
4848			continue;
4849
4850		saddr = page_table_shareable(svma, vma, addr, idx);
4851		if (saddr) {
4852			spte = huge_pte_offset(svma->vm_mm, saddr,
4853					       vma_mmu_pagesize(svma));
4854			if (spte) {
4855				get_page(virt_to_page(spte));
4856				break;
4857			}
4858		}
4859	}
4860
4861	if (!spte)
4862		goto out;
4863
4864	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4865	if (pud_none(*pud)) {
4866		pud_populate(mm, pud,
4867				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4868		mm_inc_nr_pmds(mm);
4869	} else {
4870		put_page(virt_to_page(spte));
4871	}
4872	spin_unlock(ptl);
4873out:
4874	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4875	i_mmap_unlock_write(mapping);
4876	return pte;
4877}
4878
4879/*
4880 * unmap huge page backed by shared pte.
4881 *
4882 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4883 * indicated by page_count > 1, unmap is achieved by clearing pud and
4884 * decrementing the ref count. If count == 1, the pte page is not shared.
4885 *
4886 * called with page table lock held.
4887 *
4888 * returns: 1 successfully unmapped a shared pte page
4889 *	    0 the underlying pte page is not shared, or it is the last user
4890 */
4891int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
 
4892{
4893	pgd_t *pgd = pgd_offset(mm, *addr);
4894	p4d_t *p4d = p4d_offset(pgd, *addr);
4895	pud_t *pud = pud_offset(p4d, *addr);
4896
 
4897	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4898	if (page_count(virt_to_page(ptep)) == 1)
4899		return 0;
4900
4901	pud_clear(pud);
4902	put_page(virt_to_page(ptep));
4903	mm_dec_nr_pmds(mm);
4904	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4905	return 1;
4906}
4907#define want_pmd_share()	(1)
4908#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4909pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4910{
4911	return NULL;
4912}
4913
4914int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
 
4915{
4916	return 0;
4917}
4918
4919void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4920				unsigned long *start, unsigned long *end)
4921{
4922}
4923#define want_pmd_share()	(0)
4924#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4925
4926#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4927pte_t *huge_pte_alloc(struct mm_struct *mm,
4928			unsigned long addr, unsigned long sz)
4929{
4930	pgd_t *pgd;
4931	p4d_t *p4d;
4932	pud_t *pud;
4933	pte_t *pte = NULL;
4934
4935	pgd = pgd_offset(mm, addr);
4936	p4d = p4d_alloc(mm, pgd, addr);
4937	if (!p4d)
4938		return NULL;
4939	pud = pud_alloc(mm, p4d, addr);
4940	if (pud) {
4941		if (sz == PUD_SIZE) {
4942			pte = (pte_t *)pud;
4943		} else {
4944			BUG_ON(sz != PMD_SIZE);
4945			if (want_pmd_share() && pud_none(*pud))
4946				pte = huge_pmd_share(mm, addr, pud);
4947			else
4948				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4949		}
4950	}
4951	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4952
4953	return pte;
4954}
4955
4956/*
4957 * huge_pte_offset() - Walk the page table to resolve the hugepage
4958 * entry at address @addr
4959 *
4960 * Return: Pointer to page table or swap entry (PUD or PMD) for
4961 * address @addr, or NULL if a p*d_none() entry is encountered and the
4962 * size @sz doesn't match the hugepage size at this level of the page
4963 * table.
4964 */
4965pte_t *huge_pte_offset(struct mm_struct *mm,
4966		       unsigned long addr, unsigned long sz)
4967{
4968	pgd_t *pgd;
4969	p4d_t *p4d;
4970	pud_t *pud;
4971	pmd_t *pmd;
4972
4973	pgd = pgd_offset(mm, addr);
4974	if (!pgd_present(*pgd))
4975		return NULL;
4976	p4d = p4d_offset(pgd, addr);
4977	if (!p4d_present(*p4d))
4978		return NULL;
4979
4980	pud = pud_offset(p4d, addr);
4981	if (sz != PUD_SIZE && pud_none(*pud))
4982		return NULL;
4983	/* hugepage or swap? */
4984	if (pud_huge(*pud) || !pud_present(*pud))
4985		return (pte_t *)pud;
4986
4987	pmd = pmd_offset(pud, addr);
4988	if (sz != PMD_SIZE && pmd_none(*pmd))
4989		return NULL;
4990	/* hugepage or swap? */
4991	if (pmd_huge(*pmd) || !pmd_present(*pmd))
4992		return (pte_t *)pmd;
4993
4994	return NULL;
 
 
4995}
4996
4997#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4998
4999/*
5000 * These functions are overwritable if your architecture needs its own
5001 * behavior.
5002 */
5003struct page * __weak
5004follow_huge_addr(struct mm_struct *mm, unsigned long address,
5005			      int write)
5006{
5007	return ERR_PTR(-EINVAL);
5008}
5009
5010struct page * __weak
5011follow_huge_pd(struct vm_area_struct *vma,
5012	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5013{
5014	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5015	return NULL;
5016}
5017
5018struct page * __weak
5019follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5020		pmd_t *pmd, int flags)
5021{
5022	struct page *page = NULL;
5023	spinlock_t *ptl;
5024	pte_t pte;
 
 
 
 
 
 
5025retry:
5026	ptl = pmd_lockptr(mm, pmd);
5027	spin_lock(ptl);
5028	/*
5029	 * make sure that the address range covered by this pmd is not
5030	 * unmapped from other threads.
5031	 */
5032	if (!pmd_huge(*pmd))
5033		goto out;
5034	pte = huge_ptep_get((pte_t *)pmd);
5035	if (pte_present(pte)) {
5036		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5037		if (flags & FOLL_GET)
5038			get_page(page);
 
 
 
 
 
 
 
 
 
 
5039	} else {
5040		if (is_hugetlb_entry_migration(pte)) {
5041			spin_unlock(ptl);
5042			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5043			goto retry;
5044		}
5045		/*
5046		 * hwpoisoned entry is treated as no_page_table in
5047		 * follow_page_mask().
5048		 */
5049	}
5050out:
5051	spin_unlock(ptl);
5052	return page;
5053}
5054
5055struct page * __weak
5056follow_huge_pud(struct mm_struct *mm, unsigned long address,
5057		pud_t *pud, int flags)
5058{
5059	if (flags & FOLL_GET)
5060		return NULL;
5061
5062	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5063}
5064
5065struct page * __weak
5066follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5067{
5068	if (flags & FOLL_GET)
5069		return NULL;
5070
5071	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5072}
5073
5074bool isolate_huge_page(struct page *page, struct list_head *list)
5075{
5076	bool ret = true;
5077
5078	VM_BUG_ON_PAGE(!PageHead(page), page);
5079	spin_lock(&hugetlb_lock);
5080	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5081		ret = false;
5082		goto unlock;
5083	}
5084	clear_page_huge_active(page);
5085	list_move_tail(&page->lru, list);
5086unlock:
5087	spin_unlock(&hugetlb_lock);
5088	return ret;
5089}
5090
5091void putback_active_hugepage(struct page *page)
5092{
5093	VM_BUG_ON_PAGE(!PageHead(page), page);
5094	spin_lock(&hugetlb_lock);
5095	set_page_huge_active(page);
5096	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5097	spin_unlock(&hugetlb_lock);
5098	put_page(page);
5099}
5100
5101void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5102{
5103	struct hstate *h = page_hstate(oldpage);
5104
5105	hugetlb_cgroup_migrate(oldpage, newpage);
5106	set_page_owner_migrate_reason(newpage, reason);
5107
5108	/*
5109	 * transfer temporary state of the new huge page. This is
5110	 * reverse to other transitions because the newpage is going to
5111	 * be final while the old one will be freed so it takes over
5112	 * the temporary status.
5113	 *
5114	 * Also note that we have to transfer the per-node surplus state
5115	 * here as well otherwise the global surplus count will not match
5116	 * the per-node's.
5117	 */
5118	if (PageHugeTemporary(newpage)) {
5119		int old_nid = page_to_nid(oldpage);
5120		int new_nid = page_to_nid(newpage);
5121
5122		SetPageHugeTemporary(oldpage);
5123		ClearPageHugeTemporary(newpage);
5124
5125		spin_lock(&hugetlb_lock);
5126		if (h->surplus_huge_pages_node[old_nid]) {
5127			h->surplus_huge_pages_node[old_nid]--;
5128			h->surplus_huge_pages_node[new_nid]++;
5129		}
5130		spin_unlock(&hugetlb_lock);
5131	}
5132}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic hugetlb support.
   4 * (C) Nadia Yvette Chambers, April 2004
   5 */
   6#include <linux/list.h>
   7#include <linux/init.h>
   8#include <linux/mm.h>
   9#include <linux/seq_file.h>
  10#include <linux/sysctl.h>
  11#include <linux/highmem.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/nodemask.h>
  14#include <linux/pagemap.h>
  15#include <linux/mempolicy.h>
  16#include <linux/compiler.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/memblock.h>
  20#include <linux/sysfs.h>
  21#include <linux/slab.h>
  22#include <linux/sched/mm.h>
  23#include <linux/mmdebug.h>
  24#include <linux/sched/signal.h>
  25#include <linux/rmap.h>
  26#include <linux/string_helpers.h>
  27#include <linux/swap.h>
  28#include <linux/swapops.h>
  29#include <linux/jhash.h>
  30#include <linux/numa.h>
  31#include <linux/llist.h>
  32#include <linux/cma.h>
  33
  34#include <asm/page.h>
  35#include <asm/pgalloc.h>
  36#include <asm/tlb.h>
  37
  38#include <linux/io.h>
  39#include <linux/hugetlb.h>
  40#include <linux/hugetlb_cgroup.h>
  41#include <linux/node.h>
  42#include <linux/userfaultfd_k.h>
  43#include <linux/page_owner.h>
  44#include "internal.h"
  45
  46int hugetlb_max_hstate __read_mostly;
  47unsigned int default_hstate_idx;
  48struct hstate hstates[HUGE_MAX_HSTATE];
  49
  50#ifdef CONFIG_CMA
  51static struct cma *hugetlb_cma[MAX_NUMNODES];
  52#endif
  53static unsigned long hugetlb_cma_size __initdata;
  54
  55/*
  56 * Minimum page order among possible hugepage sizes, set to a proper value
  57 * at boot time.
  58 */
  59static unsigned int minimum_order __read_mostly = UINT_MAX;
  60
  61__initdata LIST_HEAD(huge_boot_pages);
  62
  63/* for command line parsing */
  64static struct hstate * __initdata parsed_hstate;
  65static unsigned long __initdata default_hstate_max_huge_pages;
 
  66static bool __initdata parsed_valid_hugepagesz = true;
  67static bool __initdata parsed_default_hugepagesz;
  68
  69/*
  70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  71 * free_huge_pages, and surplus_huge_pages.
  72 */
  73DEFINE_SPINLOCK(hugetlb_lock);
  74
  75/*
  76 * Serializes faults on the same logical page.  This is used to
  77 * prevent spurious OOMs when the hugepage pool is fully utilized.
  78 */
  79static int num_fault_mutexes;
  80struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  81
  82/* Forward declaration */
  83static int hugetlb_acct_memory(struct hstate *h, long delta);
  84
  85static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  86{
  87	bool free = (spool->count == 0) && (spool->used_hpages == 0);
  88
  89	spin_unlock(&spool->lock);
  90
  91	/* If no pages are used, and no other handles to the subpool
  92	 * remain, give up any reservations based on minimum size and
  93	 * free the subpool */
  94	if (free) {
  95		if (spool->min_hpages != -1)
  96			hugetlb_acct_memory(spool->hstate,
  97						-spool->min_hpages);
  98		kfree(spool);
  99	}
 100}
 101
 102struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
 103						long min_hpages)
 104{
 105	struct hugepage_subpool *spool;
 106
 107	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
 108	if (!spool)
 109		return NULL;
 110
 111	spin_lock_init(&spool->lock);
 112	spool->count = 1;
 113	spool->max_hpages = max_hpages;
 114	spool->hstate = h;
 115	spool->min_hpages = min_hpages;
 116
 117	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 118		kfree(spool);
 119		return NULL;
 120	}
 121	spool->rsv_hpages = min_hpages;
 122
 123	return spool;
 124}
 125
 126void hugepage_put_subpool(struct hugepage_subpool *spool)
 127{
 128	spin_lock(&spool->lock);
 129	BUG_ON(!spool->count);
 130	spool->count--;
 131	unlock_or_release_subpool(spool);
 132}
 133
 134/*
 135 * Subpool accounting for allocating and reserving pages.
 136 * Return -ENOMEM if there are not enough resources to satisfy the
 137 * request.  Otherwise, return the number of pages by which the
 138 * global pools must be adjusted (upward).  The returned value may
 139 * only be different than the passed value (delta) in the case where
 140 * a subpool minimum size must be maintained.
 141 */
 142static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 143				      long delta)
 144{
 145	long ret = delta;
 146
 147	if (!spool)
 148		return ret;
 149
 150	spin_lock(&spool->lock);
 151
 152	if (spool->max_hpages != -1) {		/* maximum size accounting */
 153		if ((spool->used_hpages + delta) <= spool->max_hpages)
 154			spool->used_hpages += delta;
 155		else {
 156			ret = -ENOMEM;
 157			goto unlock_ret;
 158		}
 159	}
 160
 161	/* minimum size accounting */
 162	if (spool->min_hpages != -1 && spool->rsv_hpages) {
 163		if (delta > spool->rsv_hpages) {
 164			/*
 165			 * Asking for more reserves than those already taken on
 166			 * behalf of subpool.  Return difference.
 167			 */
 168			ret = delta - spool->rsv_hpages;
 169			spool->rsv_hpages = 0;
 170		} else {
 171			ret = 0;	/* reserves already accounted for */
 172			spool->rsv_hpages -= delta;
 173		}
 174	}
 175
 176unlock_ret:
 177	spin_unlock(&spool->lock);
 178	return ret;
 179}
 180
 181/*
 182 * Subpool accounting for freeing and unreserving pages.
 183 * Return the number of global page reservations that must be dropped.
 184 * The return value may only be different than the passed value (delta)
 185 * in the case where a subpool minimum size must be maintained.
 186 */
 187static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 188				       long delta)
 189{
 190	long ret = delta;
 191
 192	if (!spool)
 193		return delta;
 194
 195	spin_lock(&spool->lock);
 196
 197	if (spool->max_hpages != -1)		/* maximum size accounting */
 198		spool->used_hpages -= delta;
 199
 200	 /* minimum size accounting */
 201	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 202		if (spool->rsv_hpages + delta <= spool->min_hpages)
 203			ret = 0;
 204		else
 205			ret = spool->rsv_hpages + delta - spool->min_hpages;
 206
 207		spool->rsv_hpages += delta;
 208		if (spool->rsv_hpages > spool->min_hpages)
 209			spool->rsv_hpages = spool->min_hpages;
 210	}
 211
 212	/*
 213	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
 214	 * quota reference, free it now.
 215	 */
 216	unlock_or_release_subpool(spool);
 217
 218	return ret;
 219}
 220
 221static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 222{
 223	return HUGETLBFS_SB(inode->i_sb)->spool;
 224}
 225
 226static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 227{
 228	return subpool_inode(file_inode(vma->vm_file));
 229}
 230
 231/* Helper that removes a struct file_region from the resv_map cache and returns
 232 * it for use.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 233 */
 234static struct file_region *
 235get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
 236{
 237	struct file_region *nrg = NULL;
 238
 239	VM_BUG_ON(resv->region_cache_count <= 0);
 240
 241	resv->region_cache_count--;
 242	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
 243	VM_BUG_ON(!nrg);
 244	list_del(&nrg->link);
 245
 246	nrg->from = from;
 247	nrg->to = to;
 248
 249	return nrg;
 250}
 251
 252static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
 253					      struct file_region *rg)
 254{
 255#ifdef CONFIG_CGROUP_HUGETLB
 256	nrg->reservation_counter = rg->reservation_counter;
 257	nrg->css = rg->css;
 258	if (rg->css)
 259		css_get(rg->css);
 260#endif
 261}
 262
 263/* Helper that records hugetlb_cgroup uncharge info. */
 264static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
 265						struct hstate *h,
 266						struct resv_map *resv,
 267						struct file_region *nrg)
 268{
 269#ifdef CONFIG_CGROUP_HUGETLB
 270	if (h_cg) {
 271		nrg->reservation_counter =
 272			&h_cg->rsvd_hugepage[hstate_index(h)];
 273		nrg->css = &h_cg->css;
 274		if (!resv->pages_per_hpage)
 275			resv->pages_per_hpage = pages_per_huge_page(h);
 276		/* pages_per_hpage should be the same for all entries in
 277		 * a resv_map.
 278		 */
 279		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
 280	} else {
 281		nrg->reservation_counter = NULL;
 282		nrg->css = NULL;
 283	}
 284#endif
 285}
 286
 287static bool has_same_uncharge_info(struct file_region *rg,
 288				   struct file_region *org)
 289{
 290#ifdef CONFIG_CGROUP_HUGETLB
 291	return rg && org &&
 292	       rg->reservation_counter == org->reservation_counter &&
 293	       rg->css == org->css;
 294
 295#else
 296	return true;
 297#endif
 298}
 299
 300static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
 301{
 302	struct file_region *nrg = NULL, *prg = NULL;
 303
 304	prg = list_prev_entry(rg, link);
 305	if (&prg->link != &resv->regions && prg->to == rg->from &&
 306	    has_same_uncharge_info(prg, rg)) {
 307		prg->to = rg->to;
 308
 309		list_del(&rg->link);
 310		kfree(rg);
 311
 312		coalesce_file_region(resv, prg);
 313		return;
 314	}
 315
 316	nrg = list_next_entry(rg, link);
 317	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
 318	    has_same_uncharge_info(nrg, rg)) {
 319		nrg->from = rg->from;
 320
 321		list_del(&rg->link);
 322		kfree(rg);
 323
 324		coalesce_file_region(resv, nrg);
 325		return;
 326	}
 327}
 328
 329/* Must be called with resv->lock held. Calling this with count_only == true
 330 * will count the number of pages to be added but will not modify the linked
 331 * list. If regions_needed != NULL and count_only == true, then regions_needed
 332 * will indicate the number of file_regions needed in the cache to carry out to
 333 * add the regions for this range.
 334 */
 335static long add_reservation_in_range(struct resv_map *resv, long f, long t,
 336				     struct hugetlb_cgroup *h_cg,
 337				     struct hstate *h, long *regions_needed,
 338				     bool count_only)
 339{
 340	long add = 0;
 341	struct list_head *head = &resv->regions;
 342	long last_accounted_offset = f;
 343	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
 344
 345	if (regions_needed)
 346		*regions_needed = 0;
 347
 348	/* In this loop, we essentially handle an entry for the range
 349	 * [last_accounted_offset, rg->from), at every iteration, with some
 350	 * bounds checking.
 351	 */
 352	list_for_each_entry_safe(rg, trg, head, link) {
 353		/* Skip irrelevant regions that start before our range. */
 354		if (rg->from < f) {
 355			/* If this region ends after the last accounted offset,
 356			 * then we need to update last_accounted_offset.
 357			 */
 358			if (rg->to > last_accounted_offset)
 359				last_accounted_offset = rg->to;
 360			continue;
 361		}
 362
 363		/* When we find a region that starts beyond our range, we've
 364		 * finished.
 365		 */
 366		if (rg->from > t)
 367			break;
 368
 369		/* Add an entry for last_accounted_offset -> rg->from, and
 370		 * update last_accounted_offset.
 371		 */
 372		if (rg->from > last_accounted_offset) {
 373			add += rg->from - last_accounted_offset;
 374			if (!count_only) {
 375				nrg = get_file_region_entry_from_cache(
 376					resv, last_accounted_offset, rg->from);
 377				record_hugetlb_cgroup_uncharge_info(h_cg, h,
 378								    resv, nrg);
 379				list_add(&nrg->link, rg->link.prev);
 380				coalesce_file_region(resv, nrg);
 381			} else if (regions_needed)
 382				*regions_needed += 1;
 383		}
 384
 385		last_accounted_offset = rg->to;
 386	}
 387
 388	/* Handle the case where our range extends beyond
 389	 * last_accounted_offset.
 390	 */
 391	if (last_accounted_offset < t) {
 392		add += t - last_accounted_offset;
 393		if (!count_only) {
 394			nrg = get_file_region_entry_from_cache(
 395				resv, last_accounted_offset, t);
 396			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
 397			list_add(&nrg->link, rg->link.prev);
 398			coalesce_file_region(resv, nrg);
 399		} else if (regions_needed)
 400			*regions_needed += 1;
 401	}
 402
 403	VM_BUG_ON(add < 0);
 404	return add;
 405}
 406
 407/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 408 */
 409static int allocate_file_region_entries(struct resv_map *resv,
 410					int regions_needed)
 411	__must_hold(&resv->lock)
 412{
 413	struct list_head allocated_regions;
 414	int to_allocate = 0, i = 0;
 415	struct file_region *trg = NULL, *rg = NULL;
 416
 417	VM_BUG_ON(regions_needed < 0);
 418
 419	INIT_LIST_HEAD(&allocated_regions);
 420
 421	/*
 422	 * Check for sufficient descriptors in the cache to accommodate
 423	 * the number of in progress add operations plus regions_needed.
 424	 *
 425	 * This is a while loop because when we drop the lock, some other call
 426	 * to region_add or region_del may have consumed some region_entries,
 427	 * so we keep looping here until we finally have enough entries for
 428	 * (adds_in_progress + regions_needed).
 429	 */
 430	while (resv->region_cache_count <
 431	       (resv->adds_in_progress + regions_needed)) {
 432		to_allocate = resv->adds_in_progress + regions_needed -
 433			      resv->region_cache_count;
 434
 435		/* At this point, we should have enough entries in the cache
 436		 * for all the existings adds_in_progress. We should only be
 437		 * needing to allocate for regions_needed.
 438		 */
 439		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
 440
 441		spin_unlock(&resv->lock);
 442		for (i = 0; i < to_allocate; i++) {
 443			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 444			if (!trg)
 445				goto out_of_memory;
 446			list_add(&trg->link, &allocated_regions);
 447		}
 448
 449		spin_lock(&resv->lock);
 450
 451		list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
 452			list_del(&rg->link);
 453			list_add(&rg->link, &resv->region_cache);
 454			resv->region_cache_count++;
 455		}
 456	}
 457
 458	return 0;
 459
 460out_of_memory:
 461	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
 462		list_del(&rg->link);
 463		kfree(rg);
 464	}
 465	return -ENOMEM;
 466}
 467
 468/*
 469 * Add the huge page range represented by [f, t) to the reserve
 470 * map.  Regions will be taken from the cache to fill in this range.
 471 * Sufficient regions should exist in the cache due to the previous
 472 * call to region_chg with the same range, but in some cases the cache will not
 473 * have sufficient entries due to races with other code doing region_add or
 474 * region_del.  The extra needed entries will be allocated.
 
 
 
 475 *
 476 * regions_needed is the out value provided by a previous call to region_chg.
 477 *
 478 * Return the number of new huge pages added to the map.  This number is greater
 479 * than or equal to zero.  If file_region entries needed to be allocated for
 480 * this operation and we were not able to allocate, it returns -ENOMEM.
 481 * region_add of regions of length 1 never allocate file_regions and cannot
 482 * fail; region_chg will always allocate at least 1 entry and a region_add for
 483 * 1 page will only require at most 1 entry.
 484 */
 485static long region_add(struct resv_map *resv, long f, long t,
 486		       long in_regions_needed, struct hstate *h,
 487		       struct hugetlb_cgroup *h_cg)
 488{
 489	long add = 0, actual_regions_needed = 0;
 
 
 490
 491	spin_lock(&resv->lock);
 492retry:
 493
 494	/* Count how many regions are actually needed to execute this add. */
 495	add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
 496				 true);
 497
 498	/*
 499	 * Check for sufficient descriptors in the cache to accommodate
 500	 * this add operation. Note that actual_regions_needed may be greater
 501	 * than in_regions_needed, as the resv_map may have been modified since
 502	 * the region_chg call. In this case, we need to make sure that we
 503	 * allocate extra entries, such that we have enough for all the
 504	 * existing adds_in_progress, plus the excess needed for this
 505	 * operation.
 506	 */
 507	if (actual_regions_needed > in_regions_needed &&
 508	    resv->region_cache_count <
 509		    resv->adds_in_progress +
 510			    (actual_regions_needed - in_regions_needed)) {
 511		/* region_add operation of range 1 should never need to
 512		 * allocate file_region entries.
 513		 */
 514		VM_BUG_ON(t - f <= 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515
 516		if (allocate_file_region_entries(
 517			    resv, actual_regions_needed - in_regions_needed)) {
 518			return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 519		}
 520
 521		goto retry;
 522	}
 523
 524	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
 525
 526	resv->adds_in_progress -= in_regions_needed;
 
 527
 
 
 528	spin_unlock(&resv->lock);
 529	VM_BUG_ON(add < 0);
 530	return add;
 531}
 532
 533/*
 534 * Examine the existing reserve map and determine how many
 535 * huge pages in the specified range [f, t) are NOT currently
 536 * represented.  This routine is called before a subsequent
 537 * call to region_add that will actually modify the reserve
 538 * map to add the specified range [f, t).  region_chg does
 539 * not change the number of huge pages represented by the
 540 * map.  A number of new file_region structures is added to the cache as a
 541 * placeholder, for the subsequent region_add call to use. At least 1
 542 * file_region structure is added.
 
 
 543 *
 544 * out_regions_needed is the number of regions added to the
 545 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 546 * to region_add or region_abort for proper accounting.
 547 *
 548 * Returns the number of huge pages that need to be added to the existing
 549 * reservation map for the range [f, t).  This number is greater or equal to
 550 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 551 * is needed and can not be allocated.
 552 */
 553static long region_chg(struct resv_map *resv, long f, long t,
 554		       long *out_regions_needed)
 555{
 
 
 556	long chg = 0;
 557
 
 558	spin_lock(&resv->lock);
 
 
 559
 560	/* Count how many hugepages in this range are NOT respresented. */
 561	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
 562				       out_regions_needed, true);
 
 
 
 563
 564	if (*out_regions_needed == 0)
 565		*out_regions_needed = 1;
 
 
 566
 567	if (allocate_file_region_entries(resv, *out_regions_needed))
 568		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569
 570	resv->adds_in_progress += *out_regions_needed;
 
 
 
 
 
 
 
 
 571
 
 
 
 
 
 
 572	spin_unlock(&resv->lock);
 573	return chg;
 574}
 575
 576/*
 577 * Abort the in progress add operation.  The adds_in_progress field
 578 * of the resv_map keeps track of the operations in progress between
 579 * calls to region_chg and region_add.  Operations are sometimes
 580 * aborted after the call to region_chg.  In such cases, region_abort
 581 * is called to decrement the adds_in_progress counter. regions_needed
 582 * is the value returned by the region_chg call, it is used to decrement
 583 * the adds_in_progress counter.
 584 *
 585 * NOTE: The range arguments [f, t) are not needed or used in this
 586 * routine.  They are kept to make reading the calling code easier as
 587 * arguments will match the associated region_chg call.
 588 */
 589static void region_abort(struct resv_map *resv, long f, long t,
 590			 long regions_needed)
 591{
 592	spin_lock(&resv->lock);
 593	VM_BUG_ON(!resv->region_cache_count);
 594	resv->adds_in_progress -= regions_needed;
 595	spin_unlock(&resv->lock);
 596}
 597
 598/*
 599 * Delete the specified range [f, t) from the reserve map.  If the
 600 * t parameter is LONG_MAX, this indicates that ALL regions after f
 601 * should be deleted.  Locate the regions which intersect [f, t)
 602 * and either trim, delete or split the existing regions.
 603 *
 604 * Returns the number of huge pages deleted from the reserve map.
 605 * In the normal case, the return value is zero or more.  In the
 606 * case where a region must be split, a new region descriptor must
 607 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 608 * NOTE: If the parameter t == LONG_MAX, then we will never split
 609 * a region and possibly return -ENOMEM.  Callers specifying
 610 * t == LONG_MAX do not need to check for -ENOMEM error.
 611 */
 612static long region_del(struct resv_map *resv, long f, long t)
 613{
 614	struct list_head *head = &resv->regions;
 615	struct file_region *rg, *trg;
 616	struct file_region *nrg = NULL;
 617	long del = 0;
 618
 619retry:
 620	spin_lock(&resv->lock);
 621	list_for_each_entry_safe(rg, trg, head, link) {
 622		/*
 623		 * Skip regions before the range to be deleted.  file_region
 624		 * ranges are normally of the form [from, to).  However, there
 625		 * may be a "placeholder" entry in the map which is of the form
 626		 * (from, to) with from == to.  Check for placeholder entries
 627		 * at the beginning of the range to be deleted.
 628		 */
 629		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 630			continue;
 631
 632		if (rg->from >= t)
 633			break;
 634
 635		if (f > rg->from && t < rg->to) { /* Must split region */
 636			/*
 637			 * Check for an entry in the cache before dropping
 638			 * lock and attempting allocation.
 639			 */
 640			if (!nrg &&
 641			    resv->region_cache_count > resv->adds_in_progress) {
 642				nrg = list_first_entry(&resv->region_cache,
 643							struct file_region,
 644							link);
 645				list_del(&nrg->link);
 646				resv->region_cache_count--;
 647			}
 648
 649			if (!nrg) {
 650				spin_unlock(&resv->lock);
 651				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 652				if (!nrg)
 653					return -ENOMEM;
 654				goto retry;
 655			}
 656
 657			del += t - f;
 658
 659			/* New entry for end of split region */
 660			nrg->from = t;
 661			nrg->to = rg->to;
 662
 663			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
 664
 665			INIT_LIST_HEAD(&nrg->link);
 666
 667			/* Original entry is trimmed */
 668			rg->to = f;
 669
 670			hugetlb_cgroup_uncharge_file_region(
 671				resv, rg, nrg->to - nrg->from);
 672
 673			list_add(&nrg->link, &rg->link);
 674			nrg = NULL;
 675			break;
 676		}
 677
 678		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 679			del += rg->to - rg->from;
 680			hugetlb_cgroup_uncharge_file_region(resv, rg,
 681							    rg->to - rg->from);
 682			list_del(&rg->link);
 683			kfree(rg);
 684			continue;
 685		}
 686
 687		if (f <= rg->from) {	/* Trim beginning of region */
 688			del += t - rg->from;
 689			rg->from = t;
 690
 691			hugetlb_cgroup_uncharge_file_region(resv, rg,
 692							    t - rg->from);
 693		} else {		/* Trim end of region */
 694			del += rg->to - f;
 695			rg->to = f;
 696
 697			hugetlb_cgroup_uncharge_file_region(resv, rg,
 698							    rg->to - f);
 699		}
 700	}
 701
 702	spin_unlock(&resv->lock);
 703	kfree(nrg);
 704	return del;
 705}
 706
 707/*
 708 * A rare out of memory error was encountered which prevented removal of
 709 * the reserve map region for a page.  The huge page itself was free'ed
 710 * and removed from the page cache.  This routine will adjust the subpool
 711 * usage count, and the global reserve count if needed.  By incrementing
 712 * these counts, the reserve map entry which could not be deleted will
 713 * appear as a "reserved" entry instead of simply dangling with incorrect
 714 * counts.
 715 */
 716void hugetlb_fix_reserve_counts(struct inode *inode)
 717{
 718	struct hugepage_subpool *spool = subpool_inode(inode);
 719	long rsv_adjust;
 720
 721	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 722	if (rsv_adjust) {
 723		struct hstate *h = hstate_inode(inode);
 724
 725		hugetlb_acct_memory(h, 1);
 726	}
 727}
 728
 729/*
 730 * Count and return the number of huge pages in the reserve map
 731 * that intersect with the range [f, t).
 732 */
 733static long region_count(struct resv_map *resv, long f, long t)
 734{
 735	struct list_head *head = &resv->regions;
 736	struct file_region *rg;
 737	long chg = 0;
 738
 739	spin_lock(&resv->lock);
 740	/* Locate each segment we overlap with, and count that overlap. */
 741	list_for_each_entry(rg, head, link) {
 742		long seg_from;
 743		long seg_to;
 744
 745		if (rg->to <= f)
 746			continue;
 747		if (rg->from >= t)
 748			break;
 749
 750		seg_from = max(rg->from, f);
 751		seg_to = min(rg->to, t);
 752
 753		chg += seg_to - seg_from;
 754	}
 755	spin_unlock(&resv->lock);
 756
 757	return chg;
 758}
 759
 760/*
 761 * Convert the address within this vma to the page offset within
 762 * the mapping, in pagecache page units; huge pages here.
 763 */
 764static pgoff_t vma_hugecache_offset(struct hstate *h,
 765			struct vm_area_struct *vma, unsigned long address)
 766{
 767	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 768			(vma->vm_pgoff >> huge_page_order(h));
 769}
 770
 771pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 772				     unsigned long address)
 773{
 774	return vma_hugecache_offset(hstate_vma(vma), vma, address);
 775}
 776EXPORT_SYMBOL_GPL(linear_hugepage_index);
 777
 778/*
 779 * Return the size of the pages allocated when backing a VMA. In the majority
 780 * cases this will be same size as used by the page table entries.
 781 */
 782unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 783{
 784	if (vma->vm_ops && vma->vm_ops->pagesize)
 785		return vma->vm_ops->pagesize(vma);
 786	return PAGE_SIZE;
 787}
 788EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 789
 790/*
 791 * Return the page size being used by the MMU to back a VMA. In the majority
 792 * of cases, the page size used by the kernel matches the MMU size. On
 793 * architectures where it differs, an architecture-specific 'strong'
 794 * version of this symbol is required.
 795 */
 796__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 797{
 798	return vma_kernel_pagesize(vma);
 799}
 800
 801/*
 802 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 803 * bits of the reservation map pointer, which are always clear due to
 804 * alignment.
 805 */
 806#define HPAGE_RESV_OWNER    (1UL << 0)
 807#define HPAGE_RESV_UNMAPPED (1UL << 1)
 808#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 809
 810/*
 811 * These helpers are used to track how many pages are reserved for
 812 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 813 * is guaranteed to have their future faults succeed.
 814 *
 815 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 816 * the reserve counters are updated with the hugetlb_lock held. It is safe
 817 * to reset the VMA at fork() time as it is not in use yet and there is no
 818 * chance of the global counters getting corrupted as a result of the values.
 819 *
 820 * The private mapping reservation is represented in a subtly different
 821 * manner to a shared mapping.  A shared mapping has a region map associated
 822 * with the underlying file, this region map represents the backing file
 823 * pages which have ever had a reservation assigned which this persists even
 824 * after the page is instantiated.  A private mapping has a region map
 825 * associated with the original mmap which is attached to all VMAs which
 826 * reference it, this region map represents those offsets which have consumed
 827 * reservation ie. where pages have been instantiated.
 828 */
 829static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 830{
 831	return (unsigned long)vma->vm_private_data;
 832}
 833
 834static void set_vma_private_data(struct vm_area_struct *vma,
 835							unsigned long value)
 836{
 837	vma->vm_private_data = (void *)value;
 838}
 839
 840static void
 841resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
 842					  struct hugetlb_cgroup *h_cg,
 843					  struct hstate *h)
 844{
 845#ifdef CONFIG_CGROUP_HUGETLB
 846	if (!h_cg || !h) {
 847		resv_map->reservation_counter = NULL;
 848		resv_map->pages_per_hpage = 0;
 849		resv_map->css = NULL;
 850	} else {
 851		resv_map->reservation_counter =
 852			&h_cg->rsvd_hugepage[hstate_index(h)];
 853		resv_map->pages_per_hpage = pages_per_huge_page(h);
 854		resv_map->css = &h_cg->css;
 855	}
 856#endif
 857}
 858
 859struct resv_map *resv_map_alloc(void)
 860{
 861	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 862	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 863
 864	if (!resv_map || !rg) {
 865		kfree(resv_map);
 866		kfree(rg);
 867		return NULL;
 868	}
 869
 870	kref_init(&resv_map->refs);
 871	spin_lock_init(&resv_map->lock);
 872	INIT_LIST_HEAD(&resv_map->regions);
 873
 874	resv_map->adds_in_progress = 0;
 875	/*
 876	 * Initialize these to 0. On shared mappings, 0's here indicate these
 877	 * fields don't do cgroup accounting. On private mappings, these will be
 878	 * re-initialized to the proper values, to indicate that hugetlb cgroup
 879	 * reservations are to be un-charged from here.
 880	 */
 881	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
 882
 883	INIT_LIST_HEAD(&resv_map->region_cache);
 884	list_add(&rg->link, &resv_map->region_cache);
 885	resv_map->region_cache_count = 1;
 886
 887	return resv_map;
 888}
 889
 890void resv_map_release(struct kref *ref)
 891{
 892	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 893	struct list_head *head = &resv_map->region_cache;
 894	struct file_region *rg, *trg;
 895
 896	/* Clear out any active regions before we release the map. */
 897	region_del(resv_map, 0, LONG_MAX);
 898
 899	/* ... and any entries left in the cache */
 900	list_for_each_entry_safe(rg, trg, head, link) {
 901		list_del(&rg->link);
 902		kfree(rg);
 903	}
 904
 905	VM_BUG_ON(resv_map->adds_in_progress);
 906
 907	kfree(resv_map);
 908}
 909
 910static inline struct resv_map *inode_resv_map(struct inode *inode)
 911{
 912	/*
 913	 * At inode evict time, i_mapping may not point to the original
 914	 * address space within the inode.  This original address space
 915	 * contains the pointer to the resv_map.  So, always use the
 916	 * address space embedded within the inode.
 917	 * The VERY common case is inode->mapping == &inode->i_data but,
 918	 * this may not be true for device special inodes.
 919	 */
 920	return (struct resv_map *)(&inode->i_data)->private_data;
 921}
 922
 923static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 924{
 925	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 926	if (vma->vm_flags & VM_MAYSHARE) {
 927		struct address_space *mapping = vma->vm_file->f_mapping;
 928		struct inode *inode = mapping->host;
 929
 930		return inode_resv_map(inode);
 931
 932	} else {
 933		return (struct resv_map *)(get_vma_private_data(vma) &
 934							~HPAGE_RESV_MASK);
 935	}
 936}
 937
 938static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 939{
 940	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 941	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 942
 943	set_vma_private_data(vma, (get_vma_private_data(vma) &
 944				HPAGE_RESV_MASK) | (unsigned long)map);
 945}
 946
 947static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 948{
 949	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 950	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 951
 952	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 953}
 954
 955static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 956{
 957	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 958
 959	return (get_vma_private_data(vma) & flag) != 0;
 960}
 961
 962/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 963void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 964{
 965	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 966	if (!(vma->vm_flags & VM_MAYSHARE))
 967		vma->vm_private_data = (void *)0;
 968}
 969
 970/* Returns true if the VMA has associated reserve pages */
 971static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 972{
 973	if (vma->vm_flags & VM_NORESERVE) {
 974		/*
 975		 * This address is already reserved by other process(chg == 0),
 976		 * so, we should decrement reserved count. Without decrementing,
 977		 * reserve count remains after releasing inode, because this
 978		 * allocated page will go into page cache and is regarded as
 979		 * coming from reserved pool in releasing step.  Currently, we
 980		 * don't have any other solution to deal with this situation
 981		 * properly, so add work-around here.
 982		 */
 983		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 984			return true;
 985		else
 986			return false;
 987	}
 988
 989	/* Shared mappings always use reserves */
 990	if (vma->vm_flags & VM_MAYSHARE) {
 991		/*
 992		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 993		 * be a region map for all pages.  The only situation where
 994		 * there is no region map is if a hole was punched via
 995		 * fallocate.  In this case, there really are no reserves to
 996		 * use.  This situation is indicated if chg != 0.
 997		 */
 998		if (chg)
 999			return false;
1000		else
1001			return true;
1002	}
1003
1004	/*
1005	 * Only the process that called mmap() has reserves for
1006	 * private mappings.
1007	 */
1008	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1009		/*
1010		 * Like the shared case above, a hole punch or truncate
1011		 * could have been performed on the private mapping.
1012		 * Examine the value of chg to determine if reserves
1013		 * actually exist or were previously consumed.
1014		 * Very Subtle - The value of chg comes from a previous
1015		 * call to vma_needs_reserves().  The reserve map for
1016		 * private mappings has different (opposite) semantics
1017		 * than that of shared mappings.  vma_needs_reserves()
1018		 * has already taken this difference in semantics into
1019		 * account.  Therefore, the meaning of chg is the same
1020		 * as in the shared case above.  Code could easily be
1021		 * combined, but keeping it separate draws attention to
1022		 * subtle differences.
1023		 */
1024		if (chg)
1025			return false;
1026		else
1027			return true;
1028	}
1029
1030	return false;
1031}
1032
1033static void enqueue_huge_page(struct hstate *h, struct page *page)
1034{
1035	int nid = page_to_nid(page);
1036	list_move(&page->lru, &h->hugepage_freelists[nid]);
1037	h->free_huge_pages++;
1038	h->free_huge_pages_node[nid]++;
1039}
1040
1041static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1042{
1043	struct page *page;
1044	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1045
1046	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1047		if (nocma && is_migrate_cma_page(page))
1048			continue;
1049
 
1050		if (!PageHWPoison(page))
1051			break;
1052	}
1053
1054	/*
1055	 * if 'non-isolated free hugepage' not found on the list,
1056	 * the allocation fails.
1057	 */
1058	if (&h->hugepage_freelists[nid] == &page->lru)
1059		return NULL;
1060	list_move(&page->lru, &h->hugepage_activelist);
1061	set_page_refcounted(page);
1062	h->free_huge_pages--;
1063	h->free_huge_pages_node[nid]--;
1064	return page;
1065}
1066
1067static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1068		nodemask_t *nmask)
1069{
1070	unsigned int cpuset_mems_cookie;
1071	struct zonelist *zonelist;
1072	struct zone *zone;
1073	struct zoneref *z;
1074	int node = NUMA_NO_NODE;
1075
1076	zonelist = node_zonelist(nid, gfp_mask);
1077
1078retry_cpuset:
1079	cpuset_mems_cookie = read_mems_allowed_begin();
1080	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1081		struct page *page;
1082
1083		if (!cpuset_zone_allowed(zone, gfp_mask))
1084			continue;
1085		/*
1086		 * no need to ask again on the same node. Pool is node rather than
1087		 * zone aware
1088		 */
1089		if (zone_to_nid(zone) == node)
1090			continue;
1091		node = zone_to_nid(zone);
1092
1093		page = dequeue_huge_page_node_exact(h, node);
1094		if (page)
1095			return page;
1096	}
1097	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1098		goto retry_cpuset;
1099
1100	return NULL;
1101}
1102
 
 
 
 
 
 
 
 
 
1103static struct page *dequeue_huge_page_vma(struct hstate *h,
1104				struct vm_area_struct *vma,
1105				unsigned long address, int avoid_reserve,
1106				long chg)
1107{
1108	struct page *page;
1109	struct mempolicy *mpol;
1110	gfp_t gfp_mask;
1111	nodemask_t *nodemask;
1112	int nid;
1113
1114	/*
1115	 * A child process with MAP_PRIVATE mappings created by their parent
1116	 * have no page reserves. This check ensures that reservations are
1117	 * not "stolen". The child may still get SIGKILLed
1118	 */
1119	if (!vma_has_reserves(vma, chg) &&
1120			h->free_huge_pages - h->resv_huge_pages == 0)
1121		goto err;
1122
1123	/* If reserves cannot be used, ensure enough pages are in the pool */
1124	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1125		goto err;
1126
1127	gfp_mask = htlb_alloc_mask(h);
1128	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1129	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1130	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1131		SetPagePrivate(page);
1132		h->resv_huge_pages--;
1133	}
1134
1135	mpol_cond_put(mpol);
1136	return page;
1137
1138err:
1139	return NULL;
1140}
1141
1142/*
1143 * common helper functions for hstate_next_node_to_{alloc|free}.
1144 * We may have allocated or freed a huge page based on a different
1145 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1146 * be outside of *nodes_allowed.  Ensure that we use an allowed
1147 * node for alloc or free.
1148 */
1149static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1150{
1151	nid = next_node_in(nid, *nodes_allowed);
1152	VM_BUG_ON(nid >= MAX_NUMNODES);
1153
1154	return nid;
1155}
1156
1157static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1158{
1159	if (!node_isset(nid, *nodes_allowed))
1160		nid = next_node_allowed(nid, nodes_allowed);
1161	return nid;
1162}
1163
1164/*
1165 * returns the previously saved node ["this node"] from which to
1166 * allocate a persistent huge page for the pool and advance the
1167 * next node from which to allocate, handling wrap at end of node
1168 * mask.
1169 */
1170static int hstate_next_node_to_alloc(struct hstate *h,
1171					nodemask_t *nodes_allowed)
1172{
1173	int nid;
1174
1175	VM_BUG_ON(!nodes_allowed);
1176
1177	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1178	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1179
1180	return nid;
1181}
1182
1183/*
1184 * helper for free_pool_huge_page() - return the previously saved
1185 * node ["this node"] from which to free a huge page.  Advance the
1186 * next node id whether or not we find a free huge page to free so
1187 * that the next attempt to free addresses the next node.
1188 */
1189static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1190{
1191	int nid;
1192
1193	VM_BUG_ON(!nodes_allowed);
1194
1195	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1196	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1197
1198	return nid;
1199}
1200
1201#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1202	for (nr_nodes = nodes_weight(*mask);				\
1203		nr_nodes > 0 &&						\
1204		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1205		nr_nodes--)
1206
1207#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1208	for (nr_nodes = nodes_weight(*mask);				\
1209		nr_nodes > 0 &&						\
1210		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1211		nr_nodes--)
1212
1213#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1214static void destroy_compound_gigantic_page(struct page *page,
1215					unsigned int order)
1216{
1217	int i;
1218	int nr_pages = 1 << order;
1219	struct page *p = page + 1;
1220
1221	atomic_set(compound_mapcount_ptr(page), 0);
1222	if (hpage_pincount_available(page))
1223		atomic_set(compound_pincount_ptr(page), 0);
1224
1225	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1226		clear_compound_head(p);
1227		set_page_refcounted(p);
1228	}
1229
1230	set_compound_order(page, 0);
1231	__ClearPageHead(page);
1232}
1233
1234static void free_gigantic_page(struct page *page, unsigned int order)
1235{
1236	/*
1237	 * If the page isn't allocated using the cma allocator,
1238	 * cma_release() returns false.
1239	 */
1240#ifdef CONFIG_CMA
1241	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1242		return;
1243#endif
1244
1245	free_contig_range(page_to_pfn(page), 1 << order);
1246}
1247
1248#ifdef CONFIG_CONTIG_ALLOC
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1249static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1250		int nid, nodemask_t *nodemask)
1251{
1252	unsigned long nr_pages = 1UL << huge_page_order(h);
1253	if (nid == NUMA_NO_NODE)
1254		nid = numa_mem_id();
 
 
 
1255
1256#ifdef CONFIG_CMA
1257	{
1258		struct page *page;
1259		int node;
1260
1261		if (hugetlb_cma[nid]) {
1262			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1263					huge_page_order(h), true);
1264			if (page)
1265				return page;
1266		}
1267
1268		if (!(gfp_mask & __GFP_THISNODE)) {
1269			for_each_node_mask(node, *nodemask) {
1270				if (node == nid || !hugetlb_cma[node])
1271					continue;
1272
1273				page = cma_alloc(hugetlb_cma[node], nr_pages,
1274						huge_page_order(h), true);
1275				if (page)
1276					return page;
1277			}
 
1278		}
 
 
1279	}
1280#endif
1281
1282	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1283}
1284
1285static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1286static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1287#else /* !CONFIG_CONTIG_ALLOC */
1288static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1289					int nid, nodemask_t *nodemask)
1290{
1291	return NULL;
1292}
1293#endif /* CONFIG_CONTIG_ALLOC */
1294
1295#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1296static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1297					int nid, nodemask_t *nodemask)
1298{
1299	return NULL;
1300}
1301static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1302static inline void destroy_compound_gigantic_page(struct page *page,
1303						unsigned int order) { }
1304#endif
1305
1306static void update_and_free_page(struct hstate *h, struct page *page)
1307{
1308	int i;
1309
1310	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1311		return;
1312
1313	h->nr_huge_pages--;
1314	h->nr_huge_pages_node[page_to_nid(page)]--;
1315	for (i = 0; i < pages_per_huge_page(h); i++) {
1316		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1317				1 << PG_referenced | 1 << PG_dirty |
1318				1 << PG_active | 1 << PG_private |
1319				1 << PG_writeback);
1320	}
1321	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1322	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1323	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1324	set_page_refcounted(page);
1325	if (hstate_is_gigantic(h)) {
1326		/*
1327		 * Temporarily drop the hugetlb_lock, because
1328		 * we might block in free_gigantic_page().
1329		 */
1330		spin_unlock(&hugetlb_lock);
1331		destroy_compound_gigantic_page(page, huge_page_order(h));
1332		free_gigantic_page(page, huge_page_order(h));
1333		spin_lock(&hugetlb_lock);
1334	} else {
1335		__free_pages(page, huge_page_order(h));
1336	}
1337}
1338
1339struct hstate *size_to_hstate(unsigned long size)
1340{
1341	struct hstate *h;
1342
1343	for_each_hstate(h) {
1344		if (huge_page_size(h) == size)
1345			return h;
1346	}
1347	return NULL;
1348}
1349
1350/*
1351 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1352 * to hstate->hugepage_activelist.)
1353 *
1354 * This function can be called for tail pages, but never returns true for them.
1355 */
1356bool page_huge_active(struct page *page)
1357{
1358	VM_BUG_ON_PAGE(!PageHuge(page), page);
1359	return PageHead(page) && PagePrivate(&page[1]);
1360}
1361
1362/* never called for tail page */
1363static void set_page_huge_active(struct page *page)
1364{
1365	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1366	SetPagePrivate(&page[1]);
1367}
1368
1369static void clear_page_huge_active(struct page *page)
1370{
1371	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1372	ClearPagePrivate(&page[1]);
1373}
1374
1375/*
1376 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1377 * code
1378 */
1379static inline bool PageHugeTemporary(struct page *page)
1380{
1381	if (!PageHuge(page))
1382		return false;
1383
1384	return (unsigned long)page[2].mapping == -1U;
1385}
1386
1387static inline void SetPageHugeTemporary(struct page *page)
1388{
1389	page[2].mapping = (void *)-1U;
1390}
1391
1392static inline void ClearPageHugeTemporary(struct page *page)
1393{
1394	page[2].mapping = NULL;
1395}
1396
1397static void __free_huge_page(struct page *page)
1398{
1399	/*
1400	 * Can't pass hstate in here because it is called from the
1401	 * compound page destructor.
1402	 */
1403	struct hstate *h = page_hstate(page);
1404	int nid = page_to_nid(page);
1405	struct hugepage_subpool *spool =
1406		(struct hugepage_subpool *)page_private(page);
1407	bool restore_reserve;
1408
1409	VM_BUG_ON_PAGE(page_count(page), page);
1410	VM_BUG_ON_PAGE(page_mapcount(page), page);
1411
1412	set_page_private(page, 0);
1413	page->mapping = NULL;
1414	restore_reserve = PagePrivate(page);
1415	ClearPagePrivate(page);
1416
1417	/*
1418	 * If PagePrivate() was set on page, page allocation consumed a
1419	 * reservation.  If the page was associated with a subpool, there
1420	 * would have been a page reserved in the subpool before allocation
1421	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1422	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1423	 * remove the reserved page from the subpool.
1424	 */
1425	if (!restore_reserve) {
1426		/*
1427		 * A return code of zero implies that the subpool will be
1428		 * under its minimum size if the reservation is not restored
1429		 * after page is free.  Therefore, force restore_reserve
1430		 * operation.
1431		 */
1432		if (hugepage_subpool_put_pages(spool, 1) == 0)
1433			restore_reserve = true;
1434	}
1435
1436	spin_lock(&hugetlb_lock);
1437	clear_page_huge_active(page);
1438	hugetlb_cgroup_uncharge_page(hstate_index(h),
1439				     pages_per_huge_page(h), page);
1440	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1441					  pages_per_huge_page(h), page);
1442	if (restore_reserve)
1443		h->resv_huge_pages++;
1444
1445	if (PageHugeTemporary(page)) {
1446		list_del(&page->lru);
1447		ClearPageHugeTemporary(page);
1448		update_and_free_page(h, page);
1449	} else if (h->surplus_huge_pages_node[nid]) {
1450		/* remove the page from active list */
1451		list_del(&page->lru);
1452		update_and_free_page(h, page);
1453		h->surplus_huge_pages--;
1454		h->surplus_huge_pages_node[nid]--;
1455	} else {
1456		arch_clear_hugepage_flags(page);
1457		enqueue_huge_page(h, page);
1458	}
1459	spin_unlock(&hugetlb_lock);
1460}
1461
1462/*
1463 * As free_huge_page() can be called from a non-task context, we have
1464 * to defer the actual freeing in a workqueue to prevent potential
1465 * hugetlb_lock deadlock.
1466 *
1467 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1468 * be freed and frees them one-by-one. As the page->mapping pointer is
1469 * going to be cleared in __free_huge_page() anyway, it is reused as the
1470 * llist_node structure of a lockless linked list of huge pages to be freed.
1471 */
1472static LLIST_HEAD(hpage_freelist);
1473
1474static void free_hpage_workfn(struct work_struct *work)
1475{
1476	struct llist_node *node;
1477	struct page *page;
1478
1479	node = llist_del_all(&hpage_freelist);
1480
1481	while (node) {
1482		page = container_of((struct address_space **)node,
1483				     struct page, mapping);
1484		node = node->next;
1485		__free_huge_page(page);
1486	}
1487}
1488static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1489
1490void free_huge_page(struct page *page)
1491{
1492	/*
1493	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1494	 */
1495	if (!in_task()) {
1496		/*
1497		 * Only call schedule_work() if hpage_freelist is previously
1498		 * empty. Otherwise, schedule_work() had been called but the
1499		 * workfn hasn't retrieved the list yet.
1500		 */
1501		if (llist_add((struct llist_node *)&page->mapping,
1502			      &hpage_freelist))
1503			schedule_work(&free_hpage_work);
1504		return;
1505	}
1506
1507	__free_huge_page(page);
1508}
1509
1510static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1511{
1512	INIT_LIST_HEAD(&page->lru);
1513	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1514	spin_lock(&hugetlb_lock);
1515	set_hugetlb_cgroup(page, NULL);
1516	set_hugetlb_cgroup_rsvd(page, NULL);
1517	h->nr_huge_pages++;
1518	h->nr_huge_pages_node[nid]++;
1519	spin_unlock(&hugetlb_lock);
1520}
1521
1522static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1523{
1524	int i;
1525	int nr_pages = 1 << order;
1526	struct page *p = page + 1;
1527
1528	/* we rely on prep_new_huge_page to set the destructor */
1529	set_compound_order(page, order);
1530	__ClearPageReserved(page);
1531	__SetPageHead(page);
1532	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1533		/*
1534		 * For gigantic hugepages allocated through bootmem at
1535		 * boot, it's safer to be consistent with the not-gigantic
1536		 * hugepages and clear the PG_reserved bit from all tail pages
1537		 * too.  Otherwise drivers using get_user_pages() to access tail
1538		 * pages may get the reference counting wrong if they see
1539		 * PG_reserved set on a tail page (despite the head page not
1540		 * having PG_reserved set).  Enforcing this consistency between
1541		 * head and tail pages allows drivers to optimize away a check
1542		 * on the head page when they need know if put_page() is needed
1543		 * after get_user_pages().
1544		 */
1545		__ClearPageReserved(p);
1546		set_page_count(p, 0);
1547		set_compound_head(p, page);
1548	}
1549	atomic_set(compound_mapcount_ptr(page), -1);
1550
1551	if (hpage_pincount_available(page))
1552		atomic_set(compound_pincount_ptr(page), 0);
1553}
1554
1555/*
1556 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1557 * transparent huge pages.  See the PageTransHuge() documentation for more
1558 * details.
1559 */
1560int PageHuge(struct page *page)
1561{
1562	if (!PageCompound(page))
1563		return 0;
1564
1565	page = compound_head(page);
1566	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1567}
1568EXPORT_SYMBOL_GPL(PageHuge);
1569
1570/*
1571 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1572 * normal or transparent huge pages.
1573 */
1574int PageHeadHuge(struct page *page_head)
1575{
1576	if (!PageHead(page_head))
1577		return 0;
1578
1579	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1580}
1581
1582/*
1583 * Find address_space associated with hugetlbfs page.
1584 * Upon entry page is locked and page 'was' mapped although mapped state
1585 * could change.  If necessary, use anon_vma to find vma and associated
1586 * address space.  The returned mapping may be stale, but it can not be
1587 * invalid as page lock (which is held) is required to destroy mapping.
1588 */
1589static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1590{
1591	struct anon_vma *anon_vma;
1592	pgoff_t pgoff_start, pgoff_end;
1593	struct anon_vma_chain *avc;
1594	struct address_space *mapping = page_mapping(hpage);
1595
1596	/* Simple file based mapping */
1597	if (mapping)
1598		return mapping;
1599
1600	/*
1601	 * Even anonymous hugetlbfs mappings are associated with an
1602	 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1603	 * code).  Find a vma associated with the anonymous vma, and
1604	 * use the file pointer to get address_space.
1605	 */
1606	anon_vma = page_lock_anon_vma_read(hpage);
1607	if (!anon_vma)
1608		return mapping;  /* NULL */
1609
1610	/* Use first found vma */
1611	pgoff_start = page_to_pgoff(hpage);
1612	pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1;
1613	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1614					pgoff_start, pgoff_end) {
1615		struct vm_area_struct *vma = avc->vma;
1616
1617		mapping = vma->vm_file->f_mapping;
1618		break;
1619	}
1620
1621	anon_vma_unlock_read(anon_vma);
1622	return mapping;
1623}
1624
1625/*
1626 * Find and lock address space (mapping) in write mode.
1627 *
1628 * Upon entry, the page is locked which allows us to find the mapping
1629 * even in the case of an anon page.  However, locking order dictates
1630 * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
1631 * specific.  So, we first try to lock the sema while still holding the
1632 * page lock.  If this works, great!  If not, then we need to drop the
1633 * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
1634 * course, need to revalidate state along the way.
1635 */
1636struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1637{
1638	struct address_space *mapping, *mapping2;
1639
1640	mapping = _get_hugetlb_page_mapping(hpage);
1641retry:
1642	if (!mapping)
1643		return mapping;
1644
1645	/*
1646	 * If no contention, take lock and return
1647	 */
1648	if (i_mmap_trylock_write(mapping))
1649		return mapping;
1650
1651	/*
1652	 * Must drop page lock and wait on mapping sema.
1653	 * Note:  Once page lock is dropped, mapping could become invalid.
1654	 * As a hack, increase map count until we lock page again.
1655	 */
1656	atomic_inc(&hpage->_mapcount);
1657	unlock_page(hpage);
1658	i_mmap_lock_write(mapping);
1659	lock_page(hpage);
1660	atomic_add_negative(-1, &hpage->_mapcount);
1661
1662	/* verify page is still mapped */
1663	if (!page_mapped(hpage)) {
1664		i_mmap_unlock_write(mapping);
1665		return NULL;
1666	}
1667
1668	/*
1669	 * Get address space again and verify it is the same one
1670	 * we locked.  If not, drop lock and retry.
1671	 */
1672	mapping2 = _get_hugetlb_page_mapping(hpage);
1673	if (mapping2 != mapping) {
1674		i_mmap_unlock_write(mapping);
1675		mapping = mapping2;
1676		goto retry;
1677	}
1678
1679	return mapping;
1680}
1681
1682pgoff_t __basepage_index(struct page *page)
1683{
1684	struct page *page_head = compound_head(page);
1685	pgoff_t index = page_index(page_head);
1686	unsigned long compound_idx;
1687
1688	if (!PageHuge(page_head))
1689		return page_index(page);
1690
1691	if (compound_order(page_head) >= MAX_ORDER)
1692		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1693	else
1694		compound_idx = page - page_head;
1695
1696	return (index << compound_order(page_head)) + compound_idx;
1697}
1698
1699static struct page *alloc_buddy_huge_page(struct hstate *h,
1700		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1701		nodemask_t *node_alloc_noretry)
1702{
1703	int order = huge_page_order(h);
1704	struct page *page;
1705	bool alloc_try_hard = true;
1706
1707	/*
1708	 * By default we always try hard to allocate the page with
1709	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1710	 * a loop (to adjust global huge page counts) and previous allocation
1711	 * failed, do not continue to try hard on the same node.  Use the
1712	 * node_alloc_noretry bitmap to manage this state information.
1713	 */
1714	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1715		alloc_try_hard = false;
1716	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1717	if (alloc_try_hard)
1718		gfp_mask |= __GFP_RETRY_MAYFAIL;
1719	if (nid == NUMA_NO_NODE)
1720		nid = numa_mem_id();
1721	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1722	if (page)
1723		__count_vm_event(HTLB_BUDDY_PGALLOC);
1724	else
1725		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1726
1727	/*
1728	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1729	 * indicates an overall state change.  Clear bit so that we resume
1730	 * normal 'try hard' allocations.
1731	 */
1732	if (node_alloc_noretry && page && !alloc_try_hard)
1733		node_clear(nid, *node_alloc_noretry);
1734
1735	/*
1736	 * If we tried hard to get a page but failed, set bit so that
1737	 * subsequent attempts will not try as hard until there is an
1738	 * overall state change.
1739	 */
1740	if (node_alloc_noretry && !page && alloc_try_hard)
1741		node_set(nid, *node_alloc_noretry);
1742
1743	return page;
1744}
1745
1746/*
1747 * Common helper to allocate a fresh hugetlb page. All specific allocators
1748 * should use this function to get new hugetlb pages
1749 */
1750static struct page *alloc_fresh_huge_page(struct hstate *h,
1751		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1752		nodemask_t *node_alloc_noretry)
1753{
1754	struct page *page;
1755
1756	if (hstate_is_gigantic(h))
1757		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1758	else
1759		page = alloc_buddy_huge_page(h, gfp_mask,
1760				nid, nmask, node_alloc_noretry);
1761	if (!page)
1762		return NULL;
1763
1764	if (hstate_is_gigantic(h))
1765		prep_compound_gigantic_page(page, huge_page_order(h));
1766	prep_new_huge_page(h, page, page_to_nid(page));
1767
1768	return page;
1769}
1770
1771/*
1772 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1773 * manner.
1774 */
1775static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1776				nodemask_t *node_alloc_noretry)
1777{
1778	struct page *page;
1779	int nr_nodes, node;
1780	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1781
1782	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1783		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1784						node_alloc_noretry);
1785		if (page)
1786			break;
1787	}
1788
1789	if (!page)
1790		return 0;
1791
1792	put_page(page); /* free it into the hugepage allocator */
1793
1794	return 1;
1795}
1796
1797/*
1798 * Free huge page from pool from next node to free.
1799 * Attempt to keep persistent huge pages more or less
1800 * balanced over allowed nodes.
1801 * Called with hugetlb_lock locked.
1802 */
1803static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1804							 bool acct_surplus)
1805{
1806	int nr_nodes, node;
1807	int ret = 0;
1808
1809	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1810		/*
1811		 * If we're returning unused surplus pages, only examine
1812		 * nodes with surplus pages.
1813		 */
1814		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1815		    !list_empty(&h->hugepage_freelists[node])) {
1816			struct page *page =
1817				list_entry(h->hugepage_freelists[node].next,
1818					  struct page, lru);
1819			list_del(&page->lru);
1820			h->free_huge_pages--;
1821			h->free_huge_pages_node[node]--;
1822			if (acct_surplus) {
1823				h->surplus_huge_pages--;
1824				h->surplus_huge_pages_node[node]--;
1825			}
1826			update_and_free_page(h, page);
1827			ret = 1;
1828			break;
1829		}
1830	}
1831
1832	return ret;
1833}
1834
1835/*
1836 * Dissolve a given free hugepage into free buddy pages. This function does
1837 * nothing for in-use hugepages and non-hugepages.
1838 * This function returns values like below:
1839 *
1840 *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1841 *          (allocated or reserved.)
1842 *       0: successfully dissolved free hugepages or the page is not a
1843 *          hugepage (considered as already dissolved)
1844 */
1845int dissolve_free_huge_page(struct page *page)
1846{
1847	int rc = -EBUSY;
1848
1849	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1850	if (!PageHuge(page))
1851		return 0;
1852
1853	spin_lock(&hugetlb_lock);
1854	if (!PageHuge(page)) {
1855		rc = 0;
1856		goto out;
1857	}
1858
1859	if (!page_count(page)) {
1860		struct page *head = compound_head(page);
1861		struct hstate *h = page_hstate(head);
1862		int nid = page_to_nid(head);
1863		if (h->free_huge_pages - h->resv_huge_pages == 0)
1864			goto out;
1865		/*
1866		 * Move PageHWPoison flag from head page to the raw error page,
1867		 * which makes any subpages rather than the error page reusable.
1868		 */
1869		if (PageHWPoison(head) && page != head) {
1870			SetPageHWPoison(page);
1871			ClearPageHWPoison(head);
1872		}
1873		list_del(&head->lru);
1874		h->free_huge_pages--;
1875		h->free_huge_pages_node[nid]--;
1876		h->max_huge_pages--;
1877		update_and_free_page(h, head);
1878		rc = 0;
1879	}
1880out:
1881	spin_unlock(&hugetlb_lock);
1882	return rc;
1883}
1884
1885/*
1886 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1887 * make specified memory blocks removable from the system.
1888 * Note that this will dissolve a free gigantic hugepage completely, if any
1889 * part of it lies within the given range.
1890 * Also note that if dissolve_free_huge_page() returns with an error, all
1891 * free hugepages that were dissolved before that error are lost.
1892 */
1893int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1894{
1895	unsigned long pfn;
1896	struct page *page;
1897	int rc = 0;
1898
1899	if (!hugepages_supported())
1900		return rc;
1901
1902	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1903		page = pfn_to_page(pfn);
1904		rc = dissolve_free_huge_page(page);
1905		if (rc)
1906			break;
1907	}
1908
1909	return rc;
1910}
1911
1912/*
1913 * Allocates a fresh surplus page from the page allocator.
1914 */
1915static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1916		int nid, nodemask_t *nmask)
1917{
1918	struct page *page = NULL;
1919
1920	if (hstate_is_gigantic(h))
1921		return NULL;
1922
1923	spin_lock(&hugetlb_lock);
1924	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1925		goto out_unlock;
1926	spin_unlock(&hugetlb_lock);
1927
1928	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1929	if (!page)
1930		return NULL;
1931
1932	spin_lock(&hugetlb_lock);
1933	/*
1934	 * We could have raced with the pool size change.
1935	 * Double check that and simply deallocate the new page
1936	 * if we would end up overcommiting the surpluses. Abuse
1937	 * temporary page to workaround the nasty free_huge_page
1938	 * codeflow
1939	 */
1940	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1941		SetPageHugeTemporary(page);
1942		spin_unlock(&hugetlb_lock);
1943		put_page(page);
1944		return NULL;
1945	} else {
1946		h->surplus_huge_pages++;
1947		h->surplus_huge_pages_node[page_to_nid(page)]++;
1948	}
1949
1950out_unlock:
1951	spin_unlock(&hugetlb_lock);
1952
1953	return page;
1954}
1955
1956static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1957				     int nid, nodemask_t *nmask)
1958{
1959	struct page *page;
1960
1961	if (hstate_is_gigantic(h))
1962		return NULL;
1963
1964	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1965	if (!page)
1966		return NULL;
1967
1968	/*
1969	 * We do not account these pages as surplus because they are only
1970	 * temporary and will be released properly on the last reference
1971	 */
1972	SetPageHugeTemporary(page);
1973
1974	return page;
1975}
1976
1977/*
1978 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1979 */
1980static
1981struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1982		struct vm_area_struct *vma, unsigned long addr)
1983{
1984	struct page *page;
1985	struct mempolicy *mpol;
1986	gfp_t gfp_mask = htlb_alloc_mask(h);
1987	int nid;
1988	nodemask_t *nodemask;
1989
1990	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1991	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1992	mpol_cond_put(mpol);
1993
1994	return page;
1995}
1996
1997/* page migration callback function */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1998struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1999		nodemask_t *nmask, gfp_t gfp_mask)
2000{
 
 
2001	spin_lock(&hugetlb_lock);
2002	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2003		struct page *page;
2004
2005		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2006		if (page) {
2007			spin_unlock(&hugetlb_lock);
2008			return page;
2009		}
2010	}
2011	spin_unlock(&hugetlb_lock);
2012
2013	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2014}
2015
2016/* mempolicy aware migration callback */
2017struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2018		unsigned long address)
2019{
2020	struct mempolicy *mpol;
2021	nodemask_t *nodemask;
2022	struct page *page;
2023	gfp_t gfp_mask;
2024	int node;
2025
2026	gfp_mask = htlb_alloc_mask(h);
2027	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2028	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2029	mpol_cond_put(mpol);
2030
2031	return page;
2032}
2033
2034/*
2035 * Increase the hugetlb pool such that it can accommodate a reservation
2036 * of size 'delta'.
2037 */
2038static int gather_surplus_pages(struct hstate *h, int delta)
2039	__must_hold(&hugetlb_lock)
2040{
2041	struct list_head surplus_list;
2042	struct page *page, *tmp;
2043	int ret, i;
2044	int needed, allocated;
2045	bool alloc_ok = true;
2046
2047	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2048	if (needed <= 0) {
2049		h->resv_huge_pages += delta;
2050		return 0;
2051	}
2052
2053	allocated = 0;
2054	INIT_LIST_HEAD(&surplus_list);
2055
2056	ret = -ENOMEM;
2057retry:
2058	spin_unlock(&hugetlb_lock);
2059	for (i = 0; i < needed; i++) {
2060		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2061				NUMA_NO_NODE, NULL);
2062		if (!page) {
2063			alloc_ok = false;
2064			break;
2065		}
2066		list_add(&page->lru, &surplus_list);
2067		cond_resched();
2068	}
2069	allocated += i;
2070
2071	/*
2072	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2073	 * because either resv_huge_pages or free_huge_pages may have changed.
2074	 */
2075	spin_lock(&hugetlb_lock);
2076	needed = (h->resv_huge_pages + delta) -
2077			(h->free_huge_pages + allocated);
2078	if (needed > 0) {
2079		if (alloc_ok)
2080			goto retry;
2081		/*
2082		 * We were not able to allocate enough pages to
2083		 * satisfy the entire reservation so we free what
2084		 * we've allocated so far.
2085		 */
2086		goto free;
2087	}
2088	/*
2089	 * The surplus_list now contains _at_least_ the number of extra pages
2090	 * needed to accommodate the reservation.  Add the appropriate number
2091	 * of pages to the hugetlb pool and free the extras back to the buddy
2092	 * allocator.  Commit the entire reservation here to prevent another
2093	 * process from stealing the pages as they are added to the pool but
2094	 * before they are reserved.
2095	 */
2096	needed += allocated;
2097	h->resv_huge_pages += delta;
2098	ret = 0;
2099
2100	/* Free the needed pages to the hugetlb pool */
2101	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2102		if ((--needed) < 0)
2103			break;
2104		/*
2105		 * This page is now managed by the hugetlb allocator and has
2106		 * no users -- drop the buddy allocator's reference.
2107		 */
2108		put_page_testzero(page);
2109		VM_BUG_ON_PAGE(page_count(page), page);
2110		enqueue_huge_page(h, page);
2111	}
2112free:
2113	spin_unlock(&hugetlb_lock);
2114
2115	/* Free unnecessary surplus pages to the buddy allocator */
2116	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2117		put_page(page);
2118	spin_lock(&hugetlb_lock);
2119
2120	return ret;
2121}
2122
2123/*
2124 * This routine has two main purposes:
2125 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2126 *    in unused_resv_pages.  This corresponds to the prior adjustments made
2127 *    to the associated reservation map.
2128 * 2) Free any unused surplus pages that may have been allocated to satisfy
2129 *    the reservation.  As many as unused_resv_pages may be freed.
2130 *
2131 * Called with hugetlb_lock held.  However, the lock could be dropped (and
2132 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2133 * we must make sure nobody else can claim pages we are in the process of
2134 * freeing.  Do this by ensuring resv_huge_page always is greater than the
2135 * number of huge pages we plan to free when dropping the lock.
2136 */
2137static void return_unused_surplus_pages(struct hstate *h,
2138					unsigned long unused_resv_pages)
2139{
2140	unsigned long nr_pages;
2141
2142	/* Cannot return gigantic pages currently */
2143	if (hstate_is_gigantic(h))
2144		goto out;
2145
2146	/*
2147	 * Part (or even all) of the reservation could have been backed
2148	 * by pre-allocated pages. Only free surplus pages.
2149	 */
2150	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2151
2152	/*
2153	 * We want to release as many surplus pages as possible, spread
2154	 * evenly across all nodes with memory. Iterate across these nodes
2155	 * until we can no longer free unreserved surplus pages. This occurs
2156	 * when the nodes with surplus pages have no free pages.
2157	 * free_pool_huge_page() will balance the freed pages across the
2158	 * on-line nodes with memory and will handle the hstate accounting.
2159	 *
2160	 * Note that we decrement resv_huge_pages as we free the pages.  If
2161	 * we drop the lock, resv_huge_pages will still be sufficiently large
2162	 * to cover subsequent pages we may free.
2163	 */
2164	while (nr_pages--) {
2165		h->resv_huge_pages--;
2166		unused_resv_pages--;
2167		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2168			goto out;
2169		cond_resched_lock(&hugetlb_lock);
2170	}
2171
2172out:
2173	/* Fully uncommit the reservation */
2174	h->resv_huge_pages -= unused_resv_pages;
2175}
2176
2177
2178/*
2179 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2180 * are used by the huge page allocation routines to manage reservations.
2181 *
2182 * vma_needs_reservation is called to determine if the huge page at addr
2183 * within the vma has an associated reservation.  If a reservation is
2184 * needed, the value 1 is returned.  The caller is then responsible for
2185 * managing the global reservation and subpool usage counts.  After
2186 * the huge page has been allocated, vma_commit_reservation is called
2187 * to add the page to the reservation map.  If the page allocation fails,
2188 * the reservation must be ended instead of committed.  vma_end_reservation
2189 * is called in such cases.
2190 *
2191 * In the normal case, vma_commit_reservation returns the same value
2192 * as the preceding vma_needs_reservation call.  The only time this
2193 * is not the case is if a reserve map was changed between calls.  It
2194 * is the responsibility of the caller to notice the difference and
2195 * take appropriate action.
2196 *
2197 * vma_add_reservation is used in error paths where a reservation must
2198 * be restored when a newly allocated huge page must be freed.  It is
2199 * to be called after calling vma_needs_reservation to determine if a
2200 * reservation exists.
2201 */
2202enum vma_resv_mode {
2203	VMA_NEEDS_RESV,
2204	VMA_COMMIT_RESV,
2205	VMA_END_RESV,
2206	VMA_ADD_RESV,
2207};
2208static long __vma_reservation_common(struct hstate *h,
2209				struct vm_area_struct *vma, unsigned long addr,
2210				enum vma_resv_mode mode)
2211{
2212	struct resv_map *resv;
2213	pgoff_t idx;
2214	long ret;
2215	long dummy_out_regions_needed;
2216
2217	resv = vma_resv_map(vma);
2218	if (!resv)
2219		return 1;
2220
2221	idx = vma_hugecache_offset(h, vma, addr);
2222	switch (mode) {
2223	case VMA_NEEDS_RESV:
2224		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2225		/* We assume that vma_reservation_* routines always operate on
2226		 * 1 page, and that adding to resv map a 1 page entry can only
2227		 * ever require 1 region.
2228		 */
2229		VM_BUG_ON(dummy_out_regions_needed != 1);
2230		break;
2231	case VMA_COMMIT_RESV:
2232		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2233		/* region_add calls of range 1 should never fail. */
2234		VM_BUG_ON(ret < 0);
2235		break;
2236	case VMA_END_RESV:
2237		region_abort(resv, idx, idx + 1, 1);
2238		ret = 0;
2239		break;
2240	case VMA_ADD_RESV:
2241		if (vma->vm_flags & VM_MAYSHARE) {
2242			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2243			/* region_add calls of range 1 should never fail. */
2244			VM_BUG_ON(ret < 0);
2245		} else {
2246			region_abort(resv, idx, idx + 1, 1);
2247			ret = region_del(resv, idx, idx + 1);
2248		}
2249		break;
2250	default:
2251		BUG();
2252	}
2253
2254	if (vma->vm_flags & VM_MAYSHARE)
2255		return ret;
2256	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2257		/*
2258		 * In most cases, reserves always exist for private mappings.
2259		 * However, a file associated with mapping could have been
2260		 * hole punched or truncated after reserves were consumed.
2261		 * As subsequent fault on such a range will not use reserves.
2262		 * Subtle - The reserve map for private mappings has the
2263		 * opposite meaning than that of shared mappings.  If NO
2264		 * entry is in the reserve map, it means a reservation exists.
2265		 * If an entry exists in the reserve map, it means the
2266		 * reservation has already been consumed.  As a result, the
2267		 * return value of this routine is the opposite of the
2268		 * value returned from reserve map manipulation routines above.
2269		 */
2270		if (ret)
2271			return 0;
2272		else
2273			return 1;
2274	}
2275	else
2276		return ret < 0 ? ret : 0;
2277}
2278
2279static long vma_needs_reservation(struct hstate *h,
2280			struct vm_area_struct *vma, unsigned long addr)
2281{
2282	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2283}
2284
2285static long vma_commit_reservation(struct hstate *h,
2286			struct vm_area_struct *vma, unsigned long addr)
2287{
2288	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2289}
2290
2291static void vma_end_reservation(struct hstate *h,
2292			struct vm_area_struct *vma, unsigned long addr)
2293{
2294	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2295}
2296
2297static long vma_add_reservation(struct hstate *h,
2298			struct vm_area_struct *vma, unsigned long addr)
2299{
2300	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2301}
2302
2303/*
2304 * This routine is called to restore a reservation on error paths.  In the
2305 * specific error paths, a huge page was allocated (via alloc_huge_page)
2306 * and is about to be freed.  If a reservation for the page existed,
2307 * alloc_huge_page would have consumed the reservation and set PagePrivate
2308 * in the newly allocated page.  When the page is freed via free_huge_page,
2309 * the global reservation count will be incremented if PagePrivate is set.
2310 * However, free_huge_page can not adjust the reserve map.  Adjust the
2311 * reserve map here to be consistent with global reserve count adjustments
2312 * to be made by free_huge_page.
2313 */
2314static void restore_reserve_on_error(struct hstate *h,
2315			struct vm_area_struct *vma, unsigned long address,
2316			struct page *page)
2317{
2318	if (unlikely(PagePrivate(page))) {
2319		long rc = vma_needs_reservation(h, vma, address);
2320
2321		if (unlikely(rc < 0)) {
2322			/*
2323			 * Rare out of memory condition in reserve map
2324			 * manipulation.  Clear PagePrivate so that
2325			 * global reserve count will not be incremented
2326			 * by free_huge_page.  This will make it appear
2327			 * as though the reservation for this page was
2328			 * consumed.  This may prevent the task from
2329			 * faulting in the page at a later time.  This
2330			 * is better than inconsistent global huge page
2331			 * accounting of reserve counts.
2332			 */
2333			ClearPagePrivate(page);
2334		} else if (rc) {
2335			rc = vma_add_reservation(h, vma, address);
2336			if (unlikely(rc < 0))
2337				/*
2338				 * See above comment about rare out of
2339				 * memory condition.
2340				 */
2341				ClearPagePrivate(page);
2342		} else
2343			vma_end_reservation(h, vma, address);
2344	}
2345}
2346
2347struct page *alloc_huge_page(struct vm_area_struct *vma,
2348				    unsigned long addr, int avoid_reserve)
2349{
2350	struct hugepage_subpool *spool = subpool_vma(vma);
2351	struct hstate *h = hstate_vma(vma);
2352	struct page *page;
2353	long map_chg, map_commit;
2354	long gbl_chg;
2355	int ret, idx;
2356	struct hugetlb_cgroup *h_cg;
2357	bool deferred_reserve;
2358
2359	idx = hstate_index(h);
2360	/*
2361	 * Examine the region/reserve map to determine if the process
2362	 * has a reservation for the page to be allocated.  A return
2363	 * code of zero indicates a reservation exists (no change).
2364	 */
2365	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2366	if (map_chg < 0)
2367		return ERR_PTR(-ENOMEM);
2368
2369	/*
2370	 * Processes that did not create the mapping will have no
2371	 * reserves as indicated by the region/reserve map. Check
2372	 * that the allocation will not exceed the subpool limit.
2373	 * Allocations for MAP_NORESERVE mappings also need to be
2374	 * checked against any subpool limit.
2375	 */
2376	if (map_chg || avoid_reserve) {
2377		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2378		if (gbl_chg < 0) {
2379			vma_end_reservation(h, vma, addr);
2380			return ERR_PTR(-ENOSPC);
2381		}
2382
2383		/*
2384		 * Even though there was no reservation in the region/reserve
2385		 * map, there could be reservations associated with the
2386		 * subpool that can be used.  This would be indicated if the
2387		 * return value of hugepage_subpool_get_pages() is zero.
2388		 * However, if avoid_reserve is specified we still avoid even
2389		 * the subpool reservations.
2390		 */
2391		if (avoid_reserve)
2392			gbl_chg = 1;
2393	}
2394
2395	/* If this allocation is not consuming a reservation, charge it now.
2396	 */
2397	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2398	if (deferred_reserve) {
2399		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2400			idx, pages_per_huge_page(h), &h_cg);
2401		if (ret)
2402			goto out_subpool_put;
2403	}
2404
2405	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2406	if (ret)
2407		goto out_uncharge_cgroup_reservation;
2408
2409	spin_lock(&hugetlb_lock);
2410	/*
2411	 * glb_chg is passed to indicate whether or not a page must be taken
2412	 * from the global free pool (global change).  gbl_chg == 0 indicates
2413	 * a reservation exists for the allocation.
2414	 */
2415	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2416	if (!page) {
2417		spin_unlock(&hugetlb_lock);
2418		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2419		if (!page)
2420			goto out_uncharge_cgroup;
2421		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2422			SetPagePrivate(page);
2423			h->resv_huge_pages--;
2424		}
2425		spin_lock(&hugetlb_lock);
2426		list_move(&page->lru, &h->hugepage_activelist);
2427		/* Fall through */
2428	}
2429	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2430	/* If allocation is not consuming a reservation, also store the
2431	 * hugetlb_cgroup pointer on the page.
2432	 */
2433	if (deferred_reserve) {
2434		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2435						  h_cg, page);
2436	}
2437
2438	spin_unlock(&hugetlb_lock);
2439
2440	set_page_private(page, (unsigned long)spool);
2441
2442	map_commit = vma_commit_reservation(h, vma, addr);
2443	if (unlikely(map_chg > map_commit)) {
2444		/*
2445		 * The page was added to the reservation map between
2446		 * vma_needs_reservation and vma_commit_reservation.
2447		 * This indicates a race with hugetlb_reserve_pages.
2448		 * Adjust for the subpool count incremented above AND
2449		 * in hugetlb_reserve_pages for the same page.  Also,
2450		 * the reservation count added in hugetlb_reserve_pages
2451		 * no longer applies.
2452		 */
2453		long rsv_adjust;
2454
2455		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2456		hugetlb_acct_memory(h, -rsv_adjust);
2457	}
2458	return page;
2459
2460out_uncharge_cgroup:
2461	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2462out_uncharge_cgroup_reservation:
2463	if (deferred_reserve)
2464		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2465						    h_cg);
2466out_subpool_put:
2467	if (map_chg || avoid_reserve)
2468		hugepage_subpool_put_pages(spool, 1);
2469	vma_end_reservation(h, vma, addr);
2470	return ERR_PTR(-ENOSPC);
2471}
2472
2473int alloc_bootmem_huge_page(struct hstate *h)
2474	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2475int __alloc_bootmem_huge_page(struct hstate *h)
2476{
2477	struct huge_bootmem_page *m;
2478	int nr_nodes, node;
2479
2480	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2481		void *addr;
2482
2483		addr = memblock_alloc_try_nid_raw(
2484				huge_page_size(h), huge_page_size(h),
2485				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2486		if (addr) {
2487			/*
2488			 * Use the beginning of the huge page to store the
2489			 * huge_bootmem_page struct (until gather_bootmem
2490			 * puts them into the mem_map).
2491			 */
2492			m = addr;
2493			goto found;
2494		}
2495	}
2496	return 0;
2497
2498found:
2499	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2500	/* Put them into a private list first because mem_map is not up yet */
2501	INIT_LIST_HEAD(&m->list);
2502	list_add(&m->list, &huge_boot_pages);
2503	m->hstate = h;
2504	return 1;
2505}
2506
2507static void __init prep_compound_huge_page(struct page *page,
2508		unsigned int order)
2509{
2510	if (unlikely(order > (MAX_ORDER - 1)))
2511		prep_compound_gigantic_page(page, order);
2512	else
2513		prep_compound_page(page, order);
2514}
2515
2516/* Put bootmem huge pages into the standard lists after mem_map is up */
2517static void __init gather_bootmem_prealloc(void)
2518{
2519	struct huge_bootmem_page *m;
2520
2521	list_for_each_entry(m, &huge_boot_pages, list) {
2522		struct page *page = virt_to_page(m);
2523		struct hstate *h = m->hstate;
2524
2525		WARN_ON(page_count(page) != 1);
2526		prep_compound_huge_page(page, h->order);
2527		WARN_ON(PageReserved(page));
2528		prep_new_huge_page(h, page, page_to_nid(page));
2529		put_page(page); /* free it into the hugepage allocator */
2530
2531		/*
2532		 * If we had gigantic hugepages allocated at boot time, we need
2533		 * to restore the 'stolen' pages to totalram_pages in order to
2534		 * fix confusing memory reports from free(1) and another
2535		 * side-effects, like CommitLimit going negative.
2536		 */
2537		if (hstate_is_gigantic(h))
2538			adjust_managed_page_count(page, 1 << h->order);
2539		cond_resched();
2540	}
2541}
2542
2543static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2544{
2545	unsigned long i;
2546	nodemask_t *node_alloc_noretry;
2547
2548	if (!hstate_is_gigantic(h)) {
2549		/*
2550		 * Bit mask controlling how hard we retry per-node allocations.
2551		 * Ignore errors as lower level routines can deal with
2552		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2553		 * time, we are likely in bigger trouble.
2554		 */
2555		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2556						GFP_KERNEL);
2557	} else {
2558		/* allocations done at boot time */
2559		node_alloc_noretry = NULL;
2560	}
2561
2562	/* bit mask controlling how hard we retry per-node allocations */
2563	if (node_alloc_noretry)
2564		nodes_clear(*node_alloc_noretry);
2565
2566	for (i = 0; i < h->max_huge_pages; ++i) {
2567		if (hstate_is_gigantic(h)) {
2568			if (hugetlb_cma_size) {
2569				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2570				break;
2571			}
2572			if (!alloc_bootmem_huge_page(h))
2573				break;
2574		} else if (!alloc_pool_huge_page(h,
2575					 &node_states[N_MEMORY],
2576					 node_alloc_noretry))
2577			break;
2578		cond_resched();
2579	}
2580	if (i < h->max_huge_pages) {
2581		char buf[32];
2582
2583		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2584		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2585			h->max_huge_pages, buf, i);
2586		h->max_huge_pages = i;
2587	}
2588
2589	kfree(node_alloc_noretry);
2590}
2591
2592static void __init hugetlb_init_hstates(void)
2593{
2594	struct hstate *h;
2595
2596	for_each_hstate(h) {
2597		if (minimum_order > huge_page_order(h))
2598			minimum_order = huge_page_order(h);
2599
2600		/* oversize hugepages were init'ed in early boot */
2601		if (!hstate_is_gigantic(h))
2602			hugetlb_hstate_alloc_pages(h);
2603	}
2604	VM_BUG_ON(minimum_order == UINT_MAX);
2605}
2606
2607static void __init report_hugepages(void)
2608{
2609	struct hstate *h;
2610
2611	for_each_hstate(h) {
2612		char buf[32];
2613
2614		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2615		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2616			buf, h->free_huge_pages);
2617	}
2618}
2619
2620#ifdef CONFIG_HIGHMEM
2621static void try_to_free_low(struct hstate *h, unsigned long count,
2622						nodemask_t *nodes_allowed)
2623{
2624	int i;
2625
2626	if (hstate_is_gigantic(h))
2627		return;
2628
2629	for_each_node_mask(i, *nodes_allowed) {
2630		struct page *page, *next;
2631		struct list_head *freel = &h->hugepage_freelists[i];
2632		list_for_each_entry_safe(page, next, freel, lru) {
2633			if (count >= h->nr_huge_pages)
2634				return;
2635			if (PageHighMem(page))
2636				continue;
2637			list_del(&page->lru);
2638			update_and_free_page(h, page);
2639			h->free_huge_pages--;
2640			h->free_huge_pages_node[page_to_nid(page)]--;
2641		}
2642	}
2643}
2644#else
2645static inline void try_to_free_low(struct hstate *h, unsigned long count,
2646						nodemask_t *nodes_allowed)
2647{
2648}
2649#endif
2650
2651/*
2652 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2653 * balanced by operating on them in a round-robin fashion.
2654 * Returns 1 if an adjustment was made.
2655 */
2656static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2657				int delta)
2658{
2659	int nr_nodes, node;
2660
2661	VM_BUG_ON(delta != -1 && delta != 1);
2662
2663	if (delta < 0) {
2664		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2665			if (h->surplus_huge_pages_node[node])
2666				goto found;
2667		}
2668	} else {
2669		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2670			if (h->surplus_huge_pages_node[node] <
2671					h->nr_huge_pages_node[node])
2672				goto found;
2673		}
2674	}
2675	return 0;
2676
2677found:
2678	h->surplus_huge_pages += delta;
2679	h->surplus_huge_pages_node[node] += delta;
2680	return 1;
2681}
2682
2683#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2684static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2685			      nodemask_t *nodes_allowed)
2686{
2687	unsigned long min_count, ret;
2688	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2689
2690	/*
2691	 * Bit mask controlling how hard we retry per-node allocations.
2692	 * If we can not allocate the bit mask, do not attempt to allocate
2693	 * the requested huge pages.
2694	 */
2695	if (node_alloc_noretry)
2696		nodes_clear(*node_alloc_noretry);
2697	else
2698		return -ENOMEM;
2699
2700	spin_lock(&hugetlb_lock);
2701
2702	/*
2703	 * Check for a node specific request.
2704	 * Changing node specific huge page count may require a corresponding
2705	 * change to the global count.  In any case, the passed node mask
2706	 * (nodes_allowed) will restrict alloc/free to the specified node.
2707	 */
2708	if (nid != NUMA_NO_NODE) {
2709		unsigned long old_count = count;
2710
2711		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2712		/*
2713		 * User may have specified a large count value which caused the
2714		 * above calculation to overflow.  In this case, they wanted
2715		 * to allocate as many huge pages as possible.  Set count to
2716		 * largest possible value to align with their intention.
2717		 */
2718		if (count < old_count)
2719			count = ULONG_MAX;
2720	}
2721
2722	/*
2723	 * Gigantic pages runtime allocation depend on the capability for large
2724	 * page range allocation.
2725	 * If the system does not provide this feature, return an error when
2726	 * the user tries to allocate gigantic pages but let the user free the
2727	 * boottime allocated gigantic pages.
2728	 */
2729	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2730		if (count > persistent_huge_pages(h)) {
2731			spin_unlock(&hugetlb_lock);
2732			NODEMASK_FREE(node_alloc_noretry);
2733			return -EINVAL;
2734		}
2735		/* Fall through to decrease pool */
2736	}
2737
2738	/*
2739	 * Increase the pool size
2740	 * First take pages out of surplus state.  Then make up the
2741	 * remaining difference by allocating fresh huge pages.
2742	 *
2743	 * We might race with alloc_surplus_huge_page() here and be unable
2744	 * to convert a surplus huge page to a normal huge page. That is
2745	 * not critical, though, it just means the overall size of the
2746	 * pool might be one hugepage larger than it needs to be, but
2747	 * within all the constraints specified by the sysctls.
2748	 */
2749	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2750		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2751			break;
2752	}
2753
2754	while (count > persistent_huge_pages(h)) {
2755		/*
2756		 * If this allocation races such that we no longer need the
2757		 * page, free_huge_page will handle it by freeing the page
2758		 * and reducing the surplus.
2759		 */
2760		spin_unlock(&hugetlb_lock);
2761
2762		/* yield cpu to avoid soft lockup */
2763		cond_resched();
2764
2765		ret = alloc_pool_huge_page(h, nodes_allowed,
2766						node_alloc_noretry);
2767		spin_lock(&hugetlb_lock);
2768		if (!ret)
2769			goto out;
2770
2771		/* Bail for signals. Probably ctrl-c from user */
2772		if (signal_pending(current))
2773			goto out;
2774	}
2775
2776	/*
2777	 * Decrease the pool size
2778	 * First return free pages to the buddy allocator (being careful
2779	 * to keep enough around to satisfy reservations).  Then place
2780	 * pages into surplus state as needed so the pool will shrink
2781	 * to the desired size as pages become free.
2782	 *
2783	 * By placing pages into the surplus state independent of the
2784	 * overcommit value, we are allowing the surplus pool size to
2785	 * exceed overcommit. There are few sane options here. Since
2786	 * alloc_surplus_huge_page() is checking the global counter,
2787	 * though, we'll note that we're not allowed to exceed surplus
2788	 * and won't grow the pool anywhere else. Not until one of the
2789	 * sysctls are changed, or the surplus pages go out of use.
2790	 */
2791	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2792	min_count = max(count, min_count);
2793	try_to_free_low(h, min_count, nodes_allowed);
2794	while (min_count < persistent_huge_pages(h)) {
2795		if (!free_pool_huge_page(h, nodes_allowed, 0))
2796			break;
2797		cond_resched_lock(&hugetlb_lock);
2798	}
2799	while (count < persistent_huge_pages(h)) {
2800		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2801			break;
2802	}
2803out:
2804	h->max_huge_pages = persistent_huge_pages(h);
2805	spin_unlock(&hugetlb_lock);
2806
2807	NODEMASK_FREE(node_alloc_noretry);
2808
2809	return 0;
2810}
2811
2812#define HSTATE_ATTR_RO(_name) \
2813	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2814
2815#define HSTATE_ATTR(_name) \
2816	static struct kobj_attribute _name##_attr = \
2817		__ATTR(_name, 0644, _name##_show, _name##_store)
2818
2819static struct kobject *hugepages_kobj;
2820static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2821
2822static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2823
2824static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2825{
2826	int i;
2827
2828	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2829		if (hstate_kobjs[i] == kobj) {
2830			if (nidp)
2831				*nidp = NUMA_NO_NODE;
2832			return &hstates[i];
2833		}
2834
2835	return kobj_to_node_hstate(kobj, nidp);
2836}
2837
2838static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2839					struct kobj_attribute *attr, char *buf)
2840{
2841	struct hstate *h;
2842	unsigned long nr_huge_pages;
2843	int nid;
2844
2845	h = kobj_to_hstate(kobj, &nid);
2846	if (nid == NUMA_NO_NODE)
2847		nr_huge_pages = h->nr_huge_pages;
2848	else
2849		nr_huge_pages = h->nr_huge_pages_node[nid];
2850
2851	return sprintf(buf, "%lu\n", nr_huge_pages);
2852}
2853
2854static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2855					   struct hstate *h, int nid,
2856					   unsigned long count, size_t len)
2857{
2858	int err;
2859	nodemask_t nodes_allowed, *n_mask;
2860
2861	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2862		return -EINVAL;
2863
2864	if (nid == NUMA_NO_NODE) {
2865		/*
2866		 * global hstate attribute
2867		 */
2868		if (!(obey_mempolicy &&
2869				init_nodemask_of_mempolicy(&nodes_allowed)))
2870			n_mask = &node_states[N_MEMORY];
2871		else
2872			n_mask = &nodes_allowed;
2873	} else {
2874		/*
2875		 * Node specific request.  count adjustment happens in
2876		 * set_max_huge_pages() after acquiring hugetlb_lock.
2877		 */
2878		init_nodemask_of_node(&nodes_allowed, nid);
2879		n_mask = &nodes_allowed;
2880	}
2881
2882	err = set_max_huge_pages(h, count, nid, n_mask);
2883
2884	return err ? err : len;
2885}
2886
2887static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2888					 struct kobject *kobj, const char *buf,
2889					 size_t len)
2890{
2891	struct hstate *h;
2892	unsigned long count;
2893	int nid;
2894	int err;
2895
2896	err = kstrtoul(buf, 10, &count);
2897	if (err)
2898		return err;
2899
2900	h = kobj_to_hstate(kobj, &nid);
2901	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2902}
2903
2904static ssize_t nr_hugepages_show(struct kobject *kobj,
2905				       struct kobj_attribute *attr, char *buf)
2906{
2907	return nr_hugepages_show_common(kobj, attr, buf);
2908}
2909
2910static ssize_t nr_hugepages_store(struct kobject *kobj,
2911	       struct kobj_attribute *attr, const char *buf, size_t len)
2912{
2913	return nr_hugepages_store_common(false, kobj, buf, len);
2914}
2915HSTATE_ATTR(nr_hugepages);
2916
2917#ifdef CONFIG_NUMA
2918
2919/*
2920 * hstate attribute for optionally mempolicy-based constraint on persistent
2921 * huge page alloc/free.
2922 */
2923static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2924				       struct kobj_attribute *attr, char *buf)
2925{
2926	return nr_hugepages_show_common(kobj, attr, buf);
2927}
2928
2929static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2930	       struct kobj_attribute *attr, const char *buf, size_t len)
2931{
2932	return nr_hugepages_store_common(true, kobj, buf, len);
2933}
2934HSTATE_ATTR(nr_hugepages_mempolicy);
2935#endif
2936
2937
2938static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2939					struct kobj_attribute *attr, char *buf)
2940{
2941	struct hstate *h = kobj_to_hstate(kobj, NULL);
2942	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2943}
2944
2945static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2946		struct kobj_attribute *attr, const char *buf, size_t count)
2947{
2948	int err;
2949	unsigned long input;
2950	struct hstate *h = kobj_to_hstate(kobj, NULL);
2951
2952	if (hstate_is_gigantic(h))
2953		return -EINVAL;
2954
2955	err = kstrtoul(buf, 10, &input);
2956	if (err)
2957		return err;
2958
2959	spin_lock(&hugetlb_lock);
2960	h->nr_overcommit_huge_pages = input;
2961	spin_unlock(&hugetlb_lock);
2962
2963	return count;
2964}
2965HSTATE_ATTR(nr_overcommit_hugepages);
2966
2967static ssize_t free_hugepages_show(struct kobject *kobj,
2968					struct kobj_attribute *attr, char *buf)
2969{
2970	struct hstate *h;
2971	unsigned long free_huge_pages;
2972	int nid;
2973
2974	h = kobj_to_hstate(kobj, &nid);
2975	if (nid == NUMA_NO_NODE)
2976		free_huge_pages = h->free_huge_pages;
2977	else
2978		free_huge_pages = h->free_huge_pages_node[nid];
2979
2980	return sprintf(buf, "%lu\n", free_huge_pages);
2981}
2982HSTATE_ATTR_RO(free_hugepages);
2983
2984static ssize_t resv_hugepages_show(struct kobject *kobj,
2985					struct kobj_attribute *attr, char *buf)
2986{
2987	struct hstate *h = kobj_to_hstate(kobj, NULL);
2988	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2989}
2990HSTATE_ATTR_RO(resv_hugepages);
2991
2992static ssize_t surplus_hugepages_show(struct kobject *kobj,
2993					struct kobj_attribute *attr, char *buf)
2994{
2995	struct hstate *h;
2996	unsigned long surplus_huge_pages;
2997	int nid;
2998
2999	h = kobj_to_hstate(kobj, &nid);
3000	if (nid == NUMA_NO_NODE)
3001		surplus_huge_pages = h->surplus_huge_pages;
3002	else
3003		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3004
3005	return sprintf(buf, "%lu\n", surplus_huge_pages);
3006}
3007HSTATE_ATTR_RO(surplus_hugepages);
3008
3009static struct attribute *hstate_attrs[] = {
3010	&nr_hugepages_attr.attr,
3011	&nr_overcommit_hugepages_attr.attr,
3012	&free_hugepages_attr.attr,
3013	&resv_hugepages_attr.attr,
3014	&surplus_hugepages_attr.attr,
3015#ifdef CONFIG_NUMA
3016	&nr_hugepages_mempolicy_attr.attr,
3017#endif
3018	NULL,
3019};
3020
3021static const struct attribute_group hstate_attr_group = {
3022	.attrs = hstate_attrs,
3023};
3024
3025static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3026				    struct kobject **hstate_kobjs,
3027				    const struct attribute_group *hstate_attr_group)
3028{
3029	int retval;
3030	int hi = hstate_index(h);
3031
3032	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3033	if (!hstate_kobjs[hi])
3034		return -ENOMEM;
3035
3036	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3037	if (retval)
3038		kobject_put(hstate_kobjs[hi]);
3039
3040	return retval;
3041}
3042
3043static void __init hugetlb_sysfs_init(void)
3044{
3045	struct hstate *h;
3046	int err;
3047
3048	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3049	if (!hugepages_kobj)
3050		return;
3051
3052	for_each_hstate(h) {
3053		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3054					 hstate_kobjs, &hstate_attr_group);
3055		if (err)
3056			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3057	}
3058}
3059
3060#ifdef CONFIG_NUMA
3061
3062/*
3063 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3064 * with node devices in node_devices[] using a parallel array.  The array
3065 * index of a node device or _hstate == node id.
3066 * This is here to avoid any static dependency of the node device driver, in
3067 * the base kernel, on the hugetlb module.
3068 */
3069struct node_hstate {
3070	struct kobject		*hugepages_kobj;
3071	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3072};
3073static struct node_hstate node_hstates[MAX_NUMNODES];
3074
3075/*
3076 * A subset of global hstate attributes for node devices
3077 */
3078static struct attribute *per_node_hstate_attrs[] = {
3079	&nr_hugepages_attr.attr,
3080	&free_hugepages_attr.attr,
3081	&surplus_hugepages_attr.attr,
3082	NULL,
3083};
3084
3085static const struct attribute_group per_node_hstate_attr_group = {
3086	.attrs = per_node_hstate_attrs,
3087};
3088
3089/*
3090 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3091 * Returns node id via non-NULL nidp.
3092 */
3093static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3094{
3095	int nid;
3096
3097	for (nid = 0; nid < nr_node_ids; nid++) {
3098		struct node_hstate *nhs = &node_hstates[nid];
3099		int i;
3100		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3101			if (nhs->hstate_kobjs[i] == kobj) {
3102				if (nidp)
3103					*nidp = nid;
3104				return &hstates[i];
3105			}
3106	}
3107
3108	BUG();
3109	return NULL;
3110}
3111
3112/*
3113 * Unregister hstate attributes from a single node device.
3114 * No-op if no hstate attributes attached.
3115 */
3116static void hugetlb_unregister_node(struct node *node)
3117{
3118	struct hstate *h;
3119	struct node_hstate *nhs = &node_hstates[node->dev.id];
3120
3121	if (!nhs->hugepages_kobj)
3122		return;		/* no hstate attributes */
3123
3124	for_each_hstate(h) {
3125		int idx = hstate_index(h);
3126		if (nhs->hstate_kobjs[idx]) {
3127			kobject_put(nhs->hstate_kobjs[idx]);
3128			nhs->hstate_kobjs[idx] = NULL;
3129		}
3130	}
3131
3132	kobject_put(nhs->hugepages_kobj);
3133	nhs->hugepages_kobj = NULL;
3134}
3135
3136
3137/*
3138 * Register hstate attributes for a single node device.
3139 * No-op if attributes already registered.
3140 */
3141static void hugetlb_register_node(struct node *node)
3142{
3143	struct hstate *h;
3144	struct node_hstate *nhs = &node_hstates[node->dev.id];
3145	int err;
3146
3147	if (nhs->hugepages_kobj)
3148		return;		/* already allocated */
3149
3150	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3151							&node->dev.kobj);
3152	if (!nhs->hugepages_kobj)
3153		return;
3154
3155	for_each_hstate(h) {
3156		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3157						nhs->hstate_kobjs,
3158						&per_node_hstate_attr_group);
3159		if (err) {
3160			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3161				h->name, node->dev.id);
3162			hugetlb_unregister_node(node);
3163			break;
3164		}
3165	}
3166}
3167
3168/*
3169 * hugetlb init time:  register hstate attributes for all registered node
3170 * devices of nodes that have memory.  All on-line nodes should have
3171 * registered their associated device by this time.
3172 */
3173static void __init hugetlb_register_all_nodes(void)
3174{
3175	int nid;
3176
3177	for_each_node_state(nid, N_MEMORY) {
3178		struct node *node = node_devices[nid];
3179		if (node->dev.id == nid)
3180			hugetlb_register_node(node);
3181	}
3182
3183	/*
3184	 * Let the node device driver know we're here so it can
3185	 * [un]register hstate attributes on node hotplug.
3186	 */
3187	register_hugetlbfs_with_node(hugetlb_register_node,
3188				     hugetlb_unregister_node);
3189}
3190#else	/* !CONFIG_NUMA */
3191
3192static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3193{
3194	BUG();
3195	if (nidp)
3196		*nidp = -1;
3197	return NULL;
3198}
3199
3200static void hugetlb_register_all_nodes(void) { }
3201
3202#endif
3203
3204static int __init hugetlb_init(void)
3205{
3206	int i;
3207
3208	if (!hugepages_supported()) {
3209		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3210			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3211		return 0;
3212	}
3213
3214	/*
3215	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3216	 * architectures depend on setup being done here.
3217	 */
3218	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3219	if (!parsed_default_hugepagesz) {
3220		/*
3221		 * If we did not parse a default huge page size, set
3222		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3223		 * number of huge pages for this default size was implicitly
3224		 * specified, set that here as well.
3225		 * Note that the implicit setting will overwrite an explicit
3226		 * setting.  A warning will be printed in this case.
3227		 */
3228		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3229		if (default_hstate_max_huge_pages) {
3230			if (default_hstate.max_huge_pages) {
3231				char buf[32];
3232
3233				string_get_size(huge_page_size(&default_hstate),
3234					1, STRING_UNITS_2, buf, 32);
3235				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3236					default_hstate.max_huge_pages, buf);
3237				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3238					default_hstate_max_huge_pages);
3239			}
3240			default_hstate.max_huge_pages =
3241				default_hstate_max_huge_pages;
3242		}
 
 
 
 
 
 
 
 
 
3243	}
3244
3245	hugetlb_cma_check();
3246	hugetlb_init_hstates();
3247	gather_bootmem_prealloc();
3248	report_hugepages();
3249
3250	hugetlb_sysfs_init();
3251	hugetlb_register_all_nodes();
3252	hugetlb_cgroup_file_init();
3253
3254#ifdef CONFIG_SMP
3255	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3256#else
3257	num_fault_mutexes = 1;
3258#endif
3259	hugetlb_fault_mutex_table =
3260		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3261			      GFP_KERNEL);
3262	BUG_ON(!hugetlb_fault_mutex_table);
3263
3264	for (i = 0; i < num_fault_mutexes; i++)
3265		mutex_init(&hugetlb_fault_mutex_table[i]);
3266	return 0;
3267}
3268subsys_initcall(hugetlb_init);
3269
3270/* Overwritten by architectures with more huge page sizes */
3271bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3272{
3273	return size == HPAGE_SIZE;
3274}
3275
3276void __init hugetlb_add_hstate(unsigned int order)
3277{
3278	struct hstate *h;
3279	unsigned long i;
3280
3281	if (size_to_hstate(PAGE_SIZE << order)) {
 
3282		return;
3283	}
3284	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3285	BUG_ON(order == 0);
3286	h = &hstates[hugetlb_max_hstate++];
3287	h->order = order;
3288	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3289	h->nr_huge_pages = 0;
3290	h->free_huge_pages = 0;
3291	for (i = 0; i < MAX_NUMNODES; ++i)
3292		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3293	INIT_LIST_HEAD(&h->hugepage_activelist);
3294	h->next_nid_to_alloc = first_memory_node;
3295	h->next_nid_to_free = first_memory_node;
3296	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3297					huge_page_size(h)/1024);
3298
3299	parsed_hstate = h;
3300}
3301
3302/*
3303 * hugepages command line processing
3304 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3305 * specification.  If not, ignore the hugepages value.  hugepages can also
3306 * be the first huge page command line  option in which case it implicitly
3307 * specifies the number of huge pages for the default size.
3308 */
3309static int __init hugepages_setup(char *s)
3310{
3311	unsigned long *mhp;
3312	static unsigned long *last_mhp;
3313
3314	if (!parsed_valid_hugepagesz) {
3315		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
 
3316		parsed_valid_hugepagesz = true;
3317		return 0;
3318	}
3319
3320	/*
3321	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3322	 * yet, so this hugepages= parameter goes to the "default hstate".
3323	 * Otherwise, it goes with the previously parsed hugepagesz or
3324	 * default_hugepagesz.
3325	 */
3326	else if (!hugetlb_max_hstate)
3327		mhp = &default_hstate_max_huge_pages;
3328	else
3329		mhp = &parsed_hstate->max_huge_pages;
3330
3331	if (mhp == last_mhp) {
3332		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3333		return 0;
3334	}
3335
3336	if (sscanf(s, "%lu", mhp) <= 0)
3337		*mhp = 0;
3338
3339	/*
3340	 * Global state is always initialized later in hugetlb_init.
3341	 * But we need to allocate >= MAX_ORDER hstates here early to still
3342	 * use the bootmem allocator.
3343	 */
3344	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3345		hugetlb_hstate_alloc_pages(parsed_hstate);
3346
3347	last_mhp = mhp;
3348
3349	return 1;
3350}
3351__setup("hugepages=", hugepages_setup);
3352
3353/*
3354 * hugepagesz command line processing
3355 * A specific huge page size can only be specified once with hugepagesz.
3356 * hugepagesz is followed by hugepages on the command line.  The global
3357 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3358 * hugepagesz argument was valid.
3359 */
3360static int __init hugepagesz_setup(char *s)
3361{
3362	unsigned long size;
3363	struct hstate *h;
3364
3365	parsed_valid_hugepagesz = false;
3366	size = (unsigned long)memparse(s, NULL);
3367
3368	if (!arch_hugetlb_valid_size(size)) {
3369		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3370		return 0;
3371	}
3372
3373	h = size_to_hstate(size);
3374	if (h) {
3375		/*
3376		 * hstate for this size already exists.  This is normally
3377		 * an error, but is allowed if the existing hstate is the
3378		 * default hstate.  More specifically, it is only allowed if
3379		 * the number of huge pages for the default hstate was not
3380		 * previously specified.
3381		 */
3382		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3383		    default_hstate.max_huge_pages) {
3384			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3385			return 0;
3386		}
3387
3388		/*
3389		 * No need to call hugetlb_add_hstate() as hstate already
3390		 * exists.  But, do set parsed_hstate so that a following
3391		 * hugepages= parameter will be applied to this hstate.
3392		 */
3393		parsed_hstate = h;
3394		parsed_valid_hugepagesz = true;
3395		return 1;
3396	}
3397
3398	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3399	parsed_valid_hugepagesz = true;
3400	return 1;
3401}
3402__setup("hugepagesz=", hugepagesz_setup);
3403
3404/*
3405 * default_hugepagesz command line input
3406 * Only one instance of default_hugepagesz allowed on command line.
3407 */
3408static int __init default_hugepagesz_setup(char *s)
3409{
3410	unsigned long size;
3411
3412	parsed_valid_hugepagesz = false;
3413	if (parsed_default_hugepagesz) {
3414		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3415		return 0;
3416	}
3417
3418	size = (unsigned long)memparse(s, NULL);
3419
3420	if (!arch_hugetlb_valid_size(size)) {
3421		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3422		return 0;
3423	}
3424
3425	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3426	parsed_valid_hugepagesz = true;
3427	parsed_default_hugepagesz = true;
3428	default_hstate_idx = hstate_index(size_to_hstate(size));
3429
3430	/*
3431	 * The number of default huge pages (for this size) could have been
3432	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3433	 * then default_hstate_max_huge_pages is set.  If the default huge
3434	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3435	 * allocated here from bootmem allocator.
3436	 */
3437	if (default_hstate_max_huge_pages) {
3438		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3439		if (hstate_is_gigantic(&default_hstate))
3440			hugetlb_hstate_alloc_pages(&default_hstate);
3441		default_hstate_max_huge_pages = 0;
3442	}
3443
3444	return 1;
3445}
3446__setup("default_hugepagesz=", default_hugepagesz_setup);
3447
3448static unsigned int allowed_mems_nr(struct hstate *h)
3449{
3450	int node;
3451	unsigned int nr = 0;
3452	nodemask_t *mpol_allowed;
3453	unsigned int *array = h->free_huge_pages_node;
3454	gfp_t gfp_mask = htlb_alloc_mask(h);
3455
3456	mpol_allowed = policy_nodemask_current(gfp_mask);
3457
3458	for_each_node_mask(node, cpuset_current_mems_allowed) {
3459		if (!mpol_allowed ||
3460		    (mpol_allowed && node_isset(node, *mpol_allowed)))
3461			nr += array[node];
3462	}
3463
3464	return nr;
3465}
3466
3467#ifdef CONFIG_SYSCTL
3468static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3469					  void *buffer, size_t *length,
3470					  loff_t *ppos, unsigned long *out)
3471{
3472	struct ctl_table dup_table;
3473
3474	/*
3475	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3476	 * can duplicate the @table and alter the duplicate of it.
3477	 */
3478	dup_table = *table;
3479	dup_table.data = out;
3480
3481	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3482}
3483
3484static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3485			 struct ctl_table *table, int write,
3486			 void *buffer, size_t *length, loff_t *ppos)
3487{
3488	struct hstate *h = &default_hstate;
3489	unsigned long tmp = h->max_huge_pages;
3490	int ret;
3491
3492	if (!hugepages_supported())
3493		return -EOPNOTSUPP;
3494
3495	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3496					     &tmp);
 
3497	if (ret)
3498		goto out;
3499
3500	if (write)
3501		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3502						  NUMA_NO_NODE, tmp, *length);
3503out:
3504	return ret;
3505}
3506
3507int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3508			  void *buffer, size_t *length, loff_t *ppos)
3509{
3510
3511	return hugetlb_sysctl_handler_common(false, table, write,
3512							buffer, length, ppos);
3513}
3514
3515#ifdef CONFIG_NUMA
3516int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3517			  void *buffer, size_t *length, loff_t *ppos)
3518{
3519	return hugetlb_sysctl_handler_common(true, table, write,
3520							buffer, length, ppos);
3521}
3522#endif /* CONFIG_NUMA */
3523
3524int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3525		void *buffer, size_t *length, loff_t *ppos)
 
3526{
3527	struct hstate *h = &default_hstate;
3528	unsigned long tmp;
3529	int ret;
3530
3531	if (!hugepages_supported())
3532		return -EOPNOTSUPP;
3533
3534	tmp = h->nr_overcommit_huge_pages;
3535
3536	if (write && hstate_is_gigantic(h))
3537		return -EINVAL;
3538
3539	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3540					     &tmp);
 
3541	if (ret)
3542		goto out;
3543
3544	if (write) {
3545		spin_lock(&hugetlb_lock);
3546		h->nr_overcommit_huge_pages = tmp;
3547		spin_unlock(&hugetlb_lock);
3548	}
3549out:
3550	return ret;
3551}
3552
3553#endif /* CONFIG_SYSCTL */
3554
3555void hugetlb_report_meminfo(struct seq_file *m)
3556{
3557	struct hstate *h;
3558	unsigned long total = 0;
3559
3560	if (!hugepages_supported())
3561		return;
3562
3563	for_each_hstate(h) {
3564		unsigned long count = h->nr_huge_pages;
3565
3566		total += (PAGE_SIZE << huge_page_order(h)) * count;
3567
3568		if (h == &default_hstate)
3569			seq_printf(m,
3570				   "HugePages_Total:   %5lu\n"
3571				   "HugePages_Free:    %5lu\n"
3572				   "HugePages_Rsvd:    %5lu\n"
3573				   "HugePages_Surp:    %5lu\n"
3574				   "Hugepagesize:   %8lu kB\n",
3575				   count,
3576				   h->free_huge_pages,
3577				   h->resv_huge_pages,
3578				   h->surplus_huge_pages,
3579				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3580	}
3581
3582	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3583}
3584
3585int hugetlb_report_node_meminfo(int nid, char *buf)
3586{
3587	struct hstate *h = &default_hstate;
3588	if (!hugepages_supported())
3589		return 0;
3590	return sprintf(buf,
3591		"Node %d HugePages_Total: %5u\n"
3592		"Node %d HugePages_Free:  %5u\n"
3593		"Node %d HugePages_Surp:  %5u\n",
3594		nid, h->nr_huge_pages_node[nid],
3595		nid, h->free_huge_pages_node[nid],
3596		nid, h->surplus_huge_pages_node[nid]);
3597}
3598
3599void hugetlb_show_meminfo(void)
3600{
3601	struct hstate *h;
3602	int nid;
3603
3604	if (!hugepages_supported())
3605		return;
3606
3607	for_each_node_state(nid, N_MEMORY)
3608		for_each_hstate(h)
3609			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3610				nid,
3611				h->nr_huge_pages_node[nid],
3612				h->free_huge_pages_node[nid],
3613				h->surplus_huge_pages_node[nid],
3614				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3615}
3616
3617void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3618{
3619	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3620		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3621}
3622
3623/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3624unsigned long hugetlb_total_pages(void)
3625{
3626	struct hstate *h;
3627	unsigned long nr_total_pages = 0;
3628
3629	for_each_hstate(h)
3630		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3631	return nr_total_pages;
3632}
3633
3634static int hugetlb_acct_memory(struct hstate *h, long delta)
3635{
3636	int ret = -ENOMEM;
3637
3638	spin_lock(&hugetlb_lock);
3639	/*
3640	 * When cpuset is configured, it breaks the strict hugetlb page
3641	 * reservation as the accounting is done on a global variable. Such
3642	 * reservation is completely rubbish in the presence of cpuset because
3643	 * the reservation is not checked against page availability for the
3644	 * current cpuset. Application can still potentially OOM'ed by kernel
3645	 * with lack of free htlb page in cpuset that the task is in.
3646	 * Attempt to enforce strict accounting with cpuset is almost
3647	 * impossible (or too ugly) because cpuset is too fluid that
3648	 * task or memory node can be dynamically moved between cpusets.
3649	 *
3650	 * The change of semantics for shared hugetlb mapping with cpuset is
3651	 * undesirable. However, in order to preserve some of the semantics,
3652	 * we fall back to check against current free page availability as
3653	 * a best attempt and hopefully to minimize the impact of changing
3654	 * semantics that cpuset has.
3655	 *
3656	 * Apart from cpuset, we also have memory policy mechanism that
3657	 * also determines from which node the kernel will allocate memory
3658	 * in a NUMA system. So similar to cpuset, we also should consider
3659	 * the memory policy of the current task. Similar to the description
3660	 * above.
3661	 */
3662	if (delta > 0) {
3663		if (gather_surplus_pages(h, delta) < 0)
3664			goto out;
3665
3666		if (delta > allowed_mems_nr(h)) {
3667			return_unused_surplus_pages(h, delta);
3668			goto out;
3669		}
3670	}
3671
3672	ret = 0;
3673	if (delta < 0)
3674		return_unused_surplus_pages(h, (unsigned long) -delta);
3675
3676out:
3677	spin_unlock(&hugetlb_lock);
3678	return ret;
3679}
3680
3681static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3682{
3683	struct resv_map *resv = vma_resv_map(vma);
3684
3685	/*
3686	 * This new VMA should share its siblings reservation map if present.
3687	 * The VMA will only ever have a valid reservation map pointer where
3688	 * it is being copied for another still existing VMA.  As that VMA
3689	 * has a reference to the reservation map it cannot disappear until
3690	 * after this open call completes.  It is therefore safe to take a
3691	 * new reference here without additional locking.
3692	 */
3693	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3694		kref_get(&resv->refs);
3695}
3696
3697static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3698{
3699	struct hstate *h = hstate_vma(vma);
3700	struct resv_map *resv = vma_resv_map(vma);
3701	struct hugepage_subpool *spool = subpool_vma(vma);
3702	unsigned long reserve, start, end;
3703	long gbl_reserve;
3704
3705	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3706		return;
3707
3708	start = vma_hugecache_offset(h, vma, vma->vm_start);
3709	end = vma_hugecache_offset(h, vma, vma->vm_end);
3710
3711	reserve = (end - start) - region_count(resv, start, end);
3712	hugetlb_cgroup_uncharge_counter(resv, start, end);
 
 
3713	if (reserve) {
3714		/*
3715		 * Decrement reserve counts.  The global reserve count may be
3716		 * adjusted if the subpool has a minimum size.
3717		 */
3718		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3719		hugetlb_acct_memory(h, -gbl_reserve);
3720	}
3721
3722	kref_put(&resv->refs, resv_map_release);
3723}
3724
3725static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3726{
3727	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3728		return -EINVAL;
3729	return 0;
3730}
3731
3732static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3733{
3734	struct hstate *hstate = hstate_vma(vma);
3735
3736	return 1UL << huge_page_shift(hstate);
3737}
3738
3739/*
3740 * We cannot handle pagefaults against hugetlb pages at all.  They cause
3741 * handle_mm_fault() to try to instantiate regular-sized pages in the
3742 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3743 * this far.
3744 */
3745static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3746{
3747	BUG();
3748	return 0;
3749}
3750
3751/*
3752 * When a new function is introduced to vm_operations_struct and added
3753 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3754 * This is because under System V memory model, mappings created via
3755 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3756 * their original vm_ops are overwritten with shm_vm_ops.
3757 */
3758const struct vm_operations_struct hugetlb_vm_ops = {
3759	.fault = hugetlb_vm_op_fault,
3760	.open = hugetlb_vm_op_open,
3761	.close = hugetlb_vm_op_close,
3762	.split = hugetlb_vm_op_split,
3763	.pagesize = hugetlb_vm_op_pagesize,
3764};
3765
3766static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3767				int writable)
3768{
3769	pte_t entry;
3770
3771	if (writable) {
3772		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3773					 vma->vm_page_prot)));
3774	} else {
3775		entry = huge_pte_wrprotect(mk_huge_pte(page,
3776					   vma->vm_page_prot));
3777	}
3778	entry = pte_mkyoung(entry);
3779	entry = pte_mkhuge(entry);
3780	entry = arch_make_huge_pte(entry, vma, page, writable);
3781
3782	return entry;
3783}
3784
3785static void set_huge_ptep_writable(struct vm_area_struct *vma,
3786				   unsigned long address, pte_t *ptep)
3787{
3788	pte_t entry;
3789
3790	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3791	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3792		update_mmu_cache(vma, address, ptep);
3793}
3794
3795bool is_hugetlb_entry_migration(pte_t pte)
3796{
3797	swp_entry_t swp;
3798
3799	if (huge_pte_none(pte) || pte_present(pte))
3800		return false;
3801	swp = pte_to_swp_entry(pte);
3802	if (non_swap_entry(swp) && is_migration_entry(swp))
3803		return true;
3804	else
3805		return false;
3806}
3807
3808static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3809{
3810	swp_entry_t swp;
3811
3812	if (huge_pte_none(pte) || pte_present(pte))
3813		return 0;
3814	swp = pte_to_swp_entry(pte);
3815	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3816		return 1;
3817	else
3818		return 0;
3819}
3820
3821int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3822			    struct vm_area_struct *vma)
3823{
3824	pte_t *src_pte, *dst_pte, entry, dst_entry;
3825	struct page *ptepage;
3826	unsigned long addr;
3827	int cow;
3828	struct hstate *h = hstate_vma(vma);
3829	unsigned long sz = huge_page_size(h);
3830	struct address_space *mapping = vma->vm_file->f_mapping;
3831	struct mmu_notifier_range range;
3832	int ret = 0;
3833
3834	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3835
3836	if (cow) {
3837		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3838					vma->vm_start,
3839					vma->vm_end);
3840		mmu_notifier_invalidate_range_start(&range);
3841	} else {
3842		/*
3843		 * For shared mappings i_mmap_rwsem must be held to call
3844		 * huge_pte_alloc, otherwise the returned ptep could go
3845		 * away if part of a shared pmd and another thread calls
3846		 * huge_pmd_unshare.
3847		 */
3848		i_mmap_lock_read(mapping);
3849	}
3850
3851	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3852		spinlock_t *src_ptl, *dst_ptl;
3853		src_pte = huge_pte_offset(src, addr, sz);
3854		if (!src_pte)
3855			continue;
3856		dst_pte = huge_pte_alloc(dst, addr, sz);
3857		if (!dst_pte) {
3858			ret = -ENOMEM;
3859			break;
3860		}
3861
3862		/*
3863		 * If the pagetables are shared don't copy or take references.
3864		 * dst_pte == src_pte is the common case of src/dest sharing.
3865		 *
3866		 * However, src could have 'unshared' and dst shares with
3867		 * another vma.  If dst_pte !none, this implies sharing.
3868		 * Check here before taking page table lock, and once again
3869		 * after taking the lock below.
3870		 */
3871		dst_entry = huge_ptep_get(dst_pte);
3872		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3873			continue;
3874
3875		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3876		src_ptl = huge_pte_lockptr(h, src, src_pte);
3877		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3878		entry = huge_ptep_get(src_pte);
3879		dst_entry = huge_ptep_get(dst_pte);
3880		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3881			/*
3882			 * Skip if src entry none.  Also, skip in the
3883			 * unlikely case dst entry !none as this implies
3884			 * sharing with another vma.
3885			 */
3886			;
3887		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3888				    is_hugetlb_entry_hwpoisoned(entry))) {
3889			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3890
3891			if (is_write_migration_entry(swp_entry) && cow) {
3892				/*
3893				 * COW mappings require pages in both
3894				 * parent and child to be set to read.
3895				 */
3896				make_migration_entry_read(&swp_entry);
3897				entry = swp_entry_to_pte(swp_entry);
3898				set_huge_swap_pte_at(src, addr, src_pte,
3899						     entry, sz);
3900			}
3901			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3902		} else {
3903			if (cow) {
3904				/*
3905				 * No need to notify as we are downgrading page
3906				 * table protection not changing it to point
3907				 * to a new page.
3908				 *
3909				 * See Documentation/vm/mmu_notifier.rst
3910				 */
3911				huge_ptep_set_wrprotect(src, addr, src_pte);
3912			}
3913			entry = huge_ptep_get(src_pte);
3914			ptepage = pte_page(entry);
3915			get_page(ptepage);
3916			page_dup_rmap(ptepage, true);
3917			set_huge_pte_at(dst, addr, dst_pte, entry);
3918			hugetlb_count_add(pages_per_huge_page(h), dst);
3919		}
3920		spin_unlock(src_ptl);
3921		spin_unlock(dst_ptl);
3922	}
3923
3924	if (cow)
3925		mmu_notifier_invalidate_range_end(&range);
3926	else
3927		i_mmap_unlock_read(mapping);
3928
3929	return ret;
3930}
3931
3932void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3933			    unsigned long start, unsigned long end,
3934			    struct page *ref_page)
3935{
3936	struct mm_struct *mm = vma->vm_mm;
3937	unsigned long address;
3938	pte_t *ptep;
3939	pte_t pte;
3940	spinlock_t *ptl;
3941	struct page *page;
3942	struct hstate *h = hstate_vma(vma);
3943	unsigned long sz = huge_page_size(h);
3944	struct mmu_notifier_range range;
3945
3946	WARN_ON(!is_vm_hugetlb_page(vma));
3947	BUG_ON(start & ~huge_page_mask(h));
3948	BUG_ON(end & ~huge_page_mask(h));
3949
3950	/*
3951	 * This is a hugetlb vma, all the pte entries should point
3952	 * to huge page.
3953	 */
3954	tlb_change_page_size(tlb, sz);
3955	tlb_start_vma(tlb, vma);
3956
3957	/*
3958	 * If sharing possible, alert mmu notifiers of worst case.
3959	 */
3960	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3961				end);
3962	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3963	mmu_notifier_invalidate_range_start(&range);
3964	address = start;
3965	for (; address < end; address += sz) {
3966		ptep = huge_pte_offset(mm, address, sz);
3967		if (!ptep)
3968			continue;
3969
3970		ptl = huge_pte_lock(h, mm, ptep);
3971		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3972			spin_unlock(ptl);
3973			/*
3974			 * We just unmapped a page of PMDs by clearing a PUD.
3975			 * The caller's TLB flush range should cover this area.
3976			 */
3977			continue;
3978		}
3979
3980		pte = huge_ptep_get(ptep);
3981		if (huge_pte_none(pte)) {
3982			spin_unlock(ptl);
3983			continue;
3984		}
3985
3986		/*
3987		 * Migrating hugepage or HWPoisoned hugepage is already
3988		 * unmapped and its refcount is dropped, so just clear pte here.
3989		 */
3990		if (unlikely(!pte_present(pte))) {
3991			huge_pte_clear(mm, address, ptep, sz);
3992			spin_unlock(ptl);
3993			continue;
3994		}
3995
3996		page = pte_page(pte);
3997		/*
3998		 * If a reference page is supplied, it is because a specific
3999		 * page is being unmapped, not a range. Ensure the page we
4000		 * are about to unmap is the actual page of interest.
4001		 */
4002		if (ref_page) {
4003			if (page != ref_page) {
4004				spin_unlock(ptl);
4005				continue;
4006			}
4007			/*
4008			 * Mark the VMA as having unmapped its page so that
4009			 * future faults in this VMA will fail rather than
4010			 * looking like data was lost
4011			 */
4012			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4013		}
4014
4015		pte = huge_ptep_get_and_clear(mm, address, ptep);
4016		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4017		if (huge_pte_dirty(pte))
4018			set_page_dirty(page);
4019
4020		hugetlb_count_sub(pages_per_huge_page(h), mm);
4021		page_remove_rmap(page, true);
4022
4023		spin_unlock(ptl);
4024		tlb_remove_page_size(tlb, page, huge_page_size(h));
4025		/*
4026		 * Bail out after unmapping reference page if supplied
4027		 */
4028		if (ref_page)
4029			break;
4030	}
4031	mmu_notifier_invalidate_range_end(&range);
4032	tlb_end_vma(tlb, vma);
4033}
4034
4035void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4036			  struct vm_area_struct *vma, unsigned long start,
4037			  unsigned long end, struct page *ref_page)
4038{
4039	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4040
4041	/*
4042	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4043	 * test will fail on a vma being torn down, and not grab a page table
4044	 * on its way out.  We're lucky that the flag has such an appropriate
4045	 * name, and can in fact be safely cleared here. We could clear it
4046	 * before the __unmap_hugepage_range above, but all that's necessary
4047	 * is to clear it before releasing the i_mmap_rwsem. This works
4048	 * because in the context this is called, the VMA is about to be
4049	 * destroyed and the i_mmap_rwsem is held.
4050	 */
4051	vma->vm_flags &= ~VM_MAYSHARE;
4052}
4053
4054void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4055			  unsigned long end, struct page *ref_page)
4056{
4057	struct mm_struct *mm;
4058	struct mmu_gather tlb;
4059	unsigned long tlb_start = start;
4060	unsigned long tlb_end = end;
4061
4062	/*
4063	 * If shared PMDs were possibly used within this vma range, adjust
4064	 * start/end for worst case tlb flushing.
4065	 * Note that we can not be sure if PMDs are shared until we try to
4066	 * unmap pages.  However, we want to make sure TLB flushing covers
4067	 * the largest possible range.
4068	 */
4069	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4070
4071	mm = vma->vm_mm;
4072
4073	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4074	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4075	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4076}
4077
4078/*
4079 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4080 * mappping it owns the reserve page for. The intention is to unmap the page
4081 * from other VMAs and let the children be SIGKILLed if they are faulting the
4082 * same region.
4083 */
4084static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4085			      struct page *page, unsigned long address)
4086{
4087	struct hstate *h = hstate_vma(vma);
4088	struct vm_area_struct *iter_vma;
4089	struct address_space *mapping;
4090	pgoff_t pgoff;
4091
4092	/*
4093	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4094	 * from page cache lookup which is in HPAGE_SIZE units.
4095	 */
4096	address = address & huge_page_mask(h);
4097	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4098			vma->vm_pgoff;
4099	mapping = vma->vm_file->f_mapping;
4100
4101	/*
4102	 * Take the mapping lock for the duration of the table walk. As
4103	 * this mapping should be shared between all the VMAs,
4104	 * __unmap_hugepage_range() is called as the lock is already held
4105	 */
4106	i_mmap_lock_write(mapping);
4107	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4108		/* Do not unmap the current VMA */
4109		if (iter_vma == vma)
4110			continue;
4111
4112		/*
4113		 * Shared VMAs have their own reserves and do not affect
4114		 * MAP_PRIVATE accounting but it is possible that a shared
4115		 * VMA is using the same page so check and skip such VMAs.
4116		 */
4117		if (iter_vma->vm_flags & VM_MAYSHARE)
4118			continue;
4119
4120		/*
4121		 * Unmap the page from other VMAs without their own reserves.
4122		 * They get marked to be SIGKILLed if they fault in these
4123		 * areas. This is because a future no-page fault on this VMA
4124		 * could insert a zeroed page instead of the data existing
4125		 * from the time of fork. This would look like data corruption
4126		 */
4127		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4128			unmap_hugepage_range(iter_vma, address,
4129					     address + huge_page_size(h), page);
4130	}
4131	i_mmap_unlock_write(mapping);
4132}
4133
4134/*
4135 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4136 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4137 * cannot race with other handlers or page migration.
4138 * Keep the pte_same checks anyway to make transition from the mutex easier.
4139 */
4140static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4141		       unsigned long address, pte_t *ptep,
4142		       struct page *pagecache_page, spinlock_t *ptl)
4143{
4144	pte_t pte;
4145	struct hstate *h = hstate_vma(vma);
4146	struct page *old_page, *new_page;
4147	int outside_reserve = 0;
4148	vm_fault_t ret = 0;
4149	unsigned long haddr = address & huge_page_mask(h);
4150	struct mmu_notifier_range range;
4151
4152	pte = huge_ptep_get(ptep);
4153	old_page = pte_page(pte);
4154
4155retry_avoidcopy:
4156	/* If no-one else is actually using this page, avoid the copy
4157	 * and just make the page writable */
4158	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4159		page_move_anon_rmap(old_page, vma);
4160		set_huge_ptep_writable(vma, haddr, ptep);
4161		return 0;
4162	}
4163
4164	/*
4165	 * If the process that created a MAP_PRIVATE mapping is about to
4166	 * perform a COW due to a shared page count, attempt to satisfy
4167	 * the allocation without using the existing reserves. The pagecache
4168	 * page is used to determine if the reserve at this address was
4169	 * consumed or not. If reserves were used, a partial faulted mapping
4170	 * at the time of fork() could consume its reserves on COW instead
4171	 * of the full address range.
4172	 */
4173	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4174			old_page != pagecache_page)
4175		outside_reserve = 1;
4176
4177	get_page(old_page);
4178
4179	/*
4180	 * Drop page table lock as buddy allocator may be called. It will
4181	 * be acquired again before returning to the caller, as expected.
4182	 */
4183	spin_unlock(ptl);
4184	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4185
4186	if (IS_ERR(new_page)) {
4187		/*
4188		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4189		 * it is due to references held by a child and an insufficient
4190		 * huge page pool. To guarantee the original mappers
4191		 * reliability, unmap the page from child processes. The child
4192		 * may get SIGKILLed if it later faults.
4193		 */
4194		if (outside_reserve) {
4195			put_page(old_page);
4196			BUG_ON(huge_pte_none(pte));
4197			unmap_ref_private(mm, vma, old_page, haddr);
4198			BUG_ON(huge_pte_none(pte));
4199			spin_lock(ptl);
4200			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4201			if (likely(ptep &&
4202				   pte_same(huge_ptep_get(ptep), pte)))
4203				goto retry_avoidcopy;
4204			/*
4205			 * race occurs while re-acquiring page table
4206			 * lock, and our job is done.
4207			 */
4208			return 0;
4209		}
4210
4211		ret = vmf_error(PTR_ERR(new_page));
4212		goto out_release_old;
4213	}
4214
4215	/*
4216	 * When the original hugepage is shared one, it does not have
4217	 * anon_vma prepared.
4218	 */
4219	if (unlikely(anon_vma_prepare(vma))) {
4220		ret = VM_FAULT_OOM;
4221		goto out_release_all;
4222	}
4223
4224	copy_user_huge_page(new_page, old_page, address, vma,
4225			    pages_per_huge_page(h));
4226	__SetPageUptodate(new_page);
4227
4228	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4229				haddr + huge_page_size(h));
4230	mmu_notifier_invalidate_range_start(&range);
4231
4232	/*
4233	 * Retake the page table lock to check for racing updates
4234	 * before the page tables are altered
4235	 */
4236	spin_lock(ptl);
4237	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4238	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4239		ClearPagePrivate(new_page);
4240
4241		/* Break COW */
4242		huge_ptep_clear_flush(vma, haddr, ptep);
4243		mmu_notifier_invalidate_range(mm, range.start, range.end);
4244		set_huge_pte_at(mm, haddr, ptep,
4245				make_huge_pte(vma, new_page, 1));
4246		page_remove_rmap(old_page, true);
4247		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4248		set_page_huge_active(new_page);
4249		/* Make the old page be freed below */
4250		new_page = old_page;
4251	}
4252	spin_unlock(ptl);
4253	mmu_notifier_invalidate_range_end(&range);
4254out_release_all:
4255	restore_reserve_on_error(h, vma, haddr, new_page);
4256	put_page(new_page);
4257out_release_old:
4258	put_page(old_page);
4259
4260	spin_lock(ptl); /* Caller expects lock to be held */
4261	return ret;
4262}
4263
4264/* Return the pagecache page at a given address within a VMA */
4265static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4266			struct vm_area_struct *vma, unsigned long address)
4267{
4268	struct address_space *mapping;
4269	pgoff_t idx;
4270
4271	mapping = vma->vm_file->f_mapping;
4272	idx = vma_hugecache_offset(h, vma, address);
4273
4274	return find_lock_page(mapping, idx);
4275}
4276
4277/*
4278 * Return whether there is a pagecache page to back given address within VMA.
4279 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4280 */
4281static bool hugetlbfs_pagecache_present(struct hstate *h,
4282			struct vm_area_struct *vma, unsigned long address)
4283{
4284	struct address_space *mapping;
4285	pgoff_t idx;
4286	struct page *page;
4287
4288	mapping = vma->vm_file->f_mapping;
4289	idx = vma_hugecache_offset(h, vma, address);
4290
4291	page = find_get_page(mapping, idx);
4292	if (page)
4293		put_page(page);
4294	return page != NULL;
4295}
4296
4297int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4298			   pgoff_t idx)
4299{
4300	struct inode *inode = mapping->host;
4301	struct hstate *h = hstate_inode(inode);
4302	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4303
4304	if (err)
4305		return err;
4306	ClearPagePrivate(page);
4307
4308	/*
4309	 * set page dirty so that it will not be removed from cache/file
4310	 * by non-hugetlbfs specific code paths.
4311	 */
4312	set_page_dirty(page);
4313
4314	spin_lock(&inode->i_lock);
4315	inode->i_blocks += blocks_per_huge_page(h);
4316	spin_unlock(&inode->i_lock);
4317	return 0;
4318}
4319
4320static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4321			struct vm_area_struct *vma,
4322			struct address_space *mapping, pgoff_t idx,
4323			unsigned long address, pte_t *ptep, unsigned int flags)
4324{
4325	struct hstate *h = hstate_vma(vma);
4326	vm_fault_t ret = VM_FAULT_SIGBUS;
4327	int anon_rmap = 0;
4328	unsigned long size;
4329	struct page *page;
4330	pte_t new_pte;
4331	spinlock_t *ptl;
4332	unsigned long haddr = address & huge_page_mask(h);
4333	bool new_page = false;
4334
4335	/*
4336	 * Currently, we are forced to kill the process in the event the
4337	 * original mapper has unmapped pages from the child due to a failed
4338	 * COW. Warn that such a situation has occurred as it may not be obvious
4339	 */
4340	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4341		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4342			   current->pid);
4343		return ret;
4344	}
4345
4346	/*
4347	 * We can not race with truncation due to holding i_mmap_rwsem.
4348	 * i_size is modified when holding i_mmap_rwsem, so check here
4349	 * once for faults beyond end of file.
4350	 */
4351	size = i_size_read(mapping->host) >> huge_page_shift(h);
4352	if (idx >= size)
4353		goto out;
4354
4355retry:
4356	page = find_lock_page(mapping, idx);
4357	if (!page) {
 
 
 
 
4358		/*
4359		 * Check for page in userfault range
4360		 */
4361		if (userfaultfd_missing(vma)) {
4362			u32 hash;
4363			struct vm_fault vmf = {
4364				.vma = vma,
4365				.address = haddr,
4366				.flags = flags,
4367				/*
4368				 * Hard to debug if it ends up being
4369				 * used by a callee that assumes
4370				 * something about the other
4371				 * uninitialized fields... same as in
4372				 * memory.c
4373				 */
4374			};
4375
4376			/*
4377			 * hugetlb_fault_mutex and i_mmap_rwsem must be
4378			 * dropped before handling userfault.  Reacquire
4379			 * after handling fault to make calling code simpler.
4380			 */
4381			hash = hugetlb_fault_mutex_hash(mapping, idx);
4382			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4383			i_mmap_unlock_read(mapping);
4384			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4385			i_mmap_lock_read(mapping);
4386			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4387			goto out;
4388		}
4389
4390		page = alloc_huge_page(vma, haddr, 0);
4391		if (IS_ERR(page)) {
4392			/*
4393			 * Returning error will result in faulting task being
4394			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4395			 * tasks from racing to fault in the same page which
4396			 * could result in false unable to allocate errors.
4397			 * Page migration does not take the fault mutex, but
4398			 * does a clear then write of pte's under page table
4399			 * lock.  Page fault code could race with migration,
4400			 * notice the clear pte and try to allocate a page
4401			 * here.  Before returning error, get ptl and make
4402			 * sure there really is no pte entry.
4403			 */
4404			ptl = huge_pte_lock(h, mm, ptep);
4405			if (!huge_pte_none(huge_ptep_get(ptep))) {
4406				ret = 0;
4407				spin_unlock(ptl);
4408				goto out;
4409			}
4410			spin_unlock(ptl);
4411			ret = vmf_error(PTR_ERR(page));
4412			goto out;
4413		}
4414		clear_huge_page(page, address, pages_per_huge_page(h));
4415		__SetPageUptodate(page);
4416		new_page = true;
4417
4418		if (vma->vm_flags & VM_MAYSHARE) {
4419			int err = huge_add_to_page_cache(page, mapping, idx);
4420			if (err) {
4421				put_page(page);
4422				if (err == -EEXIST)
4423					goto retry;
4424				goto out;
4425			}
4426		} else {
4427			lock_page(page);
4428			if (unlikely(anon_vma_prepare(vma))) {
4429				ret = VM_FAULT_OOM;
4430				goto backout_unlocked;
4431			}
4432			anon_rmap = 1;
4433		}
4434	} else {
4435		/*
4436		 * If memory error occurs between mmap() and fault, some process
4437		 * don't have hwpoisoned swap entry for errored virtual address.
4438		 * So we need to block hugepage fault by PG_hwpoison bit check.
4439		 */
4440		if (unlikely(PageHWPoison(page))) {
4441			ret = VM_FAULT_HWPOISON |
4442				VM_FAULT_SET_HINDEX(hstate_index(h));
4443			goto backout_unlocked;
4444		}
4445	}
4446
4447	/*
4448	 * If we are going to COW a private mapping later, we examine the
4449	 * pending reservations for this page now. This will ensure that
4450	 * any allocations necessary to record that reservation occur outside
4451	 * the spinlock.
4452	 */
4453	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4454		if (vma_needs_reservation(h, vma, haddr) < 0) {
4455			ret = VM_FAULT_OOM;
4456			goto backout_unlocked;
4457		}
4458		/* Just decrements count, does not deallocate */
4459		vma_end_reservation(h, vma, haddr);
4460	}
4461
4462	ptl = huge_pte_lock(h, mm, ptep);
 
 
 
 
4463	ret = 0;
4464	if (!huge_pte_none(huge_ptep_get(ptep)))
4465		goto backout;
4466
4467	if (anon_rmap) {
4468		ClearPagePrivate(page);
4469		hugepage_add_new_anon_rmap(page, vma, haddr);
4470	} else
4471		page_dup_rmap(page, true);
4472	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4473				&& (vma->vm_flags & VM_SHARED)));
4474	set_huge_pte_at(mm, haddr, ptep, new_pte);
4475
4476	hugetlb_count_add(pages_per_huge_page(h), mm);
4477	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4478		/* Optimization, do the COW without a second fault */
4479		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4480	}
4481
4482	spin_unlock(ptl);
4483
4484	/*
4485	 * Only make newly allocated pages active.  Existing pages found
4486	 * in the pagecache could be !page_huge_active() if they have been
4487	 * isolated for migration.
4488	 */
4489	if (new_page)
4490		set_page_huge_active(page);
4491
4492	unlock_page(page);
4493out:
4494	return ret;
4495
4496backout:
4497	spin_unlock(ptl);
4498backout_unlocked:
4499	unlock_page(page);
4500	restore_reserve_on_error(h, vma, haddr, page);
4501	put_page(page);
4502	goto out;
4503}
4504
4505#ifdef CONFIG_SMP
4506u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
 
4507{
4508	unsigned long key[2];
4509	u32 hash;
4510
4511	key[0] = (unsigned long) mapping;
4512	key[1] = idx;
4513
4514	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4515
4516	return hash & (num_fault_mutexes - 1);
4517}
4518#else
4519/*
4520 * For uniprocesor systems we always use a single mutex, so just
4521 * return 0 and avoid the hashing overhead.
4522 */
4523u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
 
4524{
4525	return 0;
4526}
4527#endif
4528
4529vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4530			unsigned long address, unsigned int flags)
4531{
4532	pte_t *ptep, entry;
4533	spinlock_t *ptl;
4534	vm_fault_t ret;
4535	u32 hash;
4536	pgoff_t idx;
4537	struct page *page = NULL;
4538	struct page *pagecache_page = NULL;
4539	struct hstate *h = hstate_vma(vma);
4540	struct address_space *mapping;
4541	int need_wait_lock = 0;
4542	unsigned long haddr = address & huge_page_mask(h);
4543
4544	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4545	if (ptep) {
4546		/*
4547		 * Since we hold no locks, ptep could be stale.  That is
4548		 * OK as we are only making decisions based on content and
4549		 * not actually modifying content here.
4550		 */
4551		entry = huge_ptep_get(ptep);
4552		if (unlikely(is_hugetlb_entry_migration(entry))) {
4553			migration_entry_wait_huge(vma, mm, ptep);
4554			return 0;
4555		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4556			return VM_FAULT_HWPOISON_LARGE |
4557				VM_FAULT_SET_HINDEX(hstate_index(h));
 
 
 
 
4558	}
4559
4560	/*
4561	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4562	 * until finished with ptep.  This serves two purposes:
4563	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4564	 *    and making the ptep no longer valid.
4565	 * 2) It synchronizes us with i_size modifications during truncation.
4566	 *
4567	 * ptep could have already be assigned via huge_pte_offset.  That
4568	 * is OK, as huge_pte_alloc will return the same value unless
4569	 * something has changed.
4570	 */
4571	mapping = vma->vm_file->f_mapping;
4572	i_mmap_lock_read(mapping);
4573	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4574	if (!ptep) {
4575		i_mmap_unlock_read(mapping);
4576		return VM_FAULT_OOM;
4577	}
4578
4579	/*
4580	 * Serialize hugepage allocation and instantiation, so that we don't
4581	 * get spurious allocation failures if two CPUs race to instantiate
4582	 * the same page in the page cache.
4583	 */
4584	idx = vma_hugecache_offset(h, vma, haddr);
4585	hash = hugetlb_fault_mutex_hash(mapping, idx);
4586	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4587
4588	entry = huge_ptep_get(ptep);
4589	if (huge_pte_none(entry)) {
4590		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4591		goto out_mutex;
4592	}
4593
4594	ret = 0;
4595
4596	/*
4597	 * entry could be a migration/hwpoison entry at this point, so this
4598	 * check prevents the kernel from going below assuming that we have
4599	 * an active hugepage in pagecache. This goto expects the 2nd page
4600	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4601	 * properly handle it.
4602	 */
4603	if (!pte_present(entry))
4604		goto out_mutex;
4605
4606	/*
4607	 * If we are going to COW the mapping later, we examine the pending
4608	 * reservations for this page now. This will ensure that any
4609	 * allocations necessary to record that reservation occur outside the
4610	 * spinlock. For private mappings, we also lookup the pagecache
4611	 * page now as it is used to determine if a reservation has been
4612	 * consumed.
4613	 */
4614	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4615		if (vma_needs_reservation(h, vma, haddr) < 0) {
4616			ret = VM_FAULT_OOM;
4617			goto out_mutex;
4618		}
4619		/* Just decrements count, does not deallocate */
4620		vma_end_reservation(h, vma, haddr);
4621
4622		if (!(vma->vm_flags & VM_MAYSHARE))
4623			pagecache_page = hugetlbfs_pagecache_page(h,
4624								vma, haddr);
4625	}
4626
4627	ptl = huge_pte_lock(h, mm, ptep);
4628
4629	/* Check for a racing update before calling hugetlb_cow */
4630	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4631		goto out_ptl;
4632
4633	/*
4634	 * hugetlb_cow() requires page locks of pte_page(entry) and
4635	 * pagecache_page, so here we need take the former one
4636	 * when page != pagecache_page or !pagecache_page.
4637	 */
4638	page = pte_page(entry);
4639	if (page != pagecache_page)
4640		if (!trylock_page(page)) {
4641			need_wait_lock = 1;
4642			goto out_ptl;
4643		}
4644
4645	get_page(page);
4646
4647	if (flags & FAULT_FLAG_WRITE) {
4648		if (!huge_pte_write(entry)) {
4649			ret = hugetlb_cow(mm, vma, address, ptep,
4650					  pagecache_page, ptl);
4651			goto out_put_page;
4652		}
4653		entry = huge_pte_mkdirty(entry);
4654	}
4655	entry = pte_mkyoung(entry);
4656	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4657						flags & FAULT_FLAG_WRITE))
4658		update_mmu_cache(vma, haddr, ptep);
4659out_put_page:
4660	if (page != pagecache_page)
4661		unlock_page(page);
4662	put_page(page);
4663out_ptl:
4664	spin_unlock(ptl);
4665
4666	if (pagecache_page) {
4667		unlock_page(pagecache_page);
4668		put_page(pagecache_page);
4669	}
4670out_mutex:
4671	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4672	i_mmap_unlock_read(mapping);
4673	/*
4674	 * Generally it's safe to hold refcount during waiting page lock. But
4675	 * here we just wait to defer the next page fault to avoid busy loop and
4676	 * the page is not used after unlocked before returning from the current
4677	 * page fault. So we are safe from accessing freed page, even if we wait
4678	 * here without taking refcount.
4679	 */
4680	if (need_wait_lock)
4681		wait_on_page_locked(page);
4682	return ret;
4683}
4684
4685/*
4686 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4687 * modifications for huge pages.
4688 */
4689int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4690			    pte_t *dst_pte,
4691			    struct vm_area_struct *dst_vma,
4692			    unsigned long dst_addr,
4693			    unsigned long src_addr,
4694			    struct page **pagep)
4695{
4696	struct address_space *mapping;
4697	pgoff_t idx;
4698	unsigned long size;
4699	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4700	struct hstate *h = hstate_vma(dst_vma);
4701	pte_t _dst_pte;
4702	spinlock_t *ptl;
4703	int ret;
4704	struct page *page;
4705
4706	if (!*pagep) {
4707		ret = -ENOMEM;
4708		page = alloc_huge_page(dst_vma, dst_addr, 0);
4709		if (IS_ERR(page))
4710			goto out;
4711
4712		ret = copy_huge_page_from_user(page,
4713						(const void __user *) src_addr,
4714						pages_per_huge_page(h), false);
4715
4716		/* fallback to copy_from_user outside mmap_lock */
4717		if (unlikely(ret)) {
4718			ret = -ENOENT;
4719			*pagep = page;
4720			/* don't free the page */
4721			goto out;
4722		}
4723	} else {
4724		page = *pagep;
4725		*pagep = NULL;
4726	}
4727
4728	/*
4729	 * The memory barrier inside __SetPageUptodate makes sure that
4730	 * preceding stores to the page contents become visible before
4731	 * the set_pte_at() write.
4732	 */
4733	__SetPageUptodate(page);
4734
4735	mapping = dst_vma->vm_file->f_mapping;
4736	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4737
4738	/*
4739	 * If shared, add to page cache
4740	 */
4741	if (vm_shared) {
4742		size = i_size_read(mapping->host) >> huge_page_shift(h);
4743		ret = -EFAULT;
4744		if (idx >= size)
4745			goto out_release_nounlock;
4746
4747		/*
4748		 * Serialization between remove_inode_hugepages() and
4749		 * huge_add_to_page_cache() below happens through the
4750		 * hugetlb_fault_mutex_table that here must be hold by
4751		 * the caller.
4752		 */
4753		ret = huge_add_to_page_cache(page, mapping, idx);
4754		if (ret)
4755			goto out_release_nounlock;
4756	}
4757
4758	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4759	spin_lock(ptl);
4760
4761	/*
4762	 * Recheck the i_size after holding PT lock to make sure not
4763	 * to leave any page mapped (as page_mapped()) beyond the end
4764	 * of the i_size (remove_inode_hugepages() is strict about
4765	 * enforcing that). If we bail out here, we'll also leave a
4766	 * page in the radix tree in the vm_shared case beyond the end
4767	 * of the i_size, but remove_inode_hugepages() will take care
4768	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4769	 */
4770	size = i_size_read(mapping->host) >> huge_page_shift(h);
4771	ret = -EFAULT;
4772	if (idx >= size)
4773		goto out_release_unlock;
4774
4775	ret = -EEXIST;
4776	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4777		goto out_release_unlock;
4778
4779	if (vm_shared) {
4780		page_dup_rmap(page, true);
4781	} else {
4782		ClearPagePrivate(page);
4783		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4784	}
4785
4786	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4787	if (dst_vma->vm_flags & VM_WRITE)
4788		_dst_pte = huge_pte_mkdirty(_dst_pte);
4789	_dst_pte = pte_mkyoung(_dst_pte);
4790
4791	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4792
4793	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4794					dst_vma->vm_flags & VM_WRITE);
4795	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4796
4797	/* No need to invalidate - it was non-present before */
4798	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4799
4800	spin_unlock(ptl);
4801	set_page_huge_active(page);
4802	if (vm_shared)
4803		unlock_page(page);
4804	ret = 0;
4805out:
4806	return ret;
4807out_release_unlock:
4808	spin_unlock(ptl);
4809	if (vm_shared)
4810		unlock_page(page);
4811out_release_nounlock:
4812	put_page(page);
4813	goto out;
4814}
4815
4816long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4817			 struct page **pages, struct vm_area_struct **vmas,
4818			 unsigned long *position, unsigned long *nr_pages,
4819			 long i, unsigned int flags, int *locked)
4820{
4821	unsigned long pfn_offset;
4822	unsigned long vaddr = *position;
4823	unsigned long remainder = *nr_pages;
4824	struct hstate *h = hstate_vma(vma);
4825	int err = -EFAULT;
4826
4827	while (vaddr < vma->vm_end && remainder) {
4828		pte_t *pte;
4829		spinlock_t *ptl = NULL;
4830		int absent;
4831		struct page *page;
4832
4833		/*
4834		 * If we have a pending SIGKILL, don't keep faulting pages and
4835		 * potentially allocating memory.
4836		 */
4837		if (fatal_signal_pending(current)) {
4838			remainder = 0;
4839			break;
4840		}
4841
4842		/*
4843		 * Some archs (sparc64, sh*) have multiple pte_ts to
4844		 * each hugepage.  We have to make sure we get the
4845		 * first, for the page indexing below to work.
4846		 *
4847		 * Note that page table lock is not held when pte is null.
4848		 */
4849		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4850				      huge_page_size(h));
4851		if (pte)
4852			ptl = huge_pte_lock(h, mm, pte);
4853		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4854
4855		/*
4856		 * When coredumping, it suits get_dump_page if we just return
4857		 * an error where there's an empty slot with no huge pagecache
4858		 * to back it.  This way, we avoid allocating a hugepage, and
4859		 * the sparse dumpfile avoids allocating disk blocks, but its
4860		 * huge holes still show up with zeroes where they need to be.
4861		 */
4862		if (absent && (flags & FOLL_DUMP) &&
4863		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4864			if (pte)
4865				spin_unlock(ptl);
4866			remainder = 0;
4867			break;
4868		}
4869
4870		/*
4871		 * We need call hugetlb_fault for both hugepages under migration
4872		 * (in which case hugetlb_fault waits for the migration,) and
4873		 * hwpoisoned hugepages (in which case we need to prevent the
4874		 * caller from accessing to them.) In order to do this, we use
4875		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4876		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4877		 * both cases, and because we can't follow correct pages
4878		 * directly from any kind of swap entries.
4879		 */
4880		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4881		    ((flags & FOLL_WRITE) &&
4882		      !huge_pte_write(huge_ptep_get(pte)))) {
4883			vm_fault_t ret;
4884			unsigned int fault_flags = 0;
4885
4886			if (pte)
4887				spin_unlock(ptl);
4888			if (flags & FOLL_WRITE)
4889				fault_flags |= FAULT_FLAG_WRITE;
4890			if (locked)
4891				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4892					FAULT_FLAG_KILLABLE;
4893			if (flags & FOLL_NOWAIT)
4894				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4895					FAULT_FLAG_RETRY_NOWAIT;
4896			if (flags & FOLL_TRIED) {
4897				/*
4898				 * Note: FAULT_FLAG_ALLOW_RETRY and
4899				 * FAULT_FLAG_TRIED can co-exist
4900				 */
4901				fault_flags |= FAULT_FLAG_TRIED;
4902			}
4903			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4904			if (ret & VM_FAULT_ERROR) {
4905				err = vm_fault_to_errno(ret, flags);
4906				remainder = 0;
4907				break;
4908			}
4909			if (ret & VM_FAULT_RETRY) {
4910				if (locked &&
4911				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4912					*locked = 0;
4913				*nr_pages = 0;
4914				/*
4915				 * VM_FAULT_RETRY must not return an
4916				 * error, it will return zero
4917				 * instead.
4918				 *
4919				 * No need to update "position" as the
4920				 * caller will not check it after
4921				 * *nr_pages is set to 0.
4922				 */
4923				return i;
4924			}
4925			continue;
4926		}
4927
4928		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4929		page = pte_page(huge_ptep_get(pte));
4930
4931		/*
4932		 * If subpage information not requested, update counters
4933		 * and skip the same_page loop below.
4934		 */
4935		if (!pages && !vmas && !pfn_offset &&
4936		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4937		    (remainder >= pages_per_huge_page(h))) {
4938			vaddr += huge_page_size(h);
4939			remainder -= pages_per_huge_page(h);
4940			i += pages_per_huge_page(h);
4941			spin_unlock(ptl);
4942			continue;
4943		}
4944
4945same_page:
4946		if (pages) {
4947			pages[i] = mem_map_offset(page, pfn_offset);
4948			/*
4949			 * try_grab_page() should always succeed here, because:
4950			 * a) we hold the ptl lock, and b) we've just checked
4951			 * that the huge page is present in the page tables. If
4952			 * the huge page is present, then the tail pages must
4953			 * also be present. The ptl prevents the head page and
4954			 * tail pages from being rearranged in any way. So this
4955			 * page must be available at this point, unless the page
4956			 * refcount overflowed:
4957			 */
4958			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4959				spin_unlock(ptl);
4960				remainder = 0;
4961				err = -ENOMEM;
4962				break;
4963			}
4964		}
 
 
 
 
 
4965
4966		if (vmas)
4967			vmas[i] = vma;
4968
4969		vaddr += PAGE_SIZE;
4970		++pfn_offset;
4971		--remainder;
4972		++i;
4973		if (vaddr < vma->vm_end && remainder &&
4974				pfn_offset < pages_per_huge_page(h)) {
4975			/*
4976			 * We use pfn_offset to avoid touching the pageframes
4977			 * of this compound page.
4978			 */
4979			goto same_page;
4980		}
4981		spin_unlock(ptl);
4982	}
4983	*nr_pages = remainder;
4984	/*
4985	 * setting position is actually required only if remainder is
4986	 * not zero but it's faster not to add a "if (remainder)"
4987	 * branch.
4988	 */
4989	*position = vaddr;
4990
4991	return i ? i : err;
4992}
4993
4994#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4995/*
4996 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4997 * implement this.
4998 */
4999#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
5000#endif
5001
5002unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5003		unsigned long address, unsigned long end, pgprot_t newprot)
5004{
5005	struct mm_struct *mm = vma->vm_mm;
5006	unsigned long start = address;
5007	pte_t *ptep;
5008	pte_t pte;
5009	struct hstate *h = hstate_vma(vma);
5010	unsigned long pages = 0;
5011	bool shared_pmd = false;
5012	struct mmu_notifier_range range;
5013
5014	/*
5015	 * In the case of shared PMDs, the area to flush could be beyond
5016	 * start/end.  Set range.start/range.end to cover the maximum possible
5017	 * range if PMD sharing is possible.
5018	 */
5019	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5020				0, vma, mm, start, end);
5021	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5022
5023	BUG_ON(address >= end);
5024	flush_cache_range(vma, range.start, range.end);
5025
5026	mmu_notifier_invalidate_range_start(&range);
5027	i_mmap_lock_write(vma->vm_file->f_mapping);
5028	for (; address < end; address += huge_page_size(h)) {
5029		spinlock_t *ptl;
5030		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5031		if (!ptep)
5032			continue;
5033		ptl = huge_pte_lock(h, mm, ptep);
5034		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5035			pages++;
5036			spin_unlock(ptl);
5037			shared_pmd = true;
5038			continue;
5039		}
5040		pte = huge_ptep_get(ptep);
5041		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5042			spin_unlock(ptl);
5043			continue;
5044		}
5045		if (unlikely(is_hugetlb_entry_migration(pte))) {
5046			swp_entry_t entry = pte_to_swp_entry(pte);
5047
5048			if (is_write_migration_entry(entry)) {
5049				pte_t newpte;
5050
5051				make_migration_entry_read(&entry);
5052				newpte = swp_entry_to_pte(entry);
5053				set_huge_swap_pte_at(mm, address, ptep,
5054						     newpte, huge_page_size(h));
5055				pages++;
5056			}
5057			spin_unlock(ptl);
5058			continue;
5059		}
5060		if (!huge_pte_none(pte)) {
5061			pte_t old_pte;
5062
5063			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5064			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5065			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5066			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5067			pages++;
5068		}
5069		spin_unlock(ptl);
5070	}
5071	/*
5072	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5073	 * may have cleared our pud entry and done put_page on the page table:
5074	 * once we release i_mmap_rwsem, another task can do the final put_page
5075	 * and that page table be reused and filled with junk.  If we actually
5076	 * did unshare a page of pmds, flush the range corresponding to the pud.
5077	 */
5078	if (shared_pmd)
5079		flush_hugetlb_tlb_range(vma, range.start, range.end);
5080	else
5081		flush_hugetlb_tlb_range(vma, start, end);
5082	/*
5083	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5084	 * page table protection not changing it to point to a new page.
5085	 *
5086	 * See Documentation/vm/mmu_notifier.rst
5087	 */
5088	i_mmap_unlock_write(vma->vm_file->f_mapping);
5089	mmu_notifier_invalidate_range_end(&range);
5090
5091	return pages << h->order;
5092}
5093
5094int hugetlb_reserve_pages(struct inode *inode,
5095					long from, long to,
5096					struct vm_area_struct *vma,
5097					vm_flags_t vm_flags)
5098{
5099	long ret, chg, add = -1;
5100	struct hstate *h = hstate_inode(inode);
5101	struct hugepage_subpool *spool = subpool_inode(inode);
5102	struct resv_map *resv_map;
5103	struct hugetlb_cgroup *h_cg = NULL;
5104	long gbl_reserve, regions_needed = 0;
5105
5106	/* This should never happen */
5107	if (from > to) {
5108		VM_WARN(1, "%s called with a negative range\n", __func__);
5109		return -EINVAL;
5110	}
5111
5112	/*
5113	 * Only apply hugepage reservation if asked. At fault time, an
5114	 * attempt will be made for VM_NORESERVE to allocate a page
5115	 * without using reserves
5116	 */
5117	if (vm_flags & VM_NORESERVE)
5118		return 0;
5119
5120	/*
5121	 * Shared mappings base their reservation on the number of pages that
5122	 * are already allocated on behalf of the file. Private mappings need
5123	 * to reserve the full area even if read-only as mprotect() may be
5124	 * called to make the mapping read-write. Assume !vma is a shm mapping
5125	 */
5126	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5127		/*
5128		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5129		 * called for inodes for which resv_maps were created (see
5130		 * hugetlbfs_get_inode).
5131		 */
5132		resv_map = inode_resv_map(inode);
5133
5134		chg = region_chg(resv_map, from, to, &regions_needed);
5135
5136	} else {
5137		/* Private mapping. */
5138		resv_map = resv_map_alloc();
5139		if (!resv_map)
5140			return -ENOMEM;
5141
5142		chg = to - from;
5143
5144		set_vma_resv_map(vma, resv_map);
5145		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5146	}
5147
5148	if (chg < 0) {
5149		ret = chg;
5150		goto out_err;
5151	}
5152
5153	ret = hugetlb_cgroup_charge_cgroup_rsvd(
5154		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5155
5156	if (ret < 0) {
5157		ret = -ENOMEM;
5158		goto out_err;
5159	}
5160
5161	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5162		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5163		 * of the resv_map.
5164		 */
5165		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5166	}
5167
5168	/*
5169	 * There must be enough pages in the subpool for the mapping. If
5170	 * the subpool has a minimum size, there may be some global
5171	 * reservations already in place (gbl_reserve).
5172	 */
5173	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5174	if (gbl_reserve < 0) {
5175		ret = -ENOSPC;
5176		goto out_uncharge_cgroup;
5177	}
5178
5179	/*
5180	 * Check enough hugepages are available for the reservation.
5181	 * Hand the pages back to the subpool if there are not
5182	 */
5183	ret = hugetlb_acct_memory(h, gbl_reserve);
5184	if (ret < 0) {
5185		goto out_put_pages;
 
 
5186	}
5187
5188	/*
5189	 * Account for the reservations made. Shared mappings record regions
5190	 * that have reservations as they are shared by multiple VMAs.
5191	 * When the last VMA disappears, the region map says how much
5192	 * the reservation was and the page cache tells how much of
5193	 * the reservation was consumed. Private mappings are per-VMA and
5194	 * only the consumed reservations are tracked. When the VMA
5195	 * disappears, the original reservation is the VMA size and the
5196	 * consumed reservations are stored in the map. Hence, nothing
5197	 * else has to be done for private mappings here
5198	 */
5199	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5200		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5201
5202		if (unlikely(add < 0)) {
5203			hugetlb_acct_memory(h, -gbl_reserve);
5204			goto out_put_pages;
5205		} else if (unlikely(chg > add)) {
5206			/*
5207			 * pages in this range were added to the reserve
5208			 * map between region_chg and region_add.  This
5209			 * indicates a race with alloc_huge_page.  Adjust
5210			 * the subpool and reserve counts modified above
5211			 * based on the difference.
5212			 */
5213			long rsv_adjust;
5214
5215			hugetlb_cgroup_uncharge_cgroup_rsvd(
5216				hstate_index(h),
5217				(chg - add) * pages_per_huge_page(h), h_cg);
5218
5219			rsv_adjust = hugepage_subpool_put_pages(spool,
5220								chg - add);
5221			hugetlb_acct_memory(h, -rsv_adjust);
5222		}
5223	}
5224	return 0;
5225out_put_pages:
5226	/* put back original number of pages, chg */
5227	(void)hugepage_subpool_put_pages(spool, chg);
5228out_uncharge_cgroup:
5229	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5230					    chg * pages_per_huge_page(h), h_cg);
5231out_err:
5232	if (!vma || vma->vm_flags & VM_MAYSHARE)
5233		/* Only call region_abort if the region_chg succeeded but the
5234		 * region_add failed or didn't run.
5235		 */
5236		if (chg >= 0 && add < 0)
5237			region_abort(resv_map, from, to, regions_needed);
5238	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5239		kref_put(&resv_map->refs, resv_map_release);
5240	return ret;
5241}
5242
5243long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5244								long freed)
5245{
5246	struct hstate *h = hstate_inode(inode);
5247	struct resv_map *resv_map = inode_resv_map(inode);
5248	long chg = 0;
5249	struct hugepage_subpool *spool = subpool_inode(inode);
5250	long gbl_reserve;
5251
5252	/*
5253	 * Since this routine can be called in the evict inode path for all
5254	 * hugetlbfs inodes, resv_map could be NULL.
5255	 */
5256	if (resv_map) {
5257		chg = region_del(resv_map, start, end);
5258		/*
5259		 * region_del() can fail in the rare case where a region
5260		 * must be split and another region descriptor can not be
5261		 * allocated.  If end == LONG_MAX, it will not fail.
5262		 */
5263		if (chg < 0)
5264			return chg;
5265	}
5266
5267	spin_lock(&inode->i_lock);
5268	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5269	spin_unlock(&inode->i_lock);
5270
5271	/*
5272	 * If the subpool has a minimum size, the number of global
5273	 * reservations to be released may be adjusted.
5274	 */
5275	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5276	hugetlb_acct_memory(h, -gbl_reserve);
5277
5278	return 0;
5279}
5280
5281#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5282static unsigned long page_table_shareable(struct vm_area_struct *svma,
5283				struct vm_area_struct *vma,
5284				unsigned long addr, pgoff_t idx)
5285{
5286	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5287				svma->vm_start;
5288	unsigned long sbase = saddr & PUD_MASK;
5289	unsigned long s_end = sbase + PUD_SIZE;
5290
5291	/* Allow segments to share if only one is marked locked */
5292	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5293	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5294
5295	/*
5296	 * match the virtual addresses, permission and the alignment of the
5297	 * page table page.
5298	 */
5299	if (pmd_index(addr) != pmd_index(saddr) ||
5300	    vm_flags != svm_flags ||
5301	    sbase < svma->vm_start || svma->vm_end < s_end)
5302		return 0;
5303
5304	return saddr;
5305}
5306
5307static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5308{
5309	unsigned long base = addr & PUD_MASK;
5310	unsigned long end = base + PUD_SIZE;
5311
5312	/*
5313	 * check on proper vm_flags and page table alignment
5314	 */
5315	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5316		return true;
5317	return false;
5318}
5319
5320/*
5321 * Determine if start,end range within vma could be mapped by shared pmd.
5322 * If yes, adjust start and end to cover range associated with possible
5323 * shared pmd mappings.
5324 */
5325void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5326				unsigned long *start, unsigned long *end)
5327{
5328	unsigned long a_start, a_end;
5329
5330	if (!(vma->vm_flags & VM_MAYSHARE))
5331		return;
5332
5333	/* Extend the range to be PUD aligned for a worst case scenario */
5334	a_start = ALIGN_DOWN(*start, PUD_SIZE);
5335	a_end = ALIGN(*end, PUD_SIZE);
5336
5337	/*
5338	 * Intersect the range with the vma range, since pmd sharing won't be
5339	 * across vma after all
5340	 */
5341	*start = max(vma->vm_start, a_start);
5342	*end = min(vma->vm_end, a_end);
 
 
 
 
5343}
5344
5345/*
5346 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5347 * and returns the corresponding pte. While this is not necessary for the
5348 * !shared pmd case because we can allocate the pmd later as well, it makes the
5349 * code much cleaner.
5350 *
5351 * This routine must be called with i_mmap_rwsem held in at least read mode.
5352 * For hugetlbfs, this prevents removal of any page table entries associated
5353 * with the address space.  This is important as we are setting up sharing
5354 * based on existing page table entries (mappings).
5355 */
5356pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5357{
5358	struct vm_area_struct *vma = find_vma(mm, addr);
5359	struct address_space *mapping = vma->vm_file->f_mapping;
5360	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5361			vma->vm_pgoff;
5362	struct vm_area_struct *svma;
5363	unsigned long saddr;
5364	pte_t *spte = NULL;
5365	pte_t *pte;
5366	spinlock_t *ptl;
5367
5368	if (!vma_shareable(vma, addr))
5369		return (pte_t *)pmd_alloc(mm, pud, addr);
5370
 
5371	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5372		if (svma == vma)
5373			continue;
5374
5375		saddr = page_table_shareable(svma, vma, addr, idx);
5376		if (saddr) {
5377			spte = huge_pte_offset(svma->vm_mm, saddr,
5378					       vma_mmu_pagesize(svma));
5379			if (spte) {
5380				get_page(virt_to_page(spte));
5381				break;
5382			}
5383		}
5384	}
5385
5386	if (!spte)
5387		goto out;
5388
5389	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5390	if (pud_none(*pud)) {
5391		pud_populate(mm, pud,
5392				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5393		mm_inc_nr_pmds(mm);
5394	} else {
5395		put_page(virt_to_page(spte));
5396	}
5397	spin_unlock(ptl);
5398out:
5399	pte = (pte_t *)pmd_alloc(mm, pud, addr);
 
5400	return pte;
5401}
5402
5403/*
5404 * unmap huge page backed by shared pte.
5405 *
5406 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5407 * indicated by page_count > 1, unmap is achieved by clearing pud and
5408 * decrementing the ref count. If count == 1, the pte page is not shared.
5409 *
5410 * Called with page table lock held and i_mmap_rwsem held in write mode.
5411 *
5412 * returns: 1 successfully unmapped a shared pte page
5413 *	    0 the underlying pte page is not shared, or it is the last user
5414 */
5415int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5416					unsigned long *addr, pte_t *ptep)
5417{
5418	pgd_t *pgd = pgd_offset(mm, *addr);
5419	p4d_t *p4d = p4d_offset(pgd, *addr);
5420	pud_t *pud = pud_offset(p4d, *addr);
5421
5422	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5423	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5424	if (page_count(virt_to_page(ptep)) == 1)
5425		return 0;
5426
5427	pud_clear(pud);
5428	put_page(virt_to_page(ptep));
5429	mm_dec_nr_pmds(mm);
5430	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5431	return 1;
5432}
5433#define want_pmd_share()	(1)
5434#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5435pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5436{
5437	return NULL;
5438}
5439
5440int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5441				unsigned long *addr, pte_t *ptep)
5442{
5443	return 0;
5444}
5445
5446void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5447				unsigned long *start, unsigned long *end)
5448{
5449}
5450#define want_pmd_share()	(0)
5451#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5452
5453#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5454pte_t *huge_pte_alloc(struct mm_struct *mm,
5455			unsigned long addr, unsigned long sz)
5456{
5457	pgd_t *pgd;
5458	p4d_t *p4d;
5459	pud_t *pud;
5460	pte_t *pte = NULL;
5461
5462	pgd = pgd_offset(mm, addr);
5463	p4d = p4d_alloc(mm, pgd, addr);
5464	if (!p4d)
5465		return NULL;
5466	pud = pud_alloc(mm, p4d, addr);
5467	if (pud) {
5468		if (sz == PUD_SIZE) {
5469			pte = (pte_t *)pud;
5470		} else {
5471			BUG_ON(sz != PMD_SIZE);
5472			if (want_pmd_share() && pud_none(*pud))
5473				pte = huge_pmd_share(mm, addr, pud);
5474			else
5475				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5476		}
5477	}
5478	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5479
5480	return pte;
5481}
5482
5483/*
5484 * huge_pte_offset() - Walk the page table to resolve the hugepage
5485 * entry at address @addr
5486 *
5487 * Return: Pointer to page table entry (PUD or PMD) for
5488 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5489 * size @sz doesn't match the hugepage size at this level of the page
5490 * table.
5491 */
5492pte_t *huge_pte_offset(struct mm_struct *mm,
5493		       unsigned long addr, unsigned long sz)
5494{
5495	pgd_t *pgd;
5496	p4d_t *p4d;
5497	pud_t *pud;
5498	pmd_t *pmd;
5499
5500	pgd = pgd_offset(mm, addr);
5501	if (!pgd_present(*pgd))
5502		return NULL;
5503	p4d = p4d_offset(pgd, addr);
5504	if (!p4d_present(*p4d))
5505		return NULL;
5506
5507	pud = pud_offset(p4d, addr);
5508	if (sz == PUD_SIZE)
5509		/* must be pud huge, non-present or none */
 
 
5510		return (pte_t *)pud;
5511	if (!pud_present(*pud))
 
 
5512		return NULL;
5513	/* must have a valid entry and size to go further */
 
 
5514
5515	pmd = pmd_offset(pud, addr);
5516	/* must be pmd huge, non-present or none */
5517	return (pte_t *)pmd;
5518}
5519
5520#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5521
5522/*
5523 * These functions are overwritable if your architecture needs its own
5524 * behavior.
5525 */
5526struct page * __weak
5527follow_huge_addr(struct mm_struct *mm, unsigned long address,
5528			      int write)
5529{
5530	return ERR_PTR(-EINVAL);
5531}
5532
5533struct page * __weak
5534follow_huge_pd(struct vm_area_struct *vma,
5535	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5536{
5537	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5538	return NULL;
5539}
5540
5541struct page * __weak
5542follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5543		pmd_t *pmd, int flags)
5544{
5545	struct page *page = NULL;
5546	spinlock_t *ptl;
5547	pte_t pte;
5548
5549	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5550	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5551			 (FOLL_PIN | FOLL_GET)))
5552		return NULL;
5553
5554retry:
5555	ptl = pmd_lockptr(mm, pmd);
5556	spin_lock(ptl);
5557	/*
5558	 * make sure that the address range covered by this pmd is not
5559	 * unmapped from other threads.
5560	 */
5561	if (!pmd_huge(*pmd))
5562		goto out;
5563	pte = huge_ptep_get((pte_t *)pmd);
5564	if (pte_present(pte)) {
5565		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5566		/*
5567		 * try_grab_page() should always succeed here, because: a) we
5568		 * hold the pmd (ptl) lock, and b) we've just checked that the
5569		 * huge pmd (head) page is present in the page tables. The ptl
5570		 * prevents the head page and tail pages from being rearranged
5571		 * in any way. So this page must be available at this point,
5572		 * unless the page refcount overflowed:
5573		 */
5574		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5575			page = NULL;
5576			goto out;
5577		}
5578	} else {
5579		if (is_hugetlb_entry_migration(pte)) {
5580			spin_unlock(ptl);
5581			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5582			goto retry;
5583		}
5584		/*
5585		 * hwpoisoned entry is treated as no_page_table in
5586		 * follow_page_mask().
5587		 */
5588	}
5589out:
5590	spin_unlock(ptl);
5591	return page;
5592}
5593
5594struct page * __weak
5595follow_huge_pud(struct mm_struct *mm, unsigned long address,
5596		pud_t *pud, int flags)
5597{
5598	if (flags & (FOLL_GET | FOLL_PIN))
5599		return NULL;
5600
5601	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5602}
5603
5604struct page * __weak
5605follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5606{
5607	if (flags & (FOLL_GET | FOLL_PIN))
5608		return NULL;
5609
5610	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5611}
5612
5613bool isolate_huge_page(struct page *page, struct list_head *list)
5614{
5615	bool ret = true;
5616
5617	VM_BUG_ON_PAGE(!PageHead(page), page);
5618	spin_lock(&hugetlb_lock);
5619	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5620		ret = false;
5621		goto unlock;
5622	}
5623	clear_page_huge_active(page);
5624	list_move_tail(&page->lru, list);
5625unlock:
5626	spin_unlock(&hugetlb_lock);
5627	return ret;
5628}
5629
5630void putback_active_hugepage(struct page *page)
5631{
5632	VM_BUG_ON_PAGE(!PageHead(page), page);
5633	spin_lock(&hugetlb_lock);
5634	set_page_huge_active(page);
5635	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5636	spin_unlock(&hugetlb_lock);
5637	put_page(page);
5638}
5639
5640void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5641{
5642	struct hstate *h = page_hstate(oldpage);
5643
5644	hugetlb_cgroup_migrate(oldpage, newpage);
5645	set_page_owner_migrate_reason(newpage, reason);
5646
5647	/*
5648	 * transfer temporary state of the new huge page. This is
5649	 * reverse to other transitions because the newpage is going to
5650	 * be final while the old one will be freed so it takes over
5651	 * the temporary status.
5652	 *
5653	 * Also note that we have to transfer the per-node surplus state
5654	 * here as well otherwise the global surplus count will not match
5655	 * the per-node's.
5656	 */
5657	if (PageHugeTemporary(newpage)) {
5658		int old_nid = page_to_nid(oldpage);
5659		int new_nid = page_to_nid(newpage);
5660
5661		SetPageHugeTemporary(oldpage);
5662		ClearPageHugeTemporary(newpage);
5663
5664		spin_lock(&hugetlb_lock);
5665		if (h->surplus_huge_pages_node[old_nid]) {
5666			h->surplus_huge_pages_node[old_nid]--;
5667			h->surplus_huge_pages_node[new_nid]++;
5668		}
5669		spin_unlock(&hugetlb_lock);
5670	}
5671}
5672
5673#ifdef CONFIG_CMA
5674static bool cma_reserve_called __initdata;
5675
5676static int __init cmdline_parse_hugetlb_cma(char *p)
5677{
5678	hugetlb_cma_size = memparse(p, &p);
5679	return 0;
5680}
5681
5682early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5683
5684void __init hugetlb_cma_reserve(int order)
5685{
5686	unsigned long size, reserved, per_node;
5687	int nid;
5688
5689	cma_reserve_called = true;
5690
5691	if (!hugetlb_cma_size)
5692		return;
5693
5694	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5695		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5696			(PAGE_SIZE << order) / SZ_1M);
5697		return;
5698	}
5699
5700	/*
5701	 * If 3 GB area is requested on a machine with 4 numa nodes,
5702	 * let's allocate 1 GB on first three nodes and ignore the last one.
5703	 */
5704	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5705	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5706		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5707
5708	reserved = 0;
5709	for_each_node_state(nid, N_ONLINE) {
5710		int res;
5711		char name[20];
5712
5713		size = min(per_node, hugetlb_cma_size - reserved);
5714		size = round_up(size, PAGE_SIZE << order);
5715
5716		snprintf(name, 20, "hugetlb%d", nid);
5717		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5718						 0, false, name,
5719						 &hugetlb_cma[nid], nid);
5720		if (res) {
5721			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5722				res, nid);
5723			continue;
5724		}
5725
5726		reserved += size;
5727		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5728			size / SZ_1M, nid);
5729
5730		if (reserved >= hugetlb_cma_size)
5731			break;
5732	}
5733}
5734
5735void __init hugetlb_cma_check(void)
5736{
5737	if (!hugetlb_cma_size || cma_reserve_called)
5738		return;
5739
5740	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5741}
5742
5743#endif /* CONFIG_CMA */