Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
  5 * Copyright IBM Corp. 2002, 2006
  6 *
  7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  8 */
  9
 10#include <linux/kprobes.h>
 11#include <linux/ptrace.h>
 12#include <linux/preempt.h>
 13#include <linux/stop_machine.h>
 14#include <linux/kdebug.h>
 15#include <linux/uaccess.h>
 16#include <linux/extable.h>
 17#include <linux/module.h>
 18#include <linux/slab.h>
 19#include <linux/hardirq.h>
 20#include <linux/ftrace.h>
 21#include <asm/set_memory.h>
 22#include <asm/sections.h>
 23#include <asm/dis.h>
 24
 25DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 26DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 27
 28struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 29
 30DEFINE_INSN_CACHE_OPS(s390_insn);
 31
 32static int insn_page_in_use;
 33static char insn_page[PAGE_SIZE] __aligned(PAGE_SIZE);
 34
 35static void *alloc_s390_insn_page(void)
 36{
 37	if (xchg(&insn_page_in_use, 1) == 1)
 38		return NULL;
 39	set_memory_x((unsigned long) &insn_page, 1);
 40	return &insn_page;
 41}
 42
 43static void free_s390_insn_page(void *page)
 44{
 45	set_memory_nx((unsigned long) page, 1);
 46	xchg(&insn_page_in_use, 0);
 47}
 48
 49struct kprobe_insn_cache kprobe_s390_insn_slots = {
 50	.mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
 51	.alloc = alloc_s390_insn_page,
 52	.free = free_s390_insn_page,
 53	.pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
 54	.insn_size = MAX_INSN_SIZE,
 55};
 56
 57static void copy_instruction(struct kprobe *p)
 58{
 59	unsigned long ip = (unsigned long) p->addr;
 60	s64 disp, new_disp;
 61	u64 addr, new_addr;
 62
 63	if (ftrace_location(ip) == ip) {
 64		/*
 65		 * If kprobes patches the instruction that is morphed by
 66		 * ftrace make sure that kprobes always sees the branch
 67		 * "jg .+24" that skips the mcount block or the "brcl 0,0"
 68		 * in case of hotpatch.
 69		 */
 70		ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
 71		p->ainsn.is_ftrace_insn = 1;
 72	} else
 73		memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
 74	p->opcode = p->ainsn.insn[0];
 75	if (!probe_is_insn_relative_long(p->ainsn.insn))
 76		return;
 77	/*
 78	 * For pc-relative instructions in RIL-b or RIL-c format patch the
 79	 * RI2 displacement field. We have already made sure that the insn
 80	 * slot for the patched instruction is within the same 2GB area
 81	 * as the original instruction (either kernel image or module area).
 82	 * Therefore the new displacement will always fit.
 83	 */
 84	disp = *(s32 *)&p->ainsn.insn[1];
 85	addr = (u64)(unsigned long)p->addr;
 86	new_addr = (u64)(unsigned long)p->ainsn.insn;
 87	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 88	*(s32 *)&p->ainsn.insn[1] = new_disp;
 89}
 90NOKPROBE_SYMBOL(copy_instruction);
 91
 92static inline int is_kernel_addr(void *addr)
 93{
 94	return addr < (void *)_end;
 95}
 96
 97static int s390_get_insn_slot(struct kprobe *p)
 98{
 99	/*
100	 * Get an insn slot that is within the same 2GB area like the original
101	 * instruction. That way instructions with a 32bit signed displacement
102	 * field can be patched and executed within the insn slot.
103	 */
104	p->ainsn.insn = NULL;
105	if (is_kernel_addr(p->addr))
106		p->ainsn.insn = get_s390_insn_slot();
107	else if (is_module_addr(p->addr))
108		p->ainsn.insn = get_insn_slot();
109	return p->ainsn.insn ? 0 : -ENOMEM;
110}
111NOKPROBE_SYMBOL(s390_get_insn_slot);
112
113static void s390_free_insn_slot(struct kprobe *p)
114{
115	if (!p->ainsn.insn)
116		return;
117	if (is_kernel_addr(p->addr))
118		free_s390_insn_slot(p->ainsn.insn, 0);
119	else
120		free_insn_slot(p->ainsn.insn, 0);
121	p->ainsn.insn = NULL;
122}
123NOKPROBE_SYMBOL(s390_free_insn_slot);
124
125int arch_prepare_kprobe(struct kprobe *p)
126{
127	if ((unsigned long) p->addr & 0x01)
128		return -EINVAL;
129	/* Make sure the probe isn't going on a difficult instruction */
130	if (probe_is_prohibited_opcode(p->addr))
131		return -EINVAL;
132	if (s390_get_insn_slot(p))
133		return -ENOMEM;
134	copy_instruction(p);
135	return 0;
136}
137NOKPROBE_SYMBOL(arch_prepare_kprobe);
138
139int arch_check_ftrace_location(struct kprobe *p)
140{
141	return 0;
142}
143
144struct swap_insn_args {
145	struct kprobe *p;
146	unsigned int arm_kprobe : 1;
147};
148
149static int swap_instruction(void *data)
150{
151	struct swap_insn_args *args = data;
152	struct ftrace_insn new_insn, *insn;
153	struct kprobe *p = args->p;
154	size_t len;
155
156	new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
157	len = sizeof(new_insn.opc);
158	if (!p->ainsn.is_ftrace_insn)
159		goto skip_ftrace;
160	len = sizeof(new_insn);
161	insn = (struct ftrace_insn *) p->addr;
162	if (args->arm_kprobe) {
163		if (is_ftrace_nop(insn))
164			new_insn.disp = KPROBE_ON_FTRACE_NOP;
165		else
166			new_insn.disp = KPROBE_ON_FTRACE_CALL;
167	} else {
168		ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
169		if (insn->disp == KPROBE_ON_FTRACE_NOP)
170			ftrace_generate_nop_insn(&new_insn);
171	}
172skip_ftrace:
173	s390_kernel_write(p->addr, &new_insn, len);
174	return 0;
175}
176NOKPROBE_SYMBOL(swap_instruction);
177
178void arch_arm_kprobe(struct kprobe *p)
179{
180	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
181
182	stop_machine_cpuslocked(swap_instruction, &args, NULL);
183}
184NOKPROBE_SYMBOL(arch_arm_kprobe);
185
186void arch_disarm_kprobe(struct kprobe *p)
187{
188	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
189
190	stop_machine_cpuslocked(swap_instruction, &args, NULL);
191}
192NOKPROBE_SYMBOL(arch_disarm_kprobe);
193
194void arch_remove_kprobe(struct kprobe *p)
195{
196	s390_free_insn_slot(p);
197}
198NOKPROBE_SYMBOL(arch_remove_kprobe);
199
200static void enable_singlestep(struct kprobe_ctlblk *kcb,
201			      struct pt_regs *regs,
202			      unsigned long ip)
203{
204	struct per_regs per_kprobe;
205
206	/* Set up the PER control registers %cr9-%cr11 */
207	per_kprobe.control = PER_EVENT_IFETCH;
208	per_kprobe.start = ip;
209	per_kprobe.end = ip;
210
211	/* Save control regs and psw mask */
212	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
213	kcb->kprobe_saved_imask = regs->psw.mask &
214		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
215
216	/* Set PER control regs, turns on single step for the given address */
217	__ctl_load(per_kprobe, 9, 11);
218	regs->psw.mask |= PSW_MASK_PER;
219	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
220	regs->psw.addr = ip;
221}
222NOKPROBE_SYMBOL(enable_singlestep);
223
224static void disable_singlestep(struct kprobe_ctlblk *kcb,
225			       struct pt_regs *regs,
226			       unsigned long ip)
227{
228	/* Restore control regs and psw mask, set new psw address */
229	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
230	regs->psw.mask &= ~PSW_MASK_PER;
231	regs->psw.mask |= kcb->kprobe_saved_imask;
232	regs->psw.addr = ip;
233}
234NOKPROBE_SYMBOL(disable_singlestep);
235
236/*
237 * Activate a kprobe by storing its pointer to current_kprobe. The
238 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
239 * two kprobes can be active, see KPROBE_REENTER.
240 */
241static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
242{
243	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
244	kcb->prev_kprobe.status = kcb->kprobe_status;
245	__this_cpu_write(current_kprobe, p);
246}
247NOKPROBE_SYMBOL(push_kprobe);
248
249/*
250 * Deactivate a kprobe by backing up to the previous state. If the
251 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
252 * for any other state prev_kprobe.kp will be NULL.
253 */
254static void pop_kprobe(struct kprobe_ctlblk *kcb)
255{
256	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
257	kcb->kprobe_status = kcb->prev_kprobe.status;
258}
259NOKPROBE_SYMBOL(pop_kprobe);
260
261void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
262{
263	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
264
265	/* Replace the return addr with trampoline addr */
266	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
267}
268NOKPROBE_SYMBOL(arch_prepare_kretprobe);
269
270static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
271{
272	switch (kcb->kprobe_status) {
273	case KPROBE_HIT_SSDONE:
274	case KPROBE_HIT_ACTIVE:
275		kprobes_inc_nmissed_count(p);
276		break;
277	case KPROBE_HIT_SS:
278	case KPROBE_REENTER:
279	default:
280		/*
281		 * A kprobe on the code path to single step an instruction
282		 * is a BUG. The code path resides in the .kprobes.text
283		 * section and is executed with interrupts disabled.
284		 */
285		pr_err("Invalid kprobe detected.\n");
286		dump_kprobe(p);
287		BUG();
288	}
289}
290NOKPROBE_SYMBOL(kprobe_reenter_check);
291
292static int kprobe_handler(struct pt_regs *regs)
293{
294	struct kprobe_ctlblk *kcb;
295	struct kprobe *p;
296
297	/*
298	 * We want to disable preemption for the entire duration of kprobe
299	 * processing. That includes the calls to the pre/post handlers
300	 * and single stepping the kprobe instruction.
301	 */
302	preempt_disable();
303	kcb = get_kprobe_ctlblk();
304	p = get_kprobe((void *)(regs->psw.addr - 2));
305
306	if (p) {
307		if (kprobe_running()) {
308			/*
309			 * We have hit a kprobe while another is still
310			 * active. This can happen in the pre and post
311			 * handler. Single step the instruction of the
312			 * new probe but do not call any handler function
313			 * of this secondary kprobe.
314			 * push_kprobe and pop_kprobe saves and restores
315			 * the currently active kprobe.
316			 */
317			kprobe_reenter_check(kcb, p);
318			push_kprobe(kcb, p);
319			kcb->kprobe_status = KPROBE_REENTER;
320		} else {
321			/*
322			 * If we have no pre-handler or it returned 0, we
323			 * continue with single stepping. If we have a
324			 * pre-handler and it returned non-zero, it prepped
325			 * for changing execution path, so get out doing
326			 * nothing more here.
327			 */
328			push_kprobe(kcb, p);
329			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
330			if (p->pre_handler && p->pre_handler(p, regs)) {
331				pop_kprobe(kcb);
332				preempt_enable_no_resched();
333				return 1;
334			}
335			kcb->kprobe_status = KPROBE_HIT_SS;
336		}
337		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
338		return 1;
339	} /* else:
340	   * No kprobe at this address and no active kprobe. The trap has
341	   * not been caused by a kprobe breakpoint. The race of breakpoint
342	   * vs. kprobe remove does not exist because on s390 as we use
343	   * stop_machine to arm/disarm the breakpoints.
344	   */
345	preempt_enable_no_resched();
346	return 0;
347}
348NOKPROBE_SYMBOL(kprobe_handler);
349
350/*
351 * Function return probe trampoline:
352 *	- init_kprobes() establishes a probepoint here
353 *	- When the probed function returns, this probe
354 *		causes the handlers to fire
355 */
356static void __used kretprobe_trampoline_holder(void)
357{
358	asm volatile(".global kretprobe_trampoline\n"
359		     "kretprobe_trampoline: bcr 0,0\n");
360}
361
362/*
363 * Called when the probe at kretprobe trampoline is hit
364 */
365static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
366{
367	struct kretprobe_instance *ri;
368	struct hlist_head *head, empty_rp;
369	struct hlist_node *tmp;
370	unsigned long flags, orig_ret_address;
371	unsigned long trampoline_address;
372	kprobe_opcode_t *correct_ret_addr;
373
374	INIT_HLIST_HEAD(&empty_rp);
375	kretprobe_hash_lock(current, &head, &flags);
376
377	/*
378	 * It is possible to have multiple instances associated with a given
379	 * task either because an multiple functions in the call path
380	 * have a return probe installed on them, and/or more than one return
381	 * return probe was registered for a target function.
382	 *
383	 * We can handle this because:
384	 *     - instances are always inserted at the head of the list
385	 *     - when multiple return probes are registered for the same
386	 *	 function, the first instance's ret_addr will point to the
387	 *	 real return address, and all the rest will point to
388	 *	 kretprobe_trampoline
389	 */
390	ri = NULL;
391	orig_ret_address = 0;
392	correct_ret_addr = NULL;
393	trampoline_address = (unsigned long) &kretprobe_trampoline;
394	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
395		if (ri->task != current)
396			/* another task is sharing our hash bucket */
397			continue;
398
399		orig_ret_address = (unsigned long) ri->ret_addr;
400
401		if (orig_ret_address != trampoline_address)
402			/*
403			 * This is the real return address. Any other
404			 * instances associated with this task are for
405			 * other calls deeper on the call stack
406			 */
407			break;
408	}
409
410	kretprobe_assert(ri, orig_ret_address, trampoline_address);
411
412	correct_ret_addr = ri->ret_addr;
413	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
414		if (ri->task != current)
415			/* another task is sharing our hash bucket */
416			continue;
417
418		orig_ret_address = (unsigned long) ri->ret_addr;
419
420		if (ri->rp && ri->rp->handler) {
421			ri->ret_addr = correct_ret_addr;
422			ri->rp->handler(ri, regs);
423		}
424
425		recycle_rp_inst(ri, &empty_rp);
426
427		if (orig_ret_address != trampoline_address)
428			/*
429			 * This is the real return address. Any other
430			 * instances associated with this task are for
431			 * other calls deeper on the call stack
432			 */
433			break;
434	}
435
436	regs->psw.addr = orig_ret_address;
437
438	kretprobe_hash_unlock(current, &flags);
439
440	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
441		hlist_del(&ri->hlist);
442		kfree(ri);
443	}
444	/*
445	 * By returning a non-zero value, we are telling
446	 * kprobe_handler() that we don't want the post_handler
447	 * to run (and have re-enabled preemption)
448	 */
449	return 1;
450}
451NOKPROBE_SYMBOL(trampoline_probe_handler);
452
453/*
454 * Called after single-stepping.  p->addr is the address of the
455 * instruction whose first byte has been replaced by the "breakpoint"
456 * instruction.  To avoid the SMP problems that can occur when we
457 * temporarily put back the original opcode to single-step, we
458 * single-stepped a copy of the instruction.  The address of this
459 * copy is p->ainsn.insn.
460 */
461static void resume_execution(struct kprobe *p, struct pt_regs *regs)
462{
463	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
464	unsigned long ip = regs->psw.addr;
465	int fixup = probe_get_fixup_type(p->ainsn.insn);
466
467	/* Check if the kprobes location is an enabled ftrace caller */
468	if (p->ainsn.is_ftrace_insn) {
469		struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
470		struct ftrace_insn call_insn;
471
472		ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
473		/*
474		 * A kprobe on an enabled ftrace call site actually single
475		 * stepped an unconditional branch (ftrace nop equivalent).
476		 * Now we need to fixup things and pretend that a brasl r0,...
477		 * was executed instead.
478		 */
479		if (insn->disp == KPROBE_ON_FTRACE_CALL) {
480			ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
481			regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
482		}
483	}
484
485	if (fixup & FIXUP_PSW_NORMAL)
486		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
487
488	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
489		int ilen = insn_length(p->ainsn.insn[0] >> 8);
490		if (ip - (unsigned long) p->ainsn.insn == ilen)
491			ip = (unsigned long) p->addr + ilen;
492	}
493
494	if (fixup & FIXUP_RETURN_REGISTER) {
495		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
496		regs->gprs[reg] += (unsigned long) p->addr -
497				   (unsigned long) p->ainsn.insn;
498	}
499
500	disable_singlestep(kcb, regs, ip);
501}
502NOKPROBE_SYMBOL(resume_execution);
503
504static int post_kprobe_handler(struct pt_regs *regs)
505{
506	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
507	struct kprobe *p = kprobe_running();
508
509	if (!p)
510		return 0;
511
512	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
513		kcb->kprobe_status = KPROBE_HIT_SSDONE;
514		p->post_handler(p, regs, 0);
515	}
516
517	resume_execution(p, regs);
518	pop_kprobe(kcb);
519	preempt_enable_no_resched();
520
521	/*
522	 * if somebody else is singlestepping across a probe point, psw mask
523	 * will have PER set, in which case, continue the remaining processing
524	 * of do_single_step, as if this is not a probe hit.
525	 */
526	if (regs->psw.mask & PSW_MASK_PER)
527		return 0;
528
529	return 1;
530}
531NOKPROBE_SYMBOL(post_kprobe_handler);
532
533static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
534{
535	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
536	struct kprobe *p = kprobe_running();
537	const struct exception_table_entry *entry;
538
539	switch(kcb->kprobe_status) {
540	case KPROBE_HIT_SS:
541	case KPROBE_REENTER:
542		/*
543		 * We are here because the instruction being single
544		 * stepped caused a page fault. We reset the current
545		 * kprobe and the nip points back to the probe address
546		 * and allow the page fault handler to continue as a
547		 * normal page fault.
548		 */
549		disable_singlestep(kcb, regs, (unsigned long) p->addr);
550		pop_kprobe(kcb);
551		preempt_enable_no_resched();
552		break;
553	case KPROBE_HIT_ACTIVE:
554	case KPROBE_HIT_SSDONE:
555		/*
556		 * We increment the nmissed count for accounting,
557		 * we can also use npre/npostfault count for accounting
558		 * these specific fault cases.
559		 */
560		kprobes_inc_nmissed_count(p);
561
562		/*
563		 * We come here because instructions in the pre/post
564		 * handler caused the page_fault, this could happen
565		 * if handler tries to access user space by
566		 * copy_from_user(), get_user() etc. Let the
567		 * user-specified handler try to fix it first.
568		 */
569		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
570			return 1;
571
572		/*
573		 * In case the user-specified fault handler returned
574		 * zero, try to fix up.
575		 */
576		entry = s390_search_extables(regs->psw.addr);
577		if (entry) {
578			regs->psw.addr = extable_fixup(entry);
579			return 1;
580		}
581
582		/*
583		 * fixup_exception() could not handle it,
584		 * Let do_page_fault() fix it.
585		 */
586		break;
587	default:
588		break;
589	}
590	return 0;
591}
592NOKPROBE_SYMBOL(kprobe_trap_handler);
593
594int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
595{
596	int ret;
597
598	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
599		local_irq_disable();
600	ret = kprobe_trap_handler(regs, trapnr);
601	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
602		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
603	return ret;
604}
605NOKPROBE_SYMBOL(kprobe_fault_handler);
606
607/*
608 * Wrapper routine to for handling exceptions.
609 */
610int kprobe_exceptions_notify(struct notifier_block *self,
611			     unsigned long val, void *data)
612{
613	struct die_args *args = (struct die_args *) data;
614	struct pt_regs *regs = args->regs;
615	int ret = NOTIFY_DONE;
616
617	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
618		local_irq_disable();
619
620	switch (val) {
621	case DIE_BPT:
622		if (kprobe_handler(regs))
623			ret = NOTIFY_STOP;
624		break;
625	case DIE_SSTEP:
626		if (post_kprobe_handler(regs))
627			ret = NOTIFY_STOP;
628		break;
629	case DIE_TRAP:
630		if (!preemptible() && kprobe_running() &&
631		    kprobe_trap_handler(regs, args->trapnr))
632			ret = NOTIFY_STOP;
633		break;
634	default:
635		break;
636	}
637
638	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
639		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
640
641	return ret;
642}
643NOKPROBE_SYMBOL(kprobe_exceptions_notify);
644
645static struct kprobe trampoline = {
646	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
647	.pre_handler = trampoline_probe_handler
648};
649
650int __init arch_init_kprobes(void)
651{
652	return register_kprobe(&trampoline);
653}
654
655int arch_trampoline_kprobe(struct kprobe *p)
656{
657	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
658}
659NOKPROBE_SYMBOL(arch_trampoline_kprobe);
v5.9
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
  5 * Copyright IBM Corp. 2002, 2006
  6 *
  7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  8 */
  9
 10#include <linux/kprobes.h>
 11#include <linux/ptrace.h>
 12#include <linux/preempt.h>
 13#include <linux/stop_machine.h>
 14#include <linux/kdebug.h>
 15#include <linux/uaccess.h>
 16#include <linux/extable.h>
 17#include <linux/module.h>
 18#include <linux/slab.h>
 19#include <linux/hardirq.h>
 20#include <linux/ftrace.h>
 21#include <asm/set_memory.h>
 22#include <asm/sections.h>
 23#include <asm/dis.h>
 24
 25DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 26DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 27
 28struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 29
 30DEFINE_INSN_CACHE_OPS(s390_insn);
 31
 32static int insn_page_in_use;
 33static char insn_page[PAGE_SIZE] __aligned(PAGE_SIZE);
 34
 35static void *alloc_s390_insn_page(void)
 36{
 37	if (xchg(&insn_page_in_use, 1) == 1)
 38		return NULL;
 39	set_memory_x((unsigned long) &insn_page, 1);
 40	return &insn_page;
 41}
 42
 43static void free_s390_insn_page(void *page)
 44{
 45	set_memory_nx((unsigned long) page, 1);
 46	xchg(&insn_page_in_use, 0);
 47}
 48
 49struct kprobe_insn_cache kprobe_s390_insn_slots = {
 50	.mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
 51	.alloc = alloc_s390_insn_page,
 52	.free = free_s390_insn_page,
 53	.pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
 54	.insn_size = MAX_INSN_SIZE,
 55};
 56
 57static void copy_instruction(struct kprobe *p)
 58{
 
 59	s64 disp, new_disp;
 60	u64 addr, new_addr;
 61
 62	memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
 
 
 
 
 
 
 
 
 
 
 63	p->opcode = p->ainsn.insn[0];
 64	if (!probe_is_insn_relative_long(p->ainsn.insn))
 65		return;
 66	/*
 67	 * For pc-relative instructions in RIL-b or RIL-c format patch the
 68	 * RI2 displacement field. We have already made sure that the insn
 69	 * slot for the patched instruction is within the same 2GB area
 70	 * as the original instruction (either kernel image or module area).
 71	 * Therefore the new displacement will always fit.
 72	 */
 73	disp = *(s32 *)&p->ainsn.insn[1];
 74	addr = (u64)(unsigned long)p->addr;
 75	new_addr = (u64)(unsigned long)p->ainsn.insn;
 76	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 77	*(s32 *)&p->ainsn.insn[1] = new_disp;
 78}
 79NOKPROBE_SYMBOL(copy_instruction);
 80
 81static inline int is_kernel_addr(void *addr)
 82{
 83	return addr < (void *)_end;
 84}
 85
 86static int s390_get_insn_slot(struct kprobe *p)
 87{
 88	/*
 89	 * Get an insn slot that is within the same 2GB area like the original
 90	 * instruction. That way instructions with a 32bit signed displacement
 91	 * field can be patched and executed within the insn slot.
 92	 */
 93	p->ainsn.insn = NULL;
 94	if (is_kernel_addr(p->addr))
 95		p->ainsn.insn = get_s390_insn_slot();
 96	else if (is_module_addr(p->addr))
 97		p->ainsn.insn = get_insn_slot();
 98	return p->ainsn.insn ? 0 : -ENOMEM;
 99}
100NOKPROBE_SYMBOL(s390_get_insn_slot);
101
102static void s390_free_insn_slot(struct kprobe *p)
103{
104	if (!p->ainsn.insn)
105		return;
106	if (is_kernel_addr(p->addr))
107		free_s390_insn_slot(p->ainsn.insn, 0);
108	else
109		free_insn_slot(p->ainsn.insn, 0);
110	p->ainsn.insn = NULL;
111}
112NOKPROBE_SYMBOL(s390_free_insn_slot);
113
114int arch_prepare_kprobe(struct kprobe *p)
115{
116	if ((unsigned long) p->addr & 0x01)
117		return -EINVAL;
118	/* Make sure the probe isn't going on a difficult instruction */
119	if (probe_is_prohibited_opcode(p->addr))
120		return -EINVAL;
121	if (s390_get_insn_slot(p))
122		return -ENOMEM;
123	copy_instruction(p);
124	return 0;
125}
126NOKPROBE_SYMBOL(arch_prepare_kprobe);
127
 
 
 
 
 
128struct swap_insn_args {
129	struct kprobe *p;
130	unsigned int arm_kprobe : 1;
131};
132
133static int swap_instruction(void *data)
134{
135	struct swap_insn_args *args = data;
 
136	struct kprobe *p = args->p;
137	u16 opc;
138
139	opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
140	s390_kernel_write(p->addr, &opc, sizeof(opc));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141	return 0;
142}
143NOKPROBE_SYMBOL(swap_instruction);
144
145void arch_arm_kprobe(struct kprobe *p)
146{
147	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
148
149	stop_machine_cpuslocked(swap_instruction, &args, NULL);
150}
151NOKPROBE_SYMBOL(arch_arm_kprobe);
152
153void arch_disarm_kprobe(struct kprobe *p)
154{
155	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
156
157	stop_machine_cpuslocked(swap_instruction, &args, NULL);
158}
159NOKPROBE_SYMBOL(arch_disarm_kprobe);
160
161void arch_remove_kprobe(struct kprobe *p)
162{
163	s390_free_insn_slot(p);
164}
165NOKPROBE_SYMBOL(arch_remove_kprobe);
166
167static void enable_singlestep(struct kprobe_ctlblk *kcb,
168			      struct pt_regs *regs,
169			      unsigned long ip)
170{
171	struct per_regs per_kprobe;
172
173	/* Set up the PER control registers %cr9-%cr11 */
174	per_kprobe.control = PER_EVENT_IFETCH;
175	per_kprobe.start = ip;
176	per_kprobe.end = ip;
177
178	/* Save control regs and psw mask */
179	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
180	kcb->kprobe_saved_imask = regs->psw.mask &
181		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
182
183	/* Set PER control regs, turns on single step for the given address */
184	__ctl_load(per_kprobe, 9, 11);
185	regs->psw.mask |= PSW_MASK_PER;
186	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
187	regs->psw.addr = ip;
188}
189NOKPROBE_SYMBOL(enable_singlestep);
190
191static void disable_singlestep(struct kprobe_ctlblk *kcb,
192			       struct pt_regs *regs,
193			       unsigned long ip)
194{
195	/* Restore control regs and psw mask, set new psw address */
196	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
197	regs->psw.mask &= ~PSW_MASK_PER;
198	regs->psw.mask |= kcb->kprobe_saved_imask;
199	regs->psw.addr = ip;
200}
201NOKPROBE_SYMBOL(disable_singlestep);
202
203/*
204 * Activate a kprobe by storing its pointer to current_kprobe. The
205 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
206 * two kprobes can be active, see KPROBE_REENTER.
207 */
208static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
209{
210	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
211	kcb->prev_kprobe.status = kcb->kprobe_status;
212	__this_cpu_write(current_kprobe, p);
213}
214NOKPROBE_SYMBOL(push_kprobe);
215
216/*
217 * Deactivate a kprobe by backing up to the previous state. If the
218 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
219 * for any other state prev_kprobe.kp will be NULL.
220 */
221static void pop_kprobe(struct kprobe_ctlblk *kcb)
222{
223	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
224	kcb->kprobe_status = kcb->prev_kprobe.status;
225}
226NOKPROBE_SYMBOL(pop_kprobe);
227
228void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
229{
230	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
231
232	/* Replace the return addr with trampoline addr */
233	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
234}
235NOKPROBE_SYMBOL(arch_prepare_kretprobe);
236
237static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
238{
239	switch (kcb->kprobe_status) {
240	case KPROBE_HIT_SSDONE:
241	case KPROBE_HIT_ACTIVE:
242		kprobes_inc_nmissed_count(p);
243		break;
244	case KPROBE_HIT_SS:
245	case KPROBE_REENTER:
246	default:
247		/*
248		 * A kprobe on the code path to single step an instruction
249		 * is a BUG. The code path resides in the .kprobes.text
250		 * section and is executed with interrupts disabled.
251		 */
252		pr_err("Invalid kprobe detected.\n");
253		dump_kprobe(p);
254		BUG();
255	}
256}
257NOKPROBE_SYMBOL(kprobe_reenter_check);
258
259static int kprobe_handler(struct pt_regs *regs)
260{
261	struct kprobe_ctlblk *kcb;
262	struct kprobe *p;
263
264	/*
265	 * We want to disable preemption for the entire duration of kprobe
266	 * processing. That includes the calls to the pre/post handlers
267	 * and single stepping the kprobe instruction.
268	 */
269	preempt_disable();
270	kcb = get_kprobe_ctlblk();
271	p = get_kprobe((void *)(regs->psw.addr - 2));
272
273	if (p) {
274		if (kprobe_running()) {
275			/*
276			 * We have hit a kprobe while another is still
277			 * active. This can happen in the pre and post
278			 * handler. Single step the instruction of the
279			 * new probe but do not call any handler function
280			 * of this secondary kprobe.
281			 * push_kprobe and pop_kprobe saves and restores
282			 * the currently active kprobe.
283			 */
284			kprobe_reenter_check(kcb, p);
285			push_kprobe(kcb, p);
286			kcb->kprobe_status = KPROBE_REENTER;
287		} else {
288			/*
289			 * If we have no pre-handler or it returned 0, we
290			 * continue with single stepping. If we have a
291			 * pre-handler and it returned non-zero, it prepped
292			 * for changing execution path, so get out doing
293			 * nothing more here.
294			 */
295			push_kprobe(kcb, p);
296			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
297			if (p->pre_handler && p->pre_handler(p, regs)) {
298				pop_kprobe(kcb);
299				preempt_enable_no_resched();
300				return 1;
301			}
302			kcb->kprobe_status = KPROBE_HIT_SS;
303		}
304		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
305		return 1;
306	} /* else:
307	   * No kprobe at this address and no active kprobe. The trap has
308	   * not been caused by a kprobe breakpoint. The race of breakpoint
309	   * vs. kprobe remove does not exist because on s390 as we use
310	   * stop_machine to arm/disarm the breakpoints.
311	   */
312	preempt_enable_no_resched();
313	return 0;
314}
315NOKPROBE_SYMBOL(kprobe_handler);
316
317/*
318 * Function return probe trampoline:
319 *	- init_kprobes() establishes a probepoint here
320 *	- When the probed function returns, this probe
321 *		causes the handlers to fire
322 */
323static void __used kretprobe_trampoline_holder(void)
324{
325	asm volatile(".global kretprobe_trampoline\n"
326		     "kretprobe_trampoline: bcr 0,0\n");
327}
328
329/*
330 * Called when the probe at kretprobe trampoline is hit
331 */
332static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
333{
334	struct kretprobe_instance *ri;
335	struct hlist_head *head, empty_rp;
336	struct hlist_node *tmp;
337	unsigned long flags, orig_ret_address;
338	unsigned long trampoline_address;
339	kprobe_opcode_t *correct_ret_addr;
340
341	INIT_HLIST_HEAD(&empty_rp);
342	kretprobe_hash_lock(current, &head, &flags);
343
344	/*
345	 * It is possible to have multiple instances associated with a given
346	 * task either because an multiple functions in the call path
347	 * have a return probe installed on them, and/or more than one return
348	 * return probe was registered for a target function.
349	 *
350	 * We can handle this because:
351	 *     - instances are always inserted at the head of the list
352	 *     - when multiple return probes are registered for the same
353	 *	 function, the first instance's ret_addr will point to the
354	 *	 real return address, and all the rest will point to
355	 *	 kretprobe_trampoline
356	 */
357	ri = NULL;
358	orig_ret_address = 0;
359	correct_ret_addr = NULL;
360	trampoline_address = (unsigned long) &kretprobe_trampoline;
361	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
362		if (ri->task != current)
363			/* another task is sharing our hash bucket */
364			continue;
365
366		orig_ret_address = (unsigned long) ri->ret_addr;
367
368		if (orig_ret_address != trampoline_address)
369			/*
370			 * This is the real return address. Any other
371			 * instances associated with this task are for
372			 * other calls deeper on the call stack
373			 */
374			break;
375	}
376
377	kretprobe_assert(ri, orig_ret_address, trampoline_address);
378
379	correct_ret_addr = ri->ret_addr;
380	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
381		if (ri->task != current)
382			/* another task is sharing our hash bucket */
383			continue;
384
385		orig_ret_address = (unsigned long) ri->ret_addr;
386
387		if (ri->rp && ri->rp->handler) {
388			ri->ret_addr = correct_ret_addr;
389			ri->rp->handler(ri, regs);
390		}
391
392		recycle_rp_inst(ri, &empty_rp);
393
394		if (orig_ret_address != trampoline_address)
395			/*
396			 * This is the real return address. Any other
397			 * instances associated with this task are for
398			 * other calls deeper on the call stack
399			 */
400			break;
401	}
402
403	regs->psw.addr = orig_ret_address;
404
405	kretprobe_hash_unlock(current, &flags);
406
407	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
408		hlist_del(&ri->hlist);
409		kfree(ri);
410	}
411	/*
412	 * By returning a non-zero value, we are telling
413	 * kprobe_handler() that we don't want the post_handler
414	 * to run (and have re-enabled preemption)
415	 */
416	return 1;
417}
418NOKPROBE_SYMBOL(trampoline_probe_handler);
419
420/*
421 * Called after single-stepping.  p->addr is the address of the
422 * instruction whose first byte has been replaced by the "breakpoint"
423 * instruction.  To avoid the SMP problems that can occur when we
424 * temporarily put back the original opcode to single-step, we
425 * single-stepped a copy of the instruction.  The address of this
426 * copy is p->ainsn.insn.
427 */
428static void resume_execution(struct kprobe *p, struct pt_regs *regs)
429{
430	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
431	unsigned long ip = regs->psw.addr;
432	int fixup = probe_get_fixup_type(p->ainsn.insn);
433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434	if (fixup & FIXUP_PSW_NORMAL)
435		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
436
437	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
438		int ilen = insn_length(p->ainsn.insn[0] >> 8);
439		if (ip - (unsigned long) p->ainsn.insn == ilen)
440			ip = (unsigned long) p->addr + ilen;
441	}
442
443	if (fixup & FIXUP_RETURN_REGISTER) {
444		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
445		regs->gprs[reg] += (unsigned long) p->addr -
446				   (unsigned long) p->ainsn.insn;
447	}
448
449	disable_singlestep(kcb, regs, ip);
450}
451NOKPROBE_SYMBOL(resume_execution);
452
453static int post_kprobe_handler(struct pt_regs *regs)
454{
455	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
456	struct kprobe *p = kprobe_running();
457
458	if (!p)
459		return 0;
460
461	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
462		kcb->kprobe_status = KPROBE_HIT_SSDONE;
463		p->post_handler(p, regs, 0);
464	}
465
466	resume_execution(p, regs);
467	pop_kprobe(kcb);
468	preempt_enable_no_resched();
469
470	/*
471	 * if somebody else is singlestepping across a probe point, psw mask
472	 * will have PER set, in which case, continue the remaining processing
473	 * of do_single_step, as if this is not a probe hit.
474	 */
475	if (regs->psw.mask & PSW_MASK_PER)
476		return 0;
477
478	return 1;
479}
480NOKPROBE_SYMBOL(post_kprobe_handler);
481
482static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
483{
484	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
485	struct kprobe *p = kprobe_running();
486	const struct exception_table_entry *entry;
487
488	switch(kcb->kprobe_status) {
489	case KPROBE_HIT_SS:
490	case KPROBE_REENTER:
491		/*
492		 * We are here because the instruction being single
493		 * stepped caused a page fault. We reset the current
494		 * kprobe and the nip points back to the probe address
495		 * and allow the page fault handler to continue as a
496		 * normal page fault.
497		 */
498		disable_singlestep(kcb, regs, (unsigned long) p->addr);
499		pop_kprobe(kcb);
500		preempt_enable_no_resched();
501		break;
502	case KPROBE_HIT_ACTIVE:
503	case KPROBE_HIT_SSDONE:
504		/*
505		 * We increment the nmissed count for accounting,
506		 * we can also use npre/npostfault count for accounting
507		 * these specific fault cases.
508		 */
509		kprobes_inc_nmissed_count(p);
510
511		/*
512		 * We come here because instructions in the pre/post
513		 * handler caused the page_fault, this could happen
514		 * if handler tries to access user space by
515		 * copy_from_user(), get_user() etc. Let the
516		 * user-specified handler try to fix it first.
517		 */
518		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
519			return 1;
520
521		/*
522		 * In case the user-specified fault handler returned
523		 * zero, try to fix up.
524		 */
525		entry = s390_search_extables(regs->psw.addr);
526		if (entry && ex_handle(entry, regs))
 
527			return 1;
 
528
529		/*
530		 * fixup_exception() could not handle it,
531		 * Let do_page_fault() fix it.
532		 */
533		break;
534	default:
535		break;
536	}
537	return 0;
538}
539NOKPROBE_SYMBOL(kprobe_trap_handler);
540
541int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
542{
543	int ret;
544
545	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
546		local_irq_disable();
547	ret = kprobe_trap_handler(regs, trapnr);
548	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
549		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
550	return ret;
551}
552NOKPROBE_SYMBOL(kprobe_fault_handler);
553
554/*
555 * Wrapper routine to for handling exceptions.
556 */
557int kprobe_exceptions_notify(struct notifier_block *self,
558			     unsigned long val, void *data)
559{
560	struct die_args *args = (struct die_args *) data;
561	struct pt_regs *regs = args->regs;
562	int ret = NOTIFY_DONE;
563
564	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
565		local_irq_disable();
566
567	switch (val) {
568	case DIE_BPT:
569		if (kprobe_handler(regs))
570			ret = NOTIFY_STOP;
571		break;
572	case DIE_SSTEP:
573		if (post_kprobe_handler(regs))
574			ret = NOTIFY_STOP;
575		break;
576	case DIE_TRAP:
577		if (!preemptible() && kprobe_running() &&
578		    kprobe_trap_handler(regs, args->trapnr))
579			ret = NOTIFY_STOP;
580		break;
581	default:
582		break;
583	}
584
585	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
586		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
587
588	return ret;
589}
590NOKPROBE_SYMBOL(kprobe_exceptions_notify);
591
592static struct kprobe trampoline = {
593	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
594	.pre_handler = trampoline_probe_handler
595};
596
597int __init arch_init_kprobes(void)
598{
599	return register_kprobe(&trampoline);
600}
601
602int arch_trampoline_kprobe(struct kprobe *p)
603{
604	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
605}
606NOKPROBE_SYMBOL(arch_trampoline_kprobe);