Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Kernel Probes (KProbes)
4 *
5 * Copyright IBM Corp. 2002, 2006
6 *
7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8 */
9
10#include <linux/kprobes.h>
11#include <linux/ptrace.h>
12#include <linux/preempt.h>
13#include <linux/stop_machine.h>
14#include <linux/kdebug.h>
15#include <linux/uaccess.h>
16#include <linux/extable.h>
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/hardirq.h>
20#include <linux/ftrace.h>
21#include <asm/set_memory.h>
22#include <asm/sections.h>
23#include <asm/dis.h>
24
25DEFINE_PER_CPU(struct kprobe *, current_kprobe);
26DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
27
28struct kretprobe_blackpoint kretprobe_blacklist[] = { };
29
30DEFINE_INSN_CACHE_OPS(s390_insn);
31
32static int insn_page_in_use;
33static char insn_page[PAGE_SIZE] __aligned(PAGE_SIZE);
34
35static void *alloc_s390_insn_page(void)
36{
37 if (xchg(&insn_page_in_use, 1) == 1)
38 return NULL;
39 set_memory_x((unsigned long) &insn_page, 1);
40 return &insn_page;
41}
42
43static void free_s390_insn_page(void *page)
44{
45 set_memory_nx((unsigned long) page, 1);
46 xchg(&insn_page_in_use, 0);
47}
48
49struct kprobe_insn_cache kprobe_s390_insn_slots = {
50 .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
51 .alloc = alloc_s390_insn_page,
52 .free = free_s390_insn_page,
53 .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
54 .insn_size = MAX_INSN_SIZE,
55};
56
57static void copy_instruction(struct kprobe *p)
58{
59 unsigned long ip = (unsigned long) p->addr;
60 s64 disp, new_disp;
61 u64 addr, new_addr;
62
63 if (ftrace_location(ip) == ip) {
64 /*
65 * If kprobes patches the instruction that is morphed by
66 * ftrace make sure that kprobes always sees the branch
67 * "jg .+24" that skips the mcount block or the "brcl 0,0"
68 * in case of hotpatch.
69 */
70 ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
71 p->ainsn.is_ftrace_insn = 1;
72 } else
73 memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
74 p->opcode = p->ainsn.insn[0];
75 if (!probe_is_insn_relative_long(p->ainsn.insn))
76 return;
77 /*
78 * For pc-relative instructions in RIL-b or RIL-c format patch the
79 * RI2 displacement field. We have already made sure that the insn
80 * slot for the patched instruction is within the same 2GB area
81 * as the original instruction (either kernel image or module area).
82 * Therefore the new displacement will always fit.
83 */
84 disp = *(s32 *)&p->ainsn.insn[1];
85 addr = (u64)(unsigned long)p->addr;
86 new_addr = (u64)(unsigned long)p->ainsn.insn;
87 new_disp = ((addr + (disp * 2)) - new_addr) / 2;
88 *(s32 *)&p->ainsn.insn[1] = new_disp;
89}
90NOKPROBE_SYMBOL(copy_instruction);
91
92static inline int is_kernel_addr(void *addr)
93{
94 return addr < (void *)_end;
95}
96
97static int s390_get_insn_slot(struct kprobe *p)
98{
99 /*
100 * Get an insn slot that is within the same 2GB area like the original
101 * instruction. That way instructions with a 32bit signed displacement
102 * field can be patched and executed within the insn slot.
103 */
104 p->ainsn.insn = NULL;
105 if (is_kernel_addr(p->addr))
106 p->ainsn.insn = get_s390_insn_slot();
107 else if (is_module_addr(p->addr))
108 p->ainsn.insn = get_insn_slot();
109 return p->ainsn.insn ? 0 : -ENOMEM;
110}
111NOKPROBE_SYMBOL(s390_get_insn_slot);
112
113static void s390_free_insn_slot(struct kprobe *p)
114{
115 if (!p->ainsn.insn)
116 return;
117 if (is_kernel_addr(p->addr))
118 free_s390_insn_slot(p->ainsn.insn, 0);
119 else
120 free_insn_slot(p->ainsn.insn, 0);
121 p->ainsn.insn = NULL;
122}
123NOKPROBE_SYMBOL(s390_free_insn_slot);
124
125int arch_prepare_kprobe(struct kprobe *p)
126{
127 if ((unsigned long) p->addr & 0x01)
128 return -EINVAL;
129 /* Make sure the probe isn't going on a difficult instruction */
130 if (probe_is_prohibited_opcode(p->addr))
131 return -EINVAL;
132 if (s390_get_insn_slot(p))
133 return -ENOMEM;
134 copy_instruction(p);
135 return 0;
136}
137NOKPROBE_SYMBOL(arch_prepare_kprobe);
138
139int arch_check_ftrace_location(struct kprobe *p)
140{
141 return 0;
142}
143
144struct swap_insn_args {
145 struct kprobe *p;
146 unsigned int arm_kprobe : 1;
147};
148
149static int swap_instruction(void *data)
150{
151 struct swap_insn_args *args = data;
152 struct ftrace_insn new_insn, *insn;
153 struct kprobe *p = args->p;
154 size_t len;
155
156 new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
157 len = sizeof(new_insn.opc);
158 if (!p->ainsn.is_ftrace_insn)
159 goto skip_ftrace;
160 len = sizeof(new_insn);
161 insn = (struct ftrace_insn *) p->addr;
162 if (args->arm_kprobe) {
163 if (is_ftrace_nop(insn))
164 new_insn.disp = KPROBE_ON_FTRACE_NOP;
165 else
166 new_insn.disp = KPROBE_ON_FTRACE_CALL;
167 } else {
168 ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
169 if (insn->disp == KPROBE_ON_FTRACE_NOP)
170 ftrace_generate_nop_insn(&new_insn);
171 }
172skip_ftrace:
173 s390_kernel_write(p->addr, &new_insn, len);
174 return 0;
175}
176NOKPROBE_SYMBOL(swap_instruction);
177
178void arch_arm_kprobe(struct kprobe *p)
179{
180 struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
181
182 stop_machine_cpuslocked(swap_instruction, &args, NULL);
183}
184NOKPROBE_SYMBOL(arch_arm_kprobe);
185
186void arch_disarm_kprobe(struct kprobe *p)
187{
188 struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
189
190 stop_machine_cpuslocked(swap_instruction, &args, NULL);
191}
192NOKPROBE_SYMBOL(arch_disarm_kprobe);
193
194void arch_remove_kprobe(struct kprobe *p)
195{
196 s390_free_insn_slot(p);
197}
198NOKPROBE_SYMBOL(arch_remove_kprobe);
199
200static void enable_singlestep(struct kprobe_ctlblk *kcb,
201 struct pt_regs *regs,
202 unsigned long ip)
203{
204 struct per_regs per_kprobe;
205
206 /* Set up the PER control registers %cr9-%cr11 */
207 per_kprobe.control = PER_EVENT_IFETCH;
208 per_kprobe.start = ip;
209 per_kprobe.end = ip;
210
211 /* Save control regs and psw mask */
212 __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
213 kcb->kprobe_saved_imask = regs->psw.mask &
214 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
215
216 /* Set PER control regs, turns on single step for the given address */
217 __ctl_load(per_kprobe, 9, 11);
218 regs->psw.mask |= PSW_MASK_PER;
219 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
220 regs->psw.addr = ip;
221}
222NOKPROBE_SYMBOL(enable_singlestep);
223
224static void disable_singlestep(struct kprobe_ctlblk *kcb,
225 struct pt_regs *regs,
226 unsigned long ip)
227{
228 /* Restore control regs and psw mask, set new psw address */
229 __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
230 regs->psw.mask &= ~PSW_MASK_PER;
231 regs->psw.mask |= kcb->kprobe_saved_imask;
232 regs->psw.addr = ip;
233}
234NOKPROBE_SYMBOL(disable_singlestep);
235
236/*
237 * Activate a kprobe by storing its pointer to current_kprobe. The
238 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
239 * two kprobes can be active, see KPROBE_REENTER.
240 */
241static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
242{
243 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
244 kcb->prev_kprobe.status = kcb->kprobe_status;
245 __this_cpu_write(current_kprobe, p);
246}
247NOKPROBE_SYMBOL(push_kprobe);
248
249/*
250 * Deactivate a kprobe by backing up to the previous state. If the
251 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
252 * for any other state prev_kprobe.kp will be NULL.
253 */
254static void pop_kprobe(struct kprobe_ctlblk *kcb)
255{
256 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
257 kcb->kprobe_status = kcb->prev_kprobe.status;
258}
259NOKPROBE_SYMBOL(pop_kprobe);
260
261void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
262{
263 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
264
265 /* Replace the return addr with trampoline addr */
266 regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
267}
268NOKPROBE_SYMBOL(arch_prepare_kretprobe);
269
270static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
271{
272 switch (kcb->kprobe_status) {
273 case KPROBE_HIT_SSDONE:
274 case KPROBE_HIT_ACTIVE:
275 kprobes_inc_nmissed_count(p);
276 break;
277 case KPROBE_HIT_SS:
278 case KPROBE_REENTER:
279 default:
280 /*
281 * A kprobe on the code path to single step an instruction
282 * is a BUG. The code path resides in the .kprobes.text
283 * section and is executed with interrupts disabled.
284 */
285 pr_err("Invalid kprobe detected.\n");
286 dump_kprobe(p);
287 BUG();
288 }
289}
290NOKPROBE_SYMBOL(kprobe_reenter_check);
291
292static int kprobe_handler(struct pt_regs *regs)
293{
294 struct kprobe_ctlblk *kcb;
295 struct kprobe *p;
296
297 /*
298 * We want to disable preemption for the entire duration of kprobe
299 * processing. That includes the calls to the pre/post handlers
300 * and single stepping the kprobe instruction.
301 */
302 preempt_disable();
303 kcb = get_kprobe_ctlblk();
304 p = get_kprobe((void *)(regs->psw.addr - 2));
305
306 if (p) {
307 if (kprobe_running()) {
308 /*
309 * We have hit a kprobe while another is still
310 * active. This can happen in the pre and post
311 * handler. Single step the instruction of the
312 * new probe but do not call any handler function
313 * of this secondary kprobe.
314 * push_kprobe and pop_kprobe saves and restores
315 * the currently active kprobe.
316 */
317 kprobe_reenter_check(kcb, p);
318 push_kprobe(kcb, p);
319 kcb->kprobe_status = KPROBE_REENTER;
320 } else {
321 /*
322 * If we have no pre-handler or it returned 0, we
323 * continue with single stepping. If we have a
324 * pre-handler and it returned non-zero, it prepped
325 * for changing execution path, so get out doing
326 * nothing more here.
327 */
328 push_kprobe(kcb, p);
329 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
330 if (p->pre_handler && p->pre_handler(p, regs)) {
331 pop_kprobe(kcb);
332 preempt_enable_no_resched();
333 return 1;
334 }
335 kcb->kprobe_status = KPROBE_HIT_SS;
336 }
337 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
338 return 1;
339 } /* else:
340 * No kprobe at this address and no active kprobe. The trap has
341 * not been caused by a kprobe breakpoint. The race of breakpoint
342 * vs. kprobe remove does not exist because on s390 as we use
343 * stop_machine to arm/disarm the breakpoints.
344 */
345 preempt_enable_no_resched();
346 return 0;
347}
348NOKPROBE_SYMBOL(kprobe_handler);
349
350/*
351 * Function return probe trampoline:
352 * - init_kprobes() establishes a probepoint here
353 * - When the probed function returns, this probe
354 * causes the handlers to fire
355 */
356static void __used kretprobe_trampoline_holder(void)
357{
358 asm volatile(".global kretprobe_trampoline\n"
359 "kretprobe_trampoline: bcr 0,0\n");
360}
361
362/*
363 * Called when the probe at kretprobe trampoline is hit
364 */
365static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
366{
367 struct kretprobe_instance *ri;
368 struct hlist_head *head, empty_rp;
369 struct hlist_node *tmp;
370 unsigned long flags, orig_ret_address;
371 unsigned long trampoline_address;
372 kprobe_opcode_t *correct_ret_addr;
373
374 INIT_HLIST_HEAD(&empty_rp);
375 kretprobe_hash_lock(current, &head, &flags);
376
377 /*
378 * It is possible to have multiple instances associated with a given
379 * task either because an multiple functions in the call path
380 * have a return probe installed on them, and/or more than one return
381 * return probe was registered for a target function.
382 *
383 * We can handle this because:
384 * - instances are always inserted at the head of the list
385 * - when multiple return probes are registered for the same
386 * function, the first instance's ret_addr will point to the
387 * real return address, and all the rest will point to
388 * kretprobe_trampoline
389 */
390 ri = NULL;
391 orig_ret_address = 0;
392 correct_ret_addr = NULL;
393 trampoline_address = (unsigned long) &kretprobe_trampoline;
394 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
395 if (ri->task != current)
396 /* another task is sharing our hash bucket */
397 continue;
398
399 orig_ret_address = (unsigned long) ri->ret_addr;
400
401 if (orig_ret_address != trampoline_address)
402 /*
403 * This is the real return address. Any other
404 * instances associated with this task are for
405 * other calls deeper on the call stack
406 */
407 break;
408 }
409
410 kretprobe_assert(ri, orig_ret_address, trampoline_address);
411
412 correct_ret_addr = ri->ret_addr;
413 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
414 if (ri->task != current)
415 /* another task is sharing our hash bucket */
416 continue;
417
418 orig_ret_address = (unsigned long) ri->ret_addr;
419
420 if (ri->rp && ri->rp->handler) {
421 ri->ret_addr = correct_ret_addr;
422 ri->rp->handler(ri, regs);
423 }
424
425 recycle_rp_inst(ri, &empty_rp);
426
427 if (orig_ret_address != trampoline_address)
428 /*
429 * This is the real return address. Any other
430 * instances associated with this task are for
431 * other calls deeper on the call stack
432 */
433 break;
434 }
435
436 regs->psw.addr = orig_ret_address;
437
438 kretprobe_hash_unlock(current, &flags);
439
440 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
441 hlist_del(&ri->hlist);
442 kfree(ri);
443 }
444 /*
445 * By returning a non-zero value, we are telling
446 * kprobe_handler() that we don't want the post_handler
447 * to run (and have re-enabled preemption)
448 */
449 return 1;
450}
451NOKPROBE_SYMBOL(trampoline_probe_handler);
452
453/*
454 * Called after single-stepping. p->addr is the address of the
455 * instruction whose first byte has been replaced by the "breakpoint"
456 * instruction. To avoid the SMP problems that can occur when we
457 * temporarily put back the original opcode to single-step, we
458 * single-stepped a copy of the instruction. The address of this
459 * copy is p->ainsn.insn.
460 */
461static void resume_execution(struct kprobe *p, struct pt_regs *regs)
462{
463 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
464 unsigned long ip = regs->psw.addr;
465 int fixup = probe_get_fixup_type(p->ainsn.insn);
466
467 /* Check if the kprobes location is an enabled ftrace caller */
468 if (p->ainsn.is_ftrace_insn) {
469 struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
470 struct ftrace_insn call_insn;
471
472 ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
473 /*
474 * A kprobe on an enabled ftrace call site actually single
475 * stepped an unconditional branch (ftrace nop equivalent).
476 * Now we need to fixup things and pretend that a brasl r0,...
477 * was executed instead.
478 */
479 if (insn->disp == KPROBE_ON_FTRACE_CALL) {
480 ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
481 regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
482 }
483 }
484
485 if (fixup & FIXUP_PSW_NORMAL)
486 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
487
488 if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
489 int ilen = insn_length(p->ainsn.insn[0] >> 8);
490 if (ip - (unsigned long) p->ainsn.insn == ilen)
491 ip = (unsigned long) p->addr + ilen;
492 }
493
494 if (fixup & FIXUP_RETURN_REGISTER) {
495 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
496 regs->gprs[reg] += (unsigned long) p->addr -
497 (unsigned long) p->ainsn.insn;
498 }
499
500 disable_singlestep(kcb, regs, ip);
501}
502NOKPROBE_SYMBOL(resume_execution);
503
504static int post_kprobe_handler(struct pt_regs *regs)
505{
506 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
507 struct kprobe *p = kprobe_running();
508
509 if (!p)
510 return 0;
511
512 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
513 kcb->kprobe_status = KPROBE_HIT_SSDONE;
514 p->post_handler(p, regs, 0);
515 }
516
517 resume_execution(p, regs);
518 pop_kprobe(kcb);
519 preempt_enable_no_resched();
520
521 /*
522 * if somebody else is singlestepping across a probe point, psw mask
523 * will have PER set, in which case, continue the remaining processing
524 * of do_single_step, as if this is not a probe hit.
525 */
526 if (regs->psw.mask & PSW_MASK_PER)
527 return 0;
528
529 return 1;
530}
531NOKPROBE_SYMBOL(post_kprobe_handler);
532
533static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
534{
535 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
536 struct kprobe *p = kprobe_running();
537 const struct exception_table_entry *entry;
538
539 switch(kcb->kprobe_status) {
540 case KPROBE_HIT_SS:
541 case KPROBE_REENTER:
542 /*
543 * We are here because the instruction being single
544 * stepped caused a page fault. We reset the current
545 * kprobe and the nip points back to the probe address
546 * and allow the page fault handler to continue as a
547 * normal page fault.
548 */
549 disable_singlestep(kcb, regs, (unsigned long) p->addr);
550 pop_kprobe(kcb);
551 preempt_enable_no_resched();
552 break;
553 case KPROBE_HIT_ACTIVE:
554 case KPROBE_HIT_SSDONE:
555 /*
556 * We increment the nmissed count for accounting,
557 * we can also use npre/npostfault count for accounting
558 * these specific fault cases.
559 */
560 kprobes_inc_nmissed_count(p);
561
562 /*
563 * We come here because instructions in the pre/post
564 * handler caused the page_fault, this could happen
565 * if handler tries to access user space by
566 * copy_from_user(), get_user() etc. Let the
567 * user-specified handler try to fix it first.
568 */
569 if (p->fault_handler && p->fault_handler(p, regs, trapnr))
570 return 1;
571
572 /*
573 * In case the user-specified fault handler returned
574 * zero, try to fix up.
575 */
576 entry = s390_search_extables(regs->psw.addr);
577 if (entry) {
578 regs->psw.addr = extable_fixup(entry);
579 return 1;
580 }
581
582 /*
583 * fixup_exception() could not handle it,
584 * Let do_page_fault() fix it.
585 */
586 break;
587 default:
588 break;
589 }
590 return 0;
591}
592NOKPROBE_SYMBOL(kprobe_trap_handler);
593
594int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
595{
596 int ret;
597
598 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
599 local_irq_disable();
600 ret = kprobe_trap_handler(regs, trapnr);
601 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
602 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
603 return ret;
604}
605NOKPROBE_SYMBOL(kprobe_fault_handler);
606
607/*
608 * Wrapper routine to for handling exceptions.
609 */
610int kprobe_exceptions_notify(struct notifier_block *self,
611 unsigned long val, void *data)
612{
613 struct die_args *args = (struct die_args *) data;
614 struct pt_regs *regs = args->regs;
615 int ret = NOTIFY_DONE;
616
617 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
618 local_irq_disable();
619
620 switch (val) {
621 case DIE_BPT:
622 if (kprobe_handler(regs))
623 ret = NOTIFY_STOP;
624 break;
625 case DIE_SSTEP:
626 if (post_kprobe_handler(regs))
627 ret = NOTIFY_STOP;
628 break;
629 case DIE_TRAP:
630 if (!preemptible() && kprobe_running() &&
631 kprobe_trap_handler(regs, args->trapnr))
632 ret = NOTIFY_STOP;
633 break;
634 default:
635 break;
636 }
637
638 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
639 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
640
641 return ret;
642}
643NOKPROBE_SYMBOL(kprobe_exceptions_notify);
644
645static struct kprobe trampoline = {
646 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
647 .pre_handler = trampoline_probe_handler
648};
649
650int __init arch_init_kprobes(void)
651{
652 return register_kprobe(&trampoline);
653}
654
655int arch_trampoline_kprobe(struct kprobe *p)
656{
657 return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
658}
659NOKPROBE_SYMBOL(arch_trampoline_kprobe);
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Kernel Probes (KProbes)
4 *
5 * Copyright IBM Corp. 2002, 2006
6 *
7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8 */
9
10#include <linux/kprobes.h>
11#include <linux/ptrace.h>
12#include <linux/preempt.h>
13#include <linux/stop_machine.h>
14#include <linux/kdebug.h>
15#include <linux/uaccess.h>
16#include <linux/extable.h>
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/hardirq.h>
20#include <linux/ftrace.h>
21#include <asm/set_memory.h>
22#include <asm/sections.h>
23#include <asm/dis.h>
24
25DEFINE_PER_CPU(struct kprobe *, current_kprobe);
26DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
27
28struct kretprobe_blackpoint kretprobe_blacklist[] = { };
29
30DEFINE_INSN_CACHE_OPS(s390_insn);
31
32static int insn_page_in_use;
33static char insn_page[PAGE_SIZE] __aligned(PAGE_SIZE);
34
35static void *alloc_s390_insn_page(void)
36{
37 if (xchg(&insn_page_in_use, 1) == 1)
38 return NULL;
39 set_memory_x((unsigned long) &insn_page, 1);
40 return &insn_page;
41}
42
43static void free_s390_insn_page(void *page)
44{
45 set_memory_nx((unsigned long) page, 1);
46 xchg(&insn_page_in_use, 0);
47}
48
49struct kprobe_insn_cache kprobe_s390_insn_slots = {
50 .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
51 .alloc = alloc_s390_insn_page,
52 .free = free_s390_insn_page,
53 .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
54 .insn_size = MAX_INSN_SIZE,
55};
56
57static void copy_instruction(struct kprobe *p)
58{
59 s64 disp, new_disp;
60 u64 addr, new_addr;
61
62 memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
63 p->opcode = p->ainsn.insn[0];
64 if (!probe_is_insn_relative_long(p->ainsn.insn))
65 return;
66 /*
67 * For pc-relative instructions in RIL-b or RIL-c format patch the
68 * RI2 displacement field. We have already made sure that the insn
69 * slot for the patched instruction is within the same 2GB area
70 * as the original instruction (either kernel image or module area).
71 * Therefore the new displacement will always fit.
72 */
73 disp = *(s32 *)&p->ainsn.insn[1];
74 addr = (u64)(unsigned long)p->addr;
75 new_addr = (u64)(unsigned long)p->ainsn.insn;
76 new_disp = ((addr + (disp * 2)) - new_addr) / 2;
77 *(s32 *)&p->ainsn.insn[1] = new_disp;
78}
79NOKPROBE_SYMBOL(copy_instruction);
80
81static inline int is_kernel_addr(void *addr)
82{
83 return addr < (void *)_end;
84}
85
86static int s390_get_insn_slot(struct kprobe *p)
87{
88 /*
89 * Get an insn slot that is within the same 2GB area like the original
90 * instruction. That way instructions with a 32bit signed displacement
91 * field can be patched and executed within the insn slot.
92 */
93 p->ainsn.insn = NULL;
94 if (is_kernel_addr(p->addr))
95 p->ainsn.insn = get_s390_insn_slot();
96 else if (is_module_addr(p->addr))
97 p->ainsn.insn = get_insn_slot();
98 return p->ainsn.insn ? 0 : -ENOMEM;
99}
100NOKPROBE_SYMBOL(s390_get_insn_slot);
101
102static void s390_free_insn_slot(struct kprobe *p)
103{
104 if (!p->ainsn.insn)
105 return;
106 if (is_kernel_addr(p->addr))
107 free_s390_insn_slot(p->ainsn.insn, 0);
108 else
109 free_insn_slot(p->ainsn.insn, 0);
110 p->ainsn.insn = NULL;
111}
112NOKPROBE_SYMBOL(s390_free_insn_slot);
113
114int arch_prepare_kprobe(struct kprobe *p)
115{
116 if ((unsigned long) p->addr & 0x01)
117 return -EINVAL;
118 /* Make sure the probe isn't going on a difficult instruction */
119 if (probe_is_prohibited_opcode(p->addr))
120 return -EINVAL;
121 if (s390_get_insn_slot(p))
122 return -ENOMEM;
123 copy_instruction(p);
124 return 0;
125}
126NOKPROBE_SYMBOL(arch_prepare_kprobe);
127
128struct swap_insn_args {
129 struct kprobe *p;
130 unsigned int arm_kprobe : 1;
131};
132
133static int swap_instruction(void *data)
134{
135 struct swap_insn_args *args = data;
136 struct kprobe *p = args->p;
137 u16 opc;
138
139 opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
140 s390_kernel_write(p->addr, &opc, sizeof(opc));
141 return 0;
142}
143NOKPROBE_SYMBOL(swap_instruction);
144
145void arch_arm_kprobe(struct kprobe *p)
146{
147 struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
148
149 stop_machine_cpuslocked(swap_instruction, &args, NULL);
150}
151NOKPROBE_SYMBOL(arch_arm_kprobe);
152
153void arch_disarm_kprobe(struct kprobe *p)
154{
155 struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
156
157 stop_machine_cpuslocked(swap_instruction, &args, NULL);
158}
159NOKPROBE_SYMBOL(arch_disarm_kprobe);
160
161void arch_remove_kprobe(struct kprobe *p)
162{
163 s390_free_insn_slot(p);
164}
165NOKPROBE_SYMBOL(arch_remove_kprobe);
166
167static void enable_singlestep(struct kprobe_ctlblk *kcb,
168 struct pt_regs *regs,
169 unsigned long ip)
170{
171 struct per_regs per_kprobe;
172
173 /* Set up the PER control registers %cr9-%cr11 */
174 per_kprobe.control = PER_EVENT_IFETCH;
175 per_kprobe.start = ip;
176 per_kprobe.end = ip;
177
178 /* Save control regs and psw mask */
179 __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
180 kcb->kprobe_saved_imask = regs->psw.mask &
181 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
182
183 /* Set PER control regs, turns on single step for the given address */
184 __ctl_load(per_kprobe, 9, 11);
185 regs->psw.mask |= PSW_MASK_PER;
186 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
187 regs->psw.addr = ip;
188}
189NOKPROBE_SYMBOL(enable_singlestep);
190
191static void disable_singlestep(struct kprobe_ctlblk *kcb,
192 struct pt_regs *regs,
193 unsigned long ip)
194{
195 /* Restore control regs and psw mask, set new psw address */
196 __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
197 regs->psw.mask &= ~PSW_MASK_PER;
198 regs->psw.mask |= kcb->kprobe_saved_imask;
199 regs->psw.addr = ip;
200}
201NOKPROBE_SYMBOL(disable_singlestep);
202
203/*
204 * Activate a kprobe by storing its pointer to current_kprobe. The
205 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
206 * two kprobes can be active, see KPROBE_REENTER.
207 */
208static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
209{
210 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
211 kcb->prev_kprobe.status = kcb->kprobe_status;
212 __this_cpu_write(current_kprobe, p);
213}
214NOKPROBE_SYMBOL(push_kprobe);
215
216/*
217 * Deactivate a kprobe by backing up to the previous state. If the
218 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
219 * for any other state prev_kprobe.kp will be NULL.
220 */
221static void pop_kprobe(struct kprobe_ctlblk *kcb)
222{
223 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
224 kcb->kprobe_status = kcb->prev_kprobe.status;
225}
226NOKPROBE_SYMBOL(pop_kprobe);
227
228void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
229{
230 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
231
232 /* Replace the return addr with trampoline addr */
233 regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
234}
235NOKPROBE_SYMBOL(arch_prepare_kretprobe);
236
237static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
238{
239 switch (kcb->kprobe_status) {
240 case KPROBE_HIT_SSDONE:
241 case KPROBE_HIT_ACTIVE:
242 kprobes_inc_nmissed_count(p);
243 break;
244 case KPROBE_HIT_SS:
245 case KPROBE_REENTER:
246 default:
247 /*
248 * A kprobe on the code path to single step an instruction
249 * is a BUG. The code path resides in the .kprobes.text
250 * section and is executed with interrupts disabled.
251 */
252 pr_err("Invalid kprobe detected.\n");
253 dump_kprobe(p);
254 BUG();
255 }
256}
257NOKPROBE_SYMBOL(kprobe_reenter_check);
258
259static int kprobe_handler(struct pt_regs *regs)
260{
261 struct kprobe_ctlblk *kcb;
262 struct kprobe *p;
263
264 /*
265 * We want to disable preemption for the entire duration of kprobe
266 * processing. That includes the calls to the pre/post handlers
267 * and single stepping the kprobe instruction.
268 */
269 preempt_disable();
270 kcb = get_kprobe_ctlblk();
271 p = get_kprobe((void *)(regs->psw.addr - 2));
272
273 if (p) {
274 if (kprobe_running()) {
275 /*
276 * We have hit a kprobe while another is still
277 * active. This can happen in the pre and post
278 * handler. Single step the instruction of the
279 * new probe but do not call any handler function
280 * of this secondary kprobe.
281 * push_kprobe and pop_kprobe saves and restores
282 * the currently active kprobe.
283 */
284 kprobe_reenter_check(kcb, p);
285 push_kprobe(kcb, p);
286 kcb->kprobe_status = KPROBE_REENTER;
287 } else {
288 /*
289 * If we have no pre-handler or it returned 0, we
290 * continue with single stepping. If we have a
291 * pre-handler and it returned non-zero, it prepped
292 * for changing execution path, so get out doing
293 * nothing more here.
294 */
295 push_kprobe(kcb, p);
296 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
297 if (p->pre_handler && p->pre_handler(p, regs)) {
298 pop_kprobe(kcb);
299 preempt_enable_no_resched();
300 return 1;
301 }
302 kcb->kprobe_status = KPROBE_HIT_SS;
303 }
304 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
305 return 1;
306 } /* else:
307 * No kprobe at this address and no active kprobe. The trap has
308 * not been caused by a kprobe breakpoint. The race of breakpoint
309 * vs. kprobe remove does not exist because on s390 as we use
310 * stop_machine to arm/disarm the breakpoints.
311 */
312 preempt_enable_no_resched();
313 return 0;
314}
315NOKPROBE_SYMBOL(kprobe_handler);
316
317/*
318 * Function return probe trampoline:
319 * - init_kprobes() establishes a probepoint here
320 * - When the probed function returns, this probe
321 * causes the handlers to fire
322 */
323static void __used kretprobe_trampoline_holder(void)
324{
325 asm volatile(".global kretprobe_trampoline\n"
326 "kretprobe_trampoline: bcr 0,0\n");
327}
328
329/*
330 * Called when the probe at kretprobe trampoline is hit
331 */
332static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
333{
334 struct kretprobe_instance *ri;
335 struct hlist_head *head, empty_rp;
336 struct hlist_node *tmp;
337 unsigned long flags, orig_ret_address;
338 unsigned long trampoline_address;
339 kprobe_opcode_t *correct_ret_addr;
340
341 INIT_HLIST_HEAD(&empty_rp);
342 kretprobe_hash_lock(current, &head, &flags);
343
344 /*
345 * It is possible to have multiple instances associated with a given
346 * task either because an multiple functions in the call path
347 * have a return probe installed on them, and/or more than one return
348 * return probe was registered for a target function.
349 *
350 * We can handle this because:
351 * - instances are always inserted at the head of the list
352 * - when multiple return probes are registered for the same
353 * function, the first instance's ret_addr will point to the
354 * real return address, and all the rest will point to
355 * kretprobe_trampoline
356 */
357 ri = NULL;
358 orig_ret_address = 0;
359 correct_ret_addr = NULL;
360 trampoline_address = (unsigned long) &kretprobe_trampoline;
361 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
362 if (ri->task != current)
363 /* another task is sharing our hash bucket */
364 continue;
365
366 orig_ret_address = (unsigned long) ri->ret_addr;
367
368 if (orig_ret_address != trampoline_address)
369 /*
370 * This is the real return address. Any other
371 * instances associated with this task are for
372 * other calls deeper on the call stack
373 */
374 break;
375 }
376
377 kretprobe_assert(ri, orig_ret_address, trampoline_address);
378
379 correct_ret_addr = ri->ret_addr;
380 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
381 if (ri->task != current)
382 /* another task is sharing our hash bucket */
383 continue;
384
385 orig_ret_address = (unsigned long) ri->ret_addr;
386
387 if (ri->rp && ri->rp->handler) {
388 ri->ret_addr = correct_ret_addr;
389 ri->rp->handler(ri, regs);
390 }
391
392 recycle_rp_inst(ri, &empty_rp);
393
394 if (orig_ret_address != trampoline_address)
395 /*
396 * This is the real return address. Any other
397 * instances associated with this task are for
398 * other calls deeper on the call stack
399 */
400 break;
401 }
402
403 regs->psw.addr = orig_ret_address;
404
405 kretprobe_hash_unlock(current, &flags);
406
407 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
408 hlist_del(&ri->hlist);
409 kfree(ri);
410 }
411 /*
412 * By returning a non-zero value, we are telling
413 * kprobe_handler() that we don't want the post_handler
414 * to run (and have re-enabled preemption)
415 */
416 return 1;
417}
418NOKPROBE_SYMBOL(trampoline_probe_handler);
419
420/*
421 * Called after single-stepping. p->addr is the address of the
422 * instruction whose first byte has been replaced by the "breakpoint"
423 * instruction. To avoid the SMP problems that can occur when we
424 * temporarily put back the original opcode to single-step, we
425 * single-stepped a copy of the instruction. The address of this
426 * copy is p->ainsn.insn.
427 */
428static void resume_execution(struct kprobe *p, struct pt_regs *regs)
429{
430 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
431 unsigned long ip = regs->psw.addr;
432 int fixup = probe_get_fixup_type(p->ainsn.insn);
433
434 if (fixup & FIXUP_PSW_NORMAL)
435 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
436
437 if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
438 int ilen = insn_length(p->ainsn.insn[0] >> 8);
439 if (ip - (unsigned long) p->ainsn.insn == ilen)
440 ip = (unsigned long) p->addr + ilen;
441 }
442
443 if (fixup & FIXUP_RETURN_REGISTER) {
444 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
445 regs->gprs[reg] += (unsigned long) p->addr -
446 (unsigned long) p->ainsn.insn;
447 }
448
449 disable_singlestep(kcb, regs, ip);
450}
451NOKPROBE_SYMBOL(resume_execution);
452
453static int post_kprobe_handler(struct pt_regs *regs)
454{
455 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
456 struct kprobe *p = kprobe_running();
457
458 if (!p)
459 return 0;
460
461 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
462 kcb->kprobe_status = KPROBE_HIT_SSDONE;
463 p->post_handler(p, regs, 0);
464 }
465
466 resume_execution(p, regs);
467 pop_kprobe(kcb);
468 preempt_enable_no_resched();
469
470 /*
471 * if somebody else is singlestepping across a probe point, psw mask
472 * will have PER set, in which case, continue the remaining processing
473 * of do_single_step, as if this is not a probe hit.
474 */
475 if (regs->psw.mask & PSW_MASK_PER)
476 return 0;
477
478 return 1;
479}
480NOKPROBE_SYMBOL(post_kprobe_handler);
481
482static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
483{
484 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
485 struct kprobe *p = kprobe_running();
486 const struct exception_table_entry *entry;
487
488 switch(kcb->kprobe_status) {
489 case KPROBE_HIT_SS:
490 case KPROBE_REENTER:
491 /*
492 * We are here because the instruction being single
493 * stepped caused a page fault. We reset the current
494 * kprobe and the nip points back to the probe address
495 * and allow the page fault handler to continue as a
496 * normal page fault.
497 */
498 disable_singlestep(kcb, regs, (unsigned long) p->addr);
499 pop_kprobe(kcb);
500 preempt_enable_no_resched();
501 break;
502 case KPROBE_HIT_ACTIVE:
503 case KPROBE_HIT_SSDONE:
504 /*
505 * We increment the nmissed count for accounting,
506 * we can also use npre/npostfault count for accounting
507 * these specific fault cases.
508 */
509 kprobes_inc_nmissed_count(p);
510
511 /*
512 * We come here because instructions in the pre/post
513 * handler caused the page_fault, this could happen
514 * if handler tries to access user space by
515 * copy_from_user(), get_user() etc. Let the
516 * user-specified handler try to fix it first.
517 */
518 if (p->fault_handler && p->fault_handler(p, regs, trapnr))
519 return 1;
520
521 /*
522 * In case the user-specified fault handler returned
523 * zero, try to fix up.
524 */
525 entry = s390_search_extables(regs->psw.addr);
526 if (entry && ex_handle(entry, regs))
527 return 1;
528
529 /*
530 * fixup_exception() could not handle it,
531 * Let do_page_fault() fix it.
532 */
533 break;
534 default:
535 break;
536 }
537 return 0;
538}
539NOKPROBE_SYMBOL(kprobe_trap_handler);
540
541int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
542{
543 int ret;
544
545 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
546 local_irq_disable();
547 ret = kprobe_trap_handler(regs, trapnr);
548 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
549 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
550 return ret;
551}
552NOKPROBE_SYMBOL(kprobe_fault_handler);
553
554/*
555 * Wrapper routine to for handling exceptions.
556 */
557int kprobe_exceptions_notify(struct notifier_block *self,
558 unsigned long val, void *data)
559{
560 struct die_args *args = (struct die_args *) data;
561 struct pt_regs *regs = args->regs;
562 int ret = NOTIFY_DONE;
563
564 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
565 local_irq_disable();
566
567 switch (val) {
568 case DIE_BPT:
569 if (kprobe_handler(regs))
570 ret = NOTIFY_STOP;
571 break;
572 case DIE_SSTEP:
573 if (post_kprobe_handler(regs))
574 ret = NOTIFY_STOP;
575 break;
576 case DIE_TRAP:
577 if (!preemptible() && kprobe_running() &&
578 kprobe_trap_handler(regs, args->trapnr))
579 ret = NOTIFY_STOP;
580 break;
581 default:
582 break;
583 }
584
585 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
586 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
587
588 return ret;
589}
590NOKPROBE_SYMBOL(kprobe_exceptions_notify);
591
592static struct kprobe trampoline = {
593 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
594 .pre_handler = trampoline_probe_handler
595};
596
597int __init arch_init_kprobes(void)
598{
599 return register_kprobe(&trampoline);
600}
601
602int arch_trampoline_kprobe(struct kprobe *p)
603{
604 return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
605}
606NOKPROBE_SYMBOL(arch_trampoline_kprobe);