Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
  5 * Copyright IBM Corp. 2002, 2006
  6 *
  7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  8 */
  9
 
 10#include <linux/kprobes.h>
 11#include <linux/ptrace.h>
 12#include <linux/preempt.h>
 13#include <linux/stop_machine.h>
 14#include <linux/kdebug.h>
 15#include <linux/uaccess.h>
 16#include <linux/extable.h>
 17#include <linux/module.h>
 18#include <linux/slab.h>
 19#include <linux/hardirq.h>
 20#include <linux/ftrace.h>
 21#include <asm/set_memory.h>
 22#include <asm/sections.h>
 23#include <asm/dis.h>
 
 24
 25DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 26DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 27
 28struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 29
 30DEFINE_INSN_CACHE_OPS(s390_insn);
 31
 32static int insn_page_in_use;
 33static char insn_page[PAGE_SIZE] __aligned(PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 34
 35static void *alloc_s390_insn_page(void)
 36{
 37	if (xchg(&insn_page_in_use, 1) == 1)
 38		return NULL;
 39	set_memory_x((unsigned long) &insn_page, 1);
 40	return &insn_page;
 41}
 42
 43static void free_s390_insn_page(void *page)
 44{
 45	set_memory_nx((unsigned long) page, 1);
 46	xchg(&insn_page_in_use, 0);
 47}
 48
 49struct kprobe_insn_cache kprobe_s390_insn_slots = {
 50	.mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
 51	.alloc = alloc_s390_insn_page,
 52	.free = free_s390_insn_page,
 53	.pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
 54	.insn_size = MAX_INSN_SIZE,
 55};
 56
 57static void copy_instruction(struct kprobe *p)
 58{
 59	unsigned long ip = (unsigned long) p->addr;
 60	s64 disp, new_disp;
 61	u64 addr, new_addr;
 
 62
 63	if (ftrace_location(ip) == ip) {
 
 
 
 64		/*
 65		 * If kprobes patches the instruction that is morphed by
 66		 * ftrace make sure that kprobes always sees the branch
 67		 * "jg .+24" that skips the mcount block or the "brcl 0,0"
 68		 * in case of hotpatch.
 
 69		 */
 70		ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
 71		p->ainsn.is_ftrace_insn = 1;
 72	} else
 73		memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
 74	p->opcode = p->ainsn.insn[0];
 75	if (!probe_is_insn_relative_long(p->ainsn.insn))
 76		return;
 77	/*
 78	 * For pc-relative instructions in RIL-b or RIL-c format patch the
 79	 * RI2 displacement field. We have already made sure that the insn
 80	 * slot for the patched instruction is within the same 2GB area
 81	 * as the original instruction (either kernel image or module area).
 82	 * Therefore the new displacement will always fit.
 83	 */
 84	disp = *(s32 *)&p->ainsn.insn[1];
 85	addr = (u64)(unsigned long)p->addr;
 86	new_addr = (u64)(unsigned long)p->ainsn.insn;
 87	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 88	*(s32 *)&p->ainsn.insn[1] = new_disp;
 89}
 90NOKPROBE_SYMBOL(copy_instruction);
 91
 92static inline int is_kernel_addr(void *addr)
 93{
 94	return addr < (void *)_end;
 95}
 96
 97static int s390_get_insn_slot(struct kprobe *p)
 98{
 99	/*
100	 * Get an insn slot that is within the same 2GB area like the original
101	 * instruction. That way instructions with a 32bit signed displacement
102	 * field can be patched and executed within the insn slot.
103	 */
104	p->ainsn.insn = NULL;
105	if (is_kernel_addr(p->addr))
106		p->ainsn.insn = get_s390_insn_slot();
107	else if (is_module_addr(p->addr))
108		p->ainsn.insn = get_insn_slot();
109	return p->ainsn.insn ? 0 : -ENOMEM;
110}
111NOKPROBE_SYMBOL(s390_get_insn_slot);
112
113static void s390_free_insn_slot(struct kprobe *p)
114{
115	if (!p->ainsn.insn)
116		return;
117	if (is_kernel_addr(p->addr))
118		free_s390_insn_slot(p->ainsn.insn, 0);
119	else
120		free_insn_slot(p->ainsn.insn, 0);
121	p->ainsn.insn = NULL;
122}
123NOKPROBE_SYMBOL(s390_free_insn_slot);
124
125int arch_prepare_kprobe(struct kprobe *p)
126{
127	if ((unsigned long) p->addr & 0x01)
128		return -EINVAL;
129	/* Make sure the probe isn't going on a difficult instruction */
130	if (probe_is_prohibited_opcode(p->addr))
131		return -EINVAL;
132	if (s390_get_insn_slot(p))
133		return -ENOMEM;
134	copy_instruction(p);
135	return 0;
136}
137NOKPROBE_SYMBOL(arch_prepare_kprobe);
138
139int arch_check_ftrace_location(struct kprobe *p)
140{
141	return 0;
142}
143
144struct swap_insn_args {
145	struct kprobe *p;
146	unsigned int arm_kprobe : 1;
147};
148
149static int swap_instruction(void *data)
150{
151	struct swap_insn_args *args = data;
152	struct ftrace_insn new_insn, *insn;
153	struct kprobe *p = args->p;
154	size_t len;
155
156	new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
157	len = sizeof(new_insn.opc);
158	if (!p->ainsn.is_ftrace_insn)
159		goto skip_ftrace;
160	len = sizeof(new_insn);
161	insn = (struct ftrace_insn *) p->addr;
162	if (args->arm_kprobe) {
163		if (is_ftrace_nop(insn))
164			new_insn.disp = KPROBE_ON_FTRACE_NOP;
165		else
166			new_insn.disp = KPROBE_ON_FTRACE_CALL;
167	} else {
168		ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
169		if (insn->disp == KPROBE_ON_FTRACE_NOP)
170			ftrace_generate_nop_insn(&new_insn);
171	}
172skip_ftrace:
173	s390_kernel_write(p->addr, &new_insn, len);
174	return 0;
175}
176NOKPROBE_SYMBOL(swap_instruction);
177
178void arch_arm_kprobe(struct kprobe *p)
179{
180	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
181
182	stop_machine_cpuslocked(swap_instruction, &args, NULL);
183}
184NOKPROBE_SYMBOL(arch_arm_kprobe);
185
186void arch_disarm_kprobe(struct kprobe *p)
187{
188	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
189
190	stop_machine_cpuslocked(swap_instruction, &args, NULL);
191}
192NOKPROBE_SYMBOL(arch_disarm_kprobe);
193
194void arch_remove_kprobe(struct kprobe *p)
195{
196	s390_free_insn_slot(p);
197}
198NOKPROBE_SYMBOL(arch_remove_kprobe);
199
200static void enable_singlestep(struct kprobe_ctlblk *kcb,
201			      struct pt_regs *regs,
202			      unsigned long ip)
203{
204	struct per_regs per_kprobe;
205
206	/* Set up the PER control registers %cr9-%cr11 */
207	per_kprobe.control = PER_EVENT_IFETCH;
208	per_kprobe.start = ip;
209	per_kprobe.end = ip;
210
211	/* Save control regs and psw mask */
212	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
213	kcb->kprobe_saved_imask = regs->psw.mask &
214		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
215
216	/* Set PER control regs, turns on single step for the given address */
217	__ctl_load(per_kprobe, 9, 11);
218	regs->psw.mask |= PSW_MASK_PER;
219	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
220	regs->psw.addr = ip;
221}
222NOKPROBE_SYMBOL(enable_singlestep);
223
224static void disable_singlestep(struct kprobe_ctlblk *kcb,
225			       struct pt_regs *regs,
226			       unsigned long ip)
227{
228	/* Restore control regs and psw mask, set new psw address */
229	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
230	regs->psw.mask &= ~PSW_MASK_PER;
231	regs->psw.mask |= kcb->kprobe_saved_imask;
232	regs->psw.addr = ip;
233}
234NOKPROBE_SYMBOL(disable_singlestep);
235
236/*
237 * Activate a kprobe by storing its pointer to current_kprobe. The
238 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
239 * two kprobes can be active, see KPROBE_REENTER.
240 */
241static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
242{
243	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
244	kcb->prev_kprobe.status = kcb->kprobe_status;
245	__this_cpu_write(current_kprobe, p);
246}
247NOKPROBE_SYMBOL(push_kprobe);
248
249/*
250 * Deactivate a kprobe by backing up to the previous state. If the
251 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
252 * for any other state prev_kprobe.kp will be NULL.
253 */
254static void pop_kprobe(struct kprobe_ctlblk *kcb)
255{
256	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
257	kcb->kprobe_status = kcb->prev_kprobe.status;
258}
259NOKPROBE_SYMBOL(pop_kprobe);
260
261void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
262{
263	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
 
264
265	/* Replace the return addr with trampoline addr */
266	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
267}
268NOKPROBE_SYMBOL(arch_prepare_kretprobe);
269
270static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
271{
272	switch (kcb->kprobe_status) {
273	case KPROBE_HIT_SSDONE:
274	case KPROBE_HIT_ACTIVE:
275		kprobes_inc_nmissed_count(p);
276		break;
277	case KPROBE_HIT_SS:
278	case KPROBE_REENTER:
279	default:
280		/*
281		 * A kprobe on the code path to single step an instruction
282		 * is a BUG. The code path resides in the .kprobes.text
283		 * section and is executed with interrupts disabled.
284		 */
285		pr_err("Invalid kprobe detected.\n");
286		dump_kprobe(p);
287		BUG();
288	}
289}
290NOKPROBE_SYMBOL(kprobe_reenter_check);
291
292static int kprobe_handler(struct pt_regs *regs)
293{
294	struct kprobe_ctlblk *kcb;
295	struct kprobe *p;
296
297	/*
298	 * We want to disable preemption for the entire duration of kprobe
299	 * processing. That includes the calls to the pre/post handlers
300	 * and single stepping the kprobe instruction.
301	 */
302	preempt_disable();
303	kcb = get_kprobe_ctlblk();
304	p = get_kprobe((void *)(regs->psw.addr - 2));
305
306	if (p) {
307		if (kprobe_running()) {
308			/*
309			 * We have hit a kprobe while another is still
310			 * active. This can happen in the pre and post
311			 * handler. Single step the instruction of the
312			 * new probe but do not call any handler function
313			 * of this secondary kprobe.
314			 * push_kprobe and pop_kprobe saves and restores
315			 * the currently active kprobe.
316			 */
317			kprobe_reenter_check(kcb, p);
318			push_kprobe(kcb, p);
319			kcb->kprobe_status = KPROBE_REENTER;
320		} else {
321			/*
322			 * If we have no pre-handler or it returned 0, we
323			 * continue with single stepping. If we have a
324			 * pre-handler and it returned non-zero, it prepped
325			 * for changing execution path, so get out doing
326			 * nothing more here.
327			 */
328			push_kprobe(kcb, p);
329			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
330			if (p->pre_handler && p->pre_handler(p, regs)) {
331				pop_kprobe(kcb);
332				preempt_enable_no_resched();
333				return 1;
334			}
335			kcb->kprobe_status = KPROBE_HIT_SS;
336		}
337		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
338		return 1;
339	} /* else:
340	   * No kprobe at this address and no active kprobe. The trap has
341	   * not been caused by a kprobe breakpoint. The race of breakpoint
342	   * vs. kprobe remove does not exist because on s390 as we use
343	   * stop_machine to arm/disarm the breakpoints.
344	   */
345	preempt_enable_no_resched();
346	return 0;
347}
348NOKPROBE_SYMBOL(kprobe_handler);
349
350/*
351 * Function return probe trampoline:
352 *	- init_kprobes() establishes a probepoint here
353 *	- When the probed function returns, this probe
354 *		causes the handlers to fire
355 */
356static void __used kretprobe_trampoline_holder(void)
357{
358	asm volatile(".global kretprobe_trampoline\n"
359		     "kretprobe_trampoline: bcr 0,0\n");
360}
361
362/*
363 * Called when the probe at kretprobe trampoline is hit
364 */
365static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
366{
367	struct kretprobe_instance *ri;
368	struct hlist_head *head, empty_rp;
369	struct hlist_node *tmp;
370	unsigned long flags, orig_ret_address;
371	unsigned long trampoline_address;
372	kprobe_opcode_t *correct_ret_addr;
373
374	INIT_HLIST_HEAD(&empty_rp);
375	kretprobe_hash_lock(current, &head, &flags);
376
377	/*
378	 * It is possible to have multiple instances associated with a given
379	 * task either because an multiple functions in the call path
380	 * have a return probe installed on them, and/or more than one return
381	 * return probe was registered for a target function.
382	 *
383	 * We can handle this because:
384	 *     - instances are always inserted at the head of the list
385	 *     - when multiple return probes are registered for the same
386	 *	 function, the first instance's ret_addr will point to the
387	 *	 real return address, and all the rest will point to
388	 *	 kretprobe_trampoline
389	 */
390	ri = NULL;
391	orig_ret_address = 0;
392	correct_ret_addr = NULL;
393	trampoline_address = (unsigned long) &kretprobe_trampoline;
394	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
395		if (ri->task != current)
396			/* another task is sharing our hash bucket */
397			continue;
398
399		orig_ret_address = (unsigned long) ri->ret_addr;
400
401		if (orig_ret_address != trampoline_address)
402			/*
403			 * This is the real return address. Any other
404			 * instances associated with this task are for
405			 * other calls deeper on the call stack
406			 */
407			break;
408	}
409
410	kretprobe_assert(ri, orig_ret_address, trampoline_address);
411
412	correct_ret_addr = ri->ret_addr;
413	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
414		if (ri->task != current)
415			/* another task is sharing our hash bucket */
416			continue;
417
418		orig_ret_address = (unsigned long) ri->ret_addr;
419
420		if (ri->rp && ri->rp->handler) {
421			ri->ret_addr = correct_ret_addr;
422			ri->rp->handler(ri, regs);
423		}
424
425		recycle_rp_inst(ri, &empty_rp);
426
427		if (orig_ret_address != trampoline_address)
428			/*
429			 * This is the real return address. Any other
430			 * instances associated with this task are for
431			 * other calls deeper on the call stack
432			 */
433			break;
434	}
435
436	regs->psw.addr = orig_ret_address;
437
438	kretprobe_hash_unlock(current, &flags);
439
440	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
441		hlist_del(&ri->hlist);
442		kfree(ri);
443	}
444	/*
445	 * By returning a non-zero value, we are telling
446	 * kprobe_handler() that we don't want the post_handler
447	 * to run (and have re-enabled preemption)
448	 */
449	return 1;
450}
451NOKPROBE_SYMBOL(trampoline_probe_handler);
452
453/*
454 * Called after single-stepping.  p->addr is the address of the
455 * instruction whose first byte has been replaced by the "breakpoint"
456 * instruction.  To avoid the SMP problems that can occur when we
457 * temporarily put back the original opcode to single-step, we
458 * single-stepped a copy of the instruction.  The address of this
459 * copy is p->ainsn.insn.
460 */
461static void resume_execution(struct kprobe *p, struct pt_regs *regs)
462{
463	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
464	unsigned long ip = regs->psw.addr;
465	int fixup = probe_get_fixup_type(p->ainsn.insn);
466
467	/* Check if the kprobes location is an enabled ftrace caller */
468	if (p->ainsn.is_ftrace_insn) {
469		struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
470		struct ftrace_insn call_insn;
471
472		ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
473		/*
474		 * A kprobe on an enabled ftrace call site actually single
475		 * stepped an unconditional branch (ftrace nop equivalent).
476		 * Now we need to fixup things and pretend that a brasl r0,...
477		 * was executed instead.
478		 */
479		if (insn->disp == KPROBE_ON_FTRACE_CALL) {
480			ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
481			regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
482		}
483	}
484
485	if (fixup & FIXUP_PSW_NORMAL)
486		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
487
488	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
489		int ilen = insn_length(p->ainsn.insn[0] >> 8);
490		if (ip - (unsigned long) p->ainsn.insn == ilen)
491			ip = (unsigned long) p->addr + ilen;
492	}
493
494	if (fixup & FIXUP_RETURN_REGISTER) {
495		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
496		regs->gprs[reg] += (unsigned long) p->addr -
497				   (unsigned long) p->ainsn.insn;
498	}
499
500	disable_singlestep(kcb, regs, ip);
501}
502NOKPROBE_SYMBOL(resume_execution);
503
504static int post_kprobe_handler(struct pt_regs *regs)
505{
506	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
507	struct kprobe *p = kprobe_running();
508
509	if (!p)
510		return 0;
511
512	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
513		kcb->kprobe_status = KPROBE_HIT_SSDONE;
514		p->post_handler(p, regs, 0);
515	}
516
517	resume_execution(p, regs);
518	pop_kprobe(kcb);
519	preempt_enable_no_resched();
520
521	/*
522	 * if somebody else is singlestepping across a probe point, psw mask
523	 * will have PER set, in which case, continue the remaining processing
524	 * of do_single_step, as if this is not a probe hit.
525	 */
526	if (regs->psw.mask & PSW_MASK_PER)
527		return 0;
528
529	return 1;
530}
531NOKPROBE_SYMBOL(post_kprobe_handler);
532
533static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
534{
535	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
536	struct kprobe *p = kprobe_running();
537	const struct exception_table_entry *entry;
538
539	switch(kcb->kprobe_status) {
540	case KPROBE_HIT_SS:
541	case KPROBE_REENTER:
542		/*
543		 * We are here because the instruction being single
544		 * stepped caused a page fault. We reset the current
545		 * kprobe and the nip points back to the probe address
546		 * and allow the page fault handler to continue as a
547		 * normal page fault.
548		 */
549		disable_singlestep(kcb, regs, (unsigned long) p->addr);
550		pop_kprobe(kcb);
551		preempt_enable_no_resched();
552		break;
553	case KPROBE_HIT_ACTIVE:
554	case KPROBE_HIT_SSDONE:
555		/*
556		 * We increment the nmissed count for accounting,
557		 * we can also use npre/npostfault count for accounting
558		 * these specific fault cases.
559		 */
560		kprobes_inc_nmissed_count(p);
561
562		/*
563		 * We come here because instructions in the pre/post
564		 * handler caused the page_fault, this could happen
565		 * if handler tries to access user space by
566		 * copy_from_user(), get_user() etc. Let the
567		 * user-specified handler try to fix it first.
568		 */
569		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
570			return 1;
571
572		/*
573		 * In case the user-specified fault handler returned
574		 * zero, try to fix up.
575		 */
576		entry = s390_search_extables(regs->psw.addr);
577		if (entry) {
578			regs->psw.addr = extable_fixup(entry);
579			return 1;
580		}
581
582		/*
583		 * fixup_exception() could not handle it,
584		 * Let do_page_fault() fix it.
585		 */
586		break;
587	default:
588		break;
589	}
590	return 0;
591}
592NOKPROBE_SYMBOL(kprobe_trap_handler);
593
594int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
595{
596	int ret;
597
598	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
599		local_irq_disable();
600	ret = kprobe_trap_handler(regs, trapnr);
601	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
602		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
603	return ret;
604}
605NOKPROBE_SYMBOL(kprobe_fault_handler);
606
607/*
608 * Wrapper routine to for handling exceptions.
609 */
610int kprobe_exceptions_notify(struct notifier_block *self,
611			     unsigned long val, void *data)
612{
613	struct die_args *args = (struct die_args *) data;
614	struct pt_regs *regs = args->regs;
615	int ret = NOTIFY_DONE;
616
617	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
618		local_irq_disable();
619
620	switch (val) {
621	case DIE_BPT:
622		if (kprobe_handler(regs))
623			ret = NOTIFY_STOP;
624		break;
625	case DIE_SSTEP:
626		if (post_kprobe_handler(regs))
627			ret = NOTIFY_STOP;
628		break;
629	case DIE_TRAP:
630		if (!preemptible() && kprobe_running() &&
631		    kprobe_trap_handler(regs, args->trapnr))
632			ret = NOTIFY_STOP;
633		break;
634	default:
635		break;
636	}
637
638	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
639		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
640
641	return ret;
642}
643NOKPROBE_SYMBOL(kprobe_exceptions_notify);
644
645static struct kprobe trampoline = {
646	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
647	.pre_handler = trampoline_probe_handler
648};
649
650int __init arch_init_kprobes(void)
651{
652	return register_kprobe(&trampoline);
653}
654
655int arch_trampoline_kprobe(struct kprobe *p)
656{
657	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
658}
659NOKPROBE_SYMBOL(arch_trampoline_kprobe);
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
  5 * Copyright IBM Corp. 2002, 2006
  6 *
  7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  8 */
  9
 10#include <linux/moduleloader.h>
 11#include <linux/kprobes.h>
 12#include <linux/ptrace.h>
 13#include <linux/preempt.h>
 14#include <linux/stop_machine.h>
 15#include <linux/kdebug.h>
 16#include <linux/uaccess.h>
 17#include <linux/extable.h>
 18#include <linux/module.h>
 19#include <linux/slab.h>
 20#include <linux/hardirq.h>
 21#include <linux/ftrace.h>
 22#include <asm/set_memory.h>
 23#include <asm/sections.h>
 24#include <asm/dis.h>
 25#include "entry.h"
 26
 27DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 28DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 29
 30struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 31
 32DEFINE_INSN_CACHE_OPS(s390_insn);
 33
 34static int insn_page_in_use;
 35
 36void *alloc_insn_page(void)
 37{
 38	void *page;
 39
 40	page = module_alloc(PAGE_SIZE);
 41	if (!page)
 42		return NULL;
 43	__set_memory((unsigned long) page, 1, SET_MEMORY_RO | SET_MEMORY_X);
 44	return page;
 45}
 46
 47static void *alloc_s390_insn_page(void)
 48{
 49	if (xchg(&insn_page_in_use, 1) == 1)
 50		return NULL;
 51	return &kprobes_insn_page;
 
 52}
 53
 54static void free_s390_insn_page(void *page)
 55{
 
 56	xchg(&insn_page_in_use, 0);
 57}
 58
 59struct kprobe_insn_cache kprobe_s390_insn_slots = {
 60	.mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
 61	.alloc = alloc_s390_insn_page,
 62	.free = free_s390_insn_page,
 63	.pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
 64	.insn_size = MAX_INSN_SIZE,
 65};
 66
 67static void copy_instruction(struct kprobe *p)
 68{
 69	kprobe_opcode_t insn[MAX_INSN_SIZE];
 70	s64 disp, new_disp;
 71	u64 addr, new_addr;
 72	unsigned int len;
 73
 74	len = insn_length(*p->addr >> 8);
 75	memcpy(&insn, p->addr, len);
 76	p->opcode = insn[0];
 77	if (probe_is_insn_relative_long(&insn[0])) {
 78		/*
 79		 * For pc-relative instructions in RIL-b or RIL-c format patch
 80		 * the RI2 displacement field. We have already made sure that
 81		 * the insn slot for the patched instruction is within the same
 82		 * 2GB area as the original instruction (either kernel image or
 83		 * module area). Therefore the new displacement will always fit.
 84		 */
 85		disp = *(s32 *)&insn[1];
 86		addr = (u64)(unsigned long)p->addr;
 87		new_addr = (u64)(unsigned long)p->ainsn.insn;
 88		new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 89		*(s32 *)&insn[1] = new_disp;
 90	}
 91	s390_kernel_write(p->ainsn.insn, &insn, len);
 
 
 
 
 
 
 
 
 
 
 
 
 92}
 93NOKPROBE_SYMBOL(copy_instruction);
 94
 
 
 
 
 
 95static int s390_get_insn_slot(struct kprobe *p)
 96{
 97	/*
 98	 * Get an insn slot that is within the same 2GB area like the original
 99	 * instruction. That way instructions with a 32bit signed displacement
100	 * field can be patched and executed within the insn slot.
101	 */
102	p->ainsn.insn = NULL;
103	if (is_kernel((unsigned long)p->addr))
104		p->ainsn.insn = get_s390_insn_slot();
105	else if (is_module_addr(p->addr))
106		p->ainsn.insn = get_insn_slot();
107	return p->ainsn.insn ? 0 : -ENOMEM;
108}
109NOKPROBE_SYMBOL(s390_get_insn_slot);
110
111static void s390_free_insn_slot(struct kprobe *p)
112{
113	if (!p->ainsn.insn)
114		return;
115	if (is_kernel((unsigned long)p->addr))
116		free_s390_insn_slot(p->ainsn.insn, 0);
117	else
118		free_insn_slot(p->ainsn.insn, 0);
119	p->ainsn.insn = NULL;
120}
121NOKPROBE_SYMBOL(s390_free_insn_slot);
122
123int arch_prepare_kprobe(struct kprobe *p)
124{
125	if ((unsigned long) p->addr & 0x01)
126		return -EINVAL;
127	/* Make sure the probe isn't going on a difficult instruction */
128	if (probe_is_prohibited_opcode(p->addr))
129		return -EINVAL;
130	if (s390_get_insn_slot(p))
131		return -ENOMEM;
132	copy_instruction(p);
133	return 0;
134}
135NOKPROBE_SYMBOL(arch_prepare_kprobe);
136
 
 
 
 
 
137struct swap_insn_args {
138	struct kprobe *p;
139	unsigned int arm_kprobe : 1;
140};
141
142static int swap_instruction(void *data)
143{
144	struct swap_insn_args *args = data;
 
145	struct kprobe *p = args->p;
146	u16 opc;
147
148	opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
149	s390_kernel_write(p->addr, &opc, sizeof(opc));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150	return 0;
151}
152NOKPROBE_SYMBOL(swap_instruction);
153
154void arch_arm_kprobe(struct kprobe *p)
155{
156	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
157
158	stop_machine_cpuslocked(swap_instruction, &args, NULL);
159}
160NOKPROBE_SYMBOL(arch_arm_kprobe);
161
162void arch_disarm_kprobe(struct kprobe *p)
163{
164	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
165
166	stop_machine_cpuslocked(swap_instruction, &args, NULL);
167}
168NOKPROBE_SYMBOL(arch_disarm_kprobe);
169
170void arch_remove_kprobe(struct kprobe *p)
171{
172	s390_free_insn_slot(p);
173}
174NOKPROBE_SYMBOL(arch_remove_kprobe);
175
176static void enable_singlestep(struct kprobe_ctlblk *kcb,
177			      struct pt_regs *regs,
178			      unsigned long ip)
179{
180	struct per_regs per_kprobe;
181
182	/* Set up the PER control registers %cr9-%cr11 */
183	per_kprobe.control = PER_EVENT_IFETCH;
184	per_kprobe.start = ip;
185	per_kprobe.end = ip;
186
187	/* Save control regs and psw mask */
188	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
189	kcb->kprobe_saved_imask = regs->psw.mask &
190		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
191
192	/* Set PER control regs, turns on single step for the given address */
193	__ctl_load(per_kprobe, 9, 11);
194	regs->psw.mask |= PSW_MASK_PER;
195	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
196	regs->psw.addr = ip;
197}
198NOKPROBE_SYMBOL(enable_singlestep);
199
200static void disable_singlestep(struct kprobe_ctlblk *kcb,
201			       struct pt_regs *regs,
202			       unsigned long ip)
203{
204	/* Restore control regs and psw mask, set new psw address */
205	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
206	regs->psw.mask &= ~PSW_MASK_PER;
207	regs->psw.mask |= kcb->kprobe_saved_imask;
208	regs->psw.addr = ip;
209}
210NOKPROBE_SYMBOL(disable_singlestep);
211
212/*
213 * Activate a kprobe by storing its pointer to current_kprobe. The
214 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
215 * two kprobes can be active, see KPROBE_REENTER.
216 */
217static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
218{
219	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
220	kcb->prev_kprobe.status = kcb->kprobe_status;
221	__this_cpu_write(current_kprobe, p);
222}
223NOKPROBE_SYMBOL(push_kprobe);
224
225/*
226 * Deactivate a kprobe by backing up to the previous state. If the
227 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
228 * for any other state prev_kprobe.kp will be NULL.
229 */
230static void pop_kprobe(struct kprobe_ctlblk *kcb)
231{
232	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
233	kcb->kprobe_status = kcb->prev_kprobe.status;
234}
235NOKPROBE_SYMBOL(pop_kprobe);
236
237void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
238{
239	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
240	ri->fp = NULL;
241
242	/* Replace the return addr with trampoline addr */
243	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
244}
245NOKPROBE_SYMBOL(arch_prepare_kretprobe);
246
247static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
248{
249	switch (kcb->kprobe_status) {
250	case KPROBE_HIT_SSDONE:
251	case KPROBE_HIT_ACTIVE:
252		kprobes_inc_nmissed_count(p);
253		break;
254	case KPROBE_HIT_SS:
255	case KPROBE_REENTER:
256	default:
257		/*
258		 * A kprobe on the code path to single step an instruction
259		 * is a BUG. The code path resides in the .kprobes.text
260		 * section and is executed with interrupts disabled.
261		 */
262		pr_err("Invalid kprobe detected.\n");
263		dump_kprobe(p);
264		BUG();
265	}
266}
267NOKPROBE_SYMBOL(kprobe_reenter_check);
268
269static int kprobe_handler(struct pt_regs *regs)
270{
271	struct kprobe_ctlblk *kcb;
272	struct kprobe *p;
273
274	/*
275	 * We want to disable preemption for the entire duration of kprobe
276	 * processing. That includes the calls to the pre/post handlers
277	 * and single stepping the kprobe instruction.
278	 */
279	preempt_disable();
280	kcb = get_kprobe_ctlblk();
281	p = get_kprobe((void *)(regs->psw.addr - 2));
282
283	if (p) {
284		if (kprobe_running()) {
285			/*
286			 * We have hit a kprobe while another is still
287			 * active. This can happen in the pre and post
288			 * handler. Single step the instruction of the
289			 * new probe but do not call any handler function
290			 * of this secondary kprobe.
291			 * push_kprobe and pop_kprobe saves and restores
292			 * the currently active kprobe.
293			 */
294			kprobe_reenter_check(kcb, p);
295			push_kprobe(kcb, p);
296			kcb->kprobe_status = KPROBE_REENTER;
297		} else {
298			/*
299			 * If we have no pre-handler or it returned 0, we
300			 * continue with single stepping. If we have a
301			 * pre-handler and it returned non-zero, it prepped
302			 * for changing execution path, so get out doing
303			 * nothing more here.
304			 */
305			push_kprobe(kcb, p);
306			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
307			if (p->pre_handler && p->pre_handler(p, regs)) {
308				pop_kprobe(kcb);
309				preempt_enable_no_resched();
310				return 1;
311			}
312			kcb->kprobe_status = KPROBE_HIT_SS;
313		}
314		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
315		return 1;
316	} /* else:
317	   * No kprobe at this address and no active kprobe. The trap has
318	   * not been caused by a kprobe breakpoint. The race of breakpoint
319	   * vs. kprobe remove does not exist because on s390 as we use
320	   * stop_machine to arm/disarm the breakpoints.
321	   */
322	preempt_enable_no_resched();
323	return 0;
324}
325NOKPROBE_SYMBOL(kprobe_handler);
326
327/*
328 * Function return probe trampoline:
329 *	- init_kprobes() establishes a probepoint here
330 *	- When the probed function returns, this probe
331 *		causes the handlers to fire
332 */
333static void __used kretprobe_trampoline_holder(void)
334{
335	asm volatile(".global kretprobe_trampoline\n"
336		     "kretprobe_trampoline: bcr 0,0\n");
337}
338
339/*
340 * Called when the probe at kretprobe trampoline is hit
341 */
342static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
343{
344	regs->psw.addr = __kretprobe_trampoline_handler(regs, &kretprobe_trampoline, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
345	/*
346	 * By returning a non-zero value, we are telling
347	 * kprobe_handler() that we don't want the post_handler
348	 * to run (and have re-enabled preemption)
349	 */
350	return 1;
351}
352NOKPROBE_SYMBOL(trampoline_probe_handler);
353
354/*
355 * Called after single-stepping.  p->addr is the address of the
356 * instruction whose first byte has been replaced by the "breakpoint"
357 * instruction.  To avoid the SMP problems that can occur when we
358 * temporarily put back the original opcode to single-step, we
359 * single-stepped a copy of the instruction.  The address of this
360 * copy is p->ainsn.insn.
361 */
362static void resume_execution(struct kprobe *p, struct pt_regs *regs)
363{
364	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
365	unsigned long ip = regs->psw.addr;
366	int fixup = probe_get_fixup_type(p->ainsn.insn);
367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
368	if (fixup & FIXUP_PSW_NORMAL)
369		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
370
371	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
372		int ilen = insn_length(p->ainsn.insn[0] >> 8);
373		if (ip - (unsigned long) p->ainsn.insn == ilen)
374			ip = (unsigned long) p->addr + ilen;
375	}
376
377	if (fixup & FIXUP_RETURN_REGISTER) {
378		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
379		regs->gprs[reg] += (unsigned long) p->addr -
380				   (unsigned long) p->ainsn.insn;
381	}
382
383	disable_singlestep(kcb, regs, ip);
384}
385NOKPROBE_SYMBOL(resume_execution);
386
387static int post_kprobe_handler(struct pt_regs *regs)
388{
389	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
390	struct kprobe *p = kprobe_running();
391
392	if (!p)
393		return 0;
394
395	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
396		kcb->kprobe_status = KPROBE_HIT_SSDONE;
397		p->post_handler(p, regs, 0);
398	}
399
400	resume_execution(p, regs);
401	pop_kprobe(kcb);
402	preempt_enable_no_resched();
403
404	/*
405	 * if somebody else is singlestepping across a probe point, psw mask
406	 * will have PER set, in which case, continue the remaining processing
407	 * of do_single_step, as if this is not a probe hit.
408	 */
409	if (regs->psw.mask & PSW_MASK_PER)
410		return 0;
411
412	return 1;
413}
414NOKPROBE_SYMBOL(post_kprobe_handler);
415
416static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
417{
418	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
419	struct kprobe *p = kprobe_running();
420	const struct exception_table_entry *entry;
421
422	switch(kcb->kprobe_status) {
423	case KPROBE_HIT_SS:
424	case KPROBE_REENTER:
425		/*
426		 * We are here because the instruction being single
427		 * stepped caused a page fault. We reset the current
428		 * kprobe and the nip points back to the probe address
429		 * and allow the page fault handler to continue as a
430		 * normal page fault.
431		 */
432		disable_singlestep(kcb, regs, (unsigned long) p->addr);
433		pop_kprobe(kcb);
434		preempt_enable_no_resched();
435		break;
436	case KPROBE_HIT_ACTIVE:
437	case KPROBE_HIT_SSDONE:
438		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
439		 * In case the user-specified fault handler returned
440		 * zero, try to fix up.
441		 */
442		entry = s390_search_extables(regs->psw.addr);
443		if (entry && ex_handle(entry, regs))
 
444			return 1;
 
445
446		/*
447		 * fixup_exception() could not handle it,
448		 * Let do_page_fault() fix it.
449		 */
450		break;
451	default:
452		break;
453	}
454	return 0;
455}
456NOKPROBE_SYMBOL(kprobe_trap_handler);
457
458int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
459{
460	int ret;
461
462	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
463		local_irq_disable();
464	ret = kprobe_trap_handler(regs, trapnr);
465	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
466		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
467	return ret;
468}
469NOKPROBE_SYMBOL(kprobe_fault_handler);
470
471/*
472 * Wrapper routine to for handling exceptions.
473 */
474int kprobe_exceptions_notify(struct notifier_block *self,
475			     unsigned long val, void *data)
476{
477	struct die_args *args = (struct die_args *) data;
478	struct pt_regs *regs = args->regs;
479	int ret = NOTIFY_DONE;
480
481	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
482		local_irq_disable();
483
484	switch (val) {
485	case DIE_BPT:
486		if (kprobe_handler(regs))
487			ret = NOTIFY_STOP;
488		break;
489	case DIE_SSTEP:
490		if (post_kprobe_handler(regs))
491			ret = NOTIFY_STOP;
492		break;
493	case DIE_TRAP:
494		if (!preemptible() && kprobe_running() &&
495		    kprobe_trap_handler(regs, args->trapnr))
496			ret = NOTIFY_STOP;
497		break;
498	default:
499		break;
500	}
501
502	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
503		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
504
505	return ret;
506}
507NOKPROBE_SYMBOL(kprobe_exceptions_notify);
508
509static struct kprobe trampoline = {
510	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
511	.pre_handler = trampoline_probe_handler
512};
513
514int __init arch_init_kprobes(void)
515{
516	return register_kprobe(&trampoline);
517}
518
519int arch_trampoline_kprobe(struct kprobe *p)
520{
521	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
522}
523NOKPROBE_SYMBOL(arch_trampoline_kprobe);