Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 * Copyright IBM Corp. 2002, 2006
  6 *
  7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  8 */
  9
 10#include <linux/kprobes.h>
 11#include <linux/ptrace.h>
 12#include <linux/preempt.h>
 13#include <linux/stop_machine.h>
 14#include <linux/kdebug.h>
 15#include <linux/uaccess.h>
 16#include <linux/extable.h>
 17#include <linux/module.h>
 18#include <linux/slab.h>
 19#include <linux/hardirq.h>
 20#include <linux/ftrace.h>
 21#include <asm/set_memory.h>
 22#include <asm/sections.h>
 
 23#include <asm/dis.h>
 24
 25DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 26DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 27
 28struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 29
 30DEFINE_INSN_CACHE_OPS(s390_insn);
 31
 32static int insn_page_in_use;
 33static char insn_page[PAGE_SIZE] __aligned(PAGE_SIZE);
 34
 35static void *alloc_s390_insn_page(void)
 36{
 37	if (xchg(&insn_page_in_use, 1) == 1)
 38		return NULL;
 39	set_memory_x((unsigned long) &insn_page, 1);
 40	return &insn_page;
 41}
 42
 43static void free_s390_insn_page(void *page)
 44{
 45	set_memory_nx((unsigned long) page, 1);
 46	xchg(&insn_page_in_use, 0);
 47}
 48
 49struct kprobe_insn_cache kprobe_s390_insn_slots = {
 50	.mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
 51	.alloc = alloc_s390_insn_page,
 52	.free = free_s390_insn_page,
 53	.pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
 54	.insn_size = MAX_INSN_SIZE,
 55};
 56
 57static void copy_instruction(struct kprobe *p)
 58{
 59	unsigned long ip = (unsigned long) p->addr;
 60	s64 disp, new_disp;
 61	u64 addr, new_addr;
 62
 63	if (ftrace_location(ip) == ip) {
 64		/*
 65		 * If kprobes patches the instruction that is morphed by
 66		 * ftrace make sure that kprobes always sees the branch
 67		 * "jg .+24" that skips the mcount block or the "brcl 0,0"
 68		 * in case of hotpatch.
 69		 */
 70		ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
 71		p->ainsn.is_ftrace_insn = 1;
 72	} else
 73		memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
 74	p->opcode = p->ainsn.insn[0];
 75	if (!probe_is_insn_relative_long(p->ainsn.insn))
 76		return;
 77	/*
 78	 * For pc-relative instructions in RIL-b or RIL-c format patch the
 79	 * RI2 displacement field. We have already made sure that the insn
 80	 * slot for the patched instruction is within the same 2GB area
 81	 * as the original instruction (either kernel image or module area).
 82	 * Therefore the new displacement will always fit.
 83	 */
 84	disp = *(s32 *)&p->ainsn.insn[1];
 85	addr = (u64)(unsigned long)p->addr;
 86	new_addr = (u64)(unsigned long)p->ainsn.insn;
 87	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 88	*(s32 *)&p->ainsn.insn[1] = new_disp;
 89}
 90NOKPROBE_SYMBOL(copy_instruction);
 91
 92static inline int is_kernel_addr(void *addr)
 93{
 94	return addr < (void *)_end;
 95}
 96
 97static int s390_get_insn_slot(struct kprobe *p)
 98{
 99	/*
100	 * Get an insn slot that is within the same 2GB area like the original
101	 * instruction. That way instructions with a 32bit signed displacement
102	 * field can be patched and executed within the insn slot.
103	 */
104	p->ainsn.insn = NULL;
105	if (is_kernel_addr(p->addr))
106		p->ainsn.insn = get_s390_insn_slot();
107	else if (is_module_addr(p->addr))
108		p->ainsn.insn = get_insn_slot();
109	return p->ainsn.insn ? 0 : -ENOMEM;
110}
111NOKPROBE_SYMBOL(s390_get_insn_slot);
112
113static void s390_free_insn_slot(struct kprobe *p)
114{
115	if (!p->ainsn.insn)
116		return;
117	if (is_kernel_addr(p->addr))
118		free_s390_insn_slot(p->ainsn.insn, 0);
119	else
120		free_insn_slot(p->ainsn.insn, 0);
121	p->ainsn.insn = NULL;
122}
123NOKPROBE_SYMBOL(s390_free_insn_slot);
124
125int arch_prepare_kprobe(struct kprobe *p)
126{
127	if ((unsigned long) p->addr & 0x01)
128		return -EINVAL;
129	/* Make sure the probe isn't going on a difficult instruction */
130	if (probe_is_prohibited_opcode(p->addr))
131		return -EINVAL;
132	if (s390_get_insn_slot(p))
133		return -ENOMEM;
134	copy_instruction(p);
135	return 0;
136}
137NOKPROBE_SYMBOL(arch_prepare_kprobe);
138
139int arch_check_ftrace_location(struct kprobe *p)
140{
141	return 0;
142}
143
144struct swap_insn_args {
145	struct kprobe *p;
146	unsigned int arm_kprobe : 1;
147};
148
149static int swap_instruction(void *data)
150{
 
 
151	struct swap_insn_args *args = data;
152	struct ftrace_insn new_insn, *insn;
153	struct kprobe *p = args->p;
154	size_t len;
155
156	new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
157	len = sizeof(new_insn.opc);
158	if (!p->ainsn.is_ftrace_insn)
159		goto skip_ftrace;
160	len = sizeof(new_insn);
161	insn = (struct ftrace_insn *) p->addr;
162	if (args->arm_kprobe) {
163		if (is_ftrace_nop(insn))
164			new_insn.disp = KPROBE_ON_FTRACE_NOP;
165		else
166			new_insn.disp = KPROBE_ON_FTRACE_CALL;
167	} else {
168		ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
169		if (insn->disp == KPROBE_ON_FTRACE_NOP)
170			ftrace_generate_nop_insn(&new_insn);
171	}
172skip_ftrace:
 
173	s390_kernel_write(p->addr, &new_insn, len);
 
174	return 0;
175}
176NOKPROBE_SYMBOL(swap_instruction);
177
178void arch_arm_kprobe(struct kprobe *p)
179{
180	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
181
182	stop_machine_cpuslocked(swap_instruction, &args, NULL);
183}
184NOKPROBE_SYMBOL(arch_arm_kprobe);
185
186void arch_disarm_kprobe(struct kprobe *p)
187{
188	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
189
190	stop_machine_cpuslocked(swap_instruction, &args, NULL);
191}
192NOKPROBE_SYMBOL(arch_disarm_kprobe);
193
194void arch_remove_kprobe(struct kprobe *p)
195{
196	s390_free_insn_slot(p);
197}
198NOKPROBE_SYMBOL(arch_remove_kprobe);
199
200static void enable_singlestep(struct kprobe_ctlblk *kcb,
201			      struct pt_regs *regs,
202			      unsigned long ip)
203{
204	struct per_regs per_kprobe;
205
206	/* Set up the PER control registers %cr9-%cr11 */
207	per_kprobe.control = PER_EVENT_IFETCH;
208	per_kprobe.start = ip;
209	per_kprobe.end = ip;
210
211	/* Save control regs and psw mask */
212	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
213	kcb->kprobe_saved_imask = regs->psw.mask &
214		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
215
216	/* Set PER control regs, turns on single step for the given address */
217	__ctl_load(per_kprobe, 9, 11);
218	regs->psw.mask |= PSW_MASK_PER;
219	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
220	regs->psw.addr = ip;
221}
222NOKPROBE_SYMBOL(enable_singlestep);
223
224static void disable_singlestep(struct kprobe_ctlblk *kcb,
225			       struct pt_regs *regs,
226			       unsigned long ip)
227{
228	/* Restore control regs and psw mask, set new psw address */
229	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
230	regs->psw.mask &= ~PSW_MASK_PER;
231	regs->psw.mask |= kcb->kprobe_saved_imask;
232	regs->psw.addr = ip;
233}
234NOKPROBE_SYMBOL(disable_singlestep);
235
236/*
237 * Activate a kprobe by storing its pointer to current_kprobe. The
238 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
239 * two kprobes can be active, see KPROBE_REENTER.
240 */
241static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
242{
243	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
244	kcb->prev_kprobe.status = kcb->kprobe_status;
245	__this_cpu_write(current_kprobe, p);
246}
247NOKPROBE_SYMBOL(push_kprobe);
248
249/*
250 * Deactivate a kprobe by backing up to the previous state. If the
251 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
252 * for any other state prev_kprobe.kp will be NULL.
253 */
254static void pop_kprobe(struct kprobe_ctlblk *kcb)
255{
256	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
257	kcb->kprobe_status = kcb->prev_kprobe.status;
258}
259NOKPROBE_SYMBOL(pop_kprobe);
260
261void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
262{
263	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
264
265	/* Replace the return addr with trampoline addr */
266	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
267}
268NOKPROBE_SYMBOL(arch_prepare_kretprobe);
269
270static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
271{
272	switch (kcb->kprobe_status) {
273	case KPROBE_HIT_SSDONE:
274	case KPROBE_HIT_ACTIVE:
275		kprobes_inc_nmissed_count(p);
276		break;
277	case KPROBE_HIT_SS:
278	case KPROBE_REENTER:
279	default:
280		/*
281		 * A kprobe on the code path to single step an instruction
282		 * is a BUG. The code path resides in the .kprobes.text
283		 * section and is executed with interrupts disabled.
284		 */
285		pr_err("Invalid kprobe detected.\n");
286		dump_kprobe(p);
287		BUG();
288	}
289}
290NOKPROBE_SYMBOL(kprobe_reenter_check);
291
292static int kprobe_handler(struct pt_regs *regs)
293{
294	struct kprobe_ctlblk *kcb;
295	struct kprobe *p;
296
297	/*
298	 * We want to disable preemption for the entire duration of kprobe
299	 * processing. That includes the calls to the pre/post handlers
300	 * and single stepping the kprobe instruction.
301	 */
302	preempt_disable();
303	kcb = get_kprobe_ctlblk();
304	p = get_kprobe((void *)(regs->psw.addr - 2));
305
306	if (p) {
307		if (kprobe_running()) {
308			/*
309			 * We have hit a kprobe while another is still
310			 * active. This can happen in the pre and post
311			 * handler. Single step the instruction of the
312			 * new probe but do not call any handler function
313			 * of this secondary kprobe.
314			 * push_kprobe and pop_kprobe saves and restores
315			 * the currently active kprobe.
316			 */
317			kprobe_reenter_check(kcb, p);
318			push_kprobe(kcb, p);
319			kcb->kprobe_status = KPROBE_REENTER;
320		} else {
321			/*
322			 * If we have no pre-handler or it returned 0, we
323			 * continue with single stepping. If we have a
324			 * pre-handler and it returned non-zero, it prepped
325			 * for changing execution path, so get out doing
326			 * nothing more here.
 
327			 */
328			push_kprobe(kcb, p);
329			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
330			if (p->pre_handler && p->pre_handler(p, regs)) {
331				pop_kprobe(kcb);
332				preempt_enable_no_resched();
333				return 1;
334			}
335			kcb->kprobe_status = KPROBE_HIT_SS;
336		}
337		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
338		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339	} /* else:
340	   * No kprobe at this address and no active kprobe. The trap has
341	   * not been caused by a kprobe breakpoint. The race of breakpoint
342	   * vs. kprobe remove does not exist because on s390 as we use
343	   * stop_machine to arm/disarm the breakpoints.
344	   */
345	preempt_enable_no_resched();
346	return 0;
347}
348NOKPROBE_SYMBOL(kprobe_handler);
349
350/*
351 * Function return probe trampoline:
352 *	- init_kprobes() establishes a probepoint here
353 *	- When the probed function returns, this probe
354 *		causes the handlers to fire
355 */
356static void __used kretprobe_trampoline_holder(void)
357{
358	asm volatile(".global kretprobe_trampoline\n"
359		     "kretprobe_trampoline: bcr 0,0\n");
360}
361
362/*
363 * Called when the probe at kretprobe trampoline is hit
364 */
365static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
366{
367	struct kretprobe_instance *ri;
368	struct hlist_head *head, empty_rp;
369	struct hlist_node *tmp;
370	unsigned long flags, orig_ret_address;
371	unsigned long trampoline_address;
372	kprobe_opcode_t *correct_ret_addr;
373
374	INIT_HLIST_HEAD(&empty_rp);
375	kretprobe_hash_lock(current, &head, &flags);
376
377	/*
378	 * It is possible to have multiple instances associated with a given
379	 * task either because an multiple functions in the call path
380	 * have a return probe installed on them, and/or more than one return
381	 * return probe was registered for a target function.
382	 *
383	 * We can handle this because:
384	 *     - instances are always inserted at the head of the list
385	 *     - when multiple return probes are registered for the same
386	 *	 function, the first instance's ret_addr will point to the
387	 *	 real return address, and all the rest will point to
388	 *	 kretprobe_trampoline
389	 */
390	ri = NULL;
391	orig_ret_address = 0;
392	correct_ret_addr = NULL;
393	trampoline_address = (unsigned long) &kretprobe_trampoline;
394	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
395		if (ri->task != current)
396			/* another task is sharing our hash bucket */
397			continue;
398
399		orig_ret_address = (unsigned long) ri->ret_addr;
400
401		if (orig_ret_address != trampoline_address)
402			/*
403			 * This is the real return address. Any other
404			 * instances associated with this task are for
405			 * other calls deeper on the call stack
406			 */
407			break;
408	}
409
410	kretprobe_assert(ri, orig_ret_address, trampoline_address);
411
412	correct_ret_addr = ri->ret_addr;
413	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
414		if (ri->task != current)
415			/* another task is sharing our hash bucket */
416			continue;
417
418		orig_ret_address = (unsigned long) ri->ret_addr;
419
420		if (ri->rp && ri->rp->handler) {
421			ri->ret_addr = correct_ret_addr;
422			ri->rp->handler(ri, regs);
423		}
424
425		recycle_rp_inst(ri, &empty_rp);
426
427		if (orig_ret_address != trampoline_address)
428			/*
429			 * This is the real return address. Any other
430			 * instances associated with this task are for
431			 * other calls deeper on the call stack
432			 */
433			break;
434	}
435
436	regs->psw.addr = orig_ret_address;
437
 
438	kretprobe_hash_unlock(current, &flags);
 
439
440	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
441		hlist_del(&ri->hlist);
442		kfree(ri);
443	}
444	/*
445	 * By returning a non-zero value, we are telling
446	 * kprobe_handler() that we don't want the post_handler
447	 * to run (and have re-enabled preemption)
448	 */
449	return 1;
450}
451NOKPROBE_SYMBOL(trampoline_probe_handler);
452
453/*
454 * Called after single-stepping.  p->addr is the address of the
455 * instruction whose first byte has been replaced by the "breakpoint"
456 * instruction.  To avoid the SMP problems that can occur when we
457 * temporarily put back the original opcode to single-step, we
458 * single-stepped a copy of the instruction.  The address of this
459 * copy is p->ainsn.insn.
460 */
461static void resume_execution(struct kprobe *p, struct pt_regs *regs)
462{
463	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
464	unsigned long ip = regs->psw.addr;
465	int fixup = probe_get_fixup_type(p->ainsn.insn);
466
467	/* Check if the kprobes location is an enabled ftrace caller */
468	if (p->ainsn.is_ftrace_insn) {
469		struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
470		struct ftrace_insn call_insn;
471
472		ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
473		/*
474		 * A kprobe on an enabled ftrace call site actually single
475		 * stepped an unconditional branch (ftrace nop equivalent).
476		 * Now we need to fixup things and pretend that a brasl r0,...
477		 * was executed instead.
478		 */
479		if (insn->disp == KPROBE_ON_FTRACE_CALL) {
480			ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
481			regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
482		}
483	}
484
485	if (fixup & FIXUP_PSW_NORMAL)
486		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
487
488	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
489		int ilen = insn_length(p->ainsn.insn[0] >> 8);
490		if (ip - (unsigned long) p->ainsn.insn == ilen)
491			ip = (unsigned long) p->addr + ilen;
492	}
493
494	if (fixup & FIXUP_RETURN_REGISTER) {
495		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
496		regs->gprs[reg] += (unsigned long) p->addr -
497				   (unsigned long) p->ainsn.insn;
498	}
499
500	disable_singlestep(kcb, regs, ip);
501}
502NOKPROBE_SYMBOL(resume_execution);
503
504static int post_kprobe_handler(struct pt_regs *regs)
505{
506	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
507	struct kprobe *p = kprobe_running();
508
509	if (!p)
510		return 0;
511
512	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
513		kcb->kprobe_status = KPROBE_HIT_SSDONE;
514		p->post_handler(p, regs, 0);
515	}
516
517	resume_execution(p, regs);
518	pop_kprobe(kcb);
519	preempt_enable_no_resched();
520
521	/*
522	 * if somebody else is singlestepping across a probe point, psw mask
523	 * will have PER set, in which case, continue the remaining processing
524	 * of do_single_step, as if this is not a probe hit.
525	 */
526	if (regs->psw.mask & PSW_MASK_PER)
527		return 0;
528
529	return 1;
530}
531NOKPROBE_SYMBOL(post_kprobe_handler);
532
533static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
534{
535	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
536	struct kprobe *p = kprobe_running();
537	const struct exception_table_entry *entry;
538
539	switch(kcb->kprobe_status) {
 
 
 
540	case KPROBE_HIT_SS:
541	case KPROBE_REENTER:
542		/*
543		 * We are here because the instruction being single
544		 * stepped caused a page fault. We reset the current
545		 * kprobe and the nip points back to the probe address
546		 * and allow the page fault handler to continue as a
547		 * normal page fault.
548		 */
549		disable_singlestep(kcb, regs, (unsigned long) p->addr);
550		pop_kprobe(kcb);
551		preempt_enable_no_resched();
552		break;
553	case KPROBE_HIT_ACTIVE:
554	case KPROBE_HIT_SSDONE:
555		/*
556		 * We increment the nmissed count for accounting,
557		 * we can also use npre/npostfault count for accounting
558		 * these specific fault cases.
559		 */
560		kprobes_inc_nmissed_count(p);
561
562		/*
563		 * We come here because instructions in the pre/post
564		 * handler caused the page_fault, this could happen
565		 * if handler tries to access user space by
566		 * copy_from_user(), get_user() etc. Let the
567		 * user-specified handler try to fix it first.
568		 */
569		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
570			return 1;
571
572		/*
573		 * In case the user-specified fault handler returned
574		 * zero, try to fix up.
575		 */
576		entry = s390_search_extables(regs->psw.addr);
577		if (entry) {
578			regs->psw.addr = extable_fixup(entry);
579			return 1;
580		}
581
582		/*
583		 * fixup_exception() could not handle it,
584		 * Let do_page_fault() fix it.
585		 */
586		break;
587	default:
588		break;
589	}
590	return 0;
591}
592NOKPROBE_SYMBOL(kprobe_trap_handler);
593
594int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
595{
596	int ret;
597
598	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
599		local_irq_disable();
600	ret = kprobe_trap_handler(regs, trapnr);
601	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
602		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
603	return ret;
604}
605NOKPROBE_SYMBOL(kprobe_fault_handler);
606
607/*
608 * Wrapper routine to for handling exceptions.
609 */
610int kprobe_exceptions_notify(struct notifier_block *self,
611			     unsigned long val, void *data)
612{
613	struct die_args *args = (struct die_args *) data;
614	struct pt_regs *regs = args->regs;
615	int ret = NOTIFY_DONE;
616
617	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
618		local_irq_disable();
619
620	switch (val) {
621	case DIE_BPT:
622		if (kprobe_handler(regs))
623			ret = NOTIFY_STOP;
624		break;
625	case DIE_SSTEP:
626		if (post_kprobe_handler(regs))
627			ret = NOTIFY_STOP;
628		break;
629	case DIE_TRAP:
630		if (!preemptible() && kprobe_running() &&
631		    kprobe_trap_handler(regs, args->trapnr))
632			ret = NOTIFY_STOP;
633		break;
634	default:
635		break;
636	}
637
638	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
639		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
640
641	return ret;
642}
643NOKPROBE_SYMBOL(kprobe_exceptions_notify);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
644
645static struct kprobe trampoline = {
646	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
647	.pre_handler = trampoline_probe_handler
648};
649
650int __init arch_init_kprobes(void)
651{
652	return register_kprobe(&trampoline);
653}
654
655int arch_trampoline_kprobe(struct kprobe *p)
656{
657	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
658}
659NOKPROBE_SYMBOL(arch_trampoline_kprobe);
v4.10.11
 
  1/*
  2 *  Kernel Probes (KProbes)
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright IBM Corp. 2002, 2006
 19 *
 20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
 21 */
 22
 23#include <linux/kprobes.h>
 24#include <linux/ptrace.h>
 25#include <linux/preempt.h>
 26#include <linux/stop_machine.h>
 27#include <linux/kdebug.h>
 28#include <linux/uaccess.h>
 29#include <linux/extable.h>
 30#include <linux/module.h>
 31#include <linux/slab.h>
 32#include <linux/hardirq.h>
 33#include <linux/ftrace.h>
 34#include <asm/cacheflush.h>
 35#include <asm/sections.h>
 36#include <linux/uaccess.h>
 37#include <asm/dis.h>
 38
 39DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 40DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 41
 42struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 43
 44DEFINE_INSN_CACHE_OPS(dmainsn);
 
 
 
 45
 46static void *alloc_dmainsn_page(void)
 47{
 48	return (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
 
 
 
 49}
 50
 51static void free_dmainsn_page(void *page)
 52{
 53	free_page((unsigned long)page);
 
 54}
 55
 56struct kprobe_insn_cache kprobe_dmainsn_slots = {
 57	.mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
 58	.alloc = alloc_dmainsn_page,
 59	.free = free_dmainsn_page,
 60	.pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
 61	.insn_size = MAX_INSN_SIZE,
 62};
 63
 64static void copy_instruction(struct kprobe *p)
 65{
 66	unsigned long ip = (unsigned long) p->addr;
 67	s64 disp, new_disp;
 68	u64 addr, new_addr;
 69
 70	if (ftrace_location(ip) == ip) {
 71		/*
 72		 * If kprobes patches the instruction that is morphed by
 73		 * ftrace make sure that kprobes always sees the branch
 74		 * "jg .+24" that skips the mcount block or the "brcl 0,0"
 75		 * in case of hotpatch.
 76		 */
 77		ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
 78		p->ainsn.is_ftrace_insn = 1;
 79	} else
 80		memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
 81	p->opcode = p->ainsn.insn[0];
 82	if (!probe_is_insn_relative_long(p->ainsn.insn))
 83		return;
 84	/*
 85	 * For pc-relative instructions in RIL-b or RIL-c format patch the
 86	 * RI2 displacement field. We have already made sure that the insn
 87	 * slot for the patched instruction is within the same 2GB area
 88	 * as the original instruction (either kernel image or module area).
 89	 * Therefore the new displacement will always fit.
 90	 */
 91	disp = *(s32 *)&p->ainsn.insn[1];
 92	addr = (u64)(unsigned long)p->addr;
 93	new_addr = (u64)(unsigned long)p->ainsn.insn;
 94	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 95	*(s32 *)&p->ainsn.insn[1] = new_disp;
 96}
 97NOKPROBE_SYMBOL(copy_instruction);
 98
 99static inline int is_kernel_addr(void *addr)
100{
101	return addr < (void *)_end;
102}
103
104static int s390_get_insn_slot(struct kprobe *p)
105{
106	/*
107	 * Get an insn slot that is within the same 2GB area like the original
108	 * instruction. That way instructions with a 32bit signed displacement
109	 * field can be patched and executed within the insn slot.
110	 */
111	p->ainsn.insn = NULL;
112	if (is_kernel_addr(p->addr))
113		p->ainsn.insn = get_dmainsn_slot();
114	else if (is_module_addr(p->addr))
115		p->ainsn.insn = get_insn_slot();
116	return p->ainsn.insn ? 0 : -ENOMEM;
117}
118NOKPROBE_SYMBOL(s390_get_insn_slot);
119
120static void s390_free_insn_slot(struct kprobe *p)
121{
122	if (!p->ainsn.insn)
123		return;
124	if (is_kernel_addr(p->addr))
125		free_dmainsn_slot(p->ainsn.insn, 0);
126	else
127		free_insn_slot(p->ainsn.insn, 0);
128	p->ainsn.insn = NULL;
129}
130NOKPROBE_SYMBOL(s390_free_insn_slot);
131
132int arch_prepare_kprobe(struct kprobe *p)
133{
134	if ((unsigned long) p->addr & 0x01)
135		return -EINVAL;
136	/* Make sure the probe isn't going on a difficult instruction */
137	if (probe_is_prohibited_opcode(p->addr))
138		return -EINVAL;
139	if (s390_get_insn_slot(p))
140		return -ENOMEM;
141	copy_instruction(p);
142	return 0;
143}
144NOKPROBE_SYMBOL(arch_prepare_kprobe);
145
146int arch_check_ftrace_location(struct kprobe *p)
147{
148	return 0;
149}
150
151struct swap_insn_args {
152	struct kprobe *p;
153	unsigned int arm_kprobe : 1;
154};
155
156static int swap_instruction(void *data)
157{
158	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
159	unsigned long status = kcb->kprobe_status;
160	struct swap_insn_args *args = data;
161	struct ftrace_insn new_insn, *insn;
162	struct kprobe *p = args->p;
163	size_t len;
164
165	new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
166	len = sizeof(new_insn.opc);
167	if (!p->ainsn.is_ftrace_insn)
168		goto skip_ftrace;
169	len = sizeof(new_insn);
170	insn = (struct ftrace_insn *) p->addr;
171	if (args->arm_kprobe) {
172		if (is_ftrace_nop(insn))
173			new_insn.disp = KPROBE_ON_FTRACE_NOP;
174		else
175			new_insn.disp = KPROBE_ON_FTRACE_CALL;
176	} else {
177		ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
178		if (insn->disp == KPROBE_ON_FTRACE_NOP)
179			ftrace_generate_nop_insn(&new_insn);
180	}
181skip_ftrace:
182	kcb->kprobe_status = KPROBE_SWAP_INST;
183	s390_kernel_write(p->addr, &new_insn, len);
184	kcb->kprobe_status = status;
185	return 0;
186}
187NOKPROBE_SYMBOL(swap_instruction);
188
189void arch_arm_kprobe(struct kprobe *p)
190{
191	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
192
193	stop_machine(swap_instruction, &args, NULL);
194}
195NOKPROBE_SYMBOL(arch_arm_kprobe);
196
197void arch_disarm_kprobe(struct kprobe *p)
198{
199	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
200
201	stop_machine(swap_instruction, &args, NULL);
202}
203NOKPROBE_SYMBOL(arch_disarm_kprobe);
204
205void arch_remove_kprobe(struct kprobe *p)
206{
207	s390_free_insn_slot(p);
208}
209NOKPROBE_SYMBOL(arch_remove_kprobe);
210
211static void enable_singlestep(struct kprobe_ctlblk *kcb,
212			      struct pt_regs *regs,
213			      unsigned long ip)
214{
215	struct per_regs per_kprobe;
216
217	/* Set up the PER control registers %cr9-%cr11 */
218	per_kprobe.control = PER_EVENT_IFETCH;
219	per_kprobe.start = ip;
220	per_kprobe.end = ip;
221
222	/* Save control regs and psw mask */
223	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
224	kcb->kprobe_saved_imask = regs->psw.mask &
225		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
226
227	/* Set PER control regs, turns on single step for the given address */
228	__ctl_load(per_kprobe, 9, 11);
229	regs->psw.mask |= PSW_MASK_PER;
230	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
231	regs->psw.addr = ip;
232}
233NOKPROBE_SYMBOL(enable_singlestep);
234
235static void disable_singlestep(struct kprobe_ctlblk *kcb,
236			       struct pt_regs *regs,
237			       unsigned long ip)
238{
239	/* Restore control regs and psw mask, set new psw address */
240	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
241	regs->psw.mask &= ~PSW_MASK_PER;
242	regs->psw.mask |= kcb->kprobe_saved_imask;
243	regs->psw.addr = ip;
244}
245NOKPROBE_SYMBOL(disable_singlestep);
246
247/*
248 * Activate a kprobe by storing its pointer to current_kprobe. The
249 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
250 * two kprobes can be active, see KPROBE_REENTER.
251 */
252static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
253{
254	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
255	kcb->prev_kprobe.status = kcb->kprobe_status;
256	__this_cpu_write(current_kprobe, p);
257}
258NOKPROBE_SYMBOL(push_kprobe);
259
260/*
261 * Deactivate a kprobe by backing up to the previous state. If the
262 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
263 * for any other state prev_kprobe.kp will be NULL.
264 */
265static void pop_kprobe(struct kprobe_ctlblk *kcb)
266{
267	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
268	kcb->kprobe_status = kcb->prev_kprobe.status;
269}
270NOKPROBE_SYMBOL(pop_kprobe);
271
272void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
273{
274	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
275
276	/* Replace the return addr with trampoline addr */
277	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
278}
279NOKPROBE_SYMBOL(arch_prepare_kretprobe);
280
281static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
282{
283	switch (kcb->kprobe_status) {
284	case KPROBE_HIT_SSDONE:
285	case KPROBE_HIT_ACTIVE:
286		kprobes_inc_nmissed_count(p);
287		break;
288	case KPROBE_HIT_SS:
289	case KPROBE_REENTER:
290	default:
291		/*
292		 * A kprobe on the code path to single step an instruction
293		 * is a BUG. The code path resides in the .kprobes.text
294		 * section and is executed with interrupts disabled.
295		 */
296		printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
297		dump_kprobe(p);
298		BUG();
299	}
300}
301NOKPROBE_SYMBOL(kprobe_reenter_check);
302
303static int kprobe_handler(struct pt_regs *regs)
304{
305	struct kprobe_ctlblk *kcb;
306	struct kprobe *p;
307
308	/*
309	 * We want to disable preemption for the entire duration of kprobe
310	 * processing. That includes the calls to the pre/post handlers
311	 * and single stepping the kprobe instruction.
312	 */
313	preempt_disable();
314	kcb = get_kprobe_ctlblk();
315	p = get_kprobe((void *)(regs->psw.addr - 2));
316
317	if (p) {
318		if (kprobe_running()) {
319			/*
320			 * We have hit a kprobe while another is still
321			 * active. This can happen in the pre and post
322			 * handler. Single step the instruction of the
323			 * new probe but do not call any handler function
324			 * of this secondary kprobe.
325			 * push_kprobe and pop_kprobe saves and restores
326			 * the currently active kprobe.
327			 */
328			kprobe_reenter_check(kcb, p);
329			push_kprobe(kcb, p);
330			kcb->kprobe_status = KPROBE_REENTER;
331		} else {
332			/*
333			 * If we have no pre-handler or it returned 0, we
334			 * continue with single stepping. If we have a
335			 * pre-handler and it returned non-zero, it prepped
336			 * for calling the break_handler below on re-entry
337			 * for jprobe processing, so get out doing nothing
338			 * more here.
339			 */
340			push_kprobe(kcb, p);
341			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
342			if (p->pre_handler && p->pre_handler(p, regs))
 
 
343				return 1;
 
344			kcb->kprobe_status = KPROBE_HIT_SS;
345		}
346		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
347		return 1;
348	} else if (kprobe_running()) {
349		p = __this_cpu_read(current_kprobe);
350		if (p->break_handler && p->break_handler(p, regs)) {
351			/*
352			 * Continuation after the jprobe completed and
353			 * caused the jprobe_return trap. The jprobe
354			 * break_handler "returns" to the original
355			 * function that still has the kprobe breakpoint
356			 * installed. We continue with single stepping.
357			 */
358			kcb->kprobe_status = KPROBE_HIT_SS;
359			enable_singlestep(kcb, regs,
360					  (unsigned long) p->ainsn.insn);
361			return 1;
362		} /* else:
363		   * No kprobe at this address and the current kprobe
364		   * has no break handler (no jprobe!). The kernel just
365		   * exploded, let the standard trap handler pick up the
366		   * pieces.
367		   */
368	} /* else:
369	   * No kprobe at this address and no active kprobe. The trap has
370	   * not been caused by a kprobe breakpoint. The race of breakpoint
371	   * vs. kprobe remove does not exist because on s390 as we use
372	   * stop_machine to arm/disarm the breakpoints.
373	   */
374	preempt_enable_no_resched();
375	return 0;
376}
377NOKPROBE_SYMBOL(kprobe_handler);
378
379/*
380 * Function return probe trampoline:
381 *	- init_kprobes() establishes a probepoint here
382 *	- When the probed function returns, this probe
383 *		causes the handlers to fire
384 */
385static void __used kretprobe_trampoline_holder(void)
386{
387	asm volatile(".global kretprobe_trampoline\n"
388		     "kretprobe_trampoline: bcr 0,0\n");
389}
390
391/*
392 * Called when the probe at kretprobe trampoline is hit
393 */
394static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
395{
396	struct kretprobe_instance *ri;
397	struct hlist_head *head, empty_rp;
398	struct hlist_node *tmp;
399	unsigned long flags, orig_ret_address;
400	unsigned long trampoline_address;
401	kprobe_opcode_t *correct_ret_addr;
402
403	INIT_HLIST_HEAD(&empty_rp);
404	kretprobe_hash_lock(current, &head, &flags);
405
406	/*
407	 * It is possible to have multiple instances associated with a given
408	 * task either because an multiple functions in the call path
409	 * have a return probe installed on them, and/or more than one return
410	 * return probe was registered for a target function.
411	 *
412	 * We can handle this because:
413	 *     - instances are always inserted at the head of the list
414	 *     - when multiple return probes are registered for the same
415	 *	 function, the first instance's ret_addr will point to the
416	 *	 real return address, and all the rest will point to
417	 *	 kretprobe_trampoline
418	 */
419	ri = NULL;
420	orig_ret_address = 0;
421	correct_ret_addr = NULL;
422	trampoline_address = (unsigned long) &kretprobe_trampoline;
423	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
424		if (ri->task != current)
425			/* another task is sharing our hash bucket */
426			continue;
427
428		orig_ret_address = (unsigned long) ri->ret_addr;
429
430		if (orig_ret_address != trampoline_address)
431			/*
432			 * This is the real return address. Any other
433			 * instances associated with this task are for
434			 * other calls deeper on the call stack
435			 */
436			break;
437	}
438
439	kretprobe_assert(ri, orig_ret_address, trampoline_address);
440
441	correct_ret_addr = ri->ret_addr;
442	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
443		if (ri->task != current)
444			/* another task is sharing our hash bucket */
445			continue;
446
447		orig_ret_address = (unsigned long) ri->ret_addr;
448
449		if (ri->rp && ri->rp->handler) {
450			ri->ret_addr = correct_ret_addr;
451			ri->rp->handler(ri, regs);
452		}
453
454		recycle_rp_inst(ri, &empty_rp);
455
456		if (orig_ret_address != trampoline_address)
457			/*
458			 * This is the real return address. Any other
459			 * instances associated with this task are for
460			 * other calls deeper on the call stack
461			 */
462			break;
463	}
464
465	regs->psw.addr = orig_ret_address;
466
467	pop_kprobe(get_kprobe_ctlblk());
468	kretprobe_hash_unlock(current, &flags);
469	preempt_enable_no_resched();
470
471	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
472		hlist_del(&ri->hlist);
473		kfree(ri);
474	}
475	/*
476	 * By returning a non-zero value, we are telling
477	 * kprobe_handler() that we don't want the post_handler
478	 * to run (and have re-enabled preemption)
479	 */
480	return 1;
481}
482NOKPROBE_SYMBOL(trampoline_probe_handler);
483
484/*
485 * Called after single-stepping.  p->addr is the address of the
486 * instruction whose first byte has been replaced by the "breakpoint"
487 * instruction.  To avoid the SMP problems that can occur when we
488 * temporarily put back the original opcode to single-step, we
489 * single-stepped a copy of the instruction.  The address of this
490 * copy is p->ainsn.insn.
491 */
492static void resume_execution(struct kprobe *p, struct pt_regs *regs)
493{
494	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
495	unsigned long ip = regs->psw.addr;
496	int fixup = probe_get_fixup_type(p->ainsn.insn);
497
498	/* Check if the kprobes location is an enabled ftrace caller */
499	if (p->ainsn.is_ftrace_insn) {
500		struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
501		struct ftrace_insn call_insn;
502
503		ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
504		/*
505		 * A kprobe on an enabled ftrace call site actually single
506		 * stepped an unconditional branch (ftrace nop equivalent).
507		 * Now we need to fixup things and pretend that a brasl r0,...
508		 * was executed instead.
509		 */
510		if (insn->disp == KPROBE_ON_FTRACE_CALL) {
511			ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
512			regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
513		}
514	}
515
516	if (fixup & FIXUP_PSW_NORMAL)
517		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
518
519	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
520		int ilen = insn_length(p->ainsn.insn[0] >> 8);
521		if (ip - (unsigned long) p->ainsn.insn == ilen)
522			ip = (unsigned long) p->addr + ilen;
523	}
524
525	if (fixup & FIXUP_RETURN_REGISTER) {
526		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
527		regs->gprs[reg] += (unsigned long) p->addr -
528				   (unsigned long) p->ainsn.insn;
529	}
530
531	disable_singlestep(kcb, regs, ip);
532}
533NOKPROBE_SYMBOL(resume_execution);
534
535static int post_kprobe_handler(struct pt_regs *regs)
536{
537	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
538	struct kprobe *p = kprobe_running();
539
540	if (!p)
541		return 0;
542
543	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
544		kcb->kprobe_status = KPROBE_HIT_SSDONE;
545		p->post_handler(p, regs, 0);
546	}
547
548	resume_execution(p, regs);
549	pop_kprobe(kcb);
550	preempt_enable_no_resched();
551
552	/*
553	 * if somebody else is singlestepping across a probe point, psw mask
554	 * will have PER set, in which case, continue the remaining processing
555	 * of do_single_step, as if this is not a probe hit.
556	 */
557	if (regs->psw.mask & PSW_MASK_PER)
558		return 0;
559
560	return 1;
561}
562NOKPROBE_SYMBOL(post_kprobe_handler);
563
564static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
565{
566	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
567	struct kprobe *p = kprobe_running();
568	const struct exception_table_entry *entry;
569
570	switch(kcb->kprobe_status) {
571	case KPROBE_SWAP_INST:
572		/* We are here because the instruction replacement failed */
573		return 0;
574	case KPROBE_HIT_SS:
575	case KPROBE_REENTER:
576		/*
577		 * We are here because the instruction being single
578		 * stepped caused a page fault. We reset the current
579		 * kprobe and the nip points back to the probe address
580		 * and allow the page fault handler to continue as a
581		 * normal page fault.
582		 */
583		disable_singlestep(kcb, regs, (unsigned long) p->addr);
584		pop_kprobe(kcb);
585		preempt_enable_no_resched();
586		break;
587	case KPROBE_HIT_ACTIVE:
588	case KPROBE_HIT_SSDONE:
589		/*
590		 * We increment the nmissed count for accounting,
591		 * we can also use npre/npostfault count for accounting
592		 * these specific fault cases.
593		 */
594		kprobes_inc_nmissed_count(p);
595
596		/*
597		 * We come here because instructions in the pre/post
598		 * handler caused the page_fault, this could happen
599		 * if handler tries to access user space by
600		 * copy_from_user(), get_user() etc. Let the
601		 * user-specified handler try to fix it first.
602		 */
603		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
604			return 1;
605
606		/*
607		 * In case the user-specified fault handler returned
608		 * zero, try to fix up.
609		 */
610		entry = search_exception_tables(regs->psw.addr);
611		if (entry) {
612			regs->psw.addr = extable_fixup(entry);
613			return 1;
614		}
615
616		/*
617		 * fixup_exception() could not handle it,
618		 * Let do_page_fault() fix it.
619		 */
620		break;
621	default:
622		break;
623	}
624	return 0;
625}
626NOKPROBE_SYMBOL(kprobe_trap_handler);
627
628int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
629{
630	int ret;
631
632	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
633		local_irq_disable();
634	ret = kprobe_trap_handler(regs, trapnr);
635	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
636		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
637	return ret;
638}
639NOKPROBE_SYMBOL(kprobe_fault_handler);
640
641/*
642 * Wrapper routine to for handling exceptions.
643 */
644int kprobe_exceptions_notify(struct notifier_block *self,
645			     unsigned long val, void *data)
646{
647	struct die_args *args = (struct die_args *) data;
648	struct pt_regs *regs = args->regs;
649	int ret = NOTIFY_DONE;
650
651	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
652		local_irq_disable();
653
654	switch (val) {
655	case DIE_BPT:
656		if (kprobe_handler(regs))
657			ret = NOTIFY_STOP;
658		break;
659	case DIE_SSTEP:
660		if (post_kprobe_handler(regs))
661			ret = NOTIFY_STOP;
662		break;
663	case DIE_TRAP:
664		if (!preemptible() && kprobe_running() &&
665		    kprobe_trap_handler(regs, args->trapnr))
666			ret = NOTIFY_STOP;
667		break;
668	default:
669		break;
670	}
671
672	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
673		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
674
675	return ret;
676}
677NOKPROBE_SYMBOL(kprobe_exceptions_notify);
678
679int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
680{
681	struct jprobe *jp = container_of(p, struct jprobe, kp);
682	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
683	unsigned long stack;
684
685	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
686
687	/* setup return addr to the jprobe handler routine */
688	regs->psw.addr = (unsigned long) jp->entry;
689	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
690
691	/* r15 is the stack pointer */
692	stack = (unsigned long) regs->gprs[15];
693
694	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
695
696	/*
697	 * jprobes use jprobe_return() which skips the normal return
698	 * path of the function, and this messes up the accounting of the
699	 * function graph tracer to get messed up.
700	 *
701	 * Pause function graph tracing while performing the jprobe function.
702	 */
703	pause_graph_tracing();
704	return 1;
705}
706NOKPROBE_SYMBOL(setjmp_pre_handler);
707
708void jprobe_return(void)
709{
710	asm volatile(".word 0x0002");
711}
712NOKPROBE_SYMBOL(jprobe_return);
713
714int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
715{
716	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
717	unsigned long stack;
718
719	/* It's OK to start function graph tracing again */
720	unpause_graph_tracing();
721
722	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
723
724	/* Put the regs back */
725	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
726	/* put the stack back */
727	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
728	preempt_enable_no_resched();
729	return 1;
730}
731NOKPROBE_SYMBOL(longjmp_break_handler);
732
733static struct kprobe trampoline = {
734	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
735	.pre_handler = trampoline_probe_handler
736};
737
738int __init arch_init_kprobes(void)
739{
740	return register_kprobe(&trampoline);
741}
742
743int arch_trampoline_kprobe(struct kprobe *p)
744{
745	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
746}
747NOKPROBE_SYMBOL(arch_trampoline_kprobe);