Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Kernel Probes (KProbes)
4 *
5 * Copyright IBM Corp. 2002, 2006
6 *
7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8 */
9
10#include <linux/kprobes.h>
11#include <linux/ptrace.h>
12#include <linux/preempt.h>
13#include <linux/stop_machine.h>
14#include <linux/kdebug.h>
15#include <linux/uaccess.h>
16#include <linux/extable.h>
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/hardirq.h>
20#include <linux/ftrace.h>
21#include <asm/set_memory.h>
22#include <asm/sections.h>
23#include <asm/dis.h>
24
25DEFINE_PER_CPU(struct kprobe *, current_kprobe);
26DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
27
28struct kretprobe_blackpoint kretprobe_blacklist[] = { };
29
30DEFINE_INSN_CACHE_OPS(s390_insn);
31
32static int insn_page_in_use;
33static char insn_page[PAGE_SIZE] __aligned(PAGE_SIZE);
34
35static void *alloc_s390_insn_page(void)
36{
37 if (xchg(&insn_page_in_use, 1) == 1)
38 return NULL;
39 set_memory_x((unsigned long) &insn_page, 1);
40 return &insn_page;
41}
42
43static void free_s390_insn_page(void *page)
44{
45 set_memory_nx((unsigned long) page, 1);
46 xchg(&insn_page_in_use, 0);
47}
48
49struct kprobe_insn_cache kprobe_s390_insn_slots = {
50 .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
51 .alloc = alloc_s390_insn_page,
52 .free = free_s390_insn_page,
53 .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
54 .insn_size = MAX_INSN_SIZE,
55};
56
57static void copy_instruction(struct kprobe *p)
58{
59 unsigned long ip = (unsigned long) p->addr;
60 s64 disp, new_disp;
61 u64 addr, new_addr;
62
63 if (ftrace_location(ip) == ip) {
64 /*
65 * If kprobes patches the instruction that is morphed by
66 * ftrace make sure that kprobes always sees the branch
67 * "jg .+24" that skips the mcount block or the "brcl 0,0"
68 * in case of hotpatch.
69 */
70 ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
71 p->ainsn.is_ftrace_insn = 1;
72 } else
73 memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
74 p->opcode = p->ainsn.insn[0];
75 if (!probe_is_insn_relative_long(p->ainsn.insn))
76 return;
77 /*
78 * For pc-relative instructions in RIL-b or RIL-c format patch the
79 * RI2 displacement field. We have already made sure that the insn
80 * slot for the patched instruction is within the same 2GB area
81 * as the original instruction (either kernel image or module area).
82 * Therefore the new displacement will always fit.
83 */
84 disp = *(s32 *)&p->ainsn.insn[1];
85 addr = (u64)(unsigned long)p->addr;
86 new_addr = (u64)(unsigned long)p->ainsn.insn;
87 new_disp = ((addr + (disp * 2)) - new_addr) / 2;
88 *(s32 *)&p->ainsn.insn[1] = new_disp;
89}
90NOKPROBE_SYMBOL(copy_instruction);
91
92static inline int is_kernel_addr(void *addr)
93{
94 return addr < (void *)_end;
95}
96
97static int s390_get_insn_slot(struct kprobe *p)
98{
99 /*
100 * Get an insn slot that is within the same 2GB area like the original
101 * instruction. That way instructions with a 32bit signed displacement
102 * field can be patched and executed within the insn slot.
103 */
104 p->ainsn.insn = NULL;
105 if (is_kernel_addr(p->addr))
106 p->ainsn.insn = get_s390_insn_slot();
107 else if (is_module_addr(p->addr))
108 p->ainsn.insn = get_insn_slot();
109 return p->ainsn.insn ? 0 : -ENOMEM;
110}
111NOKPROBE_SYMBOL(s390_get_insn_slot);
112
113static void s390_free_insn_slot(struct kprobe *p)
114{
115 if (!p->ainsn.insn)
116 return;
117 if (is_kernel_addr(p->addr))
118 free_s390_insn_slot(p->ainsn.insn, 0);
119 else
120 free_insn_slot(p->ainsn.insn, 0);
121 p->ainsn.insn = NULL;
122}
123NOKPROBE_SYMBOL(s390_free_insn_slot);
124
125int arch_prepare_kprobe(struct kprobe *p)
126{
127 if ((unsigned long) p->addr & 0x01)
128 return -EINVAL;
129 /* Make sure the probe isn't going on a difficult instruction */
130 if (probe_is_prohibited_opcode(p->addr))
131 return -EINVAL;
132 if (s390_get_insn_slot(p))
133 return -ENOMEM;
134 copy_instruction(p);
135 return 0;
136}
137NOKPROBE_SYMBOL(arch_prepare_kprobe);
138
139int arch_check_ftrace_location(struct kprobe *p)
140{
141 return 0;
142}
143
144struct swap_insn_args {
145 struct kprobe *p;
146 unsigned int arm_kprobe : 1;
147};
148
149static int swap_instruction(void *data)
150{
151 struct swap_insn_args *args = data;
152 struct ftrace_insn new_insn, *insn;
153 struct kprobe *p = args->p;
154 size_t len;
155
156 new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
157 len = sizeof(new_insn.opc);
158 if (!p->ainsn.is_ftrace_insn)
159 goto skip_ftrace;
160 len = sizeof(new_insn);
161 insn = (struct ftrace_insn *) p->addr;
162 if (args->arm_kprobe) {
163 if (is_ftrace_nop(insn))
164 new_insn.disp = KPROBE_ON_FTRACE_NOP;
165 else
166 new_insn.disp = KPROBE_ON_FTRACE_CALL;
167 } else {
168 ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
169 if (insn->disp == KPROBE_ON_FTRACE_NOP)
170 ftrace_generate_nop_insn(&new_insn);
171 }
172skip_ftrace:
173 s390_kernel_write(p->addr, &new_insn, len);
174 return 0;
175}
176NOKPROBE_SYMBOL(swap_instruction);
177
178void arch_arm_kprobe(struct kprobe *p)
179{
180 struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
181
182 stop_machine_cpuslocked(swap_instruction, &args, NULL);
183}
184NOKPROBE_SYMBOL(arch_arm_kprobe);
185
186void arch_disarm_kprobe(struct kprobe *p)
187{
188 struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
189
190 stop_machine_cpuslocked(swap_instruction, &args, NULL);
191}
192NOKPROBE_SYMBOL(arch_disarm_kprobe);
193
194void arch_remove_kprobe(struct kprobe *p)
195{
196 s390_free_insn_slot(p);
197}
198NOKPROBE_SYMBOL(arch_remove_kprobe);
199
200static void enable_singlestep(struct kprobe_ctlblk *kcb,
201 struct pt_regs *regs,
202 unsigned long ip)
203{
204 struct per_regs per_kprobe;
205
206 /* Set up the PER control registers %cr9-%cr11 */
207 per_kprobe.control = PER_EVENT_IFETCH;
208 per_kprobe.start = ip;
209 per_kprobe.end = ip;
210
211 /* Save control regs and psw mask */
212 __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
213 kcb->kprobe_saved_imask = regs->psw.mask &
214 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
215
216 /* Set PER control regs, turns on single step for the given address */
217 __ctl_load(per_kprobe, 9, 11);
218 regs->psw.mask |= PSW_MASK_PER;
219 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
220 regs->psw.addr = ip;
221}
222NOKPROBE_SYMBOL(enable_singlestep);
223
224static void disable_singlestep(struct kprobe_ctlblk *kcb,
225 struct pt_regs *regs,
226 unsigned long ip)
227{
228 /* Restore control regs and psw mask, set new psw address */
229 __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
230 regs->psw.mask &= ~PSW_MASK_PER;
231 regs->psw.mask |= kcb->kprobe_saved_imask;
232 regs->psw.addr = ip;
233}
234NOKPROBE_SYMBOL(disable_singlestep);
235
236/*
237 * Activate a kprobe by storing its pointer to current_kprobe. The
238 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
239 * two kprobes can be active, see KPROBE_REENTER.
240 */
241static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
242{
243 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
244 kcb->prev_kprobe.status = kcb->kprobe_status;
245 __this_cpu_write(current_kprobe, p);
246}
247NOKPROBE_SYMBOL(push_kprobe);
248
249/*
250 * Deactivate a kprobe by backing up to the previous state. If the
251 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
252 * for any other state prev_kprobe.kp will be NULL.
253 */
254static void pop_kprobe(struct kprobe_ctlblk *kcb)
255{
256 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
257 kcb->kprobe_status = kcb->prev_kprobe.status;
258}
259NOKPROBE_SYMBOL(pop_kprobe);
260
261void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
262{
263 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
264
265 /* Replace the return addr with trampoline addr */
266 regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
267}
268NOKPROBE_SYMBOL(arch_prepare_kretprobe);
269
270static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
271{
272 switch (kcb->kprobe_status) {
273 case KPROBE_HIT_SSDONE:
274 case KPROBE_HIT_ACTIVE:
275 kprobes_inc_nmissed_count(p);
276 break;
277 case KPROBE_HIT_SS:
278 case KPROBE_REENTER:
279 default:
280 /*
281 * A kprobe on the code path to single step an instruction
282 * is a BUG. The code path resides in the .kprobes.text
283 * section and is executed with interrupts disabled.
284 */
285 pr_err("Invalid kprobe detected.\n");
286 dump_kprobe(p);
287 BUG();
288 }
289}
290NOKPROBE_SYMBOL(kprobe_reenter_check);
291
292static int kprobe_handler(struct pt_regs *regs)
293{
294 struct kprobe_ctlblk *kcb;
295 struct kprobe *p;
296
297 /*
298 * We want to disable preemption for the entire duration of kprobe
299 * processing. That includes the calls to the pre/post handlers
300 * and single stepping the kprobe instruction.
301 */
302 preempt_disable();
303 kcb = get_kprobe_ctlblk();
304 p = get_kprobe((void *)(regs->psw.addr - 2));
305
306 if (p) {
307 if (kprobe_running()) {
308 /*
309 * We have hit a kprobe while another is still
310 * active. This can happen in the pre and post
311 * handler. Single step the instruction of the
312 * new probe but do not call any handler function
313 * of this secondary kprobe.
314 * push_kprobe and pop_kprobe saves and restores
315 * the currently active kprobe.
316 */
317 kprobe_reenter_check(kcb, p);
318 push_kprobe(kcb, p);
319 kcb->kprobe_status = KPROBE_REENTER;
320 } else {
321 /*
322 * If we have no pre-handler or it returned 0, we
323 * continue with single stepping. If we have a
324 * pre-handler and it returned non-zero, it prepped
325 * for changing execution path, so get out doing
326 * nothing more here.
327 */
328 push_kprobe(kcb, p);
329 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
330 if (p->pre_handler && p->pre_handler(p, regs)) {
331 pop_kprobe(kcb);
332 preempt_enable_no_resched();
333 return 1;
334 }
335 kcb->kprobe_status = KPROBE_HIT_SS;
336 }
337 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
338 return 1;
339 } /* else:
340 * No kprobe at this address and no active kprobe. The trap has
341 * not been caused by a kprobe breakpoint. The race of breakpoint
342 * vs. kprobe remove does not exist because on s390 as we use
343 * stop_machine to arm/disarm the breakpoints.
344 */
345 preempt_enable_no_resched();
346 return 0;
347}
348NOKPROBE_SYMBOL(kprobe_handler);
349
350/*
351 * Function return probe trampoline:
352 * - init_kprobes() establishes a probepoint here
353 * - When the probed function returns, this probe
354 * causes the handlers to fire
355 */
356static void __used kretprobe_trampoline_holder(void)
357{
358 asm volatile(".global kretprobe_trampoline\n"
359 "kretprobe_trampoline: bcr 0,0\n");
360}
361
362/*
363 * Called when the probe at kretprobe trampoline is hit
364 */
365static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
366{
367 struct kretprobe_instance *ri;
368 struct hlist_head *head, empty_rp;
369 struct hlist_node *tmp;
370 unsigned long flags, orig_ret_address;
371 unsigned long trampoline_address;
372 kprobe_opcode_t *correct_ret_addr;
373
374 INIT_HLIST_HEAD(&empty_rp);
375 kretprobe_hash_lock(current, &head, &flags);
376
377 /*
378 * It is possible to have multiple instances associated with a given
379 * task either because an multiple functions in the call path
380 * have a return probe installed on them, and/or more than one return
381 * return probe was registered for a target function.
382 *
383 * We can handle this because:
384 * - instances are always inserted at the head of the list
385 * - when multiple return probes are registered for the same
386 * function, the first instance's ret_addr will point to the
387 * real return address, and all the rest will point to
388 * kretprobe_trampoline
389 */
390 ri = NULL;
391 orig_ret_address = 0;
392 correct_ret_addr = NULL;
393 trampoline_address = (unsigned long) &kretprobe_trampoline;
394 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
395 if (ri->task != current)
396 /* another task is sharing our hash bucket */
397 continue;
398
399 orig_ret_address = (unsigned long) ri->ret_addr;
400
401 if (orig_ret_address != trampoline_address)
402 /*
403 * This is the real return address. Any other
404 * instances associated with this task are for
405 * other calls deeper on the call stack
406 */
407 break;
408 }
409
410 kretprobe_assert(ri, orig_ret_address, trampoline_address);
411
412 correct_ret_addr = ri->ret_addr;
413 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
414 if (ri->task != current)
415 /* another task is sharing our hash bucket */
416 continue;
417
418 orig_ret_address = (unsigned long) ri->ret_addr;
419
420 if (ri->rp && ri->rp->handler) {
421 ri->ret_addr = correct_ret_addr;
422 ri->rp->handler(ri, regs);
423 }
424
425 recycle_rp_inst(ri, &empty_rp);
426
427 if (orig_ret_address != trampoline_address)
428 /*
429 * This is the real return address. Any other
430 * instances associated with this task are for
431 * other calls deeper on the call stack
432 */
433 break;
434 }
435
436 regs->psw.addr = orig_ret_address;
437
438 kretprobe_hash_unlock(current, &flags);
439
440 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
441 hlist_del(&ri->hlist);
442 kfree(ri);
443 }
444 /*
445 * By returning a non-zero value, we are telling
446 * kprobe_handler() that we don't want the post_handler
447 * to run (and have re-enabled preemption)
448 */
449 return 1;
450}
451NOKPROBE_SYMBOL(trampoline_probe_handler);
452
453/*
454 * Called after single-stepping. p->addr is the address of the
455 * instruction whose first byte has been replaced by the "breakpoint"
456 * instruction. To avoid the SMP problems that can occur when we
457 * temporarily put back the original opcode to single-step, we
458 * single-stepped a copy of the instruction. The address of this
459 * copy is p->ainsn.insn.
460 */
461static void resume_execution(struct kprobe *p, struct pt_regs *regs)
462{
463 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
464 unsigned long ip = regs->psw.addr;
465 int fixup = probe_get_fixup_type(p->ainsn.insn);
466
467 /* Check if the kprobes location is an enabled ftrace caller */
468 if (p->ainsn.is_ftrace_insn) {
469 struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
470 struct ftrace_insn call_insn;
471
472 ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
473 /*
474 * A kprobe on an enabled ftrace call site actually single
475 * stepped an unconditional branch (ftrace nop equivalent).
476 * Now we need to fixup things and pretend that a brasl r0,...
477 * was executed instead.
478 */
479 if (insn->disp == KPROBE_ON_FTRACE_CALL) {
480 ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
481 regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
482 }
483 }
484
485 if (fixup & FIXUP_PSW_NORMAL)
486 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
487
488 if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
489 int ilen = insn_length(p->ainsn.insn[0] >> 8);
490 if (ip - (unsigned long) p->ainsn.insn == ilen)
491 ip = (unsigned long) p->addr + ilen;
492 }
493
494 if (fixup & FIXUP_RETURN_REGISTER) {
495 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
496 regs->gprs[reg] += (unsigned long) p->addr -
497 (unsigned long) p->ainsn.insn;
498 }
499
500 disable_singlestep(kcb, regs, ip);
501}
502NOKPROBE_SYMBOL(resume_execution);
503
504static int post_kprobe_handler(struct pt_regs *regs)
505{
506 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
507 struct kprobe *p = kprobe_running();
508
509 if (!p)
510 return 0;
511
512 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
513 kcb->kprobe_status = KPROBE_HIT_SSDONE;
514 p->post_handler(p, regs, 0);
515 }
516
517 resume_execution(p, regs);
518 pop_kprobe(kcb);
519 preempt_enable_no_resched();
520
521 /*
522 * if somebody else is singlestepping across a probe point, psw mask
523 * will have PER set, in which case, continue the remaining processing
524 * of do_single_step, as if this is not a probe hit.
525 */
526 if (regs->psw.mask & PSW_MASK_PER)
527 return 0;
528
529 return 1;
530}
531NOKPROBE_SYMBOL(post_kprobe_handler);
532
533static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
534{
535 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
536 struct kprobe *p = kprobe_running();
537 const struct exception_table_entry *entry;
538
539 switch(kcb->kprobe_status) {
540 case KPROBE_HIT_SS:
541 case KPROBE_REENTER:
542 /*
543 * We are here because the instruction being single
544 * stepped caused a page fault. We reset the current
545 * kprobe and the nip points back to the probe address
546 * and allow the page fault handler to continue as a
547 * normal page fault.
548 */
549 disable_singlestep(kcb, regs, (unsigned long) p->addr);
550 pop_kprobe(kcb);
551 preempt_enable_no_resched();
552 break;
553 case KPROBE_HIT_ACTIVE:
554 case KPROBE_HIT_SSDONE:
555 /*
556 * We increment the nmissed count for accounting,
557 * we can also use npre/npostfault count for accounting
558 * these specific fault cases.
559 */
560 kprobes_inc_nmissed_count(p);
561
562 /*
563 * We come here because instructions in the pre/post
564 * handler caused the page_fault, this could happen
565 * if handler tries to access user space by
566 * copy_from_user(), get_user() etc. Let the
567 * user-specified handler try to fix it first.
568 */
569 if (p->fault_handler && p->fault_handler(p, regs, trapnr))
570 return 1;
571
572 /*
573 * In case the user-specified fault handler returned
574 * zero, try to fix up.
575 */
576 entry = s390_search_extables(regs->psw.addr);
577 if (entry) {
578 regs->psw.addr = extable_fixup(entry);
579 return 1;
580 }
581
582 /*
583 * fixup_exception() could not handle it,
584 * Let do_page_fault() fix it.
585 */
586 break;
587 default:
588 break;
589 }
590 return 0;
591}
592NOKPROBE_SYMBOL(kprobe_trap_handler);
593
594int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
595{
596 int ret;
597
598 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
599 local_irq_disable();
600 ret = kprobe_trap_handler(regs, trapnr);
601 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
602 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
603 return ret;
604}
605NOKPROBE_SYMBOL(kprobe_fault_handler);
606
607/*
608 * Wrapper routine to for handling exceptions.
609 */
610int kprobe_exceptions_notify(struct notifier_block *self,
611 unsigned long val, void *data)
612{
613 struct die_args *args = (struct die_args *) data;
614 struct pt_regs *regs = args->regs;
615 int ret = NOTIFY_DONE;
616
617 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
618 local_irq_disable();
619
620 switch (val) {
621 case DIE_BPT:
622 if (kprobe_handler(regs))
623 ret = NOTIFY_STOP;
624 break;
625 case DIE_SSTEP:
626 if (post_kprobe_handler(regs))
627 ret = NOTIFY_STOP;
628 break;
629 case DIE_TRAP:
630 if (!preemptible() && kprobe_running() &&
631 kprobe_trap_handler(regs, args->trapnr))
632 ret = NOTIFY_STOP;
633 break;
634 default:
635 break;
636 }
637
638 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
639 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
640
641 return ret;
642}
643NOKPROBE_SYMBOL(kprobe_exceptions_notify);
644
645static struct kprobe trampoline = {
646 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
647 .pre_handler = trampoline_probe_handler
648};
649
650int __init arch_init_kprobes(void)
651{
652 return register_kprobe(&trampoline);
653}
654
655int arch_trampoline_kprobe(struct kprobe *p)
656{
657 return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
658}
659NOKPROBE_SYMBOL(arch_trampoline_kprobe);
1/*
2 * Kernel Probes (KProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corp. 2002, 2006
19 *
20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21 */
22
23#include <linux/kprobes.h>
24#include <linux/ptrace.h>
25#include <linux/preempt.h>
26#include <linux/stop_machine.h>
27#include <linux/kdebug.h>
28#include <linux/uaccess.h>
29#include <linux/module.h>
30#include <linux/slab.h>
31#include <linux/hardirq.h>
32#include <linux/ftrace.h>
33#include <asm/cacheflush.h>
34#include <asm/sections.h>
35#include <asm/dis.h>
36
37DEFINE_PER_CPU(struct kprobe *, current_kprobe);
38DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
39
40struct kretprobe_blackpoint kretprobe_blacklist[] = { };
41
42DEFINE_INSN_CACHE_OPS(dmainsn);
43
44static void *alloc_dmainsn_page(void)
45{
46 return (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
47}
48
49static void free_dmainsn_page(void *page)
50{
51 free_page((unsigned long)page);
52}
53
54struct kprobe_insn_cache kprobe_dmainsn_slots = {
55 .mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
56 .alloc = alloc_dmainsn_page,
57 .free = free_dmainsn_page,
58 .pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
59 .insn_size = MAX_INSN_SIZE,
60};
61
62static void copy_instruction(struct kprobe *p)
63{
64 unsigned long ip = (unsigned long) p->addr;
65 s64 disp, new_disp;
66 u64 addr, new_addr;
67
68 if (ftrace_location(ip) == ip) {
69 /*
70 * If kprobes patches the instruction that is morphed by
71 * ftrace make sure that kprobes always sees the branch
72 * "jg .+24" that skips the mcount block or the "brcl 0,0"
73 * in case of hotpatch.
74 */
75 ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
76 p->ainsn.is_ftrace_insn = 1;
77 } else
78 memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
79 p->opcode = p->ainsn.insn[0];
80 if (!probe_is_insn_relative_long(p->ainsn.insn))
81 return;
82 /*
83 * For pc-relative instructions in RIL-b or RIL-c format patch the
84 * RI2 displacement field. We have already made sure that the insn
85 * slot for the patched instruction is within the same 2GB area
86 * as the original instruction (either kernel image or module area).
87 * Therefore the new displacement will always fit.
88 */
89 disp = *(s32 *)&p->ainsn.insn[1];
90 addr = (u64)(unsigned long)p->addr;
91 new_addr = (u64)(unsigned long)p->ainsn.insn;
92 new_disp = ((addr + (disp * 2)) - new_addr) / 2;
93 *(s32 *)&p->ainsn.insn[1] = new_disp;
94}
95NOKPROBE_SYMBOL(copy_instruction);
96
97static inline int is_kernel_addr(void *addr)
98{
99 return addr < (void *)_end;
100}
101
102static int s390_get_insn_slot(struct kprobe *p)
103{
104 /*
105 * Get an insn slot that is within the same 2GB area like the original
106 * instruction. That way instructions with a 32bit signed displacement
107 * field can be patched and executed within the insn slot.
108 */
109 p->ainsn.insn = NULL;
110 if (is_kernel_addr(p->addr))
111 p->ainsn.insn = get_dmainsn_slot();
112 else if (is_module_addr(p->addr))
113 p->ainsn.insn = get_insn_slot();
114 return p->ainsn.insn ? 0 : -ENOMEM;
115}
116NOKPROBE_SYMBOL(s390_get_insn_slot);
117
118static void s390_free_insn_slot(struct kprobe *p)
119{
120 if (!p->ainsn.insn)
121 return;
122 if (is_kernel_addr(p->addr))
123 free_dmainsn_slot(p->ainsn.insn, 0);
124 else
125 free_insn_slot(p->ainsn.insn, 0);
126 p->ainsn.insn = NULL;
127}
128NOKPROBE_SYMBOL(s390_free_insn_slot);
129
130int arch_prepare_kprobe(struct kprobe *p)
131{
132 if ((unsigned long) p->addr & 0x01)
133 return -EINVAL;
134 /* Make sure the probe isn't going on a difficult instruction */
135 if (probe_is_prohibited_opcode(p->addr))
136 return -EINVAL;
137 if (s390_get_insn_slot(p))
138 return -ENOMEM;
139 copy_instruction(p);
140 return 0;
141}
142NOKPROBE_SYMBOL(arch_prepare_kprobe);
143
144int arch_check_ftrace_location(struct kprobe *p)
145{
146 return 0;
147}
148
149struct swap_insn_args {
150 struct kprobe *p;
151 unsigned int arm_kprobe : 1;
152};
153
154static int swap_instruction(void *data)
155{
156 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
157 unsigned long status = kcb->kprobe_status;
158 struct swap_insn_args *args = data;
159 struct ftrace_insn new_insn, *insn;
160 struct kprobe *p = args->p;
161 size_t len;
162
163 new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
164 len = sizeof(new_insn.opc);
165 if (!p->ainsn.is_ftrace_insn)
166 goto skip_ftrace;
167 len = sizeof(new_insn);
168 insn = (struct ftrace_insn *) p->addr;
169 if (args->arm_kprobe) {
170 if (is_ftrace_nop(insn))
171 new_insn.disp = KPROBE_ON_FTRACE_NOP;
172 else
173 new_insn.disp = KPROBE_ON_FTRACE_CALL;
174 } else {
175 ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
176 if (insn->disp == KPROBE_ON_FTRACE_NOP)
177 ftrace_generate_nop_insn(&new_insn);
178 }
179skip_ftrace:
180 kcb->kprobe_status = KPROBE_SWAP_INST;
181 s390_kernel_write(p->addr, &new_insn, len);
182 kcb->kprobe_status = status;
183 return 0;
184}
185NOKPROBE_SYMBOL(swap_instruction);
186
187void arch_arm_kprobe(struct kprobe *p)
188{
189 struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
190
191 stop_machine(swap_instruction, &args, NULL);
192}
193NOKPROBE_SYMBOL(arch_arm_kprobe);
194
195void arch_disarm_kprobe(struct kprobe *p)
196{
197 struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
198
199 stop_machine(swap_instruction, &args, NULL);
200}
201NOKPROBE_SYMBOL(arch_disarm_kprobe);
202
203void arch_remove_kprobe(struct kprobe *p)
204{
205 s390_free_insn_slot(p);
206}
207NOKPROBE_SYMBOL(arch_remove_kprobe);
208
209static void enable_singlestep(struct kprobe_ctlblk *kcb,
210 struct pt_regs *regs,
211 unsigned long ip)
212{
213 struct per_regs per_kprobe;
214
215 /* Set up the PER control registers %cr9-%cr11 */
216 per_kprobe.control = PER_EVENT_IFETCH;
217 per_kprobe.start = ip;
218 per_kprobe.end = ip;
219
220 /* Save control regs and psw mask */
221 __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
222 kcb->kprobe_saved_imask = regs->psw.mask &
223 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
224
225 /* Set PER control regs, turns on single step for the given address */
226 __ctl_load(per_kprobe, 9, 11);
227 regs->psw.mask |= PSW_MASK_PER;
228 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
229 regs->psw.addr = ip;
230}
231NOKPROBE_SYMBOL(enable_singlestep);
232
233static void disable_singlestep(struct kprobe_ctlblk *kcb,
234 struct pt_regs *regs,
235 unsigned long ip)
236{
237 /* Restore control regs and psw mask, set new psw address */
238 __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
239 regs->psw.mask &= ~PSW_MASK_PER;
240 regs->psw.mask |= kcb->kprobe_saved_imask;
241 regs->psw.addr = ip;
242}
243NOKPROBE_SYMBOL(disable_singlestep);
244
245/*
246 * Activate a kprobe by storing its pointer to current_kprobe. The
247 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
248 * two kprobes can be active, see KPROBE_REENTER.
249 */
250static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
251{
252 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
253 kcb->prev_kprobe.status = kcb->kprobe_status;
254 __this_cpu_write(current_kprobe, p);
255}
256NOKPROBE_SYMBOL(push_kprobe);
257
258/*
259 * Deactivate a kprobe by backing up to the previous state. If the
260 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
261 * for any other state prev_kprobe.kp will be NULL.
262 */
263static void pop_kprobe(struct kprobe_ctlblk *kcb)
264{
265 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
266 kcb->kprobe_status = kcb->prev_kprobe.status;
267}
268NOKPROBE_SYMBOL(pop_kprobe);
269
270void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
271{
272 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
273
274 /* Replace the return addr with trampoline addr */
275 regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
276}
277NOKPROBE_SYMBOL(arch_prepare_kretprobe);
278
279static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
280{
281 switch (kcb->kprobe_status) {
282 case KPROBE_HIT_SSDONE:
283 case KPROBE_HIT_ACTIVE:
284 kprobes_inc_nmissed_count(p);
285 break;
286 case KPROBE_HIT_SS:
287 case KPROBE_REENTER:
288 default:
289 /*
290 * A kprobe on the code path to single step an instruction
291 * is a BUG. The code path resides in the .kprobes.text
292 * section and is executed with interrupts disabled.
293 */
294 printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
295 dump_kprobe(p);
296 BUG();
297 }
298}
299NOKPROBE_SYMBOL(kprobe_reenter_check);
300
301static int kprobe_handler(struct pt_regs *regs)
302{
303 struct kprobe_ctlblk *kcb;
304 struct kprobe *p;
305
306 /*
307 * We want to disable preemption for the entire duration of kprobe
308 * processing. That includes the calls to the pre/post handlers
309 * and single stepping the kprobe instruction.
310 */
311 preempt_disable();
312 kcb = get_kprobe_ctlblk();
313 p = get_kprobe((void *)(regs->psw.addr - 2));
314
315 if (p) {
316 if (kprobe_running()) {
317 /*
318 * We have hit a kprobe while another is still
319 * active. This can happen in the pre and post
320 * handler. Single step the instruction of the
321 * new probe but do not call any handler function
322 * of this secondary kprobe.
323 * push_kprobe and pop_kprobe saves and restores
324 * the currently active kprobe.
325 */
326 kprobe_reenter_check(kcb, p);
327 push_kprobe(kcb, p);
328 kcb->kprobe_status = KPROBE_REENTER;
329 } else {
330 /*
331 * If we have no pre-handler or it returned 0, we
332 * continue with single stepping. If we have a
333 * pre-handler and it returned non-zero, it prepped
334 * for calling the break_handler below on re-entry
335 * for jprobe processing, so get out doing nothing
336 * more here.
337 */
338 push_kprobe(kcb, p);
339 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
340 if (p->pre_handler && p->pre_handler(p, regs))
341 return 1;
342 kcb->kprobe_status = KPROBE_HIT_SS;
343 }
344 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
345 return 1;
346 } else if (kprobe_running()) {
347 p = __this_cpu_read(current_kprobe);
348 if (p->break_handler && p->break_handler(p, regs)) {
349 /*
350 * Continuation after the jprobe completed and
351 * caused the jprobe_return trap. The jprobe
352 * break_handler "returns" to the original
353 * function that still has the kprobe breakpoint
354 * installed. We continue with single stepping.
355 */
356 kcb->kprobe_status = KPROBE_HIT_SS;
357 enable_singlestep(kcb, regs,
358 (unsigned long) p->ainsn.insn);
359 return 1;
360 } /* else:
361 * No kprobe at this address and the current kprobe
362 * has no break handler (no jprobe!). The kernel just
363 * exploded, let the standard trap handler pick up the
364 * pieces.
365 */
366 } /* else:
367 * No kprobe at this address and no active kprobe. The trap has
368 * not been caused by a kprobe breakpoint. The race of breakpoint
369 * vs. kprobe remove does not exist because on s390 as we use
370 * stop_machine to arm/disarm the breakpoints.
371 */
372 preempt_enable_no_resched();
373 return 0;
374}
375NOKPROBE_SYMBOL(kprobe_handler);
376
377/*
378 * Function return probe trampoline:
379 * - init_kprobes() establishes a probepoint here
380 * - When the probed function returns, this probe
381 * causes the handlers to fire
382 */
383static void __used kretprobe_trampoline_holder(void)
384{
385 asm volatile(".global kretprobe_trampoline\n"
386 "kretprobe_trampoline: bcr 0,0\n");
387}
388
389/*
390 * Called when the probe at kretprobe trampoline is hit
391 */
392static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
393{
394 struct kretprobe_instance *ri;
395 struct hlist_head *head, empty_rp;
396 struct hlist_node *tmp;
397 unsigned long flags, orig_ret_address;
398 unsigned long trampoline_address;
399 kprobe_opcode_t *correct_ret_addr;
400
401 INIT_HLIST_HEAD(&empty_rp);
402 kretprobe_hash_lock(current, &head, &flags);
403
404 /*
405 * It is possible to have multiple instances associated with a given
406 * task either because an multiple functions in the call path
407 * have a return probe installed on them, and/or more than one return
408 * return probe was registered for a target function.
409 *
410 * We can handle this because:
411 * - instances are always inserted at the head of the list
412 * - when multiple return probes are registered for the same
413 * function, the first instance's ret_addr will point to the
414 * real return address, and all the rest will point to
415 * kretprobe_trampoline
416 */
417 ri = NULL;
418 orig_ret_address = 0;
419 correct_ret_addr = NULL;
420 trampoline_address = (unsigned long) &kretprobe_trampoline;
421 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
422 if (ri->task != current)
423 /* another task is sharing our hash bucket */
424 continue;
425
426 orig_ret_address = (unsigned long) ri->ret_addr;
427
428 if (orig_ret_address != trampoline_address)
429 /*
430 * This is the real return address. Any other
431 * instances associated with this task are for
432 * other calls deeper on the call stack
433 */
434 break;
435 }
436
437 kretprobe_assert(ri, orig_ret_address, trampoline_address);
438
439 correct_ret_addr = ri->ret_addr;
440 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
441 if (ri->task != current)
442 /* another task is sharing our hash bucket */
443 continue;
444
445 orig_ret_address = (unsigned long) ri->ret_addr;
446
447 if (ri->rp && ri->rp->handler) {
448 ri->ret_addr = correct_ret_addr;
449 ri->rp->handler(ri, regs);
450 }
451
452 recycle_rp_inst(ri, &empty_rp);
453
454 if (orig_ret_address != trampoline_address)
455 /*
456 * This is the real return address. Any other
457 * instances associated with this task are for
458 * other calls deeper on the call stack
459 */
460 break;
461 }
462
463 regs->psw.addr = orig_ret_address;
464
465 pop_kprobe(get_kprobe_ctlblk());
466 kretprobe_hash_unlock(current, &flags);
467 preempt_enable_no_resched();
468
469 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
470 hlist_del(&ri->hlist);
471 kfree(ri);
472 }
473 /*
474 * By returning a non-zero value, we are telling
475 * kprobe_handler() that we don't want the post_handler
476 * to run (and have re-enabled preemption)
477 */
478 return 1;
479}
480NOKPROBE_SYMBOL(trampoline_probe_handler);
481
482/*
483 * Called after single-stepping. p->addr is the address of the
484 * instruction whose first byte has been replaced by the "breakpoint"
485 * instruction. To avoid the SMP problems that can occur when we
486 * temporarily put back the original opcode to single-step, we
487 * single-stepped a copy of the instruction. The address of this
488 * copy is p->ainsn.insn.
489 */
490static void resume_execution(struct kprobe *p, struct pt_regs *regs)
491{
492 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
493 unsigned long ip = regs->psw.addr;
494 int fixup = probe_get_fixup_type(p->ainsn.insn);
495
496 /* Check if the kprobes location is an enabled ftrace caller */
497 if (p->ainsn.is_ftrace_insn) {
498 struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
499 struct ftrace_insn call_insn;
500
501 ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
502 /*
503 * A kprobe on an enabled ftrace call site actually single
504 * stepped an unconditional branch (ftrace nop equivalent).
505 * Now we need to fixup things and pretend that a brasl r0,...
506 * was executed instead.
507 */
508 if (insn->disp == KPROBE_ON_FTRACE_CALL) {
509 ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
510 regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
511 }
512 }
513
514 if (fixup & FIXUP_PSW_NORMAL)
515 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
516
517 if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
518 int ilen = insn_length(p->ainsn.insn[0] >> 8);
519 if (ip - (unsigned long) p->ainsn.insn == ilen)
520 ip = (unsigned long) p->addr + ilen;
521 }
522
523 if (fixup & FIXUP_RETURN_REGISTER) {
524 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
525 regs->gprs[reg] += (unsigned long) p->addr -
526 (unsigned long) p->ainsn.insn;
527 }
528
529 disable_singlestep(kcb, regs, ip);
530}
531NOKPROBE_SYMBOL(resume_execution);
532
533static int post_kprobe_handler(struct pt_regs *regs)
534{
535 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
536 struct kprobe *p = kprobe_running();
537
538 if (!p)
539 return 0;
540
541 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
542 kcb->kprobe_status = KPROBE_HIT_SSDONE;
543 p->post_handler(p, regs, 0);
544 }
545
546 resume_execution(p, regs);
547 pop_kprobe(kcb);
548 preempt_enable_no_resched();
549
550 /*
551 * if somebody else is singlestepping across a probe point, psw mask
552 * will have PER set, in which case, continue the remaining processing
553 * of do_single_step, as if this is not a probe hit.
554 */
555 if (regs->psw.mask & PSW_MASK_PER)
556 return 0;
557
558 return 1;
559}
560NOKPROBE_SYMBOL(post_kprobe_handler);
561
562static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
563{
564 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
565 struct kprobe *p = kprobe_running();
566 const struct exception_table_entry *entry;
567
568 switch(kcb->kprobe_status) {
569 case KPROBE_SWAP_INST:
570 /* We are here because the instruction replacement failed */
571 return 0;
572 case KPROBE_HIT_SS:
573 case KPROBE_REENTER:
574 /*
575 * We are here because the instruction being single
576 * stepped caused a page fault. We reset the current
577 * kprobe and the nip points back to the probe address
578 * and allow the page fault handler to continue as a
579 * normal page fault.
580 */
581 disable_singlestep(kcb, regs, (unsigned long) p->addr);
582 pop_kprobe(kcb);
583 preempt_enable_no_resched();
584 break;
585 case KPROBE_HIT_ACTIVE:
586 case KPROBE_HIT_SSDONE:
587 /*
588 * We increment the nmissed count for accounting,
589 * we can also use npre/npostfault count for accounting
590 * these specific fault cases.
591 */
592 kprobes_inc_nmissed_count(p);
593
594 /*
595 * We come here because instructions in the pre/post
596 * handler caused the page_fault, this could happen
597 * if handler tries to access user space by
598 * copy_from_user(), get_user() etc. Let the
599 * user-specified handler try to fix it first.
600 */
601 if (p->fault_handler && p->fault_handler(p, regs, trapnr))
602 return 1;
603
604 /*
605 * In case the user-specified fault handler returned
606 * zero, try to fix up.
607 */
608 entry = search_exception_tables(regs->psw.addr);
609 if (entry) {
610 regs->psw.addr = extable_fixup(entry);
611 return 1;
612 }
613
614 /*
615 * fixup_exception() could not handle it,
616 * Let do_page_fault() fix it.
617 */
618 break;
619 default:
620 break;
621 }
622 return 0;
623}
624NOKPROBE_SYMBOL(kprobe_trap_handler);
625
626int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
627{
628 int ret;
629
630 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
631 local_irq_disable();
632 ret = kprobe_trap_handler(regs, trapnr);
633 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
634 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
635 return ret;
636}
637NOKPROBE_SYMBOL(kprobe_fault_handler);
638
639/*
640 * Wrapper routine to for handling exceptions.
641 */
642int kprobe_exceptions_notify(struct notifier_block *self,
643 unsigned long val, void *data)
644{
645 struct die_args *args = (struct die_args *) data;
646 struct pt_regs *regs = args->regs;
647 int ret = NOTIFY_DONE;
648
649 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
650 local_irq_disable();
651
652 switch (val) {
653 case DIE_BPT:
654 if (kprobe_handler(regs))
655 ret = NOTIFY_STOP;
656 break;
657 case DIE_SSTEP:
658 if (post_kprobe_handler(regs))
659 ret = NOTIFY_STOP;
660 break;
661 case DIE_TRAP:
662 if (!preemptible() && kprobe_running() &&
663 kprobe_trap_handler(regs, args->trapnr))
664 ret = NOTIFY_STOP;
665 break;
666 default:
667 break;
668 }
669
670 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
671 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
672
673 return ret;
674}
675NOKPROBE_SYMBOL(kprobe_exceptions_notify);
676
677int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
678{
679 struct jprobe *jp = container_of(p, struct jprobe, kp);
680 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
681 unsigned long stack;
682
683 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
684
685 /* setup return addr to the jprobe handler routine */
686 regs->psw.addr = (unsigned long) jp->entry;
687 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
688
689 /* r15 is the stack pointer */
690 stack = (unsigned long) regs->gprs[15];
691
692 memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
693 return 1;
694}
695NOKPROBE_SYMBOL(setjmp_pre_handler);
696
697void jprobe_return(void)
698{
699 asm volatile(".word 0x0002");
700}
701NOKPROBE_SYMBOL(jprobe_return);
702
703int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
704{
705 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
706 unsigned long stack;
707
708 stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
709
710 /* Put the regs back */
711 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
712 /* put the stack back */
713 memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
714 preempt_enable_no_resched();
715 return 1;
716}
717NOKPROBE_SYMBOL(longjmp_break_handler);
718
719static struct kprobe trampoline = {
720 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
721 .pre_handler = trampoline_probe_handler
722};
723
724int __init arch_init_kprobes(void)
725{
726 return register_kprobe(&trampoline);
727}
728
729int arch_trampoline_kprobe(struct kprobe *p)
730{
731 return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
732}
733NOKPROBE_SYMBOL(arch_trampoline_kprobe);