Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3   Copyright (C) 2002 Richard Henderson
   4   Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
   5
   6*/
 
 
 
   7#include <linux/export.h>
   8#include <linux/extable.h>
   9#include <linux/moduleloader.h>
  10#include <linux/module_signature.h>
  11#include <linux/trace_events.h>
  12#include <linux/init.h>
  13#include <linux/kallsyms.h>
  14#include <linux/file.h>
  15#include <linux/fs.h>
  16#include <linux/sysfs.h>
  17#include <linux/kernel.h>
  18#include <linux/slab.h>
  19#include <linux/vmalloc.h>
  20#include <linux/elf.h>
  21#include <linux/proc_fs.h>
  22#include <linux/security.h>
  23#include <linux/seq_file.h>
  24#include <linux/syscalls.h>
  25#include <linux/fcntl.h>
  26#include <linux/rcupdate.h>
  27#include <linux/capability.h>
  28#include <linux/cpu.h>
  29#include <linux/moduleparam.h>
  30#include <linux/errno.h>
  31#include <linux/err.h>
  32#include <linux/vermagic.h>
  33#include <linux/notifier.h>
  34#include <linux/sched.h>
  35#include <linux/device.h>
  36#include <linux/string.h>
  37#include <linux/mutex.h>
  38#include <linux/rculist.h>
  39#include <linux/uaccess.h>
  40#include <asm/cacheflush.h>
  41#include <linux/set_memory.h>
  42#include <asm/mmu_context.h>
  43#include <linux/license.h>
  44#include <asm/sections.h>
  45#include <linux/tracepoint.h>
  46#include <linux/ftrace.h>
  47#include <linux/livepatch.h>
  48#include <linux/async.h>
  49#include <linux/percpu.h>
  50#include <linux/kmemleak.h>
  51#include <linux/jump_label.h>
  52#include <linux/pfn.h>
  53#include <linux/bsearch.h>
  54#include <linux/dynamic_debug.h>
  55#include <linux/audit.h>
  56#include <uapi/linux/module.h>
  57#include "module-internal.h"
  58
  59#define CREATE_TRACE_POINTS
  60#include <trace/events/module.h>
  61
  62#ifndef ARCH_SHF_SMALL
  63#define ARCH_SHF_SMALL 0
  64#endif
  65
  66/*
  67 * Modules' sections will be aligned on page boundaries
  68 * to ensure complete separation of code and data, but
  69 * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
  70 */
  71#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
  72# define debug_align(X) ALIGN(X, PAGE_SIZE)
  73#else
  74# define debug_align(X) (X)
  75#endif
  76
  77/* If this is set, the section belongs in the init part of the module */
  78#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
  79
  80/*
  81 * Mutex protects:
  82 * 1) List of modules (also safely readable with preempt_disable),
  83 * 2) module_use links,
  84 * 3) module_addr_min/module_addr_max.
  85 * (delete and add uses RCU list operations). */
  86DEFINE_MUTEX(module_mutex);
  87EXPORT_SYMBOL_GPL(module_mutex);
  88static LIST_HEAD(modules);
  89
  90/* Work queue for freeing init sections in success case */
  91static struct work_struct init_free_wq;
  92static struct llist_head init_free_list;
  93
  94#ifdef CONFIG_MODULES_TREE_LOOKUP
  95
  96/*
  97 * Use a latched RB-tree for __module_address(); this allows us to use
  98 * RCU-sched lookups of the address from any context.
  99 *
 100 * This is conditional on PERF_EVENTS || TRACING because those can really hit
 101 * __module_address() hard by doing a lot of stack unwinding; potentially from
 102 * NMI context.
 103 */
 104
 105static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
 106{
 107	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 108
 109	return (unsigned long)layout->base;
 110}
 111
 112static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
 113{
 114	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 115
 116	return (unsigned long)layout->size;
 117}
 118
 119static __always_inline bool
 120mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
 121{
 122	return __mod_tree_val(a) < __mod_tree_val(b);
 123}
 124
 125static __always_inline int
 126mod_tree_comp(void *key, struct latch_tree_node *n)
 127{
 128	unsigned long val = (unsigned long)key;
 129	unsigned long start, end;
 130
 131	start = __mod_tree_val(n);
 132	if (val < start)
 133		return -1;
 134
 135	end = start + __mod_tree_size(n);
 136	if (val >= end)
 137		return 1;
 138
 139	return 0;
 140}
 141
 142static const struct latch_tree_ops mod_tree_ops = {
 143	.less = mod_tree_less,
 144	.comp = mod_tree_comp,
 145};
 146
 147static struct mod_tree_root {
 148	struct latch_tree_root root;
 149	unsigned long addr_min;
 150	unsigned long addr_max;
 151} mod_tree __cacheline_aligned = {
 152	.addr_min = -1UL,
 153};
 154
 155#define module_addr_min mod_tree.addr_min
 156#define module_addr_max mod_tree.addr_max
 157
 158static noinline void __mod_tree_insert(struct mod_tree_node *node)
 159{
 160	latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
 161}
 162
 163static void __mod_tree_remove(struct mod_tree_node *node)
 164{
 165	latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
 166}
 167
 168/*
 169 * These modifications: insert, remove_init and remove; are serialized by the
 170 * module_mutex.
 171 */
 172static void mod_tree_insert(struct module *mod)
 173{
 174	mod->core_layout.mtn.mod = mod;
 175	mod->init_layout.mtn.mod = mod;
 176
 177	__mod_tree_insert(&mod->core_layout.mtn);
 178	if (mod->init_layout.size)
 179		__mod_tree_insert(&mod->init_layout.mtn);
 180}
 181
 182static void mod_tree_remove_init(struct module *mod)
 183{
 184	if (mod->init_layout.size)
 185		__mod_tree_remove(&mod->init_layout.mtn);
 186}
 187
 188static void mod_tree_remove(struct module *mod)
 189{
 190	__mod_tree_remove(&mod->core_layout.mtn);
 191	mod_tree_remove_init(mod);
 192}
 193
 194static struct module *mod_find(unsigned long addr)
 195{
 196	struct latch_tree_node *ltn;
 197
 198	ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
 199	if (!ltn)
 200		return NULL;
 201
 202	return container_of(ltn, struct mod_tree_node, node)->mod;
 203}
 204
 205#else /* MODULES_TREE_LOOKUP */
 206
 207static unsigned long module_addr_min = -1UL, module_addr_max = 0;
 208
 209static void mod_tree_insert(struct module *mod) { }
 210static void mod_tree_remove_init(struct module *mod) { }
 211static void mod_tree_remove(struct module *mod) { }
 212
 213static struct module *mod_find(unsigned long addr)
 214{
 215	struct module *mod;
 216
 217	list_for_each_entry_rcu(mod, &modules, list) {
 
 218		if (within_module(addr, mod))
 219			return mod;
 220	}
 221
 222	return NULL;
 223}
 224
 225#endif /* MODULES_TREE_LOOKUP */
 226
 227/*
 228 * Bounds of module text, for speeding up __module_address.
 229 * Protected by module_mutex.
 230 */
 231static void __mod_update_bounds(void *base, unsigned int size)
 232{
 233	unsigned long min = (unsigned long)base;
 234	unsigned long max = min + size;
 235
 236	if (min < module_addr_min)
 237		module_addr_min = min;
 238	if (max > module_addr_max)
 239		module_addr_max = max;
 240}
 241
 242static void mod_update_bounds(struct module *mod)
 243{
 244	__mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
 245	if (mod->init_layout.size)
 246		__mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
 247}
 248
 249#ifdef CONFIG_KGDB_KDB
 250struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
 251#endif /* CONFIG_KGDB_KDB */
 252
 253static void module_assert_mutex(void)
 254{
 255	lockdep_assert_held(&module_mutex);
 256}
 257
 258static void module_assert_mutex_or_preempt(void)
 259{
 260#ifdef CONFIG_LOCKDEP
 261	if (unlikely(!debug_locks))
 262		return;
 263
 264	WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
 265		!lockdep_is_held(&module_mutex));
 266#endif
 267}
 268
 269static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
 270module_param(sig_enforce, bool_enable_only, 0644);
 271
 272/*
 273 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
 274 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
 275 */
 276bool is_module_sig_enforced(void)
 277{
 278	return sig_enforce;
 279}
 280EXPORT_SYMBOL(is_module_sig_enforced);
 281
 282void set_module_sig_enforced(void)
 283{
 284	sig_enforce = true;
 285}
 286
 287/* Block module loading/unloading? */
 288int modules_disabled = 0;
 289core_param(nomodule, modules_disabled, bint, 0);
 290
 291/* Waiting for a module to finish initializing? */
 292static DECLARE_WAIT_QUEUE_HEAD(module_wq);
 293
 294static BLOCKING_NOTIFIER_HEAD(module_notify_list);
 295
 296int register_module_notifier(struct notifier_block *nb)
 297{
 298	return blocking_notifier_chain_register(&module_notify_list, nb);
 299}
 300EXPORT_SYMBOL(register_module_notifier);
 301
 302int unregister_module_notifier(struct notifier_block *nb)
 303{
 304	return blocking_notifier_chain_unregister(&module_notify_list, nb);
 305}
 306EXPORT_SYMBOL(unregister_module_notifier);
 307
 308/*
 309 * We require a truly strong try_module_get(): 0 means success.
 310 * Otherwise an error is returned due to ongoing or failed
 311 * initialization etc.
 312 */
 313static inline int strong_try_module_get(struct module *mod)
 314{
 315	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
 316	if (mod && mod->state == MODULE_STATE_COMING)
 317		return -EBUSY;
 318	if (try_module_get(mod))
 319		return 0;
 320	else
 321		return -ENOENT;
 322}
 323
 324static inline void add_taint_module(struct module *mod, unsigned flag,
 325				    enum lockdep_ok lockdep_ok)
 326{
 327	add_taint(flag, lockdep_ok);
 328	set_bit(flag, &mod->taints);
 329}
 330
 331/*
 332 * A thread that wants to hold a reference to a module only while it
 333 * is running can call this to safely exit.  nfsd and lockd use this.
 334 */
 335void __noreturn __module_put_and_exit(struct module *mod, long code)
 336{
 337	module_put(mod);
 338	do_exit(code);
 339}
 340EXPORT_SYMBOL(__module_put_and_exit);
 341
 342/* Find a module section: 0 means not found. */
 343static unsigned int find_sec(const struct load_info *info, const char *name)
 344{
 345	unsigned int i;
 346
 347	for (i = 1; i < info->hdr->e_shnum; i++) {
 348		Elf_Shdr *shdr = &info->sechdrs[i];
 349		/* Alloc bit cleared means "ignore it." */
 350		if ((shdr->sh_flags & SHF_ALLOC)
 351		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
 352			return i;
 353	}
 354	return 0;
 355}
 356
 357/* Find a module section, or NULL. */
 358static void *section_addr(const struct load_info *info, const char *name)
 359{
 360	/* Section 0 has sh_addr 0. */
 361	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
 362}
 363
 364/* Find a module section, or NULL.  Fill in number of "objects" in section. */
 365static void *section_objs(const struct load_info *info,
 366			  const char *name,
 367			  size_t object_size,
 368			  unsigned int *num)
 369{
 370	unsigned int sec = find_sec(info, name);
 371
 372	/* Section 0 has sh_addr 0 and sh_size 0. */
 373	*num = info->sechdrs[sec].sh_size / object_size;
 374	return (void *)info->sechdrs[sec].sh_addr;
 375}
 376
 377/* Provided by the linker */
 378extern const struct kernel_symbol __start___ksymtab[];
 379extern const struct kernel_symbol __stop___ksymtab[];
 380extern const struct kernel_symbol __start___ksymtab_gpl[];
 381extern const struct kernel_symbol __stop___ksymtab_gpl[];
 382extern const struct kernel_symbol __start___ksymtab_gpl_future[];
 383extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
 384extern const s32 __start___kcrctab[];
 385extern const s32 __start___kcrctab_gpl[];
 386extern const s32 __start___kcrctab_gpl_future[];
 387#ifdef CONFIG_UNUSED_SYMBOLS
 388extern const struct kernel_symbol __start___ksymtab_unused[];
 389extern const struct kernel_symbol __stop___ksymtab_unused[];
 390extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
 391extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
 392extern const s32 __start___kcrctab_unused[];
 393extern const s32 __start___kcrctab_unused_gpl[];
 394#endif
 395
 396#ifndef CONFIG_MODVERSIONS
 397#define symversion(base, idx) NULL
 398#else
 399#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
 400#endif
 401
 402static bool each_symbol_in_section(const struct symsearch *arr,
 403				   unsigned int arrsize,
 404				   struct module *owner,
 405				   bool (*fn)(const struct symsearch *syms,
 406					      struct module *owner,
 407					      void *data),
 408				   void *data)
 409{
 410	unsigned int j;
 411
 412	for (j = 0; j < arrsize; j++) {
 413		if (fn(&arr[j], owner, data))
 414			return true;
 415	}
 416
 417	return false;
 418}
 419
 420/* Returns true as soon as fn returns true, otherwise false. */
 421bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
 422				    struct module *owner,
 423				    void *data),
 424			 void *data)
 425{
 426	struct module *mod;
 427	static const struct symsearch arr[] = {
 428		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
 429		  NOT_GPL_ONLY, false },
 430		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
 431		  __start___kcrctab_gpl,
 432		  GPL_ONLY, false },
 433		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
 434		  __start___kcrctab_gpl_future,
 435		  WILL_BE_GPL_ONLY, false },
 436#ifdef CONFIG_UNUSED_SYMBOLS
 437		{ __start___ksymtab_unused, __stop___ksymtab_unused,
 438		  __start___kcrctab_unused,
 439		  NOT_GPL_ONLY, true },
 440		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
 441		  __start___kcrctab_unused_gpl,
 442		  GPL_ONLY, true },
 443#endif
 444	};
 445
 446	module_assert_mutex_or_preempt();
 447
 448	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
 449		return true;
 450
 451	list_for_each_entry_rcu(mod, &modules, list) {
 
 452		struct symsearch arr[] = {
 453			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
 454			  NOT_GPL_ONLY, false },
 455			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
 456			  mod->gpl_crcs,
 457			  GPL_ONLY, false },
 458			{ mod->gpl_future_syms,
 459			  mod->gpl_future_syms + mod->num_gpl_future_syms,
 460			  mod->gpl_future_crcs,
 461			  WILL_BE_GPL_ONLY, false },
 462#ifdef CONFIG_UNUSED_SYMBOLS
 463			{ mod->unused_syms,
 464			  mod->unused_syms + mod->num_unused_syms,
 465			  mod->unused_crcs,
 466			  NOT_GPL_ONLY, true },
 467			{ mod->unused_gpl_syms,
 468			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
 469			  mod->unused_gpl_crcs,
 470			  GPL_ONLY, true },
 471#endif
 472		};
 473
 474		if (mod->state == MODULE_STATE_UNFORMED)
 475			continue;
 476
 477		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
 478			return true;
 479	}
 480	return false;
 481}
 482EXPORT_SYMBOL_GPL(each_symbol_section);
 483
 484struct find_symbol_arg {
 485	/* Input */
 486	const char *name;
 487	bool gplok;
 488	bool warn;
 489
 490	/* Output */
 491	struct module *owner;
 492	const s32 *crc;
 493	const struct kernel_symbol *sym;
 
 494};
 495
 496static bool check_exported_symbol(const struct symsearch *syms,
 497				  struct module *owner,
 498				  unsigned int symnum, void *data)
 499{
 500	struct find_symbol_arg *fsa = data;
 501
 502	if (!fsa->gplok) {
 503		if (syms->licence == GPL_ONLY)
 504			return false;
 505		if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
 506			pr_warn("Symbol %s is being used by a non-GPL module, "
 507				"which will not be allowed in the future\n",
 508				fsa->name);
 509		}
 510	}
 511
 512#ifdef CONFIG_UNUSED_SYMBOLS
 513	if (syms->unused && fsa->warn) {
 514		pr_warn("Symbol %s is marked as UNUSED, however this module is "
 515			"using it.\n", fsa->name);
 516		pr_warn("This symbol will go away in the future.\n");
 517		pr_warn("Please evaluate if this is the right api to use and "
 518			"if it really is, submit a report to the linux kernel "
 519			"mailing list together with submitting your code for "
 520			"inclusion.\n");
 521	}
 522#endif
 523
 524	fsa->owner = owner;
 525	fsa->crc = symversion(syms->crcs, symnum);
 526	fsa->sym = &syms->start[symnum];
 
 527	return true;
 528}
 529
 530static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
 531{
 532#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 533	return (unsigned long)offset_to_ptr(&sym->value_offset);
 534#else
 535	return sym->value;
 536#endif
 537}
 538
 539static const char *kernel_symbol_name(const struct kernel_symbol *sym)
 540{
 541#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 542	return offset_to_ptr(&sym->name_offset);
 543#else
 544	return sym->name;
 545#endif
 546}
 547
 548static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
 549{
 550#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 551	if (!sym->namespace_offset)
 552		return NULL;
 553	return offset_to_ptr(&sym->namespace_offset);
 554#else
 555	return sym->namespace;
 556#endif
 557}
 558
 559static int cmp_name(const void *name, const void *sym)
 560{
 561	return strcmp(name, kernel_symbol_name(sym));
 562}
 563
 564static bool find_exported_symbol_in_section(const struct symsearch *syms,
 565					    struct module *owner,
 566					    void *data)
 567{
 568	struct find_symbol_arg *fsa = data;
 569	struct kernel_symbol *sym;
 570
 571	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
 572			sizeof(struct kernel_symbol), cmp_name);
 573
 574	if (sym != NULL && check_exported_symbol(syms, owner,
 575						 sym - syms->start, data))
 576		return true;
 577
 578	return false;
 579}
 580
 581/* Find an exported symbol and return it, along with, (optional) crc and
 582 * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
 583const struct kernel_symbol *find_symbol(const char *name,
 584					struct module **owner,
 585					const s32 **crc,
 
 586					bool gplok,
 587					bool warn)
 588{
 589	struct find_symbol_arg fsa;
 590
 591	fsa.name = name;
 592	fsa.gplok = gplok;
 593	fsa.warn = warn;
 594
 595	if (each_symbol_section(find_exported_symbol_in_section, &fsa)) {
 596		if (owner)
 597			*owner = fsa.owner;
 598		if (crc)
 599			*crc = fsa.crc;
 
 
 600		return fsa.sym;
 601	}
 602
 603	pr_debug("Failed to find symbol %s\n", name);
 604	return NULL;
 605}
 606EXPORT_SYMBOL_GPL(find_symbol);
 607
 608/*
 609 * Search for module by name: must hold module_mutex (or preempt disabled
 610 * for read-only access).
 611 */
 612static struct module *find_module_all(const char *name, size_t len,
 613				      bool even_unformed)
 614{
 615	struct module *mod;
 616
 617	module_assert_mutex_or_preempt();
 618
 619	list_for_each_entry_rcu(mod, &modules, list) {
 
 620		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
 621			continue;
 622		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
 623			return mod;
 624	}
 625	return NULL;
 626}
 627
 628struct module *find_module(const char *name)
 629{
 630	module_assert_mutex();
 631	return find_module_all(name, strlen(name), false);
 632}
 633EXPORT_SYMBOL_GPL(find_module);
 634
 635#ifdef CONFIG_SMP
 636
 637static inline void __percpu *mod_percpu(struct module *mod)
 638{
 639	return mod->percpu;
 640}
 641
 642static int percpu_modalloc(struct module *mod, struct load_info *info)
 643{
 644	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
 645	unsigned long align = pcpusec->sh_addralign;
 646
 647	if (!pcpusec->sh_size)
 648		return 0;
 649
 650	if (align > PAGE_SIZE) {
 651		pr_warn("%s: per-cpu alignment %li > %li\n",
 652			mod->name, align, PAGE_SIZE);
 653		align = PAGE_SIZE;
 654	}
 655
 656	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
 657	if (!mod->percpu) {
 658		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
 659			mod->name, (unsigned long)pcpusec->sh_size);
 660		return -ENOMEM;
 661	}
 662	mod->percpu_size = pcpusec->sh_size;
 663	return 0;
 664}
 665
 666static void percpu_modfree(struct module *mod)
 667{
 668	free_percpu(mod->percpu);
 669}
 670
 671static unsigned int find_pcpusec(struct load_info *info)
 672{
 673	return find_sec(info, ".data..percpu");
 674}
 675
 676static void percpu_modcopy(struct module *mod,
 677			   const void *from, unsigned long size)
 678{
 679	int cpu;
 680
 681	for_each_possible_cpu(cpu)
 682		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
 683}
 684
 685bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
 686{
 687	struct module *mod;
 688	unsigned int cpu;
 689
 690	preempt_disable();
 691
 692	list_for_each_entry_rcu(mod, &modules, list) {
 693		if (mod->state == MODULE_STATE_UNFORMED)
 694			continue;
 695		if (!mod->percpu_size)
 696			continue;
 697		for_each_possible_cpu(cpu) {
 698			void *start = per_cpu_ptr(mod->percpu, cpu);
 699			void *va = (void *)addr;
 700
 701			if (va >= start && va < start + mod->percpu_size) {
 702				if (can_addr) {
 703					*can_addr = (unsigned long) (va - start);
 704					*can_addr += (unsigned long)
 705						per_cpu_ptr(mod->percpu,
 706							    get_boot_cpu_id());
 707				}
 708				preempt_enable();
 709				return true;
 710			}
 711		}
 712	}
 713
 714	preempt_enable();
 715	return false;
 716}
 717
 718/**
 719 * is_module_percpu_address - test whether address is from module static percpu
 720 * @addr: address to test
 721 *
 722 * Test whether @addr belongs to module static percpu area.
 723 *
 724 * RETURNS:
 725 * %true if @addr is from module static percpu area
 726 */
 727bool is_module_percpu_address(unsigned long addr)
 728{
 729	return __is_module_percpu_address(addr, NULL);
 730}
 731
 732#else /* ... !CONFIG_SMP */
 733
 734static inline void __percpu *mod_percpu(struct module *mod)
 735{
 736	return NULL;
 737}
 738static int percpu_modalloc(struct module *mod, struct load_info *info)
 739{
 740	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
 741	if (info->sechdrs[info->index.pcpu].sh_size != 0)
 742		return -ENOMEM;
 743	return 0;
 744}
 745static inline void percpu_modfree(struct module *mod)
 746{
 747}
 748static unsigned int find_pcpusec(struct load_info *info)
 749{
 750	return 0;
 751}
 752static inline void percpu_modcopy(struct module *mod,
 753				  const void *from, unsigned long size)
 754{
 755	/* pcpusec should be 0, and size of that section should be 0. */
 756	BUG_ON(size != 0);
 757}
 758bool is_module_percpu_address(unsigned long addr)
 759{
 760	return false;
 761}
 762
 763bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
 764{
 765	return false;
 766}
 767
 768#endif /* CONFIG_SMP */
 769
 770#define MODINFO_ATTR(field)	\
 771static void setup_modinfo_##field(struct module *mod, const char *s)  \
 772{                                                                     \
 773	mod->field = kstrdup(s, GFP_KERNEL);                          \
 774}                                                                     \
 775static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
 776			struct module_kobject *mk, char *buffer)      \
 777{                                                                     \
 778	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
 779}                                                                     \
 780static int modinfo_##field##_exists(struct module *mod)               \
 781{                                                                     \
 782	return mod->field != NULL;                                    \
 783}                                                                     \
 784static void free_modinfo_##field(struct module *mod)                  \
 785{                                                                     \
 786	kfree(mod->field);                                            \
 787	mod->field = NULL;                                            \
 788}                                                                     \
 789static struct module_attribute modinfo_##field = {                    \
 790	.attr = { .name = __stringify(field), .mode = 0444 },         \
 791	.show = show_modinfo_##field,                                 \
 792	.setup = setup_modinfo_##field,                               \
 793	.test = modinfo_##field##_exists,                             \
 794	.free = free_modinfo_##field,                                 \
 795};
 796
 797MODINFO_ATTR(version);
 798MODINFO_ATTR(srcversion);
 799
 800static char last_unloaded_module[MODULE_NAME_LEN+1];
 801
 802#ifdef CONFIG_MODULE_UNLOAD
 803
 804EXPORT_TRACEPOINT_SYMBOL(module_get);
 805
 806/* MODULE_REF_BASE is the base reference count by kmodule loader. */
 807#define MODULE_REF_BASE	1
 808
 809/* Init the unload section of the module. */
 810static int module_unload_init(struct module *mod)
 811{
 812	/*
 813	 * Initialize reference counter to MODULE_REF_BASE.
 814	 * refcnt == 0 means module is going.
 815	 */
 816	atomic_set(&mod->refcnt, MODULE_REF_BASE);
 817
 818	INIT_LIST_HEAD(&mod->source_list);
 819	INIT_LIST_HEAD(&mod->target_list);
 820
 821	/* Hold reference count during initialization. */
 822	atomic_inc(&mod->refcnt);
 823
 824	return 0;
 825}
 826
 827/* Does a already use b? */
 828static int already_uses(struct module *a, struct module *b)
 829{
 830	struct module_use *use;
 831
 832	list_for_each_entry(use, &b->source_list, source_list) {
 833		if (use->source == a) {
 834			pr_debug("%s uses %s!\n", a->name, b->name);
 835			return 1;
 836		}
 837	}
 838	pr_debug("%s does not use %s!\n", a->name, b->name);
 839	return 0;
 840}
 841
 842/*
 843 * Module a uses b
 844 *  - we add 'a' as a "source", 'b' as a "target" of module use
 845 *  - the module_use is added to the list of 'b' sources (so
 846 *    'b' can walk the list to see who sourced them), and of 'a'
 847 *    targets (so 'a' can see what modules it targets).
 848 */
 849static int add_module_usage(struct module *a, struct module *b)
 850{
 851	struct module_use *use;
 852
 853	pr_debug("Allocating new usage for %s.\n", a->name);
 854	use = kmalloc(sizeof(*use), GFP_ATOMIC);
 855	if (!use)
 856		return -ENOMEM;
 857
 858	use->source = a;
 859	use->target = b;
 860	list_add(&use->source_list, &b->source_list);
 861	list_add(&use->target_list, &a->target_list);
 862	return 0;
 863}
 864
 865/* Module a uses b: caller needs module_mutex() */
 866int ref_module(struct module *a, struct module *b)
 867{
 868	int err;
 869
 870	if (b == NULL || already_uses(a, b))
 871		return 0;
 872
 873	/* If module isn't available, we fail. */
 874	err = strong_try_module_get(b);
 875	if (err)
 876		return err;
 877
 878	err = add_module_usage(a, b);
 879	if (err) {
 880		module_put(b);
 881		return err;
 882	}
 883	return 0;
 884}
 885EXPORT_SYMBOL_GPL(ref_module);
 886
 887/* Clear the unload stuff of the module. */
 888static void module_unload_free(struct module *mod)
 889{
 890	struct module_use *use, *tmp;
 891
 892	mutex_lock(&module_mutex);
 893	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
 894		struct module *i = use->target;
 895		pr_debug("%s unusing %s\n", mod->name, i->name);
 896		module_put(i);
 897		list_del(&use->source_list);
 898		list_del(&use->target_list);
 899		kfree(use);
 900	}
 901	mutex_unlock(&module_mutex);
 902}
 903
 904#ifdef CONFIG_MODULE_FORCE_UNLOAD
 905static inline int try_force_unload(unsigned int flags)
 906{
 907	int ret = (flags & O_TRUNC);
 908	if (ret)
 909		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
 910	return ret;
 911}
 912#else
 913static inline int try_force_unload(unsigned int flags)
 914{
 915	return 0;
 916}
 917#endif /* CONFIG_MODULE_FORCE_UNLOAD */
 918
 919/* Try to release refcount of module, 0 means success. */
 920static int try_release_module_ref(struct module *mod)
 921{
 922	int ret;
 923
 924	/* Try to decrement refcnt which we set at loading */
 925	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
 926	BUG_ON(ret < 0);
 927	if (ret)
 928		/* Someone can put this right now, recover with checking */
 929		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
 930
 931	return ret;
 932}
 933
 934static int try_stop_module(struct module *mod, int flags, int *forced)
 935{
 936	/* If it's not unused, quit unless we're forcing. */
 937	if (try_release_module_ref(mod) != 0) {
 938		*forced = try_force_unload(flags);
 939		if (!(*forced))
 940			return -EWOULDBLOCK;
 941	}
 942
 943	/* Mark it as dying. */
 944	mod->state = MODULE_STATE_GOING;
 945
 946	return 0;
 947}
 948
 949/**
 950 * module_refcount - return the refcount or -1 if unloading
 951 *
 952 * @mod:	the module we're checking
 953 *
 954 * Returns:
 955 *	-1 if the module is in the process of unloading
 956 *	otherwise the number of references in the kernel to the module
 957 */
 958int module_refcount(struct module *mod)
 959{
 960	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
 961}
 962EXPORT_SYMBOL(module_refcount);
 963
 964/* This exists whether we can unload or not */
 965static void free_module(struct module *mod);
 966
 967SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
 968		unsigned int, flags)
 969{
 970	struct module *mod;
 971	char name[MODULE_NAME_LEN];
 972	int ret, forced = 0;
 973
 974	if (!capable(CAP_SYS_MODULE) || modules_disabled)
 975		return -EPERM;
 976
 977	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
 978		return -EFAULT;
 979	name[MODULE_NAME_LEN-1] = '\0';
 980
 981	audit_log_kern_module(name);
 982
 983	if (mutex_lock_interruptible(&module_mutex) != 0)
 984		return -EINTR;
 985
 986	mod = find_module(name);
 987	if (!mod) {
 988		ret = -ENOENT;
 989		goto out;
 990	}
 991
 992	if (!list_empty(&mod->source_list)) {
 993		/* Other modules depend on us: get rid of them first. */
 994		ret = -EWOULDBLOCK;
 995		goto out;
 996	}
 997
 998	/* Doing init or already dying? */
 999	if (mod->state != MODULE_STATE_LIVE) {
1000		/* FIXME: if (force), slam module count damn the torpedoes */
1001		pr_debug("%s already dying\n", mod->name);
1002		ret = -EBUSY;
1003		goto out;
1004	}
1005
1006	/* If it has an init func, it must have an exit func to unload */
1007	if (mod->init && !mod->exit) {
1008		forced = try_force_unload(flags);
1009		if (!forced) {
1010			/* This module can't be removed */
1011			ret = -EBUSY;
1012			goto out;
1013		}
1014	}
1015
1016	/* Stop the machine so refcounts can't move and disable module. */
1017	ret = try_stop_module(mod, flags, &forced);
1018	if (ret != 0)
1019		goto out;
1020
1021	mutex_unlock(&module_mutex);
1022	/* Final destruction now no one is using it. */
1023	if (mod->exit != NULL)
1024		mod->exit();
1025	blocking_notifier_call_chain(&module_notify_list,
1026				     MODULE_STATE_GOING, mod);
1027	klp_module_going(mod);
1028	ftrace_release_mod(mod);
1029
1030	async_synchronize_full();
1031
1032	/* Store the name of the last unloaded module for diagnostic purposes */
1033	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1034
1035	free_module(mod);
 
 
1036	return 0;
1037out:
1038	mutex_unlock(&module_mutex);
1039	return ret;
1040}
1041
1042static inline void print_unload_info(struct seq_file *m, struct module *mod)
1043{
1044	struct module_use *use;
1045	int printed_something = 0;
1046
1047	seq_printf(m, " %i ", module_refcount(mod));
1048
1049	/*
1050	 * Always include a trailing , so userspace can differentiate
1051	 * between this and the old multi-field proc format.
1052	 */
1053	list_for_each_entry(use, &mod->source_list, source_list) {
1054		printed_something = 1;
1055		seq_printf(m, "%s,", use->source->name);
1056	}
1057
1058	if (mod->init != NULL && mod->exit == NULL) {
1059		printed_something = 1;
1060		seq_puts(m, "[permanent],");
1061	}
1062
1063	if (!printed_something)
1064		seq_puts(m, "-");
1065}
1066
1067void __symbol_put(const char *symbol)
1068{
1069	struct module *owner;
1070
1071	preempt_disable();
1072	if (!find_symbol(symbol, &owner, NULL, true, false))
1073		BUG();
1074	module_put(owner);
1075	preempt_enable();
1076}
1077EXPORT_SYMBOL(__symbol_put);
1078
1079/* Note this assumes addr is a function, which it currently always is. */
1080void symbol_put_addr(void *addr)
1081{
1082	struct module *modaddr;
1083	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1084
1085	if (core_kernel_text(a))
1086		return;
1087
1088	/*
1089	 * Even though we hold a reference on the module; we still need to
1090	 * disable preemption in order to safely traverse the data structure.
1091	 */
1092	preempt_disable();
1093	modaddr = __module_text_address(a);
1094	BUG_ON(!modaddr);
1095	module_put(modaddr);
1096	preempt_enable();
1097}
1098EXPORT_SYMBOL_GPL(symbol_put_addr);
1099
1100static ssize_t show_refcnt(struct module_attribute *mattr,
1101			   struct module_kobject *mk, char *buffer)
1102{
1103	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1104}
1105
1106static struct module_attribute modinfo_refcnt =
1107	__ATTR(refcnt, 0444, show_refcnt, NULL);
1108
1109void __module_get(struct module *module)
1110{
1111	if (module) {
1112		preempt_disable();
1113		atomic_inc(&module->refcnt);
1114		trace_module_get(module, _RET_IP_);
1115		preempt_enable();
1116	}
1117}
1118EXPORT_SYMBOL(__module_get);
1119
1120bool try_module_get(struct module *module)
1121{
1122	bool ret = true;
1123
1124	if (module) {
1125		preempt_disable();
1126		/* Note: here, we can fail to get a reference */
1127		if (likely(module_is_live(module) &&
1128			   atomic_inc_not_zero(&module->refcnt) != 0))
1129			trace_module_get(module, _RET_IP_);
1130		else
1131			ret = false;
1132
1133		preempt_enable();
1134	}
1135	return ret;
1136}
1137EXPORT_SYMBOL(try_module_get);
1138
1139void module_put(struct module *module)
1140{
1141	int ret;
1142
1143	if (module) {
1144		preempt_disable();
1145		ret = atomic_dec_if_positive(&module->refcnt);
1146		WARN_ON(ret < 0);	/* Failed to put refcount */
1147		trace_module_put(module, _RET_IP_);
1148		preempt_enable();
1149	}
1150}
1151EXPORT_SYMBOL(module_put);
1152
1153#else /* !CONFIG_MODULE_UNLOAD */
1154static inline void print_unload_info(struct seq_file *m, struct module *mod)
1155{
1156	/* We don't know the usage count, or what modules are using. */
1157	seq_puts(m, " - -");
1158}
1159
1160static inline void module_unload_free(struct module *mod)
1161{
1162}
1163
1164int ref_module(struct module *a, struct module *b)
1165{
1166	return strong_try_module_get(b);
1167}
1168EXPORT_SYMBOL_GPL(ref_module);
1169
1170static inline int module_unload_init(struct module *mod)
1171{
1172	return 0;
1173}
1174#endif /* CONFIG_MODULE_UNLOAD */
1175
1176static size_t module_flags_taint(struct module *mod, char *buf)
1177{
1178	size_t l = 0;
1179	int i;
1180
1181	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1182		if (taint_flags[i].module && test_bit(i, &mod->taints))
1183			buf[l++] = taint_flags[i].c_true;
1184	}
1185
1186	return l;
1187}
1188
1189static ssize_t show_initstate(struct module_attribute *mattr,
1190			      struct module_kobject *mk, char *buffer)
1191{
1192	const char *state = "unknown";
1193
1194	switch (mk->mod->state) {
1195	case MODULE_STATE_LIVE:
1196		state = "live";
1197		break;
1198	case MODULE_STATE_COMING:
1199		state = "coming";
1200		break;
1201	case MODULE_STATE_GOING:
1202		state = "going";
1203		break;
1204	default:
1205		BUG();
1206	}
1207	return sprintf(buffer, "%s\n", state);
1208}
1209
1210static struct module_attribute modinfo_initstate =
1211	__ATTR(initstate, 0444, show_initstate, NULL);
1212
1213static ssize_t store_uevent(struct module_attribute *mattr,
1214			    struct module_kobject *mk,
1215			    const char *buffer, size_t count)
1216{
1217	int rc;
1218
1219	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1220	return rc ? rc : count;
1221}
1222
1223struct module_attribute module_uevent =
1224	__ATTR(uevent, 0200, NULL, store_uevent);
1225
1226static ssize_t show_coresize(struct module_attribute *mattr,
1227			     struct module_kobject *mk, char *buffer)
1228{
1229	return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1230}
1231
1232static struct module_attribute modinfo_coresize =
1233	__ATTR(coresize, 0444, show_coresize, NULL);
1234
1235static ssize_t show_initsize(struct module_attribute *mattr,
1236			     struct module_kobject *mk, char *buffer)
1237{
1238	return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1239}
1240
1241static struct module_attribute modinfo_initsize =
1242	__ATTR(initsize, 0444, show_initsize, NULL);
1243
1244static ssize_t show_taint(struct module_attribute *mattr,
1245			  struct module_kobject *mk, char *buffer)
1246{
1247	size_t l;
1248
1249	l = module_flags_taint(mk->mod, buffer);
1250	buffer[l++] = '\n';
1251	return l;
1252}
1253
1254static struct module_attribute modinfo_taint =
1255	__ATTR(taint, 0444, show_taint, NULL);
1256
1257static struct module_attribute *modinfo_attrs[] = {
1258	&module_uevent,
1259	&modinfo_version,
1260	&modinfo_srcversion,
1261	&modinfo_initstate,
1262	&modinfo_coresize,
1263	&modinfo_initsize,
1264	&modinfo_taint,
1265#ifdef CONFIG_MODULE_UNLOAD
1266	&modinfo_refcnt,
1267#endif
1268	NULL,
1269};
1270
1271static const char vermagic[] = VERMAGIC_STRING;
1272
1273static int try_to_force_load(struct module *mod, const char *reason)
1274{
1275#ifdef CONFIG_MODULE_FORCE_LOAD
1276	if (!test_taint(TAINT_FORCED_MODULE))
1277		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1278	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1279	return 0;
1280#else
1281	return -ENOEXEC;
1282#endif
1283}
1284
1285#ifdef CONFIG_MODVERSIONS
1286
1287static u32 resolve_rel_crc(const s32 *crc)
1288{
1289	return *(u32 *)((void *)crc + *crc);
1290}
1291
1292static int check_version(const struct load_info *info,
1293			 const char *symname,
1294			 struct module *mod,
1295			 const s32 *crc)
1296{
1297	Elf_Shdr *sechdrs = info->sechdrs;
1298	unsigned int versindex = info->index.vers;
1299	unsigned int i, num_versions;
1300	struct modversion_info *versions;
1301
1302	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1303	if (!crc)
1304		return 1;
1305
1306	/* No versions at all?  modprobe --force does this. */
1307	if (versindex == 0)
1308		return try_to_force_load(mod, symname) == 0;
1309
1310	versions = (void *) sechdrs[versindex].sh_addr;
1311	num_versions = sechdrs[versindex].sh_size
1312		/ sizeof(struct modversion_info);
1313
1314	for (i = 0; i < num_versions; i++) {
1315		u32 crcval;
1316
1317		if (strcmp(versions[i].name, symname) != 0)
1318			continue;
1319
1320		if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1321			crcval = resolve_rel_crc(crc);
1322		else
1323			crcval = *crc;
1324		if (versions[i].crc == crcval)
1325			return 1;
1326		pr_debug("Found checksum %X vs module %lX\n",
1327			 crcval, versions[i].crc);
1328		goto bad_version;
1329	}
1330
1331	/* Broken toolchain. Warn once, then let it go.. */
1332	pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1333	return 1;
1334
1335bad_version:
1336	pr_warn("%s: disagrees about version of symbol %s\n",
1337	       info->name, symname);
1338	return 0;
1339}
1340
1341static inline int check_modstruct_version(const struct load_info *info,
1342					  struct module *mod)
1343{
1344	const s32 *crc;
1345
1346	/*
1347	 * Since this should be found in kernel (which can't be removed), no
1348	 * locking is necessary -- use preempt_disable() to placate lockdep.
1349	 */
1350	preempt_disable();
1351	if (!find_symbol("module_layout", NULL, &crc, true, false)) {
1352		preempt_enable();
1353		BUG();
1354	}
1355	preempt_enable();
1356	return check_version(info, "module_layout", mod, crc);
1357}
1358
1359/* First part is kernel version, which we ignore if module has crcs. */
1360static inline int same_magic(const char *amagic, const char *bmagic,
1361			     bool has_crcs)
1362{
1363	if (has_crcs) {
1364		amagic += strcspn(amagic, " ");
1365		bmagic += strcspn(bmagic, " ");
1366	}
1367	return strcmp(amagic, bmagic) == 0;
1368}
1369#else
1370static inline int check_version(const struct load_info *info,
1371				const char *symname,
1372				struct module *mod,
1373				const s32 *crc)
1374{
1375	return 1;
1376}
1377
1378static inline int check_modstruct_version(const struct load_info *info,
1379					  struct module *mod)
1380{
1381	return 1;
1382}
1383
1384static inline int same_magic(const char *amagic, const char *bmagic,
1385			     bool has_crcs)
1386{
1387	return strcmp(amagic, bmagic) == 0;
1388}
1389#endif /* CONFIG_MODVERSIONS */
1390
1391static char *get_modinfo(const struct load_info *info, const char *tag);
1392static char *get_next_modinfo(const struct load_info *info, const char *tag,
1393			      char *prev);
1394
1395static int verify_namespace_is_imported(const struct load_info *info,
1396					const struct kernel_symbol *sym,
1397					struct module *mod)
1398{
1399	const char *namespace;
1400	char *imported_namespace;
1401
1402	namespace = kernel_symbol_namespace(sym);
1403	if (namespace) {
1404		imported_namespace = get_modinfo(info, "import_ns");
1405		while (imported_namespace) {
1406			if (strcmp(namespace, imported_namespace) == 0)
1407				return 0;
1408			imported_namespace = get_next_modinfo(
1409				info, "import_ns", imported_namespace);
1410		}
1411#ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1412		pr_warn(
1413#else
1414		pr_err(
1415#endif
1416			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1417			mod->name, kernel_symbol_name(sym), namespace);
1418#ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1419		return -EINVAL;
1420#endif
1421	}
1422	return 0;
1423}
1424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1425
1426/* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1427static const struct kernel_symbol *resolve_symbol(struct module *mod,
1428						  const struct load_info *info,
1429						  const char *name,
1430						  char ownername[])
1431{
1432	struct module *owner;
1433	const struct kernel_symbol *sym;
1434	const s32 *crc;
 
1435	int err;
1436
1437	/*
1438	 * The module_mutex should not be a heavily contended lock;
1439	 * if we get the occasional sleep here, we'll go an extra iteration
1440	 * in the wait_event_interruptible(), which is harmless.
1441	 */
1442	sched_annotate_sleep();
1443	mutex_lock(&module_mutex);
1444	sym = find_symbol(name, &owner, &crc,
1445			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1446	if (!sym)
1447		goto unlock;
1448
 
 
 
 
 
 
 
 
1449	if (!check_version(info, name, mod, crc)) {
1450		sym = ERR_PTR(-EINVAL);
1451		goto getname;
1452	}
1453
1454	err = verify_namespace_is_imported(info, sym, mod);
1455	if (err) {
1456		sym = ERR_PTR(err);
1457		goto getname;
1458	}
1459
1460	err = ref_module(mod, owner);
1461	if (err) {
1462		sym = ERR_PTR(err);
1463		goto getname;
1464	}
1465
1466getname:
1467	/* We must make copy under the lock if we failed to get ref. */
1468	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1469unlock:
1470	mutex_unlock(&module_mutex);
1471	return sym;
1472}
1473
1474static const struct kernel_symbol *
1475resolve_symbol_wait(struct module *mod,
1476		    const struct load_info *info,
1477		    const char *name)
1478{
1479	const struct kernel_symbol *ksym;
1480	char owner[MODULE_NAME_LEN];
1481
1482	if (wait_event_interruptible_timeout(module_wq,
1483			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1484			|| PTR_ERR(ksym) != -EBUSY,
1485					     30 * HZ) <= 0) {
1486		pr_warn("%s: gave up waiting for init of module %s.\n",
1487			mod->name, owner);
1488	}
1489	return ksym;
1490}
1491
1492/*
1493 * /sys/module/foo/sections stuff
1494 * J. Corbet <corbet@lwn.net>
1495 */
1496#ifdef CONFIG_SYSFS
1497
1498#ifdef CONFIG_KALLSYMS
1499static inline bool sect_empty(const Elf_Shdr *sect)
1500{
1501	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1502}
1503
1504struct module_sect_attr {
1505	struct module_attribute mattr;
1506	char *name;
1507	unsigned long address;
1508};
1509
1510struct module_sect_attrs {
1511	struct attribute_group grp;
1512	unsigned int nsections;
1513	struct module_sect_attr attrs[0];
1514};
1515
1516static ssize_t module_sect_show(struct module_attribute *mattr,
1517				struct module_kobject *mk, char *buf)
 
 
1518{
1519	struct module_sect_attr *sattr =
1520		container_of(mattr, struct module_sect_attr, mattr);
1521	return sprintf(buf, "0x%px\n", kptr_restrict < 2 ?
1522		       (void *)sattr->address : NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1523}
1524
1525static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1526{
1527	unsigned int section;
1528
1529	for (section = 0; section < sect_attrs->nsections; section++)
1530		kfree(sect_attrs->attrs[section].name);
1531	kfree(sect_attrs);
1532}
1533
1534static void add_sect_attrs(struct module *mod, const struct load_info *info)
1535{
1536	unsigned int nloaded = 0, i, size[2];
1537	struct module_sect_attrs *sect_attrs;
1538	struct module_sect_attr *sattr;
1539	struct attribute **gattr;
1540
1541	/* Count loaded sections and allocate structures */
1542	for (i = 0; i < info->hdr->e_shnum; i++)
1543		if (!sect_empty(&info->sechdrs[i]))
1544			nloaded++;
1545	size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1546			sizeof(sect_attrs->grp.attrs[0]));
1547	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1548	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1549	if (sect_attrs == NULL)
1550		return;
1551
1552	/* Setup section attributes. */
1553	sect_attrs->grp.name = "sections";
1554	sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1555
1556	sect_attrs->nsections = 0;
1557	sattr = &sect_attrs->attrs[0];
1558	gattr = &sect_attrs->grp.attrs[0];
1559	for (i = 0; i < info->hdr->e_shnum; i++) {
1560		Elf_Shdr *sec = &info->sechdrs[i];
1561		if (sect_empty(sec))
1562			continue;
 
1563		sattr->address = sec->sh_addr;
1564		sattr->name = kstrdup(info->secstrings + sec->sh_name,
1565					GFP_KERNEL);
1566		if (sattr->name == NULL)
1567			goto out;
1568		sect_attrs->nsections++;
1569		sysfs_attr_init(&sattr->mattr.attr);
1570		sattr->mattr.show = module_sect_show;
1571		sattr->mattr.store = NULL;
1572		sattr->mattr.attr.name = sattr->name;
1573		sattr->mattr.attr.mode = S_IRUSR;
1574		*(gattr++) = &(sattr++)->mattr.attr;
1575	}
1576	*gattr = NULL;
1577
1578	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1579		goto out;
1580
1581	mod->sect_attrs = sect_attrs;
1582	return;
1583  out:
1584	free_sect_attrs(sect_attrs);
1585}
1586
1587static void remove_sect_attrs(struct module *mod)
1588{
1589	if (mod->sect_attrs) {
1590		sysfs_remove_group(&mod->mkobj.kobj,
1591				   &mod->sect_attrs->grp);
1592		/* We are positive that no one is using any sect attrs
1593		 * at this point.  Deallocate immediately. */
1594		free_sect_attrs(mod->sect_attrs);
1595		mod->sect_attrs = NULL;
1596	}
1597}
1598
1599/*
1600 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1601 */
1602
1603struct module_notes_attrs {
1604	struct kobject *dir;
1605	unsigned int notes;
1606	struct bin_attribute attrs[0];
1607};
1608
1609static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1610				 struct bin_attribute *bin_attr,
1611				 char *buf, loff_t pos, size_t count)
1612{
1613	/*
1614	 * The caller checked the pos and count against our size.
1615	 */
1616	memcpy(buf, bin_attr->private + pos, count);
1617	return count;
1618}
1619
1620static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1621			     unsigned int i)
1622{
1623	if (notes_attrs->dir) {
1624		while (i-- > 0)
1625			sysfs_remove_bin_file(notes_attrs->dir,
1626					      &notes_attrs->attrs[i]);
1627		kobject_put(notes_attrs->dir);
1628	}
1629	kfree(notes_attrs);
1630}
1631
1632static void add_notes_attrs(struct module *mod, const struct load_info *info)
1633{
1634	unsigned int notes, loaded, i;
1635	struct module_notes_attrs *notes_attrs;
1636	struct bin_attribute *nattr;
1637
1638	/* failed to create section attributes, so can't create notes */
1639	if (!mod->sect_attrs)
1640		return;
1641
1642	/* Count notes sections and allocate structures.  */
1643	notes = 0;
1644	for (i = 0; i < info->hdr->e_shnum; i++)
1645		if (!sect_empty(&info->sechdrs[i]) &&
1646		    (info->sechdrs[i].sh_type == SHT_NOTE))
1647			++notes;
1648
1649	if (notes == 0)
1650		return;
1651
1652	notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1653			      GFP_KERNEL);
1654	if (notes_attrs == NULL)
1655		return;
1656
1657	notes_attrs->notes = notes;
1658	nattr = &notes_attrs->attrs[0];
1659	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1660		if (sect_empty(&info->sechdrs[i]))
1661			continue;
1662		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1663			sysfs_bin_attr_init(nattr);
1664			nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1665			nattr->attr.mode = S_IRUGO;
1666			nattr->size = info->sechdrs[i].sh_size;
1667			nattr->private = (void *) info->sechdrs[i].sh_addr;
1668			nattr->read = module_notes_read;
1669			++nattr;
1670		}
1671		++loaded;
1672	}
1673
1674	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1675	if (!notes_attrs->dir)
1676		goto out;
1677
1678	for (i = 0; i < notes; ++i)
1679		if (sysfs_create_bin_file(notes_attrs->dir,
1680					  &notes_attrs->attrs[i]))
1681			goto out;
1682
1683	mod->notes_attrs = notes_attrs;
1684	return;
1685
1686  out:
1687	free_notes_attrs(notes_attrs, i);
1688}
1689
1690static void remove_notes_attrs(struct module *mod)
1691{
1692	if (mod->notes_attrs)
1693		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1694}
1695
1696#else
1697
1698static inline void add_sect_attrs(struct module *mod,
1699				  const struct load_info *info)
1700{
1701}
1702
1703static inline void remove_sect_attrs(struct module *mod)
1704{
1705}
1706
1707static inline void add_notes_attrs(struct module *mod,
1708				   const struct load_info *info)
1709{
1710}
1711
1712static inline void remove_notes_attrs(struct module *mod)
1713{
1714}
1715#endif /* CONFIG_KALLSYMS */
1716
1717static void del_usage_links(struct module *mod)
1718{
1719#ifdef CONFIG_MODULE_UNLOAD
1720	struct module_use *use;
1721
1722	mutex_lock(&module_mutex);
1723	list_for_each_entry(use, &mod->target_list, target_list)
1724		sysfs_remove_link(use->target->holders_dir, mod->name);
1725	mutex_unlock(&module_mutex);
1726#endif
1727}
1728
1729static int add_usage_links(struct module *mod)
1730{
1731	int ret = 0;
1732#ifdef CONFIG_MODULE_UNLOAD
1733	struct module_use *use;
1734
1735	mutex_lock(&module_mutex);
1736	list_for_each_entry(use, &mod->target_list, target_list) {
1737		ret = sysfs_create_link(use->target->holders_dir,
1738					&mod->mkobj.kobj, mod->name);
1739		if (ret)
1740			break;
1741	}
1742	mutex_unlock(&module_mutex);
1743	if (ret)
1744		del_usage_links(mod);
1745#endif
1746	return ret;
1747}
1748
1749static void module_remove_modinfo_attrs(struct module *mod, int end);
1750
1751static int module_add_modinfo_attrs(struct module *mod)
1752{
1753	struct module_attribute *attr;
1754	struct module_attribute *temp_attr;
1755	int error = 0;
1756	int i;
1757
1758	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1759					(ARRAY_SIZE(modinfo_attrs) + 1)),
1760					GFP_KERNEL);
1761	if (!mod->modinfo_attrs)
1762		return -ENOMEM;
1763
1764	temp_attr = mod->modinfo_attrs;
1765	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1766		if (!attr->test || attr->test(mod)) {
1767			memcpy(temp_attr, attr, sizeof(*temp_attr));
1768			sysfs_attr_init(&temp_attr->attr);
1769			error = sysfs_create_file(&mod->mkobj.kobj,
1770					&temp_attr->attr);
1771			if (error)
1772				goto error_out;
1773			++temp_attr;
1774		}
1775	}
1776
1777	return 0;
1778
1779error_out:
1780	if (i > 0)
1781		module_remove_modinfo_attrs(mod, --i);
 
 
1782	return error;
1783}
1784
1785static void module_remove_modinfo_attrs(struct module *mod, int end)
1786{
1787	struct module_attribute *attr;
1788	int i;
1789
1790	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1791		if (end >= 0 && i > end)
1792			break;
1793		/* pick a field to test for end of list */
1794		if (!attr->attr.name)
1795			break;
1796		sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1797		if (attr->free)
1798			attr->free(mod);
1799	}
1800	kfree(mod->modinfo_attrs);
1801}
1802
1803static void mod_kobject_put(struct module *mod)
1804{
1805	DECLARE_COMPLETION_ONSTACK(c);
1806	mod->mkobj.kobj_completion = &c;
1807	kobject_put(&mod->mkobj.kobj);
1808	wait_for_completion(&c);
1809}
1810
1811static int mod_sysfs_init(struct module *mod)
1812{
1813	int err;
1814	struct kobject *kobj;
1815
1816	if (!module_sysfs_initialized) {
1817		pr_err("%s: module sysfs not initialized\n", mod->name);
1818		err = -EINVAL;
1819		goto out;
1820	}
1821
1822	kobj = kset_find_obj(module_kset, mod->name);
1823	if (kobj) {
1824		pr_err("%s: module is already loaded\n", mod->name);
1825		kobject_put(kobj);
1826		err = -EINVAL;
1827		goto out;
1828	}
1829
1830	mod->mkobj.mod = mod;
1831
1832	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1833	mod->mkobj.kobj.kset = module_kset;
1834	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1835				   "%s", mod->name);
1836	if (err)
1837		mod_kobject_put(mod);
1838
1839	/* delay uevent until full sysfs population */
1840out:
1841	return err;
1842}
1843
1844static int mod_sysfs_setup(struct module *mod,
1845			   const struct load_info *info,
1846			   struct kernel_param *kparam,
1847			   unsigned int num_params)
1848{
1849	int err;
1850
1851	err = mod_sysfs_init(mod);
1852	if (err)
1853		goto out;
1854
1855	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1856	if (!mod->holders_dir) {
1857		err = -ENOMEM;
1858		goto out_unreg;
1859	}
1860
1861	err = module_param_sysfs_setup(mod, kparam, num_params);
1862	if (err)
1863		goto out_unreg_holders;
1864
1865	err = module_add_modinfo_attrs(mod);
1866	if (err)
1867		goto out_unreg_param;
1868
1869	err = add_usage_links(mod);
1870	if (err)
1871		goto out_unreg_modinfo_attrs;
1872
1873	add_sect_attrs(mod, info);
1874	add_notes_attrs(mod, info);
1875
1876	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1877	return 0;
1878
1879out_unreg_modinfo_attrs:
1880	module_remove_modinfo_attrs(mod, -1);
1881out_unreg_param:
1882	module_param_sysfs_remove(mod);
1883out_unreg_holders:
1884	kobject_put(mod->holders_dir);
1885out_unreg:
1886	mod_kobject_put(mod);
1887out:
1888	return err;
1889}
1890
1891static void mod_sysfs_fini(struct module *mod)
1892{
1893	remove_notes_attrs(mod);
1894	remove_sect_attrs(mod);
1895	mod_kobject_put(mod);
1896}
1897
1898static void init_param_lock(struct module *mod)
1899{
1900	mutex_init(&mod->param_lock);
1901}
1902#else /* !CONFIG_SYSFS */
1903
1904static int mod_sysfs_setup(struct module *mod,
1905			   const struct load_info *info,
1906			   struct kernel_param *kparam,
1907			   unsigned int num_params)
1908{
1909	return 0;
1910}
1911
1912static void mod_sysfs_fini(struct module *mod)
1913{
1914}
1915
1916static void module_remove_modinfo_attrs(struct module *mod, int end)
1917{
1918}
1919
1920static void del_usage_links(struct module *mod)
1921{
1922}
1923
1924static void init_param_lock(struct module *mod)
1925{
1926}
1927#endif /* CONFIG_SYSFS */
1928
1929static void mod_sysfs_teardown(struct module *mod)
1930{
1931	del_usage_links(mod);
1932	module_remove_modinfo_attrs(mod, -1);
1933	module_param_sysfs_remove(mod);
1934	kobject_put(mod->mkobj.drivers_dir);
1935	kobject_put(mod->holders_dir);
1936	mod_sysfs_fini(mod);
1937}
1938
1939#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
1940/*
1941 * LKM RO/NX protection: protect module's text/ro-data
1942 * from modification and any data from execution.
1943 *
1944 * General layout of module is:
1945 *          [text] [read-only-data] [ro-after-init] [writable data]
1946 * text_size -----^                ^               ^               ^
1947 * ro_size ------------------------|               |               |
1948 * ro_after_init_size -----------------------------|               |
1949 * size -----------------------------------------------------------|
1950 *
1951 * These values are always page-aligned (as is base)
1952 */
 
 
 
 
 
 
 
 
1953static void frob_text(const struct module_layout *layout,
1954		      int (*set_memory)(unsigned long start, int num_pages))
1955{
1956	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1957	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1958	set_memory((unsigned long)layout->base,
1959		   layout->text_size >> PAGE_SHIFT);
1960}
1961
 
 
 
 
 
 
 
 
 
1962#ifdef CONFIG_STRICT_MODULE_RWX
1963static void frob_rodata(const struct module_layout *layout,
1964			int (*set_memory)(unsigned long start, int num_pages))
1965{
1966	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1967	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1968	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1969	set_memory((unsigned long)layout->base + layout->text_size,
1970		   (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1971}
1972
1973static void frob_ro_after_init(const struct module_layout *layout,
1974				int (*set_memory)(unsigned long start, int num_pages))
1975{
1976	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1977	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1978	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1979	set_memory((unsigned long)layout->base + layout->ro_size,
1980		   (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1981}
1982
1983static void frob_writable_data(const struct module_layout *layout,
1984			       int (*set_memory)(unsigned long start, int num_pages))
1985{
1986	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1987	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1988	BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1989	set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1990		   (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1991}
1992
1993/* livepatching wants to disable read-only so it can frob module. */
1994void module_disable_ro(const struct module *mod)
1995{
1996	if (!rodata_enabled)
1997		return;
1998
1999	frob_text(&mod->core_layout, set_memory_rw);
2000	frob_rodata(&mod->core_layout, set_memory_rw);
2001	frob_ro_after_init(&mod->core_layout, set_memory_rw);
2002	frob_text(&mod->init_layout, set_memory_rw);
2003	frob_rodata(&mod->init_layout, set_memory_rw);
2004}
2005
2006void module_enable_ro(const struct module *mod, bool after_init)
2007{
2008	if (!rodata_enabled)
2009		return;
2010
2011	set_vm_flush_reset_perms(mod->core_layout.base);
2012	set_vm_flush_reset_perms(mod->init_layout.base);
2013	frob_text(&mod->core_layout, set_memory_ro);
2014
2015	frob_rodata(&mod->core_layout, set_memory_ro);
2016	frob_text(&mod->init_layout, set_memory_ro);
2017	frob_rodata(&mod->init_layout, set_memory_ro);
2018
2019	if (after_init)
2020		frob_ro_after_init(&mod->core_layout, set_memory_ro);
2021}
2022
2023static void module_enable_nx(const struct module *mod)
2024{
2025	frob_rodata(&mod->core_layout, set_memory_nx);
2026	frob_ro_after_init(&mod->core_layout, set_memory_nx);
2027	frob_writable_data(&mod->core_layout, set_memory_nx);
2028	frob_rodata(&mod->init_layout, set_memory_nx);
2029	frob_writable_data(&mod->init_layout, set_memory_nx);
2030}
2031
2032/* Iterate through all modules and set each module's text as RW */
2033void set_all_modules_text_rw(void)
2034{
2035	struct module *mod;
2036
2037	if (!rodata_enabled)
2038		return;
2039
2040	mutex_lock(&module_mutex);
2041	list_for_each_entry_rcu(mod, &modules, list) {
2042		if (mod->state == MODULE_STATE_UNFORMED)
2043			continue;
2044
2045		frob_text(&mod->core_layout, set_memory_rw);
2046		frob_text(&mod->init_layout, set_memory_rw);
 
2047	}
2048	mutex_unlock(&module_mutex);
2049}
2050
2051/* Iterate through all modules and set each module's text as RO */
2052void set_all_modules_text_ro(void)
2053{
2054	struct module *mod;
2055
2056	if (!rodata_enabled)
2057		return;
2058
2059	mutex_lock(&module_mutex);
2060	list_for_each_entry_rcu(mod, &modules, list) {
2061		/*
2062		 * Ignore going modules since it's possible that ro
2063		 * protection has already been disabled, otherwise we'll
2064		 * run into protection faults at module deallocation.
2065		 */
2066		if (mod->state == MODULE_STATE_UNFORMED ||
2067			mod->state == MODULE_STATE_GOING)
2068			continue;
2069
2070		frob_text(&mod->core_layout, set_memory_ro);
2071		frob_text(&mod->init_layout, set_memory_ro);
2072	}
2073	mutex_unlock(&module_mutex);
2074}
 
2075#else /* !CONFIG_STRICT_MODULE_RWX */
2076static void module_enable_nx(const struct module *mod) { }
2077#endif /*  CONFIG_STRICT_MODULE_RWX */
2078static void module_enable_x(const struct module *mod)
 
2079{
2080	frob_text(&mod->core_layout, set_memory_x);
2081	frob_text(&mod->init_layout, set_memory_x);
2082}
2083#else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2084static void module_enable_nx(const struct module *mod) { }
2085static void module_enable_x(const struct module *mod) { }
2086#endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2087
2088
2089#ifdef CONFIG_LIVEPATCH
2090/*
2091 * Persist Elf information about a module. Copy the Elf header,
2092 * section header table, section string table, and symtab section
2093 * index from info to mod->klp_info.
2094 */
2095static int copy_module_elf(struct module *mod, struct load_info *info)
2096{
2097	unsigned int size, symndx;
2098	int ret;
2099
2100	size = sizeof(*mod->klp_info);
2101	mod->klp_info = kmalloc(size, GFP_KERNEL);
2102	if (mod->klp_info == NULL)
2103		return -ENOMEM;
2104
2105	/* Elf header */
2106	size = sizeof(mod->klp_info->hdr);
2107	memcpy(&mod->klp_info->hdr, info->hdr, size);
2108
2109	/* Elf section header table */
2110	size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2111	mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2112	if (mod->klp_info->sechdrs == NULL) {
2113		ret = -ENOMEM;
2114		goto free_info;
2115	}
2116
2117	/* Elf section name string table */
2118	size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2119	mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2120	if (mod->klp_info->secstrings == NULL) {
2121		ret = -ENOMEM;
2122		goto free_sechdrs;
2123	}
2124
2125	/* Elf symbol section index */
2126	symndx = info->index.sym;
2127	mod->klp_info->symndx = symndx;
2128
2129	/*
2130	 * For livepatch modules, core_kallsyms.symtab is a complete
2131	 * copy of the original symbol table. Adjust sh_addr to point
2132	 * to core_kallsyms.symtab since the copy of the symtab in module
2133	 * init memory is freed at the end of do_init_module().
2134	 */
2135	mod->klp_info->sechdrs[symndx].sh_addr = \
2136		(unsigned long) mod->core_kallsyms.symtab;
2137
2138	return 0;
2139
2140free_sechdrs:
2141	kfree(mod->klp_info->sechdrs);
2142free_info:
2143	kfree(mod->klp_info);
2144	return ret;
2145}
2146
2147static void free_module_elf(struct module *mod)
2148{
2149	kfree(mod->klp_info->sechdrs);
2150	kfree(mod->klp_info->secstrings);
2151	kfree(mod->klp_info);
2152}
2153#else /* !CONFIG_LIVEPATCH */
2154static int copy_module_elf(struct module *mod, struct load_info *info)
2155{
2156	return 0;
2157}
2158
2159static void free_module_elf(struct module *mod)
2160{
2161}
2162#endif /* CONFIG_LIVEPATCH */
2163
2164void __weak module_memfree(void *module_region)
2165{
2166	/*
2167	 * This memory may be RO, and freeing RO memory in an interrupt is not
2168	 * supported by vmalloc.
2169	 */
2170	WARN_ON(in_interrupt());
2171	vfree(module_region);
2172}
2173
2174void __weak module_arch_cleanup(struct module *mod)
2175{
2176}
2177
2178void __weak module_arch_freeing_init(struct module *mod)
2179{
2180}
2181
2182/* Free a module, remove from lists, etc. */
2183static void free_module(struct module *mod)
2184{
2185	trace_module_free(mod);
2186
2187	mod_sysfs_teardown(mod);
2188
2189	/* We leave it in list to prevent duplicate loads, but make sure
2190	 * that noone uses it while it's being deconstructed. */
2191	mutex_lock(&module_mutex);
2192	mod->state = MODULE_STATE_UNFORMED;
2193	mutex_unlock(&module_mutex);
2194
2195	/* Remove dynamic debug info */
2196	ddebug_remove_module(mod->name);
2197
2198	/* Arch-specific cleanup. */
2199	module_arch_cleanup(mod);
2200
2201	/* Module unload stuff */
2202	module_unload_free(mod);
2203
2204	/* Free any allocated parameters. */
2205	destroy_params(mod->kp, mod->num_kp);
2206
2207	if (is_livepatch_module(mod))
2208		free_module_elf(mod);
2209
2210	/* Now we can delete it from the lists */
2211	mutex_lock(&module_mutex);
2212	/* Unlink carefully: kallsyms could be walking list. */
2213	list_del_rcu(&mod->list);
2214	mod_tree_remove(mod);
2215	/* Remove this module from bug list, this uses list_del_rcu */
2216	module_bug_cleanup(mod);
2217	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2218	synchronize_rcu();
2219	mutex_unlock(&module_mutex);
2220
2221	/* This may be empty, but that's OK */
2222	module_arch_freeing_init(mod);
2223	module_memfree(mod->init_layout.base);
2224	kfree(mod->args);
2225	percpu_modfree(mod);
2226
2227	/* Free lock-classes; relies on the preceding sync_rcu(). */
2228	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2229
2230	/* Finally, free the core (containing the module structure) */
2231	module_memfree(mod->core_layout.base);
2232}
2233
2234void *__symbol_get(const char *symbol)
2235{
2236	struct module *owner;
2237	const struct kernel_symbol *sym;
2238
2239	preempt_disable();
2240	sym = find_symbol(symbol, &owner, NULL, true, true);
2241	if (sym && strong_try_module_get(owner))
2242		sym = NULL;
2243	preempt_enable();
2244
2245	return sym ? (void *)kernel_symbol_value(sym) : NULL;
2246}
2247EXPORT_SYMBOL_GPL(__symbol_get);
2248
2249/*
2250 * Ensure that an exported symbol [global namespace] does not already exist
2251 * in the kernel or in some other module's exported symbol table.
2252 *
2253 * You must hold the module_mutex.
2254 */
2255static int verify_exported_symbols(struct module *mod)
2256{
2257	unsigned int i;
2258	struct module *owner;
2259	const struct kernel_symbol *s;
2260	struct {
2261		const struct kernel_symbol *sym;
2262		unsigned int num;
2263	} arr[] = {
2264		{ mod->syms, mod->num_syms },
2265		{ mod->gpl_syms, mod->num_gpl_syms },
2266		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
2267#ifdef CONFIG_UNUSED_SYMBOLS
2268		{ mod->unused_syms, mod->num_unused_syms },
2269		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2270#endif
2271	};
2272
2273	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2274		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2275			if (find_symbol(kernel_symbol_name(s), &owner, NULL,
2276					true, false)) {
2277				pr_err("%s: exports duplicate symbol %s"
2278				       " (owned by %s)\n",
2279				       mod->name, kernel_symbol_name(s),
2280				       module_name(owner));
2281				return -ENOEXEC;
2282			}
2283		}
2284	}
2285	return 0;
2286}
2287
2288/* Change all symbols so that st_value encodes the pointer directly. */
2289static int simplify_symbols(struct module *mod, const struct load_info *info)
2290{
2291	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2292	Elf_Sym *sym = (void *)symsec->sh_addr;
2293	unsigned long secbase;
2294	unsigned int i;
2295	int ret = 0;
2296	const struct kernel_symbol *ksym;
2297
2298	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2299		const char *name = info->strtab + sym[i].st_name;
2300
2301		switch (sym[i].st_shndx) {
2302		case SHN_COMMON:
2303			/* Ignore common symbols */
2304			if (!strncmp(name, "__gnu_lto", 9))
2305				break;
2306
2307			/* We compiled with -fno-common.  These are not
2308			   supposed to happen.  */
2309			pr_debug("Common symbol: %s\n", name);
2310			pr_warn("%s: please compile with -fno-common\n",
2311			       mod->name);
2312			ret = -ENOEXEC;
2313			break;
2314
2315		case SHN_ABS:
2316			/* Don't need to do anything */
2317			pr_debug("Absolute symbol: 0x%08lx\n",
2318			       (long)sym[i].st_value);
2319			break;
2320
2321		case SHN_LIVEPATCH:
2322			/* Livepatch symbols are resolved by livepatch */
2323			break;
2324
2325		case SHN_UNDEF:
2326			ksym = resolve_symbol_wait(mod, info, name);
2327			/* Ok if resolved.  */
2328			if (ksym && !IS_ERR(ksym)) {
2329				sym[i].st_value = kernel_symbol_value(ksym);
2330				break;
2331			}
2332
2333			/* Ok if weak.  */
2334			if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2335				break;
2336
2337			ret = PTR_ERR(ksym) ?: -ENOENT;
2338			pr_warn("%s: Unknown symbol %s (err %d)\n",
2339				mod->name, name, ret);
2340			break;
2341
2342		default:
2343			/* Divert to percpu allocation if a percpu var. */
2344			if (sym[i].st_shndx == info->index.pcpu)
2345				secbase = (unsigned long)mod_percpu(mod);
2346			else
2347				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2348			sym[i].st_value += secbase;
2349			break;
2350		}
2351	}
2352
2353	return ret;
2354}
2355
2356static int apply_relocations(struct module *mod, const struct load_info *info)
2357{
2358	unsigned int i;
2359	int err = 0;
2360
2361	/* Now do relocations. */
2362	for (i = 1; i < info->hdr->e_shnum; i++) {
2363		unsigned int infosec = info->sechdrs[i].sh_info;
2364
2365		/* Not a valid relocation section? */
2366		if (infosec >= info->hdr->e_shnum)
2367			continue;
2368
2369		/* Don't bother with non-allocated sections */
2370		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2371			continue;
2372
2373		/* Livepatch relocation sections are applied by livepatch */
2374		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2375			continue;
2376
2377		if (info->sechdrs[i].sh_type == SHT_REL)
 
 
 
2378			err = apply_relocate(info->sechdrs, info->strtab,
2379					     info->index.sym, i, mod);
2380		else if (info->sechdrs[i].sh_type == SHT_RELA)
2381			err = apply_relocate_add(info->sechdrs, info->strtab,
2382						 info->index.sym, i, mod);
2383		if (err < 0)
2384			break;
2385	}
2386	return err;
2387}
2388
2389/* Additional bytes needed by arch in front of individual sections */
2390unsigned int __weak arch_mod_section_prepend(struct module *mod,
2391					     unsigned int section)
2392{
2393	/* default implementation just returns zero */
2394	return 0;
2395}
2396
2397/* Update size with this section: return offset. */
2398static long get_offset(struct module *mod, unsigned int *size,
2399		       Elf_Shdr *sechdr, unsigned int section)
2400{
2401	long ret;
2402
2403	*size += arch_mod_section_prepend(mod, section);
2404	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2405	*size = ret + sechdr->sh_size;
2406	return ret;
2407}
2408
2409/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2410   might -- code, read-only data, read-write data, small data.  Tally
2411   sizes, and place the offsets into sh_entsize fields: high bit means it
2412   belongs in init. */
2413static void layout_sections(struct module *mod, struct load_info *info)
2414{
2415	static unsigned long const masks[][2] = {
2416		/* NOTE: all executable code must be the first section
2417		 * in this array; otherwise modify the text_size
2418		 * finder in the two loops below */
2419		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2420		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2421		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2422		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2423		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2424	};
2425	unsigned int m, i;
2426
2427	for (i = 0; i < info->hdr->e_shnum; i++)
2428		info->sechdrs[i].sh_entsize = ~0UL;
2429
2430	pr_debug("Core section allocation order:\n");
2431	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2432		for (i = 0; i < info->hdr->e_shnum; ++i) {
2433			Elf_Shdr *s = &info->sechdrs[i];
2434			const char *sname = info->secstrings + s->sh_name;
2435
2436			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2437			    || (s->sh_flags & masks[m][1])
2438			    || s->sh_entsize != ~0UL
2439			    || strstarts(sname, ".init"))
2440				continue;
2441			s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2442			pr_debug("\t%s\n", sname);
2443		}
2444		switch (m) {
2445		case 0: /* executable */
2446			mod->core_layout.size = debug_align(mod->core_layout.size);
2447			mod->core_layout.text_size = mod->core_layout.size;
2448			break;
2449		case 1: /* RO: text and ro-data */
2450			mod->core_layout.size = debug_align(mod->core_layout.size);
2451			mod->core_layout.ro_size = mod->core_layout.size;
2452			break;
2453		case 2: /* RO after init */
2454			mod->core_layout.size = debug_align(mod->core_layout.size);
2455			mod->core_layout.ro_after_init_size = mod->core_layout.size;
2456			break;
2457		case 4: /* whole core */
2458			mod->core_layout.size = debug_align(mod->core_layout.size);
2459			break;
2460		}
2461	}
2462
2463	pr_debug("Init section allocation order:\n");
2464	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2465		for (i = 0; i < info->hdr->e_shnum; ++i) {
2466			Elf_Shdr *s = &info->sechdrs[i];
2467			const char *sname = info->secstrings + s->sh_name;
2468
2469			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2470			    || (s->sh_flags & masks[m][1])
2471			    || s->sh_entsize != ~0UL
2472			    || !strstarts(sname, ".init"))
2473				continue;
2474			s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2475					 | INIT_OFFSET_MASK);
2476			pr_debug("\t%s\n", sname);
2477		}
2478		switch (m) {
2479		case 0: /* executable */
2480			mod->init_layout.size = debug_align(mod->init_layout.size);
2481			mod->init_layout.text_size = mod->init_layout.size;
2482			break;
2483		case 1: /* RO: text and ro-data */
2484			mod->init_layout.size = debug_align(mod->init_layout.size);
2485			mod->init_layout.ro_size = mod->init_layout.size;
2486			break;
2487		case 2:
2488			/*
2489			 * RO after init doesn't apply to init_layout (only
2490			 * core_layout), so it just takes the value of ro_size.
2491			 */
2492			mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2493			break;
2494		case 4: /* whole init */
2495			mod->init_layout.size = debug_align(mod->init_layout.size);
2496			break;
2497		}
2498	}
2499}
2500
2501static void set_license(struct module *mod, const char *license)
2502{
2503	if (!license)
2504		license = "unspecified";
2505
2506	if (!license_is_gpl_compatible(license)) {
2507		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2508			pr_warn("%s: module license '%s' taints kernel.\n",
2509				mod->name, license);
2510		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2511				 LOCKDEP_NOW_UNRELIABLE);
2512	}
2513}
2514
2515/* Parse tag=value strings from .modinfo section */
2516static char *next_string(char *string, unsigned long *secsize)
2517{
2518	/* Skip non-zero chars */
2519	while (string[0]) {
2520		string++;
2521		if ((*secsize)-- <= 1)
2522			return NULL;
2523	}
2524
2525	/* Skip any zero padding. */
2526	while (!string[0]) {
2527		string++;
2528		if ((*secsize)-- <= 1)
2529			return NULL;
2530	}
2531	return string;
2532}
2533
2534static char *get_next_modinfo(const struct load_info *info, const char *tag,
2535			      char *prev)
2536{
2537	char *p;
2538	unsigned int taglen = strlen(tag);
2539	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2540	unsigned long size = infosec->sh_size;
2541
2542	/*
2543	 * get_modinfo() calls made before rewrite_section_headers()
2544	 * must use sh_offset, as sh_addr isn't set!
2545	 */
2546	char *modinfo = (char *)info->hdr + infosec->sh_offset;
2547
2548	if (prev) {
2549		size -= prev - modinfo;
2550		modinfo = next_string(prev, &size);
2551	}
2552
2553	for (p = modinfo; p; p = next_string(p, &size)) {
2554		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2555			return p + taglen + 1;
2556	}
2557	return NULL;
2558}
2559
2560static char *get_modinfo(const struct load_info *info, const char *tag)
2561{
2562	return get_next_modinfo(info, tag, NULL);
2563}
2564
2565static void setup_modinfo(struct module *mod, struct load_info *info)
2566{
2567	struct module_attribute *attr;
2568	int i;
2569
2570	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2571		if (attr->setup)
2572			attr->setup(mod, get_modinfo(info, attr->attr.name));
2573	}
2574}
2575
2576static void free_modinfo(struct module *mod)
2577{
2578	struct module_attribute *attr;
2579	int i;
2580
2581	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2582		if (attr->free)
2583			attr->free(mod);
2584	}
2585}
2586
2587#ifdef CONFIG_KALLSYMS
2588
2589/* Lookup exported symbol in given range of kernel_symbols */
2590static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2591							  const struct kernel_symbol *start,
2592							  const struct kernel_symbol *stop)
2593{
2594	return bsearch(name, start, stop - start,
2595			sizeof(struct kernel_symbol), cmp_name);
2596}
2597
2598static int is_exported(const char *name, unsigned long value,
2599		       const struct module *mod)
2600{
2601	const struct kernel_symbol *ks;
2602	if (!mod)
2603		ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2604	else
2605		ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2606
2607	return ks != NULL && kernel_symbol_value(ks) == value;
2608}
2609
2610/* As per nm */
2611static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2612{
2613	const Elf_Shdr *sechdrs = info->sechdrs;
2614
2615	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2616		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2617			return 'v';
2618		else
2619			return 'w';
2620	}
2621	if (sym->st_shndx == SHN_UNDEF)
2622		return 'U';
2623	if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2624		return 'a';
2625	if (sym->st_shndx >= SHN_LORESERVE)
2626		return '?';
2627	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2628		return 't';
2629	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2630	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2631		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2632			return 'r';
2633		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2634			return 'g';
2635		else
2636			return 'd';
2637	}
2638	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2639		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2640			return 's';
2641		else
2642			return 'b';
2643	}
2644	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2645		      ".debug")) {
2646		return 'n';
2647	}
2648	return '?';
2649}
2650
2651static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2652			unsigned int shnum, unsigned int pcpundx)
2653{
2654	const Elf_Shdr *sec;
2655
2656	if (src->st_shndx == SHN_UNDEF
2657	    || src->st_shndx >= shnum
2658	    || !src->st_name)
2659		return false;
2660
2661#ifdef CONFIG_KALLSYMS_ALL
2662	if (src->st_shndx == pcpundx)
2663		return true;
2664#endif
2665
2666	sec = sechdrs + src->st_shndx;
2667	if (!(sec->sh_flags & SHF_ALLOC)
2668#ifndef CONFIG_KALLSYMS_ALL
2669	    || !(sec->sh_flags & SHF_EXECINSTR)
2670#endif
2671	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2672		return false;
2673
2674	return true;
2675}
2676
2677/*
2678 * We only allocate and copy the strings needed by the parts of symtab
2679 * we keep.  This is simple, but has the effect of making multiple
2680 * copies of duplicates.  We could be more sophisticated, see
2681 * linux-kernel thread starting with
2682 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2683 */
2684static void layout_symtab(struct module *mod, struct load_info *info)
2685{
2686	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2687	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2688	const Elf_Sym *src;
2689	unsigned int i, nsrc, ndst, strtab_size = 0;
2690
2691	/* Put symbol section at end of init part of module. */
2692	symsect->sh_flags |= SHF_ALLOC;
2693	symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2694					 info->index.sym) | INIT_OFFSET_MASK;
2695	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2696
2697	src = (void *)info->hdr + symsect->sh_offset;
2698	nsrc = symsect->sh_size / sizeof(*src);
2699
2700	/* Compute total space required for the core symbols' strtab. */
2701	for (ndst = i = 0; i < nsrc; i++) {
2702		if (i == 0 || is_livepatch_module(mod) ||
2703		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2704				   info->index.pcpu)) {
2705			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2706			ndst++;
2707		}
2708	}
2709
2710	/* Append room for core symbols at end of core part. */
2711	info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2712	info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2713	mod->core_layout.size += strtab_size;
2714	info->core_typeoffs = mod->core_layout.size;
2715	mod->core_layout.size += ndst * sizeof(char);
2716	mod->core_layout.size = debug_align(mod->core_layout.size);
2717
2718	/* Put string table section at end of init part of module. */
2719	strsect->sh_flags |= SHF_ALLOC;
2720	strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2721					 info->index.str) | INIT_OFFSET_MASK;
2722	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2723
2724	/* We'll tack temporary mod_kallsyms on the end. */
2725	mod->init_layout.size = ALIGN(mod->init_layout.size,
2726				      __alignof__(struct mod_kallsyms));
2727	info->mod_kallsyms_init_off = mod->init_layout.size;
2728	mod->init_layout.size += sizeof(struct mod_kallsyms);
2729	info->init_typeoffs = mod->init_layout.size;
2730	mod->init_layout.size += nsrc * sizeof(char);
2731	mod->init_layout.size = debug_align(mod->init_layout.size);
2732}
2733
2734/*
2735 * We use the full symtab and strtab which layout_symtab arranged to
2736 * be appended to the init section.  Later we switch to the cut-down
2737 * core-only ones.
2738 */
2739static void add_kallsyms(struct module *mod, const struct load_info *info)
2740{
2741	unsigned int i, ndst;
2742	const Elf_Sym *src;
2743	Elf_Sym *dst;
2744	char *s;
2745	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2746
2747	/* Set up to point into init section. */
2748	mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2749
2750	mod->kallsyms->symtab = (void *)symsec->sh_addr;
2751	mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2752	/* Make sure we get permanent strtab: don't use info->strtab. */
2753	mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2754	mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2755
2756	/*
2757	 * Now populate the cut down core kallsyms for after init
2758	 * and set types up while we still have access to sections.
2759	 */
2760	mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2761	mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2762	mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2763	src = mod->kallsyms->symtab;
2764	for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2765		mod->kallsyms->typetab[i] = elf_type(src + i, info);
2766		if (i == 0 || is_livepatch_module(mod) ||
2767		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2768				   info->index.pcpu)) {
2769			mod->core_kallsyms.typetab[ndst] =
2770			    mod->kallsyms->typetab[i];
2771			dst[ndst] = src[i];
2772			dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2773			s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2774				     KSYM_NAME_LEN) + 1;
2775		}
2776	}
2777	mod->core_kallsyms.num_symtab = ndst;
2778}
2779#else
2780static inline void layout_symtab(struct module *mod, struct load_info *info)
2781{
2782}
2783
2784static void add_kallsyms(struct module *mod, const struct load_info *info)
2785{
2786}
2787#endif /* CONFIG_KALLSYMS */
2788
2789static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2790{
2791	if (!debug)
2792		return;
2793	ddebug_add_module(debug, num, mod->name);
2794}
2795
2796static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2797{
2798	if (debug)
2799		ddebug_remove_module(mod->name);
2800}
2801
2802void * __weak module_alloc(unsigned long size)
2803{
2804	return vmalloc_exec(size);
 
 
 
 
 
 
 
2805}
2806
2807bool __weak module_exit_section(const char *name)
2808{
2809	return strstarts(name, ".exit");
2810}
2811
2812#ifdef CONFIG_DEBUG_KMEMLEAK
2813static void kmemleak_load_module(const struct module *mod,
2814				 const struct load_info *info)
2815{
2816	unsigned int i;
2817
2818	/* only scan the sections containing data */
2819	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2820
2821	for (i = 1; i < info->hdr->e_shnum; i++) {
2822		/* Scan all writable sections that's not executable */
2823		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2824		    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2825		    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2826			continue;
2827
2828		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2829				   info->sechdrs[i].sh_size, GFP_KERNEL);
2830	}
2831}
2832#else
2833static inline void kmemleak_load_module(const struct module *mod,
2834					const struct load_info *info)
2835{
2836}
2837#endif
2838
2839#ifdef CONFIG_MODULE_SIG
2840static int module_sig_check(struct load_info *info, int flags)
2841{
2842	int err = -ENODATA;
2843	const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2844	const char *reason;
2845	const void *mod = info->hdr;
2846
2847	/*
2848	 * Require flags == 0, as a module with version information
2849	 * removed is no longer the module that was signed
2850	 */
2851	if (flags == 0 &&
2852	    info->len > markerlen &&
2853	    memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2854		/* We truncate the module to discard the signature */
2855		info->len -= markerlen;
2856		err = mod_verify_sig(mod, info);
2857	}
2858
2859	switch (err) {
2860	case 0:
2861		info->sig_ok = true;
2862		return 0;
2863
2864		/* We don't permit modules to be loaded into trusted kernels
2865		 * without a valid signature on them, but if we're not
2866		 * enforcing, certain errors are non-fatal.
2867		 */
2868	case -ENODATA:
2869		reason = "Loading of unsigned module";
2870		goto decide;
2871	case -ENOPKG:
2872		reason = "Loading of module with unsupported crypto";
2873		goto decide;
2874	case -ENOKEY:
2875		reason = "Loading of module with unavailable key";
2876	decide:
2877		if (is_module_sig_enforced()) {
2878			pr_notice("%s is rejected\n", reason);
2879			return -EKEYREJECTED;
2880		}
2881
2882		return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2883
2884		/* All other errors are fatal, including nomem, unparseable
2885		 * signatures and signature check failures - even if signatures
2886		 * aren't required.
2887		 */
2888	default:
2889		return err;
2890	}
2891}
2892#else /* !CONFIG_MODULE_SIG */
2893static int module_sig_check(struct load_info *info, int flags)
2894{
2895	return 0;
2896}
2897#endif /* !CONFIG_MODULE_SIG */
2898
2899/* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2900static int elf_header_check(struct load_info *info)
2901{
2902	if (info->len < sizeof(*(info->hdr)))
2903		return -ENOEXEC;
2904
2905	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2906	    || info->hdr->e_type != ET_REL
2907	    || !elf_check_arch(info->hdr)
2908	    || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2909		return -ENOEXEC;
2910
2911	if (info->hdr->e_shoff >= info->len
2912	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2913		info->len - info->hdr->e_shoff))
2914		return -ENOEXEC;
2915
2916	return 0;
2917}
2918
2919#define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2920
2921static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2922{
2923	do {
2924		unsigned long n = min(len, COPY_CHUNK_SIZE);
2925
2926		if (copy_from_user(dst, usrc, n) != 0)
2927			return -EFAULT;
2928		cond_resched();
2929		dst += n;
2930		usrc += n;
2931		len -= n;
2932	} while (len);
2933	return 0;
2934}
2935
2936#ifdef CONFIG_LIVEPATCH
2937static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2938{
2939	if (get_modinfo(info, "livepatch")) {
2940		mod->klp = true;
2941		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2942		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2943			       mod->name);
2944	}
2945
2946	return 0;
2947}
2948#else /* !CONFIG_LIVEPATCH */
2949static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2950{
2951	if (get_modinfo(info, "livepatch")) {
2952		pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2953		       mod->name);
2954		return -ENOEXEC;
2955	}
2956
2957	return 0;
2958}
2959#endif /* CONFIG_LIVEPATCH */
2960
2961static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2962{
2963	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2964		return;
2965
2966	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2967		mod->name);
2968}
2969
2970/* Sets info->hdr and info->len. */
2971static int copy_module_from_user(const void __user *umod, unsigned long len,
2972				  struct load_info *info)
2973{
2974	int err;
2975
2976	info->len = len;
2977	if (info->len < sizeof(*(info->hdr)))
2978		return -ENOEXEC;
2979
2980	err = security_kernel_load_data(LOADING_MODULE);
2981	if (err)
2982		return err;
2983
2984	/* Suck in entire file: we'll want most of it. */
2985	info->hdr = __vmalloc(info->len,
2986			GFP_KERNEL | __GFP_NOWARN, PAGE_KERNEL);
2987	if (!info->hdr)
2988		return -ENOMEM;
2989
2990	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2991		vfree(info->hdr);
2992		return -EFAULT;
2993	}
2994
2995	return 0;
2996}
2997
2998static void free_copy(struct load_info *info)
2999{
3000	vfree(info->hdr);
3001}
3002
3003static int rewrite_section_headers(struct load_info *info, int flags)
3004{
3005	unsigned int i;
3006
3007	/* This should always be true, but let's be sure. */
3008	info->sechdrs[0].sh_addr = 0;
3009
3010	for (i = 1; i < info->hdr->e_shnum; i++) {
3011		Elf_Shdr *shdr = &info->sechdrs[i];
3012		if (shdr->sh_type != SHT_NOBITS
3013		    && info->len < shdr->sh_offset + shdr->sh_size) {
3014			pr_err("Module len %lu truncated\n", info->len);
3015			return -ENOEXEC;
3016		}
3017
3018		/* Mark all sections sh_addr with their address in the
3019		   temporary image. */
3020		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3021
3022#ifndef CONFIG_MODULE_UNLOAD
3023		/* Don't load .exit sections */
3024		if (module_exit_section(info->secstrings+shdr->sh_name))
3025			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
3026#endif
3027	}
3028
3029	/* Track but don't keep modinfo and version sections. */
3030	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3031	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3032
3033	return 0;
3034}
3035
3036/*
3037 * Set up our basic convenience variables (pointers to section headers,
3038 * search for module section index etc), and do some basic section
3039 * verification.
3040 *
3041 * Set info->mod to the temporary copy of the module in info->hdr. The final one
3042 * will be allocated in move_module().
3043 */
3044static int setup_load_info(struct load_info *info, int flags)
3045{
3046	unsigned int i;
3047
3048	/* Set up the convenience variables */
3049	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
3050	info->secstrings = (void *)info->hdr
3051		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
3052
3053	/* Try to find a name early so we can log errors with a module name */
3054	info->index.info = find_sec(info, ".modinfo");
3055	if (!info->index.info)
3056		info->name = "(missing .modinfo section)";
3057	else
3058		info->name = get_modinfo(info, "name");
3059
3060	/* Find internal symbols and strings. */
3061	for (i = 1; i < info->hdr->e_shnum; i++) {
3062		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3063			info->index.sym = i;
3064			info->index.str = info->sechdrs[i].sh_link;
3065			info->strtab = (char *)info->hdr
3066				+ info->sechdrs[info->index.str].sh_offset;
3067			break;
3068		}
3069	}
3070
3071	if (info->index.sym == 0) {
3072		pr_warn("%s: module has no symbols (stripped?)\n", info->name);
 
3073		return -ENOEXEC;
3074	}
3075
3076	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3077	if (!info->index.mod) {
3078		pr_warn("%s: No module found in object\n",
3079			info->name ?: "(missing .modinfo name field)");
3080		return -ENOEXEC;
3081	}
3082	/* This is temporary: point mod into copy of data. */
3083	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3084
3085	/*
3086	 * If we didn't load the .modinfo 'name' field earlier, fall back to
3087	 * on-disk struct mod 'name' field.
3088	 */
3089	if (!info->name)
3090		info->name = info->mod->name;
3091
3092	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3093		info->index.vers = 0; /* Pretend no __versions section! */
3094	else
3095		info->index.vers = find_sec(info, "__versions");
3096
3097	info->index.pcpu = find_pcpusec(info);
3098
3099	return 0;
3100}
3101
3102static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3103{
3104	const char *modmagic = get_modinfo(info, "vermagic");
3105	int err;
3106
3107	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3108		modmagic = NULL;
3109
3110	/* This is allowed: modprobe --force will invalidate it. */
3111	if (!modmagic) {
3112		err = try_to_force_load(mod, "bad vermagic");
3113		if (err)
3114			return err;
3115	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3116		pr_err("%s: version magic '%s' should be '%s'\n",
3117		       info->name, modmagic, vermagic);
3118		return -ENOEXEC;
3119	}
3120
3121	if (!get_modinfo(info, "intree")) {
3122		if (!test_taint(TAINT_OOT_MODULE))
3123			pr_warn("%s: loading out-of-tree module taints kernel.\n",
3124				mod->name);
3125		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3126	}
3127
3128	check_modinfo_retpoline(mod, info);
3129
3130	if (get_modinfo(info, "staging")) {
3131		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3132		pr_warn("%s: module is from the staging directory, the quality "
3133			"is unknown, you have been warned.\n", mod->name);
3134	}
3135
3136	err = check_modinfo_livepatch(mod, info);
3137	if (err)
3138		return err;
3139
3140	/* Set up license info based on the info section */
3141	set_license(mod, get_modinfo(info, "license"));
3142
3143	return 0;
3144}
3145
3146static int find_module_sections(struct module *mod, struct load_info *info)
3147{
3148	mod->kp = section_objs(info, "__param",
3149			       sizeof(*mod->kp), &mod->num_kp);
3150	mod->syms = section_objs(info, "__ksymtab",
3151				 sizeof(*mod->syms), &mod->num_syms);
3152	mod->crcs = section_addr(info, "__kcrctab");
3153	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3154				     sizeof(*mod->gpl_syms),
3155				     &mod->num_gpl_syms);
3156	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3157	mod->gpl_future_syms = section_objs(info,
3158					    "__ksymtab_gpl_future",
3159					    sizeof(*mod->gpl_future_syms),
3160					    &mod->num_gpl_future_syms);
3161	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3162
3163#ifdef CONFIG_UNUSED_SYMBOLS
3164	mod->unused_syms = section_objs(info, "__ksymtab_unused",
3165					sizeof(*mod->unused_syms),
3166					&mod->num_unused_syms);
3167	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3168	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3169					    sizeof(*mod->unused_gpl_syms),
3170					    &mod->num_unused_gpl_syms);
3171	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3172#endif
3173#ifdef CONFIG_CONSTRUCTORS
3174	mod->ctors = section_objs(info, ".ctors",
3175				  sizeof(*mod->ctors), &mod->num_ctors);
3176	if (!mod->ctors)
3177		mod->ctors = section_objs(info, ".init_array",
3178				sizeof(*mod->ctors), &mod->num_ctors);
3179	else if (find_sec(info, ".init_array")) {
3180		/*
3181		 * This shouldn't happen with same compiler and binutils
3182		 * building all parts of the module.
3183		 */
3184		pr_warn("%s: has both .ctors and .init_array.\n",
3185		       mod->name);
3186		return -EINVAL;
3187	}
3188#endif
3189
 
 
 
3190#ifdef CONFIG_TRACEPOINTS
3191	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3192					     sizeof(*mod->tracepoints_ptrs),
3193					     &mod->num_tracepoints);
3194#endif
3195#ifdef CONFIG_TREE_SRCU
3196	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3197					     sizeof(*mod->srcu_struct_ptrs),
3198					     &mod->num_srcu_structs);
3199#endif
3200#ifdef CONFIG_BPF_EVENTS
3201	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3202					   sizeof(*mod->bpf_raw_events),
3203					   &mod->num_bpf_raw_events);
3204#endif
3205#ifdef CONFIG_JUMP_LABEL
3206	mod->jump_entries = section_objs(info, "__jump_table",
3207					sizeof(*mod->jump_entries),
3208					&mod->num_jump_entries);
3209#endif
3210#ifdef CONFIG_EVENT_TRACING
3211	mod->trace_events = section_objs(info, "_ftrace_events",
3212					 sizeof(*mod->trace_events),
3213					 &mod->num_trace_events);
3214	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3215					sizeof(*mod->trace_evals),
3216					&mod->num_trace_evals);
3217#endif
3218#ifdef CONFIG_TRACING
3219	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3220					 sizeof(*mod->trace_bprintk_fmt_start),
3221					 &mod->num_trace_bprintk_fmt);
3222#endif
3223#ifdef CONFIG_FTRACE_MCOUNT_RECORD
3224	/* sechdrs[0].sh_size is always zero */
3225	mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3226					     sizeof(*mod->ftrace_callsites),
3227					     &mod->num_ftrace_callsites);
3228#endif
3229#ifdef CONFIG_FUNCTION_ERROR_INJECTION
3230	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3231					    sizeof(*mod->ei_funcs),
3232					    &mod->num_ei_funcs);
3233#endif
 
 
 
 
 
 
 
3234	mod->extable = section_objs(info, "__ex_table",
3235				    sizeof(*mod->extable), &mod->num_exentries);
3236
3237	if (section_addr(info, "__obsparm"))
3238		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3239
3240	info->debug = section_objs(info, "__verbose",
3241				   sizeof(*info->debug), &info->num_debug);
3242
3243	return 0;
3244}
3245
3246static int move_module(struct module *mod, struct load_info *info)
3247{
3248	int i;
3249	void *ptr;
3250
3251	/* Do the allocs. */
3252	ptr = module_alloc(mod->core_layout.size);
3253	/*
3254	 * The pointer to this block is stored in the module structure
3255	 * which is inside the block. Just mark it as not being a
3256	 * leak.
3257	 */
3258	kmemleak_not_leak(ptr);
3259	if (!ptr)
3260		return -ENOMEM;
3261
3262	memset(ptr, 0, mod->core_layout.size);
3263	mod->core_layout.base = ptr;
3264
3265	if (mod->init_layout.size) {
3266		ptr = module_alloc(mod->init_layout.size);
3267		/*
3268		 * The pointer to this block is stored in the module structure
3269		 * which is inside the block. This block doesn't need to be
3270		 * scanned as it contains data and code that will be freed
3271		 * after the module is initialized.
3272		 */
3273		kmemleak_ignore(ptr);
3274		if (!ptr) {
3275			module_memfree(mod->core_layout.base);
3276			return -ENOMEM;
3277		}
3278		memset(ptr, 0, mod->init_layout.size);
3279		mod->init_layout.base = ptr;
3280	} else
3281		mod->init_layout.base = NULL;
3282
3283	/* Transfer each section which specifies SHF_ALLOC */
3284	pr_debug("final section addresses:\n");
3285	for (i = 0; i < info->hdr->e_shnum; i++) {
3286		void *dest;
3287		Elf_Shdr *shdr = &info->sechdrs[i];
3288
3289		if (!(shdr->sh_flags & SHF_ALLOC))
3290			continue;
3291
3292		if (shdr->sh_entsize & INIT_OFFSET_MASK)
3293			dest = mod->init_layout.base
3294				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3295		else
3296			dest = mod->core_layout.base + shdr->sh_entsize;
3297
3298		if (shdr->sh_type != SHT_NOBITS)
3299			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3300		/* Update sh_addr to point to copy in image. */
3301		shdr->sh_addr = (unsigned long)dest;
3302		pr_debug("\t0x%lx %s\n",
3303			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3304	}
3305
3306	return 0;
3307}
3308
3309static int check_module_license_and_versions(struct module *mod)
3310{
3311	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3312
3313	/*
3314	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3315	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3316	 * using GPL-only symbols it needs.
3317	 */
3318	if (strcmp(mod->name, "ndiswrapper") == 0)
3319		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3320
3321	/* driverloader was caught wrongly pretending to be under GPL */
3322	if (strcmp(mod->name, "driverloader") == 0)
3323		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3324				 LOCKDEP_NOW_UNRELIABLE);
3325
3326	/* lve claims to be GPL but upstream won't provide source */
3327	if (strcmp(mod->name, "lve") == 0)
3328		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3329				 LOCKDEP_NOW_UNRELIABLE);
3330
3331	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3332		pr_warn("%s: module license taints kernel.\n", mod->name);
3333
3334#ifdef CONFIG_MODVERSIONS
3335	if ((mod->num_syms && !mod->crcs)
3336	    || (mod->num_gpl_syms && !mod->gpl_crcs)
3337	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3338#ifdef CONFIG_UNUSED_SYMBOLS
3339	    || (mod->num_unused_syms && !mod->unused_crcs)
3340	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3341#endif
3342		) {
3343		return try_to_force_load(mod,
3344					 "no versions for exported symbols");
3345	}
3346#endif
3347	return 0;
3348}
3349
3350static void flush_module_icache(const struct module *mod)
3351{
3352	mm_segment_t old_fs;
3353
3354	/* flush the icache in correct context */
3355	old_fs = get_fs();
3356	set_fs(KERNEL_DS);
3357
3358	/*
3359	 * Flush the instruction cache, since we've played with text.
3360	 * Do it before processing of module parameters, so the module
3361	 * can provide parameter accessor functions of its own.
3362	 */
3363	if (mod->init_layout.base)
3364		flush_icache_range((unsigned long)mod->init_layout.base,
3365				   (unsigned long)mod->init_layout.base
3366				   + mod->init_layout.size);
3367	flush_icache_range((unsigned long)mod->core_layout.base,
3368			   (unsigned long)mod->core_layout.base + mod->core_layout.size);
3369
3370	set_fs(old_fs);
3371}
3372
3373int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3374				     Elf_Shdr *sechdrs,
3375				     char *secstrings,
3376				     struct module *mod)
3377{
3378	return 0;
3379}
3380
3381/* module_blacklist is a comma-separated list of module names */
3382static char *module_blacklist;
3383static bool blacklisted(const char *module_name)
3384{
3385	const char *p;
3386	size_t len;
3387
3388	if (!module_blacklist)
3389		return false;
3390
3391	for (p = module_blacklist; *p; p += len) {
3392		len = strcspn(p, ",");
3393		if (strlen(module_name) == len && !memcmp(module_name, p, len))
3394			return true;
3395		if (p[len] == ',')
3396			len++;
3397	}
3398	return false;
3399}
3400core_param(module_blacklist, module_blacklist, charp, 0400);
3401
3402static struct module *layout_and_allocate(struct load_info *info, int flags)
3403{
3404	struct module *mod;
3405	unsigned int ndx;
3406	int err;
3407
3408	err = check_modinfo(info->mod, info, flags);
3409	if (err)
3410		return ERR_PTR(err);
3411
3412	/* Allow arches to frob section contents and sizes.  */
3413	err = module_frob_arch_sections(info->hdr, info->sechdrs,
3414					info->secstrings, info->mod);
3415	if (err < 0)
3416		return ERR_PTR(err);
3417
 
 
 
 
 
3418	/* We will do a special allocation for per-cpu sections later. */
3419	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3420
3421	/*
3422	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3423	 * layout_sections() can put it in the right place.
3424	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3425	 */
3426	ndx = find_sec(info, ".data..ro_after_init");
3427	if (ndx)
3428		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3429	/*
3430	 * Mark the __jump_table section as ro_after_init as well: these data
3431	 * structures are never modified, with the exception of entries that
3432	 * refer to code in the __init section, which are annotated as such
3433	 * at module load time.
3434	 */
3435	ndx = find_sec(info, "__jump_table");
3436	if (ndx)
3437		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3438
3439	/* Determine total sizes, and put offsets in sh_entsize.  For now
3440	   this is done generically; there doesn't appear to be any
3441	   special cases for the architectures. */
3442	layout_sections(info->mod, info);
3443	layout_symtab(info->mod, info);
3444
3445	/* Allocate and move to the final place */
3446	err = move_module(info->mod, info);
3447	if (err)
3448		return ERR_PTR(err);
3449
3450	/* Module has been copied to its final place now: return it. */
3451	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3452	kmemleak_load_module(mod, info);
3453	return mod;
3454}
3455
3456/* mod is no longer valid after this! */
3457static void module_deallocate(struct module *mod, struct load_info *info)
3458{
3459	percpu_modfree(mod);
3460	module_arch_freeing_init(mod);
3461	module_memfree(mod->init_layout.base);
3462	module_memfree(mod->core_layout.base);
3463}
3464
3465int __weak module_finalize(const Elf_Ehdr *hdr,
3466			   const Elf_Shdr *sechdrs,
3467			   struct module *me)
3468{
3469	return 0;
3470}
3471
3472static int post_relocation(struct module *mod, const struct load_info *info)
3473{
3474	/* Sort exception table now relocations are done. */
3475	sort_extable(mod->extable, mod->extable + mod->num_exentries);
3476
3477	/* Copy relocated percpu area over. */
3478	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3479		       info->sechdrs[info->index.pcpu].sh_size);
3480
3481	/* Setup kallsyms-specific fields. */
3482	add_kallsyms(mod, info);
3483
3484	/* Arch-specific module finalizing. */
3485	return module_finalize(info->hdr, info->sechdrs, mod);
3486}
3487
3488/* Is this module of this name done loading?  No locks held. */
3489static bool finished_loading(const char *name)
3490{
3491	struct module *mod;
3492	bool ret;
3493
3494	/*
3495	 * The module_mutex should not be a heavily contended lock;
3496	 * if we get the occasional sleep here, we'll go an extra iteration
3497	 * in the wait_event_interruptible(), which is harmless.
3498	 */
3499	sched_annotate_sleep();
3500	mutex_lock(&module_mutex);
3501	mod = find_module_all(name, strlen(name), true);
3502	ret = !mod || mod->state == MODULE_STATE_LIVE;
3503	mutex_unlock(&module_mutex);
3504
3505	return ret;
3506}
3507
3508/* Call module constructors. */
3509static void do_mod_ctors(struct module *mod)
3510{
3511#ifdef CONFIG_CONSTRUCTORS
3512	unsigned long i;
3513
3514	for (i = 0; i < mod->num_ctors; i++)
3515		mod->ctors[i]();
3516#endif
3517}
3518
3519/* For freeing module_init on success, in case kallsyms traversing */
3520struct mod_initfree {
3521	struct llist_node node;
3522	void *module_init;
3523};
3524
3525static void do_free_init(struct work_struct *w)
3526{
3527	struct llist_node *pos, *n, *list;
3528	struct mod_initfree *initfree;
3529
3530	list = llist_del_all(&init_free_list);
3531
3532	synchronize_rcu();
3533
3534	llist_for_each_safe(pos, n, list) {
3535		initfree = container_of(pos, struct mod_initfree, node);
3536		module_memfree(initfree->module_init);
3537		kfree(initfree);
3538	}
3539}
3540
3541static int __init modules_wq_init(void)
3542{
3543	INIT_WORK(&init_free_wq, do_free_init);
3544	init_llist_head(&init_free_list);
3545	return 0;
3546}
3547module_init(modules_wq_init);
3548
3549/*
3550 * This is where the real work happens.
3551 *
3552 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3553 * helper command 'lx-symbols'.
3554 */
3555static noinline int do_init_module(struct module *mod)
3556{
3557	int ret = 0;
3558	struct mod_initfree *freeinit;
3559
3560	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3561	if (!freeinit) {
3562		ret = -ENOMEM;
3563		goto fail;
3564	}
3565	freeinit->module_init = mod->init_layout.base;
3566
3567	/*
3568	 * We want to find out whether @mod uses async during init.  Clear
3569	 * PF_USED_ASYNC.  async_schedule*() will set it.
3570	 */
3571	current->flags &= ~PF_USED_ASYNC;
3572
3573	do_mod_ctors(mod);
3574	/* Start the module */
3575	if (mod->init != NULL)
3576		ret = do_one_initcall(mod->init);
3577	if (ret < 0) {
3578		goto fail_free_freeinit;
3579	}
3580	if (ret > 0) {
3581		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3582			"follow 0/-E convention\n"
3583			"%s: loading module anyway...\n",
3584			__func__, mod->name, ret, __func__);
3585		dump_stack();
3586	}
3587
3588	/* Now it's a first class citizen! */
3589	mod->state = MODULE_STATE_LIVE;
3590	blocking_notifier_call_chain(&module_notify_list,
3591				     MODULE_STATE_LIVE, mod);
3592
3593	/*
3594	 * We need to finish all async code before the module init sequence
3595	 * is done.  This has potential to deadlock.  For example, a newly
3596	 * detected block device can trigger request_module() of the
3597	 * default iosched from async probing task.  Once userland helper
3598	 * reaches here, async_synchronize_full() will wait on the async
3599	 * task waiting on request_module() and deadlock.
3600	 *
3601	 * This deadlock is avoided by perfomring async_synchronize_full()
3602	 * iff module init queued any async jobs.  This isn't a full
3603	 * solution as it will deadlock the same if module loading from
3604	 * async jobs nests more than once; however, due to the various
3605	 * constraints, this hack seems to be the best option for now.
3606	 * Please refer to the following thread for details.
3607	 *
3608	 * http://thread.gmane.org/gmane.linux.kernel/1420814
3609	 */
3610	if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3611		async_synchronize_full();
3612
3613	ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3614			mod->init_layout.size);
3615	mutex_lock(&module_mutex);
3616	/* Drop initial reference. */
3617	module_put(mod);
3618	trim_init_extable(mod);
3619#ifdef CONFIG_KALLSYMS
3620	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3621	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3622#endif
3623	module_enable_ro(mod, true);
3624	mod_tree_remove_init(mod);
3625	module_arch_freeing_init(mod);
3626	mod->init_layout.base = NULL;
3627	mod->init_layout.size = 0;
3628	mod->init_layout.ro_size = 0;
3629	mod->init_layout.ro_after_init_size = 0;
3630	mod->init_layout.text_size = 0;
3631	/*
3632	 * We want to free module_init, but be aware that kallsyms may be
3633	 * walking this with preempt disabled.  In all the failure paths, we
3634	 * call synchronize_rcu(), but we don't want to slow down the success
3635	 * path. module_memfree() cannot be called in an interrupt, so do the
3636	 * work and call synchronize_rcu() in a work queue.
3637	 *
3638	 * Note that module_alloc() on most architectures creates W+X page
3639	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3640	 * code such as mark_rodata_ro() which depends on those mappings to
3641	 * be cleaned up needs to sync with the queued work - ie
3642	 * rcu_barrier()
3643	 */
3644	if (llist_add(&freeinit->node, &init_free_list))
3645		schedule_work(&init_free_wq);
3646
3647	mutex_unlock(&module_mutex);
3648	wake_up_all(&module_wq);
3649
3650	return 0;
3651
3652fail_free_freeinit:
3653	kfree(freeinit);
3654fail:
3655	/* Try to protect us from buggy refcounters. */
3656	mod->state = MODULE_STATE_GOING;
3657	synchronize_rcu();
3658	module_put(mod);
3659	blocking_notifier_call_chain(&module_notify_list,
3660				     MODULE_STATE_GOING, mod);
3661	klp_module_going(mod);
3662	ftrace_release_mod(mod);
3663	free_module(mod);
3664	wake_up_all(&module_wq);
3665	return ret;
3666}
3667
3668static int may_init_module(void)
3669{
3670	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3671		return -EPERM;
3672
3673	return 0;
3674}
3675
3676/*
3677 * We try to place it in the list now to make sure it's unique before
3678 * we dedicate too many resources.  In particular, temporary percpu
3679 * memory exhaustion.
3680 */
3681static int add_unformed_module(struct module *mod)
3682{
3683	int err;
3684	struct module *old;
3685
3686	mod->state = MODULE_STATE_UNFORMED;
3687
3688again:
3689	mutex_lock(&module_mutex);
3690	old = find_module_all(mod->name, strlen(mod->name), true);
3691	if (old != NULL) {
3692		if (old->state != MODULE_STATE_LIVE) {
3693			/* Wait in case it fails to load. */
3694			mutex_unlock(&module_mutex);
3695			err = wait_event_interruptible(module_wq,
3696					       finished_loading(mod->name));
3697			if (err)
3698				goto out_unlocked;
3699			goto again;
3700		}
3701		err = -EEXIST;
3702		goto out;
3703	}
3704	mod_update_bounds(mod);
3705	list_add_rcu(&mod->list, &modules);
3706	mod_tree_insert(mod);
3707	err = 0;
3708
3709out:
3710	mutex_unlock(&module_mutex);
3711out_unlocked:
3712	return err;
3713}
3714
3715static int complete_formation(struct module *mod, struct load_info *info)
3716{
3717	int err;
3718
3719	mutex_lock(&module_mutex);
3720
3721	/* Find duplicate symbols (must be called under lock). */
3722	err = verify_exported_symbols(mod);
3723	if (err < 0)
3724		goto out;
3725
3726	/* This relies on module_mutex for list integrity. */
3727	module_bug_finalize(info->hdr, info->sechdrs, mod);
3728
3729	module_enable_ro(mod, false);
3730	module_enable_nx(mod);
3731	module_enable_x(mod);
3732
3733	/* Mark state as coming so strong_try_module_get() ignores us,
3734	 * but kallsyms etc. can see us. */
3735	mod->state = MODULE_STATE_COMING;
3736	mutex_unlock(&module_mutex);
3737
3738	return 0;
3739
3740out:
3741	mutex_unlock(&module_mutex);
3742	return err;
3743}
3744
3745static int prepare_coming_module(struct module *mod)
3746{
3747	int err;
3748
3749	ftrace_module_enable(mod);
3750	err = klp_module_coming(mod);
3751	if (err)
3752		return err;
3753
3754	blocking_notifier_call_chain(&module_notify_list,
3755				     MODULE_STATE_COMING, mod);
3756	return 0;
3757}
3758
3759static int unknown_module_param_cb(char *param, char *val, const char *modname,
3760				   void *arg)
3761{
3762	struct module *mod = arg;
3763	int ret;
3764
3765	if (strcmp(param, "async_probe") == 0) {
3766		mod->async_probe_requested = true;
3767		return 0;
3768	}
3769
3770	/* Check for magic 'dyndbg' arg */
3771	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3772	if (ret != 0)
3773		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3774	return 0;
3775}
3776
3777/* Allocate and load the module: note that size of section 0 is always
3778   zero, and we rely on this for optional sections. */
3779static int load_module(struct load_info *info, const char __user *uargs,
3780		       int flags)
3781{
3782	struct module *mod;
3783	long err = 0;
3784	char *after_dashes;
3785
3786	err = elf_header_check(info);
3787	if (err)
3788		goto free_copy;
3789
3790	err = setup_load_info(info, flags);
3791	if (err)
3792		goto free_copy;
3793
3794	if (blacklisted(info->name)) {
3795		err = -EPERM;
3796		goto free_copy;
3797	}
3798
3799	err = module_sig_check(info, flags);
3800	if (err)
3801		goto free_copy;
3802
3803	err = rewrite_section_headers(info, flags);
3804	if (err)
3805		goto free_copy;
3806
3807	/* Check module struct version now, before we try to use module. */
3808	if (!check_modstruct_version(info, info->mod)) {
3809		err = -ENOEXEC;
3810		goto free_copy;
3811	}
3812
3813	/* Figure out module layout, and allocate all the memory. */
3814	mod = layout_and_allocate(info, flags);
3815	if (IS_ERR(mod)) {
3816		err = PTR_ERR(mod);
3817		goto free_copy;
3818	}
3819
3820	audit_log_kern_module(mod->name);
3821
3822	/* Reserve our place in the list. */
3823	err = add_unformed_module(mod);
3824	if (err)
3825		goto free_module;
3826
3827#ifdef CONFIG_MODULE_SIG
3828	mod->sig_ok = info->sig_ok;
3829	if (!mod->sig_ok) {
3830		pr_notice_once("%s: module verification failed: signature "
3831			       "and/or required key missing - tainting "
3832			       "kernel\n", mod->name);
3833		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3834	}
3835#endif
3836
3837	/* To avoid stressing percpu allocator, do this once we're unique. */
3838	err = percpu_modalloc(mod, info);
3839	if (err)
3840		goto unlink_mod;
3841
3842	/* Now module is in final location, initialize linked lists, etc. */
3843	err = module_unload_init(mod);
3844	if (err)
3845		goto unlink_mod;
3846
3847	init_param_lock(mod);
3848
3849	/* Now we've got everything in the final locations, we can
3850	 * find optional sections. */
3851	err = find_module_sections(mod, info);
3852	if (err)
3853		goto free_unload;
3854
3855	err = check_module_license_and_versions(mod);
3856	if (err)
3857		goto free_unload;
3858
3859	/* Set up MODINFO_ATTR fields */
3860	setup_modinfo(mod, info);
3861
3862	/* Fix up syms, so that st_value is a pointer to location. */
3863	err = simplify_symbols(mod, info);
3864	if (err < 0)
3865		goto free_modinfo;
3866
3867	err = apply_relocations(mod, info);
3868	if (err < 0)
3869		goto free_modinfo;
3870
3871	err = post_relocation(mod, info);
3872	if (err < 0)
3873		goto free_modinfo;
3874
3875	flush_module_icache(mod);
3876
3877	/* Now copy in args */
3878	mod->args = strndup_user(uargs, ~0UL >> 1);
3879	if (IS_ERR(mod->args)) {
3880		err = PTR_ERR(mod->args);
3881		goto free_arch_cleanup;
3882	}
3883
3884	dynamic_debug_setup(mod, info->debug, info->num_debug);
3885
3886	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3887	ftrace_module_init(mod);
3888
3889	/* Finally it's fully formed, ready to start executing. */
3890	err = complete_formation(mod, info);
3891	if (err)
3892		goto ddebug_cleanup;
3893
3894	err = prepare_coming_module(mod);
3895	if (err)
3896		goto bug_cleanup;
3897
3898	/* Module is ready to execute: parsing args may do that. */
3899	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3900				  -32768, 32767, mod,
3901				  unknown_module_param_cb);
3902	if (IS_ERR(after_dashes)) {
3903		err = PTR_ERR(after_dashes);
3904		goto coming_cleanup;
3905	} else if (after_dashes) {
3906		pr_warn("%s: parameters '%s' after `--' ignored\n",
3907		       mod->name, after_dashes);
3908	}
3909
3910	/* Link in to sysfs. */
3911	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3912	if (err < 0)
3913		goto coming_cleanup;
3914
3915	if (is_livepatch_module(mod)) {
3916		err = copy_module_elf(mod, info);
3917		if (err < 0)
3918			goto sysfs_cleanup;
3919	}
3920
3921	/* Get rid of temporary copy. */
3922	free_copy(info);
3923
3924	/* Done! */
3925	trace_module_load(mod);
3926
3927	return do_init_module(mod);
3928
3929 sysfs_cleanup:
3930	mod_sysfs_teardown(mod);
3931 coming_cleanup:
3932	mod->state = MODULE_STATE_GOING;
3933	destroy_params(mod->kp, mod->num_kp);
3934	blocking_notifier_call_chain(&module_notify_list,
3935				     MODULE_STATE_GOING, mod);
3936	klp_module_going(mod);
3937 bug_cleanup:
3938	/* module_bug_cleanup needs module_mutex protection */
3939	mutex_lock(&module_mutex);
3940	module_bug_cleanup(mod);
3941	mutex_unlock(&module_mutex);
3942
3943 ddebug_cleanup:
3944	ftrace_release_mod(mod);
3945	dynamic_debug_remove(mod, info->debug);
3946	synchronize_rcu();
3947	kfree(mod->args);
3948 free_arch_cleanup:
3949	module_arch_cleanup(mod);
3950 free_modinfo:
3951	free_modinfo(mod);
3952 free_unload:
3953	module_unload_free(mod);
3954 unlink_mod:
3955	mutex_lock(&module_mutex);
3956	/* Unlink carefully: kallsyms could be walking list. */
3957	list_del_rcu(&mod->list);
3958	mod_tree_remove(mod);
3959	wake_up_all(&module_wq);
3960	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3961	synchronize_rcu();
3962	mutex_unlock(&module_mutex);
3963 free_module:
3964	/* Free lock-classes; relies on the preceding sync_rcu() */
3965	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3966
3967	module_deallocate(mod, info);
3968 free_copy:
3969	free_copy(info);
3970	return err;
3971}
3972
3973SYSCALL_DEFINE3(init_module, void __user *, umod,
3974		unsigned long, len, const char __user *, uargs)
3975{
3976	int err;
3977	struct load_info info = { };
3978
3979	err = may_init_module();
3980	if (err)
3981		return err;
3982
3983	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3984	       umod, len, uargs);
3985
3986	err = copy_module_from_user(umod, len, &info);
3987	if (err)
3988		return err;
3989
3990	return load_module(&info, uargs, 0);
3991}
3992
3993SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3994{
3995	struct load_info info = { };
3996	loff_t size;
3997	void *hdr;
3998	int err;
3999
4000	err = may_init_module();
4001	if (err)
4002		return err;
4003
4004	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4005
4006	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4007		      |MODULE_INIT_IGNORE_VERMAGIC))
4008		return -EINVAL;
4009
4010	err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
4011				       READING_MODULE);
4012	if (err)
4013		return err;
4014	info.hdr = hdr;
4015	info.len = size;
4016
4017	return load_module(&info, uargs, flags);
4018}
4019
4020static inline int within(unsigned long addr, void *start, unsigned long size)
4021{
4022	return ((void *)addr >= start && (void *)addr < start + size);
4023}
4024
4025#ifdef CONFIG_KALLSYMS
4026/*
4027 * This ignores the intensely annoying "mapping symbols" found
4028 * in ARM ELF files: $a, $t and $d.
4029 */
4030static inline int is_arm_mapping_symbol(const char *str)
4031{
4032	if (str[0] == '.' && str[1] == 'L')
4033		return true;
4034	return str[0] == '$' && strchr("axtd", str[1])
4035	       && (str[2] == '\0' || str[2] == '.');
4036}
4037
4038static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4039{
4040	return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4041}
4042
4043/*
4044 * Given a module and address, find the corresponding symbol and return its name
4045 * while providing its size and offset if needed.
4046 */
4047static const char *find_kallsyms_symbol(struct module *mod,
4048					unsigned long addr,
4049					unsigned long *size,
4050					unsigned long *offset)
4051{
4052	unsigned int i, best = 0;
4053	unsigned long nextval, bestval;
4054	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4055
4056	/* At worse, next value is at end of module */
4057	if (within_module_init(addr, mod))
4058		nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4059	else
4060		nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4061
4062	bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4063
4064	/* Scan for closest preceding symbol, and next symbol. (ELF
4065	   starts real symbols at 1). */
4066	for (i = 1; i < kallsyms->num_symtab; i++) {
4067		const Elf_Sym *sym = &kallsyms->symtab[i];
4068		unsigned long thisval = kallsyms_symbol_value(sym);
4069
4070		if (sym->st_shndx == SHN_UNDEF)
4071			continue;
4072
4073		/* We ignore unnamed symbols: they're uninformative
4074		 * and inserted at a whim. */
4075		if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4076		    || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4077			continue;
4078
4079		if (thisval <= addr && thisval > bestval) {
4080			best = i;
4081			bestval = thisval;
4082		}
4083		if (thisval > addr && thisval < nextval)
4084			nextval = thisval;
4085	}
4086
4087	if (!best)
4088		return NULL;
4089
4090	if (size)
4091		*size = nextval - bestval;
4092	if (offset)
4093		*offset = addr - bestval;
4094
4095	return kallsyms_symbol_name(kallsyms, best);
4096}
4097
4098void * __weak dereference_module_function_descriptor(struct module *mod,
4099						     void *ptr)
4100{
4101	return ptr;
4102}
4103
4104/* For kallsyms to ask for address resolution.  NULL means not found.  Careful
4105 * not to lock to avoid deadlock on oopses, simply disable preemption. */
4106const char *module_address_lookup(unsigned long addr,
4107			    unsigned long *size,
4108			    unsigned long *offset,
4109			    char **modname,
4110			    char *namebuf)
4111{
4112	const char *ret = NULL;
4113	struct module *mod;
4114
4115	preempt_disable();
4116	mod = __module_address(addr);
4117	if (mod) {
4118		if (modname)
4119			*modname = mod->name;
4120
4121		ret = find_kallsyms_symbol(mod, addr, size, offset);
4122	}
4123	/* Make a copy in here where it's safe */
4124	if (ret) {
4125		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4126		ret = namebuf;
4127	}
4128	preempt_enable();
4129
4130	return ret;
4131}
4132
4133int lookup_module_symbol_name(unsigned long addr, char *symname)
4134{
4135	struct module *mod;
4136
4137	preempt_disable();
4138	list_for_each_entry_rcu(mod, &modules, list) {
4139		if (mod->state == MODULE_STATE_UNFORMED)
4140			continue;
4141		if (within_module(addr, mod)) {
4142			const char *sym;
4143
4144			sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4145			if (!sym)
4146				goto out;
4147
4148			strlcpy(symname, sym, KSYM_NAME_LEN);
4149			preempt_enable();
4150			return 0;
4151		}
4152	}
4153out:
4154	preempt_enable();
4155	return -ERANGE;
4156}
4157
4158int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4159			unsigned long *offset, char *modname, char *name)
4160{
4161	struct module *mod;
4162
4163	preempt_disable();
4164	list_for_each_entry_rcu(mod, &modules, list) {
4165		if (mod->state == MODULE_STATE_UNFORMED)
4166			continue;
4167		if (within_module(addr, mod)) {
4168			const char *sym;
4169
4170			sym = find_kallsyms_symbol(mod, addr, size, offset);
4171			if (!sym)
4172				goto out;
4173			if (modname)
4174				strlcpy(modname, mod->name, MODULE_NAME_LEN);
4175			if (name)
4176				strlcpy(name, sym, KSYM_NAME_LEN);
4177			preempt_enable();
4178			return 0;
4179		}
4180	}
4181out:
4182	preempt_enable();
4183	return -ERANGE;
4184}
4185
4186int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4187			char *name, char *module_name, int *exported)
4188{
4189	struct module *mod;
4190
4191	preempt_disable();
4192	list_for_each_entry_rcu(mod, &modules, list) {
4193		struct mod_kallsyms *kallsyms;
4194
4195		if (mod->state == MODULE_STATE_UNFORMED)
4196			continue;
4197		kallsyms = rcu_dereference_sched(mod->kallsyms);
4198		if (symnum < kallsyms->num_symtab) {
4199			const Elf_Sym *sym = &kallsyms->symtab[symnum];
4200
4201			*value = kallsyms_symbol_value(sym);
4202			*type = kallsyms->typetab[symnum];
4203			strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4204			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4205			*exported = is_exported(name, *value, mod);
4206			preempt_enable();
4207			return 0;
4208		}
4209		symnum -= kallsyms->num_symtab;
4210	}
4211	preempt_enable();
4212	return -ERANGE;
4213}
4214
4215/* Given a module and name of symbol, find and return the symbol's value */
4216static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4217{
4218	unsigned int i;
4219	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4220
4221	for (i = 0; i < kallsyms->num_symtab; i++) {
4222		const Elf_Sym *sym = &kallsyms->symtab[i];
4223
4224		if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4225		    sym->st_shndx != SHN_UNDEF)
4226			return kallsyms_symbol_value(sym);
4227	}
4228	return 0;
4229}
4230
4231/* Look for this name: can be of form module:name. */
4232unsigned long module_kallsyms_lookup_name(const char *name)
4233{
4234	struct module *mod;
4235	char *colon;
4236	unsigned long ret = 0;
4237
4238	/* Don't lock: we're in enough trouble already. */
4239	preempt_disable();
4240	if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4241		if ((mod = find_module_all(name, colon - name, false)) != NULL)
4242			ret = find_kallsyms_symbol_value(mod, colon+1);
4243	} else {
4244		list_for_each_entry_rcu(mod, &modules, list) {
4245			if (mod->state == MODULE_STATE_UNFORMED)
4246				continue;
4247			if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4248				break;
4249		}
4250	}
4251	preempt_enable();
4252	return ret;
4253}
4254
4255int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4256					     struct module *, unsigned long),
4257				   void *data)
4258{
4259	struct module *mod;
4260	unsigned int i;
4261	int ret;
4262
4263	module_assert_mutex();
4264
4265	list_for_each_entry(mod, &modules, list) {
4266		/* We hold module_mutex: no need for rcu_dereference_sched */
4267		struct mod_kallsyms *kallsyms = mod->kallsyms;
4268
4269		if (mod->state == MODULE_STATE_UNFORMED)
4270			continue;
4271		for (i = 0; i < kallsyms->num_symtab; i++) {
4272			const Elf_Sym *sym = &kallsyms->symtab[i];
4273
4274			if (sym->st_shndx == SHN_UNDEF)
4275				continue;
4276
4277			ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4278				 mod, kallsyms_symbol_value(sym));
4279			if (ret != 0)
4280				return ret;
4281		}
4282	}
4283	return 0;
4284}
4285#endif /* CONFIG_KALLSYMS */
4286
4287/* Maximum number of characters written by module_flags() */
4288#define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4289
4290/* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4291static char *module_flags(struct module *mod, char *buf)
4292{
4293	int bx = 0;
4294
4295	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4296	if (mod->taints ||
4297	    mod->state == MODULE_STATE_GOING ||
4298	    mod->state == MODULE_STATE_COMING) {
4299		buf[bx++] = '(';
4300		bx += module_flags_taint(mod, buf + bx);
4301		/* Show a - for module-is-being-unloaded */
4302		if (mod->state == MODULE_STATE_GOING)
4303			buf[bx++] = '-';
4304		/* Show a + for module-is-being-loaded */
4305		if (mod->state == MODULE_STATE_COMING)
4306			buf[bx++] = '+';
4307		buf[bx++] = ')';
4308	}
4309	buf[bx] = '\0';
4310
4311	return buf;
4312}
4313
4314#ifdef CONFIG_PROC_FS
4315/* Called by the /proc file system to return a list of modules. */
4316static void *m_start(struct seq_file *m, loff_t *pos)
4317{
4318	mutex_lock(&module_mutex);
4319	return seq_list_start(&modules, *pos);
4320}
4321
4322static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4323{
4324	return seq_list_next(p, &modules, pos);
4325}
4326
4327static void m_stop(struct seq_file *m, void *p)
4328{
4329	mutex_unlock(&module_mutex);
4330}
4331
4332static int m_show(struct seq_file *m, void *p)
4333{
4334	struct module *mod = list_entry(p, struct module, list);
4335	char buf[MODULE_FLAGS_BUF_SIZE];
4336	void *value;
4337
4338	/* We always ignore unformed modules. */
4339	if (mod->state == MODULE_STATE_UNFORMED)
4340		return 0;
4341
4342	seq_printf(m, "%s %u",
4343		   mod->name, mod->init_layout.size + mod->core_layout.size);
4344	print_unload_info(m, mod);
4345
4346	/* Informative for users. */
4347	seq_printf(m, " %s",
4348		   mod->state == MODULE_STATE_GOING ? "Unloading" :
4349		   mod->state == MODULE_STATE_COMING ? "Loading" :
4350		   "Live");
4351	/* Used by oprofile and other similar tools. */
4352	value = m->private ? NULL : mod->core_layout.base;
4353	seq_printf(m, " 0x%px", value);
4354
4355	/* Taints info */
4356	if (mod->taints)
4357		seq_printf(m, " %s", module_flags(mod, buf));
4358
4359	seq_puts(m, "\n");
4360	return 0;
4361}
4362
4363/* Format: modulename size refcount deps address
4364
4365   Where refcount is a number or -, and deps is a comma-separated list
4366   of depends or -.
4367*/
4368static const struct seq_operations modules_op = {
4369	.start	= m_start,
4370	.next	= m_next,
4371	.stop	= m_stop,
4372	.show	= m_show
4373};
4374
4375/*
4376 * This also sets the "private" pointer to non-NULL if the
4377 * kernel pointers should be hidden (so you can just test
4378 * "m->private" to see if you should keep the values private).
4379 *
4380 * We use the same logic as for /proc/kallsyms.
4381 */
4382static int modules_open(struct inode *inode, struct file *file)
4383{
4384	int err = seq_open(file, &modules_op);
4385
4386	if (!err) {
4387		struct seq_file *m = file->private_data;
4388		m->private = kallsyms_show_value() ? NULL : (void *)8ul;
4389	}
4390
4391	return err;
4392}
4393
4394static const struct file_operations proc_modules_operations = {
4395	.open		= modules_open,
4396	.read		= seq_read,
4397	.llseek		= seq_lseek,
4398	.release	= seq_release,
 
4399};
4400
4401static int __init proc_modules_init(void)
4402{
4403	proc_create("modules", 0, NULL, &proc_modules_operations);
4404	return 0;
4405}
4406module_init(proc_modules_init);
4407#endif
4408
4409/* Given an address, look for it in the module exception tables. */
4410const struct exception_table_entry *search_module_extables(unsigned long addr)
4411{
4412	const struct exception_table_entry *e = NULL;
4413	struct module *mod;
4414
4415	preempt_disable();
4416	mod = __module_address(addr);
4417	if (!mod)
4418		goto out;
4419
4420	if (!mod->num_exentries)
4421		goto out;
4422
4423	e = search_extable(mod->extable,
4424			   mod->num_exentries,
4425			   addr);
4426out:
4427	preempt_enable();
4428
4429	/*
4430	 * Now, if we found one, we are running inside it now, hence
4431	 * we cannot unload the module, hence no refcnt needed.
4432	 */
4433	return e;
4434}
4435
4436/*
4437 * is_module_address - is this address inside a module?
4438 * @addr: the address to check.
4439 *
4440 * See is_module_text_address() if you simply want to see if the address
4441 * is code (not data).
4442 */
4443bool is_module_address(unsigned long addr)
4444{
4445	bool ret;
4446
4447	preempt_disable();
4448	ret = __module_address(addr) != NULL;
4449	preempt_enable();
4450
4451	return ret;
4452}
4453
4454/*
4455 * __module_address - get the module which contains an address.
4456 * @addr: the address.
4457 *
4458 * Must be called with preempt disabled or module mutex held so that
4459 * module doesn't get freed during this.
4460 */
4461struct module *__module_address(unsigned long addr)
4462{
4463	struct module *mod;
4464
4465	if (addr < module_addr_min || addr > module_addr_max)
4466		return NULL;
4467
4468	module_assert_mutex_or_preempt();
4469
4470	mod = mod_find(addr);
4471	if (mod) {
4472		BUG_ON(!within_module(addr, mod));
4473		if (mod->state == MODULE_STATE_UNFORMED)
4474			mod = NULL;
4475	}
4476	return mod;
4477}
4478EXPORT_SYMBOL_GPL(__module_address);
4479
4480/*
4481 * is_module_text_address - is this address inside module code?
4482 * @addr: the address to check.
4483 *
4484 * See is_module_address() if you simply want to see if the address is
4485 * anywhere in a module.  See kernel_text_address() for testing if an
4486 * address corresponds to kernel or module code.
4487 */
4488bool is_module_text_address(unsigned long addr)
4489{
4490	bool ret;
4491
4492	preempt_disable();
4493	ret = __module_text_address(addr) != NULL;
4494	preempt_enable();
4495
4496	return ret;
4497}
4498
4499/*
4500 * __module_text_address - get the module whose code contains an address.
4501 * @addr: the address.
4502 *
4503 * Must be called with preempt disabled or module mutex held so that
4504 * module doesn't get freed during this.
4505 */
4506struct module *__module_text_address(unsigned long addr)
4507{
4508	struct module *mod = __module_address(addr);
4509	if (mod) {
4510		/* Make sure it's within the text section. */
4511		if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4512		    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4513			mod = NULL;
4514	}
4515	return mod;
4516}
4517EXPORT_SYMBOL_GPL(__module_text_address);
4518
4519/* Don't grab lock, we're oopsing. */
4520void print_modules(void)
4521{
4522	struct module *mod;
4523	char buf[MODULE_FLAGS_BUF_SIZE];
4524
4525	printk(KERN_DEFAULT "Modules linked in:");
4526	/* Most callers should already have preempt disabled, but make sure */
4527	preempt_disable();
4528	list_for_each_entry_rcu(mod, &modules, list) {
4529		if (mod->state == MODULE_STATE_UNFORMED)
4530			continue;
4531		pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4532	}
4533	preempt_enable();
4534	if (last_unloaded_module[0])
4535		pr_cont(" [last unloaded: %s]", last_unloaded_module);
4536	pr_cont("\n");
4537}
4538
4539#ifdef CONFIG_MODVERSIONS
4540/* Generate the signature for all relevant module structures here.
4541 * If these change, we don't want to try to parse the module. */
4542void module_layout(struct module *mod,
4543		   struct modversion_info *ver,
4544		   struct kernel_param *kp,
4545		   struct kernel_symbol *ks,
4546		   struct tracepoint * const *tp)
4547{
4548}
4549EXPORT_SYMBOL(module_layout);
4550#endif
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3   Copyright (C) 2002 Richard Henderson
   4   Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
   5
   6*/
   7
   8#define INCLUDE_VERMAGIC
   9
  10#include <linux/export.h>
  11#include <linux/extable.h>
  12#include <linux/moduleloader.h>
  13#include <linux/module_signature.h>
  14#include <linux/trace_events.h>
  15#include <linux/init.h>
  16#include <linux/kallsyms.h>
  17#include <linux/file.h>
  18#include <linux/fs.h>
  19#include <linux/sysfs.h>
  20#include <linux/kernel.h>
  21#include <linux/slab.h>
  22#include <linux/vmalloc.h>
  23#include <linux/elf.h>
  24#include <linux/proc_fs.h>
  25#include <linux/security.h>
  26#include <linux/seq_file.h>
  27#include <linux/syscalls.h>
  28#include <linux/fcntl.h>
  29#include <linux/rcupdate.h>
  30#include <linux/capability.h>
  31#include <linux/cpu.h>
  32#include <linux/moduleparam.h>
  33#include <linux/errno.h>
  34#include <linux/err.h>
  35#include <linux/vermagic.h>
  36#include <linux/notifier.h>
  37#include <linux/sched.h>
  38#include <linux/device.h>
  39#include <linux/string.h>
  40#include <linux/mutex.h>
  41#include <linux/rculist.h>
  42#include <linux/uaccess.h>
  43#include <asm/cacheflush.h>
  44#include <linux/set_memory.h>
  45#include <asm/mmu_context.h>
  46#include <linux/license.h>
  47#include <asm/sections.h>
  48#include <linux/tracepoint.h>
  49#include <linux/ftrace.h>
  50#include <linux/livepatch.h>
  51#include <linux/async.h>
  52#include <linux/percpu.h>
  53#include <linux/kmemleak.h>
  54#include <linux/jump_label.h>
  55#include <linux/pfn.h>
  56#include <linux/bsearch.h>
  57#include <linux/dynamic_debug.h>
  58#include <linux/audit.h>
  59#include <uapi/linux/module.h>
  60#include "module-internal.h"
  61
  62#define CREATE_TRACE_POINTS
  63#include <trace/events/module.h>
  64
  65#ifndef ARCH_SHF_SMALL
  66#define ARCH_SHF_SMALL 0
  67#endif
  68
  69/*
  70 * Modules' sections will be aligned on page boundaries
  71 * to ensure complete separation of code and data, but
  72 * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
  73 */
  74#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
  75# define debug_align(X) ALIGN(X, PAGE_SIZE)
  76#else
  77# define debug_align(X) (X)
  78#endif
  79
  80/* If this is set, the section belongs in the init part of the module */
  81#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
  82
  83/*
  84 * Mutex protects:
  85 * 1) List of modules (also safely readable with preempt_disable),
  86 * 2) module_use links,
  87 * 3) module_addr_min/module_addr_max.
  88 * (delete and add uses RCU list operations). */
  89DEFINE_MUTEX(module_mutex);
  90EXPORT_SYMBOL_GPL(module_mutex);
  91static LIST_HEAD(modules);
  92
  93/* Work queue for freeing init sections in success case */
  94static struct work_struct init_free_wq;
  95static struct llist_head init_free_list;
  96
  97#ifdef CONFIG_MODULES_TREE_LOOKUP
  98
  99/*
 100 * Use a latched RB-tree for __module_address(); this allows us to use
 101 * RCU-sched lookups of the address from any context.
 102 *
 103 * This is conditional on PERF_EVENTS || TRACING because those can really hit
 104 * __module_address() hard by doing a lot of stack unwinding; potentially from
 105 * NMI context.
 106 */
 107
 108static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
 109{
 110	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 111
 112	return (unsigned long)layout->base;
 113}
 114
 115static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
 116{
 117	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 118
 119	return (unsigned long)layout->size;
 120}
 121
 122static __always_inline bool
 123mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
 124{
 125	return __mod_tree_val(a) < __mod_tree_val(b);
 126}
 127
 128static __always_inline int
 129mod_tree_comp(void *key, struct latch_tree_node *n)
 130{
 131	unsigned long val = (unsigned long)key;
 132	unsigned long start, end;
 133
 134	start = __mod_tree_val(n);
 135	if (val < start)
 136		return -1;
 137
 138	end = start + __mod_tree_size(n);
 139	if (val >= end)
 140		return 1;
 141
 142	return 0;
 143}
 144
 145static const struct latch_tree_ops mod_tree_ops = {
 146	.less = mod_tree_less,
 147	.comp = mod_tree_comp,
 148};
 149
 150static struct mod_tree_root {
 151	struct latch_tree_root root;
 152	unsigned long addr_min;
 153	unsigned long addr_max;
 154} mod_tree __cacheline_aligned = {
 155	.addr_min = -1UL,
 156};
 157
 158#define module_addr_min mod_tree.addr_min
 159#define module_addr_max mod_tree.addr_max
 160
 161static noinline void __mod_tree_insert(struct mod_tree_node *node)
 162{
 163	latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
 164}
 165
 166static void __mod_tree_remove(struct mod_tree_node *node)
 167{
 168	latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
 169}
 170
 171/*
 172 * These modifications: insert, remove_init and remove; are serialized by the
 173 * module_mutex.
 174 */
 175static void mod_tree_insert(struct module *mod)
 176{
 177	mod->core_layout.mtn.mod = mod;
 178	mod->init_layout.mtn.mod = mod;
 179
 180	__mod_tree_insert(&mod->core_layout.mtn);
 181	if (mod->init_layout.size)
 182		__mod_tree_insert(&mod->init_layout.mtn);
 183}
 184
 185static void mod_tree_remove_init(struct module *mod)
 186{
 187	if (mod->init_layout.size)
 188		__mod_tree_remove(&mod->init_layout.mtn);
 189}
 190
 191static void mod_tree_remove(struct module *mod)
 192{
 193	__mod_tree_remove(&mod->core_layout.mtn);
 194	mod_tree_remove_init(mod);
 195}
 196
 197static struct module *mod_find(unsigned long addr)
 198{
 199	struct latch_tree_node *ltn;
 200
 201	ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
 202	if (!ltn)
 203		return NULL;
 204
 205	return container_of(ltn, struct mod_tree_node, node)->mod;
 206}
 207
 208#else /* MODULES_TREE_LOOKUP */
 209
 210static unsigned long module_addr_min = -1UL, module_addr_max = 0;
 211
 212static void mod_tree_insert(struct module *mod) { }
 213static void mod_tree_remove_init(struct module *mod) { }
 214static void mod_tree_remove(struct module *mod) { }
 215
 216static struct module *mod_find(unsigned long addr)
 217{
 218	struct module *mod;
 219
 220	list_for_each_entry_rcu(mod, &modules, list,
 221				lockdep_is_held(&module_mutex)) {
 222		if (within_module(addr, mod))
 223			return mod;
 224	}
 225
 226	return NULL;
 227}
 228
 229#endif /* MODULES_TREE_LOOKUP */
 230
 231/*
 232 * Bounds of module text, for speeding up __module_address.
 233 * Protected by module_mutex.
 234 */
 235static void __mod_update_bounds(void *base, unsigned int size)
 236{
 237	unsigned long min = (unsigned long)base;
 238	unsigned long max = min + size;
 239
 240	if (min < module_addr_min)
 241		module_addr_min = min;
 242	if (max > module_addr_max)
 243		module_addr_max = max;
 244}
 245
 246static void mod_update_bounds(struct module *mod)
 247{
 248	__mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
 249	if (mod->init_layout.size)
 250		__mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
 251}
 252
 253#ifdef CONFIG_KGDB_KDB
 254struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
 255#endif /* CONFIG_KGDB_KDB */
 256
 257static void module_assert_mutex(void)
 258{
 259	lockdep_assert_held(&module_mutex);
 260}
 261
 262static void module_assert_mutex_or_preempt(void)
 263{
 264#ifdef CONFIG_LOCKDEP
 265	if (unlikely(!debug_locks))
 266		return;
 267
 268	WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
 269		!lockdep_is_held(&module_mutex));
 270#endif
 271}
 272
 273static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
 274module_param(sig_enforce, bool_enable_only, 0644);
 275
 276/*
 277 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
 278 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
 279 */
 280bool is_module_sig_enforced(void)
 281{
 282	return sig_enforce;
 283}
 284EXPORT_SYMBOL(is_module_sig_enforced);
 285
 286void set_module_sig_enforced(void)
 287{
 288	sig_enforce = true;
 289}
 290
 291/* Block module loading/unloading? */
 292int modules_disabled = 0;
 293core_param(nomodule, modules_disabled, bint, 0);
 294
 295/* Waiting for a module to finish initializing? */
 296static DECLARE_WAIT_QUEUE_HEAD(module_wq);
 297
 298static BLOCKING_NOTIFIER_HEAD(module_notify_list);
 299
 300int register_module_notifier(struct notifier_block *nb)
 301{
 302	return blocking_notifier_chain_register(&module_notify_list, nb);
 303}
 304EXPORT_SYMBOL(register_module_notifier);
 305
 306int unregister_module_notifier(struct notifier_block *nb)
 307{
 308	return blocking_notifier_chain_unregister(&module_notify_list, nb);
 309}
 310EXPORT_SYMBOL(unregister_module_notifier);
 311
 312/*
 313 * We require a truly strong try_module_get(): 0 means success.
 314 * Otherwise an error is returned due to ongoing or failed
 315 * initialization etc.
 316 */
 317static inline int strong_try_module_get(struct module *mod)
 318{
 319	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
 320	if (mod && mod->state == MODULE_STATE_COMING)
 321		return -EBUSY;
 322	if (try_module_get(mod))
 323		return 0;
 324	else
 325		return -ENOENT;
 326}
 327
 328static inline void add_taint_module(struct module *mod, unsigned flag,
 329				    enum lockdep_ok lockdep_ok)
 330{
 331	add_taint(flag, lockdep_ok);
 332	set_bit(flag, &mod->taints);
 333}
 334
 335/*
 336 * A thread that wants to hold a reference to a module only while it
 337 * is running can call this to safely exit.  nfsd and lockd use this.
 338 */
 339void __noreturn __module_put_and_exit(struct module *mod, long code)
 340{
 341	module_put(mod);
 342	do_exit(code);
 343}
 344EXPORT_SYMBOL(__module_put_and_exit);
 345
 346/* Find a module section: 0 means not found. */
 347static unsigned int find_sec(const struct load_info *info, const char *name)
 348{
 349	unsigned int i;
 350
 351	for (i = 1; i < info->hdr->e_shnum; i++) {
 352		Elf_Shdr *shdr = &info->sechdrs[i];
 353		/* Alloc bit cleared means "ignore it." */
 354		if ((shdr->sh_flags & SHF_ALLOC)
 355		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
 356			return i;
 357	}
 358	return 0;
 359}
 360
 361/* Find a module section, or NULL. */
 362static void *section_addr(const struct load_info *info, const char *name)
 363{
 364	/* Section 0 has sh_addr 0. */
 365	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
 366}
 367
 368/* Find a module section, or NULL.  Fill in number of "objects" in section. */
 369static void *section_objs(const struct load_info *info,
 370			  const char *name,
 371			  size_t object_size,
 372			  unsigned int *num)
 373{
 374	unsigned int sec = find_sec(info, name);
 375
 376	/* Section 0 has sh_addr 0 and sh_size 0. */
 377	*num = info->sechdrs[sec].sh_size / object_size;
 378	return (void *)info->sechdrs[sec].sh_addr;
 379}
 380
 381/* Provided by the linker */
 382extern const struct kernel_symbol __start___ksymtab[];
 383extern const struct kernel_symbol __stop___ksymtab[];
 384extern const struct kernel_symbol __start___ksymtab_gpl[];
 385extern const struct kernel_symbol __stop___ksymtab_gpl[];
 386extern const struct kernel_symbol __start___ksymtab_gpl_future[];
 387extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
 388extern const s32 __start___kcrctab[];
 389extern const s32 __start___kcrctab_gpl[];
 390extern const s32 __start___kcrctab_gpl_future[];
 391#ifdef CONFIG_UNUSED_SYMBOLS
 392extern const struct kernel_symbol __start___ksymtab_unused[];
 393extern const struct kernel_symbol __stop___ksymtab_unused[];
 394extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
 395extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
 396extern const s32 __start___kcrctab_unused[];
 397extern const s32 __start___kcrctab_unused_gpl[];
 398#endif
 399
 400#ifndef CONFIG_MODVERSIONS
 401#define symversion(base, idx) NULL
 402#else
 403#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
 404#endif
 405
 406static bool each_symbol_in_section(const struct symsearch *arr,
 407				   unsigned int arrsize,
 408				   struct module *owner,
 409				   bool (*fn)(const struct symsearch *syms,
 410					      struct module *owner,
 411					      void *data),
 412				   void *data)
 413{
 414	unsigned int j;
 415
 416	for (j = 0; j < arrsize; j++) {
 417		if (fn(&arr[j], owner, data))
 418			return true;
 419	}
 420
 421	return false;
 422}
 423
 424/* Returns true as soon as fn returns true, otherwise false. */
 425static bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
 426				    struct module *owner,
 427				    void *data),
 428			 void *data)
 429{
 430	struct module *mod;
 431	static const struct symsearch arr[] = {
 432		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
 433		  NOT_GPL_ONLY, false },
 434		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
 435		  __start___kcrctab_gpl,
 436		  GPL_ONLY, false },
 437		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
 438		  __start___kcrctab_gpl_future,
 439		  WILL_BE_GPL_ONLY, false },
 440#ifdef CONFIG_UNUSED_SYMBOLS
 441		{ __start___ksymtab_unused, __stop___ksymtab_unused,
 442		  __start___kcrctab_unused,
 443		  NOT_GPL_ONLY, true },
 444		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
 445		  __start___kcrctab_unused_gpl,
 446		  GPL_ONLY, true },
 447#endif
 448	};
 449
 450	module_assert_mutex_or_preempt();
 451
 452	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
 453		return true;
 454
 455	list_for_each_entry_rcu(mod, &modules, list,
 456				lockdep_is_held(&module_mutex)) {
 457		struct symsearch arr[] = {
 458			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
 459			  NOT_GPL_ONLY, false },
 460			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
 461			  mod->gpl_crcs,
 462			  GPL_ONLY, false },
 463			{ mod->gpl_future_syms,
 464			  mod->gpl_future_syms + mod->num_gpl_future_syms,
 465			  mod->gpl_future_crcs,
 466			  WILL_BE_GPL_ONLY, false },
 467#ifdef CONFIG_UNUSED_SYMBOLS
 468			{ mod->unused_syms,
 469			  mod->unused_syms + mod->num_unused_syms,
 470			  mod->unused_crcs,
 471			  NOT_GPL_ONLY, true },
 472			{ mod->unused_gpl_syms,
 473			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
 474			  mod->unused_gpl_crcs,
 475			  GPL_ONLY, true },
 476#endif
 477		};
 478
 479		if (mod->state == MODULE_STATE_UNFORMED)
 480			continue;
 481
 482		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
 483			return true;
 484	}
 485	return false;
 486}
 
 487
 488struct find_symbol_arg {
 489	/* Input */
 490	const char *name;
 491	bool gplok;
 492	bool warn;
 493
 494	/* Output */
 495	struct module *owner;
 496	const s32 *crc;
 497	const struct kernel_symbol *sym;
 498	enum mod_license license;
 499};
 500
 501static bool check_exported_symbol(const struct symsearch *syms,
 502				  struct module *owner,
 503				  unsigned int symnum, void *data)
 504{
 505	struct find_symbol_arg *fsa = data;
 506
 507	if (!fsa->gplok) {
 508		if (syms->license == GPL_ONLY)
 509			return false;
 510		if (syms->license == WILL_BE_GPL_ONLY && fsa->warn) {
 511			pr_warn("Symbol %s is being used by a non-GPL module, "
 512				"which will not be allowed in the future\n",
 513				fsa->name);
 514		}
 515	}
 516
 517#ifdef CONFIG_UNUSED_SYMBOLS
 518	if (syms->unused && fsa->warn) {
 519		pr_warn("Symbol %s is marked as UNUSED, however this module is "
 520			"using it.\n", fsa->name);
 521		pr_warn("This symbol will go away in the future.\n");
 522		pr_warn("Please evaluate if this is the right api to use and "
 523			"if it really is, submit a report to the linux kernel "
 524			"mailing list together with submitting your code for "
 525			"inclusion.\n");
 526	}
 527#endif
 528
 529	fsa->owner = owner;
 530	fsa->crc = symversion(syms->crcs, symnum);
 531	fsa->sym = &syms->start[symnum];
 532	fsa->license = syms->license;
 533	return true;
 534}
 535
 536static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
 537{
 538#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 539	return (unsigned long)offset_to_ptr(&sym->value_offset);
 540#else
 541	return sym->value;
 542#endif
 543}
 544
 545static const char *kernel_symbol_name(const struct kernel_symbol *sym)
 546{
 547#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 548	return offset_to_ptr(&sym->name_offset);
 549#else
 550	return sym->name;
 551#endif
 552}
 553
 554static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
 555{
 556#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 557	if (!sym->namespace_offset)
 558		return NULL;
 559	return offset_to_ptr(&sym->namespace_offset);
 560#else
 561	return sym->namespace;
 562#endif
 563}
 564
 565static int cmp_name(const void *name, const void *sym)
 566{
 567	return strcmp(name, kernel_symbol_name(sym));
 568}
 569
 570static bool find_exported_symbol_in_section(const struct symsearch *syms,
 571					    struct module *owner,
 572					    void *data)
 573{
 574	struct find_symbol_arg *fsa = data;
 575	struct kernel_symbol *sym;
 576
 577	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
 578			sizeof(struct kernel_symbol), cmp_name);
 579
 580	if (sym != NULL && check_exported_symbol(syms, owner,
 581						 sym - syms->start, data))
 582		return true;
 583
 584	return false;
 585}
 586
 587/* Find an exported symbol and return it, along with, (optional) crc and
 588 * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
 589static const struct kernel_symbol *find_symbol(const char *name,
 590					struct module **owner,
 591					const s32 **crc,
 592					enum mod_license *license,
 593					bool gplok,
 594					bool warn)
 595{
 596	struct find_symbol_arg fsa;
 597
 598	fsa.name = name;
 599	fsa.gplok = gplok;
 600	fsa.warn = warn;
 601
 602	if (each_symbol_section(find_exported_symbol_in_section, &fsa)) {
 603		if (owner)
 604			*owner = fsa.owner;
 605		if (crc)
 606			*crc = fsa.crc;
 607		if (license)
 608			*license = fsa.license;
 609		return fsa.sym;
 610	}
 611
 612	pr_debug("Failed to find symbol %s\n", name);
 613	return NULL;
 614}
 
 615
 616/*
 617 * Search for module by name: must hold module_mutex (or preempt disabled
 618 * for read-only access).
 619 */
 620static struct module *find_module_all(const char *name, size_t len,
 621				      bool even_unformed)
 622{
 623	struct module *mod;
 624
 625	module_assert_mutex_or_preempt();
 626
 627	list_for_each_entry_rcu(mod, &modules, list,
 628				lockdep_is_held(&module_mutex)) {
 629		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
 630			continue;
 631		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
 632			return mod;
 633	}
 634	return NULL;
 635}
 636
 637struct module *find_module(const char *name)
 638{
 639	module_assert_mutex();
 640	return find_module_all(name, strlen(name), false);
 641}
 642EXPORT_SYMBOL_GPL(find_module);
 643
 644#ifdef CONFIG_SMP
 645
 646static inline void __percpu *mod_percpu(struct module *mod)
 647{
 648	return mod->percpu;
 649}
 650
 651static int percpu_modalloc(struct module *mod, struct load_info *info)
 652{
 653	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
 654	unsigned long align = pcpusec->sh_addralign;
 655
 656	if (!pcpusec->sh_size)
 657		return 0;
 658
 659	if (align > PAGE_SIZE) {
 660		pr_warn("%s: per-cpu alignment %li > %li\n",
 661			mod->name, align, PAGE_SIZE);
 662		align = PAGE_SIZE;
 663	}
 664
 665	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
 666	if (!mod->percpu) {
 667		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
 668			mod->name, (unsigned long)pcpusec->sh_size);
 669		return -ENOMEM;
 670	}
 671	mod->percpu_size = pcpusec->sh_size;
 672	return 0;
 673}
 674
 675static void percpu_modfree(struct module *mod)
 676{
 677	free_percpu(mod->percpu);
 678}
 679
 680static unsigned int find_pcpusec(struct load_info *info)
 681{
 682	return find_sec(info, ".data..percpu");
 683}
 684
 685static void percpu_modcopy(struct module *mod,
 686			   const void *from, unsigned long size)
 687{
 688	int cpu;
 689
 690	for_each_possible_cpu(cpu)
 691		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
 692}
 693
 694bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
 695{
 696	struct module *mod;
 697	unsigned int cpu;
 698
 699	preempt_disable();
 700
 701	list_for_each_entry_rcu(mod, &modules, list) {
 702		if (mod->state == MODULE_STATE_UNFORMED)
 703			continue;
 704		if (!mod->percpu_size)
 705			continue;
 706		for_each_possible_cpu(cpu) {
 707			void *start = per_cpu_ptr(mod->percpu, cpu);
 708			void *va = (void *)addr;
 709
 710			if (va >= start && va < start + mod->percpu_size) {
 711				if (can_addr) {
 712					*can_addr = (unsigned long) (va - start);
 713					*can_addr += (unsigned long)
 714						per_cpu_ptr(mod->percpu,
 715							    get_boot_cpu_id());
 716				}
 717				preempt_enable();
 718				return true;
 719			}
 720		}
 721	}
 722
 723	preempt_enable();
 724	return false;
 725}
 726
 727/**
 728 * is_module_percpu_address - test whether address is from module static percpu
 729 * @addr: address to test
 730 *
 731 * Test whether @addr belongs to module static percpu area.
 732 *
 733 * RETURNS:
 734 * %true if @addr is from module static percpu area
 735 */
 736bool is_module_percpu_address(unsigned long addr)
 737{
 738	return __is_module_percpu_address(addr, NULL);
 739}
 740
 741#else /* ... !CONFIG_SMP */
 742
 743static inline void __percpu *mod_percpu(struct module *mod)
 744{
 745	return NULL;
 746}
 747static int percpu_modalloc(struct module *mod, struct load_info *info)
 748{
 749	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
 750	if (info->sechdrs[info->index.pcpu].sh_size != 0)
 751		return -ENOMEM;
 752	return 0;
 753}
 754static inline void percpu_modfree(struct module *mod)
 755{
 756}
 757static unsigned int find_pcpusec(struct load_info *info)
 758{
 759	return 0;
 760}
 761static inline void percpu_modcopy(struct module *mod,
 762				  const void *from, unsigned long size)
 763{
 764	/* pcpusec should be 0, and size of that section should be 0. */
 765	BUG_ON(size != 0);
 766}
 767bool is_module_percpu_address(unsigned long addr)
 768{
 769	return false;
 770}
 771
 772bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
 773{
 774	return false;
 775}
 776
 777#endif /* CONFIG_SMP */
 778
 779#define MODINFO_ATTR(field)	\
 780static void setup_modinfo_##field(struct module *mod, const char *s)  \
 781{                                                                     \
 782	mod->field = kstrdup(s, GFP_KERNEL);                          \
 783}                                                                     \
 784static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
 785			struct module_kobject *mk, char *buffer)      \
 786{                                                                     \
 787	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
 788}                                                                     \
 789static int modinfo_##field##_exists(struct module *mod)               \
 790{                                                                     \
 791	return mod->field != NULL;                                    \
 792}                                                                     \
 793static void free_modinfo_##field(struct module *mod)                  \
 794{                                                                     \
 795	kfree(mod->field);                                            \
 796	mod->field = NULL;                                            \
 797}                                                                     \
 798static struct module_attribute modinfo_##field = {                    \
 799	.attr = { .name = __stringify(field), .mode = 0444 },         \
 800	.show = show_modinfo_##field,                                 \
 801	.setup = setup_modinfo_##field,                               \
 802	.test = modinfo_##field##_exists,                             \
 803	.free = free_modinfo_##field,                                 \
 804};
 805
 806MODINFO_ATTR(version);
 807MODINFO_ATTR(srcversion);
 808
 809static char last_unloaded_module[MODULE_NAME_LEN+1];
 810
 811#ifdef CONFIG_MODULE_UNLOAD
 812
 813EXPORT_TRACEPOINT_SYMBOL(module_get);
 814
 815/* MODULE_REF_BASE is the base reference count by kmodule loader. */
 816#define MODULE_REF_BASE	1
 817
 818/* Init the unload section of the module. */
 819static int module_unload_init(struct module *mod)
 820{
 821	/*
 822	 * Initialize reference counter to MODULE_REF_BASE.
 823	 * refcnt == 0 means module is going.
 824	 */
 825	atomic_set(&mod->refcnt, MODULE_REF_BASE);
 826
 827	INIT_LIST_HEAD(&mod->source_list);
 828	INIT_LIST_HEAD(&mod->target_list);
 829
 830	/* Hold reference count during initialization. */
 831	atomic_inc(&mod->refcnt);
 832
 833	return 0;
 834}
 835
 836/* Does a already use b? */
 837static int already_uses(struct module *a, struct module *b)
 838{
 839	struct module_use *use;
 840
 841	list_for_each_entry(use, &b->source_list, source_list) {
 842		if (use->source == a) {
 843			pr_debug("%s uses %s!\n", a->name, b->name);
 844			return 1;
 845		}
 846	}
 847	pr_debug("%s does not use %s!\n", a->name, b->name);
 848	return 0;
 849}
 850
 851/*
 852 * Module a uses b
 853 *  - we add 'a' as a "source", 'b' as a "target" of module use
 854 *  - the module_use is added to the list of 'b' sources (so
 855 *    'b' can walk the list to see who sourced them), and of 'a'
 856 *    targets (so 'a' can see what modules it targets).
 857 */
 858static int add_module_usage(struct module *a, struct module *b)
 859{
 860	struct module_use *use;
 861
 862	pr_debug("Allocating new usage for %s.\n", a->name);
 863	use = kmalloc(sizeof(*use), GFP_ATOMIC);
 864	if (!use)
 865		return -ENOMEM;
 866
 867	use->source = a;
 868	use->target = b;
 869	list_add(&use->source_list, &b->source_list);
 870	list_add(&use->target_list, &a->target_list);
 871	return 0;
 872}
 873
 874/* Module a uses b: caller needs module_mutex() */
 875static int ref_module(struct module *a, struct module *b)
 876{
 877	int err;
 878
 879	if (b == NULL || already_uses(a, b))
 880		return 0;
 881
 882	/* If module isn't available, we fail. */
 883	err = strong_try_module_get(b);
 884	if (err)
 885		return err;
 886
 887	err = add_module_usage(a, b);
 888	if (err) {
 889		module_put(b);
 890		return err;
 891	}
 892	return 0;
 893}
 
 894
 895/* Clear the unload stuff of the module. */
 896static void module_unload_free(struct module *mod)
 897{
 898	struct module_use *use, *tmp;
 899
 900	mutex_lock(&module_mutex);
 901	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
 902		struct module *i = use->target;
 903		pr_debug("%s unusing %s\n", mod->name, i->name);
 904		module_put(i);
 905		list_del(&use->source_list);
 906		list_del(&use->target_list);
 907		kfree(use);
 908	}
 909	mutex_unlock(&module_mutex);
 910}
 911
 912#ifdef CONFIG_MODULE_FORCE_UNLOAD
 913static inline int try_force_unload(unsigned int flags)
 914{
 915	int ret = (flags & O_TRUNC);
 916	if (ret)
 917		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
 918	return ret;
 919}
 920#else
 921static inline int try_force_unload(unsigned int flags)
 922{
 923	return 0;
 924}
 925#endif /* CONFIG_MODULE_FORCE_UNLOAD */
 926
 927/* Try to release refcount of module, 0 means success. */
 928static int try_release_module_ref(struct module *mod)
 929{
 930	int ret;
 931
 932	/* Try to decrement refcnt which we set at loading */
 933	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
 934	BUG_ON(ret < 0);
 935	if (ret)
 936		/* Someone can put this right now, recover with checking */
 937		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
 938
 939	return ret;
 940}
 941
 942static int try_stop_module(struct module *mod, int flags, int *forced)
 943{
 944	/* If it's not unused, quit unless we're forcing. */
 945	if (try_release_module_ref(mod) != 0) {
 946		*forced = try_force_unload(flags);
 947		if (!(*forced))
 948			return -EWOULDBLOCK;
 949	}
 950
 951	/* Mark it as dying. */
 952	mod->state = MODULE_STATE_GOING;
 953
 954	return 0;
 955}
 956
 957/**
 958 * module_refcount - return the refcount or -1 if unloading
 959 *
 960 * @mod:	the module we're checking
 961 *
 962 * Returns:
 963 *	-1 if the module is in the process of unloading
 964 *	otherwise the number of references in the kernel to the module
 965 */
 966int module_refcount(struct module *mod)
 967{
 968	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
 969}
 970EXPORT_SYMBOL(module_refcount);
 971
 972/* This exists whether we can unload or not */
 973static void free_module(struct module *mod);
 974
 975SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
 976		unsigned int, flags)
 977{
 978	struct module *mod;
 979	char name[MODULE_NAME_LEN];
 980	int ret, forced = 0;
 981
 982	if (!capable(CAP_SYS_MODULE) || modules_disabled)
 983		return -EPERM;
 984
 985	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
 986		return -EFAULT;
 987	name[MODULE_NAME_LEN-1] = '\0';
 988
 989	audit_log_kern_module(name);
 990
 991	if (mutex_lock_interruptible(&module_mutex) != 0)
 992		return -EINTR;
 993
 994	mod = find_module(name);
 995	if (!mod) {
 996		ret = -ENOENT;
 997		goto out;
 998	}
 999
1000	if (!list_empty(&mod->source_list)) {
1001		/* Other modules depend on us: get rid of them first. */
1002		ret = -EWOULDBLOCK;
1003		goto out;
1004	}
1005
1006	/* Doing init or already dying? */
1007	if (mod->state != MODULE_STATE_LIVE) {
1008		/* FIXME: if (force), slam module count damn the torpedoes */
1009		pr_debug("%s already dying\n", mod->name);
1010		ret = -EBUSY;
1011		goto out;
1012	}
1013
1014	/* If it has an init func, it must have an exit func to unload */
1015	if (mod->init && !mod->exit) {
1016		forced = try_force_unload(flags);
1017		if (!forced) {
1018			/* This module can't be removed */
1019			ret = -EBUSY;
1020			goto out;
1021		}
1022	}
1023
1024	/* Stop the machine so refcounts can't move and disable module. */
1025	ret = try_stop_module(mod, flags, &forced);
1026	if (ret != 0)
1027		goto out;
1028
1029	mutex_unlock(&module_mutex);
1030	/* Final destruction now no one is using it. */
1031	if (mod->exit != NULL)
1032		mod->exit();
1033	blocking_notifier_call_chain(&module_notify_list,
1034				     MODULE_STATE_GOING, mod);
1035	klp_module_going(mod);
1036	ftrace_release_mod(mod);
1037
1038	async_synchronize_full();
1039
1040	/* Store the name of the last unloaded module for diagnostic purposes */
1041	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1042
1043	free_module(mod);
1044	/* someone could wait for the module in add_unformed_module() */
1045	wake_up_all(&module_wq);
1046	return 0;
1047out:
1048	mutex_unlock(&module_mutex);
1049	return ret;
1050}
1051
1052static inline void print_unload_info(struct seq_file *m, struct module *mod)
1053{
1054	struct module_use *use;
1055	int printed_something = 0;
1056
1057	seq_printf(m, " %i ", module_refcount(mod));
1058
1059	/*
1060	 * Always include a trailing , so userspace can differentiate
1061	 * between this and the old multi-field proc format.
1062	 */
1063	list_for_each_entry(use, &mod->source_list, source_list) {
1064		printed_something = 1;
1065		seq_printf(m, "%s,", use->source->name);
1066	}
1067
1068	if (mod->init != NULL && mod->exit == NULL) {
1069		printed_something = 1;
1070		seq_puts(m, "[permanent],");
1071	}
1072
1073	if (!printed_something)
1074		seq_puts(m, "-");
1075}
1076
1077void __symbol_put(const char *symbol)
1078{
1079	struct module *owner;
1080
1081	preempt_disable();
1082	if (!find_symbol(symbol, &owner, NULL, NULL, true, false))
1083		BUG();
1084	module_put(owner);
1085	preempt_enable();
1086}
1087EXPORT_SYMBOL(__symbol_put);
1088
1089/* Note this assumes addr is a function, which it currently always is. */
1090void symbol_put_addr(void *addr)
1091{
1092	struct module *modaddr;
1093	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1094
1095	if (core_kernel_text(a))
1096		return;
1097
1098	/*
1099	 * Even though we hold a reference on the module; we still need to
1100	 * disable preemption in order to safely traverse the data structure.
1101	 */
1102	preempt_disable();
1103	modaddr = __module_text_address(a);
1104	BUG_ON(!modaddr);
1105	module_put(modaddr);
1106	preempt_enable();
1107}
1108EXPORT_SYMBOL_GPL(symbol_put_addr);
1109
1110static ssize_t show_refcnt(struct module_attribute *mattr,
1111			   struct module_kobject *mk, char *buffer)
1112{
1113	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1114}
1115
1116static struct module_attribute modinfo_refcnt =
1117	__ATTR(refcnt, 0444, show_refcnt, NULL);
1118
1119void __module_get(struct module *module)
1120{
1121	if (module) {
1122		preempt_disable();
1123		atomic_inc(&module->refcnt);
1124		trace_module_get(module, _RET_IP_);
1125		preempt_enable();
1126	}
1127}
1128EXPORT_SYMBOL(__module_get);
1129
1130bool try_module_get(struct module *module)
1131{
1132	bool ret = true;
1133
1134	if (module) {
1135		preempt_disable();
1136		/* Note: here, we can fail to get a reference */
1137		if (likely(module_is_live(module) &&
1138			   atomic_inc_not_zero(&module->refcnt) != 0))
1139			trace_module_get(module, _RET_IP_);
1140		else
1141			ret = false;
1142
1143		preempt_enable();
1144	}
1145	return ret;
1146}
1147EXPORT_SYMBOL(try_module_get);
1148
1149void module_put(struct module *module)
1150{
1151	int ret;
1152
1153	if (module) {
1154		preempt_disable();
1155		ret = atomic_dec_if_positive(&module->refcnt);
1156		WARN_ON(ret < 0);	/* Failed to put refcount */
1157		trace_module_put(module, _RET_IP_);
1158		preempt_enable();
1159	}
1160}
1161EXPORT_SYMBOL(module_put);
1162
1163#else /* !CONFIG_MODULE_UNLOAD */
1164static inline void print_unload_info(struct seq_file *m, struct module *mod)
1165{
1166	/* We don't know the usage count, or what modules are using. */
1167	seq_puts(m, " - -");
1168}
1169
1170static inline void module_unload_free(struct module *mod)
1171{
1172}
1173
1174static int ref_module(struct module *a, struct module *b)
1175{
1176	return strong_try_module_get(b);
1177}
 
1178
1179static inline int module_unload_init(struct module *mod)
1180{
1181	return 0;
1182}
1183#endif /* CONFIG_MODULE_UNLOAD */
1184
1185static size_t module_flags_taint(struct module *mod, char *buf)
1186{
1187	size_t l = 0;
1188	int i;
1189
1190	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1191		if (taint_flags[i].module && test_bit(i, &mod->taints))
1192			buf[l++] = taint_flags[i].c_true;
1193	}
1194
1195	return l;
1196}
1197
1198static ssize_t show_initstate(struct module_attribute *mattr,
1199			      struct module_kobject *mk, char *buffer)
1200{
1201	const char *state = "unknown";
1202
1203	switch (mk->mod->state) {
1204	case MODULE_STATE_LIVE:
1205		state = "live";
1206		break;
1207	case MODULE_STATE_COMING:
1208		state = "coming";
1209		break;
1210	case MODULE_STATE_GOING:
1211		state = "going";
1212		break;
1213	default:
1214		BUG();
1215	}
1216	return sprintf(buffer, "%s\n", state);
1217}
1218
1219static struct module_attribute modinfo_initstate =
1220	__ATTR(initstate, 0444, show_initstate, NULL);
1221
1222static ssize_t store_uevent(struct module_attribute *mattr,
1223			    struct module_kobject *mk,
1224			    const char *buffer, size_t count)
1225{
1226	int rc;
1227
1228	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1229	return rc ? rc : count;
1230}
1231
1232struct module_attribute module_uevent =
1233	__ATTR(uevent, 0200, NULL, store_uevent);
1234
1235static ssize_t show_coresize(struct module_attribute *mattr,
1236			     struct module_kobject *mk, char *buffer)
1237{
1238	return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1239}
1240
1241static struct module_attribute modinfo_coresize =
1242	__ATTR(coresize, 0444, show_coresize, NULL);
1243
1244static ssize_t show_initsize(struct module_attribute *mattr,
1245			     struct module_kobject *mk, char *buffer)
1246{
1247	return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1248}
1249
1250static struct module_attribute modinfo_initsize =
1251	__ATTR(initsize, 0444, show_initsize, NULL);
1252
1253static ssize_t show_taint(struct module_attribute *mattr,
1254			  struct module_kobject *mk, char *buffer)
1255{
1256	size_t l;
1257
1258	l = module_flags_taint(mk->mod, buffer);
1259	buffer[l++] = '\n';
1260	return l;
1261}
1262
1263static struct module_attribute modinfo_taint =
1264	__ATTR(taint, 0444, show_taint, NULL);
1265
1266static struct module_attribute *modinfo_attrs[] = {
1267	&module_uevent,
1268	&modinfo_version,
1269	&modinfo_srcversion,
1270	&modinfo_initstate,
1271	&modinfo_coresize,
1272	&modinfo_initsize,
1273	&modinfo_taint,
1274#ifdef CONFIG_MODULE_UNLOAD
1275	&modinfo_refcnt,
1276#endif
1277	NULL,
1278};
1279
1280static const char vermagic[] = VERMAGIC_STRING;
1281
1282static int try_to_force_load(struct module *mod, const char *reason)
1283{
1284#ifdef CONFIG_MODULE_FORCE_LOAD
1285	if (!test_taint(TAINT_FORCED_MODULE))
1286		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1287	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1288	return 0;
1289#else
1290	return -ENOEXEC;
1291#endif
1292}
1293
1294#ifdef CONFIG_MODVERSIONS
1295
1296static u32 resolve_rel_crc(const s32 *crc)
1297{
1298	return *(u32 *)((void *)crc + *crc);
1299}
1300
1301static int check_version(const struct load_info *info,
1302			 const char *symname,
1303			 struct module *mod,
1304			 const s32 *crc)
1305{
1306	Elf_Shdr *sechdrs = info->sechdrs;
1307	unsigned int versindex = info->index.vers;
1308	unsigned int i, num_versions;
1309	struct modversion_info *versions;
1310
1311	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1312	if (!crc)
1313		return 1;
1314
1315	/* No versions at all?  modprobe --force does this. */
1316	if (versindex == 0)
1317		return try_to_force_load(mod, symname) == 0;
1318
1319	versions = (void *) sechdrs[versindex].sh_addr;
1320	num_versions = sechdrs[versindex].sh_size
1321		/ sizeof(struct modversion_info);
1322
1323	for (i = 0; i < num_versions; i++) {
1324		u32 crcval;
1325
1326		if (strcmp(versions[i].name, symname) != 0)
1327			continue;
1328
1329		if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1330			crcval = resolve_rel_crc(crc);
1331		else
1332			crcval = *crc;
1333		if (versions[i].crc == crcval)
1334			return 1;
1335		pr_debug("Found checksum %X vs module %lX\n",
1336			 crcval, versions[i].crc);
1337		goto bad_version;
1338	}
1339
1340	/* Broken toolchain. Warn once, then let it go.. */
1341	pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1342	return 1;
1343
1344bad_version:
1345	pr_warn("%s: disagrees about version of symbol %s\n",
1346	       info->name, symname);
1347	return 0;
1348}
1349
1350static inline int check_modstruct_version(const struct load_info *info,
1351					  struct module *mod)
1352{
1353	const s32 *crc;
1354
1355	/*
1356	 * Since this should be found in kernel (which can't be removed), no
1357	 * locking is necessary -- use preempt_disable() to placate lockdep.
1358	 */
1359	preempt_disable();
1360	if (!find_symbol("module_layout", NULL, &crc, NULL, true, false)) {
1361		preempt_enable();
1362		BUG();
1363	}
1364	preempt_enable();
1365	return check_version(info, "module_layout", mod, crc);
1366}
1367
1368/* First part is kernel version, which we ignore if module has crcs. */
1369static inline int same_magic(const char *amagic, const char *bmagic,
1370			     bool has_crcs)
1371{
1372	if (has_crcs) {
1373		amagic += strcspn(amagic, " ");
1374		bmagic += strcspn(bmagic, " ");
1375	}
1376	return strcmp(amagic, bmagic) == 0;
1377}
1378#else
1379static inline int check_version(const struct load_info *info,
1380				const char *symname,
1381				struct module *mod,
1382				const s32 *crc)
1383{
1384	return 1;
1385}
1386
1387static inline int check_modstruct_version(const struct load_info *info,
1388					  struct module *mod)
1389{
1390	return 1;
1391}
1392
1393static inline int same_magic(const char *amagic, const char *bmagic,
1394			     bool has_crcs)
1395{
1396	return strcmp(amagic, bmagic) == 0;
1397}
1398#endif /* CONFIG_MODVERSIONS */
1399
1400static char *get_modinfo(const struct load_info *info, const char *tag);
1401static char *get_next_modinfo(const struct load_info *info, const char *tag,
1402			      char *prev);
1403
1404static int verify_namespace_is_imported(const struct load_info *info,
1405					const struct kernel_symbol *sym,
1406					struct module *mod)
1407{
1408	const char *namespace;
1409	char *imported_namespace;
1410
1411	namespace = kernel_symbol_namespace(sym);
1412	if (namespace && namespace[0]) {
1413		imported_namespace = get_modinfo(info, "import_ns");
1414		while (imported_namespace) {
1415			if (strcmp(namespace, imported_namespace) == 0)
1416				return 0;
1417			imported_namespace = get_next_modinfo(
1418				info, "import_ns", imported_namespace);
1419		}
1420#ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1421		pr_warn(
1422#else
1423		pr_err(
1424#endif
1425			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1426			mod->name, kernel_symbol_name(sym), namespace);
1427#ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1428		return -EINVAL;
1429#endif
1430	}
1431	return 0;
1432}
1433
1434static bool inherit_taint(struct module *mod, struct module *owner)
1435{
1436	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1437		return true;
1438
1439	if (mod->using_gplonly_symbols) {
1440		pr_err("%s: module using GPL-only symbols uses symbols from proprietary module %s.\n",
1441			mod->name, owner->name);
1442		return false;
1443	}
1444
1445	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1446		pr_warn("%s: module uses symbols from proprietary module %s, inheriting taint.\n",
1447			mod->name, owner->name);
1448		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1449	}
1450	return true;
1451}
1452
1453/* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1454static const struct kernel_symbol *resolve_symbol(struct module *mod,
1455						  const struct load_info *info,
1456						  const char *name,
1457						  char ownername[])
1458{
1459	struct module *owner;
1460	const struct kernel_symbol *sym;
1461	const s32 *crc;
1462	enum mod_license license;
1463	int err;
1464
1465	/*
1466	 * The module_mutex should not be a heavily contended lock;
1467	 * if we get the occasional sleep here, we'll go an extra iteration
1468	 * in the wait_event_interruptible(), which is harmless.
1469	 */
1470	sched_annotate_sleep();
1471	mutex_lock(&module_mutex);
1472	sym = find_symbol(name, &owner, &crc, &license,
1473			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1474	if (!sym)
1475		goto unlock;
1476
1477	if (license == GPL_ONLY)
1478		mod->using_gplonly_symbols = true;
1479
1480	if (!inherit_taint(mod, owner)) {
1481		sym = NULL;
1482		goto getname;
1483	}
1484
1485	if (!check_version(info, name, mod, crc)) {
1486		sym = ERR_PTR(-EINVAL);
1487		goto getname;
1488	}
1489
1490	err = verify_namespace_is_imported(info, sym, mod);
1491	if (err) {
1492		sym = ERR_PTR(err);
1493		goto getname;
1494	}
1495
1496	err = ref_module(mod, owner);
1497	if (err) {
1498		sym = ERR_PTR(err);
1499		goto getname;
1500	}
1501
1502getname:
1503	/* We must make copy under the lock if we failed to get ref. */
1504	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1505unlock:
1506	mutex_unlock(&module_mutex);
1507	return sym;
1508}
1509
1510static const struct kernel_symbol *
1511resolve_symbol_wait(struct module *mod,
1512		    const struct load_info *info,
1513		    const char *name)
1514{
1515	const struct kernel_symbol *ksym;
1516	char owner[MODULE_NAME_LEN];
1517
1518	if (wait_event_interruptible_timeout(module_wq,
1519			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1520			|| PTR_ERR(ksym) != -EBUSY,
1521					     30 * HZ) <= 0) {
1522		pr_warn("%s: gave up waiting for init of module %s.\n",
1523			mod->name, owner);
1524	}
1525	return ksym;
1526}
1527
1528/*
1529 * /sys/module/foo/sections stuff
1530 * J. Corbet <corbet@lwn.net>
1531 */
1532#ifdef CONFIG_SYSFS
1533
1534#ifdef CONFIG_KALLSYMS
1535static inline bool sect_empty(const Elf_Shdr *sect)
1536{
1537	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1538}
1539
1540struct module_sect_attr {
1541	struct bin_attribute battr;
 
1542	unsigned long address;
1543};
1544
1545struct module_sect_attrs {
1546	struct attribute_group grp;
1547	unsigned int nsections;
1548	struct module_sect_attr attrs[];
1549};
1550
1551#define MODULE_SECT_READ_SIZE (3 /* "0x", "\n" */ + (BITS_PER_LONG / 4))
1552static ssize_t module_sect_read(struct file *file, struct kobject *kobj,
1553				struct bin_attribute *battr,
1554				char *buf, loff_t pos, size_t count)
1555{
1556	struct module_sect_attr *sattr =
1557		container_of(battr, struct module_sect_attr, battr);
1558	char bounce[MODULE_SECT_READ_SIZE + 1];
1559	size_t wrote;
1560
1561	if (pos != 0)
1562		return -EINVAL;
1563
1564	/*
1565	 * Since we're a binary read handler, we must account for the
1566	 * trailing NUL byte that sprintf will write: if "buf" is
1567	 * too small to hold the NUL, or the NUL is exactly the last
1568	 * byte, the read will look like it got truncated by one byte.
1569	 * Since there is no way to ask sprintf nicely to not write
1570	 * the NUL, we have to use a bounce buffer.
1571	 */
1572	wrote = scnprintf(bounce, sizeof(bounce), "0x%px\n",
1573			 kallsyms_show_value(file->f_cred)
1574				? (void *)sattr->address : NULL);
1575	count = min(count, wrote);
1576	memcpy(buf, bounce, count);
1577
1578	return count;
1579}
1580
1581static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1582{
1583	unsigned int section;
1584
1585	for (section = 0; section < sect_attrs->nsections; section++)
1586		kfree(sect_attrs->attrs[section].battr.attr.name);
1587	kfree(sect_attrs);
1588}
1589
1590static void add_sect_attrs(struct module *mod, const struct load_info *info)
1591{
1592	unsigned int nloaded = 0, i, size[2];
1593	struct module_sect_attrs *sect_attrs;
1594	struct module_sect_attr *sattr;
1595	struct bin_attribute **gattr;
1596
1597	/* Count loaded sections and allocate structures */
1598	for (i = 0; i < info->hdr->e_shnum; i++)
1599		if (!sect_empty(&info->sechdrs[i]))
1600			nloaded++;
1601	size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1602			sizeof(sect_attrs->grp.bin_attrs[0]));
1603	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.bin_attrs[0]);
1604	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1605	if (sect_attrs == NULL)
1606		return;
1607
1608	/* Setup section attributes. */
1609	sect_attrs->grp.name = "sections";
1610	sect_attrs->grp.bin_attrs = (void *)sect_attrs + size[0];
1611
1612	sect_attrs->nsections = 0;
1613	sattr = &sect_attrs->attrs[0];
1614	gattr = &sect_attrs->grp.bin_attrs[0];
1615	for (i = 0; i < info->hdr->e_shnum; i++) {
1616		Elf_Shdr *sec = &info->sechdrs[i];
1617		if (sect_empty(sec))
1618			continue;
1619		sysfs_bin_attr_init(&sattr->battr);
1620		sattr->address = sec->sh_addr;
1621		sattr->battr.attr.name =
1622			kstrdup(info->secstrings + sec->sh_name, GFP_KERNEL);
1623		if (sattr->battr.attr.name == NULL)
1624			goto out;
1625		sect_attrs->nsections++;
1626		sattr->battr.read = module_sect_read;
1627		sattr->battr.size = MODULE_SECT_READ_SIZE;
1628		sattr->battr.attr.mode = 0400;
1629		*(gattr++) = &(sattr++)->battr;
 
 
1630	}
1631	*gattr = NULL;
1632
1633	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1634		goto out;
1635
1636	mod->sect_attrs = sect_attrs;
1637	return;
1638  out:
1639	free_sect_attrs(sect_attrs);
1640}
1641
1642static void remove_sect_attrs(struct module *mod)
1643{
1644	if (mod->sect_attrs) {
1645		sysfs_remove_group(&mod->mkobj.kobj,
1646				   &mod->sect_attrs->grp);
1647		/* We are positive that no one is using any sect attrs
1648		 * at this point.  Deallocate immediately. */
1649		free_sect_attrs(mod->sect_attrs);
1650		mod->sect_attrs = NULL;
1651	}
1652}
1653
1654/*
1655 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1656 */
1657
1658struct module_notes_attrs {
1659	struct kobject *dir;
1660	unsigned int notes;
1661	struct bin_attribute attrs[];
1662};
1663
1664static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1665				 struct bin_attribute *bin_attr,
1666				 char *buf, loff_t pos, size_t count)
1667{
1668	/*
1669	 * The caller checked the pos and count against our size.
1670	 */
1671	memcpy(buf, bin_attr->private + pos, count);
1672	return count;
1673}
1674
1675static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1676			     unsigned int i)
1677{
1678	if (notes_attrs->dir) {
1679		while (i-- > 0)
1680			sysfs_remove_bin_file(notes_attrs->dir,
1681					      &notes_attrs->attrs[i]);
1682		kobject_put(notes_attrs->dir);
1683	}
1684	kfree(notes_attrs);
1685}
1686
1687static void add_notes_attrs(struct module *mod, const struct load_info *info)
1688{
1689	unsigned int notes, loaded, i;
1690	struct module_notes_attrs *notes_attrs;
1691	struct bin_attribute *nattr;
1692
1693	/* failed to create section attributes, so can't create notes */
1694	if (!mod->sect_attrs)
1695		return;
1696
1697	/* Count notes sections and allocate structures.  */
1698	notes = 0;
1699	for (i = 0; i < info->hdr->e_shnum; i++)
1700		if (!sect_empty(&info->sechdrs[i]) &&
1701		    (info->sechdrs[i].sh_type == SHT_NOTE))
1702			++notes;
1703
1704	if (notes == 0)
1705		return;
1706
1707	notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1708			      GFP_KERNEL);
1709	if (notes_attrs == NULL)
1710		return;
1711
1712	notes_attrs->notes = notes;
1713	nattr = &notes_attrs->attrs[0];
1714	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1715		if (sect_empty(&info->sechdrs[i]))
1716			continue;
1717		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1718			sysfs_bin_attr_init(nattr);
1719			nattr->attr.name = mod->sect_attrs->attrs[loaded].battr.attr.name;
1720			nattr->attr.mode = S_IRUGO;
1721			nattr->size = info->sechdrs[i].sh_size;
1722			nattr->private = (void *) info->sechdrs[i].sh_addr;
1723			nattr->read = module_notes_read;
1724			++nattr;
1725		}
1726		++loaded;
1727	}
1728
1729	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1730	if (!notes_attrs->dir)
1731		goto out;
1732
1733	for (i = 0; i < notes; ++i)
1734		if (sysfs_create_bin_file(notes_attrs->dir,
1735					  &notes_attrs->attrs[i]))
1736			goto out;
1737
1738	mod->notes_attrs = notes_attrs;
1739	return;
1740
1741  out:
1742	free_notes_attrs(notes_attrs, i);
1743}
1744
1745static void remove_notes_attrs(struct module *mod)
1746{
1747	if (mod->notes_attrs)
1748		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1749}
1750
1751#else
1752
1753static inline void add_sect_attrs(struct module *mod,
1754				  const struct load_info *info)
1755{
1756}
1757
1758static inline void remove_sect_attrs(struct module *mod)
1759{
1760}
1761
1762static inline void add_notes_attrs(struct module *mod,
1763				   const struct load_info *info)
1764{
1765}
1766
1767static inline void remove_notes_attrs(struct module *mod)
1768{
1769}
1770#endif /* CONFIG_KALLSYMS */
1771
1772static void del_usage_links(struct module *mod)
1773{
1774#ifdef CONFIG_MODULE_UNLOAD
1775	struct module_use *use;
1776
1777	mutex_lock(&module_mutex);
1778	list_for_each_entry(use, &mod->target_list, target_list)
1779		sysfs_remove_link(use->target->holders_dir, mod->name);
1780	mutex_unlock(&module_mutex);
1781#endif
1782}
1783
1784static int add_usage_links(struct module *mod)
1785{
1786	int ret = 0;
1787#ifdef CONFIG_MODULE_UNLOAD
1788	struct module_use *use;
1789
1790	mutex_lock(&module_mutex);
1791	list_for_each_entry(use, &mod->target_list, target_list) {
1792		ret = sysfs_create_link(use->target->holders_dir,
1793					&mod->mkobj.kobj, mod->name);
1794		if (ret)
1795			break;
1796	}
1797	mutex_unlock(&module_mutex);
1798	if (ret)
1799		del_usage_links(mod);
1800#endif
1801	return ret;
1802}
1803
1804static void module_remove_modinfo_attrs(struct module *mod, int end);
1805
1806static int module_add_modinfo_attrs(struct module *mod)
1807{
1808	struct module_attribute *attr;
1809	struct module_attribute *temp_attr;
1810	int error = 0;
1811	int i;
1812
1813	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1814					(ARRAY_SIZE(modinfo_attrs) + 1)),
1815					GFP_KERNEL);
1816	if (!mod->modinfo_attrs)
1817		return -ENOMEM;
1818
1819	temp_attr = mod->modinfo_attrs;
1820	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1821		if (!attr->test || attr->test(mod)) {
1822			memcpy(temp_attr, attr, sizeof(*temp_attr));
1823			sysfs_attr_init(&temp_attr->attr);
1824			error = sysfs_create_file(&mod->mkobj.kobj,
1825					&temp_attr->attr);
1826			if (error)
1827				goto error_out;
1828			++temp_attr;
1829		}
1830	}
1831
1832	return 0;
1833
1834error_out:
1835	if (i > 0)
1836		module_remove_modinfo_attrs(mod, --i);
1837	else
1838		kfree(mod->modinfo_attrs);
1839	return error;
1840}
1841
1842static void module_remove_modinfo_attrs(struct module *mod, int end)
1843{
1844	struct module_attribute *attr;
1845	int i;
1846
1847	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1848		if (end >= 0 && i > end)
1849			break;
1850		/* pick a field to test for end of list */
1851		if (!attr->attr.name)
1852			break;
1853		sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1854		if (attr->free)
1855			attr->free(mod);
1856	}
1857	kfree(mod->modinfo_attrs);
1858}
1859
1860static void mod_kobject_put(struct module *mod)
1861{
1862	DECLARE_COMPLETION_ONSTACK(c);
1863	mod->mkobj.kobj_completion = &c;
1864	kobject_put(&mod->mkobj.kobj);
1865	wait_for_completion(&c);
1866}
1867
1868static int mod_sysfs_init(struct module *mod)
1869{
1870	int err;
1871	struct kobject *kobj;
1872
1873	if (!module_sysfs_initialized) {
1874		pr_err("%s: module sysfs not initialized\n", mod->name);
1875		err = -EINVAL;
1876		goto out;
1877	}
1878
1879	kobj = kset_find_obj(module_kset, mod->name);
1880	if (kobj) {
1881		pr_err("%s: module is already loaded\n", mod->name);
1882		kobject_put(kobj);
1883		err = -EINVAL;
1884		goto out;
1885	}
1886
1887	mod->mkobj.mod = mod;
1888
1889	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1890	mod->mkobj.kobj.kset = module_kset;
1891	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1892				   "%s", mod->name);
1893	if (err)
1894		mod_kobject_put(mod);
1895
1896	/* delay uevent until full sysfs population */
1897out:
1898	return err;
1899}
1900
1901static int mod_sysfs_setup(struct module *mod,
1902			   const struct load_info *info,
1903			   struct kernel_param *kparam,
1904			   unsigned int num_params)
1905{
1906	int err;
1907
1908	err = mod_sysfs_init(mod);
1909	if (err)
1910		goto out;
1911
1912	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1913	if (!mod->holders_dir) {
1914		err = -ENOMEM;
1915		goto out_unreg;
1916	}
1917
1918	err = module_param_sysfs_setup(mod, kparam, num_params);
1919	if (err)
1920		goto out_unreg_holders;
1921
1922	err = module_add_modinfo_attrs(mod);
1923	if (err)
1924		goto out_unreg_param;
1925
1926	err = add_usage_links(mod);
1927	if (err)
1928		goto out_unreg_modinfo_attrs;
1929
1930	add_sect_attrs(mod, info);
1931	add_notes_attrs(mod, info);
1932
1933	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1934	return 0;
1935
1936out_unreg_modinfo_attrs:
1937	module_remove_modinfo_attrs(mod, -1);
1938out_unreg_param:
1939	module_param_sysfs_remove(mod);
1940out_unreg_holders:
1941	kobject_put(mod->holders_dir);
1942out_unreg:
1943	mod_kobject_put(mod);
1944out:
1945	return err;
1946}
1947
1948static void mod_sysfs_fini(struct module *mod)
1949{
1950	remove_notes_attrs(mod);
1951	remove_sect_attrs(mod);
1952	mod_kobject_put(mod);
1953}
1954
1955static void init_param_lock(struct module *mod)
1956{
1957	mutex_init(&mod->param_lock);
1958}
1959#else /* !CONFIG_SYSFS */
1960
1961static int mod_sysfs_setup(struct module *mod,
1962			   const struct load_info *info,
1963			   struct kernel_param *kparam,
1964			   unsigned int num_params)
1965{
1966	return 0;
1967}
1968
1969static void mod_sysfs_fini(struct module *mod)
1970{
1971}
1972
1973static void module_remove_modinfo_attrs(struct module *mod, int end)
1974{
1975}
1976
1977static void del_usage_links(struct module *mod)
1978{
1979}
1980
1981static void init_param_lock(struct module *mod)
1982{
1983}
1984#endif /* CONFIG_SYSFS */
1985
1986static void mod_sysfs_teardown(struct module *mod)
1987{
1988	del_usage_links(mod);
1989	module_remove_modinfo_attrs(mod, -1);
1990	module_param_sysfs_remove(mod);
1991	kobject_put(mod->mkobj.drivers_dir);
1992	kobject_put(mod->holders_dir);
1993	mod_sysfs_fini(mod);
1994}
1995
 
1996/*
1997 * LKM RO/NX protection: protect module's text/ro-data
1998 * from modification and any data from execution.
1999 *
2000 * General layout of module is:
2001 *          [text] [read-only-data] [ro-after-init] [writable data]
2002 * text_size -----^                ^               ^               ^
2003 * ro_size ------------------------|               |               |
2004 * ro_after_init_size -----------------------------|               |
2005 * size -----------------------------------------------------------|
2006 *
2007 * These values are always page-aligned (as is base)
2008 */
2009
2010/*
2011 * Since some arches are moving towards PAGE_KERNEL module allocations instead
2012 * of PAGE_KERNEL_EXEC, keep frob_text() and module_enable_x() outside of the
2013 * CONFIG_STRICT_MODULE_RWX block below because they are needed regardless of
2014 * whether we are strict.
2015 */
2016#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
2017static void frob_text(const struct module_layout *layout,
2018		      int (*set_memory)(unsigned long start, int num_pages))
2019{
2020	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2021	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
2022	set_memory((unsigned long)layout->base,
2023		   layout->text_size >> PAGE_SHIFT);
2024}
2025
2026static void module_enable_x(const struct module *mod)
2027{
2028	frob_text(&mod->core_layout, set_memory_x);
2029	frob_text(&mod->init_layout, set_memory_x);
2030}
2031#else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2032static void module_enable_x(const struct module *mod) { }
2033#endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2034
2035#ifdef CONFIG_STRICT_MODULE_RWX
2036static void frob_rodata(const struct module_layout *layout,
2037			int (*set_memory)(unsigned long start, int num_pages))
2038{
2039	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2040	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
2041	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
2042	set_memory((unsigned long)layout->base + layout->text_size,
2043		   (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
2044}
2045
2046static void frob_ro_after_init(const struct module_layout *layout,
2047				int (*set_memory)(unsigned long start, int num_pages))
2048{
2049	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2050	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
2051	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2052	set_memory((unsigned long)layout->base + layout->ro_size,
2053		   (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
2054}
2055
2056static void frob_writable_data(const struct module_layout *layout,
2057			       int (*set_memory)(unsigned long start, int num_pages))
2058{
2059	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2060	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2061	BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
2062	set_memory((unsigned long)layout->base + layout->ro_after_init_size,
2063		   (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
2064}
2065
2066static void module_enable_ro(const struct module *mod, bool after_init)
 
 
 
 
 
 
 
 
 
 
 
 
 
2067{
2068	if (!rodata_enabled)
2069		return;
2070
2071	set_vm_flush_reset_perms(mod->core_layout.base);
2072	set_vm_flush_reset_perms(mod->init_layout.base);
2073	frob_text(&mod->core_layout, set_memory_ro);
2074
2075	frob_rodata(&mod->core_layout, set_memory_ro);
2076	frob_text(&mod->init_layout, set_memory_ro);
2077	frob_rodata(&mod->init_layout, set_memory_ro);
2078
2079	if (after_init)
2080		frob_ro_after_init(&mod->core_layout, set_memory_ro);
2081}
2082
2083static void module_enable_nx(const struct module *mod)
2084{
2085	frob_rodata(&mod->core_layout, set_memory_nx);
2086	frob_ro_after_init(&mod->core_layout, set_memory_nx);
2087	frob_writable_data(&mod->core_layout, set_memory_nx);
2088	frob_rodata(&mod->init_layout, set_memory_nx);
2089	frob_writable_data(&mod->init_layout, set_memory_nx);
2090}
2091
2092static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2093				       char *secstrings, struct module *mod)
2094{
2095	const unsigned long shf_wx = SHF_WRITE|SHF_EXECINSTR;
2096	int i;
 
 
 
 
 
 
 
2097
2098	for (i = 0; i < hdr->e_shnum; i++) {
2099		if ((sechdrs[i].sh_flags & shf_wx) == shf_wx)
2100			return -ENOEXEC;
2101	}
 
 
 
 
 
 
 
2102
2103	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2104}
2105
2106#else /* !CONFIG_STRICT_MODULE_RWX */
2107static void module_enable_nx(const struct module *mod) { }
2108static void module_enable_ro(const struct module *mod, bool after_init) {}
2109static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2110				       char *secstrings, struct module *mod)
2111{
2112	return 0;
 
2113}
2114#endif /*  CONFIG_STRICT_MODULE_RWX */
 
 
 
 
2115
2116#ifdef CONFIG_LIVEPATCH
2117/*
2118 * Persist Elf information about a module. Copy the Elf header,
2119 * section header table, section string table, and symtab section
2120 * index from info to mod->klp_info.
2121 */
2122static int copy_module_elf(struct module *mod, struct load_info *info)
2123{
2124	unsigned int size, symndx;
2125	int ret;
2126
2127	size = sizeof(*mod->klp_info);
2128	mod->klp_info = kmalloc(size, GFP_KERNEL);
2129	if (mod->klp_info == NULL)
2130		return -ENOMEM;
2131
2132	/* Elf header */
2133	size = sizeof(mod->klp_info->hdr);
2134	memcpy(&mod->klp_info->hdr, info->hdr, size);
2135
2136	/* Elf section header table */
2137	size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2138	mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2139	if (mod->klp_info->sechdrs == NULL) {
2140		ret = -ENOMEM;
2141		goto free_info;
2142	}
2143
2144	/* Elf section name string table */
2145	size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2146	mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2147	if (mod->klp_info->secstrings == NULL) {
2148		ret = -ENOMEM;
2149		goto free_sechdrs;
2150	}
2151
2152	/* Elf symbol section index */
2153	symndx = info->index.sym;
2154	mod->klp_info->symndx = symndx;
2155
2156	/*
2157	 * For livepatch modules, core_kallsyms.symtab is a complete
2158	 * copy of the original symbol table. Adjust sh_addr to point
2159	 * to core_kallsyms.symtab since the copy of the symtab in module
2160	 * init memory is freed at the end of do_init_module().
2161	 */
2162	mod->klp_info->sechdrs[symndx].sh_addr = \
2163		(unsigned long) mod->core_kallsyms.symtab;
2164
2165	return 0;
2166
2167free_sechdrs:
2168	kfree(mod->klp_info->sechdrs);
2169free_info:
2170	kfree(mod->klp_info);
2171	return ret;
2172}
2173
2174static void free_module_elf(struct module *mod)
2175{
2176	kfree(mod->klp_info->sechdrs);
2177	kfree(mod->klp_info->secstrings);
2178	kfree(mod->klp_info);
2179}
2180#else /* !CONFIG_LIVEPATCH */
2181static int copy_module_elf(struct module *mod, struct load_info *info)
2182{
2183	return 0;
2184}
2185
2186static void free_module_elf(struct module *mod)
2187{
2188}
2189#endif /* CONFIG_LIVEPATCH */
2190
2191void __weak module_memfree(void *module_region)
2192{
2193	/*
2194	 * This memory may be RO, and freeing RO memory in an interrupt is not
2195	 * supported by vmalloc.
2196	 */
2197	WARN_ON(in_interrupt());
2198	vfree(module_region);
2199}
2200
2201void __weak module_arch_cleanup(struct module *mod)
2202{
2203}
2204
2205void __weak module_arch_freeing_init(struct module *mod)
2206{
2207}
2208
2209/* Free a module, remove from lists, etc. */
2210static void free_module(struct module *mod)
2211{
2212	trace_module_free(mod);
2213
2214	mod_sysfs_teardown(mod);
2215
2216	/* We leave it in list to prevent duplicate loads, but make sure
2217	 * that noone uses it while it's being deconstructed. */
2218	mutex_lock(&module_mutex);
2219	mod->state = MODULE_STATE_UNFORMED;
2220	mutex_unlock(&module_mutex);
2221
2222	/* Remove dynamic debug info */
2223	ddebug_remove_module(mod->name);
2224
2225	/* Arch-specific cleanup. */
2226	module_arch_cleanup(mod);
2227
2228	/* Module unload stuff */
2229	module_unload_free(mod);
2230
2231	/* Free any allocated parameters. */
2232	destroy_params(mod->kp, mod->num_kp);
2233
2234	if (is_livepatch_module(mod))
2235		free_module_elf(mod);
2236
2237	/* Now we can delete it from the lists */
2238	mutex_lock(&module_mutex);
2239	/* Unlink carefully: kallsyms could be walking list. */
2240	list_del_rcu(&mod->list);
2241	mod_tree_remove(mod);
2242	/* Remove this module from bug list, this uses list_del_rcu */
2243	module_bug_cleanup(mod);
2244	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2245	synchronize_rcu();
2246	mutex_unlock(&module_mutex);
2247
2248	/* This may be empty, but that's OK */
2249	module_arch_freeing_init(mod);
2250	module_memfree(mod->init_layout.base);
2251	kfree(mod->args);
2252	percpu_modfree(mod);
2253
2254	/* Free lock-classes; relies on the preceding sync_rcu(). */
2255	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2256
2257	/* Finally, free the core (containing the module structure) */
2258	module_memfree(mod->core_layout.base);
2259}
2260
2261void *__symbol_get(const char *symbol)
2262{
2263	struct module *owner;
2264	const struct kernel_symbol *sym;
2265
2266	preempt_disable();
2267	sym = find_symbol(symbol, &owner, NULL, NULL, true, true);
2268	if (sym && strong_try_module_get(owner))
2269		sym = NULL;
2270	preempt_enable();
2271
2272	return sym ? (void *)kernel_symbol_value(sym) : NULL;
2273}
2274EXPORT_SYMBOL_GPL(__symbol_get);
2275
2276/*
2277 * Ensure that an exported symbol [global namespace] does not already exist
2278 * in the kernel or in some other module's exported symbol table.
2279 *
2280 * You must hold the module_mutex.
2281 */
2282static int verify_exported_symbols(struct module *mod)
2283{
2284	unsigned int i;
2285	struct module *owner;
2286	const struct kernel_symbol *s;
2287	struct {
2288		const struct kernel_symbol *sym;
2289		unsigned int num;
2290	} arr[] = {
2291		{ mod->syms, mod->num_syms },
2292		{ mod->gpl_syms, mod->num_gpl_syms },
2293		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
2294#ifdef CONFIG_UNUSED_SYMBOLS
2295		{ mod->unused_syms, mod->num_unused_syms },
2296		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2297#endif
2298	};
2299
2300	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2301		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2302			if (find_symbol(kernel_symbol_name(s), &owner, NULL,
2303					NULL, true, false)) {
2304				pr_err("%s: exports duplicate symbol %s"
2305				       " (owned by %s)\n",
2306				       mod->name, kernel_symbol_name(s),
2307				       module_name(owner));
2308				return -ENOEXEC;
2309			}
2310		}
2311	}
2312	return 0;
2313}
2314
2315/* Change all symbols so that st_value encodes the pointer directly. */
2316static int simplify_symbols(struct module *mod, const struct load_info *info)
2317{
2318	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2319	Elf_Sym *sym = (void *)symsec->sh_addr;
2320	unsigned long secbase;
2321	unsigned int i;
2322	int ret = 0;
2323	const struct kernel_symbol *ksym;
2324
2325	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2326		const char *name = info->strtab + sym[i].st_name;
2327
2328		switch (sym[i].st_shndx) {
2329		case SHN_COMMON:
2330			/* Ignore common symbols */
2331			if (!strncmp(name, "__gnu_lto", 9))
2332				break;
2333
2334			/* We compiled with -fno-common.  These are not
2335			   supposed to happen.  */
2336			pr_debug("Common symbol: %s\n", name);
2337			pr_warn("%s: please compile with -fno-common\n",
2338			       mod->name);
2339			ret = -ENOEXEC;
2340			break;
2341
2342		case SHN_ABS:
2343			/* Don't need to do anything */
2344			pr_debug("Absolute symbol: 0x%08lx\n",
2345			       (long)sym[i].st_value);
2346			break;
2347
2348		case SHN_LIVEPATCH:
2349			/* Livepatch symbols are resolved by livepatch */
2350			break;
2351
2352		case SHN_UNDEF:
2353			ksym = resolve_symbol_wait(mod, info, name);
2354			/* Ok if resolved.  */
2355			if (ksym && !IS_ERR(ksym)) {
2356				sym[i].st_value = kernel_symbol_value(ksym);
2357				break;
2358			}
2359
2360			/* Ok if weak.  */
2361			if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2362				break;
2363
2364			ret = PTR_ERR(ksym) ?: -ENOENT;
2365			pr_warn("%s: Unknown symbol %s (err %d)\n",
2366				mod->name, name, ret);
2367			break;
2368
2369		default:
2370			/* Divert to percpu allocation if a percpu var. */
2371			if (sym[i].st_shndx == info->index.pcpu)
2372				secbase = (unsigned long)mod_percpu(mod);
2373			else
2374				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2375			sym[i].st_value += secbase;
2376			break;
2377		}
2378	}
2379
2380	return ret;
2381}
2382
2383static int apply_relocations(struct module *mod, const struct load_info *info)
2384{
2385	unsigned int i;
2386	int err = 0;
2387
2388	/* Now do relocations. */
2389	for (i = 1; i < info->hdr->e_shnum; i++) {
2390		unsigned int infosec = info->sechdrs[i].sh_info;
2391
2392		/* Not a valid relocation section? */
2393		if (infosec >= info->hdr->e_shnum)
2394			continue;
2395
2396		/* Don't bother with non-allocated sections */
2397		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2398			continue;
2399
 
2400		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2401			err = klp_apply_section_relocs(mod, info->sechdrs,
2402						       info->secstrings,
2403						       info->strtab,
2404						       info->index.sym, i,
2405						       NULL);
2406		else if (info->sechdrs[i].sh_type == SHT_REL)
2407			err = apply_relocate(info->sechdrs, info->strtab,
2408					     info->index.sym, i, mod);
2409		else if (info->sechdrs[i].sh_type == SHT_RELA)
2410			err = apply_relocate_add(info->sechdrs, info->strtab,
2411						 info->index.sym, i, mod);
2412		if (err < 0)
2413			break;
2414	}
2415	return err;
2416}
2417
2418/* Additional bytes needed by arch in front of individual sections */
2419unsigned int __weak arch_mod_section_prepend(struct module *mod,
2420					     unsigned int section)
2421{
2422	/* default implementation just returns zero */
2423	return 0;
2424}
2425
2426/* Update size with this section: return offset. */
2427static long get_offset(struct module *mod, unsigned int *size,
2428		       Elf_Shdr *sechdr, unsigned int section)
2429{
2430	long ret;
2431
2432	*size += arch_mod_section_prepend(mod, section);
2433	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2434	*size = ret + sechdr->sh_size;
2435	return ret;
2436}
2437
2438/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2439   might -- code, read-only data, read-write data, small data.  Tally
2440   sizes, and place the offsets into sh_entsize fields: high bit means it
2441   belongs in init. */
2442static void layout_sections(struct module *mod, struct load_info *info)
2443{
2444	static unsigned long const masks[][2] = {
2445		/* NOTE: all executable code must be the first section
2446		 * in this array; otherwise modify the text_size
2447		 * finder in the two loops below */
2448		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2449		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2450		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2451		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2452		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2453	};
2454	unsigned int m, i;
2455
2456	for (i = 0; i < info->hdr->e_shnum; i++)
2457		info->sechdrs[i].sh_entsize = ~0UL;
2458
2459	pr_debug("Core section allocation order:\n");
2460	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2461		for (i = 0; i < info->hdr->e_shnum; ++i) {
2462			Elf_Shdr *s = &info->sechdrs[i];
2463			const char *sname = info->secstrings + s->sh_name;
2464
2465			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2466			    || (s->sh_flags & masks[m][1])
2467			    || s->sh_entsize != ~0UL
2468			    || module_init_section(sname))
2469				continue;
2470			s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2471			pr_debug("\t%s\n", sname);
2472		}
2473		switch (m) {
2474		case 0: /* executable */
2475			mod->core_layout.size = debug_align(mod->core_layout.size);
2476			mod->core_layout.text_size = mod->core_layout.size;
2477			break;
2478		case 1: /* RO: text and ro-data */
2479			mod->core_layout.size = debug_align(mod->core_layout.size);
2480			mod->core_layout.ro_size = mod->core_layout.size;
2481			break;
2482		case 2: /* RO after init */
2483			mod->core_layout.size = debug_align(mod->core_layout.size);
2484			mod->core_layout.ro_after_init_size = mod->core_layout.size;
2485			break;
2486		case 4: /* whole core */
2487			mod->core_layout.size = debug_align(mod->core_layout.size);
2488			break;
2489		}
2490	}
2491
2492	pr_debug("Init section allocation order:\n");
2493	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2494		for (i = 0; i < info->hdr->e_shnum; ++i) {
2495			Elf_Shdr *s = &info->sechdrs[i];
2496			const char *sname = info->secstrings + s->sh_name;
2497
2498			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2499			    || (s->sh_flags & masks[m][1])
2500			    || s->sh_entsize != ~0UL
2501			    || !module_init_section(sname))
2502				continue;
2503			s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2504					 | INIT_OFFSET_MASK);
2505			pr_debug("\t%s\n", sname);
2506		}
2507		switch (m) {
2508		case 0: /* executable */
2509			mod->init_layout.size = debug_align(mod->init_layout.size);
2510			mod->init_layout.text_size = mod->init_layout.size;
2511			break;
2512		case 1: /* RO: text and ro-data */
2513			mod->init_layout.size = debug_align(mod->init_layout.size);
2514			mod->init_layout.ro_size = mod->init_layout.size;
2515			break;
2516		case 2:
2517			/*
2518			 * RO after init doesn't apply to init_layout (only
2519			 * core_layout), so it just takes the value of ro_size.
2520			 */
2521			mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2522			break;
2523		case 4: /* whole init */
2524			mod->init_layout.size = debug_align(mod->init_layout.size);
2525			break;
2526		}
2527	}
2528}
2529
2530static void set_license(struct module *mod, const char *license)
2531{
2532	if (!license)
2533		license = "unspecified";
2534
2535	if (!license_is_gpl_compatible(license)) {
2536		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2537			pr_warn("%s: module license '%s' taints kernel.\n",
2538				mod->name, license);
2539		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2540				 LOCKDEP_NOW_UNRELIABLE);
2541	}
2542}
2543
2544/* Parse tag=value strings from .modinfo section */
2545static char *next_string(char *string, unsigned long *secsize)
2546{
2547	/* Skip non-zero chars */
2548	while (string[0]) {
2549		string++;
2550		if ((*secsize)-- <= 1)
2551			return NULL;
2552	}
2553
2554	/* Skip any zero padding. */
2555	while (!string[0]) {
2556		string++;
2557		if ((*secsize)-- <= 1)
2558			return NULL;
2559	}
2560	return string;
2561}
2562
2563static char *get_next_modinfo(const struct load_info *info, const char *tag,
2564			      char *prev)
2565{
2566	char *p;
2567	unsigned int taglen = strlen(tag);
2568	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2569	unsigned long size = infosec->sh_size;
2570
2571	/*
2572	 * get_modinfo() calls made before rewrite_section_headers()
2573	 * must use sh_offset, as sh_addr isn't set!
2574	 */
2575	char *modinfo = (char *)info->hdr + infosec->sh_offset;
2576
2577	if (prev) {
2578		size -= prev - modinfo;
2579		modinfo = next_string(prev, &size);
2580	}
2581
2582	for (p = modinfo; p; p = next_string(p, &size)) {
2583		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2584			return p + taglen + 1;
2585	}
2586	return NULL;
2587}
2588
2589static char *get_modinfo(const struct load_info *info, const char *tag)
2590{
2591	return get_next_modinfo(info, tag, NULL);
2592}
2593
2594static void setup_modinfo(struct module *mod, struct load_info *info)
2595{
2596	struct module_attribute *attr;
2597	int i;
2598
2599	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2600		if (attr->setup)
2601			attr->setup(mod, get_modinfo(info, attr->attr.name));
2602	}
2603}
2604
2605static void free_modinfo(struct module *mod)
2606{
2607	struct module_attribute *attr;
2608	int i;
2609
2610	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2611		if (attr->free)
2612			attr->free(mod);
2613	}
2614}
2615
2616#ifdef CONFIG_KALLSYMS
2617
2618/* Lookup exported symbol in given range of kernel_symbols */
2619static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2620							  const struct kernel_symbol *start,
2621							  const struct kernel_symbol *stop)
2622{
2623	return bsearch(name, start, stop - start,
2624			sizeof(struct kernel_symbol), cmp_name);
2625}
2626
2627static int is_exported(const char *name, unsigned long value,
2628		       const struct module *mod)
2629{
2630	const struct kernel_symbol *ks;
2631	if (!mod)
2632		ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2633	else
2634		ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2635
2636	return ks != NULL && kernel_symbol_value(ks) == value;
2637}
2638
2639/* As per nm */
2640static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2641{
2642	const Elf_Shdr *sechdrs = info->sechdrs;
2643
2644	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2645		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2646			return 'v';
2647		else
2648			return 'w';
2649	}
2650	if (sym->st_shndx == SHN_UNDEF)
2651		return 'U';
2652	if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2653		return 'a';
2654	if (sym->st_shndx >= SHN_LORESERVE)
2655		return '?';
2656	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2657		return 't';
2658	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2659	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2660		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2661			return 'r';
2662		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2663			return 'g';
2664		else
2665			return 'd';
2666	}
2667	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2668		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2669			return 's';
2670		else
2671			return 'b';
2672	}
2673	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2674		      ".debug")) {
2675		return 'n';
2676	}
2677	return '?';
2678}
2679
2680static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2681			unsigned int shnum, unsigned int pcpundx)
2682{
2683	const Elf_Shdr *sec;
2684
2685	if (src->st_shndx == SHN_UNDEF
2686	    || src->st_shndx >= shnum
2687	    || !src->st_name)
2688		return false;
2689
2690#ifdef CONFIG_KALLSYMS_ALL
2691	if (src->st_shndx == pcpundx)
2692		return true;
2693#endif
2694
2695	sec = sechdrs + src->st_shndx;
2696	if (!(sec->sh_flags & SHF_ALLOC)
2697#ifndef CONFIG_KALLSYMS_ALL
2698	    || !(sec->sh_flags & SHF_EXECINSTR)
2699#endif
2700	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2701		return false;
2702
2703	return true;
2704}
2705
2706/*
2707 * We only allocate and copy the strings needed by the parts of symtab
2708 * we keep.  This is simple, but has the effect of making multiple
2709 * copies of duplicates.  We could be more sophisticated, see
2710 * linux-kernel thread starting with
2711 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2712 */
2713static void layout_symtab(struct module *mod, struct load_info *info)
2714{
2715	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2716	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2717	const Elf_Sym *src;
2718	unsigned int i, nsrc, ndst, strtab_size = 0;
2719
2720	/* Put symbol section at end of init part of module. */
2721	symsect->sh_flags |= SHF_ALLOC;
2722	symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2723					 info->index.sym) | INIT_OFFSET_MASK;
2724	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2725
2726	src = (void *)info->hdr + symsect->sh_offset;
2727	nsrc = symsect->sh_size / sizeof(*src);
2728
2729	/* Compute total space required for the core symbols' strtab. */
2730	for (ndst = i = 0; i < nsrc; i++) {
2731		if (i == 0 || is_livepatch_module(mod) ||
2732		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2733				   info->index.pcpu)) {
2734			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2735			ndst++;
2736		}
2737	}
2738
2739	/* Append room for core symbols at end of core part. */
2740	info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2741	info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2742	mod->core_layout.size += strtab_size;
2743	info->core_typeoffs = mod->core_layout.size;
2744	mod->core_layout.size += ndst * sizeof(char);
2745	mod->core_layout.size = debug_align(mod->core_layout.size);
2746
2747	/* Put string table section at end of init part of module. */
2748	strsect->sh_flags |= SHF_ALLOC;
2749	strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2750					 info->index.str) | INIT_OFFSET_MASK;
2751	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2752
2753	/* We'll tack temporary mod_kallsyms on the end. */
2754	mod->init_layout.size = ALIGN(mod->init_layout.size,
2755				      __alignof__(struct mod_kallsyms));
2756	info->mod_kallsyms_init_off = mod->init_layout.size;
2757	mod->init_layout.size += sizeof(struct mod_kallsyms);
2758	info->init_typeoffs = mod->init_layout.size;
2759	mod->init_layout.size += nsrc * sizeof(char);
2760	mod->init_layout.size = debug_align(mod->init_layout.size);
2761}
2762
2763/*
2764 * We use the full symtab and strtab which layout_symtab arranged to
2765 * be appended to the init section.  Later we switch to the cut-down
2766 * core-only ones.
2767 */
2768static void add_kallsyms(struct module *mod, const struct load_info *info)
2769{
2770	unsigned int i, ndst;
2771	const Elf_Sym *src;
2772	Elf_Sym *dst;
2773	char *s;
2774	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2775
2776	/* Set up to point into init section. */
2777	mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2778
2779	mod->kallsyms->symtab = (void *)symsec->sh_addr;
2780	mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2781	/* Make sure we get permanent strtab: don't use info->strtab. */
2782	mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2783	mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2784
2785	/*
2786	 * Now populate the cut down core kallsyms for after init
2787	 * and set types up while we still have access to sections.
2788	 */
2789	mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2790	mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2791	mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2792	src = mod->kallsyms->symtab;
2793	for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2794		mod->kallsyms->typetab[i] = elf_type(src + i, info);
2795		if (i == 0 || is_livepatch_module(mod) ||
2796		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2797				   info->index.pcpu)) {
2798			mod->core_kallsyms.typetab[ndst] =
2799			    mod->kallsyms->typetab[i];
2800			dst[ndst] = src[i];
2801			dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2802			s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2803				     KSYM_NAME_LEN) + 1;
2804		}
2805	}
2806	mod->core_kallsyms.num_symtab = ndst;
2807}
2808#else
2809static inline void layout_symtab(struct module *mod, struct load_info *info)
2810{
2811}
2812
2813static void add_kallsyms(struct module *mod, const struct load_info *info)
2814{
2815}
2816#endif /* CONFIG_KALLSYMS */
2817
2818static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2819{
2820	if (!debug)
2821		return;
2822	ddebug_add_module(debug, num, mod->name);
2823}
2824
2825static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2826{
2827	if (debug)
2828		ddebug_remove_module(mod->name);
2829}
2830
2831void * __weak module_alloc(unsigned long size)
2832{
2833	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2834			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2835			NUMA_NO_NODE, __builtin_return_address(0));
2836}
2837
2838bool __weak module_init_section(const char *name)
2839{
2840	return strstarts(name, ".init");
2841}
2842
2843bool __weak module_exit_section(const char *name)
2844{
2845	return strstarts(name, ".exit");
2846}
2847
2848#ifdef CONFIG_DEBUG_KMEMLEAK
2849static void kmemleak_load_module(const struct module *mod,
2850				 const struct load_info *info)
2851{
2852	unsigned int i;
2853
2854	/* only scan the sections containing data */
2855	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2856
2857	for (i = 1; i < info->hdr->e_shnum; i++) {
2858		/* Scan all writable sections that's not executable */
2859		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2860		    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2861		    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2862			continue;
2863
2864		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2865				   info->sechdrs[i].sh_size, GFP_KERNEL);
2866	}
2867}
2868#else
2869static inline void kmemleak_load_module(const struct module *mod,
2870					const struct load_info *info)
2871{
2872}
2873#endif
2874
2875#ifdef CONFIG_MODULE_SIG
2876static int module_sig_check(struct load_info *info, int flags)
2877{
2878	int err = -ENODATA;
2879	const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2880	const char *reason;
2881	const void *mod = info->hdr;
2882
2883	/*
2884	 * Require flags == 0, as a module with version information
2885	 * removed is no longer the module that was signed
2886	 */
2887	if (flags == 0 &&
2888	    info->len > markerlen &&
2889	    memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2890		/* We truncate the module to discard the signature */
2891		info->len -= markerlen;
2892		err = mod_verify_sig(mod, info);
2893	}
2894
2895	switch (err) {
2896	case 0:
2897		info->sig_ok = true;
2898		return 0;
2899
2900		/* We don't permit modules to be loaded into trusted kernels
2901		 * without a valid signature on them, but if we're not
2902		 * enforcing, certain errors are non-fatal.
2903		 */
2904	case -ENODATA:
2905		reason = "Loading of unsigned module";
2906		goto decide;
2907	case -ENOPKG:
2908		reason = "Loading of module with unsupported crypto";
2909		goto decide;
2910	case -ENOKEY:
2911		reason = "Loading of module with unavailable key";
2912	decide:
2913		if (is_module_sig_enforced()) {
2914			pr_notice("%s: %s is rejected\n", info->name, reason);
2915			return -EKEYREJECTED;
2916		}
2917
2918		return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2919
2920		/* All other errors are fatal, including nomem, unparseable
2921		 * signatures and signature check failures - even if signatures
2922		 * aren't required.
2923		 */
2924	default:
2925		return err;
2926	}
2927}
2928#else /* !CONFIG_MODULE_SIG */
2929static int module_sig_check(struct load_info *info, int flags)
2930{
2931	return 0;
2932}
2933#endif /* !CONFIG_MODULE_SIG */
2934
2935/* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2936static int elf_header_check(struct load_info *info)
2937{
2938	if (info->len < sizeof(*(info->hdr)))
2939		return -ENOEXEC;
2940
2941	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2942	    || info->hdr->e_type != ET_REL
2943	    || !elf_check_arch(info->hdr)
2944	    || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2945		return -ENOEXEC;
2946
2947	if (info->hdr->e_shoff >= info->len
2948	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2949		info->len - info->hdr->e_shoff))
2950		return -ENOEXEC;
2951
2952	return 0;
2953}
2954
2955#define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2956
2957static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2958{
2959	do {
2960		unsigned long n = min(len, COPY_CHUNK_SIZE);
2961
2962		if (copy_from_user(dst, usrc, n) != 0)
2963			return -EFAULT;
2964		cond_resched();
2965		dst += n;
2966		usrc += n;
2967		len -= n;
2968	} while (len);
2969	return 0;
2970}
2971
2972#ifdef CONFIG_LIVEPATCH
2973static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2974{
2975	if (get_modinfo(info, "livepatch")) {
2976		mod->klp = true;
2977		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2978		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2979			       mod->name);
2980	}
2981
2982	return 0;
2983}
2984#else /* !CONFIG_LIVEPATCH */
2985static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2986{
2987	if (get_modinfo(info, "livepatch")) {
2988		pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2989		       mod->name);
2990		return -ENOEXEC;
2991	}
2992
2993	return 0;
2994}
2995#endif /* CONFIG_LIVEPATCH */
2996
2997static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2998{
2999	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
3000		return;
3001
3002	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
3003		mod->name);
3004}
3005
3006/* Sets info->hdr and info->len. */
3007static int copy_module_from_user(const void __user *umod, unsigned long len,
3008				  struct load_info *info)
3009{
3010	int err;
3011
3012	info->len = len;
3013	if (info->len < sizeof(*(info->hdr)))
3014		return -ENOEXEC;
3015
3016	err = security_kernel_load_data(LOADING_MODULE);
3017	if (err)
3018		return err;
3019
3020	/* Suck in entire file: we'll want most of it. */
3021	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
 
3022	if (!info->hdr)
3023		return -ENOMEM;
3024
3025	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
3026		vfree(info->hdr);
3027		return -EFAULT;
3028	}
3029
3030	return 0;
3031}
3032
3033static void free_copy(struct load_info *info)
3034{
3035	vfree(info->hdr);
3036}
3037
3038static int rewrite_section_headers(struct load_info *info, int flags)
3039{
3040	unsigned int i;
3041
3042	/* This should always be true, but let's be sure. */
3043	info->sechdrs[0].sh_addr = 0;
3044
3045	for (i = 1; i < info->hdr->e_shnum; i++) {
3046		Elf_Shdr *shdr = &info->sechdrs[i];
3047		if (shdr->sh_type != SHT_NOBITS
3048		    && info->len < shdr->sh_offset + shdr->sh_size) {
3049			pr_err("Module len %lu truncated\n", info->len);
3050			return -ENOEXEC;
3051		}
3052
3053		/* Mark all sections sh_addr with their address in the
3054		   temporary image. */
3055		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3056
3057#ifndef CONFIG_MODULE_UNLOAD
3058		/* Don't load .exit sections */
3059		if (module_exit_section(info->secstrings+shdr->sh_name))
3060			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
3061#endif
3062	}
3063
3064	/* Track but don't keep modinfo and version sections. */
3065	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3066	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3067
3068	return 0;
3069}
3070
3071/*
3072 * Set up our basic convenience variables (pointers to section headers,
3073 * search for module section index etc), and do some basic section
3074 * verification.
3075 *
3076 * Set info->mod to the temporary copy of the module in info->hdr. The final one
3077 * will be allocated in move_module().
3078 */
3079static int setup_load_info(struct load_info *info, int flags)
3080{
3081	unsigned int i;
3082
3083	/* Set up the convenience variables */
3084	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
3085	info->secstrings = (void *)info->hdr
3086		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
3087
3088	/* Try to find a name early so we can log errors with a module name */
3089	info->index.info = find_sec(info, ".modinfo");
3090	if (info->index.info)
 
 
3091		info->name = get_modinfo(info, "name");
3092
3093	/* Find internal symbols and strings. */
3094	for (i = 1; i < info->hdr->e_shnum; i++) {
3095		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3096			info->index.sym = i;
3097			info->index.str = info->sechdrs[i].sh_link;
3098			info->strtab = (char *)info->hdr
3099				+ info->sechdrs[info->index.str].sh_offset;
3100			break;
3101		}
3102	}
3103
3104	if (info->index.sym == 0) {
3105		pr_warn("%s: module has no symbols (stripped?)\n",
3106			info->name ?: "(missing .modinfo section or name field)");
3107		return -ENOEXEC;
3108	}
3109
3110	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3111	if (!info->index.mod) {
3112		pr_warn("%s: No module found in object\n",
3113			info->name ?: "(missing .modinfo section or name field)");
3114		return -ENOEXEC;
3115	}
3116	/* This is temporary: point mod into copy of data. */
3117	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3118
3119	/*
3120	 * If we didn't load the .modinfo 'name' field earlier, fall back to
3121	 * on-disk struct mod 'name' field.
3122	 */
3123	if (!info->name)
3124		info->name = info->mod->name;
3125
3126	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3127		info->index.vers = 0; /* Pretend no __versions section! */
3128	else
3129		info->index.vers = find_sec(info, "__versions");
3130
3131	info->index.pcpu = find_pcpusec(info);
3132
3133	return 0;
3134}
3135
3136static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3137{
3138	const char *modmagic = get_modinfo(info, "vermagic");
3139	int err;
3140
3141	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3142		modmagic = NULL;
3143
3144	/* This is allowed: modprobe --force will invalidate it. */
3145	if (!modmagic) {
3146		err = try_to_force_load(mod, "bad vermagic");
3147		if (err)
3148			return err;
3149	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3150		pr_err("%s: version magic '%s' should be '%s'\n",
3151		       info->name, modmagic, vermagic);
3152		return -ENOEXEC;
3153	}
3154
3155	if (!get_modinfo(info, "intree")) {
3156		if (!test_taint(TAINT_OOT_MODULE))
3157			pr_warn("%s: loading out-of-tree module taints kernel.\n",
3158				mod->name);
3159		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3160	}
3161
3162	check_modinfo_retpoline(mod, info);
3163
3164	if (get_modinfo(info, "staging")) {
3165		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3166		pr_warn("%s: module is from the staging directory, the quality "
3167			"is unknown, you have been warned.\n", mod->name);
3168	}
3169
3170	err = check_modinfo_livepatch(mod, info);
3171	if (err)
3172		return err;
3173
3174	/* Set up license info based on the info section */
3175	set_license(mod, get_modinfo(info, "license"));
3176
3177	return 0;
3178}
3179
3180static int find_module_sections(struct module *mod, struct load_info *info)
3181{
3182	mod->kp = section_objs(info, "__param",
3183			       sizeof(*mod->kp), &mod->num_kp);
3184	mod->syms = section_objs(info, "__ksymtab",
3185				 sizeof(*mod->syms), &mod->num_syms);
3186	mod->crcs = section_addr(info, "__kcrctab");
3187	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3188				     sizeof(*mod->gpl_syms),
3189				     &mod->num_gpl_syms);
3190	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3191	mod->gpl_future_syms = section_objs(info,
3192					    "__ksymtab_gpl_future",
3193					    sizeof(*mod->gpl_future_syms),
3194					    &mod->num_gpl_future_syms);
3195	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3196
3197#ifdef CONFIG_UNUSED_SYMBOLS
3198	mod->unused_syms = section_objs(info, "__ksymtab_unused",
3199					sizeof(*mod->unused_syms),
3200					&mod->num_unused_syms);
3201	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3202	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3203					    sizeof(*mod->unused_gpl_syms),
3204					    &mod->num_unused_gpl_syms);
3205	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3206#endif
3207#ifdef CONFIG_CONSTRUCTORS
3208	mod->ctors = section_objs(info, ".ctors",
3209				  sizeof(*mod->ctors), &mod->num_ctors);
3210	if (!mod->ctors)
3211		mod->ctors = section_objs(info, ".init_array",
3212				sizeof(*mod->ctors), &mod->num_ctors);
3213	else if (find_sec(info, ".init_array")) {
3214		/*
3215		 * This shouldn't happen with same compiler and binutils
3216		 * building all parts of the module.
3217		 */
3218		pr_warn("%s: has both .ctors and .init_array.\n",
3219		       mod->name);
3220		return -EINVAL;
3221	}
3222#endif
3223
3224	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
3225						&mod->noinstr_text_size);
3226
3227#ifdef CONFIG_TRACEPOINTS
3228	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3229					     sizeof(*mod->tracepoints_ptrs),
3230					     &mod->num_tracepoints);
3231#endif
3232#ifdef CONFIG_TREE_SRCU
3233	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3234					     sizeof(*mod->srcu_struct_ptrs),
3235					     &mod->num_srcu_structs);
3236#endif
3237#ifdef CONFIG_BPF_EVENTS
3238	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3239					   sizeof(*mod->bpf_raw_events),
3240					   &mod->num_bpf_raw_events);
3241#endif
3242#ifdef CONFIG_JUMP_LABEL
3243	mod->jump_entries = section_objs(info, "__jump_table",
3244					sizeof(*mod->jump_entries),
3245					&mod->num_jump_entries);
3246#endif
3247#ifdef CONFIG_EVENT_TRACING
3248	mod->trace_events = section_objs(info, "_ftrace_events",
3249					 sizeof(*mod->trace_events),
3250					 &mod->num_trace_events);
3251	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3252					sizeof(*mod->trace_evals),
3253					&mod->num_trace_evals);
3254#endif
3255#ifdef CONFIG_TRACING
3256	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3257					 sizeof(*mod->trace_bprintk_fmt_start),
3258					 &mod->num_trace_bprintk_fmt);
3259#endif
3260#ifdef CONFIG_FTRACE_MCOUNT_RECORD
3261	/* sechdrs[0].sh_size is always zero */
3262	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
3263					     sizeof(*mod->ftrace_callsites),
3264					     &mod->num_ftrace_callsites);
3265#endif
3266#ifdef CONFIG_FUNCTION_ERROR_INJECTION
3267	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3268					    sizeof(*mod->ei_funcs),
3269					    &mod->num_ei_funcs);
3270#endif
3271#ifdef CONFIG_KPROBES
3272	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
3273						&mod->kprobes_text_size);
3274	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
3275						sizeof(unsigned long),
3276						&mod->num_kprobe_blacklist);
3277#endif
3278	mod->extable = section_objs(info, "__ex_table",
3279				    sizeof(*mod->extable), &mod->num_exentries);
3280
3281	if (section_addr(info, "__obsparm"))
3282		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3283
3284	info->debug = section_objs(info, "__dyndbg",
3285				   sizeof(*info->debug), &info->num_debug);
3286
3287	return 0;
3288}
3289
3290static int move_module(struct module *mod, struct load_info *info)
3291{
3292	int i;
3293	void *ptr;
3294
3295	/* Do the allocs. */
3296	ptr = module_alloc(mod->core_layout.size);
3297	/*
3298	 * The pointer to this block is stored in the module structure
3299	 * which is inside the block. Just mark it as not being a
3300	 * leak.
3301	 */
3302	kmemleak_not_leak(ptr);
3303	if (!ptr)
3304		return -ENOMEM;
3305
3306	memset(ptr, 0, mod->core_layout.size);
3307	mod->core_layout.base = ptr;
3308
3309	if (mod->init_layout.size) {
3310		ptr = module_alloc(mod->init_layout.size);
3311		/*
3312		 * The pointer to this block is stored in the module structure
3313		 * which is inside the block. This block doesn't need to be
3314		 * scanned as it contains data and code that will be freed
3315		 * after the module is initialized.
3316		 */
3317		kmemleak_ignore(ptr);
3318		if (!ptr) {
3319			module_memfree(mod->core_layout.base);
3320			return -ENOMEM;
3321		}
3322		memset(ptr, 0, mod->init_layout.size);
3323		mod->init_layout.base = ptr;
3324	} else
3325		mod->init_layout.base = NULL;
3326
3327	/* Transfer each section which specifies SHF_ALLOC */
3328	pr_debug("final section addresses:\n");
3329	for (i = 0; i < info->hdr->e_shnum; i++) {
3330		void *dest;
3331		Elf_Shdr *shdr = &info->sechdrs[i];
3332
3333		if (!(shdr->sh_flags & SHF_ALLOC))
3334			continue;
3335
3336		if (shdr->sh_entsize & INIT_OFFSET_MASK)
3337			dest = mod->init_layout.base
3338				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3339		else
3340			dest = mod->core_layout.base + shdr->sh_entsize;
3341
3342		if (shdr->sh_type != SHT_NOBITS)
3343			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3344		/* Update sh_addr to point to copy in image. */
3345		shdr->sh_addr = (unsigned long)dest;
3346		pr_debug("\t0x%lx %s\n",
3347			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3348	}
3349
3350	return 0;
3351}
3352
3353static int check_module_license_and_versions(struct module *mod)
3354{
3355	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3356
3357	/*
3358	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3359	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3360	 * using GPL-only symbols it needs.
3361	 */
3362	if (strcmp(mod->name, "ndiswrapper") == 0)
3363		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3364
3365	/* driverloader was caught wrongly pretending to be under GPL */
3366	if (strcmp(mod->name, "driverloader") == 0)
3367		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3368				 LOCKDEP_NOW_UNRELIABLE);
3369
3370	/* lve claims to be GPL but upstream won't provide source */
3371	if (strcmp(mod->name, "lve") == 0)
3372		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3373				 LOCKDEP_NOW_UNRELIABLE);
3374
3375	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3376		pr_warn("%s: module license taints kernel.\n", mod->name);
3377
3378#ifdef CONFIG_MODVERSIONS
3379	if ((mod->num_syms && !mod->crcs)
3380	    || (mod->num_gpl_syms && !mod->gpl_crcs)
3381	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3382#ifdef CONFIG_UNUSED_SYMBOLS
3383	    || (mod->num_unused_syms && !mod->unused_crcs)
3384	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3385#endif
3386		) {
3387		return try_to_force_load(mod,
3388					 "no versions for exported symbols");
3389	}
3390#endif
3391	return 0;
3392}
3393
3394static void flush_module_icache(const struct module *mod)
3395{
 
 
 
 
 
 
3396	/*
3397	 * Flush the instruction cache, since we've played with text.
3398	 * Do it before processing of module parameters, so the module
3399	 * can provide parameter accessor functions of its own.
3400	 */
3401	if (mod->init_layout.base)
3402		flush_icache_range((unsigned long)mod->init_layout.base,
3403				   (unsigned long)mod->init_layout.base
3404				   + mod->init_layout.size);
3405	flush_icache_range((unsigned long)mod->core_layout.base,
3406			   (unsigned long)mod->core_layout.base + mod->core_layout.size);
 
 
3407}
3408
3409int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3410				     Elf_Shdr *sechdrs,
3411				     char *secstrings,
3412				     struct module *mod)
3413{
3414	return 0;
3415}
3416
3417/* module_blacklist is a comma-separated list of module names */
3418static char *module_blacklist;
3419static bool blacklisted(const char *module_name)
3420{
3421	const char *p;
3422	size_t len;
3423
3424	if (!module_blacklist)
3425		return false;
3426
3427	for (p = module_blacklist; *p; p += len) {
3428		len = strcspn(p, ",");
3429		if (strlen(module_name) == len && !memcmp(module_name, p, len))
3430			return true;
3431		if (p[len] == ',')
3432			len++;
3433	}
3434	return false;
3435}
3436core_param(module_blacklist, module_blacklist, charp, 0400);
3437
3438static struct module *layout_and_allocate(struct load_info *info, int flags)
3439{
3440	struct module *mod;
3441	unsigned int ndx;
3442	int err;
3443
3444	err = check_modinfo(info->mod, info, flags);
3445	if (err)
3446		return ERR_PTR(err);
3447
3448	/* Allow arches to frob section contents and sizes.  */
3449	err = module_frob_arch_sections(info->hdr, info->sechdrs,
3450					info->secstrings, info->mod);
3451	if (err < 0)
3452		return ERR_PTR(err);
3453
3454	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
3455					  info->secstrings, info->mod);
3456	if (err < 0)
3457		return ERR_PTR(err);
3458
3459	/* We will do a special allocation for per-cpu sections later. */
3460	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3461
3462	/*
3463	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3464	 * layout_sections() can put it in the right place.
3465	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3466	 */
3467	ndx = find_sec(info, ".data..ro_after_init");
3468	if (ndx)
3469		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3470	/*
3471	 * Mark the __jump_table section as ro_after_init as well: these data
3472	 * structures are never modified, with the exception of entries that
3473	 * refer to code in the __init section, which are annotated as such
3474	 * at module load time.
3475	 */
3476	ndx = find_sec(info, "__jump_table");
3477	if (ndx)
3478		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3479
3480	/* Determine total sizes, and put offsets in sh_entsize.  For now
3481	   this is done generically; there doesn't appear to be any
3482	   special cases for the architectures. */
3483	layout_sections(info->mod, info);
3484	layout_symtab(info->mod, info);
3485
3486	/* Allocate and move to the final place */
3487	err = move_module(info->mod, info);
3488	if (err)
3489		return ERR_PTR(err);
3490
3491	/* Module has been copied to its final place now: return it. */
3492	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3493	kmemleak_load_module(mod, info);
3494	return mod;
3495}
3496
3497/* mod is no longer valid after this! */
3498static void module_deallocate(struct module *mod, struct load_info *info)
3499{
3500	percpu_modfree(mod);
3501	module_arch_freeing_init(mod);
3502	module_memfree(mod->init_layout.base);
3503	module_memfree(mod->core_layout.base);
3504}
3505
3506int __weak module_finalize(const Elf_Ehdr *hdr,
3507			   const Elf_Shdr *sechdrs,
3508			   struct module *me)
3509{
3510	return 0;
3511}
3512
3513static int post_relocation(struct module *mod, const struct load_info *info)
3514{
3515	/* Sort exception table now relocations are done. */
3516	sort_extable(mod->extable, mod->extable + mod->num_exentries);
3517
3518	/* Copy relocated percpu area over. */
3519	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3520		       info->sechdrs[info->index.pcpu].sh_size);
3521
3522	/* Setup kallsyms-specific fields. */
3523	add_kallsyms(mod, info);
3524
3525	/* Arch-specific module finalizing. */
3526	return module_finalize(info->hdr, info->sechdrs, mod);
3527}
3528
3529/* Is this module of this name done loading?  No locks held. */
3530static bool finished_loading(const char *name)
3531{
3532	struct module *mod;
3533	bool ret;
3534
3535	/*
3536	 * The module_mutex should not be a heavily contended lock;
3537	 * if we get the occasional sleep here, we'll go an extra iteration
3538	 * in the wait_event_interruptible(), which is harmless.
3539	 */
3540	sched_annotate_sleep();
3541	mutex_lock(&module_mutex);
3542	mod = find_module_all(name, strlen(name), true);
3543	ret = !mod || mod->state == MODULE_STATE_LIVE;
3544	mutex_unlock(&module_mutex);
3545
3546	return ret;
3547}
3548
3549/* Call module constructors. */
3550static void do_mod_ctors(struct module *mod)
3551{
3552#ifdef CONFIG_CONSTRUCTORS
3553	unsigned long i;
3554
3555	for (i = 0; i < mod->num_ctors; i++)
3556		mod->ctors[i]();
3557#endif
3558}
3559
3560/* For freeing module_init on success, in case kallsyms traversing */
3561struct mod_initfree {
3562	struct llist_node node;
3563	void *module_init;
3564};
3565
3566static void do_free_init(struct work_struct *w)
3567{
3568	struct llist_node *pos, *n, *list;
3569	struct mod_initfree *initfree;
3570
3571	list = llist_del_all(&init_free_list);
3572
3573	synchronize_rcu();
3574
3575	llist_for_each_safe(pos, n, list) {
3576		initfree = container_of(pos, struct mod_initfree, node);
3577		module_memfree(initfree->module_init);
3578		kfree(initfree);
3579	}
3580}
3581
3582static int __init modules_wq_init(void)
3583{
3584	INIT_WORK(&init_free_wq, do_free_init);
3585	init_llist_head(&init_free_list);
3586	return 0;
3587}
3588module_init(modules_wq_init);
3589
3590/*
3591 * This is where the real work happens.
3592 *
3593 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3594 * helper command 'lx-symbols'.
3595 */
3596static noinline int do_init_module(struct module *mod)
3597{
3598	int ret = 0;
3599	struct mod_initfree *freeinit;
3600
3601	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3602	if (!freeinit) {
3603		ret = -ENOMEM;
3604		goto fail;
3605	}
3606	freeinit->module_init = mod->init_layout.base;
3607
3608	/*
3609	 * We want to find out whether @mod uses async during init.  Clear
3610	 * PF_USED_ASYNC.  async_schedule*() will set it.
3611	 */
3612	current->flags &= ~PF_USED_ASYNC;
3613
3614	do_mod_ctors(mod);
3615	/* Start the module */
3616	if (mod->init != NULL)
3617		ret = do_one_initcall(mod->init);
3618	if (ret < 0) {
3619		goto fail_free_freeinit;
3620	}
3621	if (ret > 0) {
3622		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3623			"follow 0/-E convention\n"
3624			"%s: loading module anyway...\n",
3625			__func__, mod->name, ret, __func__);
3626		dump_stack();
3627	}
3628
3629	/* Now it's a first class citizen! */
3630	mod->state = MODULE_STATE_LIVE;
3631	blocking_notifier_call_chain(&module_notify_list,
3632				     MODULE_STATE_LIVE, mod);
3633
3634	/*
3635	 * We need to finish all async code before the module init sequence
3636	 * is done.  This has potential to deadlock.  For example, a newly
3637	 * detected block device can trigger request_module() of the
3638	 * default iosched from async probing task.  Once userland helper
3639	 * reaches here, async_synchronize_full() will wait on the async
3640	 * task waiting on request_module() and deadlock.
3641	 *
3642	 * This deadlock is avoided by perfomring async_synchronize_full()
3643	 * iff module init queued any async jobs.  This isn't a full
3644	 * solution as it will deadlock the same if module loading from
3645	 * async jobs nests more than once; however, due to the various
3646	 * constraints, this hack seems to be the best option for now.
3647	 * Please refer to the following thread for details.
3648	 *
3649	 * http://thread.gmane.org/gmane.linux.kernel/1420814
3650	 */
3651	if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3652		async_synchronize_full();
3653
3654	ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3655			mod->init_layout.size);
3656	mutex_lock(&module_mutex);
3657	/* Drop initial reference. */
3658	module_put(mod);
3659	trim_init_extable(mod);
3660#ifdef CONFIG_KALLSYMS
3661	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3662	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3663#endif
3664	module_enable_ro(mod, true);
3665	mod_tree_remove_init(mod);
3666	module_arch_freeing_init(mod);
3667	mod->init_layout.base = NULL;
3668	mod->init_layout.size = 0;
3669	mod->init_layout.ro_size = 0;
3670	mod->init_layout.ro_after_init_size = 0;
3671	mod->init_layout.text_size = 0;
3672	/*
3673	 * We want to free module_init, but be aware that kallsyms may be
3674	 * walking this with preempt disabled.  In all the failure paths, we
3675	 * call synchronize_rcu(), but we don't want to slow down the success
3676	 * path. module_memfree() cannot be called in an interrupt, so do the
3677	 * work and call synchronize_rcu() in a work queue.
3678	 *
3679	 * Note that module_alloc() on most architectures creates W+X page
3680	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3681	 * code such as mark_rodata_ro() which depends on those mappings to
3682	 * be cleaned up needs to sync with the queued work - ie
3683	 * rcu_barrier()
3684	 */
3685	if (llist_add(&freeinit->node, &init_free_list))
3686		schedule_work(&init_free_wq);
3687
3688	mutex_unlock(&module_mutex);
3689	wake_up_all(&module_wq);
3690
3691	return 0;
3692
3693fail_free_freeinit:
3694	kfree(freeinit);
3695fail:
3696	/* Try to protect us from buggy refcounters. */
3697	mod->state = MODULE_STATE_GOING;
3698	synchronize_rcu();
3699	module_put(mod);
3700	blocking_notifier_call_chain(&module_notify_list,
3701				     MODULE_STATE_GOING, mod);
3702	klp_module_going(mod);
3703	ftrace_release_mod(mod);
3704	free_module(mod);
3705	wake_up_all(&module_wq);
3706	return ret;
3707}
3708
3709static int may_init_module(void)
3710{
3711	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3712		return -EPERM;
3713
3714	return 0;
3715}
3716
3717/*
3718 * We try to place it in the list now to make sure it's unique before
3719 * we dedicate too many resources.  In particular, temporary percpu
3720 * memory exhaustion.
3721 */
3722static int add_unformed_module(struct module *mod)
3723{
3724	int err;
3725	struct module *old;
3726
3727	mod->state = MODULE_STATE_UNFORMED;
3728
3729again:
3730	mutex_lock(&module_mutex);
3731	old = find_module_all(mod->name, strlen(mod->name), true);
3732	if (old != NULL) {
3733		if (old->state != MODULE_STATE_LIVE) {
3734			/* Wait in case it fails to load. */
3735			mutex_unlock(&module_mutex);
3736			err = wait_event_interruptible(module_wq,
3737					       finished_loading(mod->name));
3738			if (err)
3739				goto out_unlocked;
3740			goto again;
3741		}
3742		err = -EEXIST;
3743		goto out;
3744	}
3745	mod_update_bounds(mod);
3746	list_add_rcu(&mod->list, &modules);
3747	mod_tree_insert(mod);
3748	err = 0;
3749
3750out:
3751	mutex_unlock(&module_mutex);
3752out_unlocked:
3753	return err;
3754}
3755
3756static int complete_formation(struct module *mod, struct load_info *info)
3757{
3758	int err;
3759
3760	mutex_lock(&module_mutex);
3761
3762	/* Find duplicate symbols (must be called under lock). */
3763	err = verify_exported_symbols(mod);
3764	if (err < 0)
3765		goto out;
3766
3767	/* This relies on module_mutex for list integrity. */
3768	module_bug_finalize(info->hdr, info->sechdrs, mod);
3769
3770	module_enable_ro(mod, false);
3771	module_enable_nx(mod);
3772	module_enable_x(mod);
3773
3774	/* Mark state as coming so strong_try_module_get() ignores us,
3775	 * but kallsyms etc. can see us. */
3776	mod->state = MODULE_STATE_COMING;
3777	mutex_unlock(&module_mutex);
3778
3779	return 0;
3780
3781out:
3782	mutex_unlock(&module_mutex);
3783	return err;
3784}
3785
3786static int prepare_coming_module(struct module *mod)
3787{
3788	int err;
3789
3790	ftrace_module_enable(mod);
3791	err = klp_module_coming(mod);
3792	if (err)
3793		return err;
3794
3795	blocking_notifier_call_chain(&module_notify_list,
3796				     MODULE_STATE_COMING, mod);
3797	return 0;
3798}
3799
3800static int unknown_module_param_cb(char *param, char *val, const char *modname,
3801				   void *arg)
3802{
3803	struct module *mod = arg;
3804	int ret;
3805
3806	if (strcmp(param, "async_probe") == 0) {
3807		mod->async_probe_requested = true;
3808		return 0;
3809	}
3810
3811	/* Check for magic 'dyndbg' arg */
3812	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3813	if (ret != 0)
3814		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3815	return 0;
3816}
3817
3818/* Allocate and load the module: note that size of section 0 is always
3819   zero, and we rely on this for optional sections. */
3820static int load_module(struct load_info *info, const char __user *uargs,
3821		       int flags)
3822{
3823	struct module *mod;
3824	long err = 0;
3825	char *after_dashes;
3826
3827	err = elf_header_check(info);
3828	if (err)
3829		goto free_copy;
3830
3831	err = setup_load_info(info, flags);
3832	if (err)
3833		goto free_copy;
3834
3835	if (blacklisted(info->name)) {
3836		err = -EPERM;
3837		goto free_copy;
3838	}
3839
3840	err = module_sig_check(info, flags);
3841	if (err)
3842		goto free_copy;
3843
3844	err = rewrite_section_headers(info, flags);
3845	if (err)
3846		goto free_copy;
3847
3848	/* Check module struct version now, before we try to use module. */
3849	if (!check_modstruct_version(info, info->mod)) {
3850		err = -ENOEXEC;
3851		goto free_copy;
3852	}
3853
3854	/* Figure out module layout, and allocate all the memory. */
3855	mod = layout_and_allocate(info, flags);
3856	if (IS_ERR(mod)) {
3857		err = PTR_ERR(mod);
3858		goto free_copy;
3859	}
3860
3861	audit_log_kern_module(mod->name);
3862
3863	/* Reserve our place in the list. */
3864	err = add_unformed_module(mod);
3865	if (err)
3866		goto free_module;
3867
3868#ifdef CONFIG_MODULE_SIG
3869	mod->sig_ok = info->sig_ok;
3870	if (!mod->sig_ok) {
3871		pr_notice_once("%s: module verification failed: signature "
3872			       "and/or required key missing - tainting "
3873			       "kernel\n", mod->name);
3874		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3875	}
3876#endif
3877
3878	/* To avoid stressing percpu allocator, do this once we're unique. */
3879	err = percpu_modalloc(mod, info);
3880	if (err)
3881		goto unlink_mod;
3882
3883	/* Now module is in final location, initialize linked lists, etc. */
3884	err = module_unload_init(mod);
3885	if (err)
3886		goto unlink_mod;
3887
3888	init_param_lock(mod);
3889
3890	/* Now we've got everything in the final locations, we can
3891	 * find optional sections. */
3892	err = find_module_sections(mod, info);
3893	if (err)
3894		goto free_unload;
3895
3896	err = check_module_license_and_versions(mod);
3897	if (err)
3898		goto free_unload;
3899
3900	/* Set up MODINFO_ATTR fields */
3901	setup_modinfo(mod, info);
3902
3903	/* Fix up syms, so that st_value is a pointer to location. */
3904	err = simplify_symbols(mod, info);
3905	if (err < 0)
3906		goto free_modinfo;
3907
3908	err = apply_relocations(mod, info);
3909	if (err < 0)
3910		goto free_modinfo;
3911
3912	err = post_relocation(mod, info);
3913	if (err < 0)
3914		goto free_modinfo;
3915
3916	flush_module_icache(mod);
3917
3918	/* Now copy in args */
3919	mod->args = strndup_user(uargs, ~0UL >> 1);
3920	if (IS_ERR(mod->args)) {
3921		err = PTR_ERR(mod->args);
3922		goto free_arch_cleanup;
3923	}
3924
3925	dynamic_debug_setup(mod, info->debug, info->num_debug);
3926
3927	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3928	ftrace_module_init(mod);
3929
3930	/* Finally it's fully formed, ready to start executing. */
3931	err = complete_formation(mod, info);
3932	if (err)
3933		goto ddebug_cleanup;
3934
3935	err = prepare_coming_module(mod);
3936	if (err)
3937		goto bug_cleanup;
3938
3939	/* Module is ready to execute: parsing args may do that. */
3940	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3941				  -32768, 32767, mod,
3942				  unknown_module_param_cb);
3943	if (IS_ERR(after_dashes)) {
3944		err = PTR_ERR(after_dashes);
3945		goto coming_cleanup;
3946	} else if (after_dashes) {
3947		pr_warn("%s: parameters '%s' after `--' ignored\n",
3948		       mod->name, after_dashes);
3949	}
3950
3951	/* Link in to sysfs. */
3952	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3953	if (err < 0)
3954		goto coming_cleanup;
3955
3956	if (is_livepatch_module(mod)) {
3957		err = copy_module_elf(mod, info);
3958		if (err < 0)
3959			goto sysfs_cleanup;
3960	}
3961
3962	/* Get rid of temporary copy. */
3963	free_copy(info);
3964
3965	/* Done! */
3966	trace_module_load(mod);
3967
3968	return do_init_module(mod);
3969
3970 sysfs_cleanup:
3971	mod_sysfs_teardown(mod);
3972 coming_cleanup:
3973	mod->state = MODULE_STATE_GOING;
3974	destroy_params(mod->kp, mod->num_kp);
3975	blocking_notifier_call_chain(&module_notify_list,
3976				     MODULE_STATE_GOING, mod);
3977	klp_module_going(mod);
3978 bug_cleanup:
3979	/* module_bug_cleanup needs module_mutex protection */
3980	mutex_lock(&module_mutex);
3981	module_bug_cleanup(mod);
3982	mutex_unlock(&module_mutex);
3983
3984 ddebug_cleanup:
3985	ftrace_release_mod(mod);
3986	dynamic_debug_remove(mod, info->debug);
3987	synchronize_rcu();
3988	kfree(mod->args);
3989 free_arch_cleanup:
3990	module_arch_cleanup(mod);
3991 free_modinfo:
3992	free_modinfo(mod);
3993 free_unload:
3994	module_unload_free(mod);
3995 unlink_mod:
3996	mutex_lock(&module_mutex);
3997	/* Unlink carefully: kallsyms could be walking list. */
3998	list_del_rcu(&mod->list);
3999	mod_tree_remove(mod);
4000	wake_up_all(&module_wq);
4001	/* Wait for RCU-sched synchronizing before releasing mod->list. */
4002	synchronize_rcu();
4003	mutex_unlock(&module_mutex);
4004 free_module:
4005	/* Free lock-classes; relies on the preceding sync_rcu() */
4006	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
4007
4008	module_deallocate(mod, info);
4009 free_copy:
4010	free_copy(info);
4011	return err;
4012}
4013
4014SYSCALL_DEFINE3(init_module, void __user *, umod,
4015		unsigned long, len, const char __user *, uargs)
4016{
4017	int err;
4018	struct load_info info = { };
4019
4020	err = may_init_module();
4021	if (err)
4022		return err;
4023
4024	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
4025	       umod, len, uargs);
4026
4027	err = copy_module_from_user(umod, len, &info);
4028	if (err)
4029		return err;
4030
4031	return load_module(&info, uargs, 0);
4032}
4033
4034SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
4035{
4036	struct load_info info = { };
4037	loff_t size;
4038	void *hdr;
4039	int err;
4040
4041	err = may_init_module();
4042	if (err)
4043		return err;
4044
4045	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4046
4047	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4048		      |MODULE_INIT_IGNORE_VERMAGIC))
4049		return -EINVAL;
4050
4051	err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
4052				       READING_MODULE);
4053	if (err)
4054		return err;
4055	info.hdr = hdr;
4056	info.len = size;
4057
4058	return load_module(&info, uargs, flags);
4059}
4060
4061static inline int within(unsigned long addr, void *start, unsigned long size)
4062{
4063	return ((void *)addr >= start && (void *)addr < start + size);
4064}
4065
4066#ifdef CONFIG_KALLSYMS
4067/*
4068 * This ignores the intensely annoying "mapping symbols" found
4069 * in ARM ELF files: $a, $t and $d.
4070 */
4071static inline int is_arm_mapping_symbol(const char *str)
4072{
4073	if (str[0] == '.' && str[1] == 'L')
4074		return true;
4075	return str[0] == '$' && strchr("axtd", str[1])
4076	       && (str[2] == '\0' || str[2] == '.');
4077}
4078
4079static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4080{
4081	return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4082}
4083
4084/*
4085 * Given a module and address, find the corresponding symbol and return its name
4086 * while providing its size and offset if needed.
4087 */
4088static const char *find_kallsyms_symbol(struct module *mod,
4089					unsigned long addr,
4090					unsigned long *size,
4091					unsigned long *offset)
4092{
4093	unsigned int i, best = 0;
4094	unsigned long nextval, bestval;
4095	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4096
4097	/* At worse, next value is at end of module */
4098	if (within_module_init(addr, mod))
4099		nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4100	else
4101		nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4102
4103	bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4104
4105	/* Scan for closest preceding symbol, and next symbol. (ELF
4106	   starts real symbols at 1). */
4107	for (i = 1; i < kallsyms->num_symtab; i++) {
4108		const Elf_Sym *sym = &kallsyms->symtab[i];
4109		unsigned long thisval = kallsyms_symbol_value(sym);
4110
4111		if (sym->st_shndx == SHN_UNDEF)
4112			continue;
4113
4114		/* We ignore unnamed symbols: they're uninformative
4115		 * and inserted at a whim. */
4116		if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4117		    || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4118			continue;
4119
4120		if (thisval <= addr && thisval > bestval) {
4121			best = i;
4122			bestval = thisval;
4123		}
4124		if (thisval > addr && thisval < nextval)
4125			nextval = thisval;
4126	}
4127
4128	if (!best)
4129		return NULL;
4130
4131	if (size)
4132		*size = nextval - bestval;
4133	if (offset)
4134		*offset = addr - bestval;
4135
4136	return kallsyms_symbol_name(kallsyms, best);
4137}
4138
4139void * __weak dereference_module_function_descriptor(struct module *mod,
4140						     void *ptr)
4141{
4142	return ptr;
4143}
4144
4145/* For kallsyms to ask for address resolution.  NULL means not found.  Careful
4146 * not to lock to avoid deadlock on oopses, simply disable preemption. */
4147const char *module_address_lookup(unsigned long addr,
4148			    unsigned long *size,
4149			    unsigned long *offset,
4150			    char **modname,
4151			    char *namebuf)
4152{
4153	const char *ret = NULL;
4154	struct module *mod;
4155
4156	preempt_disable();
4157	mod = __module_address(addr);
4158	if (mod) {
4159		if (modname)
4160			*modname = mod->name;
4161
4162		ret = find_kallsyms_symbol(mod, addr, size, offset);
4163	}
4164	/* Make a copy in here where it's safe */
4165	if (ret) {
4166		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4167		ret = namebuf;
4168	}
4169	preempt_enable();
4170
4171	return ret;
4172}
4173
4174int lookup_module_symbol_name(unsigned long addr, char *symname)
4175{
4176	struct module *mod;
4177
4178	preempt_disable();
4179	list_for_each_entry_rcu(mod, &modules, list) {
4180		if (mod->state == MODULE_STATE_UNFORMED)
4181			continue;
4182		if (within_module(addr, mod)) {
4183			const char *sym;
4184
4185			sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4186			if (!sym)
4187				goto out;
4188
4189			strlcpy(symname, sym, KSYM_NAME_LEN);
4190			preempt_enable();
4191			return 0;
4192		}
4193	}
4194out:
4195	preempt_enable();
4196	return -ERANGE;
4197}
4198
4199int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4200			unsigned long *offset, char *modname, char *name)
4201{
4202	struct module *mod;
4203
4204	preempt_disable();
4205	list_for_each_entry_rcu(mod, &modules, list) {
4206		if (mod->state == MODULE_STATE_UNFORMED)
4207			continue;
4208		if (within_module(addr, mod)) {
4209			const char *sym;
4210
4211			sym = find_kallsyms_symbol(mod, addr, size, offset);
4212			if (!sym)
4213				goto out;
4214			if (modname)
4215				strlcpy(modname, mod->name, MODULE_NAME_LEN);
4216			if (name)
4217				strlcpy(name, sym, KSYM_NAME_LEN);
4218			preempt_enable();
4219			return 0;
4220		}
4221	}
4222out:
4223	preempt_enable();
4224	return -ERANGE;
4225}
4226
4227int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4228			char *name, char *module_name, int *exported)
4229{
4230	struct module *mod;
4231
4232	preempt_disable();
4233	list_for_each_entry_rcu(mod, &modules, list) {
4234		struct mod_kallsyms *kallsyms;
4235
4236		if (mod->state == MODULE_STATE_UNFORMED)
4237			continue;
4238		kallsyms = rcu_dereference_sched(mod->kallsyms);
4239		if (symnum < kallsyms->num_symtab) {
4240			const Elf_Sym *sym = &kallsyms->symtab[symnum];
4241
4242			*value = kallsyms_symbol_value(sym);
4243			*type = kallsyms->typetab[symnum];
4244			strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4245			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4246			*exported = is_exported(name, *value, mod);
4247			preempt_enable();
4248			return 0;
4249		}
4250		symnum -= kallsyms->num_symtab;
4251	}
4252	preempt_enable();
4253	return -ERANGE;
4254}
4255
4256/* Given a module and name of symbol, find and return the symbol's value */
4257static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4258{
4259	unsigned int i;
4260	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4261
4262	for (i = 0; i < kallsyms->num_symtab; i++) {
4263		const Elf_Sym *sym = &kallsyms->symtab[i];
4264
4265		if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4266		    sym->st_shndx != SHN_UNDEF)
4267			return kallsyms_symbol_value(sym);
4268	}
4269	return 0;
4270}
4271
4272/* Look for this name: can be of form module:name. */
4273unsigned long module_kallsyms_lookup_name(const char *name)
4274{
4275	struct module *mod;
4276	char *colon;
4277	unsigned long ret = 0;
4278
4279	/* Don't lock: we're in enough trouble already. */
4280	preempt_disable();
4281	if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4282		if ((mod = find_module_all(name, colon - name, false)) != NULL)
4283			ret = find_kallsyms_symbol_value(mod, colon+1);
4284	} else {
4285		list_for_each_entry_rcu(mod, &modules, list) {
4286			if (mod->state == MODULE_STATE_UNFORMED)
4287				continue;
4288			if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4289				break;
4290		}
4291	}
4292	preempt_enable();
4293	return ret;
4294}
4295
4296int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4297					     struct module *, unsigned long),
4298				   void *data)
4299{
4300	struct module *mod;
4301	unsigned int i;
4302	int ret;
4303
4304	module_assert_mutex();
4305
4306	list_for_each_entry(mod, &modules, list) {
4307		/* We hold module_mutex: no need for rcu_dereference_sched */
4308		struct mod_kallsyms *kallsyms = mod->kallsyms;
4309
4310		if (mod->state == MODULE_STATE_UNFORMED)
4311			continue;
4312		for (i = 0; i < kallsyms->num_symtab; i++) {
4313			const Elf_Sym *sym = &kallsyms->symtab[i];
4314
4315			if (sym->st_shndx == SHN_UNDEF)
4316				continue;
4317
4318			ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4319				 mod, kallsyms_symbol_value(sym));
4320			if (ret != 0)
4321				return ret;
4322		}
4323	}
4324	return 0;
4325}
4326#endif /* CONFIG_KALLSYMS */
4327
4328/* Maximum number of characters written by module_flags() */
4329#define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4330
4331/* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4332static char *module_flags(struct module *mod, char *buf)
4333{
4334	int bx = 0;
4335
4336	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4337	if (mod->taints ||
4338	    mod->state == MODULE_STATE_GOING ||
4339	    mod->state == MODULE_STATE_COMING) {
4340		buf[bx++] = '(';
4341		bx += module_flags_taint(mod, buf + bx);
4342		/* Show a - for module-is-being-unloaded */
4343		if (mod->state == MODULE_STATE_GOING)
4344			buf[bx++] = '-';
4345		/* Show a + for module-is-being-loaded */
4346		if (mod->state == MODULE_STATE_COMING)
4347			buf[bx++] = '+';
4348		buf[bx++] = ')';
4349	}
4350	buf[bx] = '\0';
4351
4352	return buf;
4353}
4354
4355#ifdef CONFIG_PROC_FS
4356/* Called by the /proc file system to return a list of modules. */
4357static void *m_start(struct seq_file *m, loff_t *pos)
4358{
4359	mutex_lock(&module_mutex);
4360	return seq_list_start(&modules, *pos);
4361}
4362
4363static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4364{
4365	return seq_list_next(p, &modules, pos);
4366}
4367
4368static void m_stop(struct seq_file *m, void *p)
4369{
4370	mutex_unlock(&module_mutex);
4371}
4372
4373static int m_show(struct seq_file *m, void *p)
4374{
4375	struct module *mod = list_entry(p, struct module, list);
4376	char buf[MODULE_FLAGS_BUF_SIZE];
4377	void *value;
4378
4379	/* We always ignore unformed modules. */
4380	if (mod->state == MODULE_STATE_UNFORMED)
4381		return 0;
4382
4383	seq_printf(m, "%s %u",
4384		   mod->name, mod->init_layout.size + mod->core_layout.size);
4385	print_unload_info(m, mod);
4386
4387	/* Informative for users. */
4388	seq_printf(m, " %s",
4389		   mod->state == MODULE_STATE_GOING ? "Unloading" :
4390		   mod->state == MODULE_STATE_COMING ? "Loading" :
4391		   "Live");
4392	/* Used by oprofile and other similar tools. */
4393	value = m->private ? NULL : mod->core_layout.base;
4394	seq_printf(m, " 0x%px", value);
4395
4396	/* Taints info */
4397	if (mod->taints)
4398		seq_printf(m, " %s", module_flags(mod, buf));
4399
4400	seq_puts(m, "\n");
4401	return 0;
4402}
4403
4404/* Format: modulename size refcount deps address
4405
4406   Where refcount is a number or -, and deps is a comma-separated list
4407   of depends or -.
4408*/
4409static const struct seq_operations modules_op = {
4410	.start	= m_start,
4411	.next	= m_next,
4412	.stop	= m_stop,
4413	.show	= m_show
4414};
4415
4416/*
4417 * This also sets the "private" pointer to non-NULL if the
4418 * kernel pointers should be hidden (so you can just test
4419 * "m->private" to see if you should keep the values private).
4420 *
4421 * We use the same logic as for /proc/kallsyms.
4422 */
4423static int modules_open(struct inode *inode, struct file *file)
4424{
4425	int err = seq_open(file, &modules_op);
4426
4427	if (!err) {
4428		struct seq_file *m = file->private_data;
4429		m->private = kallsyms_show_value(file->f_cred) ? NULL : (void *)8ul;
4430	}
4431
4432	return err;
4433}
4434
4435static const struct proc_ops modules_proc_ops = {
4436	.proc_flags	= PROC_ENTRY_PERMANENT,
4437	.proc_open	= modules_open,
4438	.proc_read	= seq_read,
4439	.proc_lseek	= seq_lseek,
4440	.proc_release	= seq_release,
4441};
4442
4443static int __init proc_modules_init(void)
4444{
4445	proc_create("modules", 0, NULL, &modules_proc_ops);
4446	return 0;
4447}
4448module_init(proc_modules_init);
4449#endif
4450
4451/* Given an address, look for it in the module exception tables. */
4452const struct exception_table_entry *search_module_extables(unsigned long addr)
4453{
4454	const struct exception_table_entry *e = NULL;
4455	struct module *mod;
4456
4457	preempt_disable();
4458	mod = __module_address(addr);
4459	if (!mod)
4460		goto out;
4461
4462	if (!mod->num_exentries)
4463		goto out;
4464
4465	e = search_extable(mod->extable,
4466			   mod->num_exentries,
4467			   addr);
4468out:
4469	preempt_enable();
4470
4471	/*
4472	 * Now, if we found one, we are running inside it now, hence
4473	 * we cannot unload the module, hence no refcnt needed.
4474	 */
4475	return e;
4476}
4477
4478/*
4479 * is_module_address - is this address inside a module?
4480 * @addr: the address to check.
4481 *
4482 * See is_module_text_address() if you simply want to see if the address
4483 * is code (not data).
4484 */
4485bool is_module_address(unsigned long addr)
4486{
4487	bool ret;
4488
4489	preempt_disable();
4490	ret = __module_address(addr) != NULL;
4491	preempt_enable();
4492
4493	return ret;
4494}
4495
4496/*
4497 * __module_address - get the module which contains an address.
4498 * @addr: the address.
4499 *
4500 * Must be called with preempt disabled or module mutex held so that
4501 * module doesn't get freed during this.
4502 */
4503struct module *__module_address(unsigned long addr)
4504{
4505	struct module *mod;
4506
4507	if (addr < module_addr_min || addr > module_addr_max)
4508		return NULL;
4509
4510	module_assert_mutex_or_preempt();
4511
4512	mod = mod_find(addr);
4513	if (mod) {
4514		BUG_ON(!within_module(addr, mod));
4515		if (mod->state == MODULE_STATE_UNFORMED)
4516			mod = NULL;
4517	}
4518	return mod;
4519}
 
4520
4521/*
4522 * is_module_text_address - is this address inside module code?
4523 * @addr: the address to check.
4524 *
4525 * See is_module_address() if you simply want to see if the address is
4526 * anywhere in a module.  See kernel_text_address() for testing if an
4527 * address corresponds to kernel or module code.
4528 */
4529bool is_module_text_address(unsigned long addr)
4530{
4531	bool ret;
4532
4533	preempt_disable();
4534	ret = __module_text_address(addr) != NULL;
4535	preempt_enable();
4536
4537	return ret;
4538}
4539
4540/*
4541 * __module_text_address - get the module whose code contains an address.
4542 * @addr: the address.
4543 *
4544 * Must be called with preempt disabled or module mutex held so that
4545 * module doesn't get freed during this.
4546 */
4547struct module *__module_text_address(unsigned long addr)
4548{
4549	struct module *mod = __module_address(addr);
4550	if (mod) {
4551		/* Make sure it's within the text section. */
4552		if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4553		    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4554			mod = NULL;
4555	}
4556	return mod;
4557}
 
4558
4559/* Don't grab lock, we're oopsing. */
4560void print_modules(void)
4561{
4562	struct module *mod;
4563	char buf[MODULE_FLAGS_BUF_SIZE];
4564
4565	printk(KERN_DEFAULT "Modules linked in:");
4566	/* Most callers should already have preempt disabled, but make sure */
4567	preempt_disable();
4568	list_for_each_entry_rcu(mod, &modules, list) {
4569		if (mod->state == MODULE_STATE_UNFORMED)
4570			continue;
4571		pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4572	}
4573	preempt_enable();
4574	if (last_unloaded_module[0])
4575		pr_cont(" [last unloaded: %s]", last_unloaded_module);
4576	pr_cont("\n");
4577}
4578
4579#ifdef CONFIG_MODVERSIONS
4580/* Generate the signature for all relevant module structures here.
4581 * If these change, we don't want to try to parse the module. */
4582void module_layout(struct module *mod,
4583		   struct modversion_info *ver,
4584		   struct kernel_param *kp,
4585		   struct kernel_symbol *ks,
4586		   struct tracepoint * const *tp)
4587{
4588}
4589EXPORT_SYMBOL(module_layout);
4590#endif