Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3   Copyright (C) 2002 Richard Henderson
   4   Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
 
 
 
   5
   6*/
   7#include <linux/export.h>
   8#include <linux/extable.h>
   9#include <linux/moduleloader.h>
  10#include <linux/module_signature.h>
  11#include <linux/trace_events.h>
  12#include <linux/init.h>
  13#include <linux/kallsyms.h>
 
  14#include <linux/file.h>
  15#include <linux/fs.h>
  16#include <linux/sysfs.h>
  17#include <linux/kernel.h>
 
  18#include <linux/slab.h>
  19#include <linux/vmalloc.h>
  20#include <linux/elf.h>
  21#include <linux/proc_fs.h>
  22#include <linux/security.h>
  23#include <linux/seq_file.h>
  24#include <linux/syscalls.h>
  25#include <linux/fcntl.h>
  26#include <linux/rcupdate.h>
  27#include <linux/capability.h>
  28#include <linux/cpu.h>
  29#include <linux/moduleparam.h>
  30#include <linux/errno.h>
  31#include <linux/err.h>
  32#include <linux/vermagic.h>
  33#include <linux/notifier.h>
  34#include <linux/sched.h>
  35#include <linux/device.h>
  36#include <linux/string.h>
  37#include <linux/mutex.h>
  38#include <linux/rculist.h>
  39#include <linux/uaccess.h>
  40#include <asm/cacheflush.h>
  41#include <linux/set_memory.h>
  42#include <asm/mmu_context.h>
  43#include <linux/license.h>
  44#include <asm/sections.h>
  45#include <linux/tracepoint.h>
  46#include <linux/ftrace.h>
  47#include <linux/livepatch.h>
  48#include <linux/async.h>
  49#include <linux/percpu.h>
  50#include <linux/kmemleak.h>
  51#include <linux/jump_label.h>
  52#include <linux/pfn.h>
  53#include <linux/bsearch.h>
  54#include <linux/dynamic_debug.h>
  55#include <linux/audit.h>
  56#include <uapi/linux/module.h>
  57#include "module-internal.h"
  58
  59#define CREATE_TRACE_POINTS
  60#include <trace/events/module.h>
  61
  62#ifndef ARCH_SHF_SMALL
  63#define ARCH_SHF_SMALL 0
  64#endif
  65
  66/*
  67 * Modules' sections will be aligned on page boundaries
  68 * to ensure complete separation of code and data, but
  69 * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
  70 */
  71#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
  72# define debug_align(X) ALIGN(X, PAGE_SIZE)
  73#else
  74# define debug_align(X) (X)
  75#endif
  76
  77/* If this is set, the section belongs in the init part of the module */
  78#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
  79
  80/*
  81 * Mutex protects:
  82 * 1) List of modules (also safely readable with preempt_disable),
  83 * 2) module_use links,
  84 * 3) module_addr_min/module_addr_max.
  85 * (delete and add uses RCU list operations). */
  86DEFINE_MUTEX(module_mutex);
  87EXPORT_SYMBOL_GPL(module_mutex);
  88static LIST_HEAD(modules);
  89
  90/* Work queue for freeing init sections in success case */
  91static struct work_struct init_free_wq;
  92static struct llist_head init_free_list;
 
  93
  94#ifdef CONFIG_MODULES_TREE_LOOKUP
  95
  96/*
  97 * Use a latched RB-tree for __module_address(); this allows us to use
  98 * RCU-sched lookups of the address from any context.
  99 *
 100 * This is conditional on PERF_EVENTS || TRACING because those can really hit
 101 * __module_address() hard by doing a lot of stack unwinding; potentially from
 102 * NMI context.
 103 */
 104
 105static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
 106{
 107	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 108
 109	return (unsigned long)layout->base;
 110}
 111
 112static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
 113{
 114	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 115
 116	return (unsigned long)layout->size;
 117}
 118
 119static __always_inline bool
 120mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
 121{
 122	return __mod_tree_val(a) < __mod_tree_val(b);
 123}
 124
 125static __always_inline int
 126mod_tree_comp(void *key, struct latch_tree_node *n)
 127{
 128	unsigned long val = (unsigned long)key;
 129	unsigned long start, end;
 130
 131	start = __mod_tree_val(n);
 132	if (val < start)
 133		return -1;
 134
 135	end = start + __mod_tree_size(n);
 136	if (val >= end)
 137		return 1;
 138
 139	return 0;
 140}
 141
 142static const struct latch_tree_ops mod_tree_ops = {
 143	.less = mod_tree_less,
 144	.comp = mod_tree_comp,
 145};
 146
 147static struct mod_tree_root {
 148	struct latch_tree_root root;
 149	unsigned long addr_min;
 150	unsigned long addr_max;
 151} mod_tree __cacheline_aligned = {
 152	.addr_min = -1UL,
 153};
 154
 155#define module_addr_min mod_tree.addr_min
 156#define module_addr_max mod_tree.addr_max
 157
 158static noinline void __mod_tree_insert(struct mod_tree_node *node)
 159{
 160	latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
 161}
 162
 163static void __mod_tree_remove(struct mod_tree_node *node)
 164{
 165	latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
 166}
 167
 168/*
 169 * These modifications: insert, remove_init and remove; are serialized by the
 170 * module_mutex.
 171 */
 172static void mod_tree_insert(struct module *mod)
 173{
 174	mod->core_layout.mtn.mod = mod;
 175	mod->init_layout.mtn.mod = mod;
 176
 177	__mod_tree_insert(&mod->core_layout.mtn);
 178	if (mod->init_layout.size)
 179		__mod_tree_insert(&mod->init_layout.mtn);
 180}
 181
 182static void mod_tree_remove_init(struct module *mod)
 183{
 184	if (mod->init_layout.size)
 185		__mod_tree_remove(&mod->init_layout.mtn);
 186}
 187
 188static void mod_tree_remove(struct module *mod)
 189{
 190	__mod_tree_remove(&mod->core_layout.mtn);
 191	mod_tree_remove_init(mod);
 192}
 193
 194static struct module *mod_find(unsigned long addr)
 195{
 196	struct latch_tree_node *ltn;
 197
 198	ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
 199	if (!ltn)
 200		return NULL;
 201
 202	return container_of(ltn, struct mod_tree_node, node)->mod;
 203}
 204
 205#else /* MODULES_TREE_LOOKUP */
 206
 207static unsigned long module_addr_min = -1UL, module_addr_max = 0;
 208
 209static void mod_tree_insert(struct module *mod) { }
 210static void mod_tree_remove_init(struct module *mod) { }
 211static void mod_tree_remove(struct module *mod) { }
 212
 213static struct module *mod_find(unsigned long addr)
 214{
 215	struct module *mod;
 216
 217	list_for_each_entry_rcu(mod, &modules, list) {
 
 218		if (within_module(addr, mod))
 219			return mod;
 220	}
 221
 222	return NULL;
 223}
 224
 225#endif /* MODULES_TREE_LOOKUP */
 226
 227/*
 228 * Bounds of module text, for speeding up __module_address.
 229 * Protected by module_mutex.
 230 */
 231static void __mod_update_bounds(void *base, unsigned int size)
 232{
 233	unsigned long min = (unsigned long)base;
 234	unsigned long max = min + size;
 235
 236	if (min < module_addr_min)
 237		module_addr_min = min;
 238	if (max > module_addr_max)
 239		module_addr_max = max;
 240}
 241
 242static void mod_update_bounds(struct module *mod)
 243{
 244	__mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
 245	if (mod->init_layout.size)
 246		__mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
 247}
 248
 249#ifdef CONFIG_KGDB_KDB
 250struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
 251#endif /* CONFIG_KGDB_KDB */
 252
 253static void module_assert_mutex(void)
 254{
 255	lockdep_assert_held(&module_mutex);
 256}
 257
 258static void module_assert_mutex_or_preempt(void)
 259{
 260#ifdef CONFIG_LOCKDEP
 261	if (unlikely(!debug_locks))
 262		return;
 263
 264	WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
 265		!lockdep_is_held(&module_mutex));
 266#endif
 267}
 268
 
 269static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
 270module_param(sig_enforce, bool_enable_only, 0644);
 271
 
 
 
 
 
 
 
 
 272/*
 273 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
 274 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
 275 */
 276bool is_module_sig_enforced(void)
 277{
 278	return sig_enforce;
 279}
 280EXPORT_SYMBOL(is_module_sig_enforced);
 281
 282void set_module_sig_enforced(void)
 283{
 284	sig_enforce = true;
 285}
 286
 287/* Block module loading/unloading? */
 288int modules_disabled = 0;
 289core_param(nomodule, modules_disabled, bint, 0);
 290
 291/* Waiting for a module to finish initializing? */
 292static DECLARE_WAIT_QUEUE_HEAD(module_wq);
 293
 294static BLOCKING_NOTIFIER_HEAD(module_notify_list);
 295
 296int register_module_notifier(struct notifier_block *nb)
 297{
 298	return blocking_notifier_chain_register(&module_notify_list, nb);
 299}
 300EXPORT_SYMBOL(register_module_notifier);
 301
 302int unregister_module_notifier(struct notifier_block *nb)
 303{
 304	return blocking_notifier_chain_unregister(&module_notify_list, nb);
 305}
 306EXPORT_SYMBOL(unregister_module_notifier);
 307
 308/*
 309 * We require a truly strong try_module_get(): 0 means success.
 310 * Otherwise an error is returned due to ongoing or failed
 311 * initialization etc.
 312 */
 313static inline int strong_try_module_get(struct module *mod)
 314{
 315	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
 316	if (mod && mod->state == MODULE_STATE_COMING)
 317		return -EBUSY;
 318	if (try_module_get(mod))
 319		return 0;
 320	else
 321		return -ENOENT;
 322}
 323
 324static inline void add_taint_module(struct module *mod, unsigned flag,
 325				    enum lockdep_ok lockdep_ok)
 326{
 327	add_taint(flag, lockdep_ok);
 328	set_bit(flag, &mod->taints);
 329}
 330
 331/*
 332 * A thread that wants to hold a reference to a module only while it
 333 * is running can call this to safely exit.  nfsd and lockd use this.
 334 */
 335void __noreturn __module_put_and_exit(struct module *mod, long code)
 336{
 337	module_put(mod);
 338	do_exit(code);
 339}
 340EXPORT_SYMBOL(__module_put_and_exit);
 341
 342/* Find a module section: 0 means not found. */
 343static unsigned int find_sec(const struct load_info *info, const char *name)
 344{
 345	unsigned int i;
 346
 347	for (i = 1; i < info->hdr->e_shnum; i++) {
 348		Elf_Shdr *shdr = &info->sechdrs[i];
 349		/* Alloc bit cleared means "ignore it." */
 350		if ((shdr->sh_flags & SHF_ALLOC)
 351		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
 352			return i;
 353	}
 354	return 0;
 355}
 356
 357/* Find a module section, or NULL. */
 358static void *section_addr(const struct load_info *info, const char *name)
 359{
 360	/* Section 0 has sh_addr 0. */
 361	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
 362}
 363
 364/* Find a module section, or NULL.  Fill in number of "objects" in section. */
 365static void *section_objs(const struct load_info *info,
 366			  const char *name,
 367			  size_t object_size,
 368			  unsigned int *num)
 369{
 370	unsigned int sec = find_sec(info, name);
 371
 372	/* Section 0 has sh_addr 0 and sh_size 0. */
 373	*num = info->sechdrs[sec].sh_size / object_size;
 374	return (void *)info->sechdrs[sec].sh_addr;
 375}
 376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377/* Provided by the linker */
 378extern const struct kernel_symbol __start___ksymtab[];
 379extern const struct kernel_symbol __stop___ksymtab[];
 380extern const struct kernel_symbol __start___ksymtab_gpl[];
 381extern const struct kernel_symbol __stop___ksymtab_gpl[];
 382extern const struct kernel_symbol __start___ksymtab_gpl_future[];
 383extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
 384extern const s32 __start___kcrctab[];
 385extern const s32 __start___kcrctab_gpl[];
 386extern const s32 __start___kcrctab_gpl_future[];
 387#ifdef CONFIG_UNUSED_SYMBOLS
 388extern const struct kernel_symbol __start___ksymtab_unused[];
 389extern const struct kernel_symbol __stop___ksymtab_unused[];
 390extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
 391extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
 392extern const s32 __start___kcrctab_unused[];
 393extern const s32 __start___kcrctab_unused_gpl[];
 394#endif
 395
 396#ifndef CONFIG_MODVERSIONS
 397#define symversion(base, idx) NULL
 398#else
 399#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
 400#endif
 401
 402static bool each_symbol_in_section(const struct symsearch *arr,
 403				   unsigned int arrsize,
 404				   struct module *owner,
 405				   bool (*fn)(const struct symsearch *syms,
 406					      struct module *owner,
 407					      void *data),
 408				   void *data)
 409{
 410	unsigned int j;
 411
 412	for (j = 0; j < arrsize; j++) {
 413		if (fn(&arr[j], owner, data))
 414			return true;
 415	}
 416
 417	return false;
 418}
 419
 420/* Returns true as soon as fn returns true, otherwise false. */
 421bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
 422				    struct module *owner,
 423				    void *data),
 424			 void *data)
 425{
 426	struct module *mod;
 427	static const struct symsearch arr[] = {
 428		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
 429		  NOT_GPL_ONLY, false },
 430		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
 431		  __start___kcrctab_gpl,
 432		  GPL_ONLY, false },
 433		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
 434		  __start___kcrctab_gpl_future,
 435		  WILL_BE_GPL_ONLY, false },
 436#ifdef CONFIG_UNUSED_SYMBOLS
 437		{ __start___ksymtab_unused, __stop___ksymtab_unused,
 438		  __start___kcrctab_unused,
 439		  NOT_GPL_ONLY, true },
 440		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
 441		  __start___kcrctab_unused_gpl,
 442		  GPL_ONLY, true },
 443#endif
 444	};
 445
 446	module_assert_mutex_or_preempt();
 447
 448	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
 449		return true;
 450
 451	list_for_each_entry_rcu(mod, &modules, list) {
 452		struct symsearch arr[] = {
 453			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
 454			  NOT_GPL_ONLY, false },
 455			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
 456			  mod->gpl_crcs,
 457			  GPL_ONLY, false },
 458			{ mod->gpl_future_syms,
 459			  mod->gpl_future_syms + mod->num_gpl_future_syms,
 460			  mod->gpl_future_crcs,
 461			  WILL_BE_GPL_ONLY, false },
 462#ifdef CONFIG_UNUSED_SYMBOLS
 463			{ mod->unused_syms,
 464			  mod->unused_syms + mod->num_unused_syms,
 465			  mod->unused_crcs,
 466			  NOT_GPL_ONLY, true },
 467			{ mod->unused_gpl_syms,
 468			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
 469			  mod->unused_gpl_crcs,
 470			  GPL_ONLY, true },
 471#endif
 472		};
 473
 474		if (mod->state == MODULE_STATE_UNFORMED)
 475			continue;
 476
 477		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
 478			return true;
 479	}
 480	return false;
 481}
 482EXPORT_SYMBOL_GPL(each_symbol_section);
 483
 484struct find_symbol_arg {
 485	/* Input */
 486	const char *name;
 487	bool gplok;
 488	bool warn;
 489
 490	/* Output */
 491	struct module *owner;
 492	const s32 *crc;
 493	const struct kernel_symbol *sym;
 
 494};
 495
 496static bool check_exported_symbol(const struct symsearch *syms,
 497				  struct module *owner,
 498				  unsigned int symnum, void *data)
 499{
 500	struct find_symbol_arg *fsa = data;
 501
 502	if (!fsa->gplok) {
 503		if (syms->licence == GPL_ONLY)
 504			return false;
 505		if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
 506			pr_warn("Symbol %s is being used by a non-GPL module, "
 507				"which will not be allowed in the future\n",
 508				fsa->name);
 509		}
 510	}
 511
 512#ifdef CONFIG_UNUSED_SYMBOLS
 513	if (syms->unused && fsa->warn) {
 514		pr_warn("Symbol %s is marked as UNUSED, however this module is "
 515			"using it.\n", fsa->name);
 516		pr_warn("This symbol will go away in the future.\n");
 517		pr_warn("Please evaluate if this is the right api to use and "
 518			"if it really is, submit a report to the linux kernel "
 519			"mailing list together with submitting your code for "
 520			"inclusion.\n");
 521	}
 522#endif
 523
 524	fsa->owner = owner;
 525	fsa->crc = symversion(syms->crcs, symnum);
 526	fsa->sym = &syms->start[symnum];
 
 527	return true;
 528}
 529
 530static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
 531{
 532#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 533	return (unsigned long)offset_to_ptr(&sym->value_offset);
 534#else
 535	return sym->value;
 536#endif
 537}
 538
 539static const char *kernel_symbol_name(const struct kernel_symbol *sym)
 540{
 541#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 542	return offset_to_ptr(&sym->name_offset);
 543#else
 544	return sym->name;
 545#endif
 546}
 547
 548static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
 549{
 550#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 551	if (!sym->namespace_offset)
 552		return NULL;
 553	return offset_to_ptr(&sym->namespace_offset);
 554#else
 555	return sym->namespace;
 556#endif
 557}
 558
 559static int cmp_name(const void *name, const void *sym)
 560{
 561	return strcmp(name, kernel_symbol_name(sym));
 562}
 563
 564static bool find_exported_symbol_in_section(const struct symsearch *syms,
 565					    struct module *owner,
 566					    void *data)
 567{
 568	struct find_symbol_arg *fsa = data;
 569	struct kernel_symbol *sym;
 570
 571	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
 572			sizeof(struct kernel_symbol), cmp_name);
 573
 574	if (sym != NULL && check_exported_symbol(syms, owner,
 575						 sym - syms->start, data))
 576		return true;
 577
 578	return false;
 579}
 580
 581/* Find an exported symbol and return it, along with, (optional) crc and
 582 * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
 583const struct kernel_symbol *find_symbol(const char *name,
 584					struct module **owner,
 585					const s32 **crc,
 586					bool gplok,
 587					bool warn)
 588{
 589	struct find_symbol_arg fsa;
 590
 591	fsa.name = name;
 592	fsa.gplok = gplok;
 593	fsa.warn = warn;
 594
 595	if (each_symbol_section(find_exported_symbol_in_section, &fsa)) {
 596		if (owner)
 597			*owner = fsa.owner;
 598		if (crc)
 599			*crc = fsa.crc;
 600		return fsa.sym;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601	}
 602
 603	pr_debug("Failed to find symbol %s\n", name);
 604	return NULL;
 605}
 606EXPORT_SYMBOL_GPL(find_symbol);
 607
 608/*
 609 * Search for module by name: must hold module_mutex (or preempt disabled
 610 * for read-only access).
 611 */
 612static struct module *find_module_all(const char *name, size_t len,
 613				      bool even_unformed)
 614{
 615	struct module *mod;
 616
 617	module_assert_mutex_or_preempt();
 618
 619	list_for_each_entry_rcu(mod, &modules, list) {
 
 620		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
 621			continue;
 622		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
 623			return mod;
 624	}
 625	return NULL;
 626}
 627
 628struct module *find_module(const char *name)
 629{
 630	module_assert_mutex();
 631	return find_module_all(name, strlen(name), false);
 632}
 633EXPORT_SYMBOL_GPL(find_module);
 634
 635#ifdef CONFIG_SMP
 636
 637static inline void __percpu *mod_percpu(struct module *mod)
 638{
 639	return mod->percpu;
 640}
 641
 642static int percpu_modalloc(struct module *mod, struct load_info *info)
 643{
 644	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
 645	unsigned long align = pcpusec->sh_addralign;
 646
 647	if (!pcpusec->sh_size)
 648		return 0;
 649
 650	if (align > PAGE_SIZE) {
 651		pr_warn("%s: per-cpu alignment %li > %li\n",
 652			mod->name, align, PAGE_SIZE);
 653		align = PAGE_SIZE;
 654	}
 655
 656	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
 657	if (!mod->percpu) {
 658		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
 659			mod->name, (unsigned long)pcpusec->sh_size);
 660		return -ENOMEM;
 661	}
 662	mod->percpu_size = pcpusec->sh_size;
 663	return 0;
 664}
 665
 666static void percpu_modfree(struct module *mod)
 667{
 668	free_percpu(mod->percpu);
 669}
 670
 671static unsigned int find_pcpusec(struct load_info *info)
 672{
 673	return find_sec(info, ".data..percpu");
 674}
 675
 676static void percpu_modcopy(struct module *mod,
 677			   const void *from, unsigned long size)
 678{
 679	int cpu;
 680
 681	for_each_possible_cpu(cpu)
 682		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
 683}
 684
 685bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
 686{
 687	struct module *mod;
 688	unsigned int cpu;
 689
 690	preempt_disable();
 691
 692	list_for_each_entry_rcu(mod, &modules, list) {
 693		if (mod->state == MODULE_STATE_UNFORMED)
 694			continue;
 695		if (!mod->percpu_size)
 696			continue;
 697		for_each_possible_cpu(cpu) {
 698			void *start = per_cpu_ptr(mod->percpu, cpu);
 699			void *va = (void *)addr;
 700
 701			if (va >= start && va < start + mod->percpu_size) {
 702				if (can_addr) {
 703					*can_addr = (unsigned long) (va - start);
 704					*can_addr += (unsigned long)
 705						per_cpu_ptr(mod->percpu,
 706							    get_boot_cpu_id());
 707				}
 708				preempt_enable();
 709				return true;
 710			}
 711		}
 712	}
 713
 714	preempt_enable();
 715	return false;
 716}
 717
 718/**
 719 * is_module_percpu_address - test whether address is from module static percpu
 720 * @addr: address to test
 721 *
 722 * Test whether @addr belongs to module static percpu area.
 723 *
 724 * RETURNS:
 725 * %true if @addr is from module static percpu area
 726 */
 727bool is_module_percpu_address(unsigned long addr)
 728{
 729	return __is_module_percpu_address(addr, NULL);
 730}
 731
 732#else /* ... !CONFIG_SMP */
 733
 734static inline void __percpu *mod_percpu(struct module *mod)
 735{
 736	return NULL;
 737}
 738static int percpu_modalloc(struct module *mod, struct load_info *info)
 739{
 740	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
 741	if (info->sechdrs[info->index.pcpu].sh_size != 0)
 742		return -ENOMEM;
 743	return 0;
 744}
 745static inline void percpu_modfree(struct module *mod)
 746{
 747}
 748static unsigned int find_pcpusec(struct load_info *info)
 749{
 750	return 0;
 751}
 752static inline void percpu_modcopy(struct module *mod,
 753				  const void *from, unsigned long size)
 754{
 755	/* pcpusec should be 0, and size of that section should be 0. */
 756	BUG_ON(size != 0);
 757}
 758bool is_module_percpu_address(unsigned long addr)
 759{
 760	return false;
 761}
 762
 763bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
 764{
 765	return false;
 766}
 767
 768#endif /* CONFIG_SMP */
 769
 770#define MODINFO_ATTR(field)	\
 771static void setup_modinfo_##field(struct module *mod, const char *s)  \
 772{                                                                     \
 773	mod->field = kstrdup(s, GFP_KERNEL);                          \
 774}                                                                     \
 775static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
 776			struct module_kobject *mk, char *buffer)      \
 777{                                                                     \
 778	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
 779}                                                                     \
 780static int modinfo_##field##_exists(struct module *mod)               \
 781{                                                                     \
 782	return mod->field != NULL;                                    \
 783}                                                                     \
 784static void free_modinfo_##field(struct module *mod)                  \
 785{                                                                     \
 786	kfree(mod->field);                                            \
 787	mod->field = NULL;                                            \
 788}                                                                     \
 789static struct module_attribute modinfo_##field = {                    \
 790	.attr = { .name = __stringify(field), .mode = 0444 },         \
 791	.show = show_modinfo_##field,                                 \
 792	.setup = setup_modinfo_##field,                               \
 793	.test = modinfo_##field##_exists,                             \
 794	.free = free_modinfo_##field,                                 \
 795};
 796
 797MODINFO_ATTR(version);
 798MODINFO_ATTR(srcversion);
 799
 800static char last_unloaded_module[MODULE_NAME_LEN+1];
 801
 802#ifdef CONFIG_MODULE_UNLOAD
 803
 804EXPORT_TRACEPOINT_SYMBOL(module_get);
 805
 806/* MODULE_REF_BASE is the base reference count by kmodule loader. */
 807#define MODULE_REF_BASE	1
 808
 809/* Init the unload section of the module. */
 810static int module_unload_init(struct module *mod)
 811{
 812	/*
 813	 * Initialize reference counter to MODULE_REF_BASE.
 814	 * refcnt == 0 means module is going.
 815	 */
 816	atomic_set(&mod->refcnt, MODULE_REF_BASE);
 817
 818	INIT_LIST_HEAD(&mod->source_list);
 819	INIT_LIST_HEAD(&mod->target_list);
 820
 821	/* Hold reference count during initialization. */
 822	atomic_inc(&mod->refcnt);
 823
 824	return 0;
 825}
 826
 827/* Does a already use b? */
 828static int already_uses(struct module *a, struct module *b)
 829{
 830	struct module_use *use;
 831
 832	list_for_each_entry(use, &b->source_list, source_list) {
 833		if (use->source == a) {
 834			pr_debug("%s uses %s!\n", a->name, b->name);
 835			return 1;
 836		}
 837	}
 838	pr_debug("%s does not use %s!\n", a->name, b->name);
 839	return 0;
 840}
 841
 842/*
 843 * Module a uses b
 844 *  - we add 'a' as a "source", 'b' as a "target" of module use
 845 *  - the module_use is added to the list of 'b' sources (so
 846 *    'b' can walk the list to see who sourced them), and of 'a'
 847 *    targets (so 'a' can see what modules it targets).
 848 */
 849static int add_module_usage(struct module *a, struct module *b)
 850{
 851	struct module_use *use;
 852
 853	pr_debug("Allocating new usage for %s.\n", a->name);
 854	use = kmalloc(sizeof(*use), GFP_ATOMIC);
 855	if (!use)
 856		return -ENOMEM;
 857
 858	use->source = a;
 859	use->target = b;
 860	list_add(&use->source_list, &b->source_list);
 861	list_add(&use->target_list, &a->target_list);
 862	return 0;
 863}
 864
 865/* Module a uses b: caller needs module_mutex() */
 866int ref_module(struct module *a, struct module *b)
 867{
 868	int err;
 869
 870	if (b == NULL || already_uses(a, b))
 871		return 0;
 872
 873	/* If module isn't available, we fail. */
 874	err = strong_try_module_get(b);
 875	if (err)
 876		return err;
 877
 878	err = add_module_usage(a, b);
 879	if (err) {
 880		module_put(b);
 881		return err;
 882	}
 883	return 0;
 884}
 885EXPORT_SYMBOL_GPL(ref_module);
 886
 887/* Clear the unload stuff of the module. */
 888static void module_unload_free(struct module *mod)
 889{
 890	struct module_use *use, *tmp;
 891
 892	mutex_lock(&module_mutex);
 893	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
 894		struct module *i = use->target;
 895		pr_debug("%s unusing %s\n", mod->name, i->name);
 896		module_put(i);
 897		list_del(&use->source_list);
 898		list_del(&use->target_list);
 899		kfree(use);
 900	}
 901	mutex_unlock(&module_mutex);
 902}
 903
 904#ifdef CONFIG_MODULE_FORCE_UNLOAD
 905static inline int try_force_unload(unsigned int flags)
 906{
 907	int ret = (flags & O_TRUNC);
 908	if (ret)
 909		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
 910	return ret;
 911}
 912#else
 913static inline int try_force_unload(unsigned int flags)
 914{
 915	return 0;
 916}
 917#endif /* CONFIG_MODULE_FORCE_UNLOAD */
 918
 919/* Try to release refcount of module, 0 means success. */
 920static int try_release_module_ref(struct module *mod)
 921{
 922	int ret;
 923
 924	/* Try to decrement refcnt which we set at loading */
 925	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
 926	BUG_ON(ret < 0);
 927	if (ret)
 928		/* Someone can put this right now, recover with checking */
 929		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
 930
 931	return ret;
 932}
 933
 934static int try_stop_module(struct module *mod, int flags, int *forced)
 935{
 936	/* If it's not unused, quit unless we're forcing. */
 937	if (try_release_module_ref(mod) != 0) {
 938		*forced = try_force_unload(flags);
 939		if (!(*forced))
 940			return -EWOULDBLOCK;
 941	}
 942
 943	/* Mark it as dying. */
 944	mod->state = MODULE_STATE_GOING;
 945
 946	return 0;
 947}
 948
 949/**
 950 * module_refcount - return the refcount or -1 if unloading
 951 *
 952 * @mod:	the module we're checking
 953 *
 954 * Returns:
 955 *	-1 if the module is in the process of unloading
 956 *	otherwise the number of references in the kernel to the module
 957 */
 958int module_refcount(struct module *mod)
 959{
 960	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
 961}
 962EXPORT_SYMBOL(module_refcount);
 963
 964/* This exists whether we can unload or not */
 965static void free_module(struct module *mod);
 966
 967SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
 968		unsigned int, flags)
 969{
 970	struct module *mod;
 971	char name[MODULE_NAME_LEN];
 972	int ret, forced = 0;
 973
 974	if (!capable(CAP_SYS_MODULE) || modules_disabled)
 975		return -EPERM;
 976
 977	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
 978		return -EFAULT;
 979	name[MODULE_NAME_LEN-1] = '\0';
 980
 981	audit_log_kern_module(name);
 982
 983	if (mutex_lock_interruptible(&module_mutex) != 0)
 984		return -EINTR;
 985
 986	mod = find_module(name);
 987	if (!mod) {
 988		ret = -ENOENT;
 989		goto out;
 990	}
 991
 992	if (!list_empty(&mod->source_list)) {
 993		/* Other modules depend on us: get rid of them first. */
 994		ret = -EWOULDBLOCK;
 995		goto out;
 996	}
 997
 998	/* Doing init or already dying? */
 999	if (mod->state != MODULE_STATE_LIVE) {
1000		/* FIXME: if (force), slam module count damn the torpedoes */
1001		pr_debug("%s already dying\n", mod->name);
1002		ret = -EBUSY;
1003		goto out;
1004	}
1005
1006	/* If it has an init func, it must have an exit func to unload */
1007	if (mod->init && !mod->exit) {
1008		forced = try_force_unload(flags);
1009		if (!forced) {
1010			/* This module can't be removed */
1011			ret = -EBUSY;
1012			goto out;
1013		}
1014	}
1015
1016	/* Stop the machine so refcounts can't move and disable module. */
1017	ret = try_stop_module(mod, flags, &forced);
1018	if (ret != 0)
1019		goto out;
1020
1021	mutex_unlock(&module_mutex);
1022	/* Final destruction now no one is using it. */
1023	if (mod->exit != NULL)
1024		mod->exit();
1025	blocking_notifier_call_chain(&module_notify_list,
1026				     MODULE_STATE_GOING, mod);
1027	klp_module_going(mod);
1028	ftrace_release_mod(mod);
1029
1030	async_synchronize_full();
1031
1032	/* Store the name of the last unloaded module for diagnostic purposes */
1033	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1034
1035	free_module(mod);
 
 
1036	return 0;
1037out:
1038	mutex_unlock(&module_mutex);
1039	return ret;
1040}
1041
1042static inline void print_unload_info(struct seq_file *m, struct module *mod)
1043{
1044	struct module_use *use;
1045	int printed_something = 0;
1046
1047	seq_printf(m, " %i ", module_refcount(mod));
1048
1049	/*
1050	 * Always include a trailing , so userspace can differentiate
1051	 * between this and the old multi-field proc format.
1052	 */
1053	list_for_each_entry(use, &mod->source_list, source_list) {
1054		printed_something = 1;
1055		seq_printf(m, "%s,", use->source->name);
1056	}
1057
1058	if (mod->init != NULL && mod->exit == NULL) {
1059		printed_something = 1;
1060		seq_puts(m, "[permanent],");
1061	}
1062
1063	if (!printed_something)
1064		seq_puts(m, "-");
1065}
1066
1067void __symbol_put(const char *symbol)
1068{
1069	struct module *owner;
 
 
 
1070
1071	preempt_disable();
1072	if (!find_symbol(symbol, &owner, NULL, true, false))
1073		BUG();
1074	module_put(owner);
1075	preempt_enable();
1076}
1077EXPORT_SYMBOL(__symbol_put);
1078
1079/* Note this assumes addr is a function, which it currently always is. */
1080void symbol_put_addr(void *addr)
1081{
1082	struct module *modaddr;
1083	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1084
1085	if (core_kernel_text(a))
1086		return;
1087
1088	/*
1089	 * Even though we hold a reference on the module; we still need to
1090	 * disable preemption in order to safely traverse the data structure.
1091	 */
1092	preempt_disable();
1093	modaddr = __module_text_address(a);
1094	BUG_ON(!modaddr);
1095	module_put(modaddr);
1096	preempt_enable();
1097}
1098EXPORT_SYMBOL_GPL(symbol_put_addr);
1099
1100static ssize_t show_refcnt(struct module_attribute *mattr,
1101			   struct module_kobject *mk, char *buffer)
1102{
1103	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1104}
1105
1106static struct module_attribute modinfo_refcnt =
1107	__ATTR(refcnt, 0444, show_refcnt, NULL);
1108
1109void __module_get(struct module *module)
1110{
1111	if (module) {
1112		preempt_disable();
1113		atomic_inc(&module->refcnt);
1114		trace_module_get(module, _RET_IP_);
1115		preempt_enable();
1116	}
1117}
1118EXPORT_SYMBOL(__module_get);
1119
1120bool try_module_get(struct module *module)
1121{
1122	bool ret = true;
1123
1124	if (module) {
1125		preempt_disable();
1126		/* Note: here, we can fail to get a reference */
1127		if (likely(module_is_live(module) &&
1128			   atomic_inc_not_zero(&module->refcnt) != 0))
1129			trace_module_get(module, _RET_IP_);
1130		else
1131			ret = false;
1132
1133		preempt_enable();
1134	}
1135	return ret;
1136}
1137EXPORT_SYMBOL(try_module_get);
1138
1139void module_put(struct module *module)
1140{
1141	int ret;
1142
1143	if (module) {
1144		preempt_disable();
1145		ret = atomic_dec_if_positive(&module->refcnt);
1146		WARN_ON(ret < 0);	/* Failed to put refcount */
1147		trace_module_put(module, _RET_IP_);
1148		preempt_enable();
1149	}
1150}
1151EXPORT_SYMBOL(module_put);
1152
1153#else /* !CONFIG_MODULE_UNLOAD */
1154static inline void print_unload_info(struct seq_file *m, struct module *mod)
1155{
1156	/* We don't know the usage count, or what modules are using. */
1157	seq_puts(m, " - -");
1158}
1159
1160static inline void module_unload_free(struct module *mod)
1161{
1162}
1163
1164int ref_module(struct module *a, struct module *b)
1165{
1166	return strong_try_module_get(b);
1167}
1168EXPORT_SYMBOL_GPL(ref_module);
1169
1170static inline int module_unload_init(struct module *mod)
1171{
1172	return 0;
1173}
1174#endif /* CONFIG_MODULE_UNLOAD */
1175
1176static size_t module_flags_taint(struct module *mod, char *buf)
1177{
1178	size_t l = 0;
1179	int i;
1180
1181	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1182		if (taint_flags[i].module && test_bit(i, &mod->taints))
1183			buf[l++] = taint_flags[i].c_true;
1184	}
1185
1186	return l;
1187}
1188
1189static ssize_t show_initstate(struct module_attribute *mattr,
1190			      struct module_kobject *mk, char *buffer)
1191{
1192	const char *state = "unknown";
1193
1194	switch (mk->mod->state) {
1195	case MODULE_STATE_LIVE:
1196		state = "live";
1197		break;
1198	case MODULE_STATE_COMING:
1199		state = "coming";
1200		break;
1201	case MODULE_STATE_GOING:
1202		state = "going";
1203		break;
1204	default:
1205		BUG();
1206	}
1207	return sprintf(buffer, "%s\n", state);
1208}
1209
1210static struct module_attribute modinfo_initstate =
1211	__ATTR(initstate, 0444, show_initstate, NULL);
1212
1213static ssize_t store_uevent(struct module_attribute *mattr,
1214			    struct module_kobject *mk,
1215			    const char *buffer, size_t count)
1216{
1217	int rc;
1218
1219	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1220	return rc ? rc : count;
1221}
1222
1223struct module_attribute module_uevent =
1224	__ATTR(uevent, 0200, NULL, store_uevent);
1225
1226static ssize_t show_coresize(struct module_attribute *mattr,
1227			     struct module_kobject *mk, char *buffer)
1228{
1229	return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1230}
1231
1232static struct module_attribute modinfo_coresize =
1233	__ATTR(coresize, 0444, show_coresize, NULL);
1234
1235static ssize_t show_initsize(struct module_attribute *mattr,
1236			     struct module_kobject *mk, char *buffer)
1237{
1238	return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1239}
1240
1241static struct module_attribute modinfo_initsize =
1242	__ATTR(initsize, 0444, show_initsize, NULL);
1243
1244static ssize_t show_taint(struct module_attribute *mattr,
1245			  struct module_kobject *mk, char *buffer)
1246{
1247	size_t l;
1248
1249	l = module_flags_taint(mk->mod, buffer);
1250	buffer[l++] = '\n';
1251	return l;
1252}
1253
1254static struct module_attribute modinfo_taint =
1255	__ATTR(taint, 0444, show_taint, NULL);
1256
1257static struct module_attribute *modinfo_attrs[] = {
1258	&module_uevent,
1259	&modinfo_version,
1260	&modinfo_srcversion,
1261	&modinfo_initstate,
1262	&modinfo_coresize,
1263	&modinfo_initsize,
1264	&modinfo_taint,
1265#ifdef CONFIG_MODULE_UNLOAD
1266	&modinfo_refcnt,
1267#endif
1268	NULL,
1269};
1270
1271static const char vermagic[] = VERMAGIC_STRING;
1272
1273static int try_to_force_load(struct module *mod, const char *reason)
1274{
1275#ifdef CONFIG_MODULE_FORCE_LOAD
1276	if (!test_taint(TAINT_FORCED_MODULE))
1277		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1278	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1279	return 0;
1280#else
1281	return -ENOEXEC;
1282#endif
1283}
1284
1285#ifdef CONFIG_MODVERSIONS
1286
1287static u32 resolve_rel_crc(const s32 *crc)
1288{
1289	return *(u32 *)((void *)crc + *crc);
1290}
1291
1292static int check_version(const struct load_info *info,
1293			 const char *symname,
1294			 struct module *mod,
1295			 const s32 *crc)
1296{
1297	Elf_Shdr *sechdrs = info->sechdrs;
1298	unsigned int versindex = info->index.vers;
1299	unsigned int i, num_versions;
1300	struct modversion_info *versions;
1301
1302	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1303	if (!crc)
1304		return 1;
1305
1306	/* No versions at all?  modprobe --force does this. */
1307	if (versindex == 0)
1308		return try_to_force_load(mod, symname) == 0;
1309
1310	versions = (void *) sechdrs[versindex].sh_addr;
1311	num_versions = sechdrs[versindex].sh_size
1312		/ sizeof(struct modversion_info);
1313
1314	for (i = 0; i < num_versions; i++) {
1315		u32 crcval;
1316
1317		if (strcmp(versions[i].name, symname) != 0)
1318			continue;
1319
1320		if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1321			crcval = resolve_rel_crc(crc);
1322		else
1323			crcval = *crc;
1324		if (versions[i].crc == crcval)
1325			return 1;
1326		pr_debug("Found checksum %X vs module %lX\n",
1327			 crcval, versions[i].crc);
1328		goto bad_version;
1329	}
1330
1331	/* Broken toolchain. Warn once, then let it go.. */
1332	pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1333	return 1;
1334
1335bad_version:
1336	pr_warn("%s: disagrees about version of symbol %s\n",
1337	       info->name, symname);
1338	return 0;
1339}
1340
1341static inline int check_modstruct_version(const struct load_info *info,
1342					  struct module *mod)
1343{
1344	const s32 *crc;
 
 
 
1345
1346	/*
1347	 * Since this should be found in kernel (which can't be removed), no
1348	 * locking is necessary -- use preempt_disable() to placate lockdep.
1349	 */
1350	preempt_disable();
1351	if (!find_symbol("module_layout", NULL, &crc, true, false)) {
1352		preempt_enable();
1353		BUG();
1354	}
1355	preempt_enable();
1356	return check_version(info, "module_layout", mod, crc);
1357}
1358
1359/* First part is kernel version, which we ignore if module has crcs. */
1360static inline int same_magic(const char *amagic, const char *bmagic,
1361			     bool has_crcs)
1362{
1363	if (has_crcs) {
1364		amagic += strcspn(amagic, " ");
1365		bmagic += strcspn(bmagic, " ");
1366	}
1367	return strcmp(amagic, bmagic) == 0;
1368}
1369#else
1370static inline int check_version(const struct load_info *info,
1371				const char *symname,
1372				struct module *mod,
1373				const s32 *crc)
1374{
1375	return 1;
1376}
1377
1378static inline int check_modstruct_version(const struct load_info *info,
1379					  struct module *mod)
1380{
1381	return 1;
1382}
1383
1384static inline int same_magic(const char *amagic, const char *bmagic,
1385			     bool has_crcs)
1386{
1387	return strcmp(amagic, bmagic) == 0;
1388}
1389#endif /* CONFIG_MODVERSIONS */
1390
1391static char *get_modinfo(const struct load_info *info, const char *tag);
1392static char *get_next_modinfo(const struct load_info *info, const char *tag,
1393			      char *prev);
1394
1395static int verify_namespace_is_imported(const struct load_info *info,
1396					const struct kernel_symbol *sym,
1397					struct module *mod)
1398{
1399	const char *namespace;
1400	char *imported_namespace;
1401
1402	namespace = kernel_symbol_namespace(sym);
1403	if (namespace) {
1404		imported_namespace = get_modinfo(info, "import_ns");
1405		while (imported_namespace) {
1406			if (strcmp(namespace, imported_namespace) == 0)
1407				return 0;
1408			imported_namespace = get_next_modinfo(
1409				info, "import_ns", imported_namespace);
1410		}
1411#ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1412		pr_warn(
1413#else
1414		pr_err(
1415#endif
1416			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1417			mod->name, kernel_symbol_name(sym), namespace);
1418#ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1419		return -EINVAL;
1420#endif
1421	}
1422	return 0;
1423}
1424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1425
1426/* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1427static const struct kernel_symbol *resolve_symbol(struct module *mod,
1428						  const struct load_info *info,
1429						  const char *name,
1430						  char ownername[])
1431{
1432	struct module *owner;
1433	const struct kernel_symbol *sym;
1434	const s32 *crc;
 
 
1435	int err;
1436
1437	/*
1438	 * The module_mutex should not be a heavily contended lock;
1439	 * if we get the occasional sleep here, we'll go an extra iteration
1440	 * in the wait_event_interruptible(), which is harmless.
1441	 */
1442	sched_annotate_sleep();
1443	mutex_lock(&module_mutex);
1444	sym = find_symbol(name, &owner, &crc,
1445			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1446	if (!sym)
1447		goto unlock;
1448
1449	if (!check_version(info, name, mod, crc)) {
1450		sym = ERR_PTR(-EINVAL);
 
 
 
 
 
 
 
 
1451		goto getname;
1452	}
1453
1454	err = verify_namespace_is_imported(info, sym, mod);
1455	if (err) {
1456		sym = ERR_PTR(err);
1457		goto getname;
1458	}
1459
1460	err = ref_module(mod, owner);
1461	if (err) {
1462		sym = ERR_PTR(err);
1463		goto getname;
1464	}
1465
1466getname:
1467	/* We must make copy under the lock if we failed to get ref. */
1468	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1469unlock:
1470	mutex_unlock(&module_mutex);
1471	return sym;
1472}
1473
1474static const struct kernel_symbol *
1475resolve_symbol_wait(struct module *mod,
1476		    const struct load_info *info,
1477		    const char *name)
1478{
1479	const struct kernel_symbol *ksym;
1480	char owner[MODULE_NAME_LEN];
1481
1482	if (wait_event_interruptible_timeout(module_wq,
1483			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1484			|| PTR_ERR(ksym) != -EBUSY,
1485					     30 * HZ) <= 0) {
1486		pr_warn("%s: gave up waiting for init of module %s.\n",
1487			mod->name, owner);
1488	}
1489	return ksym;
1490}
1491
 
 
 
 
 
 
 
1492/*
1493 * /sys/module/foo/sections stuff
1494 * J. Corbet <corbet@lwn.net>
1495 */
1496#ifdef CONFIG_SYSFS
1497
1498#ifdef CONFIG_KALLSYMS
1499static inline bool sect_empty(const Elf_Shdr *sect)
1500{
1501	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1502}
1503
1504struct module_sect_attr {
1505	struct module_attribute mattr;
1506	char *name;
1507	unsigned long address;
1508};
1509
1510struct module_sect_attrs {
1511	struct attribute_group grp;
1512	unsigned int nsections;
1513	struct module_sect_attr attrs[0];
1514};
1515
1516static ssize_t module_sect_show(struct module_attribute *mattr,
1517				struct module_kobject *mk, char *buf)
 
 
1518{
1519	struct module_sect_attr *sattr =
1520		container_of(mattr, struct module_sect_attr, mattr);
1521	return sprintf(buf, "0x%px\n", kptr_restrict < 2 ?
1522		       (void *)sattr->address : NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1523}
1524
1525static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1526{
1527	unsigned int section;
1528
1529	for (section = 0; section < sect_attrs->nsections; section++)
1530		kfree(sect_attrs->attrs[section].name);
1531	kfree(sect_attrs);
1532}
1533
1534static void add_sect_attrs(struct module *mod, const struct load_info *info)
1535{
1536	unsigned int nloaded = 0, i, size[2];
1537	struct module_sect_attrs *sect_attrs;
1538	struct module_sect_attr *sattr;
1539	struct attribute **gattr;
1540
1541	/* Count loaded sections and allocate structures */
1542	for (i = 0; i < info->hdr->e_shnum; i++)
1543		if (!sect_empty(&info->sechdrs[i]))
1544			nloaded++;
1545	size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1546			sizeof(sect_attrs->grp.attrs[0]));
1547	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1548	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1549	if (sect_attrs == NULL)
1550		return;
1551
1552	/* Setup section attributes. */
1553	sect_attrs->grp.name = "sections";
1554	sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1555
1556	sect_attrs->nsections = 0;
1557	sattr = &sect_attrs->attrs[0];
1558	gattr = &sect_attrs->grp.attrs[0];
1559	for (i = 0; i < info->hdr->e_shnum; i++) {
1560		Elf_Shdr *sec = &info->sechdrs[i];
1561		if (sect_empty(sec))
1562			continue;
 
1563		sattr->address = sec->sh_addr;
1564		sattr->name = kstrdup(info->secstrings + sec->sh_name,
1565					GFP_KERNEL);
1566		if (sattr->name == NULL)
1567			goto out;
1568		sect_attrs->nsections++;
1569		sysfs_attr_init(&sattr->mattr.attr);
1570		sattr->mattr.show = module_sect_show;
1571		sattr->mattr.store = NULL;
1572		sattr->mattr.attr.name = sattr->name;
1573		sattr->mattr.attr.mode = S_IRUSR;
1574		*(gattr++) = &(sattr++)->mattr.attr;
1575	}
1576	*gattr = NULL;
1577
1578	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1579		goto out;
1580
1581	mod->sect_attrs = sect_attrs;
1582	return;
1583  out:
1584	free_sect_attrs(sect_attrs);
1585}
1586
1587static void remove_sect_attrs(struct module *mod)
1588{
1589	if (mod->sect_attrs) {
1590		sysfs_remove_group(&mod->mkobj.kobj,
1591				   &mod->sect_attrs->grp);
1592		/* We are positive that no one is using any sect attrs
1593		 * at this point.  Deallocate immediately. */
 
 
1594		free_sect_attrs(mod->sect_attrs);
1595		mod->sect_attrs = NULL;
1596	}
1597}
1598
1599/*
1600 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1601 */
1602
1603struct module_notes_attrs {
1604	struct kobject *dir;
1605	unsigned int notes;
1606	struct bin_attribute attrs[0];
1607};
1608
1609static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1610				 struct bin_attribute *bin_attr,
1611				 char *buf, loff_t pos, size_t count)
1612{
1613	/*
1614	 * The caller checked the pos and count against our size.
1615	 */
1616	memcpy(buf, bin_attr->private + pos, count);
1617	return count;
1618}
1619
1620static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1621			     unsigned int i)
1622{
1623	if (notes_attrs->dir) {
1624		while (i-- > 0)
1625			sysfs_remove_bin_file(notes_attrs->dir,
1626					      &notes_attrs->attrs[i]);
1627		kobject_put(notes_attrs->dir);
1628	}
1629	kfree(notes_attrs);
1630}
1631
1632static void add_notes_attrs(struct module *mod, const struct load_info *info)
1633{
1634	unsigned int notes, loaded, i;
1635	struct module_notes_attrs *notes_attrs;
1636	struct bin_attribute *nattr;
1637
1638	/* failed to create section attributes, so can't create notes */
1639	if (!mod->sect_attrs)
1640		return;
1641
1642	/* Count notes sections and allocate structures.  */
1643	notes = 0;
1644	for (i = 0; i < info->hdr->e_shnum; i++)
1645		if (!sect_empty(&info->sechdrs[i]) &&
1646		    (info->sechdrs[i].sh_type == SHT_NOTE))
1647			++notes;
1648
1649	if (notes == 0)
1650		return;
1651
1652	notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1653			      GFP_KERNEL);
1654	if (notes_attrs == NULL)
1655		return;
1656
1657	notes_attrs->notes = notes;
1658	nattr = &notes_attrs->attrs[0];
1659	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1660		if (sect_empty(&info->sechdrs[i]))
1661			continue;
1662		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1663			sysfs_bin_attr_init(nattr);
1664			nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1665			nattr->attr.mode = S_IRUGO;
1666			nattr->size = info->sechdrs[i].sh_size;
1667			nattr->private = (void *) info->sechdrs[i].sh_addr;
1668			nattr->read = module_notes_read;
1669			++nattr;
1670		}
1671		++loaded;
1672	}
1673
1674	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1675	if (!notes_attrs->dir)
1676		goto out;
1677
1678	for (i = 0; i < notes; ++i)
1679		if (sysfs_create_bin_file(notes_attrs->dir,
1680					  &notes_attrs->attrs[i]))
1681			goto out;
1682
1683	mod->notes_attrs = notes_attrs;
1684	return;
1685
1686  out:
1687	free_notes_attrs(notes_attrs, i);
1688}
1689
1690static void remove_notes_attrs(struct module *mod)
1691{
1692	if (mod->notes_attrs)
1693		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1694}
1695
1696#else
1697
1698static inline void add_sect_attrs(struct module *mod,
1699				  const struct load_info *info)
1700{
1701}
1702
1703static inline void remove_sect_attrs(struct module *mod)
1704{
1705}
1706
1707static inline void add_notes_attrs(struct module *mod,
1708				   const struct load_info *info)
1709{
1710}
1711
1712static inline void remove_notes_attrs(struct module *mod)
1713{
1714}
1715#endif /* CONFIG_KALLSYMS */
1716
1717static void del_usage_links(struct module *mod)
1718{
1719#ifdef CONFIG_MODULE_UNLOAD
1720	struct module_use *use;
1721
1722	mutex_lock(&module_mutex);
1723	list_for_each_entry(use, &mod->target_list, target_list)
1724		sysfs_remove_link(use->target->holders_dir, mod->name);
1725	mutex_unlock(&module_mutex);
1726#endif
1727}
1728
1729static int add_usage_links(struct module *mod)
1730{
1731	int ret = 0;
1732#ifdef CONFIG_MODULE_UNLOAD
1733	struct module_use *use;
1734
1735	mutex_lock(&module_mutex);
1736	list_for_each_entry(use, &mod->target_list, target_list) {
1737		ret = sysfs_create_link(use->target->holders_dir,
1738					&mod->mkobj.kobj, mod->name);
1739		if (ret)
1740			break;
1741	}
1742	mutex_unlock(&module_mutex);
1743	if (ret)
1744		del_usage_links(mod);
1745#endif
1746	return ret;
1747}
1748
1749static void module_remove_modinfo_attrs(struct module *mod, int end);
1750
1751static int module_add_modinfo_attrs(struct module *mod)
1752{
1753	struct module_attribute *attr;
1754	struct module_attribute *temp_attr;
1755	int error = 0;
1756	int i;
1757
1758	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1759					(ARRAY_SIZE(modinfo_attrs) + 1)),
1760					GFP_KERNEL);
1761	if (!mod->modinfo_attrs)
1762		return -ENOMEM;
1763
1764	temp_attr = mod->modinfo_attrs;
1765	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1766		if (!attr->test || attr->test(mod)) {
1767			memcpy(temp_attr, attr, sizeof(*temp_attr));
1768			sysfs_attr_init(&temp_attr->attr);
1769			error = sysfs_create_file(&mod->mkobj.kobj,
1770					&temp_attr->attr);
1771			if (error)
1772				goto error_out;
1773			++temp_attr;
1774		}
1775	}
1776
1777	return 0;
1778
1779error_out:
1780	if (i > 0)
1781		module_remove_modinfo_attrs(mod, --i);
 
 
1782	return error;
1783}
1784
1785static void module_remove_modinfo_attrs(struct module *mod, int end)
1786{
1787	struct module_attribute *attr;
1788	int i;
1789
1790	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1791		if (end >= 0 && i > end)
1792			break;
1793		/* pick a field to test for end of list */
1794		if (!attr->attr.name)
1795			break;
1796		sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1797		if (attr->free)
1798			attr->free(mod);
1799	}
1800	kfree(mod->modinfo_attrs);
1801}
1802
1803static void mod_kobject_put(struct module *mod)
1804{
1805	DECLARE_COMPLETION_ONSTACK(c);
1806	mod->mkobj.kobj_completion = &c;
1807	kobject_put(&mod->mkobj.kobj);
1808	wait_for_completion(&c);
1809}
1810
1811static int mod_sysfs_init(struct module *mod)
1812{
1813	int err;
1814	struct kobject *kobj;
1815
1816	if (!module_sysfs_initialized) {
1817		pr_err("%s: module sysfs not initialized\n", mod->name);
1818		err = -EINVAL;
1819		goto out;
1820	}
1821
1822	kobj = kset_find_obj(module_kset, mod->name);
1823	if (kobj) {
1824		pr_err("%s: module is already loaded\n", mod->name);
1825		kobject_put(kobj);
1826		err = -EINVAL;
1827		goto out;
1828	}
1829
1830	mod->mkobj.mod = mod;
1831
1832	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1833	mod->mkobj.kobj.kset = module_kset;
1834	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1835				   "%s", mod->name);
1836	if (err)
1837		mod_kobject_put(mod);
1838
1839	/* delay uevent until full sysfs population */
1840out:
1841	return err;
1842}
1843
1844static int mod_sysfs_setup(struct module *mod,
1845			   const struct load_info *info,
1846			   struct kernel_param *kparam,
1847			   unsigned int num_params)
1848{
1849	int err;
1850
1851	err = mod_sysfs_init(mod);
1852	if (err)
1853		goto out;
1854
1855	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1856	if (!mod->holders_dir) {
1857		err = -ENOMEM;
1858		goto out_unreg;
1859	}
1860
1861	err = module_param_sysfs_setup(mod, kparam, num_params);
1862	if (err)
1863		goto out_unreg_holders;
1864
1865	err = module_add_modinfo_attrs(mod);
1866	if (err)
1867		goto out_unreg_param;
1868
1869	err = add_usage_links(mod);
1870	if (err)
1871		goto out_unreg_modinfo_attrs;
1872
1873	add_sect_attrs(mod, info);
1874	add_notes_attrs(mod, info);
1875
1876	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1877	return 0;
1878
1879out_unreg_modinfo_attrs:
1880	module_remove_modinfo_attrs(mod, -1);
1881out_unreg_param:
1882	module_param_sysfs_remove(mod);
1883out_unreg_holders:
1884	kobject_put(mod->holders_dir);
1885out_unreg:
1886	mod_kobject_put(mod);
1887out:
1888	return err;
1889}
1890
1891static void mod_sysfs_fini(struct module *mod)
1892{
1893	remove_notes_attrs(mod);
1894	remove_sect_attrs(mod);
1895	mod_kobject_put(mod);
1896}
1897
1898static void init_param_lock(struct module *mod)
1899{
1900	mutex_init(&mod->param_lock);
1901}
1902#else /* !CONFIG_SYSFS */
1903
1904static int mod_sysfs_setup(struct module *mod,
1905			   const struct load_info *info,
1906			   struct kernel_param *kparam,
1907			   unsigned int num_params)
1908{
1909	return 0;
1910}
1911
1912static void mod_sysfs_fini(struct module *mod)
1913{
1914}
1915
1916static void module_remove_modinfo_attrs(struct module *mod, int end)
1917{
1918}
1919
1920static void del_usage_links(struct module *mod)
1921{
1922}
1923
1924static void init_param_lock(struct module *mod)
1925{
1926}
1927#endif /* CONFIG_SYSFS */
1928
1929static void mod_sysfs_teardown(struct module *mod)
1930{
1931	del_usage_links(mod);
1932	module_remove_modinfo_attrs(mod, -1);
1933	module_param_sysfs_remove(mod);
1934	kobject_put(mod->mkobj.drivers_dir);
1935	kobject_put(mod->holders_dir);
1936	mod_sysfs_fini(mod);
1937}
1938
1939#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
1940/*
1941 * LKM RO/NX protection: protect module's text/ro-data
1942 * from modification and any data from execution.
1943 *
1944 * General layout of module is:
1945 *          [text] [read-only-data] [ro-after-init] [writable data]
1946 * text_size -----^                ^               ^               ^
1947 * ro_size ------------------------|               |               |
1948 * ro_after_init_size -----------------------------|               |
1949 * size -----------------------------------------------------------|
1950 *
1951 * These values are always page-aligned (as is base)
1952 */
 
 
 
 
 
 
 
 
1953static void frob_text(const struct module_layout *layout,
1954		      int (*set_memory)(unsigned long start, int num_pages))
1955{
1956	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1957	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1958	set_memory((unsigned long)layout->base,
1959		   layout->text_size >> PAGE_SHIFT);
1960}
1961
 
 
 
 
 
 
 
 
 
1962#ifdef CONFIG_STRICT_MODULE_RWX
1963static void frob_rodata(const struct module_layout *layout,
1964			int (*set_memory)(unsigned long start, int num_pages))
1965{
1966	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1967	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1968	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1969	set_memory((unsigned long)layout->base + layout->text_size,
1970		   (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1971}
1972
1973static void frob_ro_after_init(const struct module_layout *layout,
1974				int (*set_memory)(unsigned long start, int num_pages))
1975{
1976	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1977	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1978	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1979	set_memory((unsigned long)layout->base + layout->ro_size,
1980		   (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1981}
1982
1983static void frob_writable_data(const struct module_layout *layout,
1984			       int (*set_memory)(unsigned long start, int num_pages))
1985{
1986	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1987	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1988	BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1989	set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1990		   (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1991}
1992
1993/* livepatching wants to disable read-only so it can frob module. */
1994void module_disable_ro(const struct module *mod)
1995{
1996	if (!rodata_enabled)
1997		return;
1998
1999	frob_text(&mod->core_layout, set_memory_rw);
2000	frob_rodata(&mod->core_layout, set_memory_rw);
2001	frob_ro_after_init(&mod->core_layout, set_memory_rw);
2002	frob_text(&mod->init_layout, set_memory_rw);
2003	frob_rodata(&mod->init_layout, set_memory_rw);
2004}
2005
2006void module_enable_ro(const struct module *mod, bool after_init)
2007{
2008	if (!rodata_enabled)
2009		return;
2010
2011	set_vm_flush_reset_perms(mod->core_layout.base);
2012	set_vm_flush_reset_perms(mod->init_layout.base);
2013	frob_text(&mod->core_layout, set_memory_ro);
2014
2015	frob_rodata(&mod->core_layout, set_memory_ro);
2016	frob_text(&mod->init_layout, set_memory_ro);
2017	frob_rodata(&mod->init_layout, set_memory_ro);
2018
2019	if (after_init)
2020		frob_ro_after_init(&mod->core_layout, set_memory_ro);
2021}
2022
2023static void module_enable_nx(const struct module *mod)
2024{
2025	frob_rodata(&mod->core_layout, set_memory_nx);
2026	frob_ro_after_init(&mod->core_layout, set_memory_nx);
2027	frob_writable_data(&mod->core_layout, set_memory_nx);
2028	frob_rodata(&mod->init_layout, set_memory_nx);
2029	frob_writable_data(&mod->init_layout, set_memory_nx);
2030}
2031
2032/* Iterate through all modules and set each module's text as RW */
2033void set_all_modules_text_rw(void)
2034{
2035	struct module *mod;
2036
2037	if (!rodata_enabled)
2038		return;
2039
2040	mutex_lock(&module_mutex);
2041	list_for_each_entry_rcu(mod, &modules, list) {
2042		if (mod->state == MODULE_STATE_UNFORMED)
2043			continue;
2044
2045		frob_text(&mod->core_layout, set_memory_rw);
2046		frob_text(&mod->init_layout, set_memory_rw);
 
 
 
 
2047	}
2048	mutex_unlock(&module_mutex);
2049}
2050
2051/* Iterate through all modules and set each module's text as RO */
2052void set_all_modules_text_ro(void)
2053{
2054	struct module *mod;
2055
2056	if (!rodata_enabled)
2057		return;
2058
2059	mutex_lock(&module_mutex);
2060	list_for_each_entry_rcu(mod, &modules, list) {
2061		/*
2062		 * Ignore going modules since it's possible that ro
2063		 * protection has already been disabled, otherwise we'll
2064		 * run into protection faults at module deallocation.
2065		 */
2066		if (mod->state == MODULE_STATE_UNFORMED ||
2067			mod->state == MODULE_STATE_GOING)
2068			continue;
2069
2070		frob_text(&mod->core_layout, set_memory_ro);
2071		frob_text(&mod->init_layout, set_memory_ro);
2072	}
2073	mutex_unlock(&module_mutex);
2074}
 
2075#else /* !CONFIG_STRICT_MODULE_RWX */
2076static void module_enable_nx(const struct module *mod) { }
2077#endif /*  CONFIG_STRICT_MODULE_RWX */
2078static void module_enable_x(const struct module *mod)
 
2079{
2080	frob_text(&mod->core_layout, set_memory_x);
2081	frob_text(&mod->init_layout, set_memory_x);
2082}
2083#else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2084static void module_enable_nx(const struct module *mod) { }
2085static void module_enable_x(const struct module *mod) { }
2086#endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2087
2088
2089#ifdef CONFIG_LIVEPATCH
2090/*
2091 * Persist Elf information about a module. Copy the Elf header,
2092 * section header table, section string table, and symtab section
2093 * index from info to mod->klp_info.
2094 */
2095static int copy_module_elf(struct module *mod, struct load_info *info)
2096{
2097	unsigned int size, symndx;
2098	int ret;
2099
2100	size = sizeof(*mod->klp_info);
2101	mod->klp_info = kmalloc(size, GFP_KERNEL);
2102	if (mod->klp_info == NULL)
2103		return -ENOMEM;
2104
2105	/* Elf header */
2106	size = sizeof(mod->klp_info->hdr);
2107	memcpy(&mod->klp_info->hdr, info->hdr, size);
2108
2109	/* Elf section header table */
2110	size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2111	mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2112	if (mod->klp_info->sechdrs == NULL) {
2113		ret = -ENOMEM;
2114		goto free_info;
2115	}
2116
2117	/* Elf section name string table */
2118	size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2119	mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2120	if (mod->klp_info->secstrings == NULL) {
2121		ret = -ENOMEM;
2122		goto free_sechdrs;
2123	}
2124
2125	/* Elf symbol section index */
2126	symndx = info->index.sym;
2127	mod->klp_info->symndx = symndx;
2128
2129	/*
2130	 * For livepatch modules, core_kallsyms.symtab is a complete
2131	 * copy of the original symbol table. Adjust sh_addr to point
2132	 * to core_kallsyms.symtab since the copy of the symtab in module
2133	 * init memory is freed at the end of do_init_module().
2134	 */
2135	mod->klp_info->sechdrs[symndx].sh_addr = \
2136		(unsigned long) mod->core_kallsyms.symtab;
2137
2138	return 0;
2139
2140free_sechdrs:
2141	kfree(mod->klp_info->sechdrs);
2142free_info:
2143	kfree(mod->klp_info);
2144	return ret;
2145}
2146
2147static void free_module_elf(struct module *mod)
2148{
2149	kfree(mod->klp_info->sechdrs);
2150	kfree(mod->klp_info->secstrings);
2151	kfree(mod->klp_info);
2152}
2153#else /* !CONFIG_LIVEPATCH */
2154static int copy_module_elf(struct module *mod, struct load_info *info)
2155{
2156	return 0;
2157}
2158
2159static void free_module_elf(struct module *mod)
2160{
2161}
2162#endif /* CONFIG_LIVEPATCH */
2163
2164void __weak module_memfree(void *module_region)
2165{
2166	/*
2167	 * This memory may be RO, and freeing RO memory in an interrupt is not
2168	 * supported by vmalloc.
2169	 */
2170	WARN_ON(in_interrupt());
2171	vfree(module_region);
2172}
2173
2174void __weak module_arch_cleanup(struct module *mod)
2175{
2176}
2177
2178void __weak module_arch_freeing_init(struct module *mod)
2179{
2180}
2181
 
 
2182/* Free a module, remove from lists, etc. */
2183static void free_module(struct module *mod)
2184{
2185	trace_module_free(mod);
2186
2187	mod_sysfs_teardown(mod);
2188
2189	/* We leave it in list to prevent duplicate loads, but make sure
2190	 * that noone uses it while it's being deconstructed. */
 
 
2191	mutex_lock(&module_mutex);
2192	mod->state = MODULE_STATE_UNFORMED;
2193	mutex_unlock(&module_mutex);
2194
2195	/* Remove dynamic debug info */
2196	ddebug_remove_module(mod->name);
2197
2198	/* Arch-specific cleanup. */
2199	module_arch_cleanup(mod);
2200
2201	/* Module unload stuff */
2202	module_unload_free(mod);
2203
2204	/* Free any allocated parameters. */
2205	destroy_params(mod->kp, mod->num_kp);
2206
2207	if (is_livepatch_module(mod))
2208		free_module_elf(mod);
2209
2210	/* Now we can delete it from the lists */
2211	mutex_lock(&module_mutex);
2212	/* Unlink carefully: kallsyms could be walking list. */
2213	list_del_rcu(&mod->list);
2214	mod_tree_remove(mod);
2215	/* Remove this module from bug list, this uses list_del_rcu */
2216	module_bug_cleanup(mod);
2217	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2218	synchronize_rcu();
2219	mutex_unlock(&module_mutex);
2220
 
 
 
2221	/* This may be empty, but that's OK */
2222	module_arch_freeing_init(mod);
2223	module_memfree(mod->init_layout.base);
2224	kfree(mod->args);
2225	percpu_modfree(mod);
2226
2227	/* Free lock-classes; relies on the preceding sync_rcu(). */
2228	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2229
2230	/* Finally, free the core (containing the module structure) */
2231	module_memfree(mod->core_layout.base);
2232}
2233
2234void *__symbol_get(const char *symbol)
2235{
2236	struct module *owner;
2237	const struct kernel_symbol *sym;
 
 
 
2238
2239	preempt_disable();
2240	sym = find_symbol(symbol, &owner, NULL, true, true);
2241	if (sym && strong_try_module_get(owner))
2242		sym = NULL;
 
2243	preempt_enable();
2244
2245	return sym ? (void *)kernel_symbol_value(sym) : NULL;
2246}
2247EXPORT_SYMBOL_GPL(__symbol_get);
2248
2249/*
2250 * Ensure that an exported symbol [global namespace] does not already exist
2251 * in the kernel or in some other module's exported symbol table.
2252 *
2253 * You must hold the module_mutex.
2254 */
2255static int verify_exported_symbols(struct module *mod)
2256{
2257	unsigned int i;
2258	struct module *owner;
2259	const struct kernel_symbol *s;
2260	struct {
2261		const struct kernel_symbol *sym;
2262		unsigned int num;
2263	} arr[] = {
2264		{ mod->syms, mod->num_syms },
2265		{ mod->gpl_syms, mod->num_gpl_syms },
2266		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
2267#ifdef CONFIG_UNUSED_SYMBOLS
2268		{ mod->unused_syms, mod->num_unused_syms },
2269		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2270#endif
2271	};
2272
2273	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2274		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2275			if (find_symbol(kernel_symbol_name(s), &owner, NULL,
2276					true, false)) {
 
 
 
2277				pr_err("%s: exports duplicate symbol %s"
2278				       " (owned by %s)\n",
2279				       mod->name, kernel_symbol_name(s),
2280				       module_name(owner));
2281				return -ENOEXEC;
2282			}
2283		}
2284	}
2285	return 0;
2286}
2287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2288/* Change all symbols so that st_value encodes the pointer directly. */
2289static int simplify_symbols(struct module *mod, const struct load_info *info)
2290{
2291	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2292	Elf_Sym *sym = (void *)symsec->sh_addr;
2293	unsigned long secbase;
2294	unsigned int i;
2295	int ret = 0;
2296	const struct kernel_symbol *ksym;
2297
2298	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2299		const char *name = info->strtab + sym[i].st_name;
2300
2301		switch (sym[i].st_shndx) {
2302		case SHN_COMMON:
2303			/* Ignore common symbols */
2304			if (!strncmp(name, "__gnu_lto", 9))
2305				break;
2306
2307			/* We compiled with -fno-common.  These are not
2308			   supposed to happen.  */
 
 
2309			pr_debug("Common symbol: %s\n", name);
2310			pr_warn("%s: please compile with -fno-common\n",
2311			       mod->name);
2312			ret = -ENOEXEC;
2313			break;
2314
2315		case SHN_ABS:
2316			/* Don't need to do anything */
2317			pr_debug("Absolute symbol: 0x%08lx\n",
2318			       (long)sym[i].st_value);
2319			break;
2320
2321		case SHN_LIVEPATCH:
2322			/* Livepatch symbols are resolved by livepatch */
2323			break;
2324
2325		case SHN_UNDEF:
2326			ksym = resolve_symbol_wait(mod, info, name);
2327			/* Ok if resolved.  */
2328			if (ksym && !IS_ERR(ksym)) {
2329				sym[i].st_value = kernel_symbol_value(ksym);
2330				break;
2331			}
2332
2333			/* Ok if weak.  */
2334			if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
 
 
2335				break;
2336
2337			ret = PTR_ERR(ksym) ?: -ENOENT;
2338			pr_warn("%s: Unknown symbol %s (err %d)\n",
2339				mod->name, name, ret);
2340			break;
2341
2342		default:
2343			/* Divert to percpu allocation if a percpu var. */
2344			if (sym[i].st_shndx == info->index.pcpu)
2345				secbase = (unsigned long)mod_percpu(mod);
2346			else
2347				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2348			sym[i].st_value += secbase;
2349			break;
2350		}
2351	}
2352
2353	return ret;
2354}
2355
2356static int apply_relocations(struct module *mod, const struct load_info *info)
2357{
2358	unsigned int i;
2359	int err = 0;
2360
2361	/* Now do relocations. */
2362	for (i = 1; i < info->hdr->e_shnum; i++) {
2363		unsigned int infosec = info->sechdrs[i].sh_info;
2364
2365		/* Not a valid relocation section? */
2366		if (infosec >= info->hdr->e_shnum)
2367			continue;
2368
2369		/* Don't bother with non-allocated sections */
2370		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2371			continue;
2372
2373		/* Livepatch relocation sections are applied by livepatch */
2374		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2375			continue;
2376
2377		if (info->sechdrs[i].sh_type == SHT_REL)
 
 
 
2378			err = apply_relocate(info->sechdrs, info->strtab,
2379					     info->index.sym, i, mod);
2380		else if (info->sechdrs[i].sh_type == SHT_RELA)
2381			err = apply_relocate_add(info->sechdrs, info->strtab,
2382						 info->index.sym, i, mod);
2383		if (err < 0)
2384			break;
2385	}
2386	return err;
2387}
2388
2389/* Additional bytes needed by arch in front of individual sections */
2390unsigned int __weak arch_mod_section_prepend(struct module *mod,
2391					     unsigned int section)
2392{
2393	/* default implementation just returns zero */
2394	return 0;
2395}
2396
2397/* Update size with this section: return offset. */
2398static long get_offset(struct module *mod, unsigned int *size,
2399		       Elf_Shdr *sechdr, unsigned int section)
2400{
2401	long ret;
2402
2403	*size += arch_mod_section_prepend(mod, section);
2404	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2405	*size = ret + sechdr->sh_size;
2406	return ret;
2407}
2408
2409/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2410   might -- code, read-only data, read-write data, small data.  Tally
2411   sizes, and place the offsets into sh_entsize fields: high bit means it
2412   belongs in init. */
 
 
 
 
 
 
 
 
 
 
 
2413static void layout_sections(struct module *mod, struct load_info *info)
2414{
2415	static unsigned long const masks[][2] = {
2416		/* NOTE: all executable code must be the first section
 
2417		 * in this array; otherwise modify the text_size
2418		 * finder in the two loops below */
 
2419		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2420		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2421		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2422		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2423		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2424	};
2425	unsigned int m, i;
2426
2427	for (i = 0; i < info->hdr->e_shnum; i++)
2428		info->sechdrs[i].sh_entsize = ~0UL;
2429
2430	pr_debug("Core section allocation order:\n");
2431	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2432		for (i = 0; i < info->hdr->e_shnum; ++i) {
2433			Elf_Shdr *s = &info->sechdrs[i];
2434			const char *sname = info->secstrings + s->sh_name;
2435
2436			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2437			    || (s->sh_flags & masks[m][1])
2438			    || s->sh_entsize != ~0UL
2439			    || strstarts(sname, ".init"))
2440				continue;
2441			s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2442			pr_debug("\t%s\n", sname);
2443		}
2444		switch (m) {
2445		case 0: /* executable */
2446			mod->core_layout.size = debug_align(mod->core_layout.size);
2447			mod->core_layout.text_size = mod->core_layout.size;
2448			break;
2449		case 1: /* RO: text and ro-data */
2450			mod->core_layout.size = debug_align(mod->core_layout.size);
2451			mod->core_layout.ro_size = mod->core_layout.size;
2452			break;
2453		case 2: /* RO after init */
2454			mod->core_layout.size = debug_align(mod->core_layout.size);
2455			mod->core_layout.ro_after_init_size = mod->core_layout.size;
2456			break;
2457		case 4: /* whole core */
2458			mod->core_layout.size = debug_align(mod->core_layout.size);
2459			break;
2460		}
2461	}
2462
2463	pr_debug("Init section allocation order:\n");
2464	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2465		for (i = 0; i < info->hdr->e_shnum; ++i) {
2466			Elf_Shdr *s = &info->sechdrs[i];
2467			const char *sname = info->secstrings + s->sh_name;
2468
2469			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2470			    || (s->sh_flags & masks[m][1])
2471			    || s->sh_entsize != ~0UL
2472			    || !strstarts(sname, ".init"))
2473				continue;
2474			s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2475					 | INIT_OFFSET_MASK);
2476			pr_debug("\t%s\n", sname);
2477		}
2478		switch (m) {
2479		case 0: /* executable */
2480			mod->init_layout.size = debug_align(mod->init_layout.size);
2481			mod->init_layout.text_size = mod->init_layout.size;
2482			break;
2483		case 1: /* RO: text and ro-data */
2484			mod->init_layout.size = debug_align(mod->init_layout.size);
2485			mod->init_layout.ro_size = mod->init_layout.size;
2486			break;
2487		case 2:
2488			/*
2489			 * RO after init doesn't apply to init_layout (only
2490			 * core_layout), so it just takes the value of ro_size.
2491			 */
2492			mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2493			break;
2494		case 4: /* whole init */
2495			mod->init_layout.size = debug_align(mod->init_layout.size);
2496			break;
2497		}
2498	}
2499}
2500
2501static void set_license(struct module *mod, const char *license)
2502{
2503	if (!license)
2504		license = "unspecified";
2505
2506	if (!license_is_gpl_compatible(license)) {
2507		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2508			pr_warn("%s: module license '%s' taints kernel.\n",
2509				mod->name, license);
2510		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2511				 LOCKDEP_NOW_UNRELIABLE);
2512	}
2513}
2514
2515/* Parse tag=value strings from .modinfo section */
2516static char *next_string(char *string, unsigned long *secsize)
2517{
2518	/* Skip non-zero chars */
2519	while (string[0]) {
2520		string++;
2521		if ((*secsize)-- <= 1)
2522			return NULL;
2523	}
2524
2525	/* Skip any zero padding. */
2526	while (!string[0]) {
2527		string++;
2528		if ((*secsize)-- <= 1)
2529			return NULL;
2530	}
2531	return string;
2532}
2533
2534static char *get_next_modinfo(const struct load_info *info, const char *tag,
2535			      char *prev)
2536{
2537	char *p;
2538	unsigned int taglen = strlen(tag);
2539	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2540	unsigned long size = infosec->sh_size;
2541
2542	/*
2543	 * get_modinfo() calls made before rewrite_section_headers()
2544	 * must use sh_offset, as sh_addr isn't set!
2545	 */
2546	char *modinfo = (char *)info->hdr + infosec->sh_offset;
2547
2548	if (prev) {
2549		size -= prev - modinfo;
2550		modinfo = next_string(prev, &size);
2551	}
2552
2553	for (p = modinfo; p; p = next_string(p, &size)) {
2554		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2555			return p + taglen + 1;
2556	}
2557	return NULL;
2558}
2559
2560static char *get_modinfo(const struct load_info *info, const char *tag)
2561{
2562	return get_next_modinfo(info, tag, NULL);
2563}
2564
2565static void setup_modinfo(struct module *mod, struct load_info *info)
2566{
2567	struct module_attribute *attr;
2568	int i;
2569
2570	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2571		if (attr->setup)
2572			attr->setup(mod, get_modinfo(info, attr->attr.name));
2573	}
2574}
2575
2576static void free_modinfo(struct module *mod)
2577{
2578	struct module_attribute *attr;
2579	int i;
2580
2581	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2582		if (attr->free)
2583			attr->free(mod);
2584	}
2585}
2586
2587#ifdef CONFIG_KALLSYMS
2588
2589/* Lookup exported symbol in given range of kernel_symbols */
2590static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2591							  const struct kernel_symbol *start,
2592							  const struct kernel_symbol *stop)
2593{
2594	return bsearch(name, start, stop - start,
2595			sizeof(struct kernel_symbol), cmp_name);
2596}
2597
2598static int is_exported(const char *name, unsigned long value,
2599		       const struct module *mod)
2600{
2601	const struct kernel_symbol *ks;
2602	if (!mod)
2603		ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2604	else
2605		ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2606
2607	return ks != NULL && kernel_symbol_value(ks) == value;
2608}
2609
2610/* As per nm */
2611static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2612{
2613	const Elf_Shdr *sechdrs = info->sechdrs;
2614
2615	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2616		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2617			return 'v';
2618		else
2619			return 'w';
2620	}
2621	if (sym->st_shndx == SHN_UNDEF)
2622		return 'U';
2623	if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2624		return 'a';
2625	if (sym->st_shndx >= SHN_LORESERVE)
2626		return '?';
2627	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2628		return 't';
2629	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2630	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2631		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2632			return 'r';
2633		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2634			return 'g';
2635		else
2636			return 'd';
2637	}
2638	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2639		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2640			return 's';
2641		else
2642			return 'b';
2643	}
2644	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2645		      ".debug")) {
2646		return 'n';
2647	}
2648	return '?';
2649}
2650
2651static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2652			unsigned int shnum, unsigned int pcpundx)
2653{
2654	const Elf_Shdr *sec;
2655
2656	if (src->st_shndx == SHN_UNDEF
2657	    || src->st_shndx >= shnum
2658	    || !src->st_name)
2659		return false;
2660
2661#ifdef CONFIG_KALLSYMS_ALL
2662	if (src->st_shndx == pcpundx)
2663		return true;
2664#endif
2665
2666	sec = sechdrs + src->st_shndx;
2667	if (!(sec->sh_flags & SHF_ALLOC)
2668#ifndef CONFIG_KALLSYMS_ALL
2669	    || !(sec->sh_flags & SHF_EXECINSTR)
2670#endif
2671	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2672		return false;
2673
2674	return true;
2675}
2676
2677/*
2678 * We only allocate and copy the strings needed by the parts of symtab
2679 * we keep.  This is simple, but has the effect of making multiple
2680 * copies of duplicates.  We could be more sophisticated, see
2681 * linux-kernel thread starting with
2682 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2683 */
2684static void layout_symtab(struct module *mod, struct load_info *info)
2685{
2686	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2687	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2688	const Elf_Sym *src;
2689	unsigned int i, nsrc, ndst, strtab_size = 0;
2690
2691	/* Put symbol section at end of init part of module. */
2692	symsect->sh_flags |= SHF_ALLOC;
2693	symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2694					 info->index.sym) | INIT_OFFSET_MASK;
2695	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2696
2697	src = (void *)info->hdr + symsect->sh_offset;
2698	nsrc = symsect->sh_size / sizeof(*src);
2699
2700	/* Compute total space required for the core symbols' strtab. */
2701	for (ndst = i = 0; i < nsrc; i++) {
2702		if (i == 0 || is_livepatch_module(mod) ||
2703		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2704				   info->index.pcpu)) {
2705			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2706			ndst++;
2707		}
2708	}
2709
2710	/* Append room for core symbols at end of core part. */
2711	info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2712	info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2713	mod->core_layout.size += strtab_size;
2714	info->core_typeoffs = mod->core_layout.size;
2715	mod->core_layout.size += ndst * sizeof(char);
2716	mod->core_layout.size = debug_align(mod->core_layout.size);
2717
2718	/* Put string table section at end of init part of module. */
2719	strsect->sh_flags |= SHF_ALLOC;
2720	strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2721					 info->index.str) | INIT_OFFSET_MASK;
2722	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2723
2724	/* We'll tack temporary mod_kallsyms on the end. */
2725	mod->init_layout.size = ALIGN(mod->init_layout.size,
2726				      __alignof__(struct mod_kallsyms));
2727	info->mod_kallsyms_init_off = mod->init_layout.size;
2728	mod->init_layout.size += sizeof(struct mod_kallsyms);
2729	info->init_typeoffs = mod->init_layout.size;
2730	mod->init_layout.size += nsrc * sizeof(char);
2731	mod->init_layout.size = debug_align(mod->init_layout.size);
2732}
2733
2734/*
2735 * We use the full symtab and strtab which layout_symtab arranged to
2736 * be appended to the init section.  Later we switch to the cut-down
2737 * core-only ones.
2738 */
2739static void add_kallsyms(struct module *mod, const struct load_info *info)
2740{
2741	unsigned int i, ndst;
2742	const Elf_Sym *src;
2743	Elf_Sym *dst;
2744	char *s;
2745	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2746
2747	/* Set up to point into init section. */
2748	mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2749
2750	mod->kallsyms->symtab = (void *)symsec->sh_addr;
2751	mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2752	/* Make sure we get permanent strtab: don't use info->strtab. */
2753	mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2754	mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2755
2756	/*
2757	 * Now populate the cut down core kallsyms for after init
2758	 * and set types up while we still have access to sections.
2759	 */
2760	mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2761	mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2762	mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2763	src = mod->kallsyms->symtab;
2764	for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2765		mod->kallsyms->typetab[i] = elf_type(src + i, info);
2766		if (i == 0 || is_livepatch_module(mod) ||
2767		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2768				   info->index.pcpu)) {
2769			mod->core_kallsyms.typetab[ndst] =
2770			    mod->kallsyms->typetab[i];
2771			dst[ndst] = src[i];
2772			dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2773			s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2774				     KSYM_NAME_LEN) + 1;
2775		}
2776	}
2777	mod->core_kallsyms.num_symtab = ndst;
2778}
2779#else
2780static inline void layout_symtab(struct module *mod, struct load_info *info)
2781{
2782}
2783
2784static void add_kallsyms(struct module *mod, const struct load_info *info)
2785{
2786}
2787#endif /* CONFIG_KALLSYMS */
2788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2789static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2790{
2791	if (!debug)
2792		return;
2793	ddebug_add_module(debug, num, mod->name);
2794}
2795
2796static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2797{
2798	if (debug)
2799		ddebug_remove_module(mod->name);
2800}
2801
2802void * __weak module_alloc(unsigned long size)
2803{
2804	return vmalloc_exec(size);
 
 
 
 
 
 
 
2805}
2806
2807bool __weak module_exit_section(const char *name)
2808{
2809	return strstarts(name, ".exit");
2810}
2811
2812#ifdef CONFIG_DEBUG_KMEMLEAK
2813static void kmemleak_load_module(const struct module *mod,
2814				 const struct load_info *info)
2815{
2816	unsigned int i;
2817
2818	/* only scan the sections containing data */
2819	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2820
2821	for (i = 1; i < info->hdr->e_shnum; i++) {
2822		/* Scan all writable sections that's not executable */
2823		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2824		    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2825		    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2826			continue;
2827
2828		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2829				   info->sechdrs[i].sh_size, GFP_KERNEL);
2830	}
2831}
2832#else
2833static inline void kmemleak_load_module(const struct module *mod,
2834					const struct load_info *info)
2835{
2836}
2837#endif
2838
2839#ifdef CONFIG_MODULE_SIG
2840static int module_sig_check(struct load_info *info, int flags)
2841{
2842	int err = -ENODATA;
2843	const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2844	const char *reason;
2845	const void *mod = info->hdr;
2846
2847	/*
2848	 * Require flags == 0, as a module with version information
2849	 * removed is no longer the module that was signed
2850	 */
2851	if (flags == 0 &&
2852	    info->len > markerlen &&
2853	    memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2854		/* We truncate the module to discard the signature */
2855		info->len -= markerlen;
2856		err = mod_verify_sig(mod, info);
 
 
 
 
2857	}
2858
 
 
 
 
 
2859	switch (err) {
2860	case 0:
2861		info->sig_ok = true;
2862		return 0;
2863
2864		/* We don't permit modules to be loaded into trusted kernels
2865		 * without a valid signature on them, but if we're not
2866		 * enforcing, certain errors are non-fatal.
2867		 */
2868	case -ENODATA:
2869		reason = "Loading of unsigned module";
2870		goto decide;
2871	case -ENOPKG:
2872		reason = "Loading of module with unsupported crypto";
2873		goto decide;
2874	case -ENOKEY:
2875		reason = "Loading of module with unavailable key";
2876	decide:
2877		if (is_module_sig_enforced()) {
2878			pr_notice("%s is rejected\n", reason);
2879			return -EKEYREJECTED;
2880		}
2881
2882		return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2883
2884		/* All other errors are fatal, including nomem, unparseable
2885		 * signatures and signature check failures - even if signatures
2886		 * aren't required.
2887		 */
2888	default:
 
 
 
 
 
2889		return err;
2890	}
 
 
 
 
 
 
 
2891}
2892#else /* !CONFIG_MODULE_SIG */
2893static int module_sig_check(struct load_info *info, int flags)
2894{
2895	return 0;
2896}
2897#endif /* !CONFIG_MODULE_SIG */
2898
2899/* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2900static int elf_header_check(struct load_info *info)
2901{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2902	if (info->len < sizeof(*(info->hdr)))
2903		return -ENOEXEC;
2904
2905	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2906	    || info->hdr->e_type != ET_REL
2907	    || !elf_check_arch(info->hdr)
2908	    || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2909		return -ENOEXEC;
2910
 
 
 
 
 
2911	if (info->hdr->e_shoff >= info->len
2912	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2913		info->len - info->hdr->e_shoff))
2914		return -ENOEXEC;
2915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2916	return 0;
2917}
2918
2919#define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2920
2921static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2922{
2923	do {
2924		unsigned long n = min(len, COPY_CHUNK_SIZE);
2925
2926		if (copy_from_user(dst, usrc, n) != 0)
2927			return -EFAULT;
2928		cond_resched();
2929		dst += n;
2930		usrc += n;
2931		len -= n;
2932	} while (len);
2933	return 0;
2934}
2935
2936#ifdef CONFIG_LIVEPATCH
2937static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2938{
2939	if (get_modinfo(info, "livepatch")) {
2940		mod->klp = true;
2941		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2942		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2943			       mod->name);
2944	}
2945
2946	return 0;
2947}
2948#else /* !CONFIG_LIVEPATCH */
2949static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2950{
2951	if (get_modinfo(info, "livepatch")) {
2952		pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2953		       mod->name);
2954		return -ENOEXEC;
2955	}
2956
2957	return 0;
2958}
2959#endif /* CONFIG_LIVEPATCH */
2960
2961static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2962{
2963	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2964		return;
2965
2966	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2967		mod->name);
2968}
2969
2970/* Sets info->hdr and info->len. */
2971static int copy_module_from_user(const void __user *umod, unsigned long len,
2972				  struct load_info *info)
2973{
2974	int err;
2975
2976	info->len = len;
2977	if (info->len < sizeof(*(info->hdr)))
2978		return -ENOEXEC;
2979
2980	err = security_kernel_load_data(LOADING_MODULE);
2981	if (err)
2982		return err;
2983
2984	/* Suck in entire file: we'll want most of it. */
2985	info->hdr = __vmalloc(info->len,
2986			GFP_KERNEL | __GFP_NOWARN, PAGE_KERNEL);
2987	if (!info->hdr)
2988		return -ENOMEM;
2989
2990	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2991		vfree(info->hdr);
2992		return -EFAULT;
2993	}
2994
2995	return 0;
 
 
 
 
 
 
2996}
2997
2998static void free_copy(struct load_info *info)
2999{
3000	vfree(info->hdr);
3001}
3002
3003static int rewrite_section_headers(struct load_info *info, int flags)
3004{
3005	unsigned int i;
3006
3007	/* This should always be true, but let's be sure. */
3008	info->sechdrs[0].sh_addr = 0;
3009
3010	for (i = 1; i < info->hdr->e_shnum; i++) {
3011		Elf_Shdr *shdr = &info->sechdrs[i];
3012		if (shdr->sh_type != SHT_NOBITS
3013		    && info->len < shdr->sh_offset + shdr->sh_size) {
3014			pr_err("Module len %lu truncated\n", info->len);
3015			return -ENOEXEC;
3016		}
3017
3018		/* Mark all sections sh_addr with their address in the
3019		   temporary image. */
 
 
3020		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3021
3022#ifndef CONFIG_MODULE_UNLOAD
3023		/* Don't load .exit sections */
3024		if (module_exit_section(info->secstrings+shdr->sh_name))
3025			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
3026#endif
3027	}
3028
3029	/* Track but don't keep modinfo and version sections. */
3030	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3031	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3032
3033	return 0;
3034}
3035
3036/*
3037 * Set up our basic convenience variables (pointers to section headers,
3038 * search for module section index etc), and do some basic section
3039 * verification.
3040 *
3041 * Set info->mod to the temporary copy of the module in info->hdr. The final one
3042 * will be allocated in move_module().
3043 */
3044static int setup_load_info(struct load_info *info, int flags)
3045{
3046	unsigned int i;
3047
3048	/* Set up the convenience variables */
3049	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
3050	info->secstrings = (void *)info->hdr
3051		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
3052
3053	/* Try to find a name early so we can log errors with a module name */
3054	info->index.info = find_sec(info, ".modinfo");
3055	if (!info->index.info)
3056		info->name = "(missing .modinfo section)";
3057	else
3058		info->name = get_modinfo(info, "name");
3059
3060	/* Find internal symbols and strings. */
3061	for (i = 1; i < info->hdr->e_shnum; i++) {
3062		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3063			info->index.sym = i;
3064			info->index.str = info->sechdrs[i].sh_link;
3065			info->strtab = (char *)info->hdr
3066				+ info->sechdrs[info->index.str].sh_offset;
3067			break;
3068		}
3069	}
3070
3071	if (info->index.sym == 0) {
3072		pr_warn("%s: module has no symbols (stripped?)\n", info->name);
 
3073		return -ENOEXEC;
3074	}
3075
3076	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3077	if (!info->index.mod) {
3078		pr_warn("%s: No module found in object\n",
3079			info->name ?: "(missing .modinfo name field)");
3080		return -ENOEXEC;
3081	}
3082	/* This is temporary: point mod into copy of data. */
3083	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3084
3085	/*
3086	 * If we didn't load the .modinfo 'name' field earlier, fall back to
3087	 * on-disk struct mod 'name' field.
3088	 */
3089	if (!info->name)
3090		info->name = info->mod->name;
3091
3092	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3093		info->index.vers = 0; /* Pretend no __versions section! */
3094	else
3095		info->index.vers = find_sec(info, "__versions");
3096
3097	info->index.pcpu = find_pcpusec(info);
3098
3099	return 0;
3100}
3101
3102static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3103{
3104	const char *modmagic = get_modinfo(info, "vermagic");
3105	int err;
3106
3107	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3108		modmagic = NULL;
3109
3110	/* This is allowed: modprobe --force will invalidate it. */
3111	if (!modmagic) {
3112		err = try_to_force_load(mod, "bad vermagic");
3113		if (err)
3114			return err;
3115	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3116		pr_err("%s: version magic '%s' should be '%s'\n",
3117		       info->name, modmagic, vermagic);
3118		return -ENOEXEC;
3119	}
3120
3121	if (!get_modinfo(info, "intree")) {
3122		if (!test_taint(TAINT_OOT_MODULE))
3123			pr_warn("%s: loading out-of-tree module taints kernel.\n",
3124				mod->name);
3125		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3126	}
3127
3128	check_modinfo_retpoline(mod, info);
3129
3130	if (get_modinfo(info, "staging")) {
3131		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3132		pr_warn("%s: module is from the staging directory, the quality "
3133			"is unknown, you have been warned.\n", mod->name);
3134	}
3135
3136	err = check_modinfo_livepatch(mod, info);
3137	if (err)
3138		return err;
3139
3140	/* Set up license info based on the info section */
3141	set_license(mod, get_modinfo(info, "license"));
3142
3143	return 0;
3144}
3145
3146static int find_module_sections(struct module *mod, struct load_info *info)
3147{
3148	mod->kp = section_objs(info, "__param",
3149			       sizeof(*mod->kp), &mod->num_kp);
3150	mod->syms = section_objs(info, "__ksymtab",
3151				 sizeof(*mod->syms), &mod->num_syms);
3152	mod->crcs = section_addr(info, "__kcrctab");
3153	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3154				     sizeof(*mod->gpl_syms),
3155				     &mod->num_gpl_syms);
3156	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3157	mod->gpl_future_syms = section_objs(info,
3158					    "__ksymtab_gpl_future",
3159					    sizeof(*mod->gpl_future_syms),
3160					    &mod->num_gpl_future_syms);
3161	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3162
3163#ifdef CONFIG_UNUSED_SYMBOLS
3164	mod->unused_syms = section_objs(info, "__ksymtab_unused",
3165					sizeof(*mod->unused_syms),
3166					&mod->num_unused_syms);
3167	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3168	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3169					    sizeof(*mod->unused_gpl_syms),
3170					    &mod->num_unused_gpl_syms);
3171	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3172#endif
3173#ifdef CONFIG_CONSTRUCTORS
3174	mod->ctors = section_objs(info, ".ctors",
3175				  sizeof(*mod->ctors), &mod->num_ctors);
3176	if (!mod->ctors)
3177		mod->ctors = section_objs(info, ".init_array",
3178				sizeof(*mod->ctors), &mod->num_ctors);
3179	else if (find_sec(info, ".init_array")) {
3180		/*
3181		 * This shouldn't happen with same compiler and binutils
3182		 * building all parts of the module.
3183		 */
3184		pr_warn("%s: has both .ctors and .init_array.\n",
3185		       mod->name);
3186		return -EINVAL;
3187	}
3188#endif
3189
 
 
 
3190#ifdef CONFIG_TRACEPOINTS
3191	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3192					     sizeof(*mod->tracepoints_ptrs),
3193					     &mod->num_tracepoints);
3194#endif
3195#ifdef CONFIG_TREE_SRCU
3196	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3197					     sizeof(*mod->srcu_struct_ptrs),
3198					     &mod->num_srcu_structs);
3199#endif
3200#ifdef CONFIG_BPF_EVENTS
3201	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3202					   sizeof(*mod->bpf_raw_events),
3203					   &mod->num_bpf_raw_events);
3204#endif
 
 
 
3205#ifdef CONFIG_JUMP_LABEL
3206	mod->jump_entries = section_objs(info, "__jump_table",
3207					sizeof(*mod->jump_entries),
3208					&mod->num_jump_entries);
3209#endif
3210#ifdef CONFIG_EVENT_TRACING
3211	mod->trace_events = section_objs(info, "_ftrace_events",
3212					 sizeof(*mod->trace_events),
3213					 &mod->num_trace_events);
3214	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3215					sizeof(*mod->trace_evals),
3216					&mod->num_trace_evals);
3217#endif
3218#ifdef CONFIG_TRACING
3219	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3220					 sizeof(*mod->trace_bprintk_fmt_start),
3221					 &mod->num_trace_bprintk_fmt);
3222#endif
3223#ifdef CONFIG_FTRACE_MCOUNT_RECORD
3224	/* sechdrs[0].sh_size is always zero */
3225	mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3226					     sizeof(*mod->ftrace_callsites),
3227					     &mod->num_ftrace_callsites);
3228#endif
3229#ifdef CONFIG_FUNCTION_ERROR_INJECTION
3230	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3231					    sizeof(*mod->ei_funcs),
3232					    &mod->num_ei_funcs);
3233#endif
 
 
 
 
 
 
 
 
 
 
 
 
3234	mod->extable = section_objs(info, "__ex_table",
3235				    sizeof(*mod->extable), &mod->num_exentries);
3236
3237	if (section_addr(info, "__obsparm"))
3238		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3239
3240	info->debug = section_objs(info, "__verbose",
3241				   sizeof(*info->debug), &info->num_debug);
3242
3243	return 0;
3244}
3245
3246static int move_module(struct module *mod, struct load_info *info)
3247{
3248	int i;
3249	void *ptr;
3250
3251	/* Do the allocs. */
3252	ptr = module_alloc(mod->core_layout.size);
3253	/*
3254	 * The pointer to this block is stored in the module structure
3255	 * which is inside the block. Just mark it as not being a
3256	 * leak.
3257	 */
3258	kmemleak_not_leak(ptr);
3259	if (!ptr)
3260		return -ENOMEM;
3261
3262	memset(ptr, 0, mod->core_layout.size);
3263	mod->core_layout.base = ptr;
3264
3265	if (mod->init_layout.size) {
3266		ptr = module_alloc(mod->init_layout.size);
3267		/*
3268		 * The pointer to this block is stored in the module structure
3269		 * which is inside the block. This block doesn't need to be
3270		 * scanned as it contains data and code that will be freed
3271		 * after the module is initialized.
3272		 */
3273		kmemleak_ignore(ptr);
3274		if (!ptr) {
3275			module_memfree(mod->core_layout.base);
3276			return -ENOMEM;
3277		}
3278		memset(ptr, 0, mod->init_layout.size);
3279		mod->init_layout.base = ptr;
3280	} else
3281		mod->init_layout.base = NULL;
3282
3283	/* Transfer each section which specifies SHF_ALLOC */
3284	pr_debug("final section addresses:\n");
3285	for (i = 0; i < info->hdr->e_shnum; i++) {
3286		void *dest;
3287		Elf_Shdr *shdr = &info->sechdrs[i];
3288
3289		if (!(shdr->sh_flags & SHF_ALLOC))
3290			continue;
3291
3292		if (shdr->sh_entsize & INIT_OFFSET_MASK)
3293			dest = mod->init_layout.base
3294				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3295		else
3296			dest = mod->core_layout.base + shdr->sh_entsize;
3297
3298		if (shdr->sh_type != SHT_NOBITS)
3299			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3300		/* Update sh_addr to point to copy in image. */
3301		shdr->sh_addr = (unsigned long)dest;
3302		pr_debug("\t0x%lx %s\n",
3303			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3304	}
3305
3306	return 0;
3307}
3308
3309static int check_module_license_and_versions(struct module *mod)
3310{
3311	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3312
3313	/*
3314	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3315	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3316	 * using GPL-only symbols it needs.
3317	 */
3318	if (strcmp(mod->name, "ndiswrapper") == 0)
3319		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3320
3321	/* driverloader was caught wrongly pretending to be under GPL */
3322	if (strcmp(mod->name, "driverloader") == 0)
3323		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3324				 LOCKDEP_NOW_UNRELIABLE);
3325
3326	/* lve claims to be GPL but upstream won't provide source */
3327	if (strcmp(mod->name, "lve") == 0)
3328		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3329				 LOCKDEP_NOW_UNRELIABLE);
3330
3331	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3332		pr_warn("%s: module license taints kernel.\n", mod->name);
3333
3334#ifdef CONFIG_MODVERSIONS
3335	if ((mod->num_syms && !mod->crcs)
3336	    || (mod->num_gpl_syms && !mod->gpl_crcs)
3337	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3338#ifdef CONFIG_UNUSED_SYMBOLS
3339	    || (mod->num_unused_syms && !mod->unused_crcs)
3340	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3341#endif
3342		) {
3343		return try_to_force_load(mod,
3344					 "no versions for exported symbols");
3345	}
3346#endif
3347	return 0;
3348}
3349
3350static void flush_module_icache(const struct module *mod)
3351{
3352	mm_segment_t old_fs;
3353
3354	/* flush the icache in correct context */
3355	old_fs = get_fs();
3356	set_fs(KERNEL_DS);
3357
3358	/*
3359	 * Flush the instruction cache, since we've played with text.
3360	 * Do it before processing of module parameters, so the module
3361	 * can provide parameter accessor functions of its own.
3362	 */
3363	if (mod->init_layout.base)
3364		flush_icache_range((unsigned long)mod->init_layout.base,
3365				   (unsigned long)mod->init_layout.base
3366				   + mod->init_layout.size);
3367	flush_icache_range((unsigned long)mod->core_layout.base,
3368			   (unsigned long)mod->core_layout.base + mod->core_layout.size);
3369
3370	set_fs(old_fs);
3371}
3372
3373int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3374				     Elf_Shdr *sechdrs,
3375				     char *secstrings,
3376				     struct module *mod)
3377{
3378	return 0;
3379}
3380
3381/* module_blacklist is a comma-separated list of module names */
3382static char *module_blacklist;
3383static bool blacklisted(const char *module_name)
3384{
3385	const char *p;
3386	size_t len;
3387
3388	if (!module_blacklist)
3389		return false;
3390
3391	for (p = module_blacklist; *p; p += len) {
3392		len = strcspn(p, ",");
3393		if (strlen(module_name) == len && !memcmp(module_name, p, len))
3394			return true;
3395		if (p[len] == ',')
3396			len++;
3397	}
3398	return false;
3399}
3400core_param(module_blacklist, module_blacklist, charp, 0400);
3401
3402static struct module *layout_and_allocate(struct load_info *info, int flags)
3403{
3404	struct module *mod;
3405	unsigned int ndx;
3406	int err;
3407
3408	err = check_modinfo(info->mod, info, flags);
3409	if (err)
3410		return ERR_PTR(err);
3411
3412	/* Allow arches to frob section contents and sizes.  */
3413	err = module_frob_arch_sections(info->hdr, info->sechdrs,
3414					info->secstrings, info->mod);
3415	if (err < 0)
3416		return ERR_PTR(err);
3417
 
 
 
 
 
3418	/* We will do a special allocation for per-cpu sections later. */
3419	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3420
3421	/*
3422	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3423	 * layout_sections() can put it in the right place.
3424	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3425	 */
3426	ndx = find_sec(info, ".data..ro_after_init");
3427	if (ndx)
3428		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3429	/*
3430	 * Mark the __jump_table section as ro_after_init as well: these data
3431	 * structures are never modified, with the exception of entries that
3432	 * refer to code in the __init section, which are annotated as such
3433	 * at module load time.
3434	 */
3435	ndx = find_sec(info, "__jump_table");
3436	if (ndx)
3437		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3438
3439	/* Determine total sizes, and put offsets in sh_entsize.  For now
3440	   this is done generically; there doesn't appear to be any
3441	   special cases for the architectures. */
 
 
3442	layout_sections(info->mod, info);
3443	layout_symtab(info->mod, info);
3444
3445	/* Allocate and move to the final place */
3446	err = move_module(info->mod, info);
3447	if (err)
3448		return ERR_PTR(err);
3449
3450	/* Module has been copied to its final place now: return it. */
3451	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3452	kmemleak_load_module(mod, info);
3453	return mod;
3454}
3455
3456/* mod is no longer valid after this! */
3457static void module_deallocate(struct module *mod, struct load_info *info)
3458{
3459	percpu_modfree(mod);
3460	module_arch_freeing_init(mod);
3461	module_memfree(mod->init_layout.base);
3462	module_memfree(mod->core_layout.base);
3463}
3464
3465int __weak module_finalize(const Elf_Ehdr *hdr,
3466			   const Elf_Shdr *sechdrs,
3467			   struct module *me)
3468{
3469	return 0;
3470}
3471
3472static int post_relocation(struct module *mod, const struct load_info *info)
3473{
3474	/* Sort exception table now relocations are done. */
3475	sort_extable(mod->extable, mod->extable + mod->num_exentries);
3476
3477	/* Copy relocated percpu area over. */
3478	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3479		       info->sechdrs[info->index.pcpu].sh_size);
3480
3481	/* Setup kallsyms-specific fields. */
3482	add_kallsyms(mod, info);
3483
3484	/* Arch-specific module finalizing. */
3485	return module_finalize(info->hdr, info->sechdrs, mod);
3486}
3487
3488/* Is this module of this name done loading?  No locks held. */
3489static bool finished_loading(const char *name)
3490{
3491	struct module *mod;
3492	bool ret;
3493
3494	/*
3495	 * The module_mutex should not be a heavily contended lock;
3496	 * if we get the occasional sleep here, we'll go an extra iteration
3497	 * in the wait_event_interruptible(), which is harmless.
3498	 */
3499	sched_annotate_sleep();
3500	mutex_lock(&module_mutex);
3501	mod = find_module_all(name, strlen(name), true);
3502	ret = !mod || mod->state == MODULE_STATE_LIVE;
3503	mutex_unlock(&module_mutex);
3504
3505	return ret;
3506}
3507
3508/* Call module constructors. */
3509static void do_mod_ctors(struct module *mod)
3510{
3511#ifdef CONFIG_CONSTRUCTORS
3512	unsigned long i;
3513
3514	for (i = 0; i < mod->num_ctors; i++)
3515		mod->ctors[i]();
3516#endif
3517}
3518
3519/* For freeing module_init on success, in case kallsyms traversing */
3520struct mod_initfree {
3521	struct llist_node node;
3522	void *module_init;
3523};
3524
3525static void do_free_init(struct work_struct *w)
3526{
3527	struct llist_node *pos, *n, *list;
3528	struct mod_initfree *initfree;
3529
3530	list = llist_del_all(&init_free_list);
3531
3532	synchronize_rcu();
3533
3534	llist_for_each_safe(pos, n, list) {
3535		initfree = container_of(pos, struct mod_initfree, node);
3536		module_memfree(initfree->module_init);
3537		kfree(initfree);
3538	}
3539}
3540
3541static int __init modules_wq_init(void)
3542{
3543	INIT_WORK(&init_free_wq, do_free_init);
3544	init_llist_head(&init_free_list);
3545	return 0;
3546}
3547module_init(modules_wq_init);
3548
3549/*
3550 * This is where the real work happens.
3551 *
3552 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3553 * helper command 'lx-symbols'.
3554 */
3555static noinline int do_init_module(struct module *mod)
3556{
3557	int ret = 0;
3558	struct mod_initfree *freeinit;
3559
3560	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3561	if (!freeinit) {
3562		ret = -ENOMEM;
3563		goto fail;
3564	}
3565	freeinit->module_init = mod->init_layout.base;
3566
3567	/*
3568	 * We want to find out whether @mod uses async during init.  Clear
3569	 * PF_USED_ASYNC.  async_schedule*() will set it.
3570	 */
3571	current->flags &= ~PF_USED_ASYNC;
3572
3573	do_mod_ctors(mod);
3574	/* Start the module */
3575	if (mod->init != NULL)
3576		ret = do_one_initcall(mod->init);
3577	if (ret < 0) {
3578		goto fail_free_freeinit;
3579	}
3580	if (ret > 0) {
3581		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3582			"follow 0/-E convention\n"
3583			"%s: loading module anyway...\n",
3584			__func__, mod->name, ret, __func__);
3585		dump_stack();
3586	}
3587
3588	/* Now it's a first class citizen! */
3589	mod->state = MODULE_STATE_LIVE;
3590	blocking_notifier_call_chain(&module_notify_list,
3591				     MODULE_STATE_LIVE, mod);
3592
 
 
 
3593	/*
3594	 * We need to finish all async code before the module init sequence
3595	 * is done.  This has potential to deadlock.  For example, a newly
3596	 * detected block device can trigger request_module() of the
3597	 * default iosched from async probing task.  Once userland helper
3598	 * reaches here, async_synchronize_full() will wait on the async
3599	 * task waiting on request_module() and deadlock.
3600	 *
3601	 * This deadlock is avoided by perfomring async_synchronize_full()
3602	 * iff module init queued any async jobs.  This isn't a full
3603	 * solution as it will deadlock the same if module loading from
3604	 * async jobs nests more than once; however, due to the various
3605	 * constraints, this hack seems to be the best option for now.
3606	 * Please refer to the following thread for details.
3607	 *
3608	 * http://thread.gmane.org/gmane.linux.kernel/1420814
3609	 */
3610	if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3611		async_synchronize_full();
3612
3613	ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3614			mod->init_layout.size);
3615	mutex_lock(&module_mutex);
3616	/* Drop initial reference. */
3617	module_put(mod);
3618	trim_init_extable(mod);
3619#ifdef CONFIG_KALLSYMS
3620	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3621	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3622#endif
3623	module_enable_ro(mod, true);
3624	mod_tree_remove_init(mod);
3625	module_arch_freeing_init(mod);
3626	mod->init_layout.base = NULL;
3627	mod->init_layout.size = 0;
3628	mod->init_layout.ro_size = 0;
3629	mod->init_layout.ro_after_init_size = 0;
3630	mod->init_layout.text_size = 0;
 
 
 
 
3631	/*
3632	 * We want to free module_init, but be aware that kallsyms may be
3633	 * walking this with preempt disabled.  In all the failure paths, we
3634	 * call synchronize_rcu(), but we don't want to slow down the success
3635	 * path. module_memfree() cannot be called in an interrupt, so do the
3636	 * work and call synchronize_rcu() in a work queue.
3637	 *
3638	 * Note that module_alloc() on most architectures creates W+X page
3639	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3640	 * code such as mark_rodata_ro() which depends on those mappings to
3641	 * be cleaned up needs to sync with the queued work - ie
3642	 * rcu_barrier()
3643	 */
3644	if (llist_add(&freeinit->node, &init_free_list))
3645		schedule_work(&init_free_wq);
3646
3647	mutex_unlock(&module_mutex);
3648	wake_up_all(&module_wq);
3649
3650	return 0;
3651
3652fail_free_freeinit:
3653	kfree(freeinit);
3654fail:
3655	/* Try to protect us from buggy refcounters. */
3656	mod->state = MODULE_STATE_GOING;
3657	synchronize_rcu();
3658	module_put(mod);
3659	blocking_notifier_call_chain(&module_notify_list,
3660				     MODULE_STATE_GOING, mod);
3661	klp_module_going(mod);
3662	ftrace_release_mod(mod);
3663	free_module(mod);
3664	wake_up_all(&module_wq);
3665	return ret;
3666}
3667
3668static int may_init_module(void)
3669{
3670	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3671		return -EPERM;
3672
3673	return 0;
3674}
3675
3676/*
3677 * We try to place it in the list now to make sure it's unique before
3678 * we dedicate too many resources.  In particular, temporary percpu
3679 * memory exhaustion.
3680 */
3681static int add_unformed_module(struct module *mod)
3682{
3683	int err;
3684	struct module *old;
3685
3686	mod->state = MODULE_STATE_UNFORMED;
3687
3688again:
3689	mutex_lock(&module_mutex);
3690	old = find_module_all(mod->name, strlen(mod->name), true);
3691	if (old != NULL) {
3692		if (old->state != MODULE_STATE_LIVE) {
3693			/* Wait in case it fails to load. */
3694			mutex_unlock(&module_mutex);
3695			err = wait_event_interruptible(module_wq,
3696					       finished_loading(mod->name));
3697			if (err)
3698				goto out_unlocked;
3699			goto again;
3700		}
3701		err = -EEXIST;
3702		goto out;
3703	}
3704	mod_update_bounds(mod);
3705	list_add_rcu(&mod->list, &modules);
3706	mod_tree_insert(mod);
3707	err = 0;
3708
3709out:
3710	mutex_unlock(&module_mutex);
3711out_unlocked:
3712	return err;
3713}
3714
3715static int complete_formation(struct module *mod, struct load_info *info)
3716{
3717	int err;
3718
3719	mutex_lock(&module_mutex);
3720
3721	/* Find duplicate symbols (must be called under lock). */
3722	err = verify_exported_symbols(mod);
3723	if (err < 0)
3724		goto out;
3725
3726	/* This relies on module_mutex for list integrity. */
3727	module_bug_finalize(info->hdr, info->sechdrs, mod);
3728
3729	module_enable_ro(mod, false);
3730	module_enable_nx(mod);
3731	module_enable_x(mod);
3732
3733	/* Mark state as coming so strong_try_module_get() ignores us,
3734	 * but kallsyms etc. can see us. */
 
 
3735	mod->state = MODULE_STATE_COMING;
3736	mutex_unlock(&module_mutex);
3737
3738	return 0;
3739
3740out:
3741	mutex_unlock(&module_mutex);
3742	return err;
3743}
3744
3745static int prepare_coming_module(struct module *mod)
3746{
3747	int err;
3748
3749	ftrace_module_enable(mod);
3750	err = klp_module_coming(mod);
3751	if (err)
3752		return err;
3753
3754	blocking_notifier_call_chain(&module_notify_list,
3755				     MODULE_STATE_COMING, mod);
3756	return 0;
 
 
 
 
3757}
3758
3759static int unknown_module_param_cb(char *param, char *val, const char *modname,
3760				   void *arg)
3761{
3762	struct module *mod = arg;
3763	int ret;
3764
3765	if (strcmp(param, "async_probe") == 0) {
3766		mod->async_probe_requested = true;
3767		return 0;
3768	}
3769
3770	/* Check for magic 'dyndbg' arg */
3771	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3772	if (ret != 0)
3773		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3774	return 0;
3775}
3776
3777/* Allocate and load the module: note that size of section 0 is always
3778   zero, and we rely on this for optional sections. */
 
 
 
 
3779static int load_module(struct load_info *info, const char __user *uargs,
3780		       int flags)
3781{
3782	struct module *mod;
3783	long err = 0;
3784	char *after_dashes;
3785
3786	err = elf_header_check(info);
 
 
 
 
 
 
 
 
 
 
 
 
3787	if (err)
3788		goto free_copy;
3789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3790	err = setup_load_info(info, flags);
3791	if (err)
3792		goto free_copy;
3793
 
 
 
 
3794	if (blacklisted(info->name)) {
3795		err = -EPERM;
 
3796		goto free_copy;
3797	}
3798
3799	err = module_sig_check(info, flags);
3800	if (err)
3801		goto free_copy;
3802
3803	err = rewrite_section_headers(info, flags);
3804	if (err)
3805		goto free_copy;
3806
3807	/* Check module struct version now, before we try to use module. */
3808	if (!check_modstruct_version(info, info->mod)) {
3809		err = -ENOEXEC;
3810		goto free_copy;
3811	}
3812
3813	/* Figure out module layout, and allocate all the memory. */
3814	mod = layout_and_allocate(info, flags);
3815	if (IS_ERR(mod)) {
3816		err = PTR_ERR(mod);
3817		goto free_copy;
3818	}
3819
3820	audit_log_kern_module(mod->name);
3821
3822	/* Reserve our place in the list. */
3823	err = add_unformed_module(mod);
3824	if (err)
3825		goto free_module;
3826
3827#ifdef CONFIG_MODULE_SIG
3828	mod->sig_ok = info->sig_ok;
3829	if (!mod->sig_ok) {
3830		pr_notice_once("%s: module verification failed: signature "
3831			       "and/or required key missing - tainting "
3832			       "kernel\n", mod->name);
3833		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3834	}
3835#endif
3836
3837	/* To avoid stressing percpu allocator, do this once we're unique. */
3838	err = percpu_modalloc(mod, info);
3839	if (err)
3840		goto unlink_mod;
3841
3842	/* Now module is in final location, initialize linked lists, etc. */
3843	err = module_unload_init(mod);
3844	if (err)
3845		goto unlink_mod;
3846
3847	init_param_lock(mod);
3848
3849	/* Now we've got everything in the final locations, we can
3850	 * find optional sections. */
 
 
3851	err = find_module_sections(mod, info);
3852	if (err)
3853		goto free_unload;
3854
3855	err = check_module_license_and_versions(mod);
3856	if (err)
3857		goto free_unload;
3858
3859	/* Set up MODINFO_ATTR fields */
3860	setup_modinfo(mod, info);
3861
3862	/* Fix up syms, so that st_value is a pointer to location. */
3863	err = simplify_symbols(mod, info);
3864	if (err < 0)
3865		goto free_modinfo;
3866
3867	err = apply_relocations(mod, info);
3868	if (err < 0)
3869		goto free_modinfo;
3870
3871	err = post_relocation(mod, info);
3872	if (err < 0)
3873		goto free_modinfo;
3874
3875	flush_module_icache(mod);
3876
 
 
 
3877	/* Now copy in args */
3878	mod->args = strndup_user(uargs, ~0UL >> 1);
3879	if (IS_ERR(mod->args)) {
3880		err = PTR_ERR(mod->args);
3881		goto free_arch_cleanup;
3882	}
3883
 
3884	dynamic_debug_setup(mod, info->debug, info->num_debug);
3885
3886	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3887	ftrace_module_init(mod);
3888
3889	/* Finally it's fully formed, ready to start executing. */
3890	err = complete_formation(mod, info);
3891	if (err)
3892		goto ddebug_cleanup;
3893
3894	err = prepare_coming_module(mod);
3895	if (err)
3896		goto bug_cleanup;
3897
3898	/* Module is ready to execute: parsing args may do that. */
3899	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3900				  -32768, 32767, mod,
3901				  unknown_module_param_cb);
3902	if (IS_ERR(after_dashes)) {
3903		err = PTR_ERR(after_dashes);
3904		goto coming_cleanup;
3905	} else if (after_dashes) {
3906		pr_warn("%s: parameters '%s' after `--' ignored\n",
3907		       mod->name, after_dashes);
3908	}
3909
3910	/* Link in to sysfs. */
3911	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3912	if (err < 0)
3913		goto coming_cleanup;
3914
3915	if (is_livepatch_module(mod)) {
3916		err = copy_module_elf(mod, info);
3917		if (err < 0)
3918			goto sysfs_cleanup;
3919	}
3920
3921	/* Get rid of temporary copy. */
3922	free_copy(info);
3923
3924	/* Done! */
3925	trace_module_load(mod);
3926
3927	return do_init_module(mod);
3928
3929 sysfs_cleanup:
3930	mod_sysfs_teardown(mod);
3931 coming_cleanup:
3932	mod->state = MODULE_STATE_GOING;
3933	destroy_params(mod->kp, mod->num_kp);
3934	blocking_notifier_call_chain(&module_notify_list,
3935				     MODULE_STATE_GOING, mod);
3936	klp_module_going(mod);
3937 bug_cleanup:
 
3938	/* module_bug_cleanup needs module_mutex protection */
3939	mutex_lock(&module_mutex);
3940	module_bug_cleanup(mod);
3941	mutex_unlock(&module_mutex);
3942
3943 ddebug_cleanup:
3944	ftrace_release_mod(mod);
3945	dynamic_debug_remove(mod, info->debug);
3946	synchronize_rcu();
3947	kfree(mod->args);
3948 free_arch_cleanup:
 
3949	module_arch_cleanup(mod);
3950 free_modinfo:
3951	free_modinfo(mod);
3952 free_unload:
3953	module_unload_free(mod);
3954 unlink_mod:
3955	mutex_lock(&module_mutex);
3956	/* Unlink carefully: kallsyms could be walking list. */
3957	list_del_rcu(&mod->list);
3958	mod_tree_remove(mod);
3959	wake_up_all(&module_wq);
3960	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3961	synchronize_rcu();
3962	mutex_unlock(&module_mutex);
3963 free_module:
3964	/* Free lock-classes; relies on the preceding sync_rcu() */
3965	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3966
3967	module_deallocate(mod, info);
3968 free_copy:
3969	free_copy(info);
3970	return err;
3971}
3972
3973SYSCALL_DEFINE3(init_module, void __user *, umod,
3974		unsigned long, len, const char __user *, uargs)
3975{
3976	int err;
3977	struct load_info info = { };
3978
3979	err = may_init_module();
3980	if (err)
3981		return err;
3982
3983	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3984	       umod, len, uargs);
3985
3986	err = copy_module_from_user(umod, len, &info);
3987	if (err)
3988		return err;
3989
3990	return load_module(&info, uargs, 0);
3991}
3992
3993SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3994{
3995	struct load_info info = { };
3996	loff_t size;
3997	void *hdr;
3998	int err;
3999
4000	err = may_init_module();
4001	if (err)
4002		return err;
4003
4004	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4005
4006	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4007		      |MODULE_INIT_IGNORE_VERMAGIC))
4008		return -EINVAL;
4009
4010	err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
4011				       READING_MODULE);
4012	if (err)
4013		return err;
4014	info.hdr = hdr;
4015	info.len = size;
4016
4017	return load_module(&info, uargs, flags);
4018}
4019
4020static inline int within(unsigned long addr, void *start, unsigned long size)
4021{
4022	return ((void *)addr >= start && (void *)addr < start + size);
4023}
4024
4025#ifdef CONFIG_KALLSYMS
4026/*
4027 * This ignores the intensely annoying "mapping symbols" found
4028 * in ARM ELF files: $a, $t and $d.
4029 */
4030static inline int is_arm_mapping_symbol(const char *str)
4031{
4032	if (str[0] == '.' && str[1] == 'L')
4033		return true;
4034	return str[0] == '$' && strchr("axtd", str[1])
4035	       && (str[2] == '\0' || str[2] == '.');
4036}
4037
4038static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4039{
4040	return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4041}
4042
4043/*
4044 * Given a module and address, find the corresponding symbol and return its name
4045 * while providing its size and offset if needed.
4046 */
4047static const char *find_kallsyms_symbol(struct module *mod,
4048					unsigned long addr,
4049					unsigned long *size,
4050					unsigned long *offset)
4051{
4052	unsigned int i, best = 0;
4053	unsigned long nextval, bestval;
4054	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4055
4056	/* At worse, next value is at end of module */
4057	if (within_module_init(addr, mod))
4058		nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4059	else
4060		nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4061
4062	bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4063
4064	/* Scan for closest preceding symbol, and next symbol. (ELF
4065	   starts real symbols at 1). */
 
 
4066	for (i = 1; i < kallsyms->num_symtab; i++) {
4067		const Elf_Sym *sym = &kallsyms->symtab[i];
4068		unsigned long thisval = kallsyms_symbol_value(sym);
4069
4070		if (sym->st_shndx == SHN_UNDEF)
4071			continue;
4072
4073		/* We ignore unnamed symbols: they're uninformative
4074		 * and inserted at a whim. */
 
 
4075		if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4076		    || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4077			continue;
4078
4079		if (thisval <= addr && thisval > bestval) {
4080			best = i;
4081			bestval = thisval;
4082		}
4083		if (thisval > addr && thisval < nextval)
4084			nextval = thisval;
4085	}
4086
4087	if (!best)
4088		return NULL;
4089
4090	if (size)
4091		*size = nextval - bestval;
4092	if (offset)
4093		*offset = addr - bestval;
4094
4095	return kallsyms_symbol_name(kallsyms, best);
4096}
4097
4098void * __weak dereference_module_function_descriptor(struct module *mod,
4099						     void *ptr)
4100{
4101	return ptr;
4102}
4103
4104/* For kallsyms to ask for address resolution.  NULL means not found.  Careful
4105 * not to lock to avoid deadlock on oopses, simply disable preemption. */
 
 
4106const char *module_address_lookup(unsigned long addr,
4107			    unsigned long *size,
4108			    unsigned long *offset,
4109			    char **modname,
 
4110			    char *namebuf)
4111{
4112	const char *ret = NULL;
4113	struct module *mod;
4114
4115	preempt_disable();
4116	mod = __module_address(addr);
4117	if (mod) {
4118		if (modname)
4119			*modname = mod->name;
 
 
 
 
 
 
 
4120
4121		ret = find_kallsyms_symbol(mod, addr, size, offset);
4122	}
4123	/* Make a copy in here where it's safe */
4124	if (ret) {
4125		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4126		ret = namebuf;
4127	}
4128	preempt_enable();
4129
4130	return ret;
4131}
4132
4133int lookup_module_symbol_name(unsigned long addr, char *symname)
4134{
4135	struct module *mod;
4136
4137	preempt_disable();
4138	list_for_each_entry_rcu(mod, &modules, list) {
4139		if (mod->state == MODULE_STATE_UNFORMED)
4140			continue;
4141		if (within_module(addr, mod)) {
4142			const char *sym;
4143
4144			sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4145			if (!sym)
4146				goto out;
4147
4148			strlcpy(symname, sym, KSYM_NAME_LEN);
4149			preempt_enable();
4150			return 0;
4151		}
4152	}
4153out:
4154	preempt_enable();
4155	return -ERANGE;
4156}
4157
4158int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4159			unsigned long *offset, char *modname, char *name)
4160{
4161	struct module *mod;
4162
4163	preempt_disable();
4164	list_for_each_entry_rcu(mod, &modules, list) {
4165		if (mod->state == MODULE_STATE_UNFORMED)
4166			continue;
4167		if (within_module(addr, mod)) {
4168			const char *sym;
4169
4170			sym = find_kallsyms_symbol(mod, addr, size, offset);
4171			if (!sym)
4172				goto out;
4173			if (modname)
4174				strlcpy(modname, mod->name, MODULE_NAME_LEN);
4175			if (name)
4176				strlcpy(name, sym, KSYM_NAME_LEN);
4177			preempt_enable();
4178			return 0;
4179		}
4180	}
4181out:
4182	preempt_enable();
4183	return -ERANGE;
4184}
4185
4186int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4187			char *name, char *module_name, int *exported)
4188{
4189	struct module *mod;
4190
4191	preempt_disable();
4192	list_for_each_entry_rcu(mod, &modules, list) {
4193		struct mod_kallsyms *kallsyms;
4194
4195		if (mod->state == MODULE_STATE_UNFORMED)
4196			continue;
4197		kallsyms = rcu_dereference_sched(mod->kallsyms);
4198		if (symnum < kallsyms->num_symtab) {
4199			const Elf_Sym *sym = &kallsyms->symtab[symnum];
4200
4201			*value = kallsyms_symbol_value(sym);
4202			*type = kallsyms->typetab[symnum];
4203			strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4204			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4205			*exported = is_exported(name, *value, mod);
4206			preempt_enable();
4207			return 0;
4208		}
4209		symnum -= kallsyms->num_symtab;
4210	}
4211	preempt_enable();
4212	return -ERANGE;
4213}
4214
4215/* Given a module and name of symbol, find and return the symbol's value */
4216static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4217{
4218	unsigned int i;
4219	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4220
4221	for (i = 0; i < kallsyms->num_symtab; i++) {
4222		const Elf_Sym *sym = &kallsyms->symtab[i];
4223
4224		if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4225		    sym->st_shndx != SHN_UNDEF)
4226			return kallsyms_symbol_value(sym);
4227	}
4228	return 0;
4229}
4230
4231/* Look for this name: can be of form module:name. */
4232unsigned long module_kallsyms_lookup_name(const char *name)
4233{
4234	struct module *mod;
4235	char *colon;
4236	unsigned long ret = 0;
4237
4238	/* Don't lock: we're in enough trouble already. */
4239	preempt_disable();
4240	if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4241		if ((mod = find_module_all(name, colon - name, false)) != NULL)
4242			ret = find_kallsyms_symbol_value(mod, colon+1);
4243	} else {
4244		list_for_each_entry_rcu(mod, &modules, list) {
4245			if (mod->state == MODULE_STATE_UNFORMED)
4246				continue;
4247			if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4248				break;
4249		}
4250	}
4251	preempt_enable();
4252	return ret;
4253}
4254
 
4255int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4256					     struct module *, unsigned long),
4257				   void *data)
4258{
4259	struct module *mod;
4260	unsigned int i;
4261	int ret;
4262
4263	module_assert_mutex();
4264
 
4265	list_for_each_entry(mod, &modules, list) {
4266		/* We hold module_mutex: no need for rcu_dereference_sched */
4267		struct mod_kallsyms *kallsyms = mod->kallsyms;
4268
4269		if (mod->state == MODULE_STATE_UNFORMED)
4270			continue;
4271		for (i = 0; i < kallsyms->num_symtab; i++) {
4272			const Elf_Sym *sym = &kallsyms->symtab[i];
4273
4274			if (sym->st_shndx == SHN_UNDEF)
4275				continue;
4276
4277			ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4278				 mod, kallsyms_symbol_value(sym));
4279			if (ret != 0)
4280				return ret;
4281		}
4282	}
4283	return 0;
 
 
4284}
 
4285#endif /* CONFIG_KALLSYMS */
4286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4287/* Maximum number of characters written by module_flags() */
4288#define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4289
4290/* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4291static char *module_flags(struct module *mod, char *buf)
4292{
4293	int bx = 0;
4294
4295	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4296	if (mod->taints ||
4297	    mod->state == MODULE_STATE_GOING ||
4298	    mod->state == MODULE_STATE_COMING) {
4299		buf[bx++] = '(';
4300		bx += module_flags_taint(mod, buf + bx);
4301		/* Show a - for module-is-being-unloaded */
4302		if (mod->state == MODULE_STATE_GOING)
4303			buf[bx++] = '-';
4304		/* Show a + for module-is-being-loaded */
4305		if (mod->state == MODULE_STATE_COMING)
4306			buf[bx++] = '+';
4307		buf[bx++] = ')';
4308	}
4309	buf[bx] = '\0';
4310
4311	return buf;
4312}
4313
4314#ifdef CONFIG_PROC_FS
4315/* Called by the /proc file system to return a list of modules. */
4316static void *m_start(struct seq_file *m, loff_t *pos)
4317{
4318	mutex_lock(&module_mutex);
4319	return seq_list_start(&modules, *pos);
4320}
4321
4322static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4323{
4324	return seq_list_next(p, &modules, pos);
4325}
4326
4327static void m_stop(struct seq_file *m, void *p)
4328{
4329	mutex_unlock(&module_mutex);
4330}
4331
4332static int m_show(struct seq_file *m, void *p)
4333{
4334	struct module *mod = list_entry(p, struct module, list);
4335	char buf[MODULE_FLAGS_BUF_SIZE];
4336	void *value;
4337
4338	/* We always ignore unformed modules. */
4339	if (mod->state == MODULE_STATE_UNFORMED)
4340		return 0;
4341
4342	seq_printf(m, "%s %u",
4343		   mod->name, mod->init_layout.size + mod->core_layout.size);
4344	print_unload_info(m, mod);
4345
4346	/* Informative for users. */
4347	seq_printf(m, " %s",
4348		   mod->state == MODULE_STATE_GOING ? "Unloading" :
4349		   mod->state == MODULE_STATE_COMING ? "Loading" :
4350		   "Live");
4351	/* Used by oprofile and other similar tools. */
4352	value = m->private ? NULL : mod->core_layout.base;
4353	seq_printf(m, " 0x%px", value);
4354
4355	/* Taints info */
4356	if (mod->taints)
4357		seq_printf(m, " %s", module_flags(mod, buf));
4358
4359	seq_puts(m, "\n");
4360	return 0;
4361}
4362
4363/* Format: modulename size refcount deps address
4364
4365   Where refcount is a number or -, and deps is a comma-separated list
4366   of depends or -.
4367*/
 
4368static const struct seq_operations modules_op = {
4369	.start	= m_start,
4370	.next	= m_next,
4371	.stop	= m_stop,
4372	.show	= m_show
4373};
4374
4375/*
4376 * This also sets the "private" pointer to non-NULL if the
4377 * kernel pointers should be hidden (so you can just test
4378 * "m->private" to see if you should keep the values private).
4379 *
4380 * We use the same logic as for /proc/kallsyms.
4381 */
4382static int modules_open(struct inode *inode, struct file *file)
4383{
4384	int err = seq_open(file, &modules_op);
4385
4386	if (!err) {
4387		struct seq_file *m = file->private_data;
4388		m->private = kallsyms_show_value() ? NULL : (void *)8ul;
4389	}
4390
4391	return err;
4392}
4393
4394static const struct file_operations proc_modules_operations = {
4395	.open		= modules_open,
4396	.read		= seq_read,
4397	.llseek		= seq_lseek,
4398	.release	= seq_release,
 
4399};
4400
4401static int __init proc_modules_init(void)
4402{
4403	proc_create("modules", 0, NULL, &proc_modules_operations);
4404	return 0;
4405}
4406module_init(proc_modules_init);
4407#endif
4408
4409/* Given an address, look for it in the module exception tables. */
4410const struct exception_table_entry *search_module_extables(unsigned long addr)
4411{
4412	const struct exception_table_entry *e = NULL;
4413	struct module *mod;
4414
4415	preempt_disable();
4416	mod = __module_address(addr);
4417	if (!mod)
4418		goto out;
4419
4420	if (!mod->num_exentries)
4421		goto out;
4422
4423	e = search_extable(mod->extable,
4424			   mod->num_exentries,
4425			   addr);
4426out:
4427	preempt_enable();
4428
4429	/*
4430	 * Now, if we found one, we are running inside it now, hence
4431	 * we cannot unload the module, hence no refcnt needed.
4432	 */
4433	return e;
4434}
4435
4436/*
4437 * is_module_address - is this address inside a module?
4438 * @addr: the address to check.
4439 *
4440 * See is_module_text_address() if you simply want to see if the address
4441 * is code (not data).
4442 */
4443bool is_module_address(unsigned long addr)
4444{
4445	bool ret;
4446
4447	preempt_disable();
4448	ret = __module_address(addr) != NULL;
4449	preempt_enable();
4450
4451	return ret;
4452}
4453
4454/*
4455 * __module_address - get the module which contains an address.
4456 * @addr: the address.
4457 *
4458 * Must be called with preempt disabled or module mutex held so that
4459 * module doesn't get freed during this.
4460 */
4461struct module *__module_address(unsigned long addr)
4462{
4463	struct module *mod;
4464
4465	if (addr < module_addr_min || addr > module_addr_max)
4466		return NULL;
4467
4468	module_assert_mutex_or_preempt();
4469
4470	mod = mod_find(addr);
4471	if (mod) {
4472		BUG_ON(!within_module(addr, mod));
4473		if (mod->state == MODULE_STATE_UNFORMED)
4474			mod = NULL;
4475	}
4476	return mod;
4477}
4478EXPORT_SYMBOL_GPL(__module_address);
4479
4480/*
4481 * is_module_text_address - is this address inside module code?
4482 * @addr: the address to check.
4483 *
4484 * See is_module_address() if you simply want to see if the address is
4485 * anywhere in a module.  See kernel_text_address() for testing if an
4486 * address corresponds to kernel or module code.
4487 */
4488bool is_module_text_address(unsigned long addr)
4489{
4490	bool ret;
4491
4492	preempt_disable();
4493	ret = __module_text_address(addr) != NULL;
4494	preempt_enable();
4495
4496	return ret;
4497}
4498
4499/*
4500 * __module_text_address - get the module whose code contains an address.
4501 * @addr: the address.
4502 *
4503 * Must be called with preempt disabled or module mutex held so that
4504 * module doesn't get freed during this.
4505 */
4506struct module *__module_text_address(unsigned long addr)
4507{
4508	struct module *mod = __module_address(addr);
4509	if (mod) {
4510		/* Make sure it's within the text section. */
4511		if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4512		    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4513			mod = NULL;
4514	}
4515	return mod;
4516}
4517EXPORT_SYMBOL_GPL(__module_text_address);
4518
4519/* Don't grab lock, we're oopsing. */
4520void print_modules(void)
4521{
4522	struct module *mod;
4523	char buf[MODULE_FLAGS_BUF_SIZE];
4524
4525	printk(KERN_DEFAULT "Modules linked in:");
4526	/* Most callers should already have preempt disabled, but make sure */
4527	preempt_disable();
4528	list_for_each_entry_rcu(mod, &modules, list) {
4529		if (mod->state == MODULE_STATE_UNFORMED)
4530			continue;
4531		pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4532	}
4533	preempt_enable();
4534	if (last_unloaded_module[0])
4535		pr_cont(" [last unloaded: %s]", last_unloaded_module);
4536	pr_cont("\n");
4537}
4538
4539#ifdef CONFIG_MODVERSIONS
4540/* Generate the signature for all relevant module structures here.
4541 * If these change, we don't want to try to parse the module. */
 
 
4542void module_layout(struct module *mod,
4543		   struct modversion_info *ver,
4544		   struct kernel_param *kp,
4545		   struct kernel_symbol *ks,
4546		   struct tracepoint * const *tp)
4547{
4548}
4549EXPORT_SYMBOL(module_layout);
4550#endif
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2002 Richard Henderson
   4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
   5 */
   6
   7#define INCLUDE_VERMAGIC
   8
 
   9#include <linux/export.h>
  10#include <linux/extable.h>
  11#include <linux/moduleloader.h>
  12#include <linux/module_signature.h>
  13#include <linux/trace_events.h>
  14#include <linux/init.h>
  15#include <linux/kallsyms.h>
  16#include <linux/buildid.h>
  17#include <linux/file.h>
  18#include <linux/fs.h>
  19#include <linux/sysfs.h>
  20#include <linux/kernel.h>
  21#include <linux/kernel_read_file.h>
  22#include <linux/slab.h>
  23#include <linux/vmalloc.h>
  24#include <linux/elf.h>
  25#include <linux/proc_fs.h>
  26#include <linux/security.h>
  27#include <linux/seq_file.h>
  28#include <linux/syscalls.h>
  29#include <linux/fcntl.h>
  30#include <linux/rcupdate.h>
  31#include <linux/capability.h>
  32#include <linux/cpu.h>
  33#include <linux/moduleparam.h>
  34#include <linux/errno.h>
  35#include <linux/err.h>
  36#include <linux/vermagic.h>
  37#include <linux/notifier.h>
  38#include <linux/sched.h>
  39#include <linux/device.h>
  40#include <linux/string.h>
  41#include <linux/mutex.h>
  42#include <linux/rculist.h>
  43#include <linux/uaccess.h>
  44#include <asm/cacheflush.h>
  45#include <linux/set_memory.h>
  46#include <asm/mmu_context.h>
  47#include <linux/license.h>
  48#include <asm/sections.h>
  49#include <linux/tracepoint.h>
  50#include <linux/ftrace.h>
  51#include <linux/livepatch.h>
  52#include <linux/async.h>
  53#include <linux/percpu.h>
  54#include <linux/kmemleak.h>
  55#include <linux/jump_label.h>
  56#include <linux/pfn.h>
  57#include <linux/bsearch.h>
  58#include <linux/dynamic_debug.h>
  59#include <linux/audit.h>
  60#include <uapi/linux/module.h>
  61#include "module-internal.h"
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/module.h>
  65
  66#ifndef ARCH_SHF_SMALL
  67#define ARCH_SHF_SMALL 0
  68#endif
  69
  70/*
  71 * Modules' sections will be aligned on page boundaries
  72 * to ensure complete separation of code and data, but
  73 * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
  74 */
  75#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
  76# define debug_align(X) ALIGN(X, PAGE_SIZE)
  77#else
  78# define debug_align(X) (X)
  79#endif
  80
  81/* If this is set, the section belongs in the init part of the module */
  82#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
  83
  84/*
  85 * Mutex protects:
  86 * 1) List of modules (also safely readable with preempt_disable),
  87 * 2) module_use links,
  88 * 3) module_addr_min/module_addr_max.
  89 * (delete and add uses RCU list operations).
  90 */
  91static DEFINE_MUTEX(module_mutex);
  92static LIST_HEAD(modules);
  93
  94/* Work queue for freeing init sections in success case */
  95static void do_free_init(struct work_struct *w);
  96static DECLARE_WORK(init_free_wq, do_free_init);
  97static LLIST_HEAD(init_free_list);
  98
  99#ifdef CONFIG_MODULES_TREE_LOOKUP
 100
 101/*
 102 * Use a latched RB-tree for __module_address(); this allows us to use
 103 * RCU-sched lookups of the address from any context.
 104 *
 105 * This is conditional on PERF_EVENTS || TRACING because those can really hit
 106 * __module_address() hard by doing a lot of stack unwinding; potentially from
 107 * NMI context.
 108 */
 109
 110static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
 111{
 112	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 113
 114	return (unsigned long)layout->base;
 115}
 116
 117static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
 118{
 119	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 120
 121	return (unsigned long)layout->size;
 122}
 123
 124static __always_inline bool
 125mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
 126{
 127	return __mod_tree_val(a) < __mod_tree_val(b);
 128}
 129
 130static __always_inline int
 131mod_tree_comp(void *key, struct latch_tree_node *n)
 132{
 133	unsigned long val = (unsigned long)key;
 134	unsigned long start, end;
 135
 136	start = __mod_tree_val(n);
 137	if (val < start)
 138		return -1;
 139
 140	end = start + __mod_tree_size(n);
 141	if (val >= end)
 142		return 1;
 143
 144	return 0;
 145}
 146
 147static const struct latch_tree_ops mod_tree_ops = {
 148	.less = mod_tree_less,
 149	.comp = mod_tree_comp,
 150};
 151
 152static struct mod_tree_root {
 153	struct latch_tree_root root;
 154	unsigned long addr_min;
 155	unsigned long addr_max;
 156} mod_tree __cacheline_aligned = {
 157	.addr_min = -1UL,
 158};
 159
 160#define module_addr_min mod_tree.addr_min
 161#define module_addr_max mod_tree.addr_max
 162
 163static noinline void __mod_tree_insert(struct mod_tree_node *node)
 164{
 165	latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
 166}
 167
 168static void __mod_tree_remove(struct mod_tree_node *node)
 169{
 170	latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
 171}
 172
 173/*
 174 * These modifications: insert, remove_init and remove; are serialized by the
 175 * module_mutex.
 176 */
 177static void mod_tree_insert(struct module *mod)
 178{
 179	mod->core_layout.mtn.mod = mod;
 180	mod->init_layout.mtn.mod = mod;
 181
 182	__mod_tree_insert(&mod->core_layout.mtn);
 183	if (mod->init_layout.size)
 184		__mod_tree_insert(&mod->init_layout.mtn);
 185}
 186
 187static void mod_tree_remove_init(struct module *mod)
 188{
 189	if (mod->init_layout.size)
 190		__mod_tree_remove(&mod->init_layout.mtn);
 191}
 192
 193static void mod_tree_remove(struct module *mod)
 194{
 195	__mod_tree_remove(&mod->core_layout.mtn);
 196	mod_tree_remove_init(mod);
 197}
 198
 199static struct module *mod_find(unsigned long addr)
 200{
 201	struct latch_tree_node *ltn;
 202
 203	ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
 204	if (!ltn)
 205		return NULL;
 206
 207	return container_of(ltn, struct mod_tree_node, node)->mod;
 208}
 209
 210#else /* MODULES_TREE_LOOKUP */
 211
 212static unsigned long module_addr_min = -1UL, module_addr_max = 0;
 213
 214static void mod_tree_insert(struct module *mod) { }
 215static void mod_tree_remove_init(struct module *mod) { }
 216static void mod_tree_remove(struct module *mod) { }
 217
 218static struct module *mod_find(unsigned long addr)
 219{
 220	struct module *mod;
 221
 222	list_for_each_entry_rcu(mod, &modules, list,
 223				lockdep_is_held(&module_mutex)) {
 224		if (within_module(addr, mod))
 225			return mod;
 226	}
 227
 228	return NULL;
 229}
 230
 231#endif /* MODULES_TREE_LOOKUP */
 232
 233/*
 234 * Bounds of module text, for speeding up __module_address.
 235 * Protected by module_mutex.
 236 */
 237static void __mod_update_bounds(void *base, unsigned int size)
 238{
 239	unsigned long min = (unsigned long)base;
 240	unsigned long max = min + size;
 241
 242	if (min < module_addr_min)
 243		module_addr_min = min;
 244	if (max > module_addr_max)
 245		module_addr_max = max;
 246}
 247
 248static void mod_update_bounds(struct module *mod)
 249{
 250	__mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
 251	if (mod->init_layout.size)
 252		__mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
 253}
 254
 255#ifdef CONFIG_KGDB_KDB
 256struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
 257#endif /* CONFIG_KGDB_KDB */
 258
 
 
 
 
 
 259static void module_assert_mutex_or_preempt(void)
 260{
 261#ifdef CONFIG_LOCKDEP
 262	if (unlikely(!debug_locks))
 263		return;
 264
 265	WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
 266		!lockdep_is_held(&module_mutex));
 267#endif
 268}
 269
 270#ifdef CONFIG_MODULE_SIG
 271static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
 272module_param(sig_enforce, bool_enable_only, 0644);
 273
 274void set_module_sig_enforced(void)
 275{
 276	sig_enforce = true;
 277}
 278#else
 279#define sig_enforce false
 280#endif
 281
 282/*
 283 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
 284 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
 285 */
 286bool is_module_sig_enforced(void)
 287{
 288	return sig_enforce;
 289}
 290EXPORT_SYMBOL(is_module_sig_enforced);
 291
 
 
 
 
 
 292/* Block module loading/unloading? */
 293int modules_disabled = 0;
 294core_param(nomodule, modules_disabled, bint, 0);
 295
 296/* Waiting for a module to finish initializing? */
 297static DECLARE_WAIT_QUEUE_HEAD(module_wq);
 298
 299static BLOCKING_NOTIFIER_HEAD(module_notify_list);
 300
 301int register_module_notifier(struct notifier_block *nb)
 302{
 303	return blocking_notifier_chain_register(&module_notify_list, nb);
 304}
 305EXPORT_SYMBOL(register_module_notifier);
 306
 307int unregister_module_notifier(struct notifier_block *nb)
 308{
 309	return blocking_notifier_chain_unregister(&module_notify_list, nb);
 310}
 311EXPORT_SYMBOL(unregister_module_notifier);
 312
 313/*
 314 * We require a truly strong try_module_get(): 0 means success.
 315 * Otherwise an error is returned due to ongoing or failed
 316 * initialization etc.
 317 */
 318static inline int strong_try_module_get(struct module *mod)
 319{
 320	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
 321	if (mod && mod->state == MODULE_STATE_COMING)
 322		return -EBUSY;
 323	if (try_module_get(mod))
 324		return 0;
 325	else
 326		return -ENOENT;
 327}
 328
 329static inline void add_taint_module(struct module *mod, unsigned flag,
 330				    enum lockdep_ok lockdep_ok)
 331{
 332	add_taint(flag, lockdep_ok);
 333	set_bit(flag, &mod->taints);
 334}
 335
 336/*
 337 * A thread that wants to hold a reference to a module only while it
 338 * is running can call this to safely exit.  nfsd and lockd use this.
 339 */
 340void __noreturn __module_put_and_exit(struct module *mod, long code)
 341{
 342	module_put(mod);
 343	do_exit(code);
 344}
 345EXPORT_SYMBOL(__module_put_and_exit);
 346
 347/* Find a module section: 0 means not found. */
 348static unsigned int find_sec(const struct load_info *info, const char *name)
 349{
 350	unsigned int i;
 351
 352	for (i = 1; i < info->hdr->e_shnum; i++) {
 353		Elf_Shdr *shdr = &info->sechdrs[i];
 354		/* Alloc bit cleared means "ignore it." */
 355		if ((shdr->sh_flags & SHF_ALLOC)
 356		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
 357			return i;
 358	}
 359	return 0;
 360}
 361
 362/* Find a module section, or NULL. */
 363static void *section_addr(const struct load_info *info, const char *name)
 364{
 365	/* Section 0 has sh_addr 0. */
 366	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
 367}
 368
 369/* Find a module section, or NULL.  Fill in number of "objects" in section. */
 370static void *section_objs(const struct load_info *info,
 371			  const char *name,
 372			  size_t object_size,
 373			  unsigned int *num)
 374{
 375	unsigned int sec = find_sec(info, name);
 376
 377	/* Section 0 has sh_addr 0 and sh_size 0. */
 378	*num = info->sechdrs[sec].sh_size / object_size;
 379	return (void *)info->sechdrs[sec].sh_addr;
 380}
 381
 382/* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
 383static unsigned int find_any_sec(const struct load_info *info, const char *name)
 384{
 385	unsigned int i;
 386
 387	for (i = 1; i < info->hdr->e_shnum; i++) {
 388		Elf_Shdr *shdr = &info->sechdrs[i];
 389		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
 390			return i;
 391	}
 392	return 0;
 393}
 394
 395/*
 396 * Find a module section, or NULL. Fill in number of "objects" in section.
 397 * Ignores SHF_ALLOC flag.
 398 */
 399static __maybe_unused void *any_section_objs(const struct load_info *info,
 400					     const char *name,
 401					     size_t object_size,
 402					     unsigned int *num)
 403{
 404	unsigned int sec = find_any_sec(info, name);
 405
 406	/* Section 0 has sh_addr 0 and sh_size 0. */
 407	*num = info->sechdrs[sec].sh_size / object_size;
 408	return (void *)info->sechdrs[sec].sh_addr;
 409}
 410
 411/* Provided by the linker */
 412extern const struct kernel_symbol __start___ksymtab[];
 413extern const struct kernel_symbol __stop___ksymtab[];
 414extern const struct kernel_symbol __start___ksymtab_gpl[];
 415extern const struct kernel_symbol __stop___ksymtab_gpl[];
 
 
 416extern const s32 __start___kcrctab[];
 417extern const s32 __start___kcrctab_gpl[];
 
 
 
 
 
 
 
 
 
 418
 419#ifndef CONFIG_MODVERSIONS
 420#define symversion(base, idx) NULL
 421#else
 422#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
 423#endif
 424
 425struct symsearch {
 426	const struct kernel_symbol *start, *stop;
 427	const s32 *crcs;
 428	enum mod_license {
 429		NOT_GPL_ONLY,
 430		GPL_ONLY,
 431	} license;
 432};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 433
 434struct find_symbol_arg {
 435	/* Input */
 436	const char *name;
 437	bool gplok;
 438	bool warn;
 439
 440	/* Output */
 441	struct module *owner;
 442	const s32 *crc;
 443	const struct kernel_symbol *sym;
 444	enum mod_license license;
 445};
 446
 447static bool check_exported_symbol(const struct symsearch *syms,
 448				  struct module *owner,
 449				  unsigned int symnum, void *data)
 450{
 451	struct find_symbol_arg *fsa = data;
 452
 453	if (!fsa->gplok && syms->license == GPL_ONLY)
 454		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455	fsa->owner = owner;
 456	fsa->crc = symversion(syms->crcs, symnum);
 457	fsa->sym = &syms->start[symnum];
 458	fsa->license = syms->license;
 459	return true;
 460}
 461
 462static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
 463{
 464#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 465	return (unsigned long)offset_to_ptr(&sym->value_offset);
 466#else
 467	return sym->value;
 468#endif
 469}
 470
 471static const char *kernel_symbol_name(const struct kernel_symbol *sym)
 472{
 473#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 474	return offset_to_ptr(&sym->name_offset);
 475#else
 476	return sym->name;
 477#endif
 478}
 479
 480static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
 481{
 482#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 483	if (!sym->namespace_offset)
 484		return NULL;
 485	return offset_to_ptr(&sym->namespace_offset);
 486#else
 487	return sym->namespace;
 488#endif
 489}
 490
 491static int cmp_name(const void *name, const void *sym)
 492{
 493	return strcmp(name, kernel_symbol_name(sym));
 494}
 495
 496static bool find_exported_symbol_in_section(const struct symsearch *syms,
 497					    struct module *owner,
 498					    void *data)
 499{
 500	struct find_symbol_arg *fsa = data;
 501	struct kernel_symbol *sym;
 502
 503	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
 504			sizeof(struct kernel_symbol), cmp_name);
 505
 506	if (sym != NULL && check_exported_symbol(syms, owner,
 507						 sym - syms->start, data))
 508		return true;
 509
 510	return false;
 511}
 512
 513/*
 514 * Find an exported symbol and return it, along with, (optional) crc and
 515 * (optional) module which owns it.  Needs preempt disabled or module_mutex.
 516 */
 517static bool find_symbol(struct find_symbol_arg *fsa)
 518{
 519	static const struct symsearch arr[] = {
 520		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
 521		  NOT_GPL_ONLY },
 522		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
 523		  __start___kcrctab_gpl,
 524		  GPL_ONLY },
 525	};
 526	struct module *mod;
 527	unsigned int i;
 528
 529	module_assert_mutex_or_preempt();
 530
 531	for (i = 0; i < ARRAY_SIZE(arr); i++)
 532		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
 533			return true;
 534
 535	list_for_each_entry_rcu(mod, &modules, list,
 536				lockdep_is_held(&module_mutex)) {
 537		struct symsearch arr[] = {
 538			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
 539			  NOT_GPL_ONLY },
 540			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
 541			  mod->gpl_crcs,
 542			  GPL_ONLY },
 543		};
 544
 545		if (mod->state == MODULE_STATE_UNFORMED)
 546			continue;
 547
 548		for (i = 0; i < ARRAY_SIZE(arr); i++)
 549			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
 550				return true;
 551	}
 552
 553	pr_debug("Failed to find symbol %s\n", fsa->name);
 554	return false;
 555}
 
 556
 557/*
 558 * Search for module by name: must hold module_mutex (or preempt disabled
 559 * for read-only access).
 560 */
 561static struct module *find_module_all(const char *name, size_t len,
 562				      bool even_unformed)
 563{
 564	struct module *mod;
 565
 566	module_assert_mutex_or_preempt();
 567
 568	list_for_each_entry_rcu(mod, &modules, list,
 569				lockdep_is_held(&module_mutex)) {
 570		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
 571			continue;
 572		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
 573			return mod;
 574	}
 575	return NULL;
 576}
 577
 578struct module *find_module(const char *name)
 579{
 
 580	return find_module_all(name, strlen(name), false);
 581}
 
 582
 583#ifdef CONFIG_SMP
 584
 585static inline void __percpu *mod_percpu(struct module *mod)
 586{
 587	return mod->percpu;
 588}
 589
 590static int percpu_modalloc(struct module *mod, struct load_info *info)
 591{
 592	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
 593	unsigned long align = pcpusec->sh_addralign;
 594
 595	if (!pcpusec->sh_size)
 596		return 0;
 597
 598	if (align > PAGE_SIZE) {
 599		pr_warn("%s: per-cpu alignment %li > %li\n",
 600			mod->name, align, PAGE_SIZE);
 601		align = PAGE_SIZE;
 602	}
 603
 604	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
 605	if (!mod->percpu) {
 606		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
 607			mod->name, (unsigned long)pcpusec->sh_size);
 608		return -ENOMEM;
 609	}
 610	mod->percpu_size = pcpusec->sh_size;
 611	return 0;
 612}
 613
 614static void percpu_modfree(struct module *mod)
 615{
 616	free_percpu(mod->percpu);
 617}
 618
 619static unsigned int find_pcpusec(struct load_info *info)
 620{
 621	return find_sec(info, ".data..percpu");
 622}
 623
 624static void percpu_modcopy(struct module *mod,
 625			   const void *from, unsigned long size)
 626{
 627	int cpu;
 628
 629	for_each_possible_cpu(cpu)
 630		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
 631}
 632
 633bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
 634{
 635	struct module *mod;
 636	unsigned int cpu;
 637
 638	preempt_disable();
 639
 640	list_for_each_entry_rcu(mod, &modules, list) {
 641		if (mod->state == MODULE_STATE_UNFORMED)
 642			continue;
 643		if (!mod->percpu_size)
 644			continue;
 645		for_each_possible_cpu(cpu) {
 646			void *start = per_cpu_ptr(mod->percpu, cpu);
 647			void *va = (void *)addr;
 648
 649			if (va >= start && va < start + mod->percpu_size) {
 650				if (can_addr) {
 651					*can_addr = (unsigned long) (va - start);
 652					*can_addr += (unsigned long)
 653						per_cpu_ptr(mod->percpu,
 654							    get_boot_cpu_id());
 655				}
 656				preempt_enable();
 657				return true;
 658			}
 659		}
 660	}
 661
 662	preempt_enable();
 663	return false;
 664}
 665
 666/**
 667 * is_module_percpu_address() - test whether address is from module static percpu
 668 * @addr: address to test
 669 *
 670 * Test whether @addr belongs to module static percpu area.
 671 *
 672 * Return: %true if @addr is from module static percpu area
 
 673 */
 674bool is_module_percpu_address(unsigned long addr)
 675{
 676	return __is_module_percpu_address(addr, NULL);
 677}
 678
 679#else /* ... !CONFIG_SMP */
 680
 681static inline void __percpu *mod_percpu(struct module *mod)
 682{
 683	return NULL;
 684}
 685static int percpu_modalloc(struct module *mod, struct load_info *info)
 686{
 687	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
 688	if (info->sechdrs[info->index.pcpu].sh_size != 0)
 689		return -ENOMEM;
 690	return 0;
 691}
 692static inline void percpu_modfree(struct module *mod)
 693{
 694}
 695static unsigned int find_pcpusec(struct load_info *info)
 696{
 697	return 0;
 698}
 699static inline void percpu_modcopy(struct module *mod,
 700				  const void *from, unsigned long size)
 701{
 702	/* pcpusec should be 0, and size of that section should be 0. */
 703	BUG_ON(size != 0);
 704}
 705bool is_module_percpu_address(unsigned long addr)
 706{
 707	return false;
 708}
 709
 710bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
 711{
 712	return false;
 713}
 714
 715#endif /* CONFIG_SMP */
 716
 717#define MODINFO_ATTR(field)	\
 718static void setup_modinfo_##field(struct module *mod, const char *s)  \
 719{                                                                     \
 720	mod->field = kstrdup(s, GFP_KERNEL);                          \
 721}                                                                     \
 722static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
 723			struct module_kobject *mk, char *buffer)      \
 724{                                                                     \
 725	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
 726}                                                                     \
 727static int modinfo_##field##_exists(struct module *mod)               \
 728{                                                                     \
 729	return mod->field != NULL;                                    \
 730}                                                                     \
 731static void free_modinfo_##field(struct module *mod)                  \
 732{                                                                     \
 733	kfree(mod->field);                                            \
 734	mod->field = NULL;                                            \
 735}                                                                     \
 736static struct module_attribute modinfo_##field = {                    \
 737	.attr = { .name = __stringify(field), .mode = 0444 },         \
 738	.show = show_modinfo_##field,                                 \
 739	.setup = setup_modinfo_##field,                               \
 740	.test = modinfo_##field##_exists,                             \
 741	.free = free_modinfo_##field,                                 \
 742};
 743
 744MODINFO_ATTR(version);
 745MODINFO_ATTR(srcversion);
 746
 747static char last_unloaded_module[MODULE_NAME_LEN+1];
 748
 749#ifdef CONFIG_MODULE_UNLOAD
 750
 751EXPORT_TRACEPOINT_SYMBOL(module_get);
 752
 753/* MODULE_REF_BASE is the base reference count by kmodule loader. */
 754#define MODULE_REF_BASE	1
 755
 756/* Init the unload section of the module. */
 757static int module_unload_init(struct module *mod)
 758{
 759	/*
 760	 * Initialize reference counter to MODULE_REF_BASE.
 761	 * refcnt == 0 means module is going.
 762	 */
 763	atomic_set(&mod->refcnt, MODULE_REF_BASE);
 764
 765	INIT_LIST_HEAD(&mod->source_list);
 766	INIT_LIST_HEAD(&mod->target_list);
 767
 768	/* Hold reference count during initialization. */
 769	atomic_inc(&mod->refcnt);
 770
 771	return 0;
 772}
 773
 774/* Does a already use b? */
 775static int already_uses(struct module *a, struct module *b)
 776{
 777	struct module_use *use;
 778
 779	list_for_each_entry(use, &b->source_list, source_list) {
 780		if (use->source == a) {
 781			pr_debug("%s uses %s!\n", a->name, b->name);
 782			return 1;
 783		}
 784	}
 785	pr_debug("%s does not use %s!\n", a->name, b->name);
 786	return 0;
 787}
 788
 789/*
 790 * Module a uses b
 791 *  - we add 'a' as a "source", 'b' as a "target" of module use
 792 *  - the module_use is added to the list of 'b' sources (so
 793 *    'b' can walk the list to see who sourced them), and of 'a'
 794 *    targets (so 'a' can see what modules it targets).
 795 */
 796static int add_module_usage(struct module *a, struct module *b)
 797{
 798	struct module_use *use;
 799
 800	pr_debug("Allocating new usage for %s.\n", a->name);
 801	use = kmalloc(sizeof(*use), GFP_ATOMIC);
 802	if (!use)
 803		return -ENOMEM;
 804
 805	use->source = a;
 806	use->target = b;
 807	list_add(&use->source_list, &b->source_list);
 808	list_add(&use->target_list, &a->target_list);
 809	return 0;
 810}
 811
 812/* Module a uses b: caller needs module_mutex() */
 813static int ref_module(struct module *a, struct module *b)
 814{
 815	int err;
 816
 817	if (b == NULL || already_uses(a, b))
 818		return 0;
 819
 820	/* If module isn't available, we fail. */
 821	err = strong_try_module_get(b);
 822	if (err)
 823		return err;
 824
 825	err = add_module_usage(a, b);
 826	if (err) {
 827		module_put(b);
 828		return err;
 829	}
 830	return 0;
 831}
 
 832
 833/* Clear the unload stuff of the module. */
 834static void module_unload_free(struct module *mod)
 835{
 836	struct module_use *use, *tmp;
 837
 838	mutex_lock(&module_mutex);
 839	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
 840		struct module *i = use->target;
 841		pr_debug("%s unusing %s\n", mod->name, i->name);
 842		module_put(i);
 843		list_del(&use->source_list);
 844		list_del(&use->target_list);
 845		kfree(use);
 846	}
 847	mutex_unlock(&module_mutex);
 848}
 849
 850#ifdef CONFIG_MODULE_FORCE_UNLOAD
 851static inline int try_force_unload(unsigned int flags)
 852{
 853	int ret = (flags & O_TRUNC);
 854	if (ret)
 855		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
 856	return ret;
 857}
 858#else
 859static inline int try_force_unload(unsigned int flags)
 860{
 861	return 0;
 862}
 863#endif /* CONFIG_MODULE_FORCE_UNLOAD */
 864
 865/* Try to release refcount of module, 0 means success. */
 866static int try_release_module_ref(struct module *mod)
 867{
 868	int ret;
 869
 870	/* Try to decrement refcnt which we set at loading */
 871	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
 872	BUG_ON(ret < 0);
 873	if (ret)
 874		/* Someone can put this right now, recover with checking */
 875		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
 876
 877	return ret;
 878}
 879
 880static int try_stop_module(struct module *mod, int flags, int *forced)
 881{
 882	/* If it's not unused, quit unless we're forcing. */
 883	if (try_release_module_ref(mod) != 0) {
 884		*forced = try_force_unload(flags);
 885		if (!(*forced))
 886			return -EWOULDBLOCK;
 887	}
 888
 889	/* Mark it as dying. */
 890	mod->state = MODULE_STATE_GOING;
 891
 892	return 0;
 893}
 894
 895/**
 896 * module_refcount() - return the refcount or -1 if unloading
 
 897 * @mod:	the module we're checking
 898 *
 899 * Return:
 900 *	-1 if the module is in the process of unloading
 901 *	otherwise the number of references in the kernel to the module
 902 */
 903int module_refcount(struct module *mod)
 904{
 905	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
 906}
 907EXPORT_SYMBOL(module_refcount);
 908
 909/* This exists whether we can unload or not */
 910static void free_module(struct module *mod);
 911
 912SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
 913		unsigned int, flags)
 914{
 915	struct module *mod;
 916	char name[MODULE_NAME_LEN];
 917	int ret, forced = 0;
 918
 919	if (!capable(CAP_SYS_MODULE) || modules_disabled)
 920		return -EPERM;
 921
 922	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
 923		return -EFAULT;
 924	name[MODULE_NAME_LEN-1] = '\0';
 925
 926	audit_log_kern_module(name);
 927
 928	if (mutex_lock_interruptible(&module_mutex) != 0)
 929		return -EINTR;
 930
 931	mod = find_module(name);
 932	if (!mod) {
 933		ret = -ENOENT;
 934		goto out;
 935	}
 936
 937	if (!list_empty(&mod->source_list)) {
 938		/* Other modules depend on us: get rid of them first. */
 939		ret = -EWOULDBLOCK;
 940		goto out;
 941	}
 942
 943	/* Doing init or already dying? */
 944	if (mod->state != MODULE_STATE_LIVE) {
 945		/* FIXME: if (force), slam module count damn the torpedoes */
 946		pr_debug("%s already dying\n", mod->name);
 947		ret = -EBUSY;
 948		goto out;
 949	}
 950
 951	/* If it has an init func, it must have an exit func to unload */
 952	if (mod->init && !mod->exit) {
 953		forced = try_force_unload(flags);
 954		if (!forced) {
 955			/* This module can't be removed */
 956			ret = -EBUSY;
 957			goto out;
 958		}
 959	}
 960
 961	/* Stop the machine so refcounts can't move and disable module. */
 962	ret = try_stop_module(mod, flags, &forced);
 963	if (ret != 0)
 964		goto out;
 965
 966	mutex_unlock(&module_mutex);
 967	/* Final destruction now no one is using it. */
 968	if (mod->exit != NULL)
 969		mod->exit();
 970	blocking_notifier_call_chain(&module_notify_list,
 971				     MODULE_STATE_GOING, mod);
 972	klp_module_going(mod);
 973	ftrace_release_mod(mod);
 974
 975	async_synchronize_full();
 976
 977	/* Store the name of the last unloaded module for diagnostic purposes */
 978	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
 979
 980	free_module(mod);
 981	/* someone could wait for the module in add_unformed_module() */
 982	wake_up_all(&module_wq);
 983	return 0;
 984out:
 985	mutex_unlock(&module_mutex);
 986	return ret;
 987}
 988
 989static inline void print_unload_info(struct seq_file *m, struct module *mod)
 990{
 991	struct module_use *use;
 992	int printed_something = 0;
 993
 994	seq_printf(m, " %i ", module_refcount(mod));
 995
 996	/*
 997	 * Always include a trailing , so userspace can differentiate
 998	 * between this and the old multi-field proc format.
 999	 */
1000	list_for_each_entry(use, &mod->source_list, source_list) {
1001		printed_something = 1;
1002		seq_printf(m, "%s,", use->source->name);
1003	}
1004
1005	if (mod->init != NULL && mod->exit == NULL) {
1006		printed_something = 1;
1007		seq_puts(m, "[permanent],");
1008	}
1009
1010	if (!printed_something)
1011		seq_puts(m, "-");
1012}
1013
1014void __symbol_put(const char *symbol)
1015{
1016	struct find_symbol_arg fsa = {
1017		.name	= symbol,
1018		.gplok	= true,
1019	};
1020
1021	preempt_disable();
1022	BUG_ON(!find_symbol(&fsa));
1023	module_put(fsa.owner);
 
1024	preempt_enable();
1025}
1026EXPORT_SYMBOL(__symbol_put);
1027
1028/* Note this assumes addr is a function, which it currently always is. */
1029void symbol_put_addr(void *addr)
1030{
1031	struct module *modaddr;
1032	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1033
1034	if (core_kernel_text(a))
1035		return;
1036
1037	/*
1038	 * Even though we hold a reference on the module; we still need to
1039	 * disable preemption in order to safely traverse the data structure.
1040	 */
1041	preempt_disable();
1042	modaddr = __module_text_address(a);
1043	BUG_ON(!modaddr);
1044	module_put(modaddr);
1045	preempt_enable();
1046}
1047EXPORT_SYMBOL_GPL(symbol_put_addr);
1048
1049static ssize_t show_refcnt(struct module_attribute *mattr,
1050			   struct module_kobject *mk, char *buffer)
1051{
1052	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1053}
1054
1055static struct module_attribute modinfo_refcnt =
1056	__ATTR(refcnt, 0444, show_refcnt, NULL);
1057
1058void __module_get(struct module *module)
1059{
1060	if (module) {
1061		preempt_disable();
1062		atomic_inc(&module->refcnt);
1063		trace_module_get(module, _RET_IP_);
1064		preempt_enable();
1065	}
1066}
1067EXPORT_SYMBOL(__module_get);
1068
1069bool try_module_get(struct module *module)
1070{
1071	bool ret = true;
1072
1073	if (module) {
1074		preempt_disable();
1075		/* Note: here, we can fail to get a reference */
1076		if (likely(module_is_live(module) &&
1077			   atomic_inc_not_zero(&module->refcnt) != 0))
1078			trace_module_get(module, _RET_IP_);
1079		else
1080			ret = false;
1081
1082		preempt_enable();
1083	}
1084	return ret;
1085}
1086EXPORT_SYMBOL(try_module_get);
1087
1088void module_put(struct module *module)
1089{
1090	int ret;
1091
1092	if (module) {
1093		preempt_disable();
1094		ret = atomic_dec_if_positive(&module->refcnt);
1095		WARN_ON(ret < 0);	/* Failed to put refcount */
1096		trace_module_put(module, _RET_IP_);
1097		preempt_enable();
1098	}
1099}
1100EXPORT_SYMBOL(module_put);
1101
1102#else /* !CONFIG_MODULE_UNLOAD */
1103static inline void print_unload_info(struct seq_file *m, struct module *mod)
1104{
1105	/* We don't know the usage count, or what modules are using. */
1106	seq_puts(m, " - -");
1107}
1108
1109static inline void module_unload_free(struct module *mod)
1110{
1111}
1112
1113static int ref_module(struct module *a, struct module *b)
1114{
1115	return strong_try_module_get(b);
1116}
 
1117
1118static inline int module_unload_init(struct module *mod)
1119{
1120	return 0;
1121}
1122#endif /* CONFIG_MODULE_UNLOAD */
1123
1124static size_t module_flags_taint(struct module *mod, char *buf)
1125{
1126	size_t l = 0;
1127	int i;
1128
1129	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1130		if (taint_flags[i].module && test_bit(i, &mod->taints))
1131			buf[l++] = taint_flags[i].c_true;
1132	}
1133
1134	return l;
1135}
1136
1137static ssize_t show_initstate(struct module_attribute *mattr,
1138			      struct module_kobject *mk, char *buffer)
1139{
1140	const char *state = "unknown";
1141
1142	switch (mk->mod->state) {
1143	case MODULE_STATE_LIVE:
1144		state = "live";
1145		break;
1146	case MODULE_STATE_COMING:
1147		state = "coming";
1148		break;
1149	case MODULE_STATE_GOING:
1150		state = "going";
1151		break;
1152	default:
1153		BUG();
1154	}
1155	return sprintf(buffer, "%s\n", state);
1156}
1157
1158static struct module_attribute modinfo_initstate =
1159	__ATTR(initstate, 0444, show_initstate, NULL);
1160
1161static ssize_t store_uevent(struct module_attribute *mattr,
1162			    struct module_kobject *mk,
1163			    const char *buffer, size_t count)
1164{
1165	int rc;
1166
1167	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1168	return rc ? rc : count;
1169}
1170
1171struct module_attribute module_uevent =
1172	__ATTR(uevent, 0200, NULL, store_uevent);
1173
1174static ssize_t show_coresize(struct module_attribute *mattr,
1175			     struct module_kobject *mk, char *buffer)
1176{
1177	return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1178}
1179
1180static struct module_attribute modinfo_coresize =
1181	__ATTR(coresize, 0444, show_coresize, NULL);
1182
1183static ssize_t show_initsize(struct module_attribute *mattr,
1184			     struct module_kobject *mk, char *buffer)
1185{
1186	return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1187}
1188
1189static struct module_attribute modinfo_initsize =
1190	__ATTR(initsize, 0444, show_initsize, NULL);
1191
1192static ssize_t show_taint(struct module_attribute *mattr,
1193			  struct module_kobject *mk, char *buffer)
1194{
1195	size_t l;
1196
1197	l = module_flags_taint(mk->mod, buffer);
1198	buffer[l++] = '\n';
1199	return l;
1200}
1201
1202static struct module_attribute modinfo_taint =
1203	__ATTR(taint, 0444, show_taint, NULL);
1204
1205static struct module_attribute *modinfo_attrs[] = {
1206	&module_uevent,
1207	&modinfo_version,
1208	&modinfo_srcversion,
1209	&modinfo_initstate,
1210	&modinfo_coresize,
1211	&modinfo_initsize,
1212	&modinfo_taint,
1213#ifdef CONFIG_MODULE_UNLOAD
1214	&modinfo_refcnt,
1215#endif
1216	NULL,
1217};
1218
1219static const char vermagic[] = VERMAGIC_STRING;
1220
1221static int try_to_force_load(struct module *mod, const char *reason)
1222{
1223#ifdef CONFIG_MODULE_FORCE_LOAD
1224	if (!test_taint(TAINT_FORCED_MODULE))
1225		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1226	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1227	return 0;
1228#else
1229	return -ENOEXEC;
1230#endif
1231}
1232
1233#ifdef CONFIG_MODVERSIONS
1234
1235static u32 resolve_rel_crc(const s32 *crc)
1236{
1237	return *(u32 *)((void *)crc + *crc);
1238}
1239
1240static int check_version(const struct load_info *info,
1241			 const char *symname,
1242			 struct module *mod,
1243			 const s32 *crc)
1244{
1245	Elf_Shdr *sechdrs = info->sechdrs;
1246	unsigned int versindex = info->index.vers;
1247	unsigned int i, num_versions;
1248	struct modversion_info *versions;
1249
1250	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1251	if (!crc)
1252		return 1;
1253
1254	/* No versions at all?  modprobe --force does this. */
1255	if (versindex == 0)
1256		return try_to_force_load(mod, symname) == 0;
1257
1258	versions = (void *) sechdrs[versindex].sh_addr;
1259	num_versions = sechdrs[versindex].sh_size
1260		/ sizeof(struct modversion_info);
1261
1262	for (i = 0; i < num_versions; i++) {
1263		u32 crcval;
1264
1265		if (strcmp(versions[i].name, symname) != 0)
1266			continue;
1267
1268		if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1269			crcval = resolve_rel_crc(crc);
1270		else
1271			crcval = *crc;
1272		if (versions[i].crc == crcval)
1273			return 1;
1274		pr_debug("Found checksum %X vs module %lX\n",
1275			 crcval, versions[i].crc);
1276		goto bad_version;
1277	}
1278
1279	/* Broken toolchain. Warn once, then let it go.. */
1280	pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1281	return 1;
1282
1283bad_version:
1284	pr_warn("%s: disagrees about version of symbol %s\n",
1285	       info->name, symname);
1286	return 0;
1287}
1288
1289static inline int check_modstruct_version(const struct load_info *info,
1290					  struct module *mod)
1291{
1292	struct find_symbol_arg fsa = {
1293		.name	= "module_layout",
1294		.gplok	= true,
1295	};
1296
1297	/*
1298	 * Since this should be found in kernel (which can't be removed), no
1299	 * locking is necessary -- use preempt_disable() to placate lockdep.
1300	 */
1301	preempt_disable();
1302	if (!find_symbol(&fsa)) {
1303		preempt_enable();
1304		BUG();
1305	}
1306	preempt_enable();
1307	return check_version(info, "module_layout", mod, fsa.crc);
1308}
1309
1310/* First part is kernel version, which we ignore if module has crcs. */
1311static inline int same_magic(const char *amagic, const char *bmagic,
1312			     bool has_crcs)
1313{
1314	if (has_crcs) {
1315		amagic += strcspn(amagic, " ");
1316		bmagic += strcspn(bmagic, " ");
1317	}
1318	return strcmp(amagic, bmagic) == 0;
1319}
1320#else
1321static inline int check_version(const struct load_info *info,
1322				const char *symname,
1323				struct module *mod,
1324				const s32 *crc)
1325{
1326	return 1;
1327}
1328
1329static inline int check_modstruct_version(const struct load_info *info,
1330					  struct module *mod)
1331{
1332	return 1;
1333}
1334
1335static inline int same_magic(const char *amagic, const char *bmagic,
1336			     bool has_crcs)
1337{
1338	return strcmp(amagic, bmagic) == 0;
1339}
1340#endif /* CONFIG_MODVERSIONS */
1341
1342static char *get_modinfo(const struct load_info *info, const char *tag);
1343static char *get_next_modinfo(const struct load_info *info, const char *tag,
1344			      char *prev);
1345
1346static int verify_namespace_is_imported(const struct load_info *info,
1347					const struct kernel_symbol *sym,
1348					struct module *mod)
1349{
1350	const char *namespace;
1351	char *imported_namespace;
1352
1353	namespace = kernel_symbol_namespace(sym);
1354	if (namespace && namespace[0]) {
1355		imported_namespace = get_modinfo(info, "import_ns");
1356		while (imported_namespace) {
1357			if (strcmp(namespace, imported_namespace) == 0)
1358				return 0;
1359			imported_namespace = get_next_modinfo(
1360				info, "import_ns", imported_namespace);
1361		}
1362#ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1363		pr_warn(
1364#else
1365		pr_err(
1366#endif
1367			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1368			mod->name, kernel_symbol_name(sym), namespace);
1369#ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1370		return -EINVAL;
1371#endif
1372	}
1373	return 0;
1374}
1375
1376static bool inherit_taint(struct module *mod, struct module *owner)
1377{
1378	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1379		return true;
1380
1381	if (mod->using_gplonly_symbols) {
1382		pr_err("%s: module using GPL-only symbols uses symbols from proprietary module %s.\n",
1383			mod->name, owner->name);
1384		return false;
1385	}
1386
1387	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1388		pr_warn("%s: module uses symbols from proprietary module %s, inheriting taint.\n",
1389			mod->name, owner->name);
1390		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1391	}
1392	return true;
1393}
1394
1395/* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1396static const struct kernel_symbol *resolve_symbol(struct module *mod,
1397						  const struct load_info *info,
1398						  const char *name,
1399						  char ownername[])
1400{
1401	struct find_symbol_arg fsa = {
1402		.name	= name,
1403		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1404		.warn	= true,
1405	};
1406	int err;
1407
1408	/*
1409	 * The module_mutex should not be a heavily contended lock;
1410	 * if we get the occasional sleep here, we'll go an extra iteration
1411	 * in the wait_event_interruptible(), which is harmless.
1412	 */
1413	sched_annotate_sleep();
1414	mutex_lock(&module_mutex);
1415	if (!find_symbol(&fsa))
 
 
1416		goto unlock;
1417
1418	if (fsa.license == GPL_ONLY)
1419		mod->using_gplonly_symbols = true;
1420
1421	if (!inherit_taint(mod, fsa.owner)) {
1422		fsa.sym = NULL;
1423		goto getname;
1424	}
1425
1426	if (!check_version(info, name, mod, fsa.crc)) {
1427		fsa.sym = ERR_PTR(-EINVAL);
1428		goto getname;
1429	}
1430
1431	err = verify_namespace_is_imported(info, fsa.sym, mod);
1432	if (err) {
1433		fsa.sym = ERR_PTR(err);
1434		goto getname;
1435	}
1436
1437	err = ref_module(mod, fsa.owner);
1438	if (err) {
1439		fsa.sym = ERR_PTR(err);
1440		goto getname;
1441	}
1442
1443getname:
1444	/* We must make copy under the lock if we failed to get ref. */
1445	strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1446unlock:
1447	mutex_unlock(&module_mutex);
1448	return fsa.sym;
1449}
1450
1451static const struct kernel_symbol *
1452resolve_symbol_wait(struct module *mod,
1453		    const struct load_info *info,
1454		    const char *name)
1455{
1456	const struct kernel_symbol *ksym;
1457	char owner[MODULE_NAME_LEN];
1458
1459	if (wait_event_interruptible_timeout(module_wq,
1460			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1461			|| PTR_ERR(ksym) != -EBUSY,
1462					     30 * HZ) <= 0) {
1463		pr_warn("%s: gave up waiting for init of module %s.\n",
1464			mod->name, owner);
1465	}
1466	return ksym;
1467}
1468
1469#ifdef CONFIG_KALLSYMS
1470static inline bool sect_empty(const Elf_Shdr *sect)
1471{
1472	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1473}
1474#endif
1475
1476/*
1477 * /sys/module/foo/sections stuff
1478 * J. Corbet <corbet@lwn.net>
1479 */
1480#ifdef CONFIG_SYSFS
1481
1482#ifdef CONFIG_KALLSYMS
 
 
 
 
 
1483struct module_sect_attr {
1484	struct bin_attribute battr;
 
1485	unsigned long address;
1486};
1487
1488struct module_sect_attrs {
1489	struct attribute_group grp;
1490	unsigned int nsections;
1491	struct module_sect_attr attrs[];
1492};
1493
1494#define MODULE_SECT_READ_SIZE (3 /* "0x", "\n" */ + (BITS_PER_LONG / 4))
1495static ssize_t module_sect_read(struct file *file, struct kobject *kobj,
1496				struct bin_attribute *battr,
1497				char *buf, loff_t pos, size_t count)
1498{
1499	struct module_sect_attr *sattr =
1500		container_of(battr, struct module_sect_attr, battr);
1501	char bounce[MODULE_SECT_READ_SIZE + 1];
1502	size_t wrote;
1503
1504	if (pos != 0)
1505		return -EINVAL;
1506
1507	/*
1508	 * Since we're a binary read handler, we must account for the
1509	 * trailing NUL byte that sprintf will write: if "buf" is
1510	 * too small to hold the NUL, or the NUL is exactly the last
1511	 * byte, the read will look like it got truncated by one byte.
1512	 * Since there is no way to ask sprintf nicely to not write
1513	 * the NUL, we have to use a bounce buffer.
1514	 */
1515	wrote = scnprintf(bounce, sizeof(bounce), "0x%px\n",
1516			 kallsyms_show_value(file->f_cred)
1517				? (void *)sattr->address : NULL);
1518	count = min(count, wrote);
1519	memcpy(buf, bounce, count);
1520
1521	return count;
1522}
1523
1524static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1525{
1526	unsigned int section;
1527
1528	for (section = 0; section < sect_attrs->nsections; section++)
1529		kfree(sect_attrs->attrs[section].battr.attr.name);
1530	kfree(sect_attrs);
1531}
1532
1533static void add_sect_attrs(struct module *mod, const struct load_info *info)
1534{
1535	unsigned int nloaded = 0, i, size[2];
1536	struct module_sect_attrs *sect_attrs;
1537	struct module_sect_attr *sattr;
1538	struct bin_attribute **gattr;
1539
1540	/* Count loaded sections and allocate structures */
1541	for (i = 0; i < info->hdr->e_shnum; i++)
1542		if (!sect_empty(&info->sechdrs[i]))
1543			nloaded++;
1544	size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1545			sizeof(sect_attrs->grp.bin_attrs[0]));
1546	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.bin_attrs[0]);
1547	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1548	if (sect_attrs == NULL)
1549		return;
1550
1551	/* Setup section attributes. */
1552	sect_attrs->grp.name = "sections";
1553	sect_attrs->grp.bin_attrs = (void *)sect_attrs + size[0];
1554
1555	sect_attrs->nsections = 0;
1556	sattr = &sect_attrs->attrs[0];
1557	gattr = &sect_attrs->grp.bin_attrs[0];
1558	for (i = 0; i < info->hdr->e_shnum; i++) {
1559		Elf_Shdr *sec = &info->sechdrs[i];
1560		if (sect_empty(sec))
1561			continue;
1562		sysfs_bin_attr_init(&sattr->battr);
1563		sattr->address = sec->sh_addr;
1564		sattr->battr.attr.name =
1565			kstrdup(info->secstrings + sec->sh_name, GFP_KERNEL);
1566		if (sattr->battr.attr.name == NULL)
1567			goto out;
1568		sect_attrs->nsections++;
1569		sattr->battr.read = module_sect_read;
1570		sattr->battr.size = MODULE_SECT_READ_SIZE;
1571		sattr->battr.attr.mode = 0400;
1572		*(gattr++) = &(sattr++)->battr;
 
 
1573	}
1574	*gattr = NULL;
1575
1576	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1577		goto out;
1578
1579	mod->sect_attrs = sect_attrs;
1580	return;
1581  out:
1582	free_sect_attrs(sect_attrs);
1583}
1584
1585static void remove_sect_attrs(struct module *mod)
1586{
1587	if (mod->sect_attrs) {
1588		sysfs_remove_group(&mod->mkobj.kobj,
1589				   &mod->sect_attrs->grp);
1590		/*
1591		 * We are positive that no one is using any sect attrs
1592		 * at this point.  Deallocate immediately.
1593		 */
1594		free_sect_attrs(mod->sect_attrs);
1595		mod->sect_attrs = NULL;
1596	}
1597}
1598
1599/*
1600 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1601 */
1602
1603struct module_notes_attrs {
1604	struct kobject *dir;
1605	unsigned int notes;
1606	struct bin_attribute attrs[];
1607};
1608
1609static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1610				 struct bin_attribute *bin_attr,
1611				 char *buf, loff_t pos, size_t count)
1612{
1613	/*
1614	 * The caller checked the pos and count against our size.
1615	 */
1616	memcpy(buf, bin_attr->private + pos, count);
1617	return count;
1618}
1619
1620static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1621			     unsigned int i)
1622{
1623	if (notes_attrs->dir) {
1624		while (i-- > 0)
1625			sysfs_remove_bin_file(notes_attrs->dir,
1626					      &notes_attrs->attrs[i]);
1627		kobject_put(notes_attrs->dir);
1628	}
1629	kfree(notes_attrs);
1630}
1631
1632static void add_notes_attrs(struct module *mod, const struct load_info *info)
1633{
1634	unsigned int notes, loaded, i;
1635	struct module_notes_attrs *notes_attrs;
1636	struct bin_attribute *nattr;
1637
1638	/* failed to create section attributes, so can't create notes */
1639	if (!mod->sect_attrs)
1640		return;
1641
1642	/* Count notes sections and allocate structures.  */
1643	notes = 0;
1644	for (i = 0; i < info->hdr->e_shnum; i++)
1645		if (!sect_empty(&info->sechdrs[i]) &&
1646		    (info->sechdrs[i].sh_type == SHT_NOTE))
1647			++notes;
1648
1649	if (notes == 0)
1650		return;
1651
1652	notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1653			      GFP_KERNEL);
1654	if (notes_attrs == NULL)
1655		return;
1656
1657	notes_attrs->notes = notes;
1658	nattr = &notes_attrs->attrs[0];
1659	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1660		if (sect_empty(&info->sechdrs[i]))
1661			continue;
1662		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1663			sysfs_bin_attr_init(nattr);
1664			nattr->attr.name = mod->sect_attrs->attrs[loaded].battr.attr.name;
1665			nattr->attr.mode = S_IRUGO;
1666			nattr->size = info->sechdrs[i].sh_size;
1667			nattr->private = (void *) info->sechdrs[i].sh_addr;
1668			nattr->read = module_notes_read;
1669			++nattr;
1670		}
1671		++loaded;
1672	}
1673
1674	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1675	if (!notes_attrs->dir)
1676		goto out;
1677
1678	for (i = 0; i < notes; ++i)
1679		if (sysfs_create_bin_file(notes_attrs->dir,
1680					  &notes_attrs->attrs[i]))
1681			goto out;
1682
1683	mod->notes_attrs = notes_attrs;
1684	return;
1685
1686  out:
1687	free_notes_attrs(notes_attrs, i);
1688}
1689
1690static void remove_notes_attrs(struct module *mod)
1691{
1692	if (mod->notes_attrs)
1693		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1694}
1695
1696#else
1697
1698static inline void add_sect_attrs(struct module *mod,
1699				  const struct load_info *info)
1700{
1701}
1702
1703static inline void remove_sect_attrs(struct module *mod)
1704{
1705}
1706
1707static inline void add_notes_attrs(struct module *mod,
1708				   const struct load_info *info)
1709{
1710}
1711
1712static inline void remove_notes_attrs(struct module *mod)
1713{
1714}
1715#endif /* CONFIG_KALLSYMS */
1716
1717static void del_usage_links(struct module *mod)
1718{
1719#ifdef CONFIG_MODULE_UNLOAD
1720	struct module_use *use;
1721
1722	mutex_lock(&module_mutex);
1723	list_for_each_entry(use, &mod->target_list, target_list)
1724		sysfs_remove_link(use->target->holders_dir, mod->name);
1725	mutex_unlock(&module_mutex);
1726#endif
1727}
1728
1729static int add_usage_links(struct module *mod)
1730{
1731	int ret = 0;
1732#ifdef CONFIG_MODULE_UNLOAD
1733	struct module_use *use;
1734
1735	mutex_lock(&module_mutex);
1736	list_for_each_entry(use, &mod->target_list, target_list) {
1737		ret = sysfs_create_link(use->target->holders_dir,
1738					&mod->mkobj.kobj, mod->name);
1739		if (ret)
1740			break;
1741	}
1742	mutex_unlock(&module_mutex);
1743	if (ret)
1744		del_usage_links(mod);
1745#endif
1746	return ret;
1747}
1748
1749static void module_remove_modinfo_attrs(struct module *mod, int end);
1750
1751static int module_add_modinfo_attrs(struct module *mod)
1752{
1753	struct module_attribute *attr;
1754	struct module_attribute *temp_attr;
1755	int error = 0;
1756	int i;
1757
1758	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1759					(ARRAY_SIZE(modinfo_attrs) + 1)),
1760					GFP_KERNEL);
1761	if (!mod->modinfo_attrs)
1762		return -ENOMEM;
1763
1764	temp_attr = mod->modinfo_attrs;
1765	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1766		if (!attr->test || attr->test(mod)) {
1767			memcpy(temp_attr, attr, sizeof(*temp_attr));
1768			sysfs_attr_init(&temp_attr->attr);
1769			error = sysfs_create_file(&mod->mkobj.kobj,
1770					&temp_attr->attr);
1771			if (error)
1772				goto error_out;
1773			++temp_attr;
1774		}
1775	}
1776
1777	return 0;
1778
1779error_out:
1780	if (i > 0)
1781		module_remove_modinfo_attrs(mod, --i);
1782	else
1783		kfree(mod->modinfo_attrs);
1784	return error;
1785}
1786
1787static void module_remove_modinfo_attrs(struct module *mod, int end)
1788{
1789	struct module_attribute *attr;
1790	int i;
1791
1792	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1793		if (end >= 0 && i > end)
1794			break;
1795		/* pick a field to test for end of list */
1796		if (!attr->attr.name)
1797			break;
1798		sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1799		if (attr->free)
1800			attr->free(mod);
1801	}
1802	kfree(mod->modinfo_attrs);
1803}
1804
1805static void mod_kobject_put(struct module *mod)
1806{
1807	DECLARE_COMPLETION_ONSTACK(c);
1808	mod->mkobj.kobj_completion = &c;
1809	kobject_put(&mod->mkobj.kobj);
1810	wait_for_completion(&c);
1811}
1812
1813static int mod_sysfs_init(struct module *mod)
1814{
1815	int err;
1816	struct kobject *kobj;
1817
1818	if (!module_sysfs_initialized) {
1819		pr_err("%s: module sysfs not initialized\n", mod->name);
1820		err = -EINVAL;
1821		goto out;
1822	}
1823
1824	kobj = kset_find_obj(module_kset, mod->name);
1825	if (kobj) {
1826		pr_err("%s: module is already loaded\n", mod->name);
1827		kobject_put(kobj);
1828		err = -EINVAL;
1829		goto out;
1830	}
1831
1832	mod->mkobj.mod = mod;
1833
1834	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1835	mod->mkobj.kobj.kset = module_kset;
1836	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1837				   "%s", mod->name);
1838	if (err)
1839		mod_kobject_put(mod);
1840
 
1841out:
1842	return err;
1843}
1844
1845static int mod_sysfs_setup(struct module *mod,
1846			   const struct load_info *info,
1847			   struct kernel_param *kparam,
1848			   unsigned int num_params)
1849{
1850	int err;
1851
1852	err = mod_sysfs_init(mod);
1853	if (err)
1854		goto out;
1855
1856	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1857	if (!mod->holders_dir) {
1858		err = -ENOMEM;
1859		goto out_unreg;
1860	}
1861
1862	err = module_param_sysfs_setup(mod, kparam, num_params);
1863	if (err)
1864		goto out_unreg_holders;
1865
1866	err = module_add_modinfo_attrs(mod);
1867	if (err)
1868		goto out_unreg_param;
1869
1870	err = add_usage_links(mod);
1871	if (err)
1872		goto out_unreg_modinfo_attrs;
1873
1874	add_sect_attrs(mod, info);
1875	add_notes_attrs(mod, info);
1876
 
1877	return 0;
1878
1879out_unreg_modinfo_attrs:
1880	module_remove_modinfo_attrs(mod, -1);
1881out_unreg_param:
1882	module_param_sysfs_remove(mod);
1883out_unreg_holders:
1884	kobject_put(mod->holders_dir);
1885out_unreg:
1886	mod_kobject_put(mod);
1887out:
1888	return err;
1889}
1890
1891static void mod_sysfs_fini(struct module *mod)
1892{
1893	remove_notes_attrs(mod);
1894	remove_sect_attrs(mod);
1895	mod_kobject_put(mod);
1896}
1897
1898static void init_param_lock(struct module *mod)
1899{
1900	mutex_init(&mod->param_lock);
1901}
1902#else /* !CONFIG_SYSFS */
1903
1904static int mod_sysfs_setup(struct module *mod,
1905			   const struct load_info *info,
1906			   struct kernel_param *kparam,
1907			   unsigned int num_params)
1908{
1909	return 0;
1910}
1911
1912static void mod_sysfs_fini(struct module *mod)
1913{
1914}
1915
1916static void module_remove_modinfo_attrs(struct module *mod, int end)
1917{
1918}
1919
1920static void del_usage_links(struct module *mod)
1921{
1922}
1923
1924static void init_param_lock(struct module *mod)
1925{
1926}
1927#endif /* CONFIG_SYSFS */
1928
1929static void mod_sysfs_teardown(struct module *mod)
1930{
1931	del_usage_links(mod);
1932	module_remove_modinfo_attrs(mod, -1);
1933	module_param_sysfs_remove(mod);
1934	kobject_put(mod->mkobj.drivers_dir);
1935	kobject_put(mod->holders_dir);
1936	mod_sysfs_fini(mod);
1937}
1938
 
1939/*
1940 * LKM RO/NX protection: protect module's text/ro-data
1941 * from modification and any data from execution.
1942 *
1943 * General layout of module is:
1944 *          [text] [read-only-data] [ro-after-init] [writable data]
1945 * text_size -----^                ^               ^               ^
1946 * ro_size ------------------------|               |               |
1947 * ro_after_init_size -----------------------------|               |
1948 * size -----------------------------------------------------------|
1949 *
1950 * These values are always page-aligned (as is base)
1951 */
1952
1953/*
1954 * Since some arches are moving towards PAGE_KERNEL module allocations instead
1955 * of PAGE_KERNEL_EXEC, keep frob_text() and module_enable_x() outside of the
1956 * CONFIG_STRICT_MODULE_RWX block below because they are needed regardless of
1957 * whether we are strict.
1958 */
1959#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
1960static void frob_text(const struct module_layout *layout,
1961		      int (*set_memory)(unsigned long start, int num_pages))
1962{
1963	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1964	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1965	set_memory((unsigned long)layout->base,
1966		   layout->text_size >> PAGE_SHIFT);
1967}
1968
1969static void module_enable_x(const struct module *mod)
1970{
1971	frob_text(&mod->core_layout, set_memory_x);
1972	frob_text(&mod->init_layout, set_memory_x);
1973}
1974#else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
1975static void module_enable_x(const struct module *mod) { }
1976#endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
1977
1978#ifdef CONFIG_STRICT_MODULE_RWX
1979static void frob_rodata(const struct module_layout *layout,
1980			int (*set_memory)(unsigned long start, int num_pages))
1981{
1982	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1983	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1984	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1985	set_memory((unsigned long)layout->base + layout->text_size,
1986		   (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1987}
1988
1989static void frob_ro_after_init(const struct module_layout *layout,
1990				int (*set_memory)(unsigned long start, int num_pages))
1991{
1992	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1993	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1994	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1995	set_memory((unsigned long)layout->base + layout->ro_size,
1996		   (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1997}
1998
1999static void frob_writable_data(const struct module_layout *layout,
2000			       int (*set_memory)(unsigned long start, int num_pages))
2001{
2002	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2003	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2004	BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
2005	set_memory((unsigned long)layout->base + layout->ro_after_init_size,
2006		   (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
2007}
2008
2009static void module_enable_ro(const struct module *mod, bool after_init)
 
 
 
 
 
 
 
 
 
 
 
 
 
2010{
2011	if (!rodata_enabled)
2012		return;
2013
2014	set_vm_flush_reset_perms(mod->core_layout.base);
2015	set_vm_flush_reset_perms(mod->init_layout.base);
2016	frob_text(&mod->core_layout, set_memory_ro);
2017
2018	frob_rodata(&mod->core_layout, set_memory_ro);
2019	frob_text(&mod->init_layout, set_memory_ro);
2020	frob_rodata(&mod->init_layout, set_memory_ro);
2021
2022	if (after_init)
2023		frob_ro_after_init(&mod->core_layout, set_memory_ro);
2024}
2025
2026static void module_enable_nx(const struct module *mod)
2027{
2028	frob_rodata(&mod->core_layout, set_memory_nx);
2029	frob_ro_after_init(&mod->core_layout, set_memory_nx);
2030	frob_writable_data(&mod->core_layout, set_memory_nx);
2031	frob_rodata(&mod->init_layout, set_memory_nx);
2032	frob_writable_data(&mod->init_layout, set_memory_nx);
2033}
2034
2035static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2036				       char *secstrings, struct module *mod)
2037{
2038	const unsigned long shf_wx = SHF_WRITE|SHF_EXECINSTR;
2039	int i;
 
 
 
 
 
 
 
2040
2041	for (i = 0; i < hdr->e_shnum; i++) {
2042		if ((sechdrs[i].sh_flags & shf_wx) == shf_wx) {
2043			pr_err("%s: section %s (index %d) has invalid WRITE|EXEC flags\n",
2044				mod->name, secstrings + sechdrs[i].sh_name, i);
2045			return -ENOEXEC;
2046		}
2047	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2048
2049	return 0;
 
 
 
2050}
2051
2052#else /* !CONFIG_STRICT_MODULE_RWX */
2053static void module_enable_nx(const struct module *mod) { }
2054static void module_enable_ro(const struct module *mod, bool after_init) {}
2055static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2056				       char *secstrings, struct module *mod)
2057{
2058	return 0;
 
2059}
2060#endif /*  CONFIG_STRICT_MODULE_RWX */
 
 
 
 
2061
2062#ifdef CONFIG_LIVEPATCH
2063/*
2064 * Persist Elf information about a module. Copy the Elf header,
2065 * section header table, section string table, and symtab section
2066 * index from info to mod->klp_info.
2067 */
2068static int copy_module_elf(struct module *mod, struct load_info *info)
2069{
2070	unsigned int size, symndx;
2071	int ret;
2072
2073	size = sizeof(*mod->klp_info);
2074	mod->klp_info = kmalloc(size, GFP_KERNEL);
2075	if (mod->klp_info == NULL)
2076		return -ENOMEM;
2077
2078	/* Elf header */
2079	size = sizeof(mod->klp_info->hdr);
2080	memcpy(&mod->klp_info->hdr, info->hdr, size);
2081
2082	/* Elf section header table */
2083	size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2084	mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2085	if (mod->klp_info->sechdrs == NULL) {
2086		ret = -ENOMEM;
2087		goto free_info;
2088	}
2089
2090	/* Elf section name string table */
2091	size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2092	mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2093	if (mod->klp_info->secstrings == NULL) {
2094		ret = -ENOMEM;
2095		goto free_sechdrs;
2096	}
2097
2098	/* Elf symbol section index */
2099	symndx = info->index.sym;
2100	mod->klp_info->symndx = symndx;
2101
2102	/*
2103	 * For livepatch modules, core_kallsyms.symtab is a complete
2104	 * copy of the original symbol table. Adjust sh_addr to point
2105	 * to core_kallsyms.symtab since the copy of the symtab in module
2106	 * init memory is freed at the end of do_init_module().
2107	 */
2108	mod->klp_info->sechdrs[symndx].sh_addr = \
2109		(unsigned long) mod->core_kallsyms.symtab;
2110
2111	return 0;
2112
2113free_sechdrs:
2114	kfree(mod->klp_info->sechdrs);
2115free_info:
2116	kfree(mod->klp_info);
2117	return ret;
2118}
2119
2120static void free_module_elf(struct module *mod)
2121{
2122	kfree(mod->klp_info->sechdrs);
2123	kfree(mod->klp_info->secstrings);
2124	kfree(mod->klp_info);
2125}
2126#else /* !CONFIG_LIVEPATCH */
2127static int copy_module_elf(struct module *mod, struct load_info *info)
2128{
2129	return 0;
2130}
2131
2132static void free_module_elf(struct module *mod)
2133{
2134}
2135#endif /* CONFIG_LIVEPATCH */
2136
2137void __weak module_memfree(void *module_region)
2138{
2139	/*
2140	 * This memory may be RO, and freeing RO memory in an interrupt is not
2141	 * supported by vmalloc.
2142	 */
2143	WARN_ON(in_interrupt());
2144	vfree(module_region);
2145}
2146
2147void __weak module_arch_cleanup(struct module *mod)
2148{
2149}
2150
2151void __weak module_arch_freeing_init(struct module *mod)
2152{
2153}
2154
2155static void cfi_cleanup(struct module *mod);
2156
2157/* Free a module, remove from lists, etc. */
2158static void free_module(struct module *mod)
2159{
2160	trace_module_free(mod);
2161
2162	mod_sysfs_teardown(mod);
2163
2164	/*
2165	 * We leave it in list to prevent duplicate loads, but make sure
2166	 * that noone uses it while it's being deconstructed.
2167	 */
2168	mutex_lock(&module_mutex);
2169	mod->state = MODULE_STATE_UNFORMED;
2170	mutex_unlock(&module_mutex);
2171
2172	/* Remove dynamic debug info */
2173	ddebug_remove_module(mod->name);
2174
2175	/* Arch-specific cleanup. */
2176	module_arch_cleanup(mod);
2177
2178	/* Module unload stuff */
2179	module_unload_free(mod);
2180
2181	/* Free any allocated parameters. */
2182	destroy_params(mod->kp, mod->num_kp);
2183
2184	if (is_livepatch_module(mod))
2185		free_module_elf(mod);
2186
2187	/* Now we can delete it from the lists */
2188	mutex_lock(&module_mutex);
2189	/* Unlink carefully: kallsyms could be walking list. */
2190	list_del_rcu(&mod->list);
2191	mod_tree_remove(mod);
2192	/* Remove this module from bug list, this uses list_del_rcu */
2193	module_bug_cleanup(mod);
2194	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2195	synchronize_rcu();
2196	mutex_unlock(&module_mutex);
2197
2198	/* Clean up CFI for the module. */
2199	cfi_cleanup(mod);
2200
2201	/* This may be empty, but that's OK */
2202	module_arch_freeing_init(mod);
2203	module_memfree(mod->init_layout.base);
2204	kfree(mod->args);
2205	percpu_modfree(mod);
2206
2207	/* Free lock-classes; relies on the preceding sync_rcu(). */
2208	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2209
2210	/* Finally, free the core (containing the module structure) */
2211	module_memfree(mod->core_layout.base);
2212}
2213
2214void *__symbol_get(const char *symbol)
2215{
2216	struct find_symbol_arg fsa = {
2217		.name	= symbol,
2218		.gplok	= true,
2219		.warn	= true,
2220	};
2221
2222	preempt_disable();
2223	if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) {
2224		preempt_enable();
2225		return NULL;
2226	}
2227	preempt_enable();
2228	return (void *)kernel_symbol_value(fsa.sym);
 
2229}
2230EXPORT_SYMBOL_GPL(__symbol_get);
2231
2232/*
2233 * Ensure that an exported symbol [global namespace] does not already exist
2234 * in the kernel or in some other module's exported symbol table.
2235 *
2236 * You must hold the module_mutex.
2237 */
2238static int verify_exported_symbols(struct module *mod)
2239{
2240	unsigned int i;
 
2241	const struct kernel_symbol *s;
2242	struct {
2243		const struct kernel_symbol *sym;
2244		unsigned int num;
2245	} arr[] = {
2246		{ mod->syms, mod->num_syms },
2247		{ mod->gpl_syms, mod->num_gpl_syms },
 
 
 
 
 
2248	};
2249
2250	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2251		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2252			struct find_symbol_arg fsa = {
2253				.name	= kernel_symbol_name(s),
2254				.gplok	= true,
2255			};
2256			if (find_symbol(&fsa)) {
2257				pr_err("%s: exports duplicate symbol %s"
2258				       " (owned by %s)\n",
2259				       mod->name, kernel_symbol_name(s),
2260				       module_name(fsa.owner));
2261				return -ENOEXEC;
2262			}
2263		}
2264	}
2265	return 0;
2266}
2267
2268static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
2269{
2270	/*
2271	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
2272	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
2273	 * i386 has a similar problem but may not deserve a fix.
2274	 *
2275	 * If we ever have to ignore many symbols, consider refactoring the code to
2276	 * only warn if referenced by a relocation.
2277	 */
2278	if (emachine == EM_386 || emachine == EM_X86_64)
2279		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
2280	return false;
2281}
2282
2283/* Change all symbols so that st_value encodes the pointer directly. */
2284static int simplify_symbols(struct module *mod, const struct load_info *info)
2285{
2286	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2287	Elf_Sym *sym = (void *)symsec->sh_addr;
2288	unsigned long secbase;
2289	unsigned int i;
2290	int ret = 0;
2291	const struct kernel_symbol *ksym;
2292
2293	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2294		const char *name = info->strtab + sym[i].st_name;
2295
2296		switch (sym[i].st_shndx) {
2297		case SHN_COMMON:
2298			/* Ignore common symbols */
2299			if (!strncmp(name, "__gnu_lto", 9))
2300				break;
2301
2302			/*
2303			 * We compiled with -fno-common.  These are not
2304			 * supposed to happen.
2305			 */
2306			pr_debug("Common symbol: %s\n", name);
2307			pr_warn("%s: please compile with -fno-common\n",
2308			       mod->name);
2309			ret = -ENOEXEC;
2310			break;
2311
2312		case SHN_ABS:
2313			/* Don't need to do anything */
2314			pr_debug("Absolute symbol: 0x%08lx\n",
2315			       (long)sym[i].st_value);
2316			break;
2317
2318		case SHN_LIVEPATCH:
2319			/* Livepatch symbols are resolved by livepatch */
2320			break;
2321
2322		case SHN_UNDEF:
2323			ksym = resolve_symbol_wait(mod, info, name);
2324			/* Ok if resolved.  */
2325			if (ksym && !IS_ERR(ksym)) {
2326				sym[i].st_value = kernel_symbol_value(ksym);
2327				break;
2328			}
2329
2330			/* Ok if weak or ignored.  */
2331			if (!ksym &&
2332			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
2333			     ignore_undef_symbol(info->hdr->e_machine, name)))
2334				break;
2335
2336			ret = PTR_ERR(ksym) ?: -ENOENT;
2337			pr_warn("%s: Unknown symbol %s (err %d)\n",
2338				mod->name, name, ret);
2339			break;
2340
2341		default:
2342			/* Divert to percpu allocation if a percpu var. */
2343			if (sym[i].st_shndx == info->index.pcpu)
2344				secbase = (unsigned long)mod_percpu(mod);
2345			else
2346				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2347			sym[i].st_value += secbase;
2348			break;
2349		}
2350	}
2351
2352	return ret;
2353}
2354
2355static int apply_relocations(struct module *mod, const struct load_info *info)
2356{
2357	unsigned int i;
2358	int err = 0;
2359
2360	/* Now do relocations. */
2361	for (i = 1; i < info->hdr->e_shnum; i++) {
2362		unsigned int infosec = info->sechdrs[i].sh_info;
2363
2364		/* Not a valid relocation section? */
2365		if (infosec >= info->hdr->e_shnum)
2366			continue;
2367
2368		/* Don't bother with non-allocated sections */
2369		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2370			continue;
2371
 
2372		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2373			err = klp_apply_section_relocs(mod, info->sechdrs,
2374						       info->secstrings,
2375						       info->strtab,
2376						       info->index.sym, i,
2377						       NULL);
2378		else if (info->sechdrs[i].sh_type == SHT_REL)
2379			err = apply_relocate(info->sechdrs, info->strtab,
2380					     info->index.sym, i, mod);
2381		else if (info->sechdrs[i].sh_type == SHT_RELA)
2382			err = apply_relocate_add(info->sechdrs, info->strtab,
2383						 info->index.sym, i, mod);
2384		if (err < 0)
2385			break;
2386	}
2387	return err;
2388}
2389
2390/* Additional bytes needed by arch in front of individual sections */
2391unsigned int __weak arch_mod_section_prepend(struct module *mod,
2392					     unsigned int section)
2393{
2394	/* default implementation just returns zero */
2395	return 0;
2396}
2397
2398/* Update size with this section: return offset. */
2399static long get_offset(struct module *mod, unsigned int *size,
2400		       Elf_Shdr *sechdr, unsigned int section)
2401{
2402	long ret;
2403
2404	*size += arch_mod_section_prepend(mod, section);
2405	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2406	*size = ret + sechdr->sh_size;
2407	return ret;
2408}
2409
2410static bool module_init_layout_section(const char *sname)
2411{
2412#ifndef CONFIG_MODULE_UNLOAD
2413	if (module_exit_section(sname))
2414		return true;
2415#endif
2416	return module_init_section(sname);
2417}
2418
2419/*
2420 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2421 * might -- code, read-only data, read-write data, small data.  Tally
2422 * sizes, and place the offsets into sh_entsize fields: high bit means it
2423 * belongs in init.
2424 */
2425static void layout_sections(struct module *mod, struct load_info *info)
2426{
2427	static unsigned long const masks[][2] = {
2428		/*
2429		 * NOTE: all executable code must be the first section
2430		 * in this array; otherwise modify the text_size
2431		 * finder in the two loops below
2432		 */
2433		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2434		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2435		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2436		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2437		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2438	};
2439	unsigned int m, i;
2440
2441	for (i = 0; i < info->hdr->e_shnum; i++)
2442		info->sechdrs[i].sh_entsize = ~0UL;
2443
2444	pr_debug("Core section allocation order:\n");
2445	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2446		for (i = 0; i < info->hdr->e_shnum; ++i) {
2447			Elf_Shdr *s = &info->sechdrs[i];
2448			const char *sname = info->secstrings + s->sh_name;
2449
2450			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2451			    || (s->sh_flags & masks[m][1])
2452			    || s->sh_entsize != ~0UL
2453			    || module_init_layout_section(sname))
2454				continue;
2455			s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2456			pr_debug("\t%s\n", sname);
2457		}
2458		switch (m) {
2459		case 0: /* executable */
2460			mod->core_layout.size = debug_align(mod->core_layout.size);
2461			mod->core_layout.text_size = mod->core_layout.size;
2462			break;
2463		case 1: /* RO: text and ro-data */
2464			mod->core_layout.size = debug_align(mod->core_layout.size);
2465			mod->core_layout.ro_size = mod->core_layout.size;
2466			break;
2467		case 2: /* RO after init */
2468			mod->core_layout.size = debug_align(mod->core_layout.size);
2469			mod->core_layout.ro_after_init_size = mod->core_layout.size;
2470			break;
2471		case 4: /* whole core */
2472			mod->core_layout.size = debug_align(mod->core_layout.size);
2473			break;
2474		}
2475	}
2476
2477	pr_debug("Init section allocation order:\n");
2478	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2479		for (i = 0; i < info->hdr->e_shnum; ++i) {
2480			Elf_Shdr *s = &info->sechdrs[i];
2481			const char *sname = info->secstrings + s->sh_name;
2482
2483			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2484			    || (s->sh_flags & masks[m][1])
2485			    || s->sh_entsize != ~0UL
2486			    || !module_init_layout_section(sname))
2487				continue;
2488			s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2489					 | INIT_OFFSET_MASK);
2490			pr_debug("\t%s\n", sname);
2491		}
2492		switch (m) {
2493		case 0: /* executable */
2494			mod->init_layout.size = debug_align(mod->init_layout.size);
2495			mod->init_layout.text_size = mod->init_layout.size;
2496			break;
2497		case 1: /* RO: text and ro-data */
2498			mod->init_layout.size = debug_align(mod->init_layout.size);
2499			mod->init_layout.ro_size = mod->init_layout.size;
2500			break;
2501		case 2:
2502			/*
2503			 * RO after init doesn't apply to init_layout (only
2504			 * core_layout), so it just takes the value of ro_size.
2505			 */
2506			mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2507			break;
2508		case 4: /* whole init */
2509			mod->init_layout.size = debug_align(mod->init_layout.size);
2510			break;
2511		}
2512	}
2513}
2514
2515static void set_license(struct module *mod, const char *license)
2516{
2517	if (!license)
2518		license = "unspecified";
2519
2520	if (!license_is_gpl_compatible(license)) {
2521		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2522			pr_warn("%s: module license '%s' taints kernel.\n",
2523				mod->name, license);
2524		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2525				 LOCKDEP_NOW_UNRELIABLE);
2526	}
2527}
2528
2529/* Parse tag=value strings from .modinfo section */
2530static char *next_string(char *string, unsigned long *secsize)
2531{
2532	/* Skip non-zero chars */
2533	while (string[0]) {
2534		string++;
2535		if ((*secsize)-- <= 1)
2536			return NULL;
2537	}
2538
2539	/* Skip any zero padding. */
2540	while (!string[0]) {
2541		string++;
2542		if ((*secsize)-- <= 1)
2543			return NULL;
2544	}
2545	return string;
2546}
2547
2548static char *get_next_modinfo(const struct load_info *info, const char *tag,
2549			      char *prev)
2550{
2551	char *p;
2552	unsigned int taglen = strlen(tag);
2553	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2554	unsigned long size = infosec->sh_size;
2555
2556	/*
2557	 * get_modinfo() calls made before rewrite_section_headers()
2558	 * must use sh_offset, as sh_addr isn't set!
2559	 */
2560	char *modinfo = (char *)info->hdr + infosec->sh_offset;
2561
2562	if (prev) {
2563		size -= prev - modinfo;
2564		modinfo = next_string(prev, &size);
2565	}
2566
2567	for (p = modinfo; p; p = next_string(p, &size)) {
2568		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2569			return p + taglen + 1;
2570	}
2571	return NULL;
2572}
2573
2574static char *get_modinfo(const struct load_info *info, const char *tag)
2575{
2576	return get_next_modinfo(info, tag, NULL);
2577}
2578
2579static void setup_modinfo(struct module *mod, struct load_info *info)
2580{
2581	struct module_attribute *attr;
2582	int i;
2583
2584	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2585		if (attr->setup)
2586			attr->setup(mod, get_modinfo(info, attr->attr.name));
2587	}
2588}
2589
2590static void free_modinfo(struct module *mod)
2591{
2592	struct module_attribute *attr;
2593	int i;
2594
2595	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2596		if (attr->free)
2597			attr->free(mod);
2598	}
2599}
2600
2601#ifdef CONFIG_KALLSYMS
2602
2603/* Lookup exported symbol in given range of kernel_symbols */
2604static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2605							  const struct kernel_symbol *start,
2606							  const struct kernel_symbol *stop)
2607{
2608	return bsearch(name, start, stop - start,
2609			sizeof(struct kernel_symbol), cmp_name);
2610}
2611
2612static int is_exported(const char *name, unsigned long value,
2613		       const struct module *mod)
2614{
2615	const struct kernel_symbol *ks;
2616	if (!mod)
2617		ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2618	else
2619		ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2620
2621	return ks != NULL && kernel_symbol_value(ks) == value;
2622}
2623
2624/* As per nm */
2625static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2626{
2627	const Elf_Shdr *sechdrs = info->sechdrs;
2628
2629	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2630		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2631			return 'v';
2632		else
2633			return 'w';
2634	}
2635	if (sym->st_shndx == SHN_UNDEF)
2636		return 'U';
2637	if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2638		return 'a';
2639	if (sym->st_shndx >= SHN_LORESERVE)
2640		return '?';
2641	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2642		return 't';
2643	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2644	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2645		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2646			return 'r';
2647		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2648			return 'g';
2649		else
2650			return 'd';
2651	}
2652	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2653		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2654			return 's';
2655		else
2656			return 'b';
2657	}
2658	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2659		      ".debug")) {
2660		return 'n';
2661	}
2662	return '?';
2663}
2664
2665static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2666			unsigned int shnum, unsigned int pcpundx)
2667{
2668	const Elf_Shdr *sec;
2669
2670	if (src->st_shndx == SHN_UNDEF
2671	    || src->st_shndx >= shnum
2672	    || !src->st_name)
2673		return false;
2674
2675#ifdef CONFIG_KALLSYMS_ALL
2676	if (src->st_shndx == pcpundx)
2677		return true;
2678#endif
2679
2680	sec = sechdrs + src->st_shndx;
2681	if (!(sec->sh_flags & SHF_ALLOC)
2682#ifndef CONFIG_KALLSYMS_ALL
2683	    || !(sec->sh_flags & SHF_EXECINSTR)
2684#endif
2685	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2686		return false;
2687
2688	return true;
2689}
2690
2691/*
2692 * We only allocate and copy the strings needed by the parts of symtab
2693 * we keep.  This is simple, but has the effect of making multiple
2694 * copies of duplicates.  We could be more sophisticated, see
2695 * linux-kernel thread starting with
2696 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2697 */
2698static void layout_symtab(struct module *mod, struct load_info *info)
2699{
2700	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2701	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2702	const Elf_Sym *src;
2703	unsigned int i, nsrc, ndst, strtab_size = 0;
2704
2705	/* Put symbol section at end of init part of module. */
2706	symsect->sh_flags |= SHF_ALLOC;
2707	symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2708					 info->index.sym) | INIT_OFFSET_MASK;
2709	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2710
2711	src = (void *)info->hdr + symsect->sh_offset;
2712	nsrc = symsect->sh_size / sizeof(*src);
2713
2714	/* Compute total space required for the core symbols' strtab. */
2715	for (ndst = i = 0; i < nsrc; i++) {
2716		if (i == 0 || is_livepatch_module(mod) ||
2717		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2718				   info->index.pcpu)) {
2719			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2720			ndst++;
2721		}
2722	}
2723
2724	/* Append room for core symbols at end of core part. */
2725	info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2726	info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2727	mod->core_layout.size += strtab_size;
2728	info->core_typeoffs = mod->core_layout.size;
2729	mod->core_layout.size += ndst * sizeof(char);
2730	mod->core_layout.size = debug_align(mod->core_layout.size);
2731
2732	/* Put string table section at end of init part of module. */
2733	strsect->sh_flags |= SHF_ALLOC;
2734	strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2735					 info->index.str) | INIT_OFFSET_MASK;
2736	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2737
2738	/* We'll tack temporary mod_kallsyms on the end. */
2739	mod->init_layout.size = ALIGN(mod->init_layout.size,
2740				      __alignof__(struct mod_kallsyms));
2741	info->mod_kallsyms_init_off = mod->init_layout.size;
2742	mod->init_layout.size += sizeof(struct mod_kallsyms);
2743	info->init_typeoffs = mod->init_layout.size;
2744	mod->init_layout.size += nsrc * sizeof(char);
2745	mod->init_layout.size = debug_align(mod->init_layout.size);
2746}
2747
2748/*
2749 * We use the full symtab and strtab which layout_symtab arranged to
2750 * be appended to the init section.  Later we switch to the cut-down
2751 * core-only ones.
2752 */
2753static void add_kallsyms(struct module *mod, const struct load_info *info)
2754{
2755	unsigned int i, ndst;
2756	const Elf_Sym *src;
2757	Elf_Sym *dst;
2758	char *s;
2759	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2760
2761	/* Set up to point into init section. */
2762	mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2763
2764	mod->kallsyms->symtab = (void *)symsec->sh_addr;
2765	mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2766	/* Make sure we get permanent strtab: don't use info->strtab. */
2767	mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2768	mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2769
2770	/*
2771	 * Now populate the cut down core kallsyms for after init
2772	 * and set types up while we still have access to sections.
2773	 */
2774	mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2775	mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2776	mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2777	src = mod->kallsyms->symtab;
2778	for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2779		mod->kallsyms->typetab[i] = elf_type(src + i, info);
2780		if (i == 0 || is_livepatch_module(mod) ||
2781		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2782				   info->index.pcpu)) {
2783			mod->core_kallsyms.typetab[ndst] =
2784			    mod->kallsyms->typetab[i];
2785			dst[ndst] = src[i];
2786			dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2787			s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2788				     KSYM_NAME_LEN) + 1;
2789		}
2790	}
2791	mod->core_kallsyms.num_symtab = ndst;
2792}
2793#else
2794static inline void layout_symtab(struct module *mod, struct load_info *info)
2795{
2796}
2797
2798static void add_kallsyms(struct module *mod, const struct load_info *info)
2799{
2800}
2801#endif /* CONFIG_KALLSYMS */
2802
2803#if IS_ENABLED(CONFIG_KALLSYMS) && IS_ENABLED(CONFIG_STACKTRACE_BUILD_ID)
2804static void init_build_id(struct module *mod, const struct load_info *info)
2805{
2806	const Elf_Shdr *sechdr;
2807	unsigned int i;
2808
2809	for (i = 0; i < info->hdr->e_shnum; i++) {
2810		sechdr = &info->sechdrs[i];
2811		if (!sect_empty(sechdr) && sechdr->sh_type == SHT_NOTE &&
2812		    !build_id_parse_buf((void *)sechdr->sh_addr, mod->build_id,
2813					sechdr->sh_size))
2814			break;
2815	}
2816}
2817#else
2818static void init_build_id(struct module *mod, const struct load_info *info)
2819{
2820}
2821#endif
2822
2823static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2824{
2825	if (!debug)
2826		return;
2827	ddebug_add_module(debug, num, mod->name);
2828}
2829
2830static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2831{
2832	if (debug)
2833		ddebug_remove_module(mod->name);
2834}
2835
2836void * __weak module_alloc(unsigned long size)
2837{
2838	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2839			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2840			NUMA_NO_NODE, __builtin_return_address(0));
2841}
2842
2843bool __weak module_init_section(const char *name)
2844{
2845	return strstarts(name, ".init");
2846}
2847
2848bool __weak module_exit_section(const char *name)
2849{
2850	return strstarts(name, ".exit");
2851}
2852
2853#ifdef CONFIG_DEBUG_KMEMLEAK
2854static void kmemleak_load_module(const struct module *mod,
2855				 const struct load_info *info)
2856{
2857	unsigned int i;
2858
2859	/* only scan the sections containing data */
2860	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2861
2862	for (i = 1; i < info->hdr->e_shnum; i++) {
2863		/* Scan all writable sections that's not executable */
2864		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2865		    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2866		    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2867			continue;
2868
2869		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2870				   info->sechdrs[i].sh_size, GFP_KERNEL);
2871	}
2872}
2873#else
2874static inline void kmemleak_load_module(const struct module *mod,
2875					const struct load_info *info)
2876{
2877}
2878#endif
2879
2880#ifdef CONFIG_MODULE_SIG
2881static int module_sig_check(struct load_info *info, int flags)
2882{
2883	int err = -ENODATA;
2884	const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2885	const char *reason;
2886	const void *mod = info->hdr;
2887
2888	/*
2889	 * Require flags == 0, as a module with version information
2890	 * removed is no longer the module that was signed
2891	 */
2892	if (flags == 0 &&
2893	    info->len > markerlen &&
2894	    memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2895		/* We truncate the module to discard the signature */
2896		info->len -= markerlen;
2897		err = mod_verify_sig(mod, info);
2898		if (!err) {
2899			info->sig_ok = true;
2900			return 0;
2901		}
2902	}
2903
2904	/*
2905	 * We don't permit modules to be loaded into the trusted kernels
2906	 * without a valid signature on them, but if we're not enforcing,
2907	 * certain errors are non-fatal.
2908	 */
2909	switch (err) {
 
 
 
 
 
 
 
 
2910	case -ENODATA:
2911		reason = "unsigned module";
2912		break;
2913	case -ENOPKG:
2914		reason = "module with unsupported crypto";
2915		break;
2916	case -ENOKEY:
2917		reason = "module with unavailable key";
2918		break;
 
 
 
 
 
 
2919
 
 
 
 
2920	default:
2921		/*
2922		 * All other errors are fatal, including lack of memory,
2923		 * unparseable signatures, and signature check failures --
2924		 * even if signatures aren't required.
2925		 */
2926		return err;
2927	}
2928
2929	if (is_module_sig_enforced()) {
2930		pr_notice("Loading of %s is rejected\n", reason);
2931		return -EKEYREJECTED;
2932	}
2933
2934	return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2935}
2936#else /* !CONFIG_MODULE_SIG */
2937static int module_sig_check(struct load_info *info, int flags)
2938{
2939	return 0;
2940}
2941#endif /* !CONFIG_MODULE_SIG */
2942
2943static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
 
2944{
2945	unsigned long secend;
2946
2947	/*
2948	 * Check for both overflow and offset/size being
2949	 * too large.
2950	 */
2951	secend = shdr->sh_offset + shdr->sh_size;
2952	if (secend < shdr->sh_offset || secend > info->len)
2953		return -ENOEXEC;
2954
2955	return 0;
2956}
2957
2958/*
2959 * Sanity checks against invalid binaries, wrong arch, weird elf version.
2960 *
2961 * Also do basic validity checks against section offsets and sizes, the
2962 * section name string table, and the indices used for it (sh_name).
2963 */
2964static int elf_validity_check(struct load_info *info)
2965{
2966	unsigned int i;
2967	Elf_Shdr *shdr, *strhdr;
2968	int err;
2969
2970	if (info->len < sizeof(*(info->hdr)))
2971		return -ENOEXEC;
2972
2973	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2974	    || info->hdr->e_type != ET_REL
2975	    || !elf_check_arch(info->hdr)
2976	    || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2977		return -ENOEXEC;
2978
2979	/*
2980	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
2981	 * known and small. So e_shnum * sizeof(Elf_Shdr)
2982	 * will not overflow unsigned long on any platform.
2983	 */
2984	if (info->hdr->e_shoff >= info->len
2985	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2986		info->len - info->hdr->e_shoff))
2987		return -ENOEXEC;
2988
2989	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2990
2991	/*
2992	 * Verify if the section name table index is valid.
2993	 */
2994	if (info->hdr->e_shstrndx == SHN_UNDEF
2995	    || info->hdr->e_shstrndx >= info->hdr->e_shnum)
2996		return -ENOEXEC;
2997
2998	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
2999	err = validate_section_offset(info, strhdr);
3000	if (err < 0)
3001		return err;
3002
3003	/*
3004	 * The section name table must be NUL-terminated, as required
3005	 * by the spec. This makes strcmp and pr_* calls that access
3006	 * strings in the section safe.
3007	 */
3008	info->secstrings = (void *)info->hdr + strhdr->sh_offset;
3009	if (info->secstrings[strhdr->sh_size - 1] != '\0')
3010		return -ENOEXEC;
3011
3012	/*
3013	 * The code assumes that section 0 has a length of zero and
3014	 * an addr of zero, so check for it.
3015	 */
3016	if (info->sechdrs[0].sh_type != SHT_NULL
3017	    || info->sechdrs[0].sh_size != 0
3018	    || info->sechdrs[0].sh_addr != 0)
3019		return -ENOEXEC;
3020
3021	for (i = 1; i < info->hdr->e_shnum; i++) {
3022		shdr = &info->sechdrs[i];
3023		switch (shdr->sh_type) {
3024		case SHT_NULL:
3025		case SHT_NOBITS:
3026			continue;
3027		case SHT_SYMTAB:
3028			if (shdr->sh_link == SHN_UNDEF
3029			    || shdr->sh_link >= info->hdr->e_shnum)
3030				return -ENOEXEC;
3031			fallthrough;
3032		default:
3033			err = validate_section_offset(info, shdr);
3034			if (err < 0) {
3035				pr_err("Invalid ELF section in module (section %u type %u)\n",
3036					i, shdr->sh_type);
3037				return err;
3038			}
3039
3040			if (shdr->sh_flags & SHF_ALLOC) {
3041				if (shdr->sh_name >= strhdr->sh_size) {
3042					pr_err("Invalid ELF section name in module (section %u type %u)\n",
3043					       i, shdr->sh_type);
3044					return -ENOEXEC;
3045				}
3046			}
3047			break;
3048		}
3049	}
3050
3051	return 0;
3052}
3053
3054#define COPY_CHUNK_SIZE (16*PAGE_SIZE)
3055
3056static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
3057{
3058	do {
3059		unsigned long n = min(len, COPY_CHUNK_SIZE);
3060
3061		if (copy_from_user(dst, usrc, n) != 0)
3062			return -EFAULT;
3063		cond_resched();
3064		dst += n;
3065		usrc += n;
3066		len -= n;
3067	} while (len);
3068	return 0;
3069}
3070
3071#ifdef CONFIG_LIVEPATCH
3072static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3073{
3074	if (get_modinfo(info, "livepatch")) {
3075		mod->klp = true;
3076		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
3077		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
3078			       mod->name);
3079	}
3080
3081	return 0;
3082}
3083#else /* !CONFIG_LIVEPATCH */
3084static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3085{
3086	if (get_modinfo(info, "livepatch")) {
3087		pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
3088		       mod->name);
3089		return -ENOEXEC;
3090	}
3091
3092	return 0;
3093}
3094#endif /* CONFIG_LIVEPATCH */
3095
3096static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
3097{
3098	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
3099		return;
3100
3101	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
3102		mod->name);
3103}
3104
3105/* Sets info->hdr and info->len. */
3106static int copy_module_from_user(const void __user *umod, unsigned long len,
3107				  struct load_info *info)
3108{
3109	int err;
3110
3111	info->len = len;
3112	if (info->len < sizeof(*(info->hdr)))
3113		return -ENOEXEC;
3114
3115	err = security_kernel_load_data(LOADING_MODULE, true);
3116	if (err)
3117		return err;
3118
3119	/* Suck in entire file: we'll want most of it. */
3120	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
 
3121	if (!info->hdr)
3122		return -ENOMEM;
3123
3124	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
3125		err = -EFAULT;
3126		goto out;
3127	}
3128
3129	err = security_kernel_post_load_data((char *)info->hdr, info->len,
3130					     LOADING_MODULE, "init_module");
3131out:
3132	if (err)
3133		vfree(info->hdr);
3134
3135	return err;
3136}
3137
3138static void free_copy(struct load_info *info)
3139{
3140	vfree(info->hdr);
3141}
3142
3143static int rewrite_section_headers(struct load_info *info, int flags)
3144{
3145	unsigned int i;
3146
3147	/* This should always be true, but let's be sure. */
3148	info->sechdrs[0].sh_addr = 0;
3149
3150	for (i = 1; i < info->hdr->e_shnum; i++) {
3151		Elf_Shdr *shdr = &info->sechdrs[i];
 
 
 
 
 
3152
3153		/*
3154		 * Mark all sections sh_addr with their address in the
3155		 * temporary image.
3156		 */
3157		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3158
 
 
 
 
 
3159	}
3160
3161	/* Track but don't keep modinfo and version sections. */
3162	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3163	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3164
3165	return 0;
3166}
3167
3168/*
3169 * Set up our basic convenience variables (pointers to section headers,
3170 * search for module section index etc), and do some basic section
3171 * verification.
3172 *
3173 * Set info->mod to the temporary copy of the module in info->hdr. The final one
3174 * will be allocated in move_module().
3175 */
3176static int setup_load_info(struct load_info *info, int flags)
3177{
3178	unsigned int i;
3179
 
 
 
 
 
3180	/* Try to find a name early so we can log errors with a module name */
3181	info->index.info = find_sec(info, ".modinfo");
3182	if (info->index.info)
 
 
3183		info->name = get_modinfo(info, "name");
3184
3185	/* Find internal symbols and strings. */
3186	for (i = 1; i < info->hdr->e_shnum; i++) {
3187		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3188			info->index.sym = i;
3189			info->index.str = info->sechdrs[i].sh_link;
3190			info->strtab = (char *)info->hdr
3191				+ info->sechdrs[info->index.str].sh_offset;
3192			break;
3193		}
3194	}
3195
3196	if (info->index.sym == 0) {
3197		pr_warn("%s: module has no symbols (stripped?)\n",
3198			info->name ?: "(missing .modinfo section or name field)");
3199		return -ENOEXEC;
3200	}
3201
3202	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3203	if (!info->index.mod) {
3204		pr_warn("%s: No module found in object\n",
3205			info->name ?: "(missing .modinfo section or name field)");
3206		return -ENOEXEC;
3207	}
3208	/* This is temporary: point mod into copy of data. */
3209	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3210
3211	/*
3212	 * If we didn't load the .modinfo 'name' field earlier, fall back to
3213	 * on-disk struct mod 'name' field.
3214	 */
3215	if (!info->name)
3216		info->name = info->mod->name;
3217
3218	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3219		info->index.vers = 0; /* Pretend no __versions section! */
3220	else
3221		info->index.vers = find_sec(info, "__versions");
3222
3223	info->index.pcpu = find_pcpusec(info);
3224
3225	return 0;
3226}
3227
3228static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3229{
3230	const char *modmagic = get_modinfo(info, "vermagic");
3231	int err;
3232
3233	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3234		modmagic = NULL;
3235
3236	/* This is allowed: modprobe --force will invalidate it. */
3237	if (!modmagic) {
3238		err = try_to_force_load(mod, "bad vermagic");
3239		if (err)
3240			return err;
3241	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3242		pr_err("%s: version magic '%s' should be '%s'\n",
3243		       info->name, modmagic, vermagic);
3244		return -ENOEXEC;
3245	}
3246
3247	if (!get_modinfo(info, "intree")) {
3248		if (!test_taint(TAINT_OOT_MODULE))
3249			pr_warn("%s: loading out-of-tree module taints kernel.\n",
3250				mod->name);
3251		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3252	}
3253
3254	check_modinfo_retpoline(mod, info);
3255
3256	if (get_modinfo(info, "staging")) {
3257		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3258		pr_warn("%s: module is from the staging directory, the quality "
3259			"is unknown, you have been warned.\n", mod->name);
3260	}
3261
3262	err = check_modinfo_livepatch(mod, info);
3263	if (err)
3264		return err;
3265
3266	/* Set up license info based on the info section */
3267	set_license(mod, get_modinfo(info, "license"));
3268
3269	return 0;
3270}
3271
3272static int find_module_sections(struct module *mod, struct load_info *info)
3273{
3274	mod->kp = section_objs(info, "__param",
3275			       sizeof(*mod->kp), &mod->num_kp);
3276	mod->syms = section_objs(info, "__ksymtab",
3277				 sizeof(*mod->syms), &mod->num_syms);
3278	mod->crcs = section_addr(info, "__kcrctab");
3279	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3280				     sizeof(*mod->gpl_syms),
3281				     &mod->num_gpl_syms);
3282	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3284#ifdef CONFIG_CONSTRUCTORS
3285	mod->ctors = section_objs(info, ".ctors",
3286				  sizeof(*mod->ctors), &mod->num_ctors);
3287	if (!mod->ctors)
3288		mod->ctors = section_objs(info, ".init_array",
3289				sizeof(*mod->ctors), &mod->num_ctors);
3290	else if (find_sec(info, ".init_array")) {
3291		/*
3292		 * This shouldn't happen with same compiler and binutils
3293		 * building all parts of the module.
3294		 */
3295		pr_warn("%s: has both .ctors and .init_array.\n",
3296		       mod->name);
3297		return -EINVAL;
3298	}
3299#endif
3300
3301	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
3302						&mod->noinstr_text_size);
3303
3304#ifdef CONFIG_TRACEPOINTS
3305	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3306					     sizeof(*mod->tracepoints_ptrs),
3307					     &mod->num_tracepoints);
3308#endif
3309#ifdef CONFIG_TREE_SRCU
3310	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3311					     sizeof(*mod->srcu_struct_ptrs),
3312					     &mod->num_srcu_structs);
3313#endif
3314#ifdef CONFIG_BPF_EVENTS
3315	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3316					   sizeof(*mod->bpf_raw_events),
3317					   &mod->num_bpf_raw_events);
3318#endif
3319#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3320	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
3321#endif
3322#ifdef CONFIG_JUMP_LABEL
3323	mod->jump_entries = section_objs(info, "__jump_table",
3324					sizeof(*mod->jump_entries),
3325					&mod->num_jump_entries);
3326#endif
3327#ifdef CONFIG_EVENT_TRACING
3328	mod->trace_events = section_objs(info, "_ftrace_events",
3329					 sizeof(*mod->trace_events),
3330					 &mod->num_trace_events);
3331	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3332					sizeof(*mod->trace_evals),
3333					&mod->num_trace_evals);
3334#endif
3335#ifdef CONFIG_TRACING
3336	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3337					 sizeof(*mod->trace_bprintk_fmt_start),
3338					 &mod->num_trace_bprintk_fmt);
3339#endif
3340#ifdef CONFIG_FTRACE_MCOUNT_RECORD
3341	/* sechdrs[0].sh_size is always zero */
3342	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
3343					     sizeof(*mod->ftrace_callsites),
3344					     &mod->num_ftrace_callsites);
3345#endif
3346#ifdef CONFIG_FUNCTION_ERROR_INJECTION
3347	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3348					    sizeof(*mod->ei_funcs),
3349					    &mod->num_ei_funcs);
3350#endif
3351#ifdef CONFIG_KPROBES
3352	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
3353						&mod->kprobes_text_size);
3354	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
3355						sizeof(unsigned long),
3356						&mod->num_kprobe_blacklist);
3357#endif
3358#ifdef CONFIG_HAVE_STATIC_CALL_INLINE
3359	mod->static_call_sites = section_objs(info, ".static_call_sites",
3360					      sizeof(*mod->static_call_sites),
3361					      &mod->num_static_call_sites);
3362#endif
3363	mod->extable = section_objs(info, "__ex_table",
3364				    sizeof(*mod->extable), &mod->num_exentries);
3365
3366	if (section_addr(info, "__obsparm"))
3367		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3368
3369	info->debug = section_objs(info, "__dyndbg",
3370				   sizeof(*info->debug), &info->num_debug);
3371
3372	return 0;
3373}
3374
3375static int move_module(struct module *mod, struct load_info *info)
3376{
3377	int i;
3378	void *ptr;
3379
3380	/* Do the allocs. */
3381	ptr = module_alloc(mod->core_layout.size);
3382	/*
3383	 * The pointer to this block is stored in the module structure
3384	 * which is inside the block. Just mark it as not being a
3385	 * leak.
3386	 */
3387	kmemleak_not_leak(ptr);
3388	if (!ptr)
3389		return -ENOMEM;
3390
3391	memset(ptr, 0, mod->core_layout.size);
3392	mod->core_layout.base = ptr;
3393
3394	if (mod->init_layout.size) {
3395		ptr = module_alloc(mod->init_layout.size);
3396		/*
3397		 * The pointer to this block is stored in the module structure
3398		 * which is inside the block. This block doesn't need to be
3399		 * scanned as it contains data and code that will be freed
3400		 * after the module is initialized.
3401		 */
3402		kmemleak_ignore(ptr);
3403		if (!ptr) {
3404			module_memfree(mod->core_layout.base);
3405			return -ENOMEM;
3406		}
3407		memset(ptr, 0, mod->init_layout.size);
3408		mod->init_layout.base = ptr;
3409	} else
3410		mod->init_layout.base = NULL;
3411
3412	/* Transfer each section which specifies SHF_ALLOC */
3413	pr_debug("final section addresses:\n");
3414	for (i = 0; i < info->hdr->e_shnum; i++) {
3415		void *dest;
3416		Elf_Shdr *shdr = &info->sechdrs[i];
3417
3418		if (!(shdr->sh_flags & SHF_ALLOC))
3419			continue;
3420
3421		if (shdr->sh_entsize & INIT_OFFSET_MASK)
3422			dest = mod->init_layout.base
3423				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3424		else
3425			dest = mod->core_layout.base + shdr->sh_entsize;
3426
3427		if (shdr->sh_type != SHT_NOBITS)
3428			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3429		/* Update sh_addr to point to copy in image. */
3430		shdr->sh_addr = (unsigned long)dest;
3431		pr_debug("\t0x%lx %s\n",
3432			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3433	}
3434
3435	return 0;
3436}
3437
3438static int check_module_license_and_versions(struct module *mod)
3439{
3440	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3441
3442	/*
3443	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3444	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3445	 * using GPL-only symbols it needs.
3446	 */
3447	if (strcmp(mod->name, "ndiswrapper") == 0)
3448		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3449
3450	/* driverloader was caught wrongly pretending to be under GPL */
3451	if (strcmp(mod->name, "driverloader") == 0)
3452		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3453				 LOCKDEP_NOW_UNRELIABLE);
3454
3455	/* lve claims to be GPL but upstream won't provide source */
3456	if (strcmp(mod->name, "lve") == 0)
3457		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3458				 LOCKDEP_NOW_UNRELIABLE);
3459
3460	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3461		pr_warn("%s: module license taints kernel.\n", mod->name);
3462
3463#ifdef CONFIG_MODVERSIONS
3464	if ((mod->num_syms && !mod->crcs) ||
3465	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
 
 
 
 
 
 
3466		return try_to_force_load(mod,
3467					 "no versions for exported symbols");
3468	}
3469#endif
3470	return 0;
3471}
3472
3473static void flush_module_icache(const struct module *mod)
3474{
 
 
 
 
 
 
3475	/*
3476	 * Flush the instruction cache, since we've played with text.
3477	 * Do it before processing of module parameters, so the module
3478	 * can provide parameter accessor functions of its own.
3479	 */
3480	if (mod->init_layout.base)
3481		flush_icache_range((unsigned long)mod->init_layout.base,
3482				   (unsigned long)mod->init_layout.base
3483				   + mod->init_layout.size);
3484	flush_icache_range((unsigned long)mod->core_layout.base,
3485			   (unsigned long)mod->core_layout.base + mod->core_layout.size);
 
 
3486}
3487
3488int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3489				     Elf_Shdr *sechdrs,
3490				     char *secstrings,
3491				     struct module *mod)
3492{
3493	return 0;
3494}
3495
3496/* module_blacklist is a comma-separated list of module names */
3497static char *module_blacklist;
3498static bool blacklisted(const char *module_name)
3499{
3500	const char *p;
3501	size_t len;
3502
3503	if (!module_blacklist)
3504		return false;
3505
3506	for (p = module_blacklist; *p; p += len) {
3507		len = strcspn(p, ",");
3508		if (strlen(module_name) == len && !memcmp(module_name, p, len))
3509			return true;
3510		if (p[len] == ',')
3511			len++;
3512	}
3513	return false;
3514}
3515core_param(module_blacklist, module_blacklist, charp, 0400);
3516
3517static struct module *layout_and_allocate(struct load_info *info, int flags)
3518{
3519	struct module *mod;
3520	unsigned int ndx;
3521	int err;
3522
3523	err = check_modinfo(info->mod, info, flags);
3524	if (err)
3525		return ERR_PTR(err);
3526
3527	/* Allow arches to frob section contents and sizes.  */
3528	err = module_frob_arch_sections(info->hdr, info->sechdrs,
3529					info->secstrings, info->mod);
3530	if (err < 0)
3531		return ERR_PTR(err);
3532
3533	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
3534					  info->secstrings, info->mod);
3535	if (err < 0)
3536		return ERR_PTR(err);
3537
3538	/* We will do a special allocation for per-cpu sections later. */
3539	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3540
3541	/*
3542	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3543	 * layout_sections() can put it in the right place.
3544	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3545	 */
3546	ndx = find_sec(info, ".data..ro_after_init");
3547	if (ndx)
3548		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3549	/*
3550	 * Mark the __jump_table section as ro_after_init as well: these data
3551	 * structures are never modified, with the exception of entries that
3552	 * refer to code in the __init section, which are annotated as such
3553	 * at module load time.
3554	 */
3555	ndx = find_sec(info, "__jump_table");
3556	if (ndx)
3557		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3558
3559	/*
3560	 * Determine total sizes, and put offsets in sh_entsize.  For now
3561	 * this is done generically; there doesn't appear to be any
3562	 * special cases for the architectures.
3563	 */
3564	layout_sections(info->mod, info);
3565	layout_symtab(info->mod, info);
3566
3567	/* Allocate and move to the final place */
3568	err = move_module(info->mod, info);
3569	if (err)
3570		return ERR_PTR(err);
3571
3572	/* Module has been copied to its final place now: return it. */
3573	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3574	kmemleak_load_module(mod, info);
3575	return mod;
3576}
3577
3578/* mod is no longer valid after this! */
3579static void module_deallocate(struct module *mod, struct load_info *info)
3580{
3581	percpu_modfree(mod);
3582	module_arch_freeing_init(mod);
3583	module_memfree(mod->init_layout.base);
3584	module_memfree(mod->core_layout.base);
3585}
3586
3587int __weak module_finalize(const Elf_Ehdr *hdr,
3588			   const Elf_Shdr *sechdrs,
3589			   struct module *me)
3590{
3591	return 0;
3592}
3593
3594static int post_relocation(struct module *mod, const struct load_info *info)
3595{
3596	/* Sort exception table now relocations are done. */
3597	sort_extable(mod->extable, mod->extable + mod->num_exentries);
3598
3599	/* Copy relocated percpu area over. */
3600	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3601		       info->sechdrs[info->index.pcpu].sh_size);
3602
3603	/* Setup kallsyms-specific fields. */
3604	add_kallsyms(mod, info);
3605
3606	/* Arch-specific module finalizing. */
3607	return module_finalize(info->hdr, info->sechdrs, mod);
3608}
3609
3610/* Is this module of this name done loading?  No locks held. */
3611static bool finished_loading(const char *name)
3612{
3613	struct module *mod;
3614	bool ret;
3615
3616	/*
3617	 * The module_mutex should not be a heavily contended lock;
3618	 * if we get the occasional sleep here, we'll go an extra iteration
3619	 * in the wait_event_interruptible(), which is harmless.
3620	 */
3621	sched_annotate_sleep();
3622	mutex_lock(&module_mutex);
3623	mod = find_module_all(name, strlen(name), true);
3624	ret = !mod || mod->state == MODULE_STATE_LIVE;
3625	mutex_unlock(&module_mutex);
3626
3627	return ret;
3628}
3629
3630/* Call module constructors. */
3631static void do_mod_ctors(struct module *mod)
3632{
3633#ifdef CONFIG_CONSTRUCTORS
3634	unsigned long i;
3635
3636	for (i = 0; i < mod->num_ctors; i++)
3637		mod->ctors[i]();
3638#endif
3639}
3640
3641/* For freeing module_init on success, in case kallsyms traversing */
3642struct mod_initfree {
3643	struct llist_node node;
3644	void *module_init;
3645};
3646
3647static void do_free_init(struct work_struct *w)
3648{
3649	struct llist_node *pos, *n, *list;
3650	struct mod_initfree *initfree;
3651
3652	list = llist_del_all(&init_free_list);
3653
3654	synchronize_rcu();
3655
3656	llist_for_each_safe(pos, n, list) {
3657		initfree = container_of(pos, struct mod_initfree, node);
3658		module_memfree(initfree->module_init);
3659		kfree(initfree);
3660	}
3661}
3662
 
 
 
 
 
 
 
 
3663/*
3664 * This is where the real work happens.
3665 *
3666 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3667 * helper command 'lx-symbols'.
3668 */
3669static noinline int do_init_module(struct module *mod)
3670{
3671	int ret = 0;
3672	struct mod_initfree *freeinit;
3673
3674	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3675	if (!freeinit) {
3676		ret = -ENOMEM;
3677		goto fail;
3678	}
3679	freeinit->module_init = mod->init_layout.base;
3680
3681	/*
3682	 * We want to find out whether @mod uses async during init.  Clear
3683	 * PF_USED_ASYNC.  async_schedule*() will set it.
3684	 */
3685	current->flags &= ~PF_USED_ASYNC;
3686
3687	do_mod_ctors(mod);
3688	/* Start the module */
3689	if (mod->init != NULL)
3690		ret = do_one_initcall(mod->init);
3691	if (ret < 0) {
3692		goto fail_free_freeinit;
3693	}
3694	if (ret > 0) {
3695		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3696			"follow 0/-E convention\n"
3697			"%s: loading module anyway...\n",
3698			__func__, mod->name, ret, __func__);
3699		dump_stack();
3700	}
3701
3702	/* Now it's a first class citizen! */
3703	mod->state = MODULE_STATE_LIVE;
3704	blocking_notifier_call_chain(&module_notify_list,
3705				     MODULE_STATE_LIVE, mod);
3706
3707	/* Delay uevent until module has finished its init routine */
3708	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3709
3710	/*
3711	 * We need to finish all async code before the module init sequence
3712	 * is done.  This has potential to deadlock.  For example, a newly
3713	 * detected block device can trigger request_module() of the
3714	 * default iosched from async probing task.  Once userland helper
3715	 * reaches here, async_synchronize_full() will wait on the async
3716	 * task waiting on request_module() and deadlock.
3717	 *
3718	 * This deadlock is avoided by perfomring async_synchronize_full()
3719	 * iff module init queued any async jobs.  This isn't a full
3720	 * solution as it will deadlock the same if module loading from
3721	 * async jobs nests more than once; however, due to the various
3722	 * constraints, this hack seems to be the best option for now.
3723	 * Please refer to the following thread for details.
3724	 *
3725	 * http://thread.gmane.org/gmane.linux.kernel/1420814
3726	 */
3727	if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3728		async_synchronize_full();
3729
3730	ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3731			mod->init_layout.size);
3732	mutex_lock(&module_mutex);
3733	/* Drop initial reference. */
3734	module_put(mod);
3735	trim_init_extable(mod);
3736#ifdef CONFIG_KALLSYMS
3737	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3738	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3739#endif
3740	module_enable_ro(mod, true);
3741	mod_tree_remove_init(mod);
3742	module_arch_freeing_init(mod);
3743	mod->init_layout.base = NULL;
3744	mod->init_layout.size = 0;
3745	mod->init_layout.ro_size = 0;
3746	mod->init_layout.ro_after_init_size = 0;
3747	mod->init_layout.text_size = 0;
3748#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3749	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
3750	mod->btf_data = NULL;
3751#endif
3752	/*
3753	 * We want to free module_init, but be aware that kallsyms may be
3754	 * walking this with preempt disabled.  In all the failure paths, we
3755	 * call synchronize_rcu(), but we don't want to slow down the success
3756	 * path. module_memfree() cannot be called in an interrupt, so do the
3757	 * work and call synchronize_rcu() in a work queue.
3758	 *
3759	 * Note that module_alloc() on most architectures creates W+X page
3760	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3761	 * code such as mark_rodata_ro() which depends on those mappings to
3762	 * be cleaned up needs to sync with the queued work - ie
3763	 * rcu_barrier()
3764	 */
3765	if (llist_add(&freeinit->node, &init_free_list))
3766		schedule_work(&init_free_wq);
3767
3768	mutex_unlock(&module_mutex);
3769	wake_up_all(&module_wq);
3770
3771	return 0;
3772
3773fail_free_freeinit:
3774	kfree(freeinit);
3775fail:
3776	/* Try to protect us from buggy refcounters. */
3777	mod->state = MODULE_STATE_GOING;
3778	synchronize_rcu();
3779	module_put(mod);
3780	blocking_notifier_call_chain(&module_notify_list,
3781				     MODULE_STATE_GOING, mod);
3782	klp_module_going(mod);
3783	ftrace_release_mod(mod);
3784	free_module(mod);
3785	wake_up_all(&module_wq);
3786	return ret;
3787}
3788
3789static int may_init_module(void)
3790{
3791	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3792		return -EPERM;
3793
3794	return 0;
3795}
3796
3797/*
3798 * We try to place it in the list now to make sure it's unique before
3799 * we dedicate too many resources.  In particular, temporary percpu
3800 * memory exhaustion.
3801 */
3802static int add_unformed_module(struct module *mod)
3803{
3804	int err;
3805	struct module *old;
3806
3807	mod->state = MODULE_STATE_UNFORMED;
3808
3809again:
3810	mutex_lock(&module_mutex);
3811	old = find_module_all(mod->name, strlen(mod->name), true);
3812	if (old != NULL) {
3813		if (old->state != MODULE_STATE_LIVE) {
3814			/* Wait in case it fails to load. */
3815			mutex_unlock(&module_mutex);
3816			err = wait_event_interruptible(module_wq,
3817					       finished_loading(mod->name));
3818			if (err)
3819				goto out_unlocked;
3820			goto again;
3821		}
3822		err = -EEXIST;
3823		goto out;
3824	}
3825	mod_update_bounds(mod);
3826	list_add_rcu(&mod->list, &modules);
3827	mod_tree_insert(mod);
3828	err = 0;
3829
3830out:
3831	mutex_unlock(&module_mutex);
3832out_unlocked:
3833	return err;
3834}
3835
3836static int complete_formation(struct module *mod, struct load_info *info)
3837{
3838	int err;
3839
3840	mutex_lock(&module_mutex);
3841
3842	/* Find duplicate symbols (must be called under lock). */
3843	err = verify_exported_symbols(mod);
3844	if (err < 0)
3845		goto out;
3846
3847	/* This relies on module_mutex for list integrity. */
3848	module_bug_finalize(info->hdr, info->sechdrs, mod);
3849
3850	module_enable_ro(mod, false);
3851	module_enable_nx(mod);
3852	module_enable_x(mod);
3853
3854	/*
3855	 * Mark state as coming so strong_try_module_get() ignores us,
3856	 * but kallsyms etc. can see us.
3857	 */
3858	mod->state = MODULE_STATE_COMING;
3859	mutex_unlock(&module_mutex);
3860
3861	return 0;
3862
3863out:
3864	mutex_unlock(&module_mutex);
3865	return err;
3866}
3867
3868static int prepare_coming_module(struct module *mod)
3869{
3870	int err;
3871
3872	ftrace_module_enable(mod);
3873	err = klp_module_coming(mod);
3874	if (err)
3875		return err;
3876
3877	err = blocking_notifier_call_chain_robust(&module_notify_list,
3878			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3879	err = notifier_to_errno(err);
3880	if (err)
3881		klp_module_going(mod);
3882
3883	return err;
3884}
3885
3886static int unknown_module_param_cb(char *param, char *val, const char *modname,
3887				   void *arg)
3888{
3889	struct module *mod = arg;
3890	int ret;
3891
3892	if (strcmp(param, "async_probe") == 0) {
3893		mod->async_probe_requested = true;
3894		return 0;
3895	}
3896
3897	/* Check for magic 'dyndbg' arg */
3898	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3899	if (ret != 0)
3900		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3901	return 0;
3902}
3903
3904static void cfi_init(struct module *mod);
3905
3906/*
3907 * Allocate and load the module: note that size of section 0 is always
3908 * zero, and we rely on this for optional sections.
3909 */
3910static int load_module(struct load_info *info, const char __user *uargs,
3911		       int flags)
3912{
3913	struct module *mod;
3914	long err = 0;
3915	char *after_dashes;
3916
3917	/*
3918	 * Do the signature check (if any) first. All that
3919	 * the signature check needs is info->len, it does
3920	 * not need any of the section info. That can be
3921	 * set up later. This will minimize the chances
3922	 * of a corrupt module causing problems before
3923	 * we even get to the signature check.
3924	 *
3925	 * The check will also adjust info->len by stripping
3926	 * off the sig length at the end of the module, making
3927	 * checks against info->len more correct.
3928	 */
3929	err = module_sig_check(info, flags);
3930	if (err)
3931		goto free_copy;
3932
3933	/*
3934	 * Do basic sanity checks against the ELF header and
3935	 * sections.
3936	 */
3937	err = elf_validity_check(info);
3938	if (err) {
3939		pr_err("Module has invalid ELF structures\n");
3940		goto free_copy;
3941	}
3942
3943	/*
3944	 * Everything checks out, so set up the section info
3945	 * in the info structure.
3946	 */
3947	err = setup_load_info(info, flags);
3948	if (err)
3949		goto free_copy;
3950
3951	/*
3952	 * Now that we know we have the correct module name, check
3953	 * if it's blacklisted.
3954	 */
3955	if (blacklisted(info->name)) {
3956		err = -EPERM;
3957		pr_err("Module %s is blacklisted\n", info->name);
3958		goto free_copy;
3959	}
3960
 
 
 
 
3961	err = rewrite_section_headers(info, flags);
3962	if (err)
3963		goto free_copy;
3964
3965	/* Check module struct version now, before we try to use module. */
3966	if (!check_modstruct_version(info, info->mod)) {
3967		err = -ENOEXEC;
3968		goto free_copy;
3969	}
3970
3971	/* Figure out module layout, and allocate all the memory. */
3972	mod = layout_and_allocate(info, flags);
3973	if (IS_ERR(mod)) {
3974		err = PTR_ERR(mod);
3975		goto free_copy;
3976	}
3977
3978	audit_log_kern_module(mod->name);
3979
3980	/* Reserve our place in the list. */
3981	err = add_unformed_module(mod);
3982	if (err)
3983		goto free_module;
3984
3985#ifdef CONFIG_MODULE_SIG
3986	mod->sig_ok = info->sig_ok;
3987	if (!mod->sig_ok) {
3988		pr_notice_once("%s: module verification failed: signature "
3989			       "and/or required key missing - tainting "
3990			       "kernel\n", mod->name);
3991		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3992	}
3993#endif
3994
3995	/* To avoid stressing percpu allocator, do this once we're unique. */
3996	err = percpu_modalloc(mod, info);
3997	if (err)
3998		goto unlink_mod;
3999
4000	/* Now module is in final location, initialize linked lists, etc. */
4001	err = module_unload_init(mod);
4002	if (err)
4003		goto unlink_mod;
4004
4005	init_param_lock(mod);
4006
4007	/*
4008	 * Now we've got everything in the final locations, we can
4009	 * find optional sections.
4010	 */
4011	err = find_module_sections(mod, info);
4012	if (err)
4013		goto free_unload;
4014
4015	err = check_module_license_and_versions(mod);
4016	if (err)
4017		goto free_unload;
4018
4019	/* Set up MODINFO_ATTR fields */
4020	setup_modinfo(mod, info);
4021
4022	/* Fix up syms, so that st_value is a pointer to location. */
4023	err = simplify_symbols(mod, info);
4024	if (err < 0)
4025		goto free_modinfo;
4026
4027	err = apply_relocations(mod, info);
4028	if (err < 0)
4029		goto free_modinfo;
4030
4031	err = post_relocation(mod, info);
4032	if (err < 0)
4033		goto free_modinfo;
4034
4035	flush_module_icache(mod);
4036
4037	/* Setup CFI for the module. */
4038	cfi_init(mod);
4039
4040	/* Now copy in args */
4041	mod->args = strndup_user(uargs, ~0UL >> 1);
4042	if (IS_ERR(mod->args)) {
4043		err = PTR_ERR(mod->args);
4044		goto free_arch_cleanup;
4045	}
4046
4047	init_build_id(mod, info);
4048	dynamic_debug_setup(mod, info->debug, info->num_debug);
4049
4050	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
4051	ftrace_module_init(mod);
4052
4053	/* Finally it's fully formed, ready to start executing. */
4054	err = complete_formation(mod, info);
4055	if (err)
4056		goto ddebug_cleanup;
4057
4058	err = prepare_coming_module(mod);
4059	if (err)
4060		goto bug_cleanup;
4061
4062	/* Module is ready to execute: parsing args may do that. */
4063	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
4064				  -32768, 32767, mod,
4065				  unknown_module_param_cb);
4066	if (IS_ERR(after_dashes)) {
4067		err = PTR_ERR(after_dashes);
4068		goto coming_cleanup;
4069	} else if (after_dashes) {
4070		pr_warn("%s: parameters '%s' after `--' ignored\n",
4071		       mod->name, after_dashes);
4072	}
4073
4074	/* Link in to sysfs. */
4075	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
4076	if (err < 0)
4077		goto coming_cleanup;
4078
4079	if (is_livepatch_module(mod)) {
4080		err = copy_module_elf(mod, info);
4081		if (err < 0)
4082			goto sysfs_cleanup;
4083	}
4084
4085	/* Get rid of temporary copy. */
4086	free_copy(info);
4087
4088	/* Done! */
4089	trace_module_load(mod);
4090
4091	return do_init_module(mod);
4092
4093 sysfs_cleanup:
4094	mod_sysfs_teardown(mod);
4095 coming_cleanup:
4096	mod->state = MODULE_STATE_GOING;
4097	destroy_params(mod->kp, mod->num_kp);
4098	blocking_notifier_call_chain(&module_notify_list,
4099				     MODULE_STATE_GOING, mod);
4100	klp_module_going(mod);
4101 bug_cleanup:
4102	mod->state = MODULE_STATE_GOING;
4103	/* module_bug_cleanup needs module_mutex protection */
4104	mutex_lock(&module_mutex);
4105	module_bug_cleanup(mod);
4106	mutex_unlock(&module_mutex);
4107
4108 ddebug_cleanup:
4109	ftrace_release_mod(mod);
4110	dynamic_debug_remove(mod, info->debug);
4111	synchronize_rcu();
4112	kfree(mod->args);
4113 free_arch_cleanup:
4114	cfi_cleanup(mod);
4115	module_arch_cleanup(mod);
4116 free_modinfo:
4117	free_modinfo(mod);
4118 free_unload:
4119	module_unload_free(mod);
4120 unlink_mod:
4121	mutex_lock(&module_mutex);
4122	/* Unlink carefully: kallsyms could be walking list. */
4123	list_del_rcu(&mod->list);
4124	mod_tree_remove(mod);
4125	wake_up_all(&module_wq);
4126	/* Wait for RCU-sched synchronizing before releasing mod->list. */
4127	synchronize_rcu();
4128	mutex_unlock(&module_mutex);
4129 free_module:
4130	/* Free lock-classes; relies on the preceding sync_rcu() */
4131	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
4132
4133	module_deallocate(mod, info);
4134 free_copy:
4135	free_copy(info);
4136	return err;
4137}
4138
4139SYSCALL_DEFINE3(init_module, void __user *, umod,
4140		unsigned long, len, const char __user *, uargs)
4141{
4142	int err;
4143	struct load_info info = { };
4144
4145	err = may_init_module();
4146	if (err)
4147		return err;
4148
4149	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
4150	       umod, len, uargs);
4151
4152	err = copy_module_from_user(umod, len, &info);
4153	if (err)
4154		return err;
4155
4156	return load_module(&info, uargs, 0);
4157}
4158
4159SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
4160{
4161	struct load_info info = { };
4162	void *hdr = NULL;
 
4163	int err;
4164
4165	err = may_init_module();
4166	if (err)
4167		return err;
4168
4169	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4170
4171	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4172		      |MODULE_INIT_IGNORE_VERMAGIC))
4173		return -EINVAL;
4174
4175	err = kernel_read_file_from_fd(fd, 0, &hdr, INT_MAX, NULL,
4176				       READING_MODULE);
4177	if (err < 0)
4178		return err;
4179	info.hdr = hdr;
4180	info.len = err;
4181
4182	return load_module(&info, uargs, flags);
4183}
4184
4185static inline int within(unsigned long addr, void *start, unsigned long size)
4186{
4187	return ((void *)addr >= start && (void *)addr < start + size);
4188}
4189
4190#ifdef CONFIG_KALLSYMS
4191/*
4192 * This ignores the intensely annoying "mapping symbols" found
4193 * in ARM ELF files: $a, $t and $d.
4194 */
4195static inline int is_arm_mapping_symbol(const char *str)
4196{
4197	if (str[0] == '.' && str[1] == 'L')
4198		return true;
4199	return str[0] == '$' && strchr("axtd", str[1])
4200	       && (str[2] == '\0' || str[2] == '.');
4201}
4202
4203static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4204{
4205	return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4206}
4207
4208/*
4209 * Given a module and address, find the corresponding symbol and return its name
4210 * while providing its size and offset if needed.
4211 */
4212static const char *find_kallsyms_symbol(struct module *mod,
4213					unsigned long addr,
4214					unsigned long *size,
4215					unsigned long *offset)
4216{
4217	unsigned int i, best = 0;
4218	unsigned long nextval, bestval;
4219	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4220
4221	/* At worse, next value is at end of module */
4222	if (within_module_init(addr, mod))
4223		nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4224	else
4225		nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4226
4227	bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4228
4229	/*
4230	 * Scan for closest preceding symbol, and next symbol. (ELF
4231	 * starts real symbols at 1).
4232	 */
4233	for (i = 1; i < kallsyms->num_symtab; i++) {
4234		const Elf_Sym *sym = &kallsyms->symtab[i];
4235		unsigned long thisval = kallsyms_symbol_value(sym);
4236
4237		if (sym->st_shndx == SHN_UNDEF)
4238			continue;
4239
4240		/*
4241		 * We ignore unnamed symbols: they're uninformative
4242		 * and inserted at a whim.
4243		 */
4244		if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4245		    || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4246			continue;
4247
4248		if (thisval <= addr && thisval > bestval) {
4249			best = i;
4250			bestval = thisval;
4251		}
4252		if (thisval > addr && thisval < nextval)
4253			nextval = thisval;
4254	}
4255
4256	if (!best)
4257		return NULL;
4258
4259	if (size)
4260		*size = nextval - bestval;
4261	if (offset)
4262		*offset = addr - bestval;
4263
4264	return kallsyms_symbol_name(kallsyms, best);
4265}
4266
4267void * __weak dereference_module_function_descriptor(struct module *mod,
4268						     void *ptr)
4269{
4270	return ptr;
4271}
4272
4273/*
4274 * For kallsyms to ask for address resolution.  NULL means not found.  Careful
4275 * not to lock to avoid deadlock on oopses, simply disable preemption.
4276 */
4277const char *module_address_lookup(unsigned long addr,
4278			    unsigned long *size,
4279			    unsigned long *offset,
4280			    char **modname,
4281			    const unsigned char **modbuildid,
4282			    char *namebuf)
4283{
4284	const char *ret = NULL;
4285	struct module *mod;
4286
4287	preempt_disable();
4288	mod = __module_address(addr);
4289	if (mod) {
4290		if (modname)
4291			*modname = mod->name;
4292		if (modbuildid) {
4293#if IS_ENABLED(CONFIG_STACKTRACE_BUILD_ID)
4294			*modbuildid = mod->build_id;
4295#else
4296			*modbuildid = NULL;
4297#endif
4298		}
4299
4300		ret = find_kallsyms_symbol(mod, addr, size, offset);
4301	}
4302	/* Make a copy in here where it's safe */
4303	if (ret) {
4304		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4305		ret = namebuf;
4306	}
4307	preempt_enable();
4308
4309	return ret;
4310}
4311
4312int lookup_module_symbol_name(unsigned long addr, char *symname)
4313{
4314	struct module *mod;
4315
4316	preempt_disable();
4317	list_for_each_entry_rcu(mod, &modules, list) {
4318		if (mod->state == MODULE_STATE_UNFORMED)
4319			continue;
4320		if (within_module(addr, mod)) {
4321			const char *sym;
4322
4323			sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4324			if (!sym)
4325				goto out;
4326
4327			strlcpy(symname, sym, KSYM_NAME_LEN);
4328			preempt_enable();
4329			return 0;
4330		}
4331	}
4332out:
4333	preempt_enable();
4334	return -ERANGE;
4335}
4336
4337int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4338			unsigned long *offset, char *modname, char *name)
4339{
4340	struct module *mod;
4341
4342	preempt_disable();
4343	list_for_each_entry_rcu(mod, &modules, list) {
4344		if (mod->state == MODULE_STATE_UNFORMED)
4345			continue;
4346		if (within_module(addr, mod)) {
4347			const char *sym;
4348
4349			sym = find_kallsyms_symbol(mod, addr, size, offset);
4350			if (!sym)
4351				goto out;
4352			if (modname)
4353				strlcpy(modname, mod->name, MODULE_NAME_LEN);
4354			if (name)
4355				strlcpy(name, sym, KSYM_NAME_LEN);
4356			preempt_enable();
4357			return 0;
4358		}
4359	}
4360out:
4361	preempt_enable();
4362	return -ERANGE;
4363}
4364
4365int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4366			char *name, char *module_name, int *exported)
4367{
4368	struct module *mod;
4369
4370	preempt_disable();
4371	list_for_each_entry_rcu(mod, &modules, list) {
4372		struct mod_kallsyms *kallsyms;
4373
4374		if (mod->state == MODULE_STATE_UNFORMED)
4375			continue;
4376		kallsyms = rcu_dereference_sched(mod->kallsyms);
4377		if (symnum < kallsyms->num_symtab) {
4378			const Elf_Sym *sym = &kallsyms->symtab[symnum];
4379
4380			*value = kallsyms_symbol_value(sym);
4381			*type = kallsyms->typetab[symnum];
4382			strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4383			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4384			*exported = is_exported(name, *value, mod);
4385			preempt_enable();
4386			return 0;
4387		}
4388		symnum -= kallsyms->num_symtab;
4389	}
4390	preempt_enable();
4391	return -ERANGE;
4392}
4393
4394/* Given a module and name of symbol, find and return the symbol's value */
4395static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4396{
4397	unsigned int i;
4398	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4399
4400	for (i = 0; i < kallsyms->num_symtab; i++) {
4401		const Elf_Sym *sym = &kallsyms->symtab[i];
4402
4403		if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4404		    sym->st_shndx != SHN_UNDEF)
4405			return kallsyms_symbol_value(sym);
4406	}
4407	return 0;
4408}
4409
4410/* Look for this name: can be of form module:name. */
4411unsigned long module_kallsyms_lookup_name(const char *name)
4412{
4413	struct module *mod;
4414	char *colon;
4415	unsigned long ret = 0;
4416
4417	/* Don't lock: we're in enough trouble already. */
4418	preempt_disable();
4419	if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4420		if ((mod = find_module_all(name, colon - name, false)) != NULL)
4421			ret = find_kallsyms_symbol_value(mod, colon+1);
4422	} else {
4423		list_for_each_entry_rcu(mod, &modules, list) {
4424			if (mod->state == MODULE_STATE_UNFORMED)
4425				continue;
4426			if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4427				break;
4428		}
4429	}
4430	preempt_enable();
4431	return ret;
4432}
4433
4434#ifdef CONFIG_LIVEPATCH
4435int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4436					     struct module *, unsigned long),
4437				   void *data)
4438{
4439	struct module *mod;
4440	unsigned int i;
4441	int ret = 0;
 
 
4442
4443	mutex_lock(&module_mutex);
4444	list_for_each_entry(mod, &modules, list) {
4445		/* We hold module_mutex: no need for rcu_dereference_sched */
4446		struct mod_kallsyms *kallsyms = mod->kallsyms;
4447
4448		if (mod->state == MODULE_STATE_UNFORMED)
4449			continue;
4450		for (i = 0; i < kallsyms->num_symtab; i++) {
4451			const Elf_Sym *sym = &kallsyms->symtab[i];
4452
4453			if (sym->st_shndx == SHN_UNDEF)
4454				continue;
4455
4456			ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4457				 mod, kallsyms_symbol_value(sym));
4458			if (ret != 0)
4459				goto out;
4460		}
4461	}
4462out:
4463	mutex_unlock(&module_mutex);
4464	return ret;
4465}
4466#endif /* CONFIG_LIVEPATCH */
4467#endif /* CONFIG_KALLSYMS */
4468
4469static void cfi_init(struct module *mod)
4470{
4471#ifdef CONFIG_CFI_CLANG
4472	initcall_t *init;
4473	exitcall_t *exit;
4474
4475	rcu_read_lock_sched();
4476	mod->cfi_check = (cfi_check_fn)
4477		find_kallsyms_symbol_value(mod, "__cfi_check");
4478	init = (initcall_t *)
4479		find_kallsyms_symbol_value(mod, "__cfi_jt_init_module");
4480	exit = (exitcall_t *)
4481		find_kallsyms_symbol_value(mod, "__cfi_jt_cleanup_module");
4482	rcu_read_unlock_sched();
4483
4484	/* Fix init/exit functions to point to the CFI jump table */
4485	if (init)
4486		mod->init = *init;
4487#ifdef CONFIG_MODULE_UNLOAD
4488	if (exit)
4489		mod->exit = *exit;
4490#endif
4491
4492	cfi_module_add(mod, module_addr_min);
4493#endif
4494}
4495
4496static void cfi_cleanup(struct module *mod)
4497{
4498#ifdef CONFIG_CFI_CLANG
4499	cfi_module_remove(mod, module_addr_min);
4500#endif
4501}
4502
4503/* Maximum number of characters written by module_flags() */
4504#define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4505
4506/* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4507static char *module_flags(struct module *mod, char *buf)
4508{
4509	int bx = 0;
4510
4511	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4512	if (mod->taints ||
4513	    mod->state == MODULE_STATE_GOING ||
4514	    mod->state == MODULE_STATE_COMING) {
4515		buf[bx++] = '(';
4516		bx += module_flags_taint(mod, buf + bx);
4517		/* Show a - for module-is-being-unloaded */
4518		if (mod->state == MODULE_STATE_GOING)
4519			buf[bx++] = '-';
4520		/* Show a + for module-is-being-loaded */
4521		if (mod->state == MODULE_STATE_COMING)
4522			buf[bx++] = '+';
4523		buf[bx++] = ')';
4524	}
4525	buf[bx] = '\0';
4526
4527	return buf;
4528}
4529
4530#ifdef CONFIG_PROC_FS
4531/* Called by the /proc file system to return a list of modules. */
4532static void *m_start(struct seq_file *m, loff_t *pos)
4533{
4534	mutex_lock(&module_mutex);
4535	return seq_list_start(&modules, *pos);
4536}
4537
4538static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4539{
4540	return seq_list_next(p, &modules, pos);
4541}
4542
4543static void m_stop(struct seq_file *m, void *p)
4544{
4545	mutex_unlock(&module_mutex);
4546}
4547
4548static int m_show(struct seq_file *m, void *p)
4549{
4550	struct module *mod = list_entry(p, struct module, list);
4551	char buf[MODULE_FLAGS_BUF_SIZE];
4552	void *value;
4553
4554	/* We always ignore unformed modules. */
4555	if (mod->state == MODULE_STATE_UNFORMED)
4556		return 0;
4557
4558	seq_printf(m, "%s %u",
4559		   mod->name, mod->init_layout.size + mod->core_layout.size);
4560	print_unload_info(m, mod);
4561
4562	/* Informative for users. */
4563	seq_printf(m, " %s",
4564		   mod->state == MODULE_STATE_GOING ? "Unloading" :
4565		   mod->state == MODULE_STATE_COMING ? "Loading" :
4566		   "Live");
4567	/* Used by oprofile and other similar tools. */
4568	value = m->private ? NULL : mod->core_layout.base;
4569	seq_printf(m, " 0x%px", value);
4570
4571	/* Taints info */
4572	if (mod->taints)
4573		seq_printf(m, " %s", module_flags(mod, buf));
4574
4575	seq_puts(m, "\n");
4576	return 0;
4577}
4578
4579/*
4580 * Format: modulename size refcount deps address
4581 *
4582 * Where refcount is a number or -, and deps is a comma-separated list
4583 * of depends or -.
4584 */
4585static const struct seq_operations modules_op = {
4586	.start	= m_start,
4587	.next	= m_next,
4588	.stop	= m_stop,
4589	.show	= m_show
4590};
4591
4592/*
4593 * This also sets the "private" pointer to non-NULL if the
4594 * kernel pointers should be hidden (so you can just test
4595 * "m->private" to see if you should keep the values private).
4596 *
4597 * We use the same logic as for /proc/kallsyms.
4598 */
4599static int modules_open(struct inode *inode, struct file *file)
4600{
4601	int err = seq_open(file, &modules_op);
4602
4603	if (!err) {
4604		struct seq_file *m = file->private_data;
4605		m->private = kallsyms_show_value(file->f_cred) ? NULL : (void *)8ul;
4606	}
4607
4608	return err;
4609}
4610
4611static const struct proc_ops modules_proc_ops = {
4612	.proc_flags	= PROC_ENTRY_PERMANENT,
4613	.proc_open	= modules_open,
4614	.proc_read	= seq_read,
4615	.proc_lseek	= seq_lseek,
4616	.proc_release	= seq_release,
4617};
4618
4619static int __init proc_modules_init(void)
4620{
4621	proc_create("modules", 0, NULL, &modules_proc_ops);
4622	return 0;
4623}
4624module_init(proc_modules_init);
4625#endif
4626
4627/* Given an address, look for it in the module exception tables. */
4628const struct exception_table_entry *search_module_extables(unsigned long addr)
4629{
4630	const struct exception_table_entry *e = NULL;
4631	struct module *mod;
4632
4633	preempt_disable();
4634	mod = __module_address(addr);
4635	if (!mod)
4636		goto out;
4637
4638	if (!mod->num_exentries)
4639		goto out;
4640
4641	e = search_extable(mod->extable,
4642			   mod->num_exentries,
4643			   addr);
4644out:
4645	preempt_enable();
4646
4647	/*
4648	 * Now, if we found one, we are running inside it now, hence
4649	 * we cannot unload the module, hence no refcnt needed.
4650	 */
4651	return e;
4652}
4653
4654/**
4655 * is_module_address() - is this address inside a module?
4656 * @addr: the address to check.
4657 *
4658 * See is_module_text_address() if you simply want to see if the address
4659 * is code (not data).
4660 */
4661bool is_module_address(unsigned long addr)
4662{
4663	bool ret;
4664
4665	preempt_disable();
4666	ret = __module_address(addr) != NULL;
4667	preempt_enable();
4668
4669	return ret;
4670}
4671
4672/**
4673 * __module_address() - get the module which contains an address.
4674 * @addr: the address.
4675 *
4676 * Must be called with preempt disabled or module mutex held so that
4677 * module doesn't get freed during this.
4678 */
4679struct module *__module_address(unsigned long addr)
4680{
4681	struct module *mod;
4682
4683	if (addr < module_addr_min || addr > module_addr_max)
4684		return NULL;
4685
4686	module_assert_mutex_or_preempt();
4687
4688	mod = mod_find(addr);
4689	if (mod) {
4690		BUG_ON(!within_module(addr, mod));
4691		if (mod->state == MODULE_STATE_UNFORMED)
4692			mod = NULL;
4693	}
4694	return mod;
4695}
 
4696
4697/**
4698 * is_module_text_address() - is this address inside module code?
4699 * @addr: the address to check.
4700 *
4701 * See is_module_address() if you simply want to see if the address is
4702 * anywhere in a module.  See kernel_text_address() for testing if an
4703 * address corresponds to kernel or module code.
4704 */
4705bool is_module_text_address(unsigned long addr)
4706{
4707	bool ret;
4708
4709	preempt_disable();
4710	ret = __module_text_address(addr) != NULL;
4711	preempt_enable();
4712
4713	return ret;
4714}
4715
4716/**
4717 * __module_text_address() - get the module whose code contains an address.
4718 * @addr: the address.
4719 *
4720 * Must be called with preempt disabled or module mutex held so that
4721 * module doesn't get freed during this.
4722 */
4723struct module *__module_text_address(unsigned long addr)
4724{
4725	struct module *mod = __module_address(addr);
4726	if (mod) {
4727		/* Make sure it's within the text section. */
4728		if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4729		    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4730			mod = NULL;
4731	}
4732	return mod;
4733}
 
4734
4735/* Don't grab lock, we're oopsing. */
4736void print_modules(void)
4737{
4738	struct module *mod;
4739	char buf[MODULE_FLAGS_BUF_SIZE];
4740
4741	printk(KERN_DEFAULT "Modules linked in:");
4742	/* Most callers should already have preempt disabled, but make sure */
4743	preempt_disable();
4744	list_for_each_entry_rcu(mod, &modules, list) {
4745		if (mod->state == MODULE_STATE_UNFORMED)
4746			continue;
4747		pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4748	}
4749	preempt_enable();
4750	if (last_unloaded_module[0])
4751		pr_cont(" [last unloaded: %s]", last_unloaded_module);
4752	pr_cont("\n");
4753}
4754
4755#ifdef CONFIG_MODVERSIONS
4756/*
4757 * Generate the signature for all relevant module structures here.
4758 * If these change, we don't want to try to parse the module.
4759 */
4760void module_layout(struct module *mod,
4761		   struct modversion_info *ver,
4762		   struct kernel_param *kp,
4763		   struct kernel_symbol *ks,
4764		   struct tracepoint * const *tp)
4765{
4766}
4767EXPORT_SYMBOL(module_layout);
4768#endif