Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3   Copyright (C) 2002 Richard Henderson
   4   Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
   5
 
 
 
 
 
 
 
 
 
 
 
 
 
   6*/
   7#include <linux/export.h>
   8#include <linux/extable.h>
   9#include <linux/moduleloader.h>
  10#include <linux/module_signature.h>
  11#include <linux/trace_events.h>
  12#include <linux/init.h>
  13#include <linux/kallsyms.h>
  14#include <linux/file.h>
  15#include <linux/fs.h>
  16#include <linux/sysfs.h>
  17#include <linux/kernel.h>
  18#include <linux/slab.h>
  19#include <linux/vmalloc.h>
  20#include <linux/elf.h>
  21#include <linux/proc_fs.h>
  22#include <linux/security.h>
  23#include <linux/seq_file.h>
  24#include <linux/syscalls.h>
  25#include <linux/fcntl.h>
  26#include <linux/rcupdate.h>
  27#include <linux/capability.h>
  28#include <linux/cpu.h>
  29#include <linux/moduleparam.h>
  30#include <linux/errno.h>
  31#include <linux/err.h>
  32#include <linux/vermagic.h>
  33#include <linux/notifier.h>
  34#include <linux/sched.h>
 
  35#include <linux/device.h>
  36#include <linux/string.h>
  37#include <linux/mutex.h>
  38#include <linux/rculist.h>
  39#include <linux/uaccess.h>
  40#include <asm/cacheflush.h>
  41#include <linux/set_memory.h>
  42#include <asm/mmu_context.h>
  43#include <linux/license.h>
  44#include <asm/sections.h>
  45#include <linux/tracepoint.h>
  46#include <linux/ftrace.h>
  47#include <linux/livepatch.h>
  48#include <linux/async.h>
  49#include <linux/percpu.h>
  50#include <linux/kmemleak.h>
  51#include <linux/jump_label.h>
  52#include <linux/pfn.h>
  53#include <linux/bsearch.h>
  54#include <linux/dynamic_debug.h>
  55#include <linux/audit.h>
  56#include <uapi/linux/module.h>
  57#include "module-internal.h"
  58
  59#define CREATE_TRACE_POINTS
  60#include <trace/events/module.h>
  61
 
 
 
 
 
 
  62#ifndef ARCH_SHF_SMALL
  63#define ARCH_SHF_SMALL 0
  64#endif
  65
  66/*
  67 * Modules' sections will be aligned on page boundaries
  68 * to ensure complete separation of code and data, but
  69 * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
  70 */
  71#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
  72# define debug_align(X) ALIGN(X, PAGE_SIZE)
  73#else
  74# define debug_align(X) (X)
  75#endif
  76
 
 
 
 
 
 
 
 
 
  77/* If this is set, the section belongs in the init part of the module */
  78#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
  79
  80/*
  81 * Mutex protects:
  82 * 1) List of modules (also safely readable with preempt_disable),
  83 * 2) module_use links,
  84 * 3) module_addr_min/module_addr_max.
  85 * (delete and add uses RCU list operations). */
  86DEFINE_MUTEX(module_mutex);
  87EXPORT_SYMBOL_GPL(module_mutex);
  88static LIST_HEAD(modules);
  89
  90/* Work queue for freeing init sections in success case */
  91static struct work_struct init_free_wq;
  92static struct llist_head init_free_list;
  93
  94#ifdef CONFIG_MODULES_TREE_LOOKUP
  95
  96/*
  97 * Use a latched RB-tree for __module_address(); this allows us to use
  98 * RCU-sched lookups of the address from any context.
  99 *
 100 * This is conditional on PERF_EVENTS || TRACING because those can really hit
 101 * __module_address() hard by doing a lot of stack unwinding; potentially from
 102 * NMI context.
 103 */
 104
 105static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
 106{
 107	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 108
 109	return (unsigned long)layout->base;
 110}
 111
 112static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
 113{
 114	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 115
 116	return (unsigned long)layout->size;
 117}
 118
 119static __always_inline bool
 120mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
 121{
 122	return __mod_tree_val(a) < __mod_tree_val(b);
 123}
 124
 125static __always_inline int
 126mod_tree_comp(void *key, struct latch_tree_node *n)
 127{
 128	unsigned long val = (unsigned long)key;
 129	unsigned long start, end;
 130
 131	start = __mod_tree_val(n);
 132	if (val < start)
 133		return -1;
 134
 135	end = start + __mod_tree_size(n);
 136	if (val >= end)
 137		return 1;
 138
 139	return 0;
 140}
 141
 142static const struct latch_tree_ops mod_tree_ops = {
 143	.less = mod_tree_less,
 144	.comp = mod_tree_comp,
 145};
 146
 147static struct mod_tree_root {
 148	struct latch_tree_root root;
 149	unsigned long addr_min;
 150	unsigned long addr_max;
 151} mod_tree __cacheline_aligned = {
 152	.addr_min = -1UL,
 153};
 154
 155#define module_addr_min mod_tree.addr_min
 156#define module_addr_max mod_tree.addr_max
 157
 158static noinline void __mod_tree_insert(struct mod_tree_node *node)
 159{
 160	latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
 161}
 162
 163static void __mod_tree_remove(struct mod_tree_node *node)
 164{
 165	latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
 166}
 167
 168/*
 169 * These modifications: insert, remove_init and remove; are serialized by the
 170 * module_mutex.
 171 */
 172static void mod_tree_insert(struct module *mod)
 173{
 174	mod->core_layout.mtn.mod = mod;
 175	mod->init_layout.mtn.mod = mod;
 176
 177	__mod_tree_insert(&mod->core_layout.mtn);
 178	if (mod->init_layout.size)
 179		__mod_tree_insert(&mod->init_layout.mtn);
 180}
 181
 182static void mod_tree_remove_init(struct module *mod)
 183{
 184	if (mod->init_layout.size)
 185		__mod_tree_remove(&mod->init_layout.mtn);
 186}
 187
 188static void mod_tree_remove(struct module *mod)
 189{
 190	__mod_tree_remove(&mod->core_layout.mtn);
 191	mod_tree_remove_init(mod);
 192}
 193
 194static struct module *mod_find(unsigned long addr)
 195{
 196	struct latch_tree_node *ltn;
 197
 198	ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
 199	if (!ltn)
 200		return NULL;
 201
 202	return container_of(ltn, struct mod_tree_node, node)->mod;
 203}
 204
 205#else /* MODULES_TREE_LOOKUP */
 206
 207static unsigned long module_addr_min = -1UL, module_addr_max = 0;
 208
 209static void mod_tree_insert(struct module *mod) { }
 210static void mod_tree_remove_init(struct module *mod) { }
 211static void mod_tree_remove(struct module *mod) { }
 212
 213static struct module *mod_find(unsigned long addr)
 214{
 215	struct module *mod;
 216
 217	list_for_each_entry_rcu(mod, &modules, list) {
 218		if (within_module(addr, mod))
 219			return mod;
 220	}
 221
 222	return NULL;
 223}
 224
 225#endif /* MODULES_TREE_LOOKUP */
 226
 227/*
 228 * Bounds of module text, for speeding up __module_address.
 229 * Protected by module_mutex.
 230 */
 231static void __mod_update_bounds(void *base, unsigned int size)
 232{
 233	unsigned long min = (unsigned long)base;
 234	unsigned long max = min + size;
 235
 236	if (min < module_addr_min)
 237		module_addr_min = min;
 238	if (max > module_addr_max)
 239		module_addr_max = max;
 240}
 241
 242static void mod_update_bounds(struct module *mod)
 243{
 244	__mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
 245	if (mod->init_layout.size)
 246		__mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
 247}
 248
 249#ifdef CONFIG_KGDB_KDB
 250struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
 251#endif /* CONFIG_KGDB_KDB */
 252
 253static void module_assert_mutex(void)
 254{
 255	lockdep_assert_held(&module_mutex);
 256}
 257
 258static void module_assert_mutex_or_preempt(void)
 259{
 260#ifdef CONFIG_LOCKDEP
 261	if (unlikely(!debug_locks))
 262		return;
 263
 264	WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
 265		!lockdep_is_held(&module_mutex));
 266#endif
 267}
 268
 269static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
 270module_param(sig_enforce, bool_enable_only, 0644);
 271
 272/*
 273 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
 274 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
 275 */
 276bool is_module_sig_enforced(void)
 277{
 278	return sig_enforce;
 279}
 280EXPORT_SYMBOL(is_module_sig_enforced);
 281
 282void set_module_sig_enforced(void)
 283{
 284	sig_enforce = true;
 285}
 286
 287/* Block module loading/unloading? */
 288int modules_disabled = 0;
 289core_param(nomodule, modules_disabled, bint, 0);
 290
 291/* Waiting for a module to finish initializing? */
 292static DECLARE_WAIT_QUEUE_HEAD(module_wq);
 293
 294static BLOCKING_NOTIFIER_HEAD(module_notify_list);
 295
 296int register_module_notifier(struct notifier_block *nb)
 
 
 
 
 297{
 298	return blocking_notifier_chain_register(&module_notify_list, nb);
 299}
 300EXPORT_SYMBOL(register_module_notifier);
 301
 302int unregister_module_notifier(struct notifier_block *nb)
 303{
 304	return blocking_notifier_chain_unregister(&module_notify_list, nb);
 305}
 306EXPORT_SYMBOL(unregister_module_notifier);
 307
 308/*
 309 * We require a truly strong try_module_get(): 0 means success.
 310 * Otherwise an error is returned due to ongoing or failed
 311 * initialization etc.
 312 */
 
 
 
 
 
 
 
 
 
 
 
 313static inline int strong_try_module_get(struct module *mod)
 314{
 315	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
 316	if (mod && mod->state == MODULE_STATE_COMING)
 317		return -EBUSY;
 318	if (try_module_get(mod))
 319		return 0;
 320	else
 321		return -ENOENT;
 322}
 323
 324static inline void add_taint_module(struct module *mod, unsigned flag,
 325				    enum lockdep_ok lockdep_ok)
 326{
 327	add_taint(flag, lockdep_ok);
 328	set_bit(flag, &mod->taints);
 329}
 330
 331/*
 332 * A thread that wants to hold a reference to a module only while it
 333 * is running can call this to safely exit.  nfsd and lockd use this.
 334 */
 335void __noreturn __module_put_and_exit(struct module *mod, long code)
 336{
 337	module_put(mod);
 338	do_exit(code);
 339}
 340EXPORT_SYMBOL(__module_put_and_exit);
 341
 342/* Find a module section: 0 means not found. */
 343static unsigned int find_sec(const struct load_info *info, const char *name)
 344{
 345	unsigned int i;
 346
 347	for (i = 1; i < info->hdr->e_shnum; i++) {
 348		Elf_Shdr *shdr = &info->sechdrs[i];
 349		/* Alloc bit cleared means "ignore it." */
 350		if ((shdr->sh_flags & SHF_ALLOC)
 351		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
 352			return i;
 353	}
 354	return 0;
 355}
 356
 357/* Find a module section, or NULL. */
 358static void *section_addr(const struct load_info *info, const char *name)
 359{
 360	/* Section 0 has sh_addr 0. */
 361	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
 362}
 363
 364/* Find a module section, or NULL.  Fill in number of "objects" in section. */
 365static void *section_objs(const struct load_info *info,
 366			  const char *name,
 367			  size_t object_size,
 368			  unsigned int *num)
 369{
 370	unsigned int sec = find_sec(info, name);
 371
 372	/* Section 0 has sh_addr 0 and sh_size 0. */
 373	*num = info->sechdrs[sec].sh_size / object_size;
 374	return (void *)info->sechdrs[sec].sh_addr;
 375}
 376
 377/* Provided by the linker */
 378extern const struct kernel_symbol __start___ksymtab[];
 379extern const struct kernel_symbol __stop___ksymtab[];
 380extern const struct kernel_symbol __start___ksymtab_gpl[];
 381extern const struct kernel_symbol __stop___ksymtab_gpl[];
 382extern const struct kernel_symbol __start___ksymtab_gpl_future[];
 383extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
 384extern const s32 __start___kcrctab[];
 385extern const s32 __start___kcrctab_gpl[];
 386extern const s32 __start___kcrctab_gpl_future[];
 387#ifdef CONFIG_UNUSED_SYMBOLS
 388extern const struct kernel_symbol __start___ksymtab_unused[];
 389extern const struct kernel_symbol __stop___ksymtab_unused[];
 390extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
 391extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
 392extern const s32 __start___kcrctab_unused[];
 393extern const s32 __start___kcrctab_unused_gpl[];
 394#endif
 395
 396#ifndef CONFIG_MODVERSIONS
 397#define symversion(base, idx) NULL
 398#else
 399#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
 400#endif
 401
 402static bool each_symbol_in_section(const struct symsearch *arr,
 403				   unsigned int arrsize,
 404				   struct module *owner,
 405				   bool (*fn)(const struct symsearch *syms,
 406					      struct module *owner,
 407					      void *data),
 408				   void *data)
 409{
 410	unsigned int j;
 411
 412	for (j = 0; j < arrsize; j++) {
 413		if (fn(&arr[j], owner, data))
 414			return true;
 415	}
 416
 417	return false;
 418}
 419
 420/* Returns true as soon as fn returns true, otherwise false. */
 421bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
 422				    struct module *owner,
 423				    void *data),
 424			 void *data)
 425{
 426	struct module *mod;
 427	static const struct symsearch arr[] = {
 428		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
 429		  NOT_GPL_ONLY, false },
 430		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
 431		  __start___kcrctab_gpl,
 432		  GPL_ONLY, false },
 433		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
 434		  __start___kcrctab_gpl_future,
 435		  WILL_BE_GPL_ONLY, false },
 436#ifdef CONFIG_UNUSED_SYMBOLS
 437		{ __start___ksymtab_unused, __stop___ksymtab_unused,
 438		  __start___kcrctab_unused,
 439		  NOT_GPL_ONLY, true },
 440		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
 441		  __start___kcrctab_unused_gpl,
 442		  GPL_ONLY, true },
 443#endif
 444	};
 445
 446	module_assert_mutex_or_preempt();
 447
 448	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
 449		return true;
 450
 451	list_for_each_entry_rcu(mod, &modules, list) {
 452		struct symsearch arr[] = {
 453			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
 454			  NOT_GPL_ONLY, false },
 455			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
 456			  mod->gpl_crcs,
 457			  GPL_ONLY, false },
 458			{ mod->gpl_future_syms,
 459			  mod->gpl_future_syms + mod->num_gpl_future_syms,
 460			  mod->gpl_future_crcs,
 461			  WILL_BE_GPL_ONLY, false },
 462#ifdef CONFIG_UNUSED_SYMBOLS
 463			{ mod->unused_syms,
 464			  mod->unused_syms + mod->num_unused_syms,
 465			  mod->unused_crcs,
 466			  NOT_GPL_ONLY, true },
 467			{ mod->unused_gpl_syms,
 468			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
 469			  mod->unused_gpl_crcs,
 470			  GPL_ONLY, true },
 471#endif
 472		};
 473
 474		if (mod->state == MODULE_STATE_UNFORMED)
 475			continue;
 476
 477		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
 478			return true;
 479	}
 480	return false;
 481}
 482EXPORT_SYMBOL_GPL(each_symbol_section);
 483
 484struct find_symbol_arg {
 485	/* Input */
 486	const char *name;
 487	bool gplok;
 488	bool warn;
 489
 490	/* Output */
 491	struct module *owner;
 492	const s32 *crc;
 493	const struct kernel_symbol *sym;
 494};
 495
 496static bool check_exported_symbol(const struct symsearch *syms,
 497				  struct module *owner,
 498				  unsigned int symnum, void *data)
 499{
 500	struct find_symbol_arg *fsa = data;
 501
 502	if (!fsa->gplok) {
 503		if (syms->licence == GPL_ONLY)
 504			return false;
 505		if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
 506			pr_warn("Symbol %s is being used by a non-GPL module, "
 507				"which will not be allowed in the future\n",
 508				fsa->name);
 
 
 
 509		}
 510	}
 511
 512#ifdef CONFIG_UNUSED_SYMBOLS
 513	if (syms->unused && fsa->warn) {
 514		pr_warn("Symbol %s is marked as UNUSED, however this module is "
 515			"using it.\n", fsa->name);
 516		pr_warn("This symbol will go away in the future.\n");
 517		pr_warn("Please evaluate if this is the right api to use and "
 518			"if it really is, submit a report to the linux kernel "
 519			"mailing list together with submitting your code for "
 520			"inclusion.\n");
 
 
 521	}
 522#endif
 523
 524	fsa->owner = owner;
 525	fsa->crc = symversion(syms->crcs, symnum);
 526	fsa->sym = &syms->start[symnum];
 527	return true;
 528}
 529
 530static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
 531{
 532#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 533	return (unsigned long)offset_to_ptr(&sym->value_offset);
 534#else
 535	return sym->value;
 536#endif
 537}
 538
 539static const char *kernel_symbol_name(const struct kernel_symbol *sym)
 540{
 541#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 542	return offset_to_ptr(&sym->name_offset);
 543#else
 544	return sym->name;
 545#endif
 546}
 547
 548static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
 549{
 550#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 551	if (!sym->namespace_offset)
 552		return NULL;
 553	return offset_to_ptr(&sym->namespace_offset);
 554#else
 555	return sym->namespace;
 556#endif
 557}
 558
 559static int cmp_name(const void *name, const void *sym)
 560{
 561	return strcmp(name, kernel_symbol_name(sym));
 
 
 
 562}
 563
 564static bool find_exported_symbol_in_section(const struct symsearch *syms,
 565					    struct module *owner,
 566					    void *data)
 567{
 568	struct find_symbol_arg *fsa = data;
 569	struct kernel_symbol *sym;
 570
 571	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
 572			sizeof(struct kernel_symbol), cmp_name);
 573
 574	if (sym != NULL && check_exported_symbol(syms, owner,
 575						 sym - syms->start, data))
 576		return true;
 577
 578	return false;
 579}
 580
 581/* Find an exported symbol and return it, along with, (optional) crc and
 582 * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
 583const struct kernel_symbol *find_symbol(const char *name,
 584					struct module **owner,
 585					const s32 **crc,
 586					bool gplok,
 587					bool warn)
 588{
 589	struct find_symbol_arg fsa;
 590
 591	fsa.name = name;
 592	fsa.gplok = gplok;
 593	fsa.warn = warn;
 594
 595	if (each_symbol_section(find_exported_symbol_in_section, &fsa)) {
 596		if (owner)
 597			*owner = fsa.owner;
 598		if (crc)
 599			*crc = fsa.crc;
 600		return fsa.sym;
 601	}
 602
 603	pr_debug("Failed to find symbol %s\n", name);
 604	return NULL;
 605}
 606EXPORT_SYMBOL_GPL(find_symbol);
 607
 608/*
 609 * Search for module by name: must hold module_mutex (or preempt disabled
 610 * for read-only access).
 611 */
 612static struct module *find_module_all(const char *name, size_t len,
 613				      bool even_unformed)
 614{
 615	struct module *mod;
 616
 617	module_assert_mutex_or_preempt();
 618
 619	list_for_each_entry_rcu(mod, &modules, list) {
 620		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
 621			continue;
 622		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
 623			return mod;
 624	}
 625	return NULL;
 626}
 627
 628struct module *find_module(const char *name)
 629{
 630	module_assert_mutex();
 631	return find_module_all(name, strlen(name), false);
 632}
 633EXPORT_SYMBOL_GPL(find_module);
 634
 635#ifdef CONFIG_SMP
 636
 637static inline void __percpu *mod_percpu(struct module *mod)
 638{
 639	return mod->percpu;
 640}
 641
 642static int percpu_modalloc(struct module *mod, struct load_info *info)
 
 643{
 644	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
 645	unsigned long align = pcpusec->sh_addralign;
 646
 647	if (!pcpusec->sh_size)
 648		return 0;
 649
 650	if (align > PAGE_SIZE) {
 651		pr_warn("%s: per-cpu alignment %li > %li\n",
 652			mod->name, align, PAGE_SIZE);
 653		align = PAGE_SIZE;
 654	}
 655
 656	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
 657	if (!mod->percpu) {
 658		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
 659			mod->name, (unsigned long)pcpusec->sh_size);
 
 660		return -ENOMEM;
 661	}
 662	mod->percpu_size = pcpusec->sh_size;
 663	return 0;
 664}
 665
 666static void percpu_modfree(struct module *mod)
 667{
 668	free_percpu(mod->percpu);
 669}
 670
 671static unsigned int find_pcpusec(struct load_info *info)
 672{
 673	return find_sec(info, ".data..percpu");
 674}
 675
 676static void percpu_modcopy(struct module *mod,
 677			   const void *from, unsigned long size)
 678{
 679	int cpu;
 680
 681	for_each_possible_cpu(cpu)
 682		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
 683}
 684
 685bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
 
 
 
 
 
 
 
 
 
 686{
 687	struct module *mod;
 688	unsigned int cpu;
 689
 690	preempt_disable();
 691
 692	list_for_each_entry_rcu(mod, &modules, list) {
 693		if (mod->state == MODULE_STATE_UNFORMED)
 694			continue;
 695		if (!mod->percpu_size)
 696			continue;
 697		for_each_possible_cpu(cpu) {
 698			void *start = per_cpu_ptr(mod->percpu, cpu);
 699			void *va = (void *)addr;
 700
 701			if (va >= start && va < start + mod->percpu_size) {
 702				if (can_addr) {
 703					*can_addr = (unsigned long) (va - start);
 704					*can_addr += (unsigned long)
 705						per_cpu_ptr(mod->percpu,
 706							    get_boot_cpu_id());
 707				}
 708				preempt_enable();
 709				return true;
 710			}
 711		}
 712	}
 713
 714	preempt_enable();
 715	return false;
 716}
 717
 718/**
 719 * is_module_percpu_address - test whether address is from module static percpu
 720 * @addr: address to test
 721 *
 722 * Test whether @addr belongs to module static percpu area.
 723 *
 724 * RETURNS:
 725 * %true if @addr is from module static percpu area
 726 */
 727bool is_module_percpu_address(unsigned long addr)
 728{
 729	return __is_module_percpu_address(addr, NULL);
 730}
 731
 732#else /* ... !CONFIG_SMP */
 733
 734static inline void __percpu *mod_percpu(struct module *mod)
 735{
 736	return NULL;
 737}
 738static int percpu_modalloc(struct module *mod, struct load_info *info)
 
 739{
 740	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
 741	if (info->sechdrs[info->index.pcpu].sh_size != 0)
 742		return -ENOMEM;
 743	return 0;
 744}
 745static inline void percpu_modfree(struct module *mod)
 746{
 747}
 748static unsigned int find_pcpusec(struct load_info *info)
 749{
 750	return 0;
 751}
 752static inline void percpu_modcopy(struct module *mod,
 753				  const void *from, unsigned long size)
 754{
 755	/* pcpusec should be 0, and size of that section should be 0. */
 756	BUG_ON(size != 0);
 757}
 758bool is_module_percpu_address(unsigned long addr)
 759{
 760	return false;
 761}
 762
 763bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
 764{
 765	return false;
 766}
 767
 768#endif /* CONFIG_SMP */
 769
 770#define MODINFO_ATTR(field)	\
 771static void setup_modinfo_##field(struct module *mod, const char *s)  \
 772{                                                                     \
 773	mod->field = kstrdup(s, GFP_KERNEL);                          \
 774}                                                                     \
 775static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
 776			struct module_kobject *mk, char *buffer)      \
 777{                                                                     \
 778	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
 779}                                                                     \
 780static int modinfo_##field##_exists(struct module *mod)               \
 781{                                                                     \
 782	return mod->field != NULL;                                    \
 783}                                                                     \
 784static void free_modinfo_##field(struct module *mod)                  \
 785{                                                                     \
 786	kfree(mod->field);                                            \
 787	mod->field = NULL;                                            \
 788}                                                                     \
 789static struct module_attribute modinfo_##field = {                    \
 790	.attr = { .name = __stringify(field), .mode = 0444 },         \
 791	.show = show_modinfo_##field,                                 \
 792	.setup = setup_modinfo_##field,                               \
 793	.test = modinfo_##field##_exists,                             \
 794	.free = free_modinfo_##field,                                 \
 795};
 796
 797MODINFO_ATTR(version);
 798MODINFO_ATTR(srcversion);
 799
 800static char last_unloaded_module[MODULE_NAME_LEN+1];
 801
 802#ifdef CONFIG_MODULE_UNLOAD
 803
 804EXPORT_TRACEPOINT_SYMBOL(module_get);
 805
 806/* MODULE_REF_BASE is the base reference count by kmodule loader. */
 807#define MODULE_REF_BASE	1
 808
 809/* Init the unload section of the module. */
 810static int module_unload_init(struct module *mod)
 811{
 812	/*
 813	 * Initialize reference counter to MODULE_REF_BASE.
 814	 * refcnt == 0 means module is going.
 815	 */
 816	atomic_set(&mod->refcnt, MODULE_REF_BASE);
 817
 818	INIT_LIST_HEAD(&mod->source_list);
 819	INIT_LIST_HEAD(&mod->target_list);
 820
 821	/* Hold reference count during initialization. */
 822	atomic_inc(&mod->refcnt);
 
 
 823
 824	return 0;
 825}
 826
 827/* Does a already use b? */
 828static int already_uses(struct module *a, struct module *b)
 829{
 830	struct module_use *use;
 831
 832	list_for_each_entry(use, &b->source_list, source_list) {
 833		if (use->source == a) {
 834			pr_debug("%s uses %s!\n", a->name, b->name);
 835			return 1;
 836		}
 837	}
 838	pr_debug("%s does not use %s!\n", a->name, b->name);
 839	return 0;
 840}
 841
 842/*
 843 * Module a uses b
 844 *  - we add 'a' as a "source", 'b' as a "target" of module use
 845 *  - the module_use is added to the list of 'b' sources (so
 846 *    'b' can walk the list to see who sourced them), and of 'a'
 847 *    targets (so 'a' can see what modules it targets).
 848 */
 849static int add_module_usage(struct module *a, struct module *b)
 850{
 851	struct module_use *use;
 852
 853	pr_debug("Allocating new usage for %s.\n", a->name);
 854	use = kmalloc(sizeof(*use), GFP_ATOMIC);
 855	if (!use)
 
 856		return -ENOMEM;
 
 857
 858	use->source = a;
 859	use->target = b;
 860	list_add(&use->source_list, &b->source_list);
 861	list_add(&use->target_list, &a->target_list);
 862	return 0;
 863}
 864
 865/* Module a uses b: caller needs module_mutex() */
 866int ref_module(struct module *a, struct module *b)
 867{
 868	int err;
 869
 870	if (b == NULL || already_uses(a, b))
 871		return 0;
 872
 873	/* If module isn't available, we fail. */
 874	err = strong_try_module_get(b);
 875	if (err)
 876		return err;
 877
 878	err = add_module_usage(a, b);
 879	if (err) {
 880		module_put(b);
 881		return err;
 882	}
 883	return 0;
 884}
 885EXPORT_SYMBOL_GPL(ref_module);
 886
 887/* Clear the unload stuff of the module. */
 888static void module_unload_free(struct module *mod)
 889{
 890	struct module_use *use, *tmp;
 891
 892	mutex_lock(&module_mutex);
 893	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
 894		struct module *i = use->target;
 895		pr_debug("%s unusing %s\n", mod->name, i->name);
 896		module_put(i);
 897		list_del(&use->source_list);
 898		list_del(&use->target_list);
 899		kfree(use);
 900	}
 901	mutex_unlock(&module_mutex);
 
 
 902}
 903
 904#ifdef CONFIG_MODULE_FORCE_UNLOAD
 905static inline int try_force_unload(unsigned int flags)
 906{
 907	int ret = (flags & O_TRUNC);
 908	if (ret)
 909		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
 910	return ret;
 911}
 912#else
 913static inline int try_force_unload(unsigned int flags)
 914{
 915	return 0;
 916}
 917#endif /* CONFIG_MODULE_FORCE_UNLOAD */
 918
 919/* Try to release refcount of module, 0 means success. */
 920static int try_release_module_ref(struct module *mod)
 921{
 922	int ret;
 923
 924	/* Try to decrement refcnt which we set at loading */
 925	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
 926	BUG_ON(ret < 0);
 927	if (ret)
 928		/* Someone can put this right now, recover with checking */
 929		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
 930
 931	return ret;
 932}
 933
 934static int try_stop_module(struct module *mod, int flags, int *forced)
 
 935{
 
 
 936	/* If it's not unused, quit unless we're forcing. */
 937	if (try_release_module_ref(mod) != 0) {
 938		*forced = try_force_unload(flags);
 939		if (!(*forced))
 940			return -EWOULDBLOCK;
 941	}
 942
 943	/* Mark it as dying. */
 944	mod->state = MODULE_STATE_GOING;
 945
 946	return 0;
 947}
 948
 949/**
 950 * module_refcount - return the refcount or -1 if unloading
 951 *
 952 * @mod:	the module we're checking
 953 *
 954 * Returns:
 955 *	-1 if the module is in the process of unloading
 956 *	otherwise the number of references in the kernel to the module
 957 */
 958int module_refcount(struct module *mod)
 959{
 960	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 961}
 962EXPORT_SYMBOL(module_refcount);
 963
 964/* This exists whether we can unload or not */
 965static void free_module(struct module *mod);
 966
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 967SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
 968		unsigned int, flags)
 969{
 970	struct module *mod;
 971	char name[MODULE_NAME_LEN];
 972	int ret, forced = 0;
 973
 974	if (!capable(CAP_SYS_MODULE) || modules_disabled)
 975		return -EPERM;
 976
 977	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
 978		return -EFAULT;
 979	name[MODULE_NAME_LEN-1] = '\0';
 980
 981	audit_log_kern_module(name);
 982
 983	if (mutex_lock_interruptible(&module_mutex) != 0)
 984		return -EINTR;
 985
 986	mod = find_module(name);
 987	if (!mod) {
 988		ret = -ENOENT;
 989		goto out;
 990	}
 991
 992	if (!list_empty(&mod->source_list)) {
 993		/* Other modules depend on us: get rid of them first. */
 994		ret = -EWOULDBLOCK;
 995		goto out;
 996	}
 997
 998	/* Doing init or already dying? */
 999	if (mod->state != MODULE_STATE_LIVE) {
1000		/* FIXME: if (force), slam module count damn the torpedoes */
1001		pr_debug("%s already dying\n", mod->name);
 
1002		ret = -EBUSY;
1003		goto out;
1004	}
1005
1006	/* If it has an init func, it must have an exit func to unload */
1007	if (mod->init && !mod->exit) {
1008		forced = try_force_unload(flags);
1009		if (!forced) {
1010			/* This module can't be removed */
1011			ret = -EBUSY;
1012			goto out;
1013		}
1014	}
1015
 
 
 
1016	/* Stop the machine so refcounts can't move and disable module. */
1017	ret = try_stop_module(mod, flags, &forced);
1018	if (ret != 0)
1019		goto out;
1020
 
 
 
 
1021	mutex_unlock(&module_mutex);
1022	/* Final destruction now no one is using it. */
1023	if (mod->exit != NULL)
1024		mod->exit();
1025	blocking_notifier_call_chain(&module_notify_list,
1026				     MODULE_STATE_GOING, mod);
1027	klp_module_going(mod);
1028	ftrace_release_mod(mod);
1029
1030	async_synchronize_full();
1031
1032	/* Store the name of the last unloaded module for diagnostic purposes */
1033	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1034
1035	free_module(mod);
1036	return 0;
1037out:
1038	mutex_unlock(&module_mutex);
1039	return ret;
1040}
1041
1042static inline void print_unload_info(struct seq_file *m, struct module *mod)
1043{
1044	struct module_use *use;
1045	int printed_something = 0;
1046
1047	seq_printf(m, " %i ", module_refcount(mod));
1048
1049	/*
1050	 * Always include a trailing , so userspace can differentiate
1051	 * between this and the old multi-field proc format.
1052	 */
1053	list_for_each_entry(use, &mod->source_list, source_list) {
1054		printed_something = 1;
1055		seq_printf(m, "%s,", use->source->name);
1056	}
1057
1058	if (mod->init != NULL && mod->exit == NULL) {
1059		printed_something = 1;
1060		seq_puts(m, "[permanent],");
1061	}
1062
1063	if (!printed_something)
1064		seq_puts(m, "-");
1065}
1066
1067void __symbol_put(const char *symbol)
1068{
1069	struct module *owner;
1070
1071	preempt_disable();
1072	if (!find_symbol(symbol, &owner, NULL, true, false))
1073		BUG();
1074	module_put(owner);
1075	preempt_enable();
1076}
1077EXPORT_SYMBOL(__symbol_put);
1078
1079/* Note this assumes addr is a function, which it currently always is. */
1080void symbol_put_addr(void *addr)
1081{
1082	struct module *modaddr;
1083	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1084
1085	if (core_kernel_text(a))
1086		return;
1087
1088	/*
1089	 * Even though we hold a reference on the module; we still need to
1090	 * disable preemption in order to safely traverse the data structure.
1091	 */
1092	preempt_disable();
1093	modaddr = __module_text_address(a);
1094	BUG_ON(!modaddr);
1095	module_put(modaddr);
1096	preempt_enable();
1097}
1098EXPORT_SYMBOL_GPL(symbol_put_addr);
1099
1100static ssize_t show_refcnt(struct module_attribute *mattr,
1101			   struct module_kobject *mk, char *buffer)
1102{
1103	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1104}
1105
1106static struct module_attribute modinfo_refcnt =
1107	__ATTR(refcnt, 0444, show_refcnt, NULL);
1108
1109void __module_get(struct module *module)
1110{
1111	if (module) {
1112		preempt_disable();
1113		atomic_inc(&module->refcnt);
1114		trace_module_get(module, _RET_IP_);
1115		preempt_enable();
1116	}
1117}
1118EXPORT_SYMBOL(__module_get);
1119
1120bool try_module_get(struct module *module)
1121{
1122	bool ret = true;
1123
1124	if (module) {
1125		preempt_disable();
1126		/* Note: here, we can fail to get a reference */
1127		if (likely(module_is_live(module) &&
1128			   atomic_inc_not_zero(&module->refcnt) != 0))
1129			trace_module_get(module, _RET_IP_);
1130		else
1131			ret = false;
1132
1133		preempt_enable();
1134	}
1135	return ret;
1136}
1137EXPORT_SYMBOL(try_module_get);
1138
1139void module_put(struct module *module)
1140{
1141	int ret;
1142
1143	if (module) {
1144		preempt_disable();
1145		ret = atomic_dec_if_positive(&module->refcnt);
1146		WARN_ON(ret < 0);	/* Failed to put refcount */
 
1147		trace_module_put(module, _RET_IP_);
 
 
 
1148		preempt_enable();
1149	}
1150}
1151EXPORT_SYMBOL(module_put);
1152
1153#else /* !CONFIG_MODULE_UNLOAD */
1154static inline void print_unload_info(struct seq_file *m, struct module *mod)
1155{
1156	/* We don't know the usage count, or what modules are using. */
1157	seq_puts(m, " - -");
1158}
1159
1160static inline void module_unload_free(struct module *mod)
1161{
1162}
1163
1164int ref_module(struct module *a, struct module *b)
1165{
1166	return strong_try_module_get(b);
1167}
1168EXPORT_SYMBOL_GPL(ref_module);
1169
1170static inline int module_unload_init(struct module *mod)
1171{
1172	return 0;
1173}
1174#endif /* CONFIG_MODULE_UNLOAD */
1175
1176static size_t module_flags_taint(struct module *mod, char *buf)
1177{
1178	size_t l = 0;
1179	int i;
1180
1181	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1182		if (taint_flags[i].module && test_bit(i, &mod->taints))
1183			buf[l++] = taint_flags[i].c_true;
1184	}
1185
1186	return l;
1187}
1188
1189static ssize_t show_initstate(struct module_attribute *mattr,
1190			      struct module_kobject *mk, char *buffer)
1191{
1192	const char *state = "unknown";
1193
1194	switch (mk->mod->state) {
1195	case MODULE_STATE_LIVE:
1196		state = "live";
1197		break;
1198	case MODULE_STATE_COMING:
1199		state = "coming";
1200		break;
1201	case MODULE_STATE_GOING:
1202		state = "going";
1203		break;
1204	default:
1205		BUG();
1206	}
1207	return sprintf(buffer, "%s\n", state);
1208}
1209
1210static struct module_attribute modinfo_initstate =
1211	__ATTR(initstate, 0444, show_initstate, NULL);
 
 
1212
1213static ssize_t store_uevent(struct module_attribute *mattr,
1214			    struct module_kobject *mk,
1215			    const char *buffer, size_t count)
1216{
1217	int rc;
1218
1219	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1220	return rc ? rc : count;
1221}
1222
1223struct module_attribute module_uevent =
1224	__ATTR(uevent, 0200, NULL, store_uevent);
1225
1226static ssize_t show_coresize(struct module_attribute *mattr,
1227			     struct module_kobject *mk, char *buffer)
1228{
1229	return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1230}
1231
1232static struct module_attribute modinfo_coresize =
1233	__ATTR(coresize, 0444, show_coresize, NULL);
1234
1235static ssize_t show_initsize(struct module_attribute *mattr,
1236			     struct module_kobject *mk, char *buffer)
1237{
1238	return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1239}
1240
1241static struct module_attribute modinfo_initsize =
1242	__ATTR(initsize, 0444, show_initsize, NULL);
1243
1244static ssize_t show_taint(struct module_attribute *mattr,
1245			  struct module_kobject *mk, char *buffer)
1246{
1247	size_t l;
1248
1249	l = module_flags_taint(mk->mod, buffer);
1250	buffer[l++] = '\n';
1251	return l;
1252}
1253
1254static struct module_attribute modinfo_taint =
1255	__ATTR(taint, 0444, show_taint, NULL);
 
 
1256
1257static struct module_attribute *modinfo_attrs[] = {
1258	&module_uevent,
1259	&modinfo_version,
1260	&modinfo_srcversion,
1261	&modinfo_initstate,
1262	&modinfo_coresize,
1263	&modinfo_initsize,
1264	&modinfo_taint,
1265#ifdef CONFIG_MODULE_UNLOAD
1266	&modinfo_refcnt,
1267#endif
1268	NULL,
1269};
1270
1271static const char vermagic[] = VERMAGIC_STRING;
1272
1273static int try_to_force_load(struct module *mod, const char *reason)
1274{
1275#ifdef CONFIG_MODULE_FORCE_LOAD
1276	if (!test_taint(TAINT_FORCED_MODULE))
1277		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1278	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
 
1279	return 0;
1280#else
1281	return -ENOEXEC;
1282#endif
1283}
1284
1285#ifdef CONFIG_MODVERSIONS
1286
1287static u32 resolve_rel_crc(const s32 *crc)
 
1288{
1289	return *(u32 *)((void *)crc + *crc);
 
 
 
 
1290}
1291
1292static int check_version(const struct load_info *info,
 
1293			 const char *symname,
1294			 struct module *mod,
1295			 const s32 *crc)
 
1296{
1297	Elf_Shdr *sechdrs = info->sechdrs;
1298	unsigned int versindex = info->index.vers;
1299	unsigned int i, num_versions;
1300	struct modversion_info *versions;
1301
1302	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1303	if (!crc)
1304		return 1;
1305
1306	/* No versions at all?  modprobe --force does this. */
1307	if (versindex == 0)
1308		return try_to_force_load(mod, symname) == 0;
1309
1310	versions = (void *) sechdrs[versindex].sh_addr;
1311	num_versions = sechdrs[versindex].sh_size
1312		/ sizeof(struct modversion_info);
1313
1314	for (i = 0; i < num_versions; i++) {
1315		u32 crcval;
1316
1317		if (strcmp(versions[i].name, symname) != 0)
1318			continue;
1319
1320		if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1321			crcval = resolve_rel_crc(crc);
1322		else
1323			crcval = *crc;
1324		if (versions[i].crc == crcval)
1325			return 1;
1326		pr_debug("Found checksum %X vs module %lX\n",
1327			 crcval, versions[i].crc);
1328		goto bad_version;
1329	}
1330
1331	/* Broken toolchain. Warn once, then let it go.. */
1332	pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1333	return 1;
1334
1335bad_version:
1336	pr_warn("%s: disagrees about version of symbol %s\n",
1337	       info->name, symname);
1338	return 0;
1339}
1340
1341static inline int check_modstruct_version(const struct load_info *info,
 
1342					  struct module *mod)
1343{
1344	const s32 *crc;
1345
1346	/*
1347	 * Since this should be found in kernel (which can't be removed), no
1348	 * locking is necessary -- use preempt_disable() to placate lockdep.
1349	 */
1350	preempt_disable();
1351	if (!find_symbol("module_layout", NULL, &crc, true, false)) {
1352		preempt_enable();
1353		BUG();
1354	}
1355	preempt_enable();
1356	return check_version(info, "module_layout", mod, crc);
1357}
1358
1359/* First part is kernel version, which we ignore if module has crcs. */
1360static inline int same_magic(const char *amagic, const char *bmagic,
1361			     bool has_crcs)
1362{
1363	if (has_crcs) {
1364		amagic += strcspn(amagic, " ");
1365		bmagic += strcspn(bmagic, " ");
1366	}
1367	return strcmp(amagic, bmagic) == 0;
1368}
1369#else
1370static inline int check_version(const struct load_info *info,
 
1371				const char *symname,
1372				struct module *mod,
1373				const s32 *crc)
 
1374{
1375	return 1;
1376}
1377
1378static inline int check_modstruct_version(const struct load_info *info,
 
1379					  struct module *mod)
1380{
1381	return 1;
1382}
1383
1384static inline int same_magic(const char *amagic, const char *bmagic,
1385			     bool has_crcs)
1386{
1387	return strcmp(amagic, bmagic) == 0;
1388}
1389#endif /* CONFIG_MODVERSIONS */
1390
1391static char *get_modinfo(const struct load_info *info, const char *tag);
1392static char *get_next_modinfo(const struct load_info *info, const char *tag,
1393			      char *prev);
1394
1395static int verify_namespace_is_imported(const struct load_info *info,
1396					const struct kernel_symbol *sym,
1397					struct module *mod)
1398{
1399	const char *namespace;
1400	char *imported_namespace;
1401
1402	namespace = kernel_symbol_namespace(sym);
1403	if (namespace) {
1404		imported_namespace = get_modinfo(info, "import_ns");
1405		while (imported_namespace) {
1406			if (strcmp(namespace, imported_namespace) == 0)
1407				return 0;
1408			imported_namespace = get_next_modinfo(
1409				info, "import_ns", imported_namespace);
1410		}
1411#ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1412		pr_warn(
1413#else
1414		pr_err(
1415#endif
1416			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1417			mod->name, kernel_symbol_name(sym), namespace);
1418#ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1419		return -EINVAL;
1420#endif
1421	}
1422	return 0;
1423}
1424
1425
1426/* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1427static const struct kernel_symbol *resolve_symbol(struct module *mod,
1428						  const struct load_info *info,
1429						  const char *name,
1430						  char ownername[])
1431{
1432	struct module *owner;
1433	const struct kernel_symbol *sym;
1434	const s32 *crc;
1435	int err;
1436
1437	/*
1438	 * The module_mutex should not be a heavily contended lock;
1439	 * if we get the occasional sleep here, we'll go an extra iteration
1440	 * in the wait_event_interruptible(), which is harmless.
1441	 */
1442	sched_annotate_sleep();
1443	mutex_lock(&module_mutex);
1444	sym = find_symbol(name, &owner, &crc,
1445			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1446	if (!sym)
1447		goto unlock;
1448
1449	if (!check_version(info, name, mod, crc)) {
 
1450		sym = ERR_PTR(-EINVAL);
1451		goto getname;
1452	}
1453
1454	err = verify_namespace_is_imported(info, sym, mod);
1455	if (err) {
1456		sym = ERR_PTR(err);
1457		goto getname;
1458	}
1459
1460	err = ref_module(mod, owner);
1461	if (err) {
1462		sym = ERR_PTR(err);
1463		goto getname;
1464	}
1465
1466getname:
1467	/* We must make copy under the lock if we failed to get ref. */
1468	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1469unlock:
1470	mutex_unlock(&module_mutex);
1471	return sym;
1472}
1473
1474static const struct kernel_symbol *
1475resolve_symbol_wait(struct module *mod,
1476		    const struct load_info *info,
1477		    const char *name)
1478{
1479	const struct kernel_symbol *ksym;
1480	char owner[MODULE_NAME_LEN];
1481
1482	if (wait_event_interruptible_timeout(module_wq,
1483			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1484			|| PTR_ERR(ksym) != -EBUSY,
1485					     30 * HZ) <= 0) {
1486		pr_warn("%s: gave up waiting for init of module %s.\n",
1487			mod->name, owner);
1488	}
1489	return ksym;
1490}
1491
1492/*
1493 * /sys/module/foo/sections stuff
1494 * J. Corbet <corbet@lwn.net>
1495 */
1496#ifdef CONFIG_SYSFS
1497
1498#ifdef CONFIG_KALLSYMS
1499static inline bool sect_empty(const Elf_Shdr *sect)
1500{
1501	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1502}
1503
1504struct module_sect_attr {
 
1505	struct module_attribute mattr;
1506	char *name;
1507	unsigned long address;
1508};
1509
1510struct module_sect_attrs {
 
1511	struct attribute_group grp;
1512	unsigned int nsections;
1513	struct module_sect_attr attrs[0];
1514};
1515
1516static ssize_t module_sect_show(struct module_attribute *mattr,
1517				struct module_kobject *mk, char *buf)
1518{
1519	struct module_sect_attr *sattr =
1520		container_of(mattr, struct module_sect_attr, mattr);
1521	return sprintf(buf, "0x%px\n", kptr_restrict < 2 ?
1522		       (void *)sattr->address : NULL);
1523}
1524
1525static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1526{
1527	unsigned int section;
1528
1529	for (section = 0; section < sect_attrs->nsections; section++)
1530		kfree(sect_attrs->attrs[section].name);
1531	kfree(sect_attrs);
1532}
1533
1534static void add_sect_attrs(struct module *mod, const struct load_info *info)
1535{
1536	unsigned int nloaded = 0, i, size[2];
1537	struct module_sect_attrs *sect_attrs;
1538	struct module_sect_attr *sattr;
1539	struct attribute **gattr;
1540
1541	/* Count loaded sections and allocate structures */
1542	for (i = 0; i < info->hdr->e_shnum; i++)
1543		if (!sect_empty(&info->sechdrs[i]))
1544			nloaded++;
1545	size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
 
1546			sizeof(sect_attrs->grp.attrs[0]));
1547	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1548	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1549	if (sect_attrs == NULL)
1550		return;
1551
1552	/* Setup section attributes. */
1553	sect_attrs->grp.name = "sections";
1554	sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1555
1556	sect_attrs->nsections = 0;
1557	sattr = &sect_attrs->attrs[0];
1558	gattr = &sect_attrs->grp.attrs[0];
1559	for (i = 0; i < info->hdr->e_shnum; i++) {
1560		Elf_Shdr *sec = &info->sechdrs[i];
1561		if (sect_empty(sec))
1562			continue;
1563		sattr->address = sec->sh_addr;
1564		sattr->name = kstrdup(info->secstrings + sec->sh_name,
1565					GFP_KERNEL);
1566		if (sattr->name == NULL)
1567			goto out;
1568		sect_attrs->nsections++;
1569		sysfs_attr_init(&sattr->mattr.attr);
1570		sattr->mattr.show = module_sect_show;
1571		sattr->mattr.store = NULL;
1572		sattr->mattr.attr.name = sattr->name;
1573		sattr->mattr.attr.mode = S_IRUSR;
1574		*(gattr++) = &(sattr++)->mattr.attr;
1575	}
1576	*gattr = NULL;
1577
1578	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1579		goto out;
1580
1581	mod->sect_attrs = sect_attrs;
1582	return;
1583  out:
1584	free_sect_attrs(sect_attrs);
1585}
1586
1587static void remove_sect_attrs(struct module *mod)
1588{
1589	if (mod->sect_attrs) {
1590		sysfs_remove_group(&mod->mkobj.kobj,
1591				   &mod->sect_attrs->grp);
1592		/* We are positive that no one is using any sect attrs
1593		 * at this point.  Deallocate immediately. */
1594		free_sect_attrs(mod->sect_attrs);
1595		mod->sect_attrs = NULL;
1596	}
1597}
1598
1599/*
1600 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1601 */
1602
1603struct module_notes_attrs {
1604	struct kobject *dir;
1605	unsigned int notes;
1606	struct bin_attribute attrs[0];
1607};
1608
1609static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1610				 struct bin_attribute *bin_attr,
1611				 char *buf, loff_t pos, size_t count)
1612{
1613	/*
1614	 * The caller checked the pos and count against our size.
1615	 */
1616	memcpy(buf, bin_attr->private + pos, count);
1617	return count;
1618}
1619
1620static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1621			     unsigned int i)
1622{
1623	if (notes_attrs->dir) {
1624		while (i-- > 0)
1625			sysfs_remove_bin_file(notes_attrs->dir,
1626					      &notes_attrs->attrs[i]);
1627		kobject_put(notes_attrs->dir);
1628	}
1629	kfree(notes_attrs);
1630}
1631
1632static void add_notes_attrs(struct module *mod, const struct load_info *info)
1633{
1634	unsigned int notes, loaded, i;
1635	struct module_notes_attrs *notes_attrs;
1636	struct bin_attribute *nattr;
1637
1638	/* failed to create section attributes, so can't create notes */
1639	if (!mod->sect_attrs)
1640		return;
1641
1642	/* Count notes sections and allocate structures.  */
1643	notes = 0;
1644	for (i = 0; i < info->hdr->e_shnum; i++)
1645		if (!sect_empty(&info->sechdrs[i]) &&
1646		    (info->sechdrs[i].sh_type == SHT_NOTE))
1647			++notes;
1648
1649	if (notes == 0)
1650		return;
1651
1652	notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
 
1653			      GFP_KERNEL);
1654	if (notes_attrs == NULL)
1655		return;
1656
1657	notes_attrs->notes = notes;
1658	nattr = &notes_attrs->attrs[0];
1659	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1660		if (sect_empty(&info->sechdrs[i]))
1661			continue;
1662		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1663			sysfs_bin_attr_init(nattr);
1664			nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1665			nattr->attr.mode = S_IRUGO;
1666			nattr->size = info->sechdrs[i].sh_size;
1667			nattr->private = (void *) info->sechdrs[i].sh_addr;
1668			nattr->read = module_notes_read;
1669			++nattr;
1670		}
1671		++loaded;
1672	}
1673
1674	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1675	if (!notes_attrs->dir)
1676		goto out;
1677
1678	for (i = 0; i < notes; ++i)
1679		if (sysfs_create_bin_file(notes_attrs->dir,
1680					  &notes_attrs->attrs[i]))
1681			goto out;
1682
1683	mod->notes_attrs = notes_attrs;
1684	return;
1685
1686  out:
1687	free_notes_attrs(notes_attrs, i);
1688}
1689
1690static void remove_notes_attrs(struct module *mod)
1691{
1692	if (mod->notes_attrs)
1693		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1694}
1695
1696#else
1697
1698static inline void add_sect_attrs(struct module *mod,
1699				  const struct load_info *info)
1700{
1701}
1702
1703static inline void remove_sect_attrs(struct module *mod)
1704{
1705}
1706
1707static inline void add_notes_attrs(struct module *mod,
1708				   const struct load_info *info)
1709{
1710}
1711
1712static inline void remove_notes_attrs(struct module *mod)
1713{
1714}
1715#endif /* CONFIG_KALLSYMS */
1716
1717static void del_usage_links(struct module *mod)
1718{
1719#ifdef CONFIG_MODULE_UNLOAD
1720	struct module_use *use;
 
1721
1722	mutex_lock(&module_mutex);
1723	list_for_each_entry(use, &mod->target_list, target_list)
1724		sysfs_remove_link(use->target->holders_dir, mod->name);
 
 
1725	mutex_unlock(&module_mutex);
1726#endif
1727}
1728
1729static int add_usage_links(struct module *mod)
1730{
1731	int ret = 0;
1732#ifdef CONFIG_MODULE_UNLOAD
1733	struct module_use *use;
1734
1735	mutex_lock(&module_mutex);
1736	list_for_each_entry(use, &mod->target_list, target_list) {
1737		ret = sysfs_create_link(use->target->holders_dir,
1738					&mod->mkobj.kobj, mod->name);
1739		if (ret)
1740			break;
1741	}
1742	mutex_unlock(&module_mutex);
1743	if (ret)
1744		del_usage_links(mod);
1745#endif
1746	return ret;
1747}
1748
1749static void module_remove_modinfo_attrs(struct module *mod, int end);
1750
1751static int module_add_modinfo_attrs(struct module *mod)
1752{
1753	struct module_attribute *attr;
1754	struct module_attribute *temp_attr;
1755	int error = 0;
1756	int i;
1757
1758	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1759					(ARRAY_SIZE(modinfo_attrs) + 1)),
1760					GFP_KERNEL);
1761	if (!mod->modinfo_attrs)
1762		return -ENOMEM;
1763
1764	temp_attr = mod->modinfo_attrs;
1765	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1766		if (!attr->test || attr->test(mod)) {
 
1767			memcpy(temp_attr, attr, sizeof(*temp_attr));
1768			sysfs_attr_init(&temp_attr->attr);
1769			error = sysfs_create_file(&mod->mkobj.kobj,
1770					&temp_attr->attr);
1771			if (error)
1772				goto error_out;
1773			++temp_attr;
1774		}
1775	}
1776
1777	return 0;
1778
1779error_out:
1780	if (i > 0)
1781		module_remove_modinfo_attrs(mod, --i);
1782	return error;
1783}
1784
1785static void module_remove_modinfo_attrs(struct module *mod, int end)
1786{
1787	struct module_attribute *attr;
1788	int i;
1789
1790	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1791		if (end >= 0 && i > end)
1792			break;
1793		/* pick a field to test for end of list */
1794		if (!attr->attr.name)
1795			break;
1796		sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1797		if (attr->free)
1798			attr->free(mod);
1799	}
1800	kfree(mod->modinfo_attrs);
1801}
1802
1803static void mod_kobject_put(struct module *mod)
1804{
1805	DECLARE_COMPLETION_ONSTACK(c);
1806	mod->mkobj.kobj_completion = &c;
1807	kobject_put(&mod->mkobj.kobj);
1808	wait_for_completion(&c);
1809}
1810
1811static int mod_sysfs_init(struct module *mod)
1812{
1813	int err;
1814	struct kobject *kobj;
1815
1816	if (!module_sysfs_initialized) {
1817		pr_err("%s: module sysfs not initialized\n", mod->name);
 
1818		err = -EINVAL;
1819		goto out;
1820	}
1821
1822	kobj = kset_find_obj(module_kset, mod->name);
1823	if (kobj) {
1824		pr_err("%s: module is already loaded\n", mod->name);
1825		kobject_put(kobj);
1826		err = -EINVAL;
1827		goto out;
1828	}
1829
1830	mod->mkobj.mod = mod;
1831
1832	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1833	mod->mkobj.kobj.kset = module_kset;
1834	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1835				   "%s", mod->name);
1836	if (err)
1837		mod_kobject_put(mod);
1838
1839	/* delay uevent until full sysfs population */
1840out:
1841	return err;
1842}
1843
1844static int mod_sysfs_setup(struct module *mod,
1845			   const struct load_info *info,
1846			   struct kernel_param *kparam,
1847			   unsigned int num_params)
1848{
1849	int err;
1850
1851	err = mod_sysfs_init(mod);
1852	if (err)
1853		goto out;
1854
1855	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1856	if (!mod->holders_dir) {
1857		err = -ENOMEM;
1858		goto out_unreg;
1859	}
1860
1861	err = module_param_sysfs_setup(mod, kparam, num_params);
1862	if (err)
1863		goto out_unreg_holders;
1864
1865	err = module_add_modinfo_attrs(mod);
1866	if (err)
1867		goto out_unreg_param;
1868
1869	err = add_usage_links(mod);
1870	if (err)
1871		goto out_unreg_modinfo_attrs;
1872
1873	add_sect_attrs(mod, info);
1874	add_notes_attrs(mod, info);
1875
1876	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1877	return 0;
1878
1879out_unreg_modinfo_attrs:
1880	module_remove_modinfo_attrs(mod, -1);
1881out_unreg_param:
1882	module_param_sysfs_remove(mod);
1883out_unreg_holders:
1884	kobject_put(mod->holders_dir);
1885out_unreg:
1886	mod_kobject_put(mod);
1887out:
1888	return err;
1889}
1890
1891static void mod_sysfs_fini(struct module *mod)
1892{
1893	remove_notes_attrs(mod);
1894	remove_sect_attrs(mod);
1895	mod_kobject_put(mod);
1896}
1897
1898static void init_param_lock(struct module *mod)
1899{
1900	mutex_init(&mod->param_lock);
1901}
1902#else /* !CONFIG_SYSFS */
1903
1904static int mod_sysfs_setup(struct module *mod,
1905			   const struct load_info *info,
1906			   struct kernel_param *kparam,
1907			   unsigned int num_params)
1908{
1909	return 0;
1910}
1911
1912static void mod_sysfs_fini(struct module *mod)
1913{
1914}
1915
1916static void module_remove_modinfo_attrs(struct module *mod, int end)
1917{
1918}
1919
1920static void del_usage_links(struct module *mod)
1921{
1922}
1923
1924static void init_param_lock(struct module *mod)
1925{
1926}
1927#endif /* CONFIG_SYSFS */
1928
1929static void mod_sysfs_teardown(struct module *mod)
1930{
1931	del_usage_links(mod);
1932	module_remove_modinfo_attrs(mod, -1);
1933	module_param_sysfs_remove(mod);
1934	kobject_put(mod->mkobj.drivers_dir);
1935	kobject_put(mod->holders_dir);
1936	mod_sysfs_fini(mod);
1937}
1938
1939#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
1940/*
1941 * LKM RO/NX protection: protect module's text/ro-data
1942 * from modification and any data from execution.
1943 *
1944 * General layout of module is:
1945 *          [text] [read-only-data] [ro-after-init] [writable data]
1946 * text_size -----^                ^               ^               ^
1947 * ro_size ------------------------|               |               |
1948 * ro_after_init_size -----------------------------|               |
1949 * size -----------------------------------------------------------|
1950 *
1951 * These values are always page-aligned (as is base)
1952 */
1953static void frob_text(const struct module_layout *layout,
1954		      int (*set_memory)(unsigned long start, int num_pages))
1955{
1956	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1957	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1958	set_memory((unsigned long)layout->base,
1959		   layout->text_size >> PAGE_SHIFT);
1960}
1961
1962#ifdef CONFIG_STRICT_MODULE_RWX
1963static void frob_rodata(const struct module_layout *layout,
1964			int (*set_memory)(unsigned long start, int num_pages))
 
 
 
1965{
1966	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1967	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1968	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1969	set_memory((unsigned long)layout->base + layout->text_size,
1970		   (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1971}
1972
1973static void frob_ro_after_init(const struct module_layout *layout,
1974				int (*set_memory)(unsigned long start, int num_pages))
1975{
1976	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1977	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1978	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1979	set_memory((unsigned long)layout->base + layout->ro_size,
1980		   (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1981}
1982
1983static void frob_writable_data(const struct module_layout *layout,
1984			       int (*set_memory)(unsigned long start, int num_pages))
 
 
1985{
1986	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1987	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1988	BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1989	set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1990		   (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1991}
1992
1993/* livepatching wants to disable read-only so it can frob module. */
1994void module_disable_ro(const struct module *mod)
1995{
1996	if (!rodata_enabled)
1997		return;
 
 
1998
1999	frob_text(&mod->core_layout, set_memory_rw);
2000	frob_rodata(&mod->core_layout, set_memory_rw);
2001	frob_ro_after_init(&mod->core_layout, set_memory_rw);
2002	frob_text(&mod->init_layout, set_memory_rw);
2003	frob_rodata(&mod->init_layout, set_memory_rw);
 
 
 
 
 
 
2004}
2005
2006void module_enable_ro(const struct module *mod, bool after_init)
2007{
2008	if (!rodata_enabled)
2009		return;
2010
2011	set_vm_flush_reset_perms(mod->core_layout.base);
2012	set_vm_flush_reset_perms(mod->init_layout.base);
2013	frob_text(&mod->core_layout, set_memory_ro);
2014
2015	frob_rodata(&mod->core_layout, set_memory_ro);
2016	frob_text(&mod->init_layout, set_memory_ro);
2017	frob_rodata(&mod->init_layout, set_memory_ro);
2018
2019	if (after_init)
2020		frob_ro_after_init(&mod->core_layout, set_memory_ro);
2021}
2022
2023static void module_enable_nx(const struct module *mod)
2024{
2025	frob_rodata(&mod->core_layout, set_memory_nx);
2026	frob_ro_after_init(&mod->core_layout, set_memory_nx);
2027	frob_writable_data(&mod->core_layout, set_memory_nx);
2028	frob_rodata(&mod->init_layout, set_memory_nx);
2029	frob_writable_data(&mod->init_layout, set_memory_nx);
 
2030}
2031
2032/* Iterate through all modules and set each module's text as RW */
2033void set_all_modules_text_rw(void)
2034{
2035	struct module *mod;
2036
2037	if (!rodata_enabled)
2038		return;
2039
2040	mutex_lock(&module_mutex);
2041	list_for_each_entry_rcu(mod, &modules, list) {
2042		if (mod->state == MODULE_STATE_UNFORMED)
2043			continue;
2044
2045		frob_text(&mod->core_layout, set_memory_rw);
2046		frob_text(&mod->init_layout, set_memory_rw);
 
 
 
 
 
2047	}
2048	mutex_unlock(&module_mutex);
2049}
2050
2051/* Iterate through all modules and set each module's text as RO */
2052void set_all_modules_text_ro(void)
2053{
2054	struct module *mod;
2055
2056	if (!rodata_enabled)
2057		return;
2058
2059	mutex_lock(&module_mutex);
2060	list_for_each_entry_rcu(mod, &modules, list) {
2061		/*
2062		 * Ignore going modules since it's possible that ro
2063		 * protection has already been disabled, otherwise we'll
2064		 * run into protection faults at module deallocation.
2065		 */
2066		if (mod->state == MODULE_STATE_UNFORMED ||
2067			mod->state == MODULE_STATE_GOING)
2068			continue;
2069
2070		frob_text(&mod->core_layout, set_memory_ro);
2071		frob_text(&mod->init_layout, set_memory_ro);
2072	}
2073	mutex_unlock(&module_mutex);
2074}
2075#else /* !CONFIG_STRICT_MODULE_RWX */
2076static void module_enable_nx(const struct module *mod) { }
2077#endif /*  CONFIG_STRICT_MODULE_RWX */
2078static void module_enable_x(const struct module *mod)
2079{
2080	frob_text(&mod->core_layout, set_memory_x);
2081	frob_text(&mod->init_layout, set_memory_x);
2082}
2083#else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2084static void module_enable_nx(const struct module *mod) { }
2085static void module_enable_x(const struct module *mod) { }
2086#endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2087
2088
2089#ifdef CONFIG_LIVEPATCH
2090/*
2091 * Persist Elf information about a module. Copy the Elf header,
2092 * section header table, section string table, and symtab section
2093 * index from info to mod->klp_info.
2094 */
2095static int copy_module_elf(struct module *mod, struct load_info *info)
2096{
2097	unsigned int size, symndx;
2098	int ret;
2099
2100	size = sizeof(*mod->klp_info);
2101	mod->klp_info = kmalloc(size, GFP_KERNEL);
2102	if (mod->klp_info == NULL)
2103		return -ENOMEM;
2104
2105	/* Elf header */
2106	size = sizeof(mod->klp_info->hdr);
2107	memcpy(&mod->klp_info->hdr, info->hdr, size);
2108
2109	/* Elf section header table */
2110	size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2111	mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2112	if (mod->klp_info->sechdrs == NULL) {
2113		ret = -ENOMEM;
2114		goto free_info;
2115	}
2116
2117	/* Elf section name string table */
2118	size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2119	mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2120	if (mod->klp_info->secstrings == NULL) {
2121		ret = -ENOMEM;
2122		goto free_sechdrs;
2123	}
2124
2125	/* Elf symbol section index */
2126	symndx = info->index.sym;
2127	mod->klp_info->symndx = symndx;
2128
2129	/*
2130	 * For livepatch modules, core_kallsyms.symtab is a complete
2131	 * copy of the original symbol table. Adjust sh_addr to point
2132	 * to core_kallsyms.symtab since the copy of the symtab in module
2133	 * init memory is freed at the end of do_init_module().
2134	 */
2135	mod->klp_info->sechdrs[symndx].sh_addr = \
2136		(unsigned long) mod->core_kallsyms.symtab;
2137
2138	return 0;
2139
2140free_sechdrs:
2141	kfree(mod->klp_info->sechdrs);
2142free_info:
2143	kfree(mod->klp_info);
2144	return ret;
2145}
2146
2147static void free_module_elf(struct module *mod)
2148{
2149	kfree(mod->klp_info->sechdrs);
2150	kfree(mod->klp_info->secstrings);
2151	kfree(mod->klp_info);
2152}
2153#else /* !CONFIG_LIVEPATCH */
2154static int copy_module_elf(struct module *mod, struct load_info *info)
2155{
2156	return 0;
2157}
2158
2159static void free_module_elf(struct module *mod)
2160{
2161}
2162#endif /* CONFIG_LIVEPATCH */
2163
2164void __weak module_memfree(void *module_region)
2165{
2166	/*
2167	 * This memory may be RO, and freeing RO memory in an interrupt is not
2168	 * supported by vmalloc.
2169	 */
2170	WARN_ON(in_interrupt());
2171	vfree(module_region);
2172}
2173
2174void __weak module_arch_cleanup(struct module *mod)
2175{
2176}
2177
2178void __weak module_arch_freeing_init(struct module *mod)
2179{
2180}
2181
2182/* Free a module, remove from lists, etc. */
2183static void free_module(struct module *mod)
2184{
2185	trace_module_free(mod);
2186
2187	mod_sysfs_teardown(mod);
2188
2189	/* We leave it in list to prevent duplicate loads, but make sure
2190	 * that noone uses it while it's being deconstructed. */
2191	mutex_lock(&module_mutex);
2192	mod->state = MODULE_STATE_UNFORMED;
2193	mutex_unlock(&module_mutex);
 
2194
2195	/* Remove dynamic debug info */
2196	ddebug_remove_module(mod->name);
2197
2198	/* Arch-specific cleanup. */
2199	module_arch_cleanup(mod);
2200
2201	/* Module unload stuff */
2202	module_unload_free(mod);
2203
2204	/* Free any allocated parameters. */
2205	destroy_params(mod->kp, mod->num_kp);
2206
2207	if (is_livepatch_module(mod))
2208		free_module_elf(mod);
2209
2210	/* Now we can delete it from the lists */
2211	mutex_lock(&module_mutex);
2212	/* Unlink carefully: kallsyms could be walking list. */
2213	list_del_rcu(&mod->list);
2214	mod_tree_remove(mod);
2215	/* Remove this module from bug list, this uses list_del_rcu */
2216	module_bug_cleanup(mod);
2217	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2218	synchronize_rcu();
2219	mutex_unlock(&module_mutex);
2220
2221	/* This may be empty, but that's OK */
2222	module_arch_freeing_init(mod);
2223	module_memfree(mod->init_layout.base);
2224	kfree(mod->args);
2225	percpu_modfree(mod);
2226
2227	/* Free lock-classes; relies on the preceding sync_rcu(). */
2228	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2229
2230	/* Finally, free the core (containing the module structure) */
2231	module_memfree(mod->core_layout.base);
 
 
 
 
 
2232}
2233
2234void *__symbol_get(const char *symbol)
2235{
2236	struct module *owner;
2237	const struct kernel_symbol *sym;
2238
2239	preempt_disable();
2240	sym = find_symbol(symbol, &owner, NULL, true, true);
2241	if (sym && strong_try_module_get(owner))
2242		sym = NULL;
2243	preempt_enable();
2244
2245	return sym ? (void *)kernel_symbol_value(sym) : NULL;
2246}
2247EXPORT_SYMBOL_GPL(__symbol_get);
2248
2249/*
2250 * Ensure that an exported symbol [global namespace] does not already exist
2251 * in the kernel or in some other module's exported symbol table.
2252 *
2253 * You must hold the module_mutex.
2254 */
2255static int verify_exported_symbols(struct module *mod)
2256{
2257	unsigned int i;
2258	struct module *owner;
2259	const struct kernel_symbol *s;
2260	struct {
2261		const struct kernel_symbol *sym;
2262		unsigned int num;
2263	} arr[] = {
2264		{ mod->syms, mod->num_syms },
2265		{ mod->gpl_syms, mod->num_gpl_syms },
2266		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
2267#ifdef CONFIG_UNUSED_SYMBOLS
2268		{ mod->unused_syms, mod->num_unused_syms },
2269		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2270#endif
2271	};
2272
2273	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2274		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2275			if (find_symbol(kernel_symbol_name(s), &owner, NULL,
2276					true, false)) {
2277				pr_err("%s: exports duplicate symbol %s"
2278				       " (owned by %s)\n",
2279				       mod->name, kernel_symbol_name(s),
2280				       module_name(owner));
2281				return -ENOEXEC;
2282			}
2283		}
2284	}
2285	return 0;
2286}
2287
2288/* Change all symbols so that st_value encodes the pointer directly. */
2289static int simplify_symbols(struct module *mod, const struct load_info *info)
2290{
2291	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2292	Elf_Sym *sym = (void *)symsec->sh_addr;
2293	unsigned long secbase;
2294	unsigned int i;
2295	int ret = 0;
2296	const struct kernel_symbol *ksym;
2297
2298	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2299		const char *name = info->strtab + sym[i].st_name;
2300
2301		switch (sym[i].st_shndx) {
2302		case SHN_COMMON:
2303			/* Ignore common symbols */
2304			if (!strncmp(name, "__gnu_lto", 9))
2305				break;
2306
2307			/* We compiled with -fno-common.  These are not
2308			   supposed to happen.  */
2309			pr_debug("Common symbol: %s\n", name);
2310			pr_warn("%s: please compile with -fno-common\n",
2311			       mod->name);
2312			ret = -ENOEXEC;
2313			break;
2314
2315		case SHN_ABS:
2316			/* Don't need to do anything */
2317			pr_debug("Absolute symbol: 0x%08lx\n",
2318			       (long)sym[i].st_value);
2319			break;
2320
2321		case SHN_LIVEPATCH:
2322			/* Livepatch symbols are resolved by livepatch */
2323			break;
2324
2325		case SHN_UNDEF:
2326			ksym = resolve_symbol_wait(mod, info, name);
2327			/* Ok if resolved.  */
2328			if (ksym && !IS_ERR(ksym)) {
2329				sym[i].st_value = kernel_symbol_value(ksym);
2330				break;
2331			}
2332
2333			/* Ok if weak.  */
2334			if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2335				break;
2336
 
 
2337			ret = PTR_ERR(ksym) ?: -ENOENT;
2338			pr_warn("%s: Unknown symbol %s (err %d)\n",
2339				mod->name, name, ret);
2340			break;
2341
2342		default:
2343			/* Divert to percpu allocation if a percpu var. */
2344			if (sym[i].st_shndx == info->index.pcpu)
2345				secbase = (unsigned long)mod_percpu(mod);
2346			else
2347				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2348			sym[i].st_value += secbase;
2349			break;
2350		}
2351	}
2352
2353	return ret;
2354}
2355
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2356static int apply_relocations(struct module *mod, const struct load_info *info)
2357{
2358	unsigned int i;
2359	int err = 0;
2360
2361	/* Now do relocations. */
2362	for (i = 1; i < info->hdr->e_shnum; i++) {
2363		unsigned int infosec = info->sechdrs[i].sh_info;
2364
2365		/* Not a valid relocation section? */
2366		if (infosec >= info->hdr->e_shnum)
2367			continue;
2368
2369		/* Don't bother with non-allocated sections */
2370		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2371			continue;
2372
2373		/* Livepatch relocation sections are applied by livepatch */
2374		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2375			continue;
2376
2377		if (info->sechdrs[i].sh_type == SHT_REL)
2378			err = apply_relocate(info->sechdrs, info->strtab,
2379					     info->index.sym, i, mod);
2380		else if (info->sechdrs[i].sh_type == SHT_RELA)
2381			err = apply_relocate_add(info->sechdrs, info->strtab,
2382						 info->index.sym, i, mod);
2383		if (err < 0)
2384			break;
2385	}
2386	return err;
2387}
2388
2389/* Additional bytes needed by arch in front of individual sections */
2390unsigned int __weak arch_mod_section_prepend(struct module *mod,
2391					     unsigned int section)
2392{
2393	/* default implementation just returns zero */
2394	return 0;
2395}
2396
2397/* Update size with this section: return offset. */
2398static long get_offset(struct module *mod, unsigned int *size,
2399		       Elf_Shdr *sechdr, unsigned int section)
2400{
2401	long ret;
2402
2403	*size += arch_mod_section_prepend(mod, section);
2404	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2405	*size = ret + sechdr->sh_size;
2406	return ret;
2407}
2408
2409/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2410   might -- code, read-only data, read-write data, small data.  Tally
2411   sizes, and place the offsets into sh_entsize fields: high bit means it
2412   belongs in init. */
2413static void layout_sections(struct module *mod, struct load_info *info)
2414{
2415	static unsigned long const masks[][2] = {
2416		/* NOTE: all executable code must be the first section
2417		 * in this array; otherwise modify the text_size
2418		 * finder in the two loops below */
2419		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2420		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2421		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2422		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2423		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2424	};
2425	unsigned int m, i;
2426
2427	for (i = 0; i < info->hdr->e_shnum; i++)
2428		info->sechdrs[i].sh_entsize = ~0UL;
2429
2430	pr_debug("Core section allocation order:\n");
2431	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2432		for (i = 0; i < info->hdr->e_shnum; ++i) {
2433			Elf_Shdr *s = &info->sechdrs[i];
2434			const char *sname = info->secstrings + s->sh_name;
2435
2436			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2437			    || (s->sh_flags & masks[m][1])
2438			    || s->sh_entsize != ~0UL
2439			    || strstarts(sname, ".init"))
2440				continue;
2441			s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2442			pr_debug("\t%s\n", sname);
2443		}
2444		switch (m) {
2445		case 0: /* executable */
2446			mod->core_layout.size = debug_align(mod->core_layout.size);
2447			mod->core_layout.text_size = mod->core_layout.size;
2448			break;
2449		case 1: /* RO: text and ro-data */
2450			mod->core_layout.size = debug_align(mod->core_layout.size);
2451			mod->core_layout.ro_size = mod->core_layout.size;
2452			break;
2453		case 2: /* RO after init */
2454			mod->core_layout.size = debug_align(mod->core_layout.size);
2455			mod->core_layout.ro_after_init_size = mod->core_layout.size;
2456			break;
2457		case 4: /* whole core */
2458			mod->core_layout.size = debug_align(mod->core_layout.size);
2459			break;
2460		}
2461	}
2462
2463	pr_debug("Init section allocation order:\n");
2464	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2465		for (i = 0; i < info->hdr->e_shnum; ++i) {
2466			Elf_Shdr *s = &info->sechdrs[i];
2467			const char *sname = info->secstrings + s->sh_name;
2468
2469			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2470			    || (s->sh_flags & masks[m][1])
2471			    || s->sh_entsize != ~0UL
2472			    || !strstarts(sname, ".init"))
2473				continue;
2474			s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2475					 | INIT_OFFSET_MASK);
2476			pr_debug("\t%s\n", sname);
2477		}
2478		switch (m) {
2479		case 0: /* executable */
2480			mod->init_layout.size = debug_align(mod->init_layout.size);
2481			mod->init_layout.text_size = mod->init_layout.size;
2482			break;
2483		case 1: /* RO: text and ro-data */
2484			mod->init_layout.size = debug_align(mod->init_layout.size);
2485			mod->init_layout.ro_size = mod->init_layout.size;
2486			break;
2487		case 2:
2488			/*
2489			 * RO after init doesn't apply to init_layout (only
2490			 * core_layout), so it just takes the value of ro_size.
2491			 */
2492			mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2493			break;
2494		case 4: /* whole init */
2495			mod->init_layout.size = debug_align(mod->init_layout.size);
2496			break;
2497		}
2498	}
2499}
2500
2501static void set_license(struct module *mod, const char *license)
2502{
2503	if (!license)
2504		license = "unspecified";
2505
2506	if (!license_is_gpl_compatible(license)) {
2507		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2508			pr_warn("%s: module license '%s' taints kernel.\n",
2509				mod->name, license);
2510		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2511				 LOCKDEP_NOW_UNRELIABLE);
2512	}
2513}
2514
2515/* Parse tag=value strings from .modinfo section */
2516static char *next_string(char *string, unsigned long *secsize)
2517{
2518	/* Skip non-zero chars */
2519	while (string[0]) {
2520		string++;
2521		if ((*secsize)-- <= 1)
2522			return NULL;
2523	}
2524
2525	/* Skip any zero padding. */
2526	while (!string[0]) {
2527		string++;
2528		if ((*secsize)-- <= 1)
2529			return NULL;
2530	}
2531	return string;
2532}
2533
2534static char *get_next_modinfo(const struct load_info *info, const char *tag,
2535			      char *prev)
2536{
2537	char *p;
2538	unsigned int taglen = strlen(tag);
2539	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2540	unsigned long size = infosec->sh_size;
2541
2542	/*
2543	 * get_modinfo() calls made before rewrite_section_headers()
2544	 * must use sh_offset, as sh_addr isn't set!
2545	 */
2546	char *modinfo = (char *)info->hdr + infosec->sh_offset;
2547
2548	if (prev) {
2549		size -= prev - modinfo;
2550		modinfo = next_string(prev, &size);
2551	}
2552
2553	for (p = modinfo; p; p = next_string(p, &size)) {
2554		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2555			return p + taglen + 1;
2556	}
2557	return NULL;
2558}
2559
2560static char *get_modinfo(const struct load_info *info, const char *tag)
2561{
2562	return get_next_modinfo(info, tag, NULL);
2563}
2564
2565static void setup_modinfo(struct module *mod, struct load_info *info)
2566{
2567	struct module_attribute *attr;
2568	int i;
2569
2570	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2571		if (attr->setup)
2572			attr->setup(mod, get_modinfo(info, attr->attr.name));
2573	}
2574}
2575
2576static void free_modinfo(struct module *mod)
2577{
2578	struct module_attribute *attr;
2579	int i;
2580
2581	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2582		if (attr->free)
2583			attr->free(mod);
2584	}
2585}
2586
2587#ifdef CONFIG_KALLSYMS
2588
2589/* Lookup exported symbol in given range of kernel_symbols */
2590static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2591							  const struct kernel_symbol *start,
2592							  const struct kernel_symbol *stop)
2593{
2594	return bsearch(name, start, stop - start,
2595			sizeof(struct kernel_symbol), cmp_name);
2596}
2597
2598static int is_exported(const char *name, unsigned long value,
2599		       const struct module *mod)
2600{
2601	const struct kernel_symbol *ks;
2602	if (!mod)
2603		ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2604	else
2605		ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2606
2607	return ks != NULL && kernel_symbol_value(ks) == value;
2608}
2609
2610/* As per nm */
2611static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2612{
2613	const Elf_Shdr *sechdrs = info->sechdrs;
2614
2615	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2616		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2617			return 'v';
2618		else
2619			return 'w';
2620	}
2621	if (sym->st_shndx == SHN_UNDEF)
2622		return 'U';
2623	if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2624		return 'a';
2625	if (sym->st_shndx >= SHN_LORESERVE)
2626		return '?';
2627	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2628		return 't';
2629	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2630	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2631		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2632			return 'r';
2633		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2634			return 'g';
2635		else
2636			return 'd';
2637	}
2638	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2639		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2640			return 's';
2641		else
2642			return 'b';
2643	}
2644	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2645		      ".debug")) {
2646		return 'n';
2647	}
2648	return '?';
2649}
2650
2651static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2652			unsigned int shnum, unsigned int pcpundx)
2653{
2654	const Elf_Shdr *sec;
2655
2656	if (src->st_shndx == SHN_UNDEF
2657	    || src->st_shndx >= shnum
2658	    || !src->st_name)
2659		return false;
2660
2661#ifdef CONFIG_KALLSYMS_ALL
2662	if (src->st_shndx == pcpundx)
2663		return true;
2664#endif
2665
2666	sec = sechdrs + src->st_shndx;
2667	if (!(sec->sh_flags & SHF_ALLOC)
2668#ifndef CONFIG_KALLSYMS_ALL
2669	    || !(sec->sh_flags & SHF_EXECINSTR)
2670#endif
2671	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2672		return false;
2673
2674	return true;
2675}
2676
2677/*
2678 * We only allocate and copy the strings needed by the parts of symtab
2679 * we keep.  This is simple, but has the effect of making multiple
2680 * copies of duplicates.  We could be more sophisticated, see
2681 * linux-kernel thread starting with
2682 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2683 */
2684static void layout_symtab(struct module *mod, struct load_info *info)
2685{
2686	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2687	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2688	const Elf_Sym *src;
2689	unsigned int i, nsrc, ndst, strtab_size = 0;
2690
2691	/* Put symbol section at end of init part of module. */
2692	symsect->sh_flags |= SHF_ALLOC;
2693	symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2694					 info->index.sym) | INIT_OFFSET_MASK;
2695	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2696
2697	src = (void *)info->hdr + symsect->sh_offset;
2698	nsrc = symsect->sh_size / sizeof(*src);
2699
2700	/* Compute total space required for the core symbols' strtab. */
2701	for (ndst = i = 0; i < nsrc; i++) {
2702		if (i == 0 || is_livepatch_module(mod) ||
2703		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2704				   info->index.pcpu)) {
2705			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2706			ndst++;
2707		}
2708	}
2709
2710	/* Append room for core symbols at end of core part. */
2711	info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2712	info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2713	mod->core_layout.size += strtab_size;
2714	info->core_typeoffs = mod->core_layout.size;
2715	mod->core_layout.size += ndst * sizeof(char);
2716	mod->core_layout.size = debug_align(mod->core_layout.size);
2717
2718	/* Put string table section at end of init part of module. */
2719	strsect->sh_flags |= SHF_ALLOC;
2720	strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2721					 info->index.str) | INIT_OFFSET_MASK;
2722	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2723
2724	/* We'll tack temporary mod_kallsyms on the end. */
2725	mod->init_layout.size = ALIGN(mod->init_layout.size,
2726				      __alignof__(struct mod_kallsyms));
2727	info->mod_kallsyms_init_off = mod->init_layout.size;
2728	mod->init_layout.size += sizeof(struct mod_kallsyms);
2729	info->init_typeoffs = mod->init_layout.size;
2730	mod->init_layout.size += nsrc * sizeof(char);
2731	mod->init_layout.size = debug_align(mod->init_layout.size);
2732}
2733
2734/*
2735 * We use the full symtab and strtab which layout_symtab arranged to
2736 * be appended to the init section.  Later we switch to the cut-down
2737 * core-only ones.
2738 */
2739static void add_kallsyms(struct module *mod, const struct load_info *info)
2740{
2741	unsigned int i, ndst;
2742	const Elf_Sym *src;
2743	Elf_Sym *dst;
2744	char *s;
2745	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2746
2747	/* Set up to point into init section. */
2748	mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2749
2750	mod->kallsyms->symtab = (void *)symsec->sh_addr;
2751	mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2752	/* Make sure we get permanent strtab: don't use info->strtab. */
2753	mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2754	mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2755
2756	/*
2757	 * Now populate the cut down core kallsyms for after init
2758	 * and set types up while we still have access to sections.
2759	 */
2760	mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2761	mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2762	mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2763	src = mod->kallsyms->symtab;
2764	for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2765		mod->kallsyms->typetab[i] = elf_type(src + i, info);
2766		if (i == 0 || is_livepatch_module(mod) ||
2767		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2768				   info->index.pcpu)) {
2769			mod->core_kallsyms.typetab[ndst] =
2770			    mod->kallsyms->typetab[i];
2771			dst[ndst] = src[i];
2772			dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2773			s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2774				     KSYM_NAME_LEN) + 1;
2775		}
2776	}
2777	mod->core_kallsyms.num_symtab = ndst;
2778}
2779#else
2780static inline void layout_symtab(struct module *mod, struct load_info *info)
2781{
2782}
2783
2784static void add_kallsyms(struct module *mod, const struct load_info *info)
2785{
2786}
2787#endif /* CONFIG_KALLSYMS */
2788
2789static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2790{
2791	if (!debug)
2792		return;
2793	ddebug_add_module(debug, num, mod->name);
 
 
 
 
2794}
2795
2796static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2797{
2798	if (debug)
2799		ddebug_remove_module(mod->name);
2800}
2801
2802void * __weak module_alloc(unsigned long size)
2803{
2804	return vmalloc_exec(size);
2805}
2806
2807bool __weak module_exit_section(const char *name)
2808{
2809	return strstarts(name, ".exit");
 
 
 
 
 
 
 
 
 
 
 
2810}
2811
2812#ifdef CONFIG_DEBUG_KMEMLEAK
2813static void kmemleak_load_module(const struct module *mod,
2814				 const struct load_info *info)
2815{
2816	unsigned int i;
2817
2818	/* only scan the sections containing data */
2819	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2820
2821	for (i = 1; i < info->hdr->e_shnum; i++) {
2822		/* Scan all writable sections that's not executable */
2823		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2824		    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2825		    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2826			continue;
2827
2828		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2829				   info->sechdrs[i].sh_size, GFP_KERNEL);
2830	}
2831}
2832#else
2833static inline void kmemleak_load_module(const struct module *mod,
2834					const struct load_info *info)
2835{
2836}
2837#endif
2838
2839#ifdef CONFIG_MODULE_SIG
2840static int module_sig_check(struct load_info *info, int flags)
2841{
2842	int err = -ENODATA;
2843	const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2844	const char *reason;
2845	const void *mod = info->hdr;
2846
2847	/*
2848	 * Require flags == 0, as a module with version information
2849	 * removed is no longer the module that was signed
2850	 */
2851	if (flags == 0 &&
2852	    info->len > markerlen &&
2853	    memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2854		/* We truncate the module to discard the signature */
2855		info->len -= markerlen;
2856		err = mod_verify_sig(mod, info);
2857	}
2858
2859	switch (err) {
2860	case 0:
2861		info->sig_ok = true;
2862		return 0;
2863
2864		/* We don't permit modules to be loaded into trusted kernels
2865		 * without a valid signature on them, but if we're not
2866		 * enforcing, certain errors are non-fatal.
2867		 */
2868	case -ENODATA:
2869		reason = "Loading of unsigned module";
2870		goto decide;
2871	case -ENOPKG:
2872		reason = "Loading of module with unsupported crypto";
2873		goto decide;
2874	case -ENOKEY:
2875		reason = "Loading of module with unavailable key";
2876	decide:
2877		if (is_module_sig_enforced()) {
2878			pr_notice("%s is rejected\n", reason);
2879			return -EKEYREJECTED;
2880		}
2881
2882		return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2883
2884		/* All other errors are fatal, including nomem, unparseable
2885		 * signatures and signature check failures - even if signatures
2886		 * aren't required.
2887		 */
2888	default:
2889		return err;
2890	}
2891}
2892#else /* !CONFIG_MODULE_SIG */
2893static int module_sig_check(struct load_info *info, int flags)
2894{
2895	return 0;
2896}
2897#endif /* !CONFIG_MODULE_SIG */
2898
2899/* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2900static int elf_header_check(struct load_info *info)
2901{
2902	if (info->len < sizeof(*(info->hdr)))
2903		return -ENOEXEC;
2904
2905	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2906	    || info->hdr->e_type != ET_REL
2907	    || !elf_check_arch(info->hdr)
2908	    || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2909		return -ENOEXEC;
2910
2911	if (info->hdr->e_shoff >= info->len
2912	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2913		info->len - info->hdr->e_shoff))
2914		return -ENOEXEC;
2915
2916	return 0;
2917}
2918
2919#define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2920
2921static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2922{
2923	do {
2924		unsigned long n = min(len, COPY_CHUNK_SIZE);
2925
2926		if (copy_from_user(dst, usrc, n) != 0)
2927			return -EFAULT;
2928		cond_resched();
2929		dst += n;
2930		usrc += n;
2931		len -= n;
2932	} while (len);
2933	return 0;
2934}
2935
2936#ifdef CONFIG_LIVEPATCH
2937static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2938{
2939	if (get_modinfo(info, "livepatch")) {
2940		mod->klp = true;
2941		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2942		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2943			       mod->name);
2944	}
2945
2946	return 0;
2947}
2948#else /* !CONFIG_LIVEPATCH */
2949static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2950{
2951	if (get_modinfo(info, "livepatch")) {
2952		pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2953		       mod->name);
2954		return -ENOEXEC;
2955	}
2956
2957	return 0;
2958}
2959#endif /* CONFIG_LIVEPATCH */
2960
2961static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2962{
2963	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2964		return;
2965
2966	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2967		mod->name);
2968}
2969
2970/* Sets info->hdr and info->len. */
2971static int copy_module_from_user(const void __user *umod, unsigned long len,
2972				  struct load_info *info)
 
2973{
2974	int err;
 
2975
2976	info->len = len;
2977	if (info->len < sizeof(*(info->hdr)))
2978		return -ENOEXEC;
2979
2980	err = security_kernel_load_data(LOADING_MODULE);
2981	if (err)
2982		return err;
2983
2984	/* Suck in entire file: we'll want most of it. */
2985	info->hdr = __vmalloc(info->len,
2986			GFP_KERNEL | __GFP_NOWARN, PAGE_KERNEL);
2987	if (!info->hdr)
2988		return -ENOMEM;
2989
2990	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2991		vfree(info->hdr);
2992		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2993	}
2994
 
 
2995	return 0;
 
 
 
 
2996}
2997
2998static void free_copy(struct load_info *info)
2999{
3000	vfree(info->hdr);
3001}
3002
3003static int rewrite_section_headers(struct load_info *info, int flags)
3004{
3005	unsigned int i;
3006
3007	/* This should always be true, but let's be sure. */
3008	info->sechdrs[0].sh_addr = 0;
3009
3010	for (i = 1; i < info->hdr->e_shnum; i++) {
3011		Elf_Shdr *shdr = &info->sechdrs[i];
3012		if (shdr->sh_type != SHT_NOBITS
3013		    && info->len < shdr->sh_offset + shdr->sh_size) {
3014			pr_err("Module len %lu truncated\n", info->len);
 
3015			return -ENOEXEC;
3016		}
3017
3018		/* Mark all sections sh_addr with their address in the
3019		   temporary image. */
3020		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3021
3022#ifndef CONFIG_MODULE_UNLOAD
3023		/* Don't load .exit sections */
3024		if (module_exit_section(info->secstrings+shdr->sh_name))
3025			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
3026#endif
3027	}
3028
3029	/* Track but don't keep modinfo and version sections. */
3030	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
 
3031	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3032
3033	return 0;
3034}
3035
3036/*
3037 * Set up our basic convenience variables (pointers to section headers,
3038 * search for module section index etc), and do some basic section
3039 * verification.
3040 *
3041 * Set info->mod to the temporary copy of the module in info->hdr. The final one
3042 * will be allocated in move_module().
3043 */
3044static int setup_load_info(struct load_info *info, int flags)
3045{
3046	unsigned int i;
 
 
3047
3048	/* Set up the convenience variables */
3049	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
3050	info->secstrings = (void *)info->hdr
3051		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
3052
3053	/* Try to find a name early so we can log errors with a module name */
3054	info->index.info = find_sec(info, ".modinfo");
3055	if (!info->index.info)
3056		info->name = "(missing .modinfo section)";
3057	else
3058		info->name = get_modinfo(info, "name");
3059
3060	/* Find internal symbols and strings. */
3061	for (i = 1; i < info->hdr->e_shnum; i++) {
3062		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3063			info->index.sym = i;
3064			info->index.str = info->sechdrs[i].sh_link;
3065			info->strtab = (char *)info->hdr
3066				+ info->sechdrs[info->index.str].sh_offset;
3067			break;
3068		}
3069	}
3070
3071	if (info->index.sym == 0) {
3072		pr_warn("%s: module has no symbols (stripped?)\n", info->name);
3073		return -ENOEXEC;
3074	}
3075
3076	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3077	if (!info->index.mod) {
3078		pr_warn("%s: No module found in object\n",
3079			info->name ?: "(missing .modinfo name field)");
3080		return -ENOEXEC;
3081	}
3082	/* This is temporary: point mod into copy of data. */
3083	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3084
3085	/*
3086	 * If we didn't load the .modinfo 'name' field earlier, fall back to
3087	 * on-disk struct mod 'name' field.
3088	 */
3089	if (!info->name)
3090		info->name = info->mod->name;
3091
3092	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3093		info->index.vers = 0; /* Pretend no __versions section! */
3094	else
3095		info->index.vers = find_sec(info, "__versions");
 
3096
3097	info->index.pcpu = find_pcpusec(info);
3098
3099	return 0;
 
 
 
 
3100}
3101
3102static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3103{
3104	const char *modmagic = get_modinfo(info, "vermagic");
3105	int err;
3106
3107	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3108		modmagic = NULL;
3109
3110	/* This is allowed: modprobe --force will invalidate it. */
3111	if (!modmagic) {
3112		err = try_to_force_load(mod, "bad vermagic");
3113		if (err)
3114			return err;
3115	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3116		pr_err("%s: version magic '%s' should be '%s'\n",
3117		       info->name, modmagic, vermagic);
3118		return -ENOEXEC;
3119	}
3120
3121	if (!get_modinfo(info, "intree")) {
3122		if (!test_taint(TAINT_OOT_MODULE))
3123			pr_warn("%s: loading out-of-tree module taints kernel.\n",
3124				mod->name);
3125		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3126	}
3127
3128	check_modinfo_retpoline(mod, info);
3129
3130	if (get_modinfo(info, "staging")) {
3131		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3132		pr_warn("%s: module is from the staging directory, the quality "
3133			"is unknown, you have been warned.\n", mod->name);
 
3134	}
3135
3136	err = check_modinfo_livepatch(mod, info);
3137	if (err)
3138		return err;
3139
3140	/* Set up license info based on the info section */
3141	set_license(mod, get_modinfo(info, "license"));
3142
3143	return 0;
3144}
3145
3146static int find_module_sections(struct module *mod, struct load_info *info)
3147{
3148	mod->kp = section_objs(info, "__param",
3149			       sizeof(*mod->kp), &mod->num_kp);
3150	mod->syms = section_objs(info, "__ksymtab",
3151				 sizeof(*mod->syms), &mod->num_syms);
3152	mod->crcs = section_addr(info, "__kcrctab");
3153	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3154				     sizeof(*mod->gpl_syms),
3155				     &mod->num_gpl_syms);
3156	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3157	mod->gpl_future_syms = section_objs(info,
3158					    "__ksymtab_gpl_future",
3159					    sizeof(*mod->gpl_future_syms),
3160					    &mod->num_gpl_future_syms);
3161	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3162
3163#ifdef CONFIG_UNUSED_SYMBOLS
3164	mod->unused_syms = section_objs(info, "__ksymtab_unused",
3165					sizeof(*mod->unused_syms),
3166					&mod->num_unused_syms);
3167	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3168	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3169					    sizeof(*mod->unused_gpl_syms),
3170					    &mod->num_unused_gpl_syms);
3171	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3172#endif
3173#ifdef CONFIG_CONSTRUCTORS
3174	mod->ctors = section_objs(info, ".ctors",
3175				  sizeof(*mod->ctors), &mod->num_ctors);
3176	if (!mod->ctors)
3177		mod->ctors = section_objs(info, ".init_array",
3178				sizeof(*mod->ctors), &mod->num_ctors);
3179	else if (find_sec(info, ".init_array")) {
3180		/*
3181		 * This shouldn't happen with same compiler and binutils
3182		 * building all parts of the module.
3183		 */
3184		pr_warn("%s: has both .ctors and .init_array.\n",
3185		       mod->name);
3186		return -EINVAL;
3187	}
3188#endif
3189
3190#ifdef CONFIG_TRACEPOINTS
3191	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3192					     sizeof(*mod->tracepoints_ptrs),
3193					     &mod->num_tracepoints);
3194#endif
3195#ifdef CONFIG_TREE_SRCU
3196	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3197					     sizeof(*mod->srcu_struct_ptrs),
3198					     &mod->num_srcu_structs);
3199#endif
3200#ifdef CONFIG_BPF_EVENTS
3201	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3202					   sizeof(*mod->bpf_raw_events),
3203					   &mod->num_bpf_raw_events);
3204#endif
3205#ifdef CONFIG_JUMP_LABEL
3206	mod->jump_entries = section_objs(info, "__jump_table",
3207					sizeof(*mod->jump_entries),
3208					&mod->num_jump_entries);
3209#endif
3210#ifdef CONFIG_EVENT_TRACING
3211	mod->trace_events = section_objs(info, "_ftrace_events",
3212					 sizeof(*mod->trace_events),
3213					 &mod->num_trace_events);
3214	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3215					sizeof(*mod->trace_evals),
3216					&mod->num_trace_evals);
 
 
 
3217#endif
3218#ifdef CONFIG_TRACING
3219	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3220					 sizeof(*mod->trace_bprintk_fmt_start),
3221					 &mod->num_trace_bprintk_fmt);
 
 
 
 
 
 
 
3222#endif
3223#ifdef CONFIG_FTRACE_MCOUNT_RECORD
3224	/* sechdrs[0].sh_size is always zero */
3225	mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3226					     sizeof(*mod->ftrace_callsites),
3227					     &mod->num_ftrace_callsites);
3228#endif
3229#ifdef CONFIG_FUNCTION_ERROR_INJECTION
3230	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3231					    sizeof(*mod->ei_funcs),
3232					    &mod->num_ei_funcs);
3233#endif
3234	mod->extable = section_objs(info, "__ex_table",
3235				    sizeof(*mod->extable), &mod->num_exentries);
3236
3237	if (section_addr(info, "__obsparm"))
3238		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
 
3239
3240	info->debug = section_objs(info, "__verbose",
3241				   sizeof(*info->debug), &info->num_debug);
3242
3243	return 0;
3244}
3245
3246static int move_module(struct module *mod, struct load_info *info)
3247{
3248	int i;
3249	void *ptr;
3250
3251	/* Do the allocs. */
3252	ptr = module_alloc(mod->core_layout.size);
3253	/*
3254	 * The pointer to this block is stored in the module structure
3255	 * which is inside the block. Just mark it as not being a
3256	 * leak.
3257	 */
3258	kmemleak_not_leak(ptr);
3259	if (!ptr)
3260		return -ENOMEM;
3261
3262	memset(ptr, 0, mod->core_layout.size);
3263	mod->core_layout.base = ptr;
3264
3265	if (mod->init_layout.size) {
3266		ptr = module_alloc(mod->init_layout.size);
3267		/*
3268		 * The pointer to this block is stored in the module structure
3269		 * which is inside the block. This block doesn't need to be
3270		 * scanned as it contains data and code that will be freed
3271		 * after the module is initialized.
3272		 */
3273		kmemleak_ignore(ptr);
3274		if (!ptr) {
3275			module_memfree(mod->core_layout.base);
3276			return -ENOMEM;
3277		}
3278		memset(ptr, 0, mod->init_layout.size);
3279		mod->init_layout.base = ptr;
3280	} else
3281		mod->init_layout.base = NULL;
3282
3283	/* Transfer each section which specifies SHF_ALLOC */
3284	pr_debug("final section addresses:\n");
3285	for (i = 0; i < info->hdr->e_shnum; i++) {
3286		void *dest;
3287		Elf_Shdr *shdr = &info->sechdrs[i];
3288
3289		if (!(shdr->sh_flags & SHF_ALLOC))
3290			continue;
3291
3292		if (shdr->sh_entsize & INIT_OFFSET_MASK)
3293			dest = mod->init_layout.base
3294				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3295		else
3296			dest = mod->core_layout.base + shdr->sh_entsize;
3297
3298		if (shdr->sh_type != SHT_NOBITS)
3299			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3300		/* Update sh_addr to point to copy in image. */
3301		shdr->sh_addr = (unsigned long)dest;
3302		pr_debug("\t0x%lx %s\n",
3303			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3304	}
3305
3306	return 0;
3307}
3308
3309static int check_module_license_and_versions(struct module *mod)
3310{
3311	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3312
3313	/*
3314	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3315	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3316	 * using GPL-only symbols it needs.
3317	 */
3318	if (strcmp(mod->name, "ndiswrapper") == 0)
3319		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3320
3321	/* driverloader was caught wrongly pretending to be under GPL */
3322	if (strcmp(mod->name, "driverloader") == 0)
3323		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3324				 LOCKDEP_NOW_UNRELIABLE);
3325
3326	/* lve claims to be GPL but upstream won't provide source */
3327	if (strcmp(mod->name, "lve") == 0)
3328		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3329				 LOCKDEP_NOW_UNRELIABLE);
3330
3331	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3332		pr_warn("%s: module license taints kernel.\n", mod->name);
3333
3334#ifdef CONFIG_MODVERSIONS
3335	if ((mod->num_syms && !mod->crcs)
3336	    || (mod->num_gpl_syms && !mod->gpl_crcs)
3337	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3338#ifdef CONFIG_UNUSED_SYMBOLS
3339	    || (mod->num_unused_syms && !mod->unused_crcs)
3340	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3341#endif
3342		) {
3343		return try_to_force_load(mod,
3344					 "no versions for exported symbols");
3345	}
3346#endif
3347	return 0;
3348}
3349
3350static void flush_module_icache(const struct module *mod)
3351{
3352	mm_segment_t old_fs;
3353
3354	/* flush the icache in correct context */
3355	old_fs = get_fs();
3356	set_fs(KERNEL_DS);
3357
3358	/*
3359	 * Flush the instruction cache, since we've played with text.
3360	 * Do it before processing of module parameters, so the module
3361	 * can provide parameter accessor functions of its own.
3362	 */
3363	if (mod->init_layout.base)
3364		flush_icache_range((unsigned long)mod->init_layout.base,
3365				   (unsigned long)mod->init_layout.base
3366				   + mod->init_layout.size);
3367	flush_icache_range((unsigned long)mod->core_layout.base,
3368			   (unsigned long)mod->core_layout.base + mod->core_layout.size);
3369
3370	set_fs(old_fs);
3371}
3372
3373int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3374				     Elf_Shdr *sechdrs,
3375				     char *secstrings,
3376				     struct module *mod)
3377{
3378	return 0;
3379}
3380
3381/* module_blacklist is a comma-separated list of module names */
3382static char *module_blacklist;
3383static bool blacklisted(const char *module_name)
3384{
3385	const char *p;
3386	size_t len;
3387
3388	if (!module_blacklist)
3389		return false;
3390
3391	for (p = module_blacklist; *p; p += len) {
3392		len = strcspn(p, ",");
3393		if (strlen(module_name) == len && !memcmp(module_name, p, len))
3394			return true;
3395		if (p[len] == ',')
3396			len++;
3397	}
3398	return false;
3399}
3400core_param(module_blacklist, module_blacklist, charp, 0400);
3401
3402static struct module *layout_and_allocate(struct load_info *info, int flags)
3403{
 
3404	struct module *mod;
3405	unsigned int ndx;
3406	int err;
3407
3408	err = check_modinfo(info->mod, info, flags);
 
 
 
 
3409	if (err)
3410		return ERR_PTR(err);
3411
3412	/* Allow arches to frob section contents and sizes.  */
3413	err = module_frob_arch_sections(info->hdr, info->sechdrs,
3414					info->secstrings, info->mod);
3415	if (err < 0)
3416		return ERR_PTR(err);
3417
3418	/* We will do a special allocation for per-cpu sections later. */
3419	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3420
3421	/*
3422	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3423	 * layout_sections() can put it in the right place.
3424	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3425	 */
3426	ndx = find_sec(info, ".data..ro_after_init");
3427	if (ndx)
3428		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3429	/*
3430	 * Mark the __jump_table section as ro_after_init as well: these data
3431	 * structures are never modified, with the exception of entries that
3432	 * refer to code in the __init section, which are annotated as such
3433	 * at module load time.
3434	 */
3435	ndx = find_sec(info, "__jump_table");
3436	if (ndx)
3437		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3438
3439	/* Determine total sizes, and put offsets in sh_entsize.  For now
3440	   this is done generically; there doesn't appear to be any
3441	   special cases for the architectures. */
3442	layout_sections(info->mod, info);
3443	layout_symtab(info->mod, info);
 
 
 
 
 
 
 
3444
3445	/* Allocate and move to the final place */
3446	err = move_module(info->mod, info);
3447	if (err)
3448		return ERR_PTR(err);
3449
3450	/* Module has been copied to its final place now: return it. */
3451	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3452	kmemleak_load_module(mod, info);
3453	return mod;
 
 
 
 
 
 
 
3454}
3455
3456/* mod is no longer valid after this! */
3457static void module_deallocate(struct module *mod, struct load_info *info)
3458{
 
3459	percpu_modfree(mod);
3460	module_arch_freeing_init(mod);
3461	module_memfree(mod->init_layout.base);
3462	module_memfree(mod->core_layout.base);
3463}
3464
3465int __weak module_finalize(const Elf_Ehdr *hdr,
3466			   const Elf_Shdr *sechdrs,
3467			   struct module *me)
3468{
3469	return 0;
3470}
3471
3472static int post_relocation(struct module *mod, const struct load_info *info)
3473{
3474	/* Sort exception table now relocations are done. */
3475	sort_extable(mod->extable, mod->extable + mod->num_exentries);
3476
3477	/* Copy relocated percpu area over. */
3478	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3479		       info->sechdrs[info->index.pcpu].sh_size);
3480
3481	/* Setup kallsyms-specific fields. */
3482	add_kallsyms(mod, info);
3483
3484	/* Arch-specific module finalizing. */
3485	return module_finalize(info->hdr, info->sechdrs, mod);
3486}
3487
3488/* Is this module of this name done loading?  No locks held. */
3489static bool finished_loading(const char *name)
3490{
3491	struct module *mod;
3492	bool ret;
3493
3494	/*
3495	 * The module_mutex should not be a heavily contended lock;
3496	 * if we get the occasional sleep here, we'll go an extra iteration
3497	 * in the wait_event_interruptible(), which is harmless.
3498	 */
3499	sched_annotate_sleep();
3500	mutex_lock(&module_mutex);
3501	mod = find_module_all(name, strlen(name), true);
3502	ret = !mod || mod->state == MODULE_STATE_LIVE;
3503	mutex_unlock(&module_mutex);
3504
3505	return ret;
3506}
3507
3508/* Call module constructors. */
3509static void do_mod_ctors(struct module *mod)
3510{
3511#ifdef CONFIG_CONSTRUCTORS
3512	unsigned long i;
3513
3514	for (i = 0; i < mod->num_ctors; i++)
3515		mod->ctors[i]();
3516#endif
3517}
3518
3519/* For freeing module_init on success, in case kallsyms traversing */
3520struct mod_initfree {
3521	struct llist_node node;
3522	void *module_init;
3523};
3524
3525static void do_free_init(struct work_struct *w)
3526{
3527	struct llist_node *pos, *n, *list;
3528	struct mod_initfree *initfree;
3529
3530	list = llist_del_all(&init_free_list);
3531
3532	synchronize_rcu();
3533
3534	llist_for_each_safe(pos, n, list) {
3535		initfree = container_of(pos, struct mod_initfree, node);
3536		module_memfree(initfree->module_init);
3537		kfree(initfree);
3538	}
3539}
3540
3541static int __init modules_wq_init(void)
3542{
3543	INIT_WORK(&init_free_wq, do_free_init);
3544	init_llist_head(&init_free_list);
3545	return 0;
3546}
3547module_init(modules_wq_init);
3548
3549/*
3550 * This is where the real work happens.
3551 *
3552 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3553 * helper command 'lx-symbols'.
3554 */
3555static noinline int do_init_module(struct module *mod)
3556{
3557	int ret = 0;
3558	struct mod_initfree *freeinit;
3559
3560	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3561	if (!freeinit) {
3562		ret = -ENOMEM;
3563		goto fail;
3564	}
3565	freeinit->module_init = mod->init_layout.base;
3566
3567	/*
3568	 * We want to find out whether @mod uses async during init.  Clear
3569	 * PF_USED_ASYNC.  async_schedule*() will set it.
3570	 */
3571	current->flags &= ~PF_USED_ASYNC;
3572
3573	do_mod_ctors(mod);
3574	/* Start the module */
3575	if (mod->init != NULL)
3576		ret = do_one_initcall(mod->init);
3577	if (ret < 0) {
3578		goto fail_free_freeinit;
3579	}
3580	if (ret > 0) {
3581		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3582			"follow 0/-E convention\n"
3583			"%s: loading module anyway...\n",
3584			__func__, mod->name, ret, __func__);
3585		dump_stack();
3586	}
3587
3588	/* Now it's a first class citizen! */
3589	mod->state = MODULE_STATE_LIVE;
3590	blocking_notifier_call_chain(&module_notify_list,
3591				     MODULE_STATE_LIVE, mod);
3592
3593	/*
3594	 * We need to finish all async code before the module init sequence
3595	 * is done.  This has potential to deadlock.  For example, a newly
3596	 * detected block device can trigger request_module() of the
3597	 * default iosched from async probing task.  Once userland helper
3598	 * reaches here, async_synchronize_full() will wait on the async
3599	 * task waiting on request_module() and deadlock.
3600	 *
3601	 * This deadlock is avoided by perfomring async_synchronize_full()
3602	 * iff module init queued any async jobs.  This isn't a full
3603	 * solution as it will deadlock the same if module loading from
3604	 * async jobs nests more than once; however, due to the various
3605	 * constraints, this hack seems to be the best option for now.
3606	 * Please refer to the following thread for details.
3607	 *
3608	 * http://thread.gmane.org/gmane.linux.kernel/1420814
3609	 */
3610	if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3611		async_synchronize_full();
3612
3613	ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3614			mod->init_layout.size);
3615	mutex_lock(&module_mutex);
3616	/* Drop initial reference. */
3617	module_put(mod);
3618	trim_init_extable(mod);
3619#ifdef CONFIG_KALLSYMS
3620	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3621	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3622#endif
3623	module_enable_ro(mod, true);
3624	mod_tree_remove_init(mod);
3625	module_arch_freeing_init(mod);
3626	mod->init_layout.base = NULL;
3627	mod->init_layout.size = 0;
3628	mod->init_layout.ro_size = 0;
3629	mod->init_layout.ro_after_init_size = 0;
3630	mod->init_layout.text_size = 0;
3631	/*
3632	 * We want to free module_init, but be aware that kallsyms may be
3633	 * walking this with preempt disabled.  In all the failure paths, we
3634	 * call synchronize_rcu(), but we don't want to slow down the success
3635	 * path. module_memfree() cannot be called in an interrupt, so do the
3636	 * work and call synchronize_rcu() in a work queue.
3637	 *
3638	 * Note that module_alloc() on most architectures creates W+X page
3639	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3640	 * code such as mark_rodata_ro() which depends on those mappings to
3641	 * be cleaned up needs to sync with the queued work - ie
3642	 * rcu_barrier()
3643	 */
3644	if (llist_add(&freeinit->node, &init_free_list))
3645		schedule_work(&init_free_wq);
3646
3647	mutex_unlock(&module_mutex);
3648	wake_up_all(&module_wq);
3649
3650	return 0;
3651
3652fail_free_freeinit:
3653	kfree(freeinit);
3654fail:
3655	/* Try to protect us from buggy refcounters. */
3656	mod->state = MODULE_STATE_GOING;
3657	synchronize_rcu();
3658	module_put(mod);
3659	blocking_notifier_call_chain(&module_notify_list,
3660				     MODULE_STATE_GOING, mod);
3661	klp_module_going(mod);
3662	ftrace_release_mod(mod);
3663	free_module(mod);
3664	wake_up_all(&module_wq);
3665	return ret;
3666}
3667
3668static int may_init_module(void)
3669{
3670	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3671		return -EPERM;
3672
3673	return 0;
3674}
3675
3676/*
3677 * We try to place it in the list now to make sure it's unique before
3678 * we dedicate too many resources.  In particular, temporary percpu
3679 * memory exhaustion.
3680 */
3681static int add_unformed_module(struct module *mod)
3682{
3683	int err;
3684	struct module *old;
3685
3686	mod->state = MODULE_STATE_UNFORMED;
3687
3688again:
3689	mutex_lock(&module_mutex);
3690	old = find_module_all(mod->name, strlen(mod->name), true);
3691	if (old != NULL) {
3692		if (old->state != MODULE_STATE_LIVE) {
3693			/* Wait in case it fails to load. */
3694			mutex_unlock(&module_mutex);
3695			err = wait_event_interruptible(module_wq,
3696					       finished_loading(mod->name));
3697			if (err)
3698				goto out_unlocked;
3699			goto again;
3700		}
3701		err = -EEXIST;
3702		goto out;
3703	}
3704	mod_update_bounds(mod);
3705	list_add_rcu(&mod->list, &modules);
3706	mod_tree_insert(mod);
3707	err = 0;
3708
3709out:
3710	mutex_unlock(&module_mutex);
3711out_unlocked:
3712	return err;
3713}
3714
3715static int complete_formation(struct module *mod, struct load_info *info)
3716{
3717	int err;
3718
3719	mutex_lock(&module_mutex);
3720
3721	/* Find duplicate symbols (must be called under lock). */
3722	err = verify_exported_symbols(mod);
3723	if (err < 0)
3724		goto out;
3725
3726	/* This relies on module_mutex for list integrity. */
3727	module_bug_finalize(info->hdr, info->sechdrs, mod);
3728
3729	module_enable_ro(mod, false);
3730	module_enable_nx(mod);
3731	module_enable_x(mod);
3732
3733	/* Mark state as coming so strong_try_module_get() ignores us,
3734	 * but kallsyms etc. can see us. */
3735	mod->state = MODULE_STATE_COMING;
3736	mutex_unlock(&module_mutex);
3737
3738	return 0;
3739
3740out:
3741	mutex_unlock(&module_mutex);
3742	return err;
3743}
3744
3745static int prepare_coming_module(struct module *mod)
3746{
3747	int err;
3748
3749	ftrace_module_enable(mod);
3750	err = klp_module_coming(mod);
3751	if (err)
3752		return err;
3753
3754	blocking_notifier_call_chain(&module_notify_list,
3755				     MODULE_STATE_COMING, mod);
3756	return 0;
3757}
3758
3759static int unknown_module_param_cb(char *param, char *val, const char *modname,
3760				   void *arg)
3761{
3762	struct module *mod = arg;
3763	int ret;
3764
3765	if (strcmp(param, "async_probe") == 0) {
3766		mod->async_probe_requested = true;
3767		return 0;
3768	}
3769
3770	/* Check for magic 'dyndbg' arg */
3771	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3772	if (ret != 0)
3773		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3774	return 0;
3775}
3776
3777/* Allocate and load the module: note that size of section 0 is always
3778   zero, and we rely on this for optional sections. */
3779static int load_module(struct load_info *info, const char __user *uargs,
3780		       int flags)
 
3781{
 
3782	struct module *mod;
3783	long err = 0;
3784	char *after_dashes;
3785
3786	err = elf_header_check(info);
3787	if (err)
3788		goto free_copy;
3789
3790	err = setup_load_info(info, flags);
3791	if (err)
3792		goto free_copy;
3793
3794	if (blacklisted(info->name)) {
3795		err = -EPERM;
3796		goto free_copy;
3797	}
3798
3799	err = module_sig_check(info, flags);
3800	if (err)
3801		goto free_copy;
3802
3803	err = rewrite_section_headers(info, flags);
 
3804	if (err)
3805		goto free_copy;
3806
3807	/* Check module struct version now, before we try to use module. */
3808	if (!check_modstruct_version(info, info->mod)) {
3809		err = -ENOEXEC;
3810		goto free_copy;
3811	}
3812
3813	/* Figure out module layout, and allocate all the memory. */
3814	mod = layout_and_allocate(info, flags);
3815	if (IS_ERR(mod)) {
3816		err = PTR_ERR(mod);
3817		goto free_copy;
3818	}
3819
3820	audit_log_kern_module(mod->name);
3821
3822	/* Reserve our place in the list. */
3823	err = add_unformed_module(mod);
3824	if (err)
3825		goto free_module;
3826
3827#ifdef CONFIG_MODULE_SIG
3828	mod->sig_ok = info->sig_ok;
3829	if (!mod->sig_ok) {
3830		pr_notice_once("%s: module verification failed: signature "
3831			       "and/or required key missing - tainting "
3832			       "kernel\n", mod->name);
3833		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3834	}
3835#endif
3836
3837	/* To avoid stressing percpu allocator, do this once we're unique. */
3838	err = percpu_modalloc(mod, info);
3839	if (err)
3840		goto unlink_mod;
3841
3842	/* Now module is in final location, initialize linked lists, etc. */
3843	err = module_unload_init(mod);
3844	if (err)
3845		goto unlink_mod;
3846
3847	init_param_lock(mod);
3848
3849	/* Now we've got everything in the final locations, we can
3850	 * find optional sections. */
3851	err = find_module_sections(mod, info);
3852	if (err)
3853		goto free_unload;
3854
3855	err = check_module_license_and_versions(mod);
3856	if (err)
3857		goto free_unload;
3858
3859	/* Set up MODINFO_ATTR fields */
3860	setup_modinfo(mod, info);
3861
3862	/* Fix up syms, so that st_value is a pointer to location. */
3863	err = simplify_symbols(mod, info);
3864	if (err < 0)
3865		goto free_modinfo;
3866
3867	err = apply_relocations(mod, info);
3868	if (err < 0)
3869		goto free_modinfo;
3870
3871	err = post_relocation(mod, info);
3872	if (err < 0)
3873		goto free_modinfo;
3874
3875	flush_module_icache(mod);
3876
3877	/* Now copy in args */
3878	mod->args = strndup_user(uargs, ~0UL >> 1);
3879	if (IS_ERR(mod->args)) {
3880		err = PTR_ERR(mod->args);
3881		goto free_arch_cleanup;
3882	}
3883
3884	dynamic_debug_setup(mod, info->debug, info->num_debug);
 
3885
3886	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3887	ftrace_module_init(mod);
 
 
 
 
 
 
 
 
 
 
3888
3889	/* Finally it's fully formed, ready to start executing. */
3890	err = complete_formation(mod, info);
3891	if (err)
3892		goto ddebug_cleanup;
3893
3894	err = prepare_coming_module(mod);
3895	if (err)
3896		goto bug_cleanup;
 
3897
3898	/* Module is ready to execute: parsing args may do that. */
3899	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3900				  -32768, 32767, mod,
3901				  unknown_module_param_cb);
3902	if (IS_ERR(after_dashes)) {
3903		err = PTR_ERR(after_dashes);
3904		goto coming_cleanup;
3905	} else if (after_dashes) {
3906		pr_warn("%s: parameters '%s' after `--' ignored\n",
3907		       mod->name, after_dashes);
3908	}
3909
3910	/* Link in to sysfs. */
3911	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3912	if (err < 0)
3913		goto coming_cleanup;
3914
3915	if (is_livepatch_module(mod)) {
3916		err = copy_module_elf(mod, info);
3917		if (err < 0)
3918			goto sysfs_cleanup;
3919	}
3920
3921	/* Get rid of temporary copy. */
3922	free_copy(info);
 
3923
3924	/* Done! */
3925	trace_module_load(mod);
 
3926
3927	return do_init_module(mod);
3928
3929 sysfs_cleanup:
3930	mod_sysfs_teardown(mod);
3931 coming_cleanup:
3932	mod->state = MODULE_STATE_GOING;
3933	destroy_params(mod->kp, mod->num_kp);
3934	blocking_notifier_call_chain(&module_notify_list,
3935				     MODULE_STATE_GOING, mod);
3936	klp_module_going(mod);
3937 bug_cleanup:
3938	/* module_bug_cleanup needs module_mutex protection */
3939	mutex_lock(&module_mutex);
 
 
3940	module_bug_cleanup(mod);
3941	mutex_unlock(&module_mutex);
3942
3943 ddebug_cleanup:
3944	ftrace_release_mod(mod);
3945	dynamic_debug_remove(mod, info->debug);
3946	synchronize_rcu();
 
 
3947	kfree(mod->args);
3948 free_arch_cleanup:
3949	module_arch_cleanup(mod);
3950 free_modinfo:
3951	free_modinfo(mod);
3952 free_unload:
3953	module_unload_free(mod);
3954 unlink_mod:
3955	mutex_lock(&module_mutex);
3956	/* Unlink carefully: kallsyms could be walking list. */
3957	list_del_rcu(&mod->list);
3958	mod_tree_remove(mod);
3959	wake_up_all(&module_wq);
3960	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3961	synchronize_rcu();
3962	mutex_unlock(&module_mutex);
3963 free_module:
3964	/* Free lock-classes; relies on the preceding sync_rcu() */
3965	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3966
3967	module_deallocate(mod, info);
3968 free_copy:
3969	free_copy(info);
3970	return err;
3971}
3972
 
 
 
 
 
 
 
 
 
 
 
 
3973SYSCALL_DEFINE3(init_module, void __user *, umod,
3974		unsigned long, len, const char __user *, uargs)
3975{
3976	int err;
3977	struct load_info info = { };
3978
3979	err = may_init_module();
3980	if (err)
3981		return err;
3982
3983	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3984	       umod, len, uargs);
 
 
3985
3986	err = copy_module_from_user(umod, len, &info);
3987	if (err)
3988		return err;
3989
3990	return load_module(&info, uargs, 0);
3991}
 
 
 
 
 
 
 
 
 
3992
3993SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3994{
3995	struct load_info info = { };
3996	loff_t size;
3997	void *hdr;
3998	int err;
3999
4000	err = may_init_module();
4001	if (err)
4002		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4003
4004	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
 
 
 
 
4005
4006	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4007		      |MODULE_INIT_IGNORE_VERMAGIC))
4008		return -EINVAL;
4009
4010	err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
4011				       READING_MODULE);
4012	if (err)
4013		return err;
4014	info.hdr = hdr;
4015	info.len = size;
 
 
 
 
 
 
 
 
 
 
4016
4017	return load_module(&info, uargs, flags);
4018}
4019
4020static inline int within(unsigned long addr, void *start, unsigned long size)
4021{
4022	return ((void *)addr >= start && (void *)addr < start + size);
4023}
4024
4025#ifdef CONFIG_KALLSYMS
4026/*
4027 * This ignores the intensely annoying "mapping symbols" found
4028 * in ARM ELF files: $a, $t and $d.
4029 */
4030static inline int is_arm_mapping_symbol(const char *str)
4031{
4032	if (str[0] == '.' && str[1] == 'L')
4033		return true;
4034	return str[0] == '$' && strchr("axtd", str[1])
4035	       && (str[2] == '\0' || str[2] == '.');
4036}
4037
4038static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4039{
4040	return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4041}
4042
4043/*
4044 * Given a module and address, find the corresponding symbol and return its name
4045 * while providing its size and offset if needed.
4046 */
4047static const char *find_kallsyms_symbol(struct module *mod,
4048					unsigned long addr,
4049					unsigned long *size,
4050					unsigned long *offset)
4051{
4052	unsigned int i, best = 0;
4053	unsigned long nextval, bestval;
4054	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4055
4056	/* At worse, next value is at end of module */
4057	if (within_module_init(addr, mod))
4058		nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4059	else
4060		nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4061
4062	bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4063
4064	/* Scan for closest preceding symbol, and next symbol. (ELF
4065	   starts real symbols at 1). */
4066	for (i = 1; i < kallsyms->num_symtab; i++) {
4067		const Elf_Sym *sym = &kallsyms->symtab[i];
4068		unsigned long thisval = kallsyms_symbol_value(sym);
4069
4070		if (sym->st_shndx == SHN_UNDEF)
4071			continue;
4072
4073		/* We ignore unnamed symbols: they're uninformative
4074		 * and inserted at a whim. */
4075		if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4076		    || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4077			continue;
4078
4079		if (thisval <= addr && thisval > bestval) {
4080			best = i;
4081			bestval = thisval;
4082		}
4083		if (thisval > addr && thisval < nextval)
4084			nextval = thisval;
 
4085	}
4086
4087	if (!best)
4088		return NULL;
4089
4090	if (size)
4091		*size = nextval - bestval;
4092	if (offset)
4093		*offset = addr - bestval;
4094
4095	return kallsyms_symbol_name(kallsyms, best);
4096}
4097
4098void * __weak dereference_module_function_descriptor(struct module *mod,
4099						     void *ptr)
4100{
4101	return ptr;
4102}
4103
4104/* For kallsyms to ask for address resolution.  NULL means not found.  Careful
4105 * not to lock to avoid deadlock on oopses, simply disable preemption. */
4106const char *module_address_lookup(unsigned long addr,
4107			    unsigned long *size,
4108			    unsigned long *offset,
4109			    char **modname,
4110			    char *namebuf)
4111{
4112	const char *ret = NULL;
4113	struct module *mod;
 
4114
4115	preempt_disable();
4116	mod = __module_address(addr);
4117	if (mod) {
4118		if (modname)
4119			*modname = mod->name;
4120
4121		ret = find_kallsyms_symbol(mod, addr, size, offset);
 
 
4122	}
4123	/* Make a copy in here where it's safe */
4124	if (ret) {
4125		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4126		ret = namebuf;
4127	}
4128	preempt_enable();
4129
4130	return ret;
4131}
4132
4133int lookup_module_symbol_name(unsigned long addr, char *symname)
4134{
4135	struct module *mod;
4136
4137	preempt_disable();
4138	list_for_each_entry_rcu(mod, &modules, list) {
4139		if (mod->state == MODULE_STATE_UNFORMED)
4140			continue;
4141		if (within_module(addr, mod)) {
4142			const char *sym;
4143
4144			sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4145			if (!sym)
4146				goto out;
4147
4148			strlcpy(symname, sym, KSYM_NAME_LEN);
4149			preempt_enable();
4150			return 0;
4151		}
4152	}
4153out:
4154	preempt_enable();
4155	return -ERANGE;
4156}
4157
4158int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4159			unsigned long *offset, char *modname, char *name)
4160{
4161	struct module *mod;
4162
4163	preempt_disable();
4164	list_for_each_entry_rcu(mod, &modules, list) {
4165		if (mod->state == MODULE_STATE_UNFORMED)
4166			continue;
4167		if (within_module(addr, mod)) {
4168			const char *sym;
4169
4170			sym = find_kallsyms_symbol(mod, addr, size, offset);
4171			if (!sym)
4172				goto out;
4173			if (modname)
4174				strlcpy(modname, mod->name, MODULE_NAME_LEN);
4175			if (name)
4176				strlcpy(name, sym, KSYM_NAME_LEN);
4177			preempt_enable();
4178			return 0;
4179		}
4180	}
4181out:
4182	preempt_enable();
4183	return -ERANGE;
4184}
4185
4186int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4187			char *name, char *module_name, int *exported)
4188{
4189	struct module *mod;
4190
4191	preempt_disable();
4192	list_for_each_entry_rcu(mod, &modules, list) {
4193		struct mod_kallsyms *kallsyms;
4194
4195		if (mod->state == MODULE_STATE_UNFORMED)
4196			continue;
4197		kallsyms = rcu_dereference_sched(mod->kallsyms);
4198		if (symnum < kallsyms->num_symtab) {
4199			const Elf_Sym *sym = &kallsyms->symtab[symnum];
4200
4201			*value = kallsyms_symbol_value(sym);
4202			*type = kallsyms->typetab[symnum];
4203			strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4204			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4205			*exported = is_exported(name, *value, mod);
4206			preempt_enable();
4207			return 0;
4208		}
4209		symnum -= kallsyms->num_symtab;
4210	}
4211	preempt_enable();
4212	return -ERANGE;
4213}
4214
4215/* Given a module and name of symbol, find and return the symbol's value */
4216static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4217{
4218	unsigned int i;
4219	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4220
4221	for (i = 0; i < kallsyms->num_symtab; i++) {
4222		const Elf_Sym *sym = &kallsyms->symtab[i];
4223
4224		if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4225		    sym->st_shndx != SHN_UNDEF)
4226			return kallsyms_symbol_value(sym);
4227	}
4228	return 0;
4229}
4230
4231/* Look for this name: can be of form module:name. */
4232unsigned long module_kallsyms_lookup_name(const char *name)
4233{
4234	struct module *mod;
4235	char *colon;
4236	unsigned long ret = 0;
4237
4238	/* Don't lock: we're in enough trouble already. */
4239	preempt_disable();
4240	if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4241		if ((mod = find_module_all(name, colon - name, false)) != NULL)
4242			ret = find_kallsyms_symbol_value(mod, colon+1);
 
 
4243	} else {
4244		list_for_each_entry_rcu(mod, &modules, list) {
4245			if (mod->state == MODULE_STATE_UNFORMED)
4246				continue;
4247			if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4248				break;
4249		}
4250	}
4251	preempt_enable();
4252	return ret;
4253}
4254
4255int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4256					     struct module *, unsigned long),
4257				   void *data)
4258{
4259	struct module *mod;
4260	unsigned int i;
4261	int ret;
4262
4263	module_assert_mutex();
4264
4265	list_for_each_entry(mod, &modules, list) {
4266		/* We hold module_mutex: no need for rcu_dereference_sched */
4267		struct mod_kallsyms *kallsyms = mod->kallsyms;
4268
4269		if (mod->state == MODULE_STATE_UNFORMED)
4270			continue;
4271		for (i = 0; i < kallsyms->num_symtab; i++) {
4272			const Elf_Sym *sym = &kallsyms->symtab[i];
4273
4274			if (sym->st_shndx == SHN_UNDEF)
4275				continue;
4276
4277			ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4278				 mod, kallsyms_symbol_value(sym));
4279			if (ret != 0)
4280				return ret;
4281		}
4282	}
4283	return 0;
4284}
4285#endif /* CONFIG_KALLSYMS */
4286
4287/* Maximum number of characters written by module_flags() */
4288#define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4289
4290/* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4291static char *module_flags(struct module *mod, char *buf)
4292{
4293	int bx = 0;
4294
4295	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4296	if (mod->taints ||
4297	    mod->state == MODULE_STATE_GOING ||
4298	    mod->state == MODULE_STATE_COMING) {
4299		buf[bx++] = '(';
4300		bx += module_flags_taint(mod, buf + bx);
 
 
 
 
 
 
 
 
 
 
 
4301		/* Show a - for module-is-being-unloaded */
4302		if (mod->state == MODULE_STATE_GOING)
4303			buf[bx++] = '-';
4304		/* Show a + for module-is-being-loaded */
4305		if (mod->state == MODULE_STATE_COMING)
4306			buf[bx++] = '+';
4307		buf[bx++] = ')';
4308	}
4309	buf[bx] = '\0';
4310
4311	return buf;
4312}
4313
4314#ifdef CONFIG_PROC_FS
4315/* Called by the /proc file system to return a list of modules. */
4316static void *m_start(struct seq_file *m, loff_t *pos)
4317{
4318	mutex_lock(&module_mutex);
4319	return seq_list_start(&modules, *pos);
4320}
4321
4322static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4323{
4324	return seq_list_next(p, &modules, pos);
4325}
4326
4327static void m_stop(struct seq_file *m, void *p)
4328{
4329	mutex_unlock(&module_mutex);
4330}
4331
4332static int m_show(struct seq_file *m, void *p)
4333{
4334	struct module *mod = list_entry(p, struct module, list);
4335	char buf[MODULE_FLAGS_BUF_SIZE];
4336	void *value;
4337
4338	/* We always ignore unformed modules. */
4339	if (mod->state == MODULE_STATE_UNFORMED)
4340		return 0;
4341
4342	seq_printf(m, "%s %u",
4343		   mod->name, mod->init_layout.size + mod->core_layout.size);
4344	print_unload_info(m, mod);
4345
4346	/* Informative for users. */
4347	seq_printf(m, " %s",
4348		   mod->state == MODULE_STATE_GOING ? "Unloading" :
4349		   mod->state == MODULE_STATE_COMING ? "Loading" :
4350		   "Live");
4351	/* Used by oprofile and other similar tools. */
4352	value = m->private ? NULL : mod->core_layout.base;
4353	seq_printf(m, " 0x%px", value);
4354
4355	/* Taints info */
4356	if (mod->taints)
4357		seq_printf(m, " %s", module_flags(mod, buf));
4358
4359	seq_puts(m, "\n");
4360	return 0;
4361}
4362
4363/* Format: modulename size refcount deps address
4364
4365   Where refcount is a number or -, and deps is a comma-separated list
4366   of depends or -.
4367*/
4368static const struct seq_operations modules_op = {
4369	.start	= m_start,
4370	.next	= m_next,
4371	.stop	= m_stop,
4372	.show	= m_show
4373};
4374
4375/*
4376 * This also sets the "private" pointer to non-NULL if the
4377 * kernel pointers should be hidden (so you can just test
4378 * "m->private" to see if you should keep the values private).
4379 *
4380 * We use the same logic as for /proc/kallsyms.
4381 */
4382static int modules_open(struct inode *inode, struct file *file)
4383{
4384	int err = seq_open(file, &modules_op);
4385
4386	if (!err) {
4387		struct seq_file *m = file->private_data;
4388		m->private = kallsyms_show_value() ? NULL : (void *)8ul;
4389	}
4390
4391	return err;
4392}
4393
4394static const struct file_operations proc_modules_operations = {
4395	.open		= modules_open,
4396	.read		= seq_read,
4397	.llseek		= seq_lseek,
4398	.release	= seq_release,
4399};
4400
4401static int __init proc_modules_init(void)
4402{
4403	proc_create("modules", 0, NULL, &proc_modules_operations);
4404	return 0;
4405}
4406module_init(proc_modules_init);
4407#endif
4408
4409/* Given an address, look for it in the module exception tables. */
4410const struct exception_table_entry *search_module_extables(unsigned long addr)
4411{
4412	const struct exception_table_entry *e = NULL;
4413	struct module *mod;
4414
4415	preempt_disable();
4416	mod = __module_address(addr);
4417	if (!mod)
4418		goto out;
4419
4420	if (!mod->num_exentries)
4421		goto out;
4422
4423	e = search_extable(mod->extable,
4424			   mod->num_exentries,
4425			   addr);
4426out:
 
 
4427	preempt_enable();
4428
4429	/*
4430	 * Now, if we found one, we are running inside it now, hence
4431	 * we cannot unload the module, hence no refcnt needed.
4432	 */
4433	return e;
4434}
4435
4436/*
4437 * is_module_address - is this address inside a module?
4438 * @addr: the address to check.
4439 *
4440 * See is_module_text_address() if you simply want to see if the address
4441 * is code (not data).
4442 */
4443bool is_module_address(unsigned long addr)
4444{
4445	bool ret;
4446
4447	preempt_disable();
4448	ret = __module_address(addr) != NULL;
4449	preempt_enable();
4450
4451	return ret;
4452}
4453
4454/*
4455 * __module_address - get the module which contains an address.
4456 * @addr: the address.
4457 *
4458 * Must be called with preempt disabled or module mutex held so that
4459 * module doesn't get freed during this.
4460 */
4461struct module *__module_address(unsigned long addr)
4462{
4463	struct module *mod;
4464
4465	if (addr < module_addr_min || addr > module_addr_max)
4466		return NULL;
4467
4468	module_assert_mutex_or_preempt();
4469
4470	mod = mod_find(addr);
4471	if (mod) {
4472		BUG_ON(!within_module(addr, mod));
4473		if (mod->state == MODULE_STATE_UNFORMED)
4474			mod = NULL;
4475	}
4476	return mod;
4477}
4478EXPORT_SYMBOL_GPL(__module_address);
4479
4480/*
4481 * is_module_text_address - is this address inside module code?
4482 * @addr: the address to check.
4483 *
4484 * See is_module_address() if you simply want to see if the address is
4485 * anywhere in a module.  See kernel_text_address() for testing if an
4486 * address corresponds to kernel or module code.
4487 */
4488bool is_module_text_address(unsigned long addr)
4489{
4490	bool ret;
4491
4492	preempt_disable();
4493	ret = __module_text_address(addr) != NULL;
4494	preempt_enable();
4495
4496	return ret;
4497}
4498
4499/*
4500 * __module_text_address - get the module whose code contains an address.
4501 * @addr: the address.
4502 *
4503 * Must be called with preempt disabled or module mutex held so that
4504 * module doesn't get freed during this.
4505 */
4506struct module *__module_text_address(unsigned long addr)
4507{
4508	struct module *mod = __module_address(addr);
4509	if (mod) {
4510		/* Make sure it's within the text section. */
4511		if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4512		    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4513			mod = NULL;
4514	}
4515	return mod;
4516}
4517EXPORT_SYMBOL_GPL(__module_text_address);
4518
4519/* Don't grab lock, we're oopsing. */
4520void print_modules(void)
4521{
4522	struct module *mod;
4523	char buf[MODULE_FLAGS_BUF_SIZE];
4524
4525	printk(KERN_DEFAULT "Modules linked in:");
4526	/* Most callers should already have preempt disabled, but make sure */
4527	preempt_disable();
4528	list_for_each_entry_rcu(mod, &modules, list) {
4529		if (mod->state == MODULE_STATE_UNFORMED)
4530			continue;
4531		pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4532	}
4533	preempt_enable();
4534	if (last_unloaded_module[0])
4535		pr_cont(" [last unloaded: %s]", last_unloaded_module);
4536	pr_cont("\n");
4537}
4538
4539#ifdef CONFIG_MODVERSIONS
4540/* Generate the signature for all relevant module structures here.
4541 * If these change, we don't want to try to parse the module. */
4542void module_layout(struct module *mod,
4543		   struct modversion_info *ver,
4544		   struct kernel_param *kp,
4545		   struct kernel_symbol *ks,
4546		   struct tracepoint * const *tp)
4547{
4548}
4549EXPORT_SYMBOL(module_layout);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4550#endif
v3.1
 
   1/*
   2   Copyright (C) 2002 Richard Henderson
   3   Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
   4
   5    This program is free software; you can redistribute it and/or modify
   6    it under the terms of the GNU General Public License as published by
   7    the Free Software Foundation; either version 2 of the License, or
   8    (at your option) any later version.
   9
  10    This program is distributed in the hope that it will be useful,
  11    but WITHOUT ANY WARRANTY; without even the implied warranty of
  12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13    GNU General Public License for more details.
  14
  15    You should have received a copy of the GNU General Public License
  16    along with this program; if not, write to the Free Software
  17    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  18*/
  19#include <linux/module.h>
 
  20#include <linux/moduleloader.h>
  21#include <linux/ftrace_event.h>
 
  22#include <linux/init.h>
  23#include <linux/kallsyms.h>
 
  24#include <linux/fs.h>
  25#include <linux/sysfs.h>
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/vmalloc.h>
  29#include <linux/elf.h>
  30#include <linux/proc_fs.h>
 
  31#include <linux/seq_file.h>
  32#include <linux/syscalls.h>
  33#include <linux/fcntl.h>
  34#include <linux/rcupdate.h>
  35#include <linux/capability.h>
  36#include <linux/cpu.h>
  37#include <linux/moduleparam.h>
  38#include <linux/errno.h>
  39#include <linux/err.h>
  40#include <linux/vermagic.h>
  41#include <linux/notifier.h>
  42#include <linux/sched.h>
  43#include <linux/stop_machine.h>
  44#include <linux/device.h>
  45#include <linux/string.h>
  46#include <linux/mutex.h>
  47#include <linux/rculist.h>
  48#include <asm/uaccess.h>
  49#include <asm/cacheflush.h>
 
  50#include <asm/mmu_context.h>
  51#include <linux/license.h>
  52#include <asm/sections.h>
  53#include <linux/tracepoint.h>
  54#include <linux/ftrace.h>
 
  55#include <linux/async.h>
  56#include <linux/percpu.h>
  57#include <linux/kmemleak.h>
  58#include <linux/jump_label.h>
  59#include <linux/pfn.h>
  60#include <linux/bsearch.h>
 
 
 
 
  61
  62#define CREATE_TRACE_POINTS
  63#include <trace/events/module.h>
  64
  65#if 0
  66#define DEBUGP printk
  67#else
  68#define DEBUGP(fmt , a...)
  69#endif
  70
  71#ifndef ARCH_SHF_SMALL
  72#define ARCH_SHF_SMALL 0
  73#endif
  74
  75/*
  76 * Modules' sections will be aligned on page boundaries
  77 * to ensure complete separation of code and data, but
  78 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
  79 */
  80#ifdef CONFIG_DEBUG_SET_MODULE_RONX
  81# define debug_align(X) ALIGN(X, PAGE_SIZE)
  82#else
  83# define debug_align(X) (X)
  84#endif
  85
  86/*
  87 * Given BASE and SIZE this macro calculates the number of pages the
  88 * memory regions occupies
  89 */
  90#define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ?		\
  91		(PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) -	\
  92			 PFN_DOWN((unsigned long)BASE) + 1)	\
  93		: (0UL))
  94
  95/* If this is set, the section belongs in the init part of the module */
  96#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
  97
  98/*
  99 * Mutex protects:
 100 * 1) List of modules (also safely readable with preempt_disable),
 101 * 2) module_use links,
 102 * 3) module_addr_min/module_addr_max.
 103 * (delete uses stop_machine/add uses RCU list operations). */
 104DEFINE_MUTEX(module_mutex);
 105EXPORT_SYMBOL_GPL(module_mutex);
 106static LIST_HEAD(modules);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 107#ifdef CONFIG_KGDB_KDB
 108struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
 109#endif /* CONFIG_KGDB_KDB */
 110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111
 112/* Block module loading/unloading? */
 113int modules_disabled = 0;
 
 114
 115/* Waiting for a module to finish initializing? */
 116static DECLARE_WAIT_QUEUE_HEAD(module_wq);
 117
 118static BLOCKING_NOTIFIER_HEAD(module_notify_list);
 119
 120/* Bounds of module allocation, for speeding __module_address.
 121 * Protected by module_mutex. */
 122static unsigned long module_addr_min = -1UL, module_addr_max = 0;
 123
 124int register_module_notifier(struct notifier_block * nb)
 125{
 126	return blocking_notifier_chain_register(&module_notify_list, nb);
 127}
 128EXPORT_SYMBOL(register_module_notifier);
 129
 130int unregister_module_notifier(struct notifier_block * nb)
 131{
 132	return blocking_notifier_chain_unregister(&module_notify_list, nb);
 133}
 134EXPORT_SYMBOL(unregister_module_notifier);
 135
 136struct load_info {
 137	Elf_Ehdr *hdr;
 138	unsigned long len;
 139	Elf_Shdr *sechdrs;
 140	char *secstrings, *strtab;
 141	unsigned long *strmap;
 142	unsigned long symoffs, stroffs;
 143	struct _ddebug *debug;
 144	unsigned int num_debug;
 145	struct {
 146		unsigned int sym, str, mod, vers, info, pcpu;
 147	} index;
 148};
 149
 150/* We require a truly strong try_module_get(): 0 means failure due to
 151   ongoing or failed initialization etc. */
 152static inline int strong_try_module_get(struct module *mod)
 153{
 
 154	if (mod && mod->state == MODULE_STATE_COMING)
 155		return -EBUSY;
 156	if (try_module_get(mod))
 157		return 0;
 158	else
 159		return -ENOENT;
 160}
 161
 162static inline void add_taint_module(struct module *mod, unsigned flag)
 
 163{
 164	add_taint(flag);
 165	mod->taints |= (1U << flag);
 166}
 167
 168/*
 169 * A thread that wants to hold a reference to a module only while it
 170 * is running can call this to safely exit.  nfsd and lockd use this.
 171 */
 172void __module_put_and_exit(struct module *mod, long code)
 173{
 174	module_put(mod);
 175	do_exit(code);
 176}
 177EXPORT_SYMBOL(__module_put_and_exit);
 178
 179/* Find a module section: 0 means not found. */
 180static unsigned int find_sec(const struct load_info *info, const char *name)
 181{
 182	unsigned int i;
 183
 184	for (i = 1; i < info->hdr->e_shnum; i++) {
 185		Elf_Shdr *shdr = &info->sechdrs[i];
 186		/* Alloc bit cleared means "ignore it." */
 187		if ((shdr->sh_flags & SHF_ALLOC)
 188		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
 189			return i;
 190	}
 191	return 0;
 192}
 193
 194/* Find a module section, or NULL. */
 195static void *section_addr(const struct load_info *info, const char *name)
 196{
 197	/* Section 0 has sh_addr 0. */
 198	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
 199}
 200
 201/* Find a module section, or NULL.  Fill in number of "objects" in section. */
 202static void *section_objs(const struct load_info *info,
 203			  const char *name,
 204			  size_t object_size,
 205			  unsigned int *num)
 206{
 207	unsigned int sec = find_sec(info, name);
 208
 209	/* Section 0 has sh_addr 0 and sh_size 0. */
 210	*num = info->sechdrs[sec].sh_size / object_size;
 211	return (void *)info->sechdrs[sec].sh_addr;
 212}
 213
 214/* Provided by the linker */
 215extern const struct kernel_symbol __start___ksymtab[];
 216extern const struct kernel_symbol __stop___ksymtab[];
 217extern const struct kernel_symbol __start___ksymtab_gpl[];
 218extern const struct kernel_symbol __stop___ksymtab_gpl[];
 219extern const struct kernel_symbol __start___ksymtab_gpl_future[];
 220extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
 221extern const unsigned long __start___kcrctab[];
 222extern const unsigned long __start___kcrctab_gpl[];
 223extern const unsigned long __start___kcrctab_gpl_future[];
 224#ifdef CONFIG_UNUSED_SYMBOLS
 225extern const struct kernel_symbol __start___ksymtab_unused[];
 226extern const struct kernel_symbol __stop___ksymtab_unused[];
 227extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
 228extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
 229extern const unsigned long __start___kcrctab_unused[];
 230extern const unsigned long __start___kcrctab_unused_gpl[];
 231#endif
 232
 233#ifndef CONFIG_MODVERSIONS
 234#define symversion(base, idx) NULL
 235#else
 236#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
 237#endif
 238
 239static bool each_symbol_in_section(const struct symsearch *arr,
 240				   unsigned int arrsize,
 241				   struct module *owner,
 242				   bool (*fn)(const struct symsearch *syms,
 243					      struct module *owner,
 244					      void *data),
 245				   void *data)
 246{
 247	unsigned int j;
 248
 249	for (j = 0; j < arrsize; j++) {
 250		if (fn(&arr[j], owner, data))
 251			return true;
 252	}
 253
 254	return false;
 255}
 256
 257/* Returns true as soon as fn returns true, otherwise false. */
 258bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
 259				    struct module *owner,
 260				    void *data),
 261			 void *data)
 262{
 263	struct module *mod;
 264	static const struct symsearch arr[] = {
 265		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
 266		  NOT_GPL_ONLY, false },
 267		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
 268		  __start___kcrctab_gpl,
 269		  GPL_ONLY, false },
 270		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
 271		  __start___kcrctab_gpl_future,
 272		  WILL_BE_GPL_ONLY, false },
 273#ifdef CONFIG_UNUSED_SYMBOLS
 274		{ __start___ksymtab_unused, __stop___ksymtab_unused,
 275		  __start___kcrctab_unused,
 276		  NOT_GPL_ONLY, true },
 277		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
 278		  __start___kcrctab_unused_gpl,
 279		  GPL_ONLY, true },
 280#endif
 281	};
 282
 
 
 283	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
 284		return true;
 285
 286	list_for_each_entry_rcu(mod, &modules, list) {
 287		struct symsearch arr[] = {
 288			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
 289			  NOT_GPL_ONLY, false },
 290			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
 291			  mod->gpl_crcs,
 292			  GPL_ONLY, false },
 293			{ mod->gpl_future_syms,
 294			  mod->gpl_future_syms + mod->num_gpl_future_syms,
 295			  mod->gpl_future_crcs,
 296			  WILL_BE_GPL_ONLY, false },
 297#ifdef CONFIG_UNUSED_SYMBOLS
 298			{ mod->unused_syms,
 299			  mod->unused_syms + mod->num_unused_syms,
 300			  mod->unused_crcs,
 301			  NOT_GPL_ONLY, true },
 302			{ mod->unused_gpl_syms,
 303			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
 304			  mod->unused_gpl_crcs,
 305			  GPL_ONLY, true },
 306#endif
 307		};
 308
 
 
 
 309		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
 310			return true;
 311	}
 312	return false;
 313}
 314EXPORT_SYMBOL_GPL(each_symbol_section);
 315
 316struct find_symbol_arg {
 317	/* Input */
 318	const char *name;
 319	bool gplok;
 320	bool warn;
 321
 322	/* Output */
 323	struct module *owner;
 324	const unsigned long *crc;
 325	const struct kernel_symbol *sym;
 326};
 327
 328static bool check_symbol(const struct symsearch *syms,
 329				 struct module *owner,
 330				 unsigned int symnum, void *data)
 331{
 332	struct find_symbol_arg *fsa = data;
 333
 334	if (!fsa->gplok) {
 335		if (syms->licence == GPL_ONLY)
 336			return false;
 337		if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
 338			printk(KERN_WARNING "Symbol %s is being used "
 339			       "by a non-GPL module, which will not "
 340			       "be allowed in the future\n", fsa->name);
 341			printk(KERN_WARNING "Please see the file "
 342			       "Documentation/feature-removal-schedule.txt "
 343			       "in the kernel source tree for more details.\n");
 344		}
 345	}
 346
 347#ifdef CONFIG_UNUSED_SYMBOLS
 348	if (syms->unused && fsa->warn) {
 349		printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
 350		       "however this module is using it.\n", fsa->name);
 351		printk(KERN_WARNING
 352		       "This symbol will go away in the future.\n");
 353		printk(KERN_WARNING
 354		       "Please evalute if this is the right api to use and if "
 355		       "it really is, submit a report the linux kernel "
 356		       "mailinglist together with submitting your code for "
 357		       "inclusion.\n");
 358	}
 359#endif
 360
 361	fsa->owner = owner;
 362	fsa->crc = symversion(syms->crcs, symnum);
 363	fsa->sym = &syms->start[symnum];
 364	return true;
 365}
 366
 367static int cmp_name(const void *va, const void *vb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 368{
 369	const char *a;
 370	const struct kernel_symbol *b;
 371	a = va; b = vb;
 372	return strcmp(a, b->name);
 373}
 374
 375static bool find_symbol_in_section(const struct symsearch *syms,
 376				   struct module *owner,
 377				   void *data)
 378{
 379	struct find_symbol_arg *fsa = data;
 380	struct kernel_symbol *sym;
 381
 382	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
 383			sizeof(struct kernel_symbol), cmp_name);
 384
 385	if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
 
 386		return true;
 387
 388	return false;
 389}
 390
 391/* Find a symbol and return it, along with, (optional) crc and
 392 * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
 393const struct kernel_symbol *find_symbol(const char *name,
 394					struct module **owner,
 395					const unsigned long **crc,
 396					bool gplok,
 397					bool warn)
 398{
 399	struct find_symbol_arg fsa;
 400
 401	fsa.name = name;
 402	fsa.gplok = gplok;
 403	fsa.warn = warn;
 404
 405	if (each_symbol_section(find_symbol_in_section, &fsa)) {
 406		if (owner)
 407			*owner = fsa.owner;
 408		if (crc)
 409			*crc = fsa.crc;
 410		return fsa.sym;
 411	}
 412
 413	DEBUGP("Failed to find symbol %s\n", name);
 414	return NULL;
 415}
 416EXPORT_SYMBOL_GPL(find_symbol);
 417
 418/* Search for module by name: must hold module_mutex. */
 419struct module *find_module(const char *name)
 
 
 
 
 420{
 421	struct module *mod;
 422
 423	list_for_each_entry(mod, &modules, list) {
 424		if (strcmp(mod->name, name) == 0)
 
 
 
 
 425			return mod;
 426	}
 427	return NULL;
 428}
 
 
 
 
 
 
 429EXPORT_SYMBOL_GPL(find_module);
 430
 431#ifdef CONFIG_SMP
 432
 433static inline void __percpu *mod_percpu(struct module *mod)
 434{
 435	return mod->percpu;
 436}
 437
 438static int percpu_modalloc(struct module *mod,
 439			   unsigned long size, unsigned long align)
 440{
 
 
 
 
 
 
 441	if (align > PAGE_SIZE) {
 442		printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
 443		       mod->name, align, PAGE_SIZE);
 444		align = PAGE_SIZE;
 445	}
 446
 447	mod->percpu = __alloc_reserved_percpu(size, align);
 448	if (!mod->percpu) {
 449		printk(KERN_WARNING
 450		       "%s: Could not allocate %lu bytes percpu data\n",
 451		       mod->name, size);
 452		return -ENOMEM;
 453	}
 454	mod->percpu_size = size;
 455	return 0;
 456}
 457
 458static void percpu_modfree(struct module *mod)
 459{
 460	free_percpu(mod->percpu);
 461}
 462
 463static unsigned int find_pcpusec(struct load_info *info)
 464{
 465	return find_sec(info, ".data..percpu");
 466}
 467
 468static void percpu_modcopy(struct module *mod,
 469			   const void *from, unsigned long size)
 470{
 471	int cpu;
 472
 473	for_each_possible_cpu(cpu)
 474		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
 475}
 476
 477/**
 478 * is_module_percpu_address - test whether address is from module static percpu
 479 * @addr: address to test
 480 *
 481 * Test whether @addr belongs to module static percpu area.
 482 *
 483 * RETURNS:
 484 * %true if @addr is from module static percpu area
 485 */
 486bool is_module_percpu_address(unsigned long addr)
 487{
 488	struct module *mod;
 489	unsigned int cpu;
 490
 491	preempt_disable();
 492
 493	list_for_each_entry_rcu(mod, &modules, list) {
 
 
 494		if (!mod->percpu_size)
 495			continue;
 496		for_each_possible_cpu(cpu) {
 497			void *start = per_cpu_ptr(mod->percpu, cpu);
 
 498
 499			if ((void *)addr >= start &&
 500			    (void *)addr < start + mod->percpu_size) {
 
 
 
 
 
 501				preempt_enable();
 502				return true;
 503			}
 504		}
 505	}
 506
 507	preempt_enable();
 508	return false;
 509}
 510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 511#else /* ... !CONFIG_SMP */
 512
 513static inline void __percpu *mod_percpu(struct module *mod)
 514{
 515	return NULL;
 516}
 517static inline int percpu_modalloc(struct module *mod,
 518				  unsigned long size, unsigned long align)
 519{
 520	return -ENOMEM;
 
 
 
 521}
 522static inline void percpu_modfree(struct module *mod)
 523{
 524}
 525static unsigned int find_pcpusec(struct load_info *info)
 526{
 527	return 0;
 528}
 529static inline void percpu_modcopy(struct module *mod,
 530				  const void *from, unsigned long size)
 531{
 532	/* pcpusec should be 0, and size of that section should be 0. */
 533	BUG_ON(size != 0);
 534}
 535bool is_module_percpu_address(unsigned long addr)
 536{
 537	return false;
 538}
 539
 
 
 
 
 
 540#endif /* CONFIG_SMP */
 541
 542#define MODINFO_ATTR(field)	\
 543static void setup_modinfo_##field(struct module *mod, const char *s)  \
 544{                                                                     \
 545	mod->field = kstrdup(s, GFP_KERNEL);                          \
 546}                                                                     \
 547static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
 548			struct module_kobject *mk, char *buffer)      \
 549{                                                                     \
 550	return sprintf(buffer, "%s\n", mk->mod->field);               \
 551}                                                                     \
 552static int modinfo_##field##_exists(struct module *mod)               \
 553{                                                                     \
 554	return mod->field != NULL;                                    \
 555}                                                                     \
 556static void free_modinfo_##field(struct module *mod)                  \
 557{                                                                     \
 558	kfree(mod->field);                                            \
 559	mod->field = NULL;                                            \
 560}                                                                     \
 561static struct module_attribute modinfo_##field = {                    \
 562	.attr = { .name = __stringify(field), .mode = 0444 },         \
 563	.show = show_modinfo_##field,                                 \
 564	.setup = setup_modinfo_##field,                               \
 565	.test = modinfo_##field##_exists,                             \
 566	.free = free_modinfo_##field,                                 \
 567};
 568
 569MODINFO_ATTR(version);
 570MODINFO_ATTR(srcversion);
 571
 572static char last_unloaded_module[MODULE_NAME_LEN+1];
 573
 574#ifdef CONFIG_MODULE_UNLOAD
 575
 576EXPORT_TRACEPOINT_SYMBOL(module_get);
 577
 
 
 
 578/* Init the unload section of the module. */
 579static int module_unload_init(struct module *mod)
 580{
 581	mod->refptr = alloc_percpu(struct module_ref);
 582	if (!mod->refptr)
 583		return -ENOMEM;
 
 
 584
 585	INIT_LIST_HEAD(&mod->source_list);
 586	INIT_LIST_HEAD(&mod->target_list);
 587
 588	/* Hold reference count during initialization. */
 589	__this_cpu_write(mod->refptr->incs, 1);
 590	/* Backwards compatibility macros put refcount during init. */
 591	mod->waiter = current;
 592
 593	return 0;
 594}
 595
 596/* Does a already use b? */
 597static int already_uses(struct module *a, struct module *b)
 598{
 599	struct module_use *use;
 600
 601	list_for_each_entry(use, &b->source_list, source_list) {
 602		if (use->source == a) {
 603			DEBUGP("%s uses %s!\n", a->name, b->name);
 604			return 1;
 605		}
 606	}
 607	DEBUGP("%s does not use %s!\n", a->name, b->name);
 608	return 0;
 609}
 610
 611/*
 612 * Module a uses b
 613 *  - we add 'a' as a "source", 'b' as a "target" of module use
 614 *  - the module_use is added to the list of 'b' sources (so
 615 *    'b' can walk the list to see who sourced them), and of 'a'
 616 *    targets (so 'a' can see what modules it targets).
 617 */
 618static int add_module_usage(struct module *a, struct module *b)
 619{
 620	struct module_use *use;
 621
 622	DEBUGP("Allocating new usage for %s.\n", a->name);
 623	use = kmalloc(sizeof(*use), GFP_ATOMIC);
 624	if (!use) {
 625		printk(KERN_WARNING "%s: out of memory loading\n", a->name);
 626		return -ENOMEM;
 627	}
 628
 629	use->source = a;
 630	use->target = b;
 631	list_add(&use->source_list, &b->source_list);
 632	list_add(&use->target_list, &a->target_list);
 633	return 0;
 634}
 635
 636/* Module a uses b: caller needs module_mutex() */
 637int ref_module(struct module *a, struct module *b)
 638{
 639	int err;
 640
 641	if (b == NULL || already_uses(a, b))
 642		return 0;
 643
 644	/* If module isn't available, we fail. */
 645	err = strong_try_module_get(b);
 646	if (err)
 647		return err;
 648
 649	err = add_module_usage(a, b);
 650	if (err) {
 651		module_put(b);
 652		return err;
 653	}
 654	return 0;
 655}
 656EXPORT_SYMBOL_GPL(ref_module);
 657
 658/* Clear the unload stuff of the module. */
 659static void module_unload_free(struct module *mod)
 660{
 661	struct module_use *use, *tmp;
 662
 663	mutex_lock(&module_mutex);
 664	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
 665		struct module *i = use->target;
 666		DEBUGP("%s unusing %s\n", mod->name, i->name);
 667		module_put(i);
 668		list_del(&use->source_list);
 669		list_del(&use->target_list);
 670		kfree(use);
 671	}
 672	mutex_unlock(&module_mutex);
 673
 674	free_percpu(mod->refptr);
 675}
 676
 677#ifdef CONFIG_MODULE_FORCE_UNLOAD
 678static inline int try_force_unload(unsigned int flags)
 679{
 680	int ret = (flags & O_TRUNC);
 681	if (ret)
 682		add_taint(TAINT_FORCED_RMMOD);
 683	return ret;
 684}
 685#else
 686static inline int try_force_unload(unsigned int flags)
 687{
 688	return 0;
 689}
 690#endif /* CONFIG_MODULE_FORCE_UNLOAD */
 691
 692struct stopref
 
 693{
 694	struct module *mod;
 695	int flags;
 696	int *forced;
 697};
 
 
 
 
 
 
 
 698
 699/* Whole machine is stopped with interrupts off when this runs. */
 700static int __try_stop_module(void *_sref)
 701{
 702	struct stopref *sref = _sref;
 703
 704	/* If it's not unused, quit unless we're forcing. */
 705	if (module_refcount(sref->mod) != 0) {
 706		if (!(*sref->forced = try_force_unload(sref->flags)))
 
 707			return -EWOULDBLOCK;
 708	}
 709
 710	/* Mark it as dying. */
 711	sref->mod->state = MODULE_STATE_GOING;
 
 712	return 0;
 713}
 714
 715static int try_stop_module(struct module *mod, int flags, int *forced)
 
 
 
 
 
 
 
 
 
 716{
 717	if (flags & O_NONBLOCK) {
 718		struct stopref sref = { mod, flags, forced };
 719
 720		return stop_machine(__try_stop_module, &sref, NULL);
 721	} else {
 722		/* We don't need to stop the machine for this. */
 723		mod->state = MODULE_STATE_GOING;
 724		synchronize_sched();
 725		return 0;
 726	}
 727}
 728
 729unsigned int module_refcount(struct module *mod)
 730{
 731	unsigned int incs = 0, decs = 0;
 732	int cpu;
 733
 734	for_each_possible_cpu(cpu)
 735		decs += per_cpu_ptr(mod->refptr, cpu)->decs;
 736	/*
 737	 * ensure the incs are added up after the decs.
 738	 * module_put ensures incs are visible before decs with smp_wmb.
 739	 *
 740	 * This 2-count scheme avoids the situation where the refcount
 741	 * for CPU0 is read, then CPU0 increments the module refcount,
 742	 * then CPU1 drops that refcount, then the refcount for CPU1 is
 743	 * read. We would record a decrement but not its corresponding
 744	 * increment so we would see a low count (disaster).
 745	 *
 746	 * Rare situation? But module_refcount can be preempted, and we
 747	 * might be tallying up 4096+ CPUs. So it is not impossible.
 748	 */
 749	smp_rmb();
 750	for_each_possible_cpu(cpu)
 751		incs += per_cpu_ptr(mod->refptr, cpu)->incs;
 752	return incs - decs;
 753}
 754EXPORT_SYMBOL(module_refcount);
 755
 756/* This exists whether we can unload or not */
 757static void free_module(struct module *mod);
 758
 759static void wait_for_zero_refcount(struct module *mod)
 760{
 761	/* Since we might sleep for some time, release the mutex first */
 762	mutex_unlock(&module_mutex);
 763	for (;;) {
 764		DEBUGP("Looking at refcount...\n");
 765		set_current_state(TASK_UNINTERRUPTIBLE);
 766		if (module_refcount(mod) == 0)
 767			break;
 768		schedule();
 769	}
 770	current->state = TASK_RUNNING;
 771	mutex_lock(&module_mutex);
 772}
 773
 774SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
 775		unsigned int, flags)
 776{
 777	struct module *mod;
 778	char name[MODULE_NAME_LEN];
 779	int ret, forced = 0;
 780
 781	if (!capable(CAP_SYS_MODULE) || modules_disabled)
 782		return -EPERM;
 783
 784	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
 785		return -EFAULT;
 786	name[MODULE_NAME_LEN-1] = '\0';
 787
 
 
 788	if (mutex_lock_interruptible(&module_mutex) != 0)
 789		return -EINTR;
 790
 791	mod = find_module(name);
 792	if (!mod) {
 793		ret = -ENOENT;
 794		goto out;
 795	}
 796
 797	if (!list_empty(&mod->source_list)) {
 798		/* Other modules depend on us: get rid of them first. */
 799		ret = -EWOULDBLOCK;
 800		goto out;
 801	}
 802
 803	/* Doing init or already dying? */
 804	if (mod->state != MODULE_STATE_LIVE) {
 805		/* FIXME: if (force), slam module count and wake up
 806                   waiter --RR */
 807		DEBUGP("%s already dying\n", mod->name);
 808		ret = -EBUSY;
 809		goto out;
 810	}
 811
 812	/* If it has an init func, it must have an exit func to unload */
 813	if (mod->init && !mod->exit) {
 814		forced = try_force_unload(flags);
 815		if (!forced) {
 816			/* This module can't be removed */
 817			ret = -EBUSY;
 818			goto out;
 819		}
 820	}
 821
 822	/* Set this up before setting mod->state */
 823	mod->waiter = current;
 824
 825	/* Stop the machine so refcounts can't move and disable module. */
 826	ret = try_stop_module(mod, flags, &forced);
 827	if (ret != 0)
 828		goto out;
 829
 830	/* Never wait if forced. */
 831	if (!forced && module_refcount(mod) != 0)
 832		wait_for_zero_refcount(mod);
 833
 834	mutex_unlock(&module_mutex);
 835	/* Final destruction now no one is using it. */
 836	if (mod->exit != NULL)
 837		mod->exit();
 838	blocking_notifier_call_chain(&module_notify_list,
 839				     MODULE_STATE_GOING, mod);
 
 
 
 840	async_synchronize_full();
 841
 842	/* Store the name of the last unloaded module for diagnostic purposes */
 843	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
 844
 845	free_module(mod);
 846	return 0;
 847out:
 848	mutex_unlock(&module_mutex);
 849	return ret;
 850}
 851
 852static inline void print_unload_info(struct seq_file *m, struct module *mod)
 853{
 854	struct module_use *use;
 855	int printed_something = 0;
 856
 857	seq_printf(m, " %u ", module_refcount(mod));
 858
 859	/* Always include a trailing , so userspace can differentiate
 860           between this and the old multi-field proc format. */
 
 
 861	list_for_each_entry(use, &mod->source_list, source_list) {
 862		printed_something = 1;
 863		seq_printf(m, "%s,", use->source->name);
 864	}
 865
 866	if (mod->init != NULL && mod->exit == NULL) {
 867		printed_something = 1;
 868		seq_printf(m, "[permanent],");
 869	}
 870
 871	if (!printed_something)
 872		seq_printf(m, "-");
 873}
 874
 875void __symbol_put(const char *symbol)
 876{
 877	struct module *owner;
 878
 879	preempt_disable();
 880	if (!find_symbol(symbol, &owner, NULL, true, false))
 881		BUG();
 882	module_put(owner);
 883	preempt_enable();
 884}
 885EXPORT_SYMBOL(__symbol_put);
 886
 887/* Note this assumes addr is a function, which it currently always is. */
 888void symbol_put_addr(void *addr)
 889{
 890	struct module *modaddr;
 891	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
 892
 893	if (core_kernel_text(a))
 894		return;
 895
 896	/* module_text_address is safe here: we're supposed to have reference
 897	 * to module from symbol_get, so it can't go away. */
 
 
 
 898	modaddr = __module_text_address(a);
 899	BUG_ON(!modaddr);
 900	module_put(modaddr);
 
 901}
 902EXPORT_SYMBOL_GPL(symbol_put_addr);
 903
 904static ssize_t show_refcnt(struct module_attribute *mattr,
 905			   struct module_kobject *mk, char *buffer)
 906{
 907	return sprintf(buffer, "%u\n", module_refcount(mk->mod));
 908}
 909
 910static struct module_attribute refcnt = {
 911	.attr = { .name = "refcnt", .mode = 0444 },
 912	.show = show_refcnt,
 913};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914
 915void module_put(struct module *module)
 916{
 
 
 917	if (module) {
 918		preempt_disable();
 919		smp_wmb(); /* see comment in module_refcount */
 920		__this_cpu_inc(module->refptr->decs);
 921
 922		trace_module_put(module, _RET_IP_);
 923		/* Maybe they're waiting for us to drop reference? */
 924		if (unlikely(!module_is_live(module)))
 925			wake_up_process(module->waiter);
 926		preempt_enable();
 927	}
 928}
 929EXPORT_SYMBOL(module_put);
 930
 931#else /* !CONFIG_MODULE_UNLOAD */
 932static inline void print_unload_info(struct seq_file *m, struct module *mod)
 933{
 934	/* We don't know the usage count, or what modules are using. */
 935	seq_printf(m, " - -");
 936}
 937
 938static inline void module_unload_free(struct module *mod)
 939{
 940}
 941
 942int ref_module(struct module *a, struct module *b)
 943{
 944	return strong_try_module_get(b);
 945}
 946EXPORT_SYMBOL_GPL(ref_module);
 947
 948static inline int module_unload_init(struct module *mod)
 949{
 950	return 0;
 951}
 952#endif /* CONFIG_MODULE_UNLOAD */
 953
 
 
 
 
 
 
 
 
 
 
 
 
 
 954static ssize_t show_initstate(struct module_attribute *mattr,
 955			      struct module_kobject *mk, char *buffer)
 956{
 957	const char *state = "unknown";
 958
 959	switch (mk->mod->state) {
 960	case MODULE_STATE_LIVE:
 961		state = "live";
 962		break;
 963	case MODULE_STATE_COMING:
 964		state = "coming";
 965		break;
 966	case MODULE_STATE_GOING:
 967		state = "going";
 968		break;
 
 
 969	}
 970	return sprintf(buffer, "%s\n", state);
 971}
 972
 973static struct module_attribute initstate = {
 974	.attr = { .name = "initstate", .mode = 0444 },
 975	.show = show_initstate,
 976};
 977
 978static ssize_t store_uevent(struct module_attribute *mattr,
 979			    struct module_kobject *mk,
 980			    const char *buffer, size_t count)
 981{
 982	enum kobject_action action;
 
 
 
 
 
 
 
 983
 984	if (kobject_action_type(buffer, count, &action) == 0)
 985		kobject_uevent(&mk->kobj, action);
 986	return count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987}
 988
 989struct module_attribute module_uevent = {
 990	.attr = { .name = "uevent", .mode = 0200 },
 991	.store = store_uevent,
 992};
 993
 994static struct module_attribute *modinfo_attrs[] = {
 
 995	&modinfo_version,
 996	&modinfo_srcversion,
 997	&initstate,
 998	&module_uevent,
 
 
 999#ifdef CONFIG_MODULE_UNLOAD
1000	&refcnt,
1001#endif
1002	NULL,
1003};
1004
1005static const char vermagic[] = VERMAGIC_STRING;
1006
1007static int try_to_force_load(struct module *mod, const char *reason)
1008{
1009#ifdef CONFIG_MODULE_FORCE_LOAD
1010	if (!test_taint(TAINT_FORCED_MODULE))
1011		printk(KERN_WARNING "%s: %s: kernel tainted.\n",
1012		       mod->name, reason);
1013	add_taint_module(mod, TAINT_FORCED_MODULE);
1014	return 0;
1015#else
1016	return -ENOEXEC;
1017#endif
1018}
1019
1020#ifdef CONFIG_MODVERSIONS
1021/* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1022static unsigned long maybe_relocated(unsigned long crc,
1023				     const struct module *crc_owner)
1024{
1025#ifdef ARCH_RELOCATES_KCRCTAB
1026	if (crc_owner == NULL)
1027		return crc - (unsigned long)reloc_start;
1028#endif
1029	return crc;
1030}
1031
1032static int check_version(Elf_Shdr *sechdrs,
1033			 unsigned int versindex,
1034			 const char *symname,
1035			 struct module *mod, 
1036			 const unsigned long *crc,
1037			 const struct module *crc_owner)
1038{
 
 
1039	unsigned int i, num_versions;
1040	struct modversion_info *versions;
1041
1042	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1043	if (!crc)
1044		return 1;
1045
1046	/* No versions at all?  modprobe --force does this. */
1047	if (versindex == 0)
1048		return try_to_force_load(mod, symname) == 0;
1049
1050	versions = (void *) sechdrs[versindex].sh_addr;
1051	num_versions = sechdrs[versindex].sh_size
1052		/ sizeof(struct modversion_info);
1053
1054	for (i = 0; i < num_versions; i++) {
 
 
1055		if (strcmp(versions[i].name, symname) != 0)
1056			continue;
1057
1058		if (versions[i].crc == maybe_relocated(*crc, crc_owner))
 
 
 
 
1059			return 1;
1060		DEBUGP("Found checksum %lX vs module %lX\n",
1061		       maybe_relocated(*crc, crc_owner), versions[i].crc);
1062		goto bad_version;
1063	}
1064
1065	printk(KERN_WARNING "%s: no symbol version for %s\n",
1066	       mod->name, symname);
1067	return 0;
1068
1069bad_version:
1070	printk("%s: disagrees about version of symbol %s\n",
1071	       mod->name, symname);
1072	return 0;
1073}
1074
1075static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1076					  unsigned int versindex,
1077					  struct module *mod)
1078{
1079	const unsigned long *crc;
1080
1081	/* Since this should be found in kernel (which can't be removed),
1082	 * no locking is necessary. */
1083	if (!find_symbol(MODULE_SYMBOL_PREFIX "module_layout", NULL,
1084			 &crc, true, false))
 
 
 
1085		BUG();
1086	return check_version(sechdrs, versindex, "module_layout", mod, crc,
1087			     NULL);
 
1088}
1089
1090/* First part is kernel version, which we ignore if module has crcs. */
1091static inline int same_magic(const char *amagic, const char *bmagic,
1092			     bool has_crcs)
1093{
1094	if (has_crcs) {
1095		amagic += strcspn(amagic, " ");
1096		bmagic += strcspn(bmagic, " ");
1097	}
1098	return strcmp(amagic, bmagic) == 0;
1099}
1100#else
1101static inline int check_version(Elf_Shdr *sechdrs,
1102				unsigned int versindex,
1103				const char *symname,
1104				struct module *mod, 
1105				const unsigned long *crc,
1106				const struct module *crc_owner)
1107{
1108	return 1;
1109}
1110
1111static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1112					  unsigned int versindex,
1113					  struct module *mod)
1114{
1115	return 1;
1116}
1117
1118static inline int same_magic(const char *amagic, const char *bmagic,
1119			     bool has_crcs)
1120{
1121	return strcmp(amagic, bmagic) == 0;
1122}
1123#endif /* CONFIG_MODVERSIONS */
1124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125/* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1126static const struct kernel_symbol *resolve_symbol(struct module *mod,
1127						  const struct load_info *info,
1128						  const char *name,
1129						  char ownername[])
1130{
1131	struct module *owner;
1132	const struct kernel_symbol *sym;
1133	const unsigned long *crc;
1134	int err;
1135
 
 
 
 
 
 
1136	mutex_lock(&module_mutex);
1137	sym = find_symbol(name, &owner, &crc,
1138			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1139	if (!sym)
1140		goto unlock;
1141
1142	if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1143			   owner)) {
1144		sym = ERR_PTR(-EINVAL);
1145		goto getname;
1146	}
1147
 
 
 
 
 
 
1148	err = ref_module(mod, owner);
1149	if (err) {
1150		sym = ERR_PTR(err);
1151		goto getname;
1152	}
1153
1154getname:
1155	/* We must make copy under the lock if we failed to get ref. */
1156	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1157unlock:
1158	mutex_unlock(&module_mutex);
1159	return sym;
1160}
1161
1162static const struct kernel_symbol *
1163resolve_symbol_wait(struct module *mod,
1164		    const struct load_info *info,
1165		    const char *name)
1166{
1167	const struct kernel_symbol *ksym;
1168	char owner[MODULE_NAME_LEN];
1169
1170	if (wait_event_interruptible_timeout(module_wq,
1171			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1172			|| PTR_ERR(ksym) != -EBUSY,
1173					     30 * HZ) <= 0) {
1174		printk(KERN_WARNING "%s: gave up waiting for init of module %s.\n",
1175		       mod->name, owner);
1176	}
1177	return ksym;
1178}
1179
1180/*
1181 * /sys/module/foo/sections stuff
1182 * J. Corbet <corbet@lwn.net>
1183 */
1184#ifdef CONFIG_SYSFS
1185
1186#ifdef CONFIG_KALLSYMS
1187static inline bool sect_empty(const Elf_Shdr *sect)
1188{
1189	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1190}
1191
1192struct module_sect_attr
1193{
1194	struct module_attribute mattr;
1195	char *name;
1196	unsigned long address;
1197};
1198
1199struct module_sect_attrs
1200{
1201	struct attribute_group grp;
1202	unsigned int nsections;
1203	struct module_sect_attr attrs[0];
1204};
1205
1206static ssize_t module_sect_show(struct module_attribute *mattr,
1207				struct module_kobject *mk, char *buf)
1208{
1209	struct module_sect_attr *sattr =
1210		container_of(mattr, struct module_sect_attr, mattr);
1211	return sprintf(buf, "0x%pK\n", (void *)sattr->address);
 
1212}
1213
1214static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1215{
1216	unsigned int section;
1217
1218	for (section = 0; section < sect_attrs->nsections; section++)
1219		kfree(sect_attrs->attrs[section].name);
1220	kfree(sect_attrs);
1221}
1222
1223static void add_sect_attrs(struct module *mod, const struct load_info *info)
1224{
1225	unsigned int nloaded = 0, i, size[2];
1226	struct module_sect_attrs *sect_attrs;
1227	struct module_sect_attr *sattr;
1228	struct attribute **gattr;
1229
1230	/* Count loaded sections and allocate structures */
1231	for (i = 0; i < info->hdr->e_shnum; i++)
1232		if (!sect_empty(&info->sechdrs[i]))
1233			nloaded++;
1234	size[0] = ALIGN(sizeof(*sect_attrs)
1235			+ nloaded * sizeof(sect_attrs->attrs[0]),
1236			sizeof(sect_attrs->grp.attrs[0]));
1237	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1238	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1239	if (sect_attrs == NULL)
1240		return;
1241
1242	/* Setup section attributes. */
1243	sect_attrs->grp.name = "sections";
1244	sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1245
1246	sect_attrs->nsections = 0;
1247	sattr = &sect_attrs->attrs[0];
1248	gattr = &sect_attrs->grp.attrs[0];
1249	for (i = 0; i < info->hdr->e_shnum; i++) {
1250		Elf_Shdr *sec = &info->sechdrs[i];
1251		if (sect_empty(sec))
1252			continue;
1253		sattr->address = sec->sh_addr;
1254		sattr->name = kstrdup(info->secstrings + sec->sh_name,
1255					GFP_KERNEL);
1256		if (sattr->name == NULL)
1257			goto out;
1258		sect_attrs->nsections++;
1259		sysfs_attr_init(&sattr->mattr.attr);
1260		sattr->mattr.show = module_sect_show;
1261		sattr->mattr.store = NULL;
1262		sattr->mattr.attr.name = sattr->name;
1263		sattr->mattr.attr.mode = S_IRUGO;
1264		*(gattr++) = &(sattr++)->mattr.attr;
1265	}
1266	*gattr = NULL;
1267
1268	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1269		goto out;
1270
1271	mod->sect_attrs = sect_attrs;
1272	return;
1273  out:
1274	free_sect_attrs(sect_attrs);
1275}
1276
1277static void remove_sect_attrs(struct module *mod)
1278{
1279	if (mod->sect_attrs) {
1280		sysfs_remove_group(&mod->mkobj.kobj,
1281				   &mod->sect_attrs->grp);
1282		/* We are positive that no one is using any sect attrs
1283		 * at this point.  Deallocate immediately. */
1284		free_sect_attrs(mod->sect_attrs);
1285		mod->sect_attrs = NULL;
1286	}
1287}
1288
1289/*
1290 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1291 */
1292
1293struct module_notes_attrs {
1294	struct kobject *dir;
1295	unsigned int notes;
1296	struct bin_attribute attrs[0];
1297};
1298
1299static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1300				 struct bin_attribute *bin_attr,
1301				 char *buf, loff_t pos, size_t count)
1302{
1303	/*
1304	 * The caller checked the pos and count against our size.
1305	 */
1306	memcpy(buf, bin_attr->private + pos, count);
1307	return count;
1308}
1309
1310static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1311			     unsigned int i)
1312{
1313	if (notes_attrs->dir) {
1314		while (i-- > 0)
1315			sysfs_remove_bin_file(notes_attrs->dir,
1316					      &notes_attrs->attrs[i]);
1317		kobject_put(notes_attrs->dir);
1318	}
1319	kfree(notes_attrs);
1320}
1321
1322static void add_notes_attrs(struct module *mod, const struct load_info *info)
1323{
1324	unsigned int notes, loaded, i;
1325	struct module_notes_attrs *notes_attrs;
1326	struct bin_attribute *nattr;
1327
1328	/* failed to create section attributes, so can't create notes */
1329	if (!mod->sect_attrs)
1330		return;
1331
1332	/* Count notes sections and allocate structures.  */
1333	notes = 0;
1334	for (i = 0; i < info->hdr->e_shnum; i++)
1335		if (!sect_empty(&info->sechdrs[i]) &&
1336		    (info->sechdrs[i].sh_type == SHT_NOTE))
1337			++notes;
1338
1339	if (notes == 0)
1340		return;
1341
1342	notes_attrs = kzalloc(sizeof(*notes_attrs)
1343			      + notes * sizeof(notes_attrs->attrs[0]),
1344			      GFP_KERNEL);
1345	if (notes_attrs == NULL)
1346		return;
1347
1348	notes_attrs->notes = notes;
1349	nattr = &notes_attrs->attrs[0];
1350	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1351		if (sect_empty(&info->sechdrs[i]))
1352			continue;
1353		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1354			sysfs_bin_attr_init(nattr);
1355			nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1356			nattr->attr.mode = S_IRUGO;
1357			nattr->size = info->sechdrs[i].sh_size;
1358			nattr->private = (void *) info->sechdrs[i].sh_addr;
1359			nattr->read = module_notes_read;
1360			++nattr;
1361		}
1362		++loaded;
1363	}
1364
1365	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1366	if (!notes_attrs->dir)
1367		goto out;
1368
1369	for (i = 0; i < notes; ++i)
1370		if (sysfs_create_bin_file(notes_attrs->dir,
1371					  &notes_attrs->attrs[i]))
1372			goto out;
1373
1374	mod->notes_attrs = notes_attrs;
1375	return;
1376
1377  out:
1378	free_notes_attrs(notes_attrs, i);
1379}
1380
1381static void remove_notes_attrs(struct module *mod)
1382{
1383	if (mod->notes_attrs)
1384		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1385}
1386
1387#else
1388
1389static inline void add_sect_attrs(struct module *mod,
1390				  const struct load_info *info)
1391{
1392}
1393
1394static inline void remove_sect_attrs(struct module *mod)
1395{
1396}
1397
1398static inline void add_notes_attrs(struct module *mod,
1399				   const struct load_info *info)
1400{
1401}
1402
1403static inline void remove_notes_attrs(struct module *mod)
1404{
1405}
1406#endif /* CONFIG_KALLSYMS */
1407
1408static void add_usage_links(struct module *mod)
1409{
1410#ifdef CONFIG_MODULE_UNLOAD
1411	struct module_use *use;
1412	int nowarn;
1413
1414	mutex_lock(&module_mutex);
1415	list_for_each_entry(use, &mod->target_list, target_list) {
1416		nowarn = sysfs_create_link(use->target->holders_dir,
1417					   &mod->mkobj.kobj, mod->name);
1418	}
1419	mutex_unlock(&module_mutex);
1420#endif
1421}
1422
1423static void del_usage_links(struct module *mod)
1424{
 
1425#ifdef CONFIG_MODULE_UNLOAD
1426	struct module_use *use;
1427
1428	mutex_lock(&module_mutex);
1429	list_for_each_entry(use, &mod->target_list, target_list)
1430		sysfs_remove_link(use->target->holders_dir, mod->name);
 
 
 
 
1431	mutex_unlock(&module_mutex);
 
 
1432#endif
 
1433}
1434
 
 
1435static int module_add_modinfo_attrs(struct module *mod)
1436{
1437	struct module_attribute *attr;
1438	struct module_attribute *temp_attr;
1439	int error = 0;
1440	int i;
1441
1442	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1443					(ARRAY_SIZE(modinfo_attrs) + 1)),
1444					GFP_KERNEL);
1445	if (!mod->modinfo_attrs)
1446		return -ENOMEM;
1447
1448	temp_attr = mod->modinfo_attrs;
1449	for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1450		if (!attr->test ||
1451		    (attr->test && attr->test(mod))) {
1452			memcpy(temp_attr, attr, sizeof(*temp_attr));
1453			sysfs_attr_init(&temp_attr->attr);
1454			error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
 
 
 
1455			++temp_attr;
1456		}
1457	}
 
 
 
 
 
 
1458	return error;
1459}
1460
1461static void module_remove_modinfo_attrs(struct module *mod)
1462{
1463	struct module_attribute *attr;
1464	int i;
1465
1466	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
 
 
1467		/* pick a field to test for end of list */
1468		if (!attr->attr.name)
1469			break;
1470		sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1471		if (attr->free)
1472			attr->free(mod);
1473	}
1474	kfree(mod->modinfo_attrs);
1475}
1476
 
 
 
 
 
 
 
 
1477static int mod_sysfs_init(struct module *mod)
1478{
1479	int err;
1480	struct kobject *kobj;
1481
1482	if (!module_sysfs_initialized) {
1483		printk(KERN_ERR "%s: module sysfs not initialized\n",
1484		       mod->name);
1485		err = -EINVAL;
1486		goto out;
1487	}
1488
1489	kobj = kset_find_obj(module_kset, mod->name);
1490	if (kobj) {
1491		printk(KERN_ERR "%s: module is already loaded\n", mod->name);
1492		kobject_put(kobj);
1493		err = -EINVAL;
1494		goto out;
1495	}
1496
1497	mod->mkobj.mod = mod;
1498
1499	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1500	mod->mkobj.kobj.kset = module_kset;
1501	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1502				   "%s", mod->name);
1503	if (err)
1504		kobject_put(&mod->mkobj.kobj);
1505
1506	/* delay uevent until full sysfs population */
1507out:
1508	return err;
1509}
1510
1511static int mod_sysfs_setup(struct module *mod,
1512			   const struct load_info *info,
1513			   struct kernel_param *kparam,
1514			   unsigned int num_params)
1515{
1516	int err;
1517
1518	err = mod_sysfs_init(mod);
1519	if (err)
1520		goto out;
1521
1522	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1523	if (!mod->holders_dir) {
1524		err = -ENOMEM;
1525		goto out_unreg;
1526	}
1527
1528	err = module_param_sysfs_setup(mod, kparam, num_params);
1529	if (err)
1530		goto out_unreg_holders;
1531
1532	err = module_add_modinfo_attrs(mod);
1533	if (err)
1534		goto out_unreg_param;
1535
1536	add_usage_links(mod);
 
 
 
1537	add_sect_attrs(mod, info);
1538	add_notes_attrs(mod, info);
1539
1540	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1541	return 0;
1542
 
 
1543out_unreg_param:
1544	module_param_sysfs_remove(mod);
1545out_unreg_holders:
1546	kobject_put(mod->holders_dir);
1547out_unreg:
1548	kobject_put(&mod->mkobj.kobj);
1549out:
1550	return err;
1551}
1552
1553static void mod_sysfs_fini(struct module *mod)
1554{
1555	remove_notes_attrs(mod);
1556	remove_sect_attrs(mod);
1557	kobject_put(&mod->mkobj.kobj);
1558}
1559
 
 
 
 
1560#else /* !CONFIG_SYSFS */
1561
1562static int mod_sysfs_setup(struct module *mod,
1563			   const struct load_info *info,
1564			   struct kernel_param *kparam,
1565			   unsigned int num_params)
1566{
1567	return 0;
1568}
1569
1570static void mod_sysfs_fini(struct module *mod)
1571{
1572}
1573
1574static void module_remove_modinfo_attrs(struct module *mod)
1575{
1576}
1577
1578static void del_usage_links(struct module *mod)
1579{
1580}
1581
 
 
 
1582#endif /* CONFIG_SYSFS */
1583
1584static void mod_sysfs_teardown(struct module *mod)
1585{
1586	del_usage_links(mod);
1587	module_remove_modinfo_attrs(mod);
1588	module_param_sysfs_remove(mod);
1589	kobject_put(mod->mkobj.drivers_dir);
1590	kobject_put(mod->holders_dir);
1591	mod_sysfs_fini(mod);
1592}
1593
 
1594/*
1595 * unlink the module with the whole machine is stopped with interrupts off
1596 * - this defends against kallsyms not taking locks
 
 
 
 
 
 
 
 
 
1597 */
1598static int __unlink_module(void *_mod)
 
1599{
1600	struct module *mod = _mod;
1601	list_del(&mod->list);
1602	module_bug_cleanup(mod);
1603	return 0;
1604}
1605
1606#ifdef CONFIG_DEBUG_SET_MODULE_RONX
1607/*
1608 * LKM RO/NX protection: protect module's text/ro-data
1609 * from modification and any data from execution.
1610 */
1611void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1612{
1613	unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1614	unsigned long end_pfn = PFN_DOWN((unsigned long)end);
 
 
 
 
1615
1616	if (end_pfn > begin_pfn)
1617		set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
 
 
 
 
 
 
1618}
1619
1620static void set_section_ro_nx(void *base,
1621			unsigned long text_size,
1622			unsigned long ro_size,
1623			unsigned long total_size)
1624{
1625	/* begin and end PFNs of the current subsection */
1626	unsigned long begin_pfn;
1627	unsigned long end_pfn;
 
 
 
1628
1629	/*
1630	 * Set RO for module text and RO-data:
1631	 * - Always protect first page.
1632	 * - Do not protect last partial page.
1633	 */
1634	if (ro_size > 0)
1635		set_page_attributes(base, base + ro_size, set_memory_ro);
1636
1637	/*
1638	 * Set NX permissions for module data:
1639	 * - Do not protect first partial page.
1640	 * - Always protect last page.
1641	 */
1642	if (total_size > text_size) {
1643		begin_pfn = PFN_UP((unsigned long)base + text_size);
1644		end_pfn = PFN_UP((unsigned long)base + total_size);
1645		if (end_pfn > begin_pfn)
1646			set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1647	}
1648}
1649
1650static void unset_module_core_ro_nx(struct module *mod)
1651{
1652	set_page_attributes(mod->module_core + mod->core_text_size,
1653		mod->module_core + mod->core_size,
1654		set_memory_x);
1655	set_page_attributes(mod->module_core,
1656		mod->module_core + mod->core_ro_size,
1657		set_memory_rw);
 
 
 
 
 
 
 
1658}
1659
1660static void unset_module_init_ro_nx(struct module *mod)
1661{
1662	set_page_attributes(mod->module_init + mod->init_text_size,
1663		mod->module_init + mod->init_size,
1664		set_memory_x);
1665	set_page_attributes(mod->module_init,
1666		mod->module_init + mod->init_ro_size,
1667		set_memory_rw);
1668}
1669
1670/* Iterate through all modules and set each module's text as RW */
1671void set_all_modules_text_rw(void)
1672{
1673	struct module *mod;
1674
 
 
 
1675	mutex_lock(&module_mutex);
1676	list_for_each_entry_rcu(mod, &modules, list) {
1677		if ((mod->module_core) && (mod->core_text_size)) {
1678			set_page_attributes(mod->module_core,
1679						mod->module_core + mod->core_text_size,
1680						set_memory_rw);
1681		}
1682		if ((mod->module_init) && (mod->init_text_size)) {
1683			set_page_attributes(mod->module_init,
1684						mod->module_init + mod->init_text_size,
1685						set_memory_rw);
1686		}
1687	}
1688	mutex_unlock(&module_mutex);
1689}
1690
1691/* Iterate through all modules and set each module's text as RO */
1692void set_all_modules_text_ro(void)
1693{
1694	struct module *mod;
1695
 
 
 
1696	mutex_lock(&module_mutex);
1697	list_for_each_entry_rcu(mod, &modules, list) {
1698		if ((mod->module_core) && (mod->core_text_size)) {
1699			set_page_attributes(mod->module_core,
1700						mod->module_core + mod->core_text_size,
1701						set_memory_ro);
1702		}
1703		if ((mod->module_init) && (mod->init_text_size)) {
1704			set_page_attributes(mod->module_init,
1705						mod->module_init + mod->init_text_size,
1706						set_memory_ro);
1707		}
 
1708	}
1709	mutex_unlock(&module_mutex);
1710}
1711#else
1712static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
1713static void unset_module_core_ro_nx(struct module *mod) { }
1714static void unset_module_init_ro_nx(struct module *mod) { }
1715#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1716
1717void __weak module_free(struct module *mod, void *module_region)
1718{
 
 
 
 
 
1719	vfree(module_region);
1720}
1721
1722void __weak module_arch_cleanup(struct module *mod)
1723{
1724}
1725
 
 
 
 
1726/* Free a module, remove from lists, etc. */
1727static void free_module(struct module *mod)
1728{
1729	trace_module_free(mod);
1730
1731	/* Delete from various lists */
 
 
 
1732	mutex_lock(&module_mutex);
1733	stop_machine(__unlink_module, mod, NULL);
1734	mutex_unlock(&module_mutex);
1735	mod_sysfs_teardown(mod);
1736
1737	/* Remove dynamic debug info */
1738	ddebug_remove_module(mod->name);
1739
1740	/* Arch-specific cleanup. */
1741	module_arch_cleanup(mod);
1742
1743	/* Module unload stuff */
1744	module_unload_free(mod);
1745
1746	/* Free any allocated parameters. */
1747	destroy_params(mod->kp, mod->num_kp);
1748
1749	/* This may be NULL, but that's OK */
1750	unset_module_init_ro_nx(mod);
1751	module_free(mod, mod->module_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752	kfree(mod->args);
1753	percpu_modfree(mod);
1754
1755	/* Free lock-classes: */
1756	lockdep_free_key_range(mod->module_core, mod->core_size);
1757
1758	/* Finally, free the core (containing the module structure) */
1759	unset_module_core_ro_nx(mod);
1760	module_free(mod, mod->module_core);
1761
1762#ifdef CONFIG_MPU
1763	update_protections(current->mm);
1764#endif
1765}
1766
1767void *__symbol_get(const char *symbol)
1768{
1769	struct module *owner;
1770	const struct kernel_symbol *sym;
1771
1772	preempt_disable();
1773	sym = find_symbol(symbol, &owner, NULL, true, true);
1774	if (sym && strong_try_module_get(owner))
1775		sym = NULL;
1776	preempt_enable();
1777
1778	return sym ? (void *)sym->value : NULL;
1779}
1780EXPORT_SYMBOL_GPL(__symbol_get);
1781
1782/*
1783 * Ensure that an exported symbol [global namespace] does not already exist
1784 * in the kernel or in some other module's exported symbol table.
1785 *
1786 * You must hold the module_mutex.
1787 */
1788static int verify_export_symbols(struct module *mod)
1789{
1790	unsigned int i;
1791	struct module *owner;
1792	const struct kernel_symbol *s;
1793	struct {
1794		const struct kernel_symbol *sym;
1795		unsigned int num;
1796	} arr[] = {
1797		{ mod->syms, mod->num_syms },
1798		{ mod->gpl_syms, mod->num_gpl_syms },
1799		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
1800#ifdef CONFIG_UNUSED_SYMBOLS
1801		{ mod->unused_syms, mod->num_unused_syms },
1802		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1803#endif
1804	};
1805
1806	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1807		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1808			if (find_symbol(s->name, &owner, NULL, true, false)) {
1809				printk(KERN_ERR
1810				       "%s: exports duplicate symbol %s"
1811				       " (owned by %s)\n",
1812				       mod->name, s->name, module_name(owner));
 
1813				return -ENOEXEC;
1814			}
1815		}
1816	}
1817	return 0;
1818}
1819
1820/* Change all symbols so that st_value encodes the pointer directly. */
1821static int simplify_symbols(struct module *mod, const struct load_info *info)
1822{
1823	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1824	Elf_Sym *sym = (void *)symsec->sh_addr;
1825	unsigned long secbase;
1826	unsigned int i;
1827	int ret = 0;
1828	const struct kernel_symbol *ksym;
1829
1830	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1831		const char *name = info->strtab + sym[i].st_name;
1832
1833		switch (sym[i].st_shndx) {
1834		case SHN_COMMON:
 
 
 
 
1835			/* We compiled with -fno-common.  These are not
1836			   supposed to happen.  */
1837			DEBUGP("Common symbol: %s\n", name);
1838			printk("%s: please compile with -fno-common\n",
1839			       mod->name);
1840			ret = -ENOEXEC;
1841			break;
1842
1843		case SHN_ABS:
1844			/* Don't need to do anything */
1845			DEBUGP("Absolute symbol: 0x%08lx\n",
1846			       (long)sym[i].st_value);
1847			break;
1848
 
 
 
 
1849		case SHN_UNDEF:
1850			ksym = resolve_symbol_wait(mod, info, name);
1851			/* Ok if resolved.  */
1852			if (ksym && !IS_ERR(ksym)) {
1853				sym[i].st_value = ksym->value;
1854				break;
1855			}
1856
1857			/* Ok if weak.  */
1858			if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1859				break;
1860
1861			printk(KERN_WARNING "%s: Unknown symbol %s (err %li)\n",
1862			       mod->name, name, PTR_ERR(ksym));
1863			ret = PTR_ERR(ksym) ?: -ENOENT;
 
 
1864			break;
1865
1866		default:
1867			/* Divert to percpu allocation if a percpu var. */
1868			if (sym[i].st_shndx == info->index.pcpu)
1869				secbase = (unsigned long)mod_percpu(mod);
1870			else
1871				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1872			sym[i].st_value += secbase;
1873			break;
1874		}
1875	}
1876
1877	return ret;
1878}
1879
1880int __weak apply_relocate(Elf_Shdr *sechdrs,
1881			  const char *strtab,
1882			  unsigned int symindex,
1883			  unsigned int relsec,
1884			  struct module *me)
1885{
1886	pr_err("module %s: REL relocation unsupported\n", me->name);
1887	return -ENOEXEC;
1888}
1889
1890int __weak apply_relocate_add(Elf_Shdr *sechdrs,
1891			      const char *strtab,
1892			      unsigned int symindex,
1893			      unsigned int relsec,
1894			      struct module *me)
1895{
1896	pr_err("module %s: RELA relocation unsupported\n", me->name);
1897	return -ENOEXEC;
1898}
1899
1900static int apply_relocations(struct module *mod, const struct load_info *info)
1901{
1902	unsigned int i;
1903	int err = 0;
1904
1905	/* Now do relocations. */
1906	for (i = 1; i < info->hdr->e_shnum; i++) {
1907		unsigned int infosec = info->sechdrs[i].sh_info;
1908
1909		/* Not a valid relocation section? */
1910		if (infosec >= info->hdr->e_shnum)
1911			continue;
1912
1913		/* Don't bother with non-allocated sections */
1914		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1915			continue;
1916
 
 
 
 
1917		if (info->sechdrs[i].sh_type == SHT_REL)
1918			err = apply_relocate(info->sechdrs, info->strtab,
1919					     info->index.sym, i, mod);
1920		else if (info->sechdrs[i].sh_type == SHT_RELA)
1921			err = apply_relocate_add(info->sechdrs, info->strtab,
1922						 info->index.sym, i, mod);
1923		if (err < 0)
1924			break;
1925	}
1926	return err;
1927}
1928
1929/* Additional bytes needed by arch in front of individual sections */
1930unsigned int __weak arch_mod_section_prepend(struct module *mod,
1931					     unsigned int section)
1932{
1933	/* default implementation just returns zero */
1934	return 0;
1935}
1936
1937/* Update size with this section: return offset. */
1938static long get_offset(struct module *mod, unsigned int *size,
1939		       Elf_Shdr *sechdr, unsigned int section)
1940{
1941	long ret;
1942
1943	*size += arch_mod_section_prepend(mod, section);
1944	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
1945	*size = ret + sechdr->sh_size;
1946	return ret;
1947}
1948
1949/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1950   might -- code, read-only data, read-write data, small data.  Tally
1951   sizes, and place the offsets into sh_entsize fields: high bit means it
1952   belongs in init. */
1953static void layout_sections(struct module *mod, struct load_info *info)
1954{
1955	static unsigned long const masks[][2] = {
1956		/* NOTE: all executable code must be the first section
1957		 * in this array; otherwise modify the text_size
1958		 * finder in the two loops below */
1959		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1960		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
 
1961		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1962		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1963	};
1964	unsigned int m, i;
1965
1966	for (i = 0; i < info->hdr->e_shnum; i++)
1967		info->sechdrs[i].sh_entsize = ~0UL;
1968
1969	DEBUGP("Core section allocation order:\n");
1970	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1971		for (i = 0; i < info->hdr->e_shnum; ++i) {
1972			Elf_Shdr *s = &info->sechdrs[i];
1973			const char *sname = info->secstrings + s->sh_name;
1974
1975			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1976			    || (s->sh_flags & masks[m][1])
1977			    || s->sh_entsize != ~0UL
1978			    || strstarts(sname, ".init"))
1979				continue;
1980			s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
1981			DEBUGP("\t%s\n", name);
1982		}
1983		switch (m) {
1984		case 0: /* executable */
1985			mod->core_size = debug_align(mod->core_size);
1986			mod->core_text_size = mod->core_size;
1987			break;
1988		case 1: /* RO: text and ro-data */
1989			mod->core_size = debug_align(mod->core_size);
1990			mod->core_ro_size = mod->core_size;
1991			break;
1992		case 3: /* whole core */
1993			mod->core_size = debug_align(mod->core_size);
 
 
 
 
1994			break;
1995		}
1996	}
1997
1998	DEBUGP("Init section allocation order:\n");
1999	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2000		for (i = 0; i < info->hdr->e_shnum; ++i) {
2001			Elf_Shdr *s = &info->sechdrs[i];
2002			const char *sname = info->secstrings + s->sh_name;
2003
2004			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2005			    || (s->sh_flags & masks[m][1])
2006			    || s->sh_entsize != ~0UL
2007			    || !strstarts(sname, ".init"))
2008				continue;
2009			s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2010					 | INIT_OFFSET_MASK);
2011			DEBUGP("\t%s\n", sname);
2012		}
2013		switch (m) {
2014		case 0: /* executable */
2015			mod->init_size = debug_align(mod->init_size);
2016			mod->init_text_size = mod->init_size;
2017			break;
2018		case 1: /* RO: text and ro-data */
2019			mod->init_size = debug_align(mod->init_size);
2020			mod->init_ro_size = mod->init_size;
 
 
 
 
 
 
 
2021			break;
2022		case 3: /* whole init */
2023			mod->init_size = debug_align(mod->init_size);
2024			break;
2025		}
2026	}
2027}
2028
2029static void set_license(struct module *mod, const char *license)
2030{
2031	if (!license)
2032		license = "unspecified";
2033
2034	if (!license_is_gpl_compatible(license)) {
2035		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2036			printk(KERN_WARNING "%s: module license '%s' taints "
2037				"kernel.\n", mod->name, license);
2038		add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
 
2039	}
2040}
2041
2042/* Parse tag=value strings from .modinfo section */
2043static char *next_string(char *string, unsigned long *secsize)
2044{
2045	/* Skip non-zero chars */
2046	while (string[0]) {
2047		string++;
2048		if ((*secsize)-- <= 1)
2049			return NULL;
2050	}
2051
2052	/* Skip any zero padding. */
2053	while (!string[0]) {
2054		string++;
2055		if ((*secsize)-- <= 1)
2056			return NULL;
2057	}
2058	return string;
2059}
2060
2061static char *get_modinfo(struct load_info *info, const char *tag)
 
2062{
2063	char *p;
2064	unsigned int taglen = strlen(tag);
2065	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2066	unsigned long size = infosec->sh_size;
2067
2068	for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
 
 
 
 
 
 
 
 
 
 
 
2069		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2070			return p + taglen + 1;
2071	}
2072	return NULL;
2073}
2074
 
 
 
 
 
2075static void setup_modinfo(struct module *mod, struct load_info *info)
2076{
2077	struct module_attribute *attr;
2078	int i;
2079
2080	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2081		if (attr->setup)
2082			attr->setup(mod, get_modinfo(info, attr->attr.name));
2083	}
2084}
2085
2086static void free_modinfo(struct module *mod)
2087{
2088	struct module_attribute *attr;
2089	int i;
2090
2091	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2092		if (attr->free)
2093			attr->free(mod);
2094	}
2095}
2096
2097#ifdef CONFIG_KALLSYMS
2098
2099/* lookup symbol in given range of kernel_symbols */
2100static const struct kernel_symbol *lookup_symbol(const char *name,
2101	const struct kernel_symbol *start,
2102	const struct kernel_symbol *stop)
2103{
2104	return bsearch(name, start, stop - start,
2105			sizeof(struct kernel_symbol), cmp_name);
2106}
2107
2108static int is_exported(const char *name, unsigned long value,
2109		       const struct module *mod)
2110{
2111	const struct kernel_symbol *ks;
2112	if (!mod)
2113		ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2114	else
2115		ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2116	return ks != NULL && ks->value == value;
 
2117}
2118
2119/* As per nm */
2120static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2121{
2122	const Elf_Shdr *sechdrs = info->sechdrs;
2123
2124	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2125		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2126			return 'v';
2127		else
2128			return 'w';
2129	}
2130	if (sym->st_shndx == SHN_UNDEF)
2131		return 'U';
2132	if (sym->st_shndx == SHN_ABS)
2133		return 'a';
2134	if (sym->st_shndx >= SHN_LORESERVE)
2135		return '?';
2136	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2137		return 't';
2138	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2139	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2140		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2141			return 'r';
2142		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2143			return 'g';
2144		else
2145			return 'd';
2146	}
2147	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2148		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2149			return 's';
2150		else
2151			return 'b';
2152	}
2153	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2154		      ".debug")) {
2155		return 'n';
2156	}
2157	return '?';
2158}
2159
2160static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2161                           unsigned int shnum)
2162{
2163	const Elf_Shdr *sec;
2164
2165	if (src->st_shndx == SHN_UNDEF
2166	    || src->st_shndx >= shnum
2167	    || !src->st_name)
2168		return false;
2169
 
 
 
 
 
2170	sec = sechdrs + src->st_shndx;
2171	if (!(sec->sh_flags & SHF_ALLOC)
2172#ifndef CONFIG_KALLSYMS_ALL
2173	    || !(sec->sh_flags & SHF_EXECINSTR)
2174#endif
2175	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2176		return false;
2177
2178	return true;
2179}
2180
 
 
 
 
 
 
 
2181static void layout_symtab(struct module *mod, struct load_info *info)
2182{
2183	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2184	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2185	const Elf_Sym *src;
2186	unsigned int i, nsrc, ndst;
2187
2188	/* Put symbol section at end of init part of module. */
2189	symsect->sh_flags |= SHF_ALLOC;
2190	symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2191					 info->index.sym) | INIT_OFFSET_MASK;
2192	DEBUGP("\t%s\n", info->secstrings + symsect->sh_name);
2193
2194	src = (void *)info->hdr + symsect->sh_offset;
2195	nsrc = symsect->sh_size / sizeof(*src);
2196	for (ndst = i = 1; i < nsrc; ++i, ++src)
2197		if (is_core_symbol(src, info->sechdrs, info->hdr->e_shnum)) {
2198			unsigned int j = src->st_name;
2199
2200			while (!__test_and_set_bit(j, info->strmap)
2201			       && info->strtab[j])
2202				++j;
2203			++ndst;
2204		}
 
2205
2206	/* Append room for core symbols at end of core part. */
2207	info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2208	mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
 
 
 
 
2209
2210	/* Put string table section at end of init part of module. */
2211	strsect->sh_flags |= SHF_ALLOC;
2212	strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2213					 info->index.str) | INIT_OFFSET_MASK;
2214	DEBUGP("\t%s\n", info->secstrings + strsect->sh_name);
2215
2216	/* Append room for core symbols' strings at end of core part. */
2217	info->stroffs = mod->core_size;
2218	__set_bit(0, info->strmap);
2219	mod->core_size += bitmap_weight(info->strmap, strsect->sh_size);
 
 
 
 
2220}
2221
 
 
 
 
 
2222static void add_kallsyms(struct module *mod, const struct load_info *info)
2223{
2224	unsigned int i, ndst;
2225	const Elf_Sym *src;
2226	Elf_Sym *dst;
2227	char *s;
2228	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2229
2230	mod->symtab = (void *)symsec->sh_addr;
2231	mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
 
 
 
2232	/* Make sure we get permanent strtab: don't use info->strtab. */
2233	mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
 
2234
2235	/* Set types up while we still have access to sections. */
2236	for (i = 0; i < mod->num_symtab; i++)
2237		mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2238
2239	mod->core_symtab = dst = mod->module_core + info->symoffs;
2240	src = mod->symtab;
2241	*dst = *src;
2242	for (ndst = i = 1; i < mod->num_symtab; ++i, ++src) {
2243		if (!is_core_symbol(src, info->sechdrs, info->hdr->e_shnum))
2244			continue;
2245		dst[ndst] = *src;
2246		dst[ndst].st_name = bitmap_weight(info->strmap,
2247						  dst[ndst].st_name);
2248		++ndst;
2249	}
2250	mod->core_num_syms = ndst;
2251
2252	mod->core_strtab = s = mod->module_core + info->stroffs;
2253	for (*s = 0, i = 1; i < info->sechdrs[info->index.str].sh_size; ++i)
2254		if (test_bit(i, info->strmap))
2255			*++s = mod->strtab[i];
 
2256}
2257#else
2258static inline void layout_symtab(struct module *mod, struct load_info *info)
2259{
2260}
2261
2262static void add_kallsyms(struct module *mod, const struct load_info *info)
2263{
2264}
2265#endif /* CONFIG_KALLSYMS */
2266
2267static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2268{
2269	if (!debug)
2270		return;
2271#ifdef CONFIG_DYNAMIC_DEBUG
2272	if (ddebug_add_module(debug, num, debug->modname))
2273		printk(KERN_ERR "dynamic debug error adding module: %s\n",
2274					debug->modname);
2275#endif
2276}
2277
2278static void dynamic_debug_remove(struct _ddebug *debug)
2279{
2280	if (debug)
2281		ddebug_remove_module(debug->modname);
2282}
2283
2284void * __weak module_alloc(unsigned long size)
2285{
2286	return size == 0 ? NULL : vmalloc_exec(size);
2287}
2288
2289static void *module_alloc_update_bounds(unsigned long size)
2290{
2291	void *ret = module_alloc(size);
2292
2293	if (ret) {
2294		mutex_lock(&module_mutex);
2295		/* Update module bounds. */
2296		if ((unsigned long)ret < module_addr_min)
2297			module_addr_min = (unsigned long)ret;
2298		if ((unsigned long)ret + size > module_addr_max)
2299			module_addr_max = (unsigned long)ret + size;
2300		mutex_unlock(&module_mutex);
2301	}
2302	return ret;
2303}
2304
2305#ifdef CONFIG_DEBUG_KMEMLEAK
2306static void kmemleak_load_module(const struct module *mod,
2307				 const struct load_info *info)
2308{
2309	unsigned int i;
2310
2311	/* only scan the sections containing data */
2312	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2313
2314	for (i = 1; i < info->hdr->e_shnum; i++) {
2315		const char *name = info->secstrings + info->sechdrs[i].sh_name;
2316		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC))
2317			continue;
2318		if (!strstarts(name, ".data") && !strstarts(name, ".bss"))
2319			continue;
2320
2321		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2322				   info->sechdrs[i].sh_size, GFP_KERNEL);
2323	}
2324}
2325#else
2326static inline void kmemleak_load_module(const struct module *mod,
2327					const struct load_info *info)
2328{
2329}
2330#endif
2331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2332/* Sets info->hdr and info->len. */
2333static int copy_and_check(struct load_info *info,
2334			  const void __user *umod, unsigned long len,
2335			  const char __user *uargs)
2336{
2337	int err;
2338	Elf_Ehdr *hdr;
2339
2340	if (len < sizeof(*hdr))
 
2341		return -ENOEXEC;
2342
 
 
 
 
2343	/* Suck in entire file: we'll want most of it. */
2344	/* vmalloc barfs on "unusual" numbers.  Check here */
2345	if (len > 64 * 1024 * 1024 || (hdr = vmalloc(len)) == NULL)
 
2346		return -ENOMEM;
2347
2348	if (copy_from_user(hdr, umod, len) != 0) {
2349		err = -EFAULT;
2350		goto free_hdr;
2351	}
2352
2353	/* Sanity checks against insmoding binaries or wrong arch,
2354	   weird elf version */
2355	if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
2356	    || hdr->e_type != ET_REL
2357	    || !elf_check_arch(hdr)
2358	    || hdr->e_shentsize != sizeof(Elf_Shdr)) {
2359		err = -ENOEXEC;
2360		goto free_hdr;
2361	}
2362
2363	if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
2364		err = -ENOEXEC;
2365		goto free_hdr;
2366	}
2367
2368	info->hdr = hdr;
2369	info->len = len;
2370	return 0;
2371
2372free_hdr:
2373	vfree(hdr);
2374	return err;
2375}
2376
2377static void free_copy(struct load_info *info)
2378{
2379	vfree(info->hdr);
2380}
2381
2382static int rewrite_section_headers(struct load_info *info)
2383{
2384	unsigned int i;
2385
2386	/* This should always be true, but let's be sure. */
2387	info->sechdrs[0].sh_addr = 0;
2388
2389	for (i = 1; i < info->hdr->e_shnum; i++) {
2390		Elf_Shdr *shdr = &info->sechdrs[i];
2391		if (shdr->sh_type != SHT_NOBITS
2392		    && info->len < shdr->sh_offset + shdr->sh_size) {
2393			printk(KERN_ERR "Module len %lu truncated\n",
2394			       info->len);
2395			return -ENOEXEC;
2396		}
2397
2398		/* Mark all sections sh_addr with their address in the
2399		   temporary image. */
2400		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2401
2402#ifndef CONFIG_MODULE_UNLOAD
2403		/* Don't load .exit sections */
2404		if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2405			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2406#endif
2407	}
2408
2409	/* Track but don't keep modinfo and version sections. */
2410	info->index.vers = find_sec(info, "__versions");
2411	info->index.info = find_sec(info, ".modinfo");
2412	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2413	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2414	return 0;
2415}
2416
2417/*
2418 * Set up our basic convenience variables (pointers to section headers,
2419 * search for module section index etc), and do some basic section
2420 * verification.
2421 *
2422 * Return the temporary module pointer (we'll replace it with the final
2423 * one when we move the module sections around).
2424 */
2425static struct module *setup_load_info(struct load_info *info)
2426{
2427	unsigned int i;
2428	int err;
2429	struct module *mod;
2430
2431	/* Set up the convenience variables */
2432	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2433	info->secstrings = (void *)info->hdr
2434		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2435
2436	err = rewrite_section_headers(info);
2437	if (err)
2438		return ERR_PTR(err);
 
 
 
2439
2440	/* Find internal symbols and strings. */
2441	for (i = 1; i < info->hdr->e_shnum; i++) {
2442		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2443			info->index.sym = i;
2444			info->index.str = info->sechdrs[i].sh_link;
2445			info->strtab = (char *)info->hdr
2446				+ info->sechdrs[info->index.str].sh_offset;
2447			break;
2448		}
2449	}
2450
 
 
 
 
 
2451	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2452	if (!info->index.mod) {
2453		printk(KERN_WARNING "No module found in object\n");
2454		return ERR_PTR(-ENOEXEC);
 
2455	}
2456	/* This is temporary: point mod into copy of data. */
2457	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
 
 
 
 
 
 
 
2458
2459	if (info->index.sym == 0) {
2460		printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
2461		       mod->name);
2462		return ERR_PTR(-ENOEXEC);
2463	}
2464
2465	info->index.pcpu = find_pcpusec(info);
2466
2467	/* Check module struct version now, before we try to use module. */
2468	if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2469		return ERR_PTR(-ENOEXEC);
2470
2471	return mod;
2472}
2473
2474static int check_modinfo(struct module *mod, struct load_info *info)
2475{
2476	const char *modmagic = get_modinfo(info, "vermagic");
2477	int err;
2478
 
 
 
2479	/* This is allowed: modprobe --force will invalidate it. */
2480	if (!modmagic) {
2481		err = try_to_force_load(mod, "bad vermagic");
2482		if (err)
2483			return err;
2484	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2485		printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
2486		       mod->name, modmagic, vermagic);
2487		return -ENOEXEC;
2488	}
2489
 
 
 
 
 
 
 
 
 
2490	if (get_modinfo(info, "staging")) {
2491		add_taint_module(mod, TAINT_CRAP);
2492		printk(KERN_WARNING "%s: module is from the staging directory,"
2493		       " the quality is unknown, you have been warned.\n",
2494		       mod->name);
2495	}
2496
 
 
 
 
2497	/* Set up license info based on the info section */
2498	set_license(mod, get_modinfo(info, "license"));
2499
2500	return 0;
2501}
2502
2503static void find_module_sections(struct module *mod, struct load_info *info)
2504{
2505	mod->kp = section_objs(info, "__param",
2506			       sizeof(*mod->kp), &mod->num_kp);
2507	mod->syms = section_objs(info, "__ksymtab",
2508				 sizeof(*mod->syms), &mod->num_syms);
2509	mod->crcs = section_addr(info, "__kcrctab");
2510	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2511				     sizeof(*mod->gpl_syms),
2512				     &mod->num_gpl_syms);
2513	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2514	mod->gpl_future_syms = section_objs(info,
2515					    "__ksymtab_gpl_future",
2516					    sizeof(*mod->gpl_future_syms),
2517					    &mod->num_gpl_future_syms);
2518	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2519
2520#ifdef CONFIG_UNUSED_SYMBOLS
2521	mod->unused_syms = section_objs(info, "__ksymtab_unused",
2522					sizeof(*mod->unused_syms),
2523					&mod->num_unused_syms);
2524	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2525	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2526					    sizeof(*mod->unused_gpl_syms),
2527					    &mod->num_unused_gpl_syms);
2528	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2529#endif
2530#ifdef CONFIG_CONSTRUCTORS
2531	mod->ctors = section_objs(info, ".ctors",
2532				  sizeof(*mod->ctors), &mod->num_ctors);
 
 
 
 
 
 
 
 
 
 
 
 
2533#endif
2534
2535#ifdef CONFIG_TRACEPOINTS
2536	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2537					     sizeof(*mod->tracepoints_ptrs),
2538					     &mod->num_tracepoints);
2539#endif
2540#ifdef HAVE_JUMP_LABEL
 
 
 
 
 
 
 
 
 
 
2541	mod->jump_entries = section_objs(info, "__jump_table",
2542					sizeof(*mod->jump_entries),
2543					&mod->num_jump_entries);
2544#endif
2545#ifdef CONFIG_EVENT_TRACING
2546	mod->trace_events = section_objs(info, "_ftrace_events",
2547					 sizeof(*mod->trace_events),
2548					 &mod->num_trace_events);
2549	/*
2550	 * This section contains pointers to allocated objects in the trace
2551	 * code and not scanning it leads to false positives.
2552	 */
2553	kmemleak_scan_area(mod->trace_events, sizeof(*mod->trace_events) *
2554			   mod->num_trace_events, GFP_KERNEL);
2555#endif
2556#ifdef CONFIG_TRACING
2557	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2558					 sizeof(*mod->trace_bprintk_fmt_start),
2559					 &mod->num_trace_bprintk_fmt);
2560	/*
2561	 * This section contains pointers to allocated objects in the trace
2562	 * code and not scanning it leads to false positives.
2563	 */
2564	kmemleak_scan_area(mod->trace_bprintk_fmt_start,
2565			   sizeof(*mod->trace_bprintk_fmt_start) *
2566			   mod->num_trace_bprintk_fmt, GFP_KERNEL);
2567#endif
2568#ifdef CONFIG_FTRACE_MCOUNT_RECORD
2569	/* sechdrs[0].sh_size is always zero */
2570	mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2571					     sizeof(*mod->ftrace_callsites),
2572					     &mod->num_ftrace_callsites);
2573#endif
2574
 
 
 
 
2575	mod->extable = section_objs(info, "__ex_table",
2576				    sizeof(*mod->extable), &mod->num_exentries);
2577
2578	if (section_addr(info, "__obsparm"))
2579		printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
2580		       mod->name);
2581
2582	info->debug = section_objs(info, "__verbose",
2583				   sizeof(*info->debug), &info->num_debug);
 
 
2584}
2585
2586static int move_module(struct module *mod, struct load_info *info)
2587{
2588	int i;
2589	void *ptr;
2590
2591	/* Do the allocs. */
2592	ptr = module_alloc_update_bounds(mod->core_size);
2593	/*
2594	 * The pointer to this block is stored in the module structure
2595	 * which is inside the block. Just mark it as not being a
2596	 * leak.
2597	 */
2598	kmemleak_not_leak(ptr);
2599	if (!ptr)
2600		return -ENOMEM;
2601
2602	memset(ptr, 0, mod->core_size);
2603	mod->module_core = ptr;
2604
2605	ptr = module_alloc_update_bounds(mod->init_size);
2606	/*
2607	 * The pointer to this block is stored in the module structure
2608	 * which is inside the block. This block doesn't need to be
2609	 * scanned as it contains data and code that will be freed
2610	 * after the module is initialized.
2611	 */
2612	kmemleak_ignore(ptr);
2613	if (!ptr && mod->init_size) {
2614		module_free(mod, mod->module_core);
2615		return -ENOMEM;
2616	}
2617	memset(ptr, 0, mod->init_size);
2618	mod->module_init = ptr;
 
 
 
2619
2620	/* Transfer each section which specifies SHF_ALLOC */
2621	DEBUGP("final section addresses:\n");
2622	for (i = 0; i < info->hdr->e_shnum; i++) {
2623		void *dest;
2624		Elf_Shdr *shdr = &info->sechdrs[i];
2625
2626		if (!(shdr->sh_flags & SHF_ALLOC))
2627			continue;
2628
2629		if (shdr->sh_entsize & INIT_OFFSET_MASK)
2630			dest = mod->module_init
2631				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2632		else
2633			dest = mod->module_core + shdr->sh_entsize;
2634
2635		if (shdr->sh_type != SHT_NOBITS)
2636			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2637		/* Update sh_addr to point to copy in image. */
2638		shdr->sh_addr = (unsigned long)dest;
2639		DEBUGP("\t0x%lx %s\n",
2640		       shdr->sh_addr, info->secstrings + shdr->sh_name);
2641	}
2642
2643	return 0;
2644}
2645
2646static int check_module_license_and_versions(struct module *mod)
2647{
 
 
2648	/*
2649	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2650	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2651	 * using GPL-only symbols it needs.
2652	 */
2653	if (strcmp(mod->name, "ndiswrapper") == 0)
2654		add_taint(TAINT_PROPRIETARY_MODULE);
2655
2656	/* driverloader was caught wrongly pretending to be under GPL */
2657	if (strcmp(mod->name, "driverloader") == 0)
2658		add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
 
 
 
 
 
 
 
 
 
2659
2660#ifdef CONFIG_MODVERSIONS
2661	if ((mod->num_syms && !mod->crcs)
2662	    || (mod->num_gpl_syms && !mod->gpl_crcs)
2663	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2664#ifdef CONFIG_UNUSED_SYMBOLS
2665	    || (mod->num_unused_syms && !mod->unused_crcs)
2666	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2667#endif
2668		) {
2669		return try_to_force_load(mod,
2670					 "no versions for exported symbols");
2671	}
2672#endif
2673	return 0;
2674}
2675
2676static void flush_module_icache(const struct module *mod)
2677{
2678	mm_segment_t old_fs;
2679
2680	/* flush the icache in correct context */
2681	old_fs = get_fs();
2682	set_fs(KERNEL_DS);
2683
2684	/*
2685	 * Flush the instruction cache, since we've played with text.
2686	 * Do it before processing of module parameters, so the module
2687	 * can provide parameter accessor functions of its own.
2688	 */
2689	if (mod->module_init)
2690		flush_icache_range((unsigned long)mod->module_init,
2691				   (unsigned long)mod->module_init
2692				   + mod->init_size);
2693	flush_icache_range((unsigned long)mod->module_core,
2694			   (unsigned long)mod->module_core + mod->core_size);
2695
2696	set_fs(old_fs);
2697}
2698
2699int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2700				     Elf_Shdr *sechdrs,
2701				     char *secstrings,
2702				     struct module *mod)
2703{
2704	return 0;
2705}
2706
2707static struct module *layout_and_allocate(struct load_info *info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2708{
2709	/* Module within temporary copy. */
2710	struct module *mod;
2711	Elf_Shdr *pcpusec;
2712	int err;
2713
2714	mod = setup_load_info(info);
2715	if (IS_ERR(mod))
2716		return mod;
2717
2718	err = check_modinfo(mod, info);
2719	if (err)
2720		return ERR_PTR(err);
2721
2722	/* Allow arches to frob section contents and sizes.  */
2723	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2724					info->secstrings, mod);
2725	if (err < 0)
2726		goto out;
 
 
 
2727
2728	pcpusec = &info->sechdrs[info->index.pcpu];
2729	if (pcpusec->sh_size) {
2730		/* We have a special allocation for this section. */
2731		err = percpu_modalloc(mod,
2732				      pcpusec->sh_size, pcpusec->sh_addralign);
2733		if (err)
2734			goto out;
2735		pcpusec->sh_flags &= ~(unsigned long)SHF_ALLOC;
2736	}
 
 
 
 
 
 
 
 
2737
2738	/* Determine total sizes, and put offsets in sh_entsize.  For now
2739	   this is done generically; there doesn't appear to be any
2740	   special cases for the architectures. */
2741	layout_sections(mod, info);
2742
2743	info->strmap = kzalloc(BITS_TO_LONGS(info->sechdrs[info->index.str].sh_size)
2744			 * sizeof(long), GFP_KERNEL);
2745	if (!info->strmap) {
2746		err = -ENOMEM;
2747		goto free_percpu;
2748	}
2749	layout_symtab(mod, info);
2750
2751	/* Allocate and move to the final place */
2752	err = move_module(mod, info);
2753	if (err)
2754		goto free_strmap;
2755
2756	/* Module has been copied to its final place now: return it. */
2757	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2758	kmemleak_load_module(mod, info);
2759	return mod;
2760
2761free_strmap:
2762	kfree(info->strmap);
2763free_percpu:
2764	percpu_modfree(mod);
2765out:
2766	return ERR_PTR(err);
2767}
2768
2769/* mod is no longer valid after this! */
2770static void module_deallocate(struct module *mod, struct load_info *info)
2771{
2772	kfree(info->strmap);
2773	percpu_modfree(mod);
2774	module_free(mod, mod->module_init);
2775	module_free(mod, mod->module_core);
 
2776}
2777
2778int __weak module_finalize(const Elf_Ehdr *hdr,
2779			   const Elf_Shdr *sechdrs,
2780			   struct module *me)
2781{
2782	return 0;
2783}
2784
2785static int post_relocation(struct module *mod, const struct load_info *info)
2786{
2787	/* Sort exception table now relocations are done. */
2788	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2789
2790	/* Copy relocated percpu area over. */
2791	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2792		       info->sechdrs[info->index.pcpu].sh_size);
2793
2794	/* Setup kallsyms-specific fields. */
2795	add_kallsyms(mod, info);
2796
2797	/* Arch-specific module finalizing. */
2798	return module_finalize(info->hdr, info->sechdrs, mod);
2799}
2800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2801/* Allocate and load the module: note that size of section 0 is always
2802   zero, and we rely on this for optional sections. */
2803static struct module *load_module(void __user *umod,
2804				  unsigned long len,
2805				  const char __user *uargs)
2806{
2807	struct load_info info = { NULL, };
2808	struct module *mod;
2809	long err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2810
2811	DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n",
2812	       umod, len, uargs);
 
2813
2814	/* Copy in the blobs from userspace, check they are vaguely sane. */
2815	err = copy_and_check(&info, umod, len, uargs);
2816	if (err)
2817		return ERR_PTR(err);
 
 
 
 
 
 
2818
2819	/* Figure out module layout, and allocate all the memory. */
2820	mod = layout_and_allocate(&info);
2821	if (IS_ERR(mod)) {
2822		err = PTR_ERR(mod);
2823		goto free_copy;
2824	}
2825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2826	/* Now module is in final location, initialize linked lists, etc. */
2827	err = module_unload_init(mod);
2828	if (err)
2829		goto free_module;
 
 
2830
2831	/* Now we've got everything in the final locations, we can
2832	 * find optional sections. */
2833	find_module_sections(mod, &info);
 
 
2834
2835	err = check_module_license_and_versions(mod);
2836	if (err)
2837		goto free_unload;
2838
2839	/* Set up MODINFO_ATTR fields */
2840	setup_modinfo(mod, &info);
2841
2842	/* Fix up syms, so that st_value is a pointer to location. */
2843	err = simplify_symbols(mod, &info);
2844	if (err < 0)
2845		goto free_modinfo;
2846
2847	err = apply_relocations(mod, &info);
2848	if (err < 0)
2849		goto free_modinfo;
2850
2851	err = post_relocation(mod, &info);
2852	if (err < 0)
2853		goto free_modinfo;
2854
2855	flush_module_icache(mod);
2856
2857	/* Now copy in args */
2858	mod->args = strndup_user(uargs, ~0UL >> 1);
2859	if (IS_ERR(mod->args)) {
2860		err = PTR_ERR(mod->args);
2861		goto free_arch_cleanup;
2862	}
2863
2864	/* Mark state as coming so strong_try_module_get() ignores us. */
2865	mod->state = MODULE_STATE_COMING;
2866
2867	/* Now sew it into the lists so we can get lockdep and oops
2868	 * info during argument parsing.  No one should access us, since
2869	 * strong_try_module_get() will fail.
2870	 * lockdep/oops can run asynchronous, so use the RCU list insertion
2871	 * function to insert in a way safe to concurrent readers.
2872	 * The mutex protects against concurrent writers.
2873	 */
2874	mutex_lock(&module_mutex);
2875	if (find_module(mod->name)) {
2876		err = -EEXIST;
2877		goto unlock;
2878	}
2879
2880	/* This has to be done once we're sure module name is unique. */
2881	if (!mod->taints || mod->taints == (1U<<TAINT_CRAP))
2882		dynamic_debug_setup(info.debug, info.num_debug);
 
2883
2884	/* Find duplicate symbols */
2885	err = verify_export_symbols(mod);
2886	if (err < 0)
2887		goto ddebug;
2888
2889	module_bug_finalize(info.hdr, info.sechdrs, mod);
2890	list_add_rcu(&mod->list, &modules);
2891	mutex_unlock(&module_mutex);
 
 
 
 
 
 
 
 
2892
2893	/* Module is ready to execute: parsing args may do that. */
2894	err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, NULL);
2895	if (err < 0)
2896		goto unlink;
2897
2898	/* Link in to syfs. */
2899	err = mod_sysfs_setup(mod, &info, mod->kp, mod->num_kp);
2900	if (err < 0)
2901		goto unlink;
 
2902
2903	/* Get rid of temporary copy and strmap. */
2904	kfree(info.strmap);
2905	free_copy(&info);
2906
2907	/* Done! */
2908	trace_module_load(mod);
2909	return mod;
2910
2911 unlink:
 
 
 
 
 
 
 
 
 
 
 
2912	mutex_lock(&module_mutex);
2913	/* Unlink carefully: kallsyms could be walking list. */
2914	list_del_rcu(&mod->list);
2915	module_bug_cleanup(mod);
 
2916
2917 ddebug:
2918	if (!mod->taints || mod->taints == (1U<<TAINT_CRAP))
2919		dynamic_debug_remove(info.debug);
2920 unlock:
2921	mutex_unlock(&module_mutex);
2922	synchronize_sched();
2923	kfree(mod->args);
2924 free_arch_cleanup:
2925	module_arch_cleanup(mod);
2926 free_modinfo:
2927	free_modinfo(mod);
2928 free_unload:
2929	module_unload_free(mod);
 
 
 
 
 
 
 
 
 
2930 free_module:
2931	module_deallocate(mod, &info);
 
 
 
2932 free_copy:
2933	free_copy(&info);
2934	return ERR_PTR(err);
2935}
2936
2937/* Call module constructors. */
2938static void do_mod_ctors(struct module *mod)
2939{
2940#ifdef CONFIG_CONSTRUCTORS
2941	unsigned long i;
2942
2943	for (i = 0; i < mod->num_ctors; i++)
2944		mod->ctors[i]();
2945#endif
2946}
2947
2948/* This is where the real work happens */
2949SYSCALL_DEFINE3(init_module, void __user *, umod,
2950		unsigned long, len, const char __user *, uargs)
2951{
2952	struct module *mod;
2953	int ret = 0;
2954
2955	/* Must have permission */
2956	if (!capable(CAP_SYS_MODULE) || modules_disabled)
2957		return -EPERM;
2958
2959	/* Do all the hard work */
2960	mod = load_module(umod, len, uargs);
2961	if (IS_ERR(mod))
2962		return PTR_ERR(mod);
2963
2964	blocking_notifier_call_chain(&module_notify_list,
2965			MODULE_STATE_COMING, mod);
 
2966
2967	/* Set RO and NX regions for core */
2968	set_section_ro_nx(mod->module_core,
2969				mod->core_text_size,
2970				mod->core_ro_size,
2971				mod->core_size);
2972
2973	/* Set RO and NX regions for init */
2974	set_section_ro_nx(mod->module_init,
2975				mod->init_text_size,
2976				mod->init_ro_size,
2977				mod->init_size);
2978
2979	do_mod_ctors(mod);
2980	/* Start the module */
2981	if (mod->init != NULL)
2982		ret = do_one_initcall(mod->init);
2983	if (ret < 0) {
2984		/* Init routine failed: abort.  Try to protect us from
2985                   buggy refcounters. */
2986		mod->state = MODULE_STATE_GOING;
2987		synchronize_sched();
2988		module_put(mod);
2989		blocking_notifier_call_chain(&module_notify_list,
2990					     MODULE_STATE_GOING, mod);
2991		free_module(mod);
2992		wake_up(&module_wq);
2993		return ret;
2994	}
2995	if (ret > 0) {
2996		printk(KERN_WARNING
2997"%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
2998"%s: loading module anyway...\n",
2999		       __func__, mod->name, ret,
3000		       __func__);
3001		dump_stack();
3002	}
3003
3004	/* Now it's a first class citizen!  Wake up anyone waiting for it. */
3005	mod->state = MODULE_STATE_LIVE;
3006	wake_up(&module_wq);
3007	blocking_notifier_call_chain(&module_notify_list,
3008				     MODULE_STATE_LIVE, mod);
3009
3010	/* We need to finish all async code before the module init sequence is done */
3011	async_synchronize_full();
 
3012
3013	mutex_lock(&module_mutex);
3014	/* Drop initial reference. */
3015	module_put(mod);
3016	trim_init_extable(mod);
3017#ifdef CONFIG_KALLSYMS
3018	mod->num_symtab = mod->core_num_syms;
3019	mod->symtab = mod->core_symtab;
3020	mod->strtab = mod->core_strtab;
3021#endif
3022	unset_module_init_ro_nx(mod);
3023	module_free(mod, mod->module_init);
3024	mod->module_init = NULL;
3025	mod->init_size = 0;
3026	mod->init_ro_size = 0;
3027	mod->init_text_size = 0;
3028	mutex_unlock(&module_mutex);
3029
3030	return 0;
3031}
3032
3033static inline int within(unsigned long addr, void *start, unsigned long size)
3034{
3035	return ((void *)addr >= start && (void *)addr < start + size);
3036}
3037
3038#ifdef CONFIG_KALLSYMS
3039/*
3040 * This ignores the intensely annoying "mapping symbols" found
3041 * in ARM ELF files: $a, $t and $d.
3042 */
3043static inline int is_arm_mapping_symbol(const char *str)
3044{
3045	return str[0] == '$' && strchr("atd", str[1])
 
 
3046	       && (str[2] == '\0' || str[2] == '.');
3047}
3048
3049static const char *get_ksymbol(struct module *mod,
3050			       unsigned long addr,
3051			       unsigned long *size,
3052			       unsigned long *offset)
 
 
 
 
 
 
 
 
 
3053{
3054	unsigned int i, best = 0;
3055	unsigned long nextval;
 
3056
3057	/* At worse, next value is at end of module */
3058	if (within_module_init(addr, mod))
3059		nextval = (unsigned long)mod->module_init+mod->init_text_size;
3060	else
3061		nextval = (unsigned long)mod->module_core+mod->core_text_size;
 
 
3062
3063	/* Scan for closest preceding symbol, and next symbol. (ELF
3064	   starts real symbols at 1). */
3065	for (i = 1; i < mod->num_symtab; i++) {
3066		if (mod->symtab[i].st_shndx == SHN_UNDEF)
 
 
 
3067			continue;
3068
3069		/* We ignore unnamed symbols: they're uninformative
3070		 * and inserted at a whim. */
3071		if (mod->symtab[i].st_value <= addr
3072		    && mod->symtab[i].st_value > mod->symtab[best].st_value
3073		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3074		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
 
3075			best = i;
3076		if (mod->symtab[i].st_value > addr
3077		    && mod->symtab[i].st_value < nextval
3078		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3079		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3080			nextval = mod->symtab[i].st_value;
3081	}
3082
3083	if (!best)
3084		return NULL;
3085
3086	if (size)
3087		*size = nextval - mod->symtab[best].st_value;
3088	if (offset)
3089		*offset = addr - mod->symtab[best].st_value;
3090	return mod->strtab + mod->symtab[best].st_name;
 
 
 
 
 
 
 
3091}
3092
3093/* For kallsyms to ask for address resolution.  NULL means not found.  Careful
3094 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3095const char *module_address_lookup(unsigned long addr,
3096			    unsigned long *size,
3097			    unsigned long *offset,
3098			    char **modname,
3099			    char *namebuf)
3100{
 
3101	struct module *mod;
3102	const char *ret = NULL;
3103
3104	preempt_disable();
3105	list_for_each_entry_rcu(mod, &modules, list) {
3106		if (within_module_init(addr, mod) ||
3107		    within_module_core(addr, mod)) {
3108			if (modname)
3109				*modname = mod->name;
3110			ret = get_ksymbol(mod, addr, size, offset);
3111			break;
3112		}
3113	}
3114	/* Make a copy in here where it's safe */
3115	if (ret) {
3116		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3117		ret = namebuf;
3118	}
3119	preempt_enable();
 
3120	return ret;
3121}
3122
3123int lookup_module_symbol_name(unsigned long addr, char *symname)
3124{
3125	struct module *mod;
3126
3127	preempt_disable();
3128	list_for_each_entry_rcu(mod, &modules, list) {
3129		if (within_module_init(addr, mod) ||
3130		    within_module_core(addr, mod)) {
 
3131			const char *sym;
3132
3133			sym = get_ksymbol(mod, addr, NULL, NULL);
3134			if (!sym)
3135				goto out;
 
3136			strlcpy(symname, sym, KSYM_NAME_LEN);
3137			preempt_enable();
3138			return 0;
3139		}
3140	}
3141out:
3142	preempt_enable();
3143	return -ERANGE;
3144}
3145
3146int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3147			unsigned long *offset, char *modname, char *name)
3148{
3149	struct module *mod;
3150
3151	preempt_disable();
3152	list_for_each_entry_rcu(mod, &modules, list) {
3153		if (within_module_init(addr, mod) ||
3154		    within_module_core(addr, mod)) {
 
3155			const char *sym;
3156
3157			sym = get_ksymbol(mod, addr, size, offset);
3158			if (!sym)
3159				goto out;
3160			if (modname)
3161				strlcpy(modname, mod->name, MODULE_NAME_LEN);
3162			if (name)
3163				strlcpy(name, sym, KSYM_NAME_LEN);
3164			preempt_enable();
3165			return 0;
3166		}
3167	}
3168out:
3169	preempt_enable();
3170	return -ERANGE;
3171}
3172
3173int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3174			char *name, char *module_name, int *exported)
3175{
3176	struct module *mod;
3177
3178	preempt_disable();
3179	list_for_each_entry_rcu(mod, &modules, list) {
3180		if (symnum < mod->num_symtab) {
3181			*value = mod->symtab[symnum].st_value;
3182			*type = mod->symtab[symnum].st_info;
3183			strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
3184				KSYM_NAME_LEN);
 
 
 
 
 
 
3185			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3186			*exported = is_exported(name, *value, mod);
3187			preempt_enable();
3188			return 0;
3189		}
3190		symnum -= mod->num_symtab;
3191	}
3192	preempt_enable();
3193	return -ERANGE;
3194}
3195
3196static unsigned long mod_find_symname(struct module *mod, const char *name)
 
3197{
3198	unsigned int i;
 
3199
3200	for (i = 0; i < mod->num_symtab; i++)
3201		if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
3202		    mod->symtab[i].st_info != 'U')
3203			return mod->symtab[i].st_value;
 
 
 
3204	return 0;
3205}
3206
3207/* Look for this name: can be of form module:name. */
3208unsigned long module_kallsyms_lookup_name(const char *name)
3209{
3210	struct module *mod;
3211	char *colon;
3212	unsigned long ret = 0;
3213
3214	/* Don't lock: we're in enough trouble already. */
3215	preempt_disable();
3216	if ((colon = strchr(name, ':')) != NULL) {
3217		*colon = '\0';
3218		if ((mod = find_module(name)) != NULL)
3219			ret = mod_find_symname(mod, colon+1);
3220		*colon = ':';
3221	} else {
3222		list_for_each_entry_rcu(mod, &modules, list)
3223			if ((ret = mod_find_symname(mod, name)) != 0)
 
 
3224				break;
 
3225	}
3226	preempt_enable();
3227	return ret;
3228}
3229
3230int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3231					     struct module *, unsigned long),
3232				   void *data)
3233{
3234	struct module *mod;
3235	unsigned int i;
3236	int ret;
3237
 
 
3238	list_for_each_entry(mod, &modules, list) {
3239		for (i = 0; i < mod->num_symtab; i++) {
3240			ret = fn(data, mod->strtab + mod->symtab[i].st_name,
3241				 mod, mod->symtab[i].st_value);
 
 
 
 
 
 
 
 
 
 
3242			if (ret != 0)
3243				return ret;
3244		}
3245	}
3246	return 0;
3247}
3248#endif /* CONFIG_KALLSYMS */
3249
 
 
 
 
3250static char *module_flags(struct module *mod, char *buf)
3251{
3252	int bx = 0;
3253
 
3254	if (mod->taints ||
3255	    mod->state == MODULE_STATE_GOING ||
3256	    mod->state == MODULE_STATE_COMING) {
3257		buf[bx++] = '(';
3258		if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
3259			buf[bx++] = 'P';
3260		if (mod->taints & (1 << TAINT_FORCED_MODULE))
3261			buf[bx++] = 'F';
3262		if (mod->taints & (1 << TAINT_CRAP))
3263			buf[bx++] = 'C';
3264		/*
3265		 * TAINT_FORCED_RMMOD: could be added.
3266		 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
3267		 * apply to modules.
3268		 */
3269
3270		/* Show a - for module-is-being-unloaded */
3271		if (mod->state == MODULE_STATE_GOING)
3272			buf[bx++] = '-';
3273		/* Show a + for module-is-being-loaded */
3274		if (mod->state == MODULE_STATE_COMING)
3275			buf[bx++] = '+';
3276		buf[bx++] = ')';
3277	}
3278	buf[bx] = '\0';
3279
3280	return buf;
3281}
3282
3283#ifdef CONFIG_PROC_FS
3284/* Called by the /proc file system to return a list of modules. */
3285static void *m_start(struct seq_file *m, loff_t *pos)
3286{
3287	mutex_lock(&module_mutex);
3288	return seq_list_start(&modules, *pos);
3289}
3290
3291static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3292{
3293	return seq_list_next(p, &modules, pos);
3294}
3295
3296static void m_stop(struct seq_file *m, void *p)
3297{
3298	mutex_unlock(&module_mutex);
3299}
3300
3301static int m_show(struct seq_file *m, void *p)
3302{
3303	struct module *mod = list_entry(p, struct module, list);
3304	char buf[8];
 
 
 
 
 
3305
3306	seq_printf(m, "%s %u",
3307		   mod->name, mod->init_size + mod->core_size);
3308	print_unload_info(m, mod);
3309
3310	/* Informative for users. */
3311	seq_printf(m, " %s",
3312		   mod->state == MODULE_STATE_GOING ? "Unloading":
3313		   mod->state == MODULE_STATE_COMING ? "Loading":
3314		   "Live");
3315	/* Used by oprofile and other similar tools. */
3316	seq_printf(m, " 0x%pK", mod->module_core);
 
3317
3318	/* Taints info */
3319	if (mod->taints)
3320		seq_printf(m, " %s", module_flags(mod, buf));
3321
3322	seq_printf(m, "\n");
3323	return 0;
3324}
3325
3326/* Format: modulename size refcount deps address
3327
3328   Where refcount is a number or -, and deps is a comma-separated list
3329   of depends or -.
3330*/
3331static const struct seq_operations modules_op = {
3332	.start	= m_start,
3333	.next	= m_next,
3334	.stop	= m_stop,
3335	.show	= m_show
3336};
3337
 
 
 
 
 
 
 
3338static int modules_open(struct inode *inode, struct file *file)
3339{
3340	return seq_open(file, &modules_op);
 
 
 
 
 
 
 
3341}
3342
3343static const struct file_operations proc_modules_operations = {
3344	.open		= modules_open,
3345	.read		= seq_read,
3346	.llseek		= seq_lseek,
3347	.release	= seq_release,
3348};
3349
3350static int __init proc_modules_init(void)
3351{
3352	proc_create("modules", 0, NULL, &proc_modules_operations);
3353	return 0;
3354}
3355module_init(proc_modules_init);
3356#endif
3357
3358/* Given an address, look for it in the module exception tables. */
3359const struct exception_table_entry *search_module_extables(unsigned long addr)
3360{
3361	const struct exception_table_entry *e = NULL;
3362	struct module *mod;
3363
3364	preempt_disable();
3365	list_for_each_entry_rcu(mod, &modules, list) {
3366		if (mod->num_exentries == 0)
3367			continue;
 
 
 
3368
3369		e = search_extable(mod->extable,
3370				   mod->extable + mod->num_exentries - 1,
3371				   addr);
3372		if (e)
3373			break;
3374	}
3375	preempt_enable();
3376
3377	/* Now, if we found one, we are running inside it now, hence
3378	   we cannot unload the module, hence no refcnt needed. */
 
 
3379	return e;
3380}
3381
3382/*
3383 * is_module_address - is this address inside a module?
3384 * @addr: the address to check.
3385 *
3386 * See is_module_text_address() if you simply want to see if the address
3387 * is code (not data).
3388 */
3389bool is_module_address(unsigned long addr)
3390{
3391	bool ret;
3392
3393	preempt_disable();
3394	ret = __module_address(addr) != NULL;
3395	preempt_enable();
3396
3397	return ret;
3398}
3399
3400/*
3401 * __module_address - get the module which contains an address.
3402 * @addr: the address.
3403 *
3404 * Must be called with preempt disabled or module mutex held so that
3405 * module doesn't get freed during this.
3406 */
3407struct module *__module_address(unsigned long addr)
3408{
3409	struct module *mod;
3410
3411	if (addr < module_addr_min || addr > module_addr_max)
3412		return NULL;
3413
3414	list_for_each_entry_rcu(mod, &modules, list)
3415		if (within_module_core(addr, mod)
3416		    || within_module_init(addr, mod))
3417			return mod;
3418	return NULL;
 
 
 
 
3419}
3420EXPORT_SYMBOL_GPL(__module_address);
3421
3422/*
3423 * is_module_text_address - is this address inside module code?
3424 * @addr: the address to check.
3425 *
3426 * See is_module_address() if you simply want to see if the address is
3427 * anywhere in a module.  See kernel_text_address() for testing if an
3428 * address corresponds to kernel or module code.
3429 */
3430bool is_module_text_address(unsigned long addr)
3431{
3432	bool ret;
3433
3434	preempt_disable();
3435	ret = __module_text_address(addr) != NULL;
3436	preempt_enable();
3437
3438	return ret;
3439}
3440
3441/*
3442 * __module_text_address - get the module whose code contains an address.
3443 * @addr: the address.
3444 *
3445 * Must be called with preempt disabled or module mutex held so that
3446 * module doesn't get freed during this.
3447 */
3448struct module *__module_text_address(unsigned long addr)
3449{
3450	struct module *mod = __module_address(addr);
3451	if (mod) {
3452		/* Make sure it's within the text section. */
3453		if (!within(addr, mod->module_init, mod->init_text_size)
3454		    && !within(addr, mod->module_core, mod->core_text_size))
3455			mod = NULL;
3456	}
3457	return mod;
3458}
3459EXPORT_SYMBOL_GPL(__module_text_address);
3460
3461/* Don't grab lock, we're oopsing. */
3462void print_modules(void)
3463{
3464	struct module *mod;
3465	char buf[8];
3466
3467	printk(KERN_DEFAULT "Modules linked in:");
3468	/* Most callers should already have preempt disabled, but make sure */
3469	preempt_disable();
3470	list_for_each_entry_rcu(mod, &modules, list)
3471		printk(" %s%s", mod->name, module_flags(mod, buf));
 
 
 
3472	preempt_enable();
3473	if (last_unloaded_module[0])
3474		printk(" [last unloaded: %s]", last_unloaded_module);
3475	printk("\n");
3476}
3477
3478#ifdef CONFIG_MODVERSIONS
3479/* Generate the signature for all relevant module structures here.
3480 * If these change, we don't want to try to parse the module. */
3481void module_layout(struct module *mod,
3482		   struct modversion_info *ver,
3483		   struct kernel_param *kp,
3484		   struct kernel_symbol *ks,
3485		   struct tracepoint * const *tp)
3486{
3487}
3488EXPORT_SYMBOL(module_layout);
3489#endif
3490
3491#ifdef CONFIG_TRACEPOINTS
3492void module_update_tracepoints(void)
3493{
3494	struct module *mod;
3495
3496	mutex_lock(&module_mutex);
3497	list_for_each_entry(mod, &modules, list)
3498		if (!mod->taints)
3499			tracepoint_update_probe_range(mod->tracepoints_ptrs,
3500				mod->tracepoints_ptrs + mod->num_tracepoints);
3501	mutex_unlock(&module_mutex);
3502}
3503
3504/*
3505 * Returns 0 if current not found.
3506 * Returns 1 if current found.
3507 */
3508int module_get_iter_tracepoints(struct tracepoint_iter *iter)
3509{
3510	struct module *iter_mod;
3511	int found = 0;
3512
3513	mutex_lock(&module_mutex);
3514	list_for_each_entry(iter_mod, &modules, list) {
3515		if (!iter_mod->taints) {
3516			/*
3517			 * Sorted module list
3518			 */
3519			if (iter_mod < iter->module)
3520				continue;
3521			else if (iter_mod > iter->module)
3522				iter->tracepoint = NULL;
3523			found = tracepoint_get_iter_range(&iter->tracepoint,
3524				iter_mod->tracepoints_ptrs,
3525				iter_mod->tracepoints_ptrs
3526					+ iter_mod->num_tracepoints);
3527			if (found) {
3528				iter->module = iter_mod;
3529				break;
3530			}
3531		}
3532	}
3533	mutex_unlock(&module_mutex);
3534	return found;
3535}
3536#endif