Linux Audio

Check our new training course

Loading...
   1/*
   2   Copyright (C) 2002 Richard Henderson
   3   Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
   4
   5    This program is free software; you can redistribute it and/or modify
   6    it under the terms of the GNU General Public License as published by
   7    the Free Software Foundation; either version 2 of the License, or
   8    (at your option) any later version.
   9
  10    This program is distributed in the hope that it will be useful,
  11    but WITHOUT ANY WARRANTY; without even the implied warranty of
  12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13    GNU General Public License for more details.
  14
  15    You should have received a copy of the GNU General Public License
  16    along with this program; if not, write to the Free Software
  17    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  18*/
  19#include <linux/export.h>
  20#include <linux/moduleloader.h>
  21#include <linux/ftrace_event.h>
  22#include <linux/init.h>
  23#include <linux/kallsyms.h>
  24#include <linux/fs.h>
  25#include <linux/sysfs.h>
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/vmalloc.h>
  29#include <linux/elf.h>
  30#include <linux/proc_fs.h>
  31#include <linux/seq_file.h>
  32#include <linux/syscalls.h>
  33#include <linux/fcntl.h>
  34#include <linux/rcupdate.h>
  35#include <linux/capability.h>
  36#include <linux/cpu.h>
  37#include <linux/moduleparam.h>
  38#include <linux/errno.h>
  39#include <linux/err.h>
  40#include <linux/vermagic.h>
  41#include <linux/notifier.h>
  42#include <linux/sched.h>
  43#include <linux/stop_machine.h>
  44#include <linux/device.h>
  45#include <linux/string.h>
  46#include <linux/mutex.h>
  47#include <linux/rculist.h>
  48#include <asm/uaccess.h>
  49#include <asm/cacheflush.h>
  50#include <asm/mmu_context.h>
  51#include <linux/license.h>
  52#include <asm/sections.h>
  53#include <linux/tracepoint.h>
  54#include <linux/ftrace.h>
  55#include <linux/async.h>
  56#include <linux/percpu.h>
  57#include <linux/kmemleak.h>
  58#include <linux/jump_label.h>
  59#include <linux/pfn.h>
  60#include <linux/bsearch.h>
  61
  62#define CREATE_TRACE_POINTS
  63#include <trace/events/module.h>
  64
  65#ifndef ARCH_SHF_SMALL
  66#define ARCH_SHF_SMALL 0
  67#endif
  68
  69/*
  70 * Modules' sections will be aligned on page boundaries
  71 * to ensure complete separation of code and data, but
  72 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
  73 */
  74#ifdef CONFIG_DEBUG_SET_MODULE_RONX
  75# define debug_align(X) ALIGN(X, PAGE_SIZE)
  76#else
  77# define debug_align(X) (X)
  78#endif
  79
  80/*
  81 * Given BASE and SIZE this macro calculates the number of pages the
  82 * memory regions occupies
  83 */
  84#define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ?		\
  85		(PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) -	\
  86			 PFN_DOWN((unsigned long)BASE) + 1)	\
  87		: (0UL))
  88
  89/* If this is set, the section belongs in the init part of the module */
  90#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
  91
  92/*
  93 * Mutex protects:
  94 * 1) List of modules (also safely readable with preempt_disable),
  95 * 2) module_use links,
  96 * 3) module_addr_min/module_addr_max.
  97 * (delete uses stop_machine/add uses RCU list operations). */
  98DEFINE_MUTEX(module_mutex);
  99EXPORT_SYMBOL_GPL(module_mutex);
 100static LIST_HEAD(modules);
 101#ifdef CONFIG_KGDB_KDB
 102struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
 103#endif /* CONFIG_KGDB_KDB */
 104
 105
 106/* Block module loading/unloading? */
 107int modules_disabled = 0;
 108core_param(nomodule, modules_disabled, bint, 0);
 109
 110/* Waiting for a module to finish initializing? */
 111static DECLARE_WAIT_QUEUE_HEAD(module_wq);
 112
 113static BLOCKING_NOTIFIER_HEAD(module_notify_list);
 114
 115/* Bounds of module allocation, for speeding __module_address.
 116 * Protected by module_mutex. */
 117static unsigned long module_addr_min = -1UL, module_addr_max = 0;
 118
 119int register_module_notifier(struct notifier_block * nb)
 120{
 121	return blocking_notifier_chain_register(&module_notify_list, nb);
 122}
 123EXPORT_SYMBOL(register_module_notifier);
 124
 125int unregister_module_notifier(struct notifier_block * nb)
 126{
 127	return blocking_notifier_chain_unregister(&module_notify_list, nb);
 128}
 129EXPORT_SYMBOL(unregister_module_notifier);
 130
 131struct load_info {
 132	Elf_Ehdr *hdr;
 133	unsigned long len;
 134	Elf_Shdr *sechdrs;
 135	char *secstrings, *strtab;
 136	unsigned long symoffs, stroffs;
 137	struct _ddebug *debug;
 138	unsigned int num_debug;
 139	struct {
 140		unsigned int sym, str, mod, vers, info, pcpu;
 141	} index;
 142};
 143
 144/* We require a truly strong try_module_get(): 0 means failure due to
 145   ongoing or failed initialization etc. */
 146static inline int strong_try_module_get(struct module *mod)
 147{
 148	if (mod && mod->state == MODULE_STATE_COMING)
 149		return -EBUSY;
 150	if (try_module_get(mod))
 151		return 0;
 152	else
 153		return -ENOENT;
 154}
 155
 156static inline void add_taint_module(struct module *mod, unsigned flag)
 157{
 158	add_taint(flag);
 159	mod->taints |= (1U << flag);
 160}
 161
 162/*
 163 * A thread that wants to hold a reference to a module only while it
 164 * is running can call this to safely exit.  nfsd and lockd use this.
 165 */
 166void __module_put_and_exit(struct module *mod, long code)
 167{
 168	module_put(mod);
 169	do_exit(code);
 170}
 171EXPORT_SYMBOL(__module_put_and_exit);
 172
 173/* Find a module section: 0 means not found. */
 174static unsigned int find_sec(const struct load_info *info, const char *name)
 175{
 176	unsigned int i;
 177
 178	for (i = 1; i < info->hdr->e_shnum; i++) {
 179		Elf_Shdr *shdr = &info->sechdrs[i];
 180		/* Alloc bit cleared means "ignore it." */
 181		if ((shdr->sh_flags & SHF_ALLOC)
 182		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
 183			return i;
 184	}
 185	return 0;
 186}
 187
 188/* Find a module section, or NULL. */
 189static void *section_addr(const struct load_info *info, const char *name)
 190{
 191	/* Section 0 has sh_addr 0. */
 192	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
 193}
 194
 195/* Find a module section, or NULL.  Fill in number of "objects" in section. */
 196static void *section_objs(const struct load_info *info,
 197			  const char *name,
 198			  size_t object_size,
 199			  unsigned int *num)
 200{
 201	unsigned int sec = find_sec(info, name);
 202
 203	/* Section 0 has sh_addr 0 and sh_size 0. */
 204	*num = info->sechdrs[sec].sh_size / object_size;
 205	return (void *)info->sechdrs[sec].sh_addr;
 206}
 207
 208/* Provided by the linker */
 209extern const struct kernel_symbol __start___ksymtab[];
 210extern const struct kernel_symbol __stop___ksymtab[];
 211extern const struct kernel_symbol __start___ksymtab_gpl[];
 212extern const struct kernel_symbol __stop___ksymtab_gpl[];
 213extern const struct kernel_symbol __start___ksymtab_gpl_future[];
 214extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
 215extern const unsigned long __start___kcrctab[];
 216extern const unsigned long __start___kcrctab_gpl[];
 217extern const unsigned long __start___kcrctab_gpl_future[];
 218#ifdef CONFIG_UNUSED_SYMBOLS
 219extern const struct kernel_symbol __start___ksymtab_unused[];
 220extern const struct kernel_symbol __stop___ksymtab_unused[];
 221extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
 222extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
 223extern const unsigned long __start___kcrctab_unused[];
 224extern const unsigned long __start___kcrctab_unused_gpl[];
 225#endif
 226
 227#ifndef CONFIG_MODVERSIONS
 228#define symversion(base, idx) NULL
 229#else
 230#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
 231#endif
 232
 233static bool each_symbol_in_section(const struct symsearch *arr,
 234				   unsigned int arrsize,
 235				   struct module *owner,
 236				   bool (*fn)(const struct symsearch *syms,
 237					      struct module *owner,
 238					      void *data),
 239				   void *data)
 240{
 241	unsigned int j;
 242
 243	for (j = 0; j < arrsize; j++) {
 244		if (fn(&arr[j], owner, data))
 245			return true;
 246	}
 247
 248	return false;
 249}
 250
 251/* Returns true as soon as fn returns true, otherwise false. */
 252bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
 253				    struct module *owner,
 254				    void *data),
 255			 void *data)
 256{
 257	struct module *mod;
 258	static const struct symsearch arr[] = {
 259		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
 260		  NOT_GPL_ONLY, false },
 261		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
 262		  __start___kcrctab_gpl,
 263		  GPL_ONLY, false },
 264		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
 265		  __start___kcrctab_gpl_future,
 266		  WILL_BE_GPL_ONLY, false },
 267#ifdef CONFIG_UNUSED_SYMBOLS
 268		{ __start___ksymtab_unused, __stop___ksymtab_unused,
 269		  __start___kcrctab_unused,
 270		  NOT_GPL_ONLY, true },
 271		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
 272		  __start___kcrctab_unused_gpl,
 273		  GPL_ONLY, true },
 274#endif
 275	};
 276
 277	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
 278		return true;
 279
 280	list_for_each_entry_rcu(mod, &modules, list) {
 281		struct symsearch arr[] = {
 282			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
 283			  NOT_GPL_ONLY, false },
 284			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
 285			  mod->gpl_crcs,
 286			  GPL_ONLY, false },
 287			{ mod->gpl_future_syms,
 288			  mod->gpl_future_syms + mod->num_gpl_future_syms,
 289			  mod->gpl_future_crcs,
 290			  WILL_BE_GPL_ONLY, false },
 291#ifdef CONFIG_UNUSED_SYMBOLS
 292			{ mod->unused_syms,
 293			  mod->unused_syms + mod->num_unused_syms,
 294			  mod->unused_crcs,
 295			  NOT_GPL_ONLY, true },
 296			{ mod->unused_gpl_syms,
 297			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
 298			  mod->unused_gpl_crcs,
 299			  GPL_ONLY, true },
 300#endif
 301		};
 302
 303		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
 304			return true;
 305	}
 306	return false;
 307}
 308EXPORT_SYMBOL_GPL(each_symbol_section);
 309
 310struct find_symbol_arg {
 311	/* Input */
 312	const char *name;
 313	bool gplok;
 314	bool warn;
 315
 316	/* Output */
 317	struct module *owner;
 318	const unsigned long *crc;
 319	const struct kernel_symbol *sym;
 320};
 321
 322static bool check_symbol(const struct symsearch *syms,
 323				 struct module *owner,
 324				 unsigned int symnum, void *data)
 325{
 326	struct find_symbol_arg *fsa = data;
 327
 328	if (!fsa->gplok) {
 329		if (syms->licence == GPL_ONLY)
 330			return false;
 331		if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
 332			printk(KERN_WARNING "Symbol %s is being used "
 333			       "by a non-GPL module, which will not "
 334			       "be allowed in the future\n", fsa->name);
 335			printk(KERN_WARNING "Please see the file "
 336			       "Documentation/feature-removal-schedule.txt "
 337			       "in the kernel source tree for more details.\n");
 338		}
 339	}
 340
 341#ifdef CONFIG_UNUSED_SYMBOLS
 342	if (syms->unused && fsa->warn) {
 343		printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
 344		       "however this module is using it.\n", fsa->name);
 345		printk(KERN_WARNING
 346		       "This symbol will go away in the future.\n");
 347		printk(KERN_WARNING
 348		       "Please evalute if this is the right api to use and if "
 349		       "it really is, submit a report the linux kernel "
 350		       "mailinglist together with submitting your code for "
 351		       "inclusion.\n");
 352	}
 353#endif
 354
 355	fsa->owner = owner;
 356	fsa->crc = symversion(syms->crcs, symnum);
 357	fsa->sym = &syms->start[symnum];
 358	return true;
 359}
 360
 361static int cmp_name(const void *va, const void *vb)
 362{
 363	const char *a;
 364	const struct kernel_symbol *b;
 365	a = va; b = vb;
 366	return strcmp(a, b->name);
 367}
 368
 369static bool find_symbol_in_section(const struct symsearch *syms,
 370				   struct module *owner,
 371				   void *data)
 372{
 373	struct find_symbol_arg *fsa = data;
 374	struct kernel_symbol *sym;
 375
 376	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
 377			sizeof(struct kernel_symbol), cmp_name);
 378
 379	if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
 380		return true;
 381
 382	return false;
 383}
 384
 385/* Find a symbol and return it, along with, (optional) crc and
 386 * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
 387const struct kernel_symbol *find_symbol(const char *name,
 388					struct module **owner,
 389					const unsigned long **crc,
 390					bool gplok,
 391					bool warn)
 392{
 393	struct find_symbol_arg fsa;
 394
 395	fsa.name = name;
 396	fsa.gplok = gplok;
 397	fsa.warn = warn;
 398
 399	if (each_symbol_section(find_symbol_in_section, &fsa)) {
 400		if (owner)
 401			*owner = fsa.owner;
 402		if (crc)
 403			*crc = fsa.crc;
 404		return fsa.sym;
 405	}
 406
 407	pr_debug("Failed to find symbol %s\n", name);
 408	return NULL;
 409}
 410EXPORT_SYMBOL_GPL(find_symbol);
 411
 412/* Search for module by name: must hold module_mutex. */
 413struct module *find_module(const char *name)
 414{
 415	struct module *mod;
 416
 417	list_for_each_entry(mod, &modules, list) {
 418		if (strcmp(mod->name, name) == 0)
 419			return mod;
 420	}
 421	return NULL;
 422}
 423EXPORT_SYMBOL_GPL(find_module);
 424
 425#ifdef CONFIG_SMP
 426
 427static inline void __percpu *mod_percpu(struct module *mod)
 428{
 429	return mod->percpu;
 430}
 431
 432static int percpu_modalloc(struct module *mod,
 433			   unsigned long size, unsigned long align)
 434{
 435	if (align > PAGE_SIZE) {
 436		printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
 437		       mod->name, align, PAGE_SIZE);
 438		align = PAGE_SIZE;
 439	}
 440
 441	mod->percpu = __alloc_reserved_percpu(size, align);
 442	if (!mod->percpu) {
 443		printk(KERN_WARNING
 444		       "%s: Could not allocate %lu bytes percpu data\n",
 445		       mod->name, size);
 446		return -ENOMEM;
 447	}
 448	mod->percpu_size = size;
 449	return 0;
 450}
 451
 452static void percpu_modfree(struct module *mod)
 453{
 454	free_percpu(mod->percpu);
 455}
 456
 457static unsigned int find_pcpusec(struct load_info *info)
 458{
 459	return find_sec(info, ".data..percpu");
 460}
 461
 462static void percpu_modcopy(struct module *mod,
 463			   const void *from, unsigned long size)
 464{
 465	int cpu;
 466
 467	for_each_possible_cpu(cpu)
 468		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
 469}
 470
 471/**
 472 * is_module_percpu_address - test whether address is from module static percpu
 473 * @addr: address to test
 474 *
 475 * Test whether @addr belongs to module static percpu area.
 476 *
 477 * RETURNS:
 478 * %true if @addr is from module static percpu area
 479 */
 480bool is_module_percpu_address(unsigned long addr)
 481{
 482	struct module *mod;
 483	unsigned int cpu;
 484
 485	preempt_disable();
 486
 487	list_for_each_entry_rcu(mod, &modules, list) {
 488		if (!mod->percpu_size)
 489			continue;
 490		for_each_possible_cpu(cpu) {
 491			void *start = per_cpu_ptr(mod->percpu, cpu);
 492
 493			if ((void *)addr >= start &&
 494			    (void *)addr < start + mod->percpu_size) {
 495				preempt_enable();
 496				return true;
 497			}
 498		}
 499	}
 500
 501	preempt_enable();
 502	return false;
 503}
 504
 505#else /* ... !CONFIG_SMP */
 506
 507static inline void __percpu *mod_percpu(struct module *mod)
 508{
 509	return NULL;
 510}
 511static inline int percpu_modalloc(struct module *mod,
 512				  unsigned long size, unsigned long align)
 513{
 514	return -ENOMEM;
 515}
 516static inline void percpu_modfree(struct module *mod)
 517{
 518}
 519static unsigned int find_pcpusec(struct load_info *info)
 520{
 521	return 0;
 522}
 523static inline void percpu_modcopy(struct module *mod,
 524				  const void *from, unsigned long size)
 525{
 526	/* pcpusec should be 0, and size of that section should be 0. */
 527	BUG_ON(size != 0);
 528}
 529bool is_module_percpu_address(unsigned long addr)
 530{
 531	return false;
 532}
 533
 534#endif /* CONFIG_SMP */
 535
 536#define MODINFO_ATTR(field)	\
 537static void setup_modinfo_##field(struct module *mod, const char *s)  \
 538{                                                                     \
 539	mod->field = kstrdup(s, GFP_KERNEL);                          \
 540}                                                                     \
 541static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
 542			struct module_kobject *mk, char *buffer)      \
 543{                                                                     \
 544	return sprintf(buffer, "%s\n", mk->mod->field);               \
 545}                                                                     \
 546static int modinfo_##field##_exists(struct module *mod)               \
 547{                                                                     \
 548	return mod->field != NULL;                                    \
 549}                                                                     \
 550static void free_modinfo_##field(struct module *mod)                  \
 551{                                                                     \
 552	kfree(mod->field);                                            \
 553	mod->field = NULL;                                            \
 554}                                                                     \
 555static struct module_attribute modinfo_##field = {                    \
 556	.attr = { .name = __stringify(field), .mode = 0444 },         \
 557	.show = show_modinfo_##field,                                 \
 558	.setup = setup_modinfo_##field,                               \
 559	.test = modinfo_##field##_exists,                             \
 560	.free = free_modinfo_##field,                                 \
 561};
 562
 563MODINFO_ATTR(version);
 564MODINFO_ATTR(srcversion);
 565
 566static char last_unloaded_module[MODULE_NAME_LEN+1];
 567
 568#ifdef CONFIG_MODULE_UNLOAD
 569
 570EXPORT_TRACEPOINT_SYMBOL(module_get);
 571
 572/* Init the unload section of the module. */
 573static int module_unload_init(struct module *mod)
 574{
 575	mod->refptr = alloc_percpu(struct module_ref);
 576	if (!mod->refptr)
 577		return -ENOMEM;
 578
 579	INIT_LIST_HEAD(&mod->source_list);
 580	INIT_LIST_HEAD(&mod->target_list);
 581
 582	/* Hold reference count during initialization. */
 583	__this_cpu_write(mod->refptr->incs, 1);
 584	/* Backwards compatibility macros put refcount during init. */
 585	mod->waiter = current;
 586
 587	return 0;
 588}
 589
 590/* Does a already use b? */
 591static int already_uses(struct module *a, struct module *b)
 592{
 593	struct module_use *use;
 594
 595	list_for_each_entry(use, &b->source_list, source_list) {
 596		if (use->source == a) {
 597			pr_debug("%s uses %s!\n", a->name, b->name);
 598			return 1;
 599		}
 600	}
 601	pr_debug("%s does not use %s!\n", a->name, b->name);
 602	return 0;
 603}
 604
 605/*
 606 * Module a uses b
 607 *  - we add 'a' as a "source", 'b' as a "target" of module use
 608 *  - the module_use is added to the list of 'b' sources (so
 609 *    'b' can walk the list to see who sourced them), and of 'a'
 610 *    targets (so 'a' can see what modules it targets).
 611 */
 612static int add_module_usage(struct module *a, struct module *b)
 613{
 614	struct module_use *use;
 615
 616	pr_debug("Allocating new usage for %s.\n", a->name);
 617	use = kmalloc(sizeof(*use), GFP_ATOMIC);
 618	if (!use) {
 619		printk(KERN_WARNING "%s: out of memory loading\n", a->name);
 620		return -ENOMEM;
 621	}
 622
 623	use->source = a;
 624	use->target = b;
 625	list_add(&use->source_list, &b->source_list);
 626	list_add(&use->target_list, &a->target_list);
 627	return 0;
 628}
 629
 630/* Module a uses b: caller needs module_mutex() */
 631int ref_module(struct module *a, struct module *b)
 632{
 633	int err;
 634
 635	if (b == NULL || already_uses(a, b))
 636		return 0;
 637
 638	/* If module isn't available, we fail. */
 639	err = strong_try_module_get(b);
 640	if (err)
 641		return err;
 642
 643	err = add_module_usage(a, b);
 644	if (err) {
 645		module_put(b);
 646		return err;
 647	}
 648	return 0;
 649}
 650EXPORT_SYMBOL_GPL(ref_module);
 651
 652/* Clear the unload stuff of the module. */
 653static void module_unload_free(struct module *mod)
 654{
 655	struct module_use *use, *tmp;
 656
 657	mutex_lock(&module_mutex);
 658	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
 659		struct module *i = use->target;
 660		pr_debug("%s unusing %s\n", mod->name, i->name);
 661		module_put(i);
 662		list_del(&use->source_list);
 663		list_del(&use->target_list);
 664		kfree(use);
 665	}
 666	mutex_unlock(&module_mutex);
 667
 668	free_percpu(mod->refptr);
 669}
 670
 671#ifdef CONFIG_MODULE_FORCE_UNLOAD
 672static inline int try_force_unload(unsigned int flags)
 673{
 674	int ret = (flags & O_TRUNC);
 675	if (ret)
 676		add_taint(TAINT_FORCED_RMMOD);
 677	return ret;
 678}
 679#else
 680static inline int try_force_unload(unsigned int flags)
 681{
 682	return 0;
 683}
 684#endif /* CONFIG_MODULE_FORCE_UNLOAD */
 685
 686struct stopref
 687{
 688	struct module *mod;
 689	int flags;
 690	int *forced;
 691};
 692
 693/* Whole machine is stopped with interrupts off when this runs. */
 694static int __try_stop_module(void *_sref)
 695{
 696	struct stopref *sref = _sref;
 697
 698	/* If it's not unused, quit unless we're forcing. */
 699	if (module_refcount(sref->mod) != 0) {
 700		if (!(*sref->forced = try_force_unload(sref->flags)))
 701			return -EWOULDBLOCK;
 702	}
 703
 704	/* Mark it as dying. */
 705	sref->mod->state = MODULE_STATE_GOING;
 706	return 0;
 707}
 708
 709static int try_stop_module(struct module *mod, int flags, int *forced)
 710{
 711	if (flags & O_NONBLOCK) {
 712		struct stopref sref = { mod, flags, forced };
 713
 714		return stop_machine(__try_stop_module, &sref, NULL);
 715	} else {
 716		/* We don't need to stop the machine for this. */
 717		mod->state = MODULE_STATE_GOING;
 718		synchronize_sched();
 719		return 0;
 720	}
 721}
 722
 723unsigned long module_refcount(struct module *mod)
 724{
 725	unsigned long incs = 0, decs = 0;
 726	int cpu;
 727
 728	for_each_possible_cpu(cpu)
 729		decs += per_cpu_ptr(mod->refptr, cpu)->decs;
 730	/*
 731	 * ensure the incs are added up after the decs.
 732	 * module_put ensures incs are visible before decs with smp_wmb.
 733	 *
 734	 * This 2-count scheme avoids the situation where the refcount
 735	 * for CPU0 is read, then CPU0 increments the module refcount,
 736	 * then CPU1 drops that refcount, then the refcount for CPU1 is
 737	 * read. We would record a decrement but not its corresponding
 738	 * increment so we would see a low count (disaster).
 739	 *
 740	 * Rare situation? But module_refcount can be preempted, and we
 741	 * might be tallying up 4096+ CPUs. So it is not impossible.
 742	 */
 743	smp_rmb();
 744	for_each_possible_cpu(cpu)
 745		incs += per_cpu_ptr(mod->refptr, cpu)->incs;
 746	return incs - decs;
 747}
 748EXPORT_SYMBOL(module_refcount);
 749
 750/* This exists whether we can unload or not */
 751static void free_module(struct module *mod);
 752
 753static void wait_for_zero_refcount(struct module *mod)
 754{
 755	/* Since we might sleep for some time, release the mutex first */
 756	mutex_unlock(&module_mutex);
 757	for (;;) {
 758		pr_debug("Looking at refcount...\n");
 759		set_current_state(TASK_UNINTERRUPTIBLE);
 760		if (module_refcount(mod) == 0)
 761			break;
 762		schedule();
 763	}
 764	current->state = TASK_RUNNING;
 765	mutex_lock(&module_mutex);
 766}
 767
 768SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
 769		unsigned int, flags)
 770{
 771	struct module *mod;
 772	char name[MODULE_NAME_LEN];
 773	int ret, forced = 0;
 774
 775	if (!capable(CAP_SYS_MODULE) || modules_disabled)
 776		return -EPERM;
 777
 778	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
 779		return -EFAULT;
 780	name[MODULE_NAME_LEN-1] = '\0';
 781
 782	if (mutex_lock_interruptible(&module_mutex) != 0)
 783		return -EINTR;
 784
 785	mod = find_module(name);
 786	if (!mod) {
 787		ret = -ENOENT;
 788		goto out;
 789	}
 790
 791	if (!list_empty(&mod->source_list)) {
 792		/* Other modules depend on us: get rid of them first. */
 793		ret = -EWOULDBLOCK;
 794		goto out;
 795	}
 796
 797	/* Doing init or already dying? */
 798	if (mod->state != MODULE_STATE_LIVE) {
 799		/* FIXME: if (force), slam module count and wake up
 800                   waiter --RR */
 801		pr_debug("%s already dying\n", mod->name);
 802		ret = -EBUSY;
 803		goto out;
 804	}
 805
 806	/* If it has an init func, it must have an exit func to unload */
 807	if (mod->init && !mod->exit) {
 808		forced = try_force_unload(flags);
 809		if (!forced) {
 810			/* This module can't be removed */
 811			ret = -EBUSY;
 812			goto out;
 813		}
 814	}
 815
 816	/* Set this up before setting mod->state */
 817	mod->waiter = current;
 818
 819	/* Stop the machine so refcounts can't move and disable module. */
 820	ret = try_stop_module(mod, flags, &forced);
 821	if (ret != 0)
 822		goto out;
 823
 824	/* Never wait if forced. */
 825	if (!forced && module_refcount(mod) != 0)
 826		wait_for_zero_refcount(mod);
 827
 828	mutex_unlock(&module_mutex);
 829	/* Final destruction now no one is using it. */
 830	if (mod->exit != NULL)
 831		mod->exit();
 832	blocking_notifier_call_chain(&module_notify_list,
 833				     MODULE_STATE_GOING, mod);
 834	async_synchronize_full();
 835
 836	/* Store the name of the last unloaded module for diagnostic purposes */
 837	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
 838
 839	free_module(mod);
 840	return 0;
 841out:
 842	mutex_unlock(&module_mutex);
 843	return ret;
 844}
 845
 846static inline void print_unload_info(struct seq_file *m, struct module *mod)
 847{
 848	struct module_use *use;
 849	int printed_something = 0;
 850
 851	seq_printf(m, " %lu ", module_refcount(mod));
 852
 853	/* Always include a trailing , so userspace can differentiate
 854           between this and the old multi-field proc format. */
 855	list_for_each_entry(use, &mod->source_list, source_list) {
 856		printed_something = 1;
 857		seq_printf(m, "%s,", use->source->name);
 858	}
 859
 860	if (mod->init != NULL && mod->exit == NULL) {
 861		printed_something = 1;
 862		seq_printf(m, "[permanent],");
 863	}
 864
 865	if (!printed_something)
 866		seq_printf(m, "-");
 867}
 868
 869void __symbol_put(const char *symbol)
 870{
 871	struct module *owner;
 872
 873	preempt_disable();
 874	if (!find_symbol(symbol, &owner, NULL, true, false))
 875		BUG();
 876	module_put(owner);
 877	preempt_enable();
 878}
 879EXPORT_SYMBOL(__symbol_put);
 880
 881/* Note this assumes addr is a function, which it currently always is. */
 882void symbol_put_addr(void *addr)
 883{
 884	struct module *modaddr;
 885	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
 886
 887	if (core_kernel_text(a))
 888		return;
 889
 890	/* module_text_address is safe here: we're supposed to have reference
 891	 * to module from symbol_get, so it can't go away. */
 892	modaddr = __module_text_address(a);
 893	BUG_ON(!modaddr);
 894	module_put(modaddr);
 895}
 896EXPORT_SYMBOL_GPL(symbol_put_addr);
 897
 898static ssize_t show_refcnt(struct module_attribute *mattr,
 899			   struct module_kobject *mk, char *buffer)
 900{
 901	return sprintf(buffer, "%lu\n", module_refcount(mk->mod));
 902}
 903
 904static struct module_attribute modinfo_refcnt =
 905	__ATTR(refcnt, 0444, show_refcnt, NULL);
 906
 907void __module_get(struct module *module)
 908{
 909	if (module) {
 910		preempt_disable();
 911		__this_cpu_inc(module->refptr->incs);
 912		trace_module_get(module, _RET_IP_);
 913		preempt_enable();
 914	}
 915}
 916EXPORT_SYMBOL(__module_get);
 917
 918bool try_module_get(struct module *module)
 919{
 920	bool ret = true;
 921
 922	if (module) {
 923		preempt_disable();
 924
 925		if (likely(module_is_live(module))) {
 926			__this_cpu_inc(module->refptr->incs);
 927			trace_module_get(module, _RET_IP_);
 928		} else
 929			ret = false;
 930
 931		preempt_enable();
 932	}
 933	return ret;
 934}
 935EXPORT_SYMBOL(try_module_get);
 936
 937void module_put(struct module *module)
 938{
 939	if (module) {
 940		preempt_disable();
 941		smp_wmb(); /* see comment in module_refcount */
 942		__this_cpu_inc(module->refptr->decs);
 943
 944		trace_module_put(module, _RET_IP_);
 945		/* Maybe they're waiting for us to drop reference? */
 946		if (unlikely(!module_is_live(module)))
 947			wake_up_process(module->waiter);
 948		preempt_enable();
 949	}
 950}
 951EXPORT_SYMBOL(module_put);
 952
 953#else /* !CONFIG_MODULE_UNLOAD */
 954static inline void print_unload_info(struct seq_file *m, struct module *mod)
 955{
 956	/* We don't know the usage count, or what modules are using. */
 957	seq_printf(m, " - -");
 958}
 959
 960static inline void module_unload_free(struct module *mod)
 961{
 962}
 963
 964int ref_module(struct module *a, struct module *b)
 965{
 966	return strong_try_module_get(b);
 967}
 968EXPORT_SYMBOL_GPL(ref_module);
 969
 970static inline int module_unload_init(struct module *mod)
 971{
 972	return 0;
 973}
 974#endif /* CONFIG_MODULE_UNLOAD */
 975
 976static size_t module_flags_taint(struct module *mod, char *buf)
 977{
 978	size_t l = 0;
 979
 980	if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
 981		buf[l++] = 'P';
 982	if (mod->taints & (1 << TAINT_OOT_MODULE))
 983		buf[l++] = 'O';
 984	if (mod->taints & (1 << TAINT_FORCED_MODULE))
 985		buf[l++] = 'F';
 986	if (mod->taints & (1 << TAINT_CRAP))
 987		buf[l++] = 'C';
 988	/*
 989	 * TAINT_FORCED_RMMOD: could be added.
 990	 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
 991	 * apply to modules.
 992	 */
 993	return l;
 994}
 995
 996static ssize_t show_initstate(struct module_attribute *mattr,
 997			      struct module_kobject *mk, char *buffer)
 998{
 999	const char *state = "unknown";
1000
1001	switch (mk->mod->state) {
1002	case MODULE_STATE_LIVE:
1003		state = "live";
1004		break;
1005	case MODULE_STATE_COMING:
1006		state = "coming";
1007		break;
1008	case MODULE_STATE_GOING:
1009		state = "going";
1010		break;
1011	}
1012	return sprintf(buffer, "%s\n", state);
1013}
1014
1015static struct module_attribute modinfo_initstate =
1016	__ATTR(initstate, 0444, show_initstate, NULL);
1017
1018static ssize_t store_uevent(struct module_attribute *mattr,
1019			    struct module_kobject *mk,
1020			    const char *buffer, size_t count)
1021{
1022	enum kobject_action action;
1023
1024	if (kobject_action_type(buffer, count, &action) == 0)
1025		kobject_uevent(&mk->kobj, action);
1026	return count;
1027}
1028
1029struct module_attribute module_uevent =
1030	__ATTR(uevent, 0200, NULL, store_uevent);
1031
1032static ssize_t show_coresize(struct module_attribute *mattr,
1033			     struct module_kobject *mk, char *buffer)
1034{
1035	return sprintf(buffer, "%u\n", mk->mod->core_size);
1036}
1037
1038static struct module_attribute modinfo_coresize =
1039	__ATTR(coresize, 0444, show_coresize, NULL);
1040
1041static ssize_t show_initsize(struct module_attribute *mattr,
1042			     struct module_kobject *mk, char *buffer)
1043{
1044	return sprintf(buffer, "%u\n", mk->mod->init_size);
1045}
1046
1047static struct module_attribute modinfo_initsize =
1048	__ATTR(initsize, 0444, show_initsize, NULL);
1049
1050static ssize_t show_taint(struct module_attribute *mattr,
1051			  struct module_kobject *mk, char *buffer)
1052{
1053	size_t l;
1054
1055	l = module_flags_taint(mk->mod, buffer);
1056	buffer[l++] = '\n';
1057	return l;
1058}
1059
1060static struct module_attribute modinfo_taint =
1061	__ATTR(taint, 0444, show_taint, NULL);
1062
1063static struct module_attribute *modinfo_attrs[] = {
1064	&module_uevent,
1065	&modinfo_version,
1066	&modinfo_srcversion,
1067	&modinfo_initstate,
1068	&modinfo_coresize,
1069	&modinfo_initsize,
1070	&modinfo_taint,
1071#ifdef CONFIG_MODULE_UNLOAD
1072	&modinfo_refcnt,
1073#endif
1074	NULL,
1075};
1076
1077static const char vermagic[] = VERMAGIC_STRING;
1078
1079static int try_to_force_load(struct module *mod, const char *reason)
1080{
1081#ifdef CONFIG_MODULE_FORCE_LOAD
1082	if (!test_taint(TAINT_FORCED_MODULE))
1083		printk(KERN_WARNING "%s: %s: kernel tainted.\n",
1084		       mod->name, reason);
1085	add_taint_module(mod, TAINT_FORCED_MODULE);
1086	return 0;
1087#else
1088	return -ENOEXEC;
1089#endif
1090}
1091
1092#ifdef CONFIG_MODVERSIONS
1093/* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1094static unsigned long maybe_relocated(unsigned long crc,
1095				     const struct module *crc_owner)
1096{
1097#ifdef ARCH_RELOCATES_KCRCTAB
1098	if (crc_owner == NULL)
1099		return crc - (unsigned long)reloc_start;
1100#endif
1101	return crc;
1102}
1103
1104static int check_version(Elf_Shdr *sechdrs,
1105			 unsigned int versindex,
1106			 const char *symname,
1107			 struct module *mod, 
1108			 const unsigned long *crc,
1109			 const struct module *crc_owner)
1110{
1111	unsigned int i, num_versions;
1112	struct modversion_info *versions;
1113
1114	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1115	if (!crc)
1116		return 1;
1117
1118	/* No versions at all?  modprobe --force does this. */
1119	if (versindex == 0)
1120		return try_to_force_load(mod, symname) == 0;
1121
1122	versions = (void *) sechdrs[versindex].sh_addr;
1123	num_versions = sechdrs[versindex].sh_size
1124		/ sizeof(struct modversion_info);
1125
1126	for (i = 0; i < num_versions; i++) {
1127		if (strcmp(versions[i].name, symname) != 0)
1128			continue;
1129
1130		if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1131			return 1;
1132		pr_debug("Found checksum %lX vs module %lX\n",
1133		       maybe_relocated(*crc, crc_owner), versions[i].crc);
1134		goto bad_version;
1135	}
1136
1137	printk(KERN_WARNING "%s: no symbol version for %s\n",
1138	       mod->name, symname);
1139	return 0;
1140
1141bad_version:
1142	printk("%s: disagrees about version of symbol %s\n",
1143	       mod->name, symname);
1144	return 0;
1145}
1146
1147static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1148					  unsigned int versindex,
1149					  struct module *mod)
1150{
1151	const unsigned long *crc;
1152
1153	/* Since this should be found in kernel (which can't be removed),
1154	 * no locking is necessary. */
1155	if (!find_symbol(MODULE_SYMBOL_PREFIX "module_layout", NULL,
1156			 &crc, true, false))
1157		BUG();
1158	return check_version(sechdrs, versindex, "module_layout", mod, crc,
1159			     NULL);
1160}
1161
1162/* First part is kernel version, which we ignore if module has crcs. */
1163static inline int same_magic(const char *amagic, const char *bmagic,
1164			     bool has_crcs)
1165{
1166	if (has_crcs) {
1167		amagic += strcspn(amagic, " ");
1168		bmagic += strcspn(bmagic, " ");
1169	}
1170	return strcmp(amagic, bmagic) == 0;
1171}
1172#else
1173static inline int check_version(Elf_Shdr *sechdrs,
1174				unsigned int versindex,
1175				const char *symname,
1176				struct module *mod, 
1177				const unsigned long *crc,
1178				const struct module *crc_owner)
1179{
1180	return 1;
1181}
1182
1183static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1184					  unsigned int versindex,
1185					  struct module *mod)
1186{
1187	return 1;
1188}
1189
1190static inline int same_magic(const char *amagic, const char *bmagic,
1191			     bool has_crcs)
1192{
1193	return strcmp(amagic, bmagic) == 0;
1194}
1195#endif /* CONFIG_MODVERSIONS */
1196
1197/* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1198static const struct kernel_symbol *resolve_symbol(struct module *mod,
1199						  const struct load_info *info,
1200						  const char *name,
1201						  char ownername[])
1202{
1203	struct module *owner;
1204	const struct kernel_symbol *sym;
1205	const unsigned long *crc;
1206	int err;
1207
1208	mutex_lock(&module_mutex);
1209	sym = find_symbol(name, &owner, &crc,
1210			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1211	if (!sym)
1212		goto unlock;
1213
1214	if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1215			   owner)) {
1216		sym = ERR_PTR(-EINVAL);
1217		goto getname;
1218	}
1219
1220	err = ref_module(mod, owner);
1221	if (err) {
1222		sym = ERR_PTR(err);
1223		goto getname;
1224	}
1225
1226getname:
1227	/* We must make copy under the lock if we failed to get ref. */
1228	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1229unlock:
1230	mutex_unlock(&module_mutex);
1231	return sym;
1232}
1233
1234static const struct kernel_symbol *
1235resolve_symbol_wait(struct module *mod,
1236		    const struct load_info *info,
1237		    const char *name)
1238{
1239	const struct kernel_symbol *ksym;
1240	char owner[MODULE_NAME_LEN];
1241
1242	if (wait_event_interruptible_timeout(module_wq,
1243			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1244			|| PTR_ERR(ksym) != -EBUSY,
1245					     30 * HZ) <= 0) {
1246		printk(KERN_WARNING "%s: gave up waiting for init of module %s.\n",
1247		       mod->name, owner);
1248	}
1249	return ksym;
1250}
1251
1252/*
1253 * /sys/module/foo/sections stuff
1254 * J. Corbet <corbet@lwn.net>
1255 */
1256#ifdef CONFIG_SYSFS
1257
1258#ifdef CONFIG_KALLSYMS
1259static inline bool sect_empty(const Elf_Shdr *sect)
1260{
1261	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1262}
1263
1264struct module_sect_attr
1265{
1266	struct module_attribute mattr;
1267	char *name;
1268	unsigned long address;
1269};
1270
1271struct module_sect_attrs
1272{
1273	struct attribute_group grp;
1274	unsigned int nsections;
1275	struct module_sect_attr attrs[0];
1276};
1277
1278static ssize_t module_sect_show(struct module_attribute *mattr,
1279				struct module_kobject *mk, char *buf)
1280{
1281	struct module_sect_attr *sattr =
1282		container_of(mattr, struct module_sect_attr, mattr);
1283	return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1284}
1285
1286static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1287{
1288	unsigned int section;
1289
1290	for (section = 0; section < sect_attrs->nsections; section++)
1291		kfree(sect_attrs->attrs[section].name);
1292	kfree(sect_attrs);
1293}
1294
1295static void add_sect_attrs(struct module *mod, const struct load_info *info)
1296{
1297	unsigned int nloaded = 0, i, size[2];
1298	struct module_sect_attrs *sect_attrs;
1299	struct module_sect_attr *sattr;
1300	struct attribute **gattr;
1301
1302	/* Count loaded sections and allocate structures */
1303	for (i = 0; i < info->hdr->e_shnum; i++)
1304		if (!sect_empty(&info->sechdrs[i]))
1305			nloaded++;
1306	size[0] = ALIGN(sizeof(*sect_attrs)
1307			+ nloaded * sizeof(sect_attrs->attrs[0]),
1308			sizeof(sect_attrs->grp.attrs[0]));
1309	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1310	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1311	if (sect_attrs == NULL)
1312		return;
1313
1314	/* Setup section attributes. */
1315	sect_attrs->grp.name = "sections";
1316	sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1317
1318	sect_attrs->nsections = 0;
1319	sattr = &sect_attrs->attrs[0];
1320	gattr = &sect_attrs->grp.attrs[0];
1321	for (i = 0; i < info->hdr->e_shnum; i++) {
1322		Elf_Shdr *sec = &info->sechdrs[i];
1323		if (sect_empty(sec))
1324			continue;
1325		sattr->address = sec->sh_addr;
1326		sattr->name = kstrdup(info->secstrings + sec->sh_name,
1327					GFP_KERNEL);
1328		if (sattr->name == NULL)
1329			goto out;
1330		sect_attrs->nsections++;
1331		sysfs_attr_init(&sattr->mattr.attr);
1332		sattr->mattr.show = module_sect_show;
1333		sattr->mattr.store = NULL;
1334		sattr->mattr.attr.name = sattr->name;
1335		sattr->mattr.attr.mode = S_IRUGO;
1336		*(gattr++) = &(sattr++)->mattr.attr;
1337	}
1338	*gattr = NULL;
1339
1340	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1341		goto out;
1342
1343	mod->sect_attrs = sect_attrs;
1344	return;
1345  out:
1346	free_sect_attrs(sect_attrs);
1347}
1348
1349static void remove_sect_attrs(struct module *mod)
1350{
1351	if (mod->sect_attrs) {
1352		sysfs_remove_group(&mod->mkobj.kobj,
1353				   &mod->sect_attrs->grp);
1354		/* We are positive that no one is using any sect attrs
1355		 * at this point.  Deallocate immediately. */
1356		free_sect_attrs(mod->sect_attrs);
1357		mod->sect_attrs = NULL;
1358	}
1359}
1360
1361/*
1362 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1363 */
1364
1365struct module_notes_attrs {
1366	struct kobject *dir;
1367	unsigned int notes;
1368	struct bin_attribute attrs[0];
1369};
1370
1371static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1372				 struct bin_attribute *bin_attr,
1373				 char *buf, loff_t pos, size_t count)
1374{
1375	/*
1376	 * The caller checked the pos and count against our size.
1377	 */
1378	memcpy(buf, bin_attr->private + pos, count);
1379	return count;
1380}
1381
1382static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1383			     unsigned int i)
1384{
1385	if (notes_attrs->dir) {
1386		while (i-- > 0)
1387			sysfs_remove_bin_file(notes_attrs->dir,
1388					      &notes_attrs->attrs[i]);
1389		kobject_put(notes_attrs->dir);
1390	}
1391	kfree(notes_attrs);
1392}
1393
1394static void add_notes_attrs(struct module *mod, const struct load_info *info)
1395{
1396	unsigned int notes, loaded, i;
1397	struct module_notes_attrs *notes_attrs;
1398	struct bin_attribute *nattr;
1399
1400	/* failed to create section attributes, so can't create notes */
1401	if (!mod->sect_attrs)
1402		return;
1403
1404	/* Count notes sections and allocate structures.  */
1405	notes = 0;
1406	for (i = 0; i < info->hdr->e_shnum; i++)
1407		if (!sect_empty(&info->sechdrs[i]) &&
1408		    (info->sechdrs[i].sh_type == SHT_NOTE))
1409			++notes;
1410
1411	if (notes == 0)
1412		return;
1413
1414	notes_attrs = kzalloc(sizeof(*notes_attrs)
1415			      + notes * sizeof(notes_attrs->attrs[0]),
1416			      GFP_KERNEL);
1417	if (notes_attrs == NULL)
1418		return;
1419
1420	notes_attrs->notes = notes;
1421	nattr = &notes_attrs->attrs[0];
1422	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1423		if (sect_empty(&info->sechdrs[i]))
1424			continue;
1425		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1426			sysfs_bin_attr_init(nattr);
1427			nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1428			nattr->attr.mode = S_IRUGO;
1429			nattr->size = info->sechdrs[i].sh_size;
1430			nattr->private = (void *) info->sechdrs[i].sh_addr;
1431			nattr->read = module_notes_read;
1432			++nattr;
1433		}
1434		++loaded;
1435	}
1436
1437	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1438	if (!notes_attrs->dir)
1439		goto out;
1440
1441	for (i = 0; i < notes; ++i)
1442		if (sysfs_create_bin_file(notes_attrs->dir,
1443					  &notes_attrs->attrs[i]))
1444			goto out;
1445
1446	mod->notes_attrs = notes_attrs;
1447	return;
1448
1449  out:
1450	free_notes_attrs(notes_attrs, i);
1451}
1452
1453static void remove_notes_attrs(struct module *mod)
1454{
1455	if (mod->notes_attrs)
1456		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1457}
1458
1459#else
1460
1461static inline void add_sect_attrs(struct module *mod,
1462				  const struct load_info *info)
1463{
1464}
1465
1466static inline void remove_sect_attrs(struct module *mod)
1467{
1468}
1469
1470static inline void add_notes_attrs(struct module *mod,
1471				   const struct load_info *info)
1472{
1473}
1474
1475static inline void remove_notes_attrs(struct module *mod)
1476{
1477}
1478#endif /* CONFIG_KALLSYMS */
1479
1480static void add_usage_links(struct module *mod)
1481{
1482#ifdef CONFIG_MODULE_UNLOAD
1483	struct module_use *use;
1484	int nowarn;
1485
1486	mutex_lock(&module_mutex);
1487	list_for_each_entry(use, &mod->target_list, target_list) {
1488		nowarn = sysfs_create_link(use->target->holders_dir,
1489					   &mod->mkobj.kobj, mod->name);
1490	}
1491	mutex_unlock(&module_mutex);
1492#endif
1493}
1494
1495static void del_usage_links(struct module *mod)
1496{
1497#ifdef CONFIG_MODULE_UNLOAD
1498	struct module_use *use;
1499
1500	mutex_lock(&module_mutex);
1501	list_for_each_entry(use, &mod->target_list, target_list)
1502		sysfs_remove_link(use->target->holders_dir, mod->name);
1503	mutex_unlock(&module_mutex);
1504#endif
1505}
1506
1507static int module_add_modinfo_attrs(struct module *mod)
1508{
1509	struct module_attribute *attr;
1510	struct module_attribute *temp_attr;
1511	int error = 0;
1512	int i;
1513
1514	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1515					(ARRAY_SIZE(modinfo_attrs) + 1)),
1516					GFP_KERNEL);
1517	if (!mod->modinfo_attrs)
1518		return -ENOMEM;
1519
1520	temp_attr = mod->modinfo_attrs;
1521	for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1522		if (!attr->test ||
1523		    (attr->test && attr->test(mod))) {
1524			memcpy(temp_attr, attr, sizeof(*temp_attr));
1525			sysfs_attr_init(&temp_attr->attr);
1526			error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1527			++temp_attr;
1528		}
1529	}
1530	return error;
1531}
1532
1533static void module_remove_modinfo_attrs(struct module *mod)
1534{
1535	struct module_attribute *attr;
1536	int i;
1537
1538	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1539		/* pick a field to test for end of list */
1540		if (!attr->attr.name)
1541			break;
1542		sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1543		if (attr->free)
1544			attr->free(mod);
1545	}
1546	kfree(mod->modinfo_attrs);
1547}
1548
1549static int mod_sysfs_init(struct module *mod)
1550{
1551	int err;
1552	struct kobject *kobj;
1553
1554	if (!module_sysfs_initialized) {
1555		printk(KERN_ERR "%s: module sysfs not initialized\n",
1556		       mod->name);
1557		err = -EINVAL;
1558		goto out;
1559	}
1560
1561	kobj = kset_find_obj(module_kset, mod->name);
1562	if (kobj) {
1563		printk(KERN_ERR "%s: module is already loaded\n", mod->name);
1564		kobject_put(kobj);
1565		err = -EINVAL;
1566		goto out;
1567	}
1568
1569	mod->mkobj.mod = mod;
1570
1571	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1572	mod->mkobj.kobj.kset = module_kset;
1573	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1574				   "%s", mod->name);
1575	if (err)
1576		kobject_put(&mod->mkobj.kobj);
1577
1578	/* delay uevent until full sysfs population */
1579out:
1580	return err;
1581}
1582
1583static int mod_sysfs_setup(struct module *mod,
1584			   const struct load_info *info,
1585			   struct kernel_param *kparam,
1586			   unsigned int num_params)
1587{
1588	int err;
1589
1590	err = mod_sysfs_init(mod);
1591	if (err)
1592		goto out;
1593
1594	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1595	if (!mod->holders_dir) {
1596		err = -ENOMEM;
1597		goto out_unreg;
1598	}
1599
1600	err = module_param_sysfs_setup(mod, kparam, num_params);
1601	if (err)
1602		goto out_unreg_holders;
1603
1604	err = module_add_modinfo_attrs(mod);
1605	if (err)
1606		goto out_unreg_param;
1607
1608	add_usage_links(mod);
1609	add_sect_attrs(mod, info);
1610	add_notes_attrs(mod, info);
1611
1612	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1613	return 0;
1614
1615out_unreg_param:
1616	module_param_sysfs_remove(mod);
1617out_unreg_holders:
1618	kobject_put(mod->holders_dir);
1619out_unreg:
1620	kobject_put(&mod->mkobj.kobj);
1621out:
1622	return err;
1623}
1624
1625static void mod_sysfs_fini(struct module *mod)
1626{
1627	remove_notes_attrs(mod);
1628	remove_sect_attrs(mod);
1629	kobject_put(&mod->mkobj.kobj);
1630}
1631
1632#else /* !CONFIG_SYSFS */
1633
1634static int mod_sysfs_setup(struct module *mod,
1635			   const struct load_info *info,
1636			   struct kernel_param *kparam,
1637			   unsigned int num_params)
1638{
1639	return 0;
1640}
1641
1642static void mod_sysfs_fini(struct module *mod)
1643{
1644}
1645
1646static void module_remove_modinfo_attrs(struct module *mod)
1647{
1648}
1649
1650static void del_usage_links(struct module *mod)
1651{
1652}
1653
1654#endif /* CONFIG_SYSFS */
1655
1656static void mod_sysfs_teardown(struct module *mod)
1657{
1658	del_usage_links(mod);
1659	module_remove_modinfo_attrs(mod);
1660	module_param_sysfs_remove(mod);
1661	kobject_put(mod->mkobj.drivers_dir);
1662	kobject_put(mod->holders_dir);
1663	mod_sysfs_fini(mod);
1664}
1665
1666/*
1667 * unlink the module with the whole machine is stopped with interrupts off
1668 * - this defends against kallsyms not taking locks
1669 */
1670static int __unlink_module(void *_mod)
1671{
1672	struct module *mod = _mod;
1673	list_del(&mod->list);
1674	module_bug_cleanup(mod);
1675	return 0;
1676}
1677
1678#ifdef CONFIG_DEBUG_SET_MODULE_RONX
1679/*
1680 * LKM RO/NX protection: protect module's text/ro-data
1681 * from modification and any data from execution.
1682 */
1683void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1684{
1685	unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1686	unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1687
1688	if (end_pfn > begin_pfn)
1689		set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1690}
1691
1692static void set_section_ro_nx(void *base,
1693			unsigned long text_size,
1694			unsigned long ro_size,
1695			unsigned long total_size)
1696{
1697	/* begin and end PFNs of the current subsection */
1698	unsigned long begin_pfn;
1699	unsigned long end_pfn;
1700
1701	/*
1702	 * Set RO for module text and RO-data:
1703	 * - Always protect first page.
1704	 * - Do not protect last partial page.
1705	 */
1706	if (ro_size > 0)
1707		set_page_attributes(base, base + ro_size, set_memory_ro);
1708
1709	/*
1710	 * Set NX permissions for module data:
1711	 * - Do not protect first partial page.
1712	 * - Always protect last page.
1713	 */
1714	if (total_size > text_size) {
1715		begin_pfn = PFN_UP((unsigned long)base + text_size);
1716		end_pfn = PFN_UP((unsigned long)base + total_size);
1717		if (end_pfn > begin_pfn)
1718			set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1719	}
1720}
1721
1722static void unset_module_core_ro_nx(struct module *mod)
1723{
1724	set_page_attributes(mod->module_core + mod->core_text_size,
1725		mod->module_core + mod->core_size,
1726		set_memory_x);
1727	set_page_attributes(mod->module_core,
1728		mod->module_core + mod->core_ro_size,
1729		set_memory_rw);
1730}
1731
1732static void unset_module_init_ro_nx(struct module *mod)
1733{
1734	set_page_attributes(mod->module_init + mod->init_text_size,
1735		mod->module_init + mod->init_size,
1736		set_memory_x);
1737	set_page_attributes(mod->module_init,
1738		mod->module_init + mod->init_ro_size,
1739		set_memory_rw);
1740}
1741
1742/* Iterate through all modules and set each module's text as RW */
1743void set_all_modules_text_rw(void)
1744{
1745	struct module *mod;
1746
1747	mutex_lock(&module_mutex);
1748	list_for_each_entry_rcu(mod, &modules, list) {
1749		if ((mod->module_core) && (mod->core_text_size)) {
1750			set_page_attributes(mod->module_core,
1751						mod->module_core + mod->core_text_size,
1752						set_memory_rw);
1753		}
1754		if ((mod->module_init) && (mod->init_text_size)) {
1755			set_page_attributes(mod->module_init,
1756						mod->module_init + mod->init_text_size,
1757						set_memory_rw);
1758		}
1759	}
1760	mutex_unlock(&module_mutex);
1761}
1762
1763/* Iterate through all modules and set each module's text as RO */
1764void set_all_modules_text_ro(void)
1765{
1766	struct module *mod;
1767
1768	mutex_lock(&module_mutex);
1769	list_for_each_entry_rcu(mod, &modules, list) {
1770		if ((mod->module_core) && (mod->core_text_size)) {
1771			set_page_attributes(mod->module_core,
1772						mod->module_core + mod->core_text_size,
1773						set_memory_ro);
1774		}
1775		if ((mod->module_init) && (mod->init_text_size)) {
1776			set_page_attributes(mod->module_init,
1777						mod->module_init + mod->init_text_size,
1778						set_memory_ro);
1779		}
1780	}
1781	mutex_unlock(&module_mutex);
1782}
1783#else
1784static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
1785static void unset_module_core_ro_nx(struct module *mod) { }
1786static void unset_module_init_ro_nx(struct module *mod) { }
1787#endif
1788
1789void __weak module_free(struct module *mod, void *module_region)
1790{
1791	vfree(module_region);
1792}
1793
1794void __weak module_arch_cleanup(struct module *mod)
1795{
1796}
1797
1798/* Free a module, remove from lists, etc. */
1799static void free_module(struct module *mod)
1800{
1801	trace_module_free(mod);
1802
1803	/* Delete from various lists */
1804	mutex_lock(&module_mutex);
1805	stop_machine(__unlink_module, mod, NULL);
1806	mutex_unlock(&module_mutex);
1807	mod_sysfs_teardown(mod);
1808
1809	/* Remove dynamic debug info */
1810	ddebug_remove_module(mod->name);
1811
1812	/* Arch-specific cleanup. */
1813	module_arch_cleanup(mod);
1814
1815	/* Module unload stuff */
1816	module_unload_free(mod);
1817
1818	/* Free any allocated parameters. */
1819	destroy_params(mod->kp, mod->num_kp);
1820
1821	/* This may be NULL, but that's OK */
1822	unset_module_init_ro_nx(mod);
1823	module_free(mod, mod->module_init);
1824	kfree(mod->args);
1825	percpu_modfree(mod);
1826
1827	/* Free lock-classes: */
1828	lockdep_free_key_range(mod->module_core, mod->core_size);
1829
1830	/* Finally, free the core (containing the module structure) */
1831	unset_module_core_ro_nx(mod);
1832	module_free(mod, mod->module_core);
1833
1834#ifdef CONFIG_MPU
1835	update_protections(current->mm);
1836#endif
1837}
1838
1839void *__symbol_get(const char *symbol)
1840{
1841	struct module *owner;
1842	const struct kernel_symbol *sym;
1843
1844	preempt_disable();
1845	sym = find_symbol(symbol, &owner, NULL, true, true);
1846	if (sym && strong_try_module_get(owner))
1847		sym = NULL;
1848	preempt_enable();
1849
1850	return sym ? (void *)sym->value : NULL;
1851}
1852EXPORT_SYMBOL_GPL(__symbol_get);
1853
1854/*
1855 * Ensure that an exported symbol [global namespace] does not already exist
1856 * in the kernel or in some other module's exported symbol table.
1857 *
1858 * You must hold the module_mutex.
1859 */
1860static int verify_export_symbols(struct module *mod)
1861{
1862	unsigned int i;
1863	struct module *owner;
1864	const struct kernel_symbol *s;
1865	struct {
1866		const struct kernel_symbol *sym;
1867		unsigned int num;
1868	} arr[] = {
1869		{ mod->syms, mod->num_syms },
1870		{ mod->gpl_syms, mod->num_gpl_syms },
1871		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
1872#ifdef CONFIG_UNUSED_SYMBOLS
1873		{ mod->unused_syms, mod->num_unused_syms },
1874		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1875#endif
1876	};
1877
1878	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1879		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1880			if (find_symbol(s->name, &owner, NULL, true, false)) {
1881				printk(KERN_ERR
1882				       "%s: exports duplicate symbol %s"
1883				       " (owned by %s)\n",
1884				       mod->name, s->name, module_name(owner));
1885				return -ENOEXEC;
1886			}
1887		}
1888	}
1889	return 0;
1890}
1891
1892/* Change all symbols so that st_value encodes the pointer directly. */
1893static int simplify_symbols(struct module *mod, const struct load_info *info)
1894{
1895	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1896	Elf_Sym *sym = (void *)symsec->sh_addr;
1897	unsigned long secbase;
1898	unsigned int i;
1899	int ret = 0;
1900	const struct kernel_symbol *ksym;
1901
1902	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1903		const char *name = info->strtab + sym[i].st_name;
1904
1905		switch (sym[i].st_shndx) {
1906		case SHN_COMMON:
1907			/* We compiled with -fno-common.  These are not
1908			   supposed to happen.  */
1909			pr_debug("Common symbol: %s\n", name);
1910			printk("%s: please compile with -fno-common\n",
1911			       mod->name);
1912			ret = -ENOEXEC;
1913			break;
1914
1915		case SHN_ABS:
1916			/* Don't need to do anything */
1917			pr_debug("Absolute symbol: 0x%08lx\n",
1918			       (long)sym[i].st_value);
1919			break;
1920
1921		case SHN_UNDEF:
1922			ksym = resolve_symbol_wait(mod, info, name);
1923			/* Ok if resolved.  */
1924			if (ksym && !IS_ERR(ksym)) {
1925				sym[i].st_value = ksym->value;
1926				break;
1927			}
1928
1929			/* Ok if weak.  */
1930			if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1931				break;
1932
1933			printk(KERN_WARNING "%s: Unknown symbol %s (err %li)\n",
1934			       mod->name, name, PTR_ERR(ksym));
1935			ret = PTR_ERR(ksym) ?: -ENOENT;
1936			break;
1937
1938		default:
1939			/* Divert to percpu allocation if a percpu var. */
1940			if (sym[i].st_shndx == info->index.pcpu)
1941				secbase = (unsigned long)mod_percpu(mod);
1942			else
1943				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1944			sym[i].st_value += secbase;
1945			break;
1946		}
1947	}
1948
1949	return ret;
1950}
1951
1952int __weak apply_relocate(Elf_Shdr *sechdrs,
1953			  const char *strtab,
1954			  unsigned int symindex,
1955			  unsigned int relsec,
1956			  struct module *me)
1957{
1958	pr_err("module %s: REL relocation unsupported\n", me->name);
1959	return -ENOEXEC;
1960}
1961
1962int __weak apply_relocate_add(Elf_Shdr *sechdrs,
1963			      const char *strtab,
1964			      unsigned int symindex,
1965			      unsigned int relsec,
1966			      struct module *me)
1967{
1968	pr_err("module %s: RELA relocation unsupported\n", me->name);
1969	return -ENOEXEC;
1970}
1971
1972static int apply_relocations(struct module *mod, const struct load_info *info)
1973{
1974	unsigned int i;
1975	int err = 0;
1976
1977	/* Now do relocations. */
1978	for (i = 1; i < info->hdr->e_shnum; i++) {
1979		unsigned int infosec = info->sechdrs[i].sh_info;
1980
1981		/* Not a valid relocation section? */
1982		if (infosec >= info->hdr->e_shnum)
1983			continue;
1984
1985		/* Don't bother with non-allocated sections */
1986		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1987			continue;
1988
1989		if (info->sechdrs[i].sh_type == SHT_REL)
1990			err = apply_relocate(info->sechdrs, info->strtab,
1991					     info->index.sym, i, mod);
1992		else if (info->sechdrs[i].sh_type == SHT_RELA)
1993			err = apply_relocate_add(info->sechdrs, info->strtab,
1994						 info->index.sym, i, mod);
1995		if (err < 0)
1996			break;
1997	}
1998	return err;
1999}
2000
2001/* Additional bytes needed by arch in front of individual sections */
2002unsigned int __weak arch_mod_section_prepend(struct module *mod,
2003					     unsigned int section)
2004{
2005	/* default implementation just returns zero */
2006	return 0;
2007}
2008
2009/* Update size with this section: return offset. */
2010static long get_offset(struct module *mod, unsigned int *size,
2011		       Elf_Shdr *sechdr, unsigned int section)
2012{
2013	long ret;
2014
2015	*size += arch_mod_section_prepend(mod, section);
2016	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2017	*size = ret + sechdr->sh_size;
2018	return ret;
2019}
2020
2021/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2022   might -- code, read-only data, read-write data, small data.  Tally
2023   sizes, and place the offsets into sh_entsize fields: high bit means it
2024   belongs in init. */
2025static void layout_sections(struct module *mod, struct load_info *info)
2026{
2027	static unsigned long const masks[][2] = {
2028		/* NOTE: all executable code must be the first section
2029		 * in this array; otherwise modify the text_size
2030		 * finder in the two loops below */
2031		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2032		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2033		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2034		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2035	};
2036	unsigned int m, i;
2037
2038	for (i = 0; i < info->hdr->e_shnum; i++)
2039		info->sechdrs[i].sh_entsize = ~0UL;
2040
2041	pr_debug("Core section allocation order:\n");
2042	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2043		for (i = 0; i < info->hdr->e_shnum; ++i) {
2044			Elf_Shdr *s = &info->sechdrs[i];
2045			const char *sname = info->secstrings + s->sh_name;
2046
2047			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2048			    || (s->sh_flags & masks[m][1])
2049			    || s->sh_entsize != ~0UL
2050			    || strstarts(sname, ".init"))
2051				continue;
2052			s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2053			pr_debug("\t%s\n", sname);
2054		}
2055		switch (m) {
2056		case 0: /* executable */
2057			mod->core_size = debug_align(mod->core_size);
2058			mod->core_text_size = mod->core_size;
2059			break;
2060		case 1: /* RO: text and ro-data */
2061			mod->core_size = debug_align(mod->core_size);
2062			mod->core_ro_size = mod->core_size;
2063			break;
2064		case 3: /* whole core */
2065			mod->core_size = debug_align(mod->core_size);
2066			break;
2067		}
2068	}
2069
2070	pr_debug("Init section allocation order:\n");
2071	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2072		for (i = 0; i < info->hdr->e_shnum; ++i) {
2073			Elf_Shdr *s = &info->sechdrs[i];
2074			const char *sname = info->secstrings + s->sh_name;
2075
2076			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2077			    || (s->sh_flags & masks[m][1])
2078			    || s->sh_entsize != ~0UL
2079			    || !strstarts(sname, ".init"))
2080				continue;
2081			s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2082					 | INIT_OFFSET_MASK);
2083			pr_debug("\t%s\n", sname);
2084		}
2085		switch (m) {
2086		case 0: /* executable */
2087			mod->init_size = debug_align(mod->init_size);
2088			mod->init_text_size = mod->init_size;
2089			break;
2090		case 1: /* RO: text and ro-data */
2091			mod->init_size = debug_align(mod->init_size);
2092			mod->init_ro_size = mod->init_size;
2093			break;
2094		case 3: /* whole init */
2095			mod->init_size = debug_align(mod->init_size);
2096			break;
2097		}
2098	}
2099}
2100
2101static void set_license(struct module *mod, const char *license)
2102{
2103	if (!license)
2104		license = "unspecified";
2105
2106	if (!license_is_gpl_compatible(license)) {
2107		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2108			printk(KERN_WARNING "%s: module license '%s' taints "
2109				"kernel.\n", mod->name, license);
2110		add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
2111	}
2112}
2113
2114/* Parse tag=value strings from .modinfo section */
2115static char *next_string(char *string, unsigned long *secsize)
2116{
2117	/* Skip non-zero chars */
2118	while (string[0]) {
2119		string++;
2120		if ((*secsize)-- <= 1)
2121			return NULL;
2122	}
2123
2124	/* Skip any zero padding. */
2125	while (!string[0]) {
2126		string++;
2127		if ((*secsize)-- <= 1)
2128			return NULL;
2129	}
2130	return string;
2131}
2132
2133static char *get_modinfo(struct load_info *info, const char *tag)
2134{
2135	char *p;
2136	unsigned int taglen = strlen(tag);
2137	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2138	unsigned long size = infosec->sh_size;
2139
2140	for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2141		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2142			return p + taglen + 1;
2143	}
2144	return NULL;
2145}
2146
2147static void setup_modinfo(struct module *mod, struct load_info *info)
2148{
2149	struct module_attribute *attr;
2150	int i;
2151
2152	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2153		if (attr->setup)
2154			attr->setup(mod, get_modinfo(info, attr->attr.name));
2155	}
2156}
2157
2158static void free_modinfo(struct module *mod)
2159{
2160	struct module_attribute *attr;
2161	int i;
2162
2163	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2164		if (attr->free)
2165			attr->free(mod);
2166	}
2167}
2168
2169#ifdef CONFIG_KALLSYMS
2170
2171/* lookup symbol in given range of kernel_symbols */
2172static const struct kernel_symbol *lookup_symbol(const char *name,
2173	const struct kernel_symbol *start,
2174	const struct kernel_symbol *stop)
2175{
2176	return bsearch(name, start, stop - start,
2177			sizeof(struct kernel_symbol), cmp_name);
2178}
2179
2180static int is_exported(const char *name, unsigned long value,
2181		       const struct module *mod)
2182{
2183	const struct kernel_symbol *ks;
2184	if (!mod)
2185		ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2186	else
2187		ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2188	return ks != NULL && ks->value == value;
2189}
2190
2191/* As per nm */
2192static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2193{
2194	const Elf_Shdr *sechdrs = info->sechdrs;
2195
2196	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2197		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2198			return 'v';
2199		else
2200			return 'w';
2201	}
2202	if (sym->st_shndx == SHN_UNDEF)
2203		return 'U';
2204	if (sym->st_shndx == SHN_ABS)
2205		return 'a';
2206	if (sym->st_shndx >= SHN_LORESERVE)
2207		return '?';
2208	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2209		return 't';
2210	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2211	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2212		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2213			return 'r';
2214		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2215			return 'g';
2216		else
2217			return 'd';
2218	}
2219	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2220		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2221			return 's';
2222		else
2223			return 'b';
2224	}
2225	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2226		      ".debug")) {
2227		return 'n';
2228	}
2229	return '?';
2230}
2231
2232static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2233                           unsigned int shnum)
2234{
2235	const Elf_Shdr *sec;
2236
2237	if (src->st_shndx == SHN_UNDEF
2238	    || src->st_shndx >= shnum
2239	    || !src->st_name)
2240		return false;
2241
2242	sec = sechdrs + src->st_shndx;
2243	if (!(sec->sh_flags & SHF_ALLOC)
2244#ifndef CONFIG_KALLSYMS_ALL
2245	    || !(sec->sh_flags & SHF_EXECINSTR)
2246#endif
2247	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2248		return false;
2249
2250	return true;
2251}
2252
2253/*
2254 * We only allocate and copy the strings needed by the parts of symtab
2255 * we keep.  This is simple, but has the effect of making multiple
2256 * copies of duplicates.  We could be more sophisticated, see
2257 * linux-kernel thread starting with
2258 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2259 */
2260static void layout_symtab(struct module *mod, struct load_info *info)
2261{
2262	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2263	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2264	const Elf_Sym *src;
2265	unsigned int i, nsrc, ndst, strtab_size;
2266
2267	/* Put symbol section at end of init part of module. */
2268	symsect->sh_flags |= SHF_ALLOC;
2269	symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2270					 info->index.sym) | INIT_OFFSET_MASK;
2271	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2272
2273	src = (void *)info->hdr + symsect->sh_offset;
2274	nsrc = symsect->sh_size / sizeof(*src);
2275
2276	/* Compute total space required for the core symbols' strtab. */
2277	for (ndst = i = strtab_size = 1; i < nsrc; ++i, ++src)
2278		if (is_core_symbol(src, info->sechdrs, info->hdr->e_shnum)) {
2279			strtab_size += strlen(&info->strtab[src->st_name]) + 1;
2280			ndst++;
2281		}
2282
2283	/* Append room for core symbols at end of core part. */
2284	info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2285	info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2286	mod->core_size += strtab_size;
2287
2288	/* Put string table section at end of init part of module. */
2289	strsect->sh_flags |= SHF_ALLOC;
2290	strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2291					 info->index.str) | INIT_OFFSET_MASK;
2292	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2293}
2294
2295static void add_kallsyms(struct module *mod, const struct load_info *info)
2296{
2297	unsigned int i, ndst;
2298	const Elf_Sym *src;
2299	Elf_Sym *dst;
2300	char *s;
2301	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2302
2303	mod->symtab = (void *)symsec->sh_addr;
2304	mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2305	/* Make sure we get permanent strtab: don't use info->strtab. */
2306	mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2307
2308	/* Set types up while we still have access to sections. */
2309	for (i = 0; i < mod->num_symtab; i++)
2310		mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2311
2312	mod->core_symtab = dst = mod->module_core + info->symoffs;
2313	mod->core_strtab = s = mod->module_core + info->stroffs;
2314	src = mod->symtab;
2315	*dst = *src;
2316	*s++ = 0;
2317	for (ndst = i = 1; i < mod->num_symtab; ++i, ++src) {
2318		if (!is_core_symbol(src, info->sechdrs, info->hdr->e_shnum))
2319			continue;
2320
2321		dst[ndst] = *src;
2322		dst[ndst++].st_name = s - mod->core_strtab;
2323		s += strlcpy(s, &mod->strtab[src->st_name], KSYM_NAME_LEN) + 1;
2324	}
2325	mod->core_num_syms = ndst;
2326}
2327#else
2328static inline void layout_symtab(struct module *mod, struct load_info *info)
2329{
2330}
2331
2332static void add_kallsyms(struct module *mod, const struct load_info *info)
2333{
2334}
2335#endif /* CONFIG_KALLSYMS */
2336
2337static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2338{
2339	if (!debug)
2340		return;
2341#ifdef CONFIG_DYNAMIC_DEBUG
2342	if (ddebug_add_module(debug, num, debug->modname))
2343		printk(KERN_ERR "dynamic debug error adding module: %s\n",
2344					debug->modname);
2345#endif
2346}
2347
2348static void dynamic_debug_remove(struct _ddebug *debug)
2349{
2350	if (debug)
2351		ddebug_remove_module(debug->modname);
2352}
2353
2354void * __weak module_alloc(unsigned long size)
2355{
2356	return size == 0 ? NULL : vmalloc_exec(size);
2357}
2358
2359static void *module_alloc_update_bounds(unsigned long size)
2360{
2361	void *ret = module_alloc(size);
2362
2363	if (ret) {
2364		mutex_lock(&module_mutex);
2365		/* Update module bounds. */
2366		if ((unsigned long)ret < module_addr_min)
2367			module_addr_min = (unsigned long)ret;
2368		if ((unsigned long)ret + size > module_addr_max)
2369			module_addr_max = (unsigned long)ret + size;
2370		mutex_unlock(&module_mutex);
2371	}
2372	return ret;
2373}
2374
2375#ifdef CONFIG_DEBUG_KMEMLEAK
2376static void kmemleak_load_module(const struct module *mod,
2377				 const struct load_info *info)
2378{
2379	unsigned int i;
2380
2381	/* only scan the sections containing data */
2382	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2383
2384	for (i = 1; i < info->hdr->e_shnum; i++) {
2385		const char *name = info->secstrings + info->sechdrs[i].sh_name;
2386		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC))
2387			continue;
2388		if (!strstarts(name, ".data") && !strstarts(name, ".bss"))
2389			continue;
2390
2391		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2392				   info->sechdrs[i].sh_size, GFP_KERNEL);
2393	}
2394}
2395#else
2396static inline void kmemleak_load_module(const struct module *mod,
2397					const struct load_info *info)
2398{
2399}
2400#endif
2401
2402/* Sets info->hdr and info->len. */
2403static int copy_and_check(struct load_info *info,
2404			  const void __user *umod, unsigned long len,
2405			  const char __user *uargs)
2406{
2407	int err;
2408	Elf_Ehdr *hdr;
2409
2410	if (len < sizeof(*hdr))
2411		return -ENOEXEC;
2412
2413	/* Suck in entire file: we'll want most of it. */
2414	if ((hdr = vmalloc(len)) == NULL)
2415		return -ENOMEM;
2416
2417	if (copy_from_user(hdr, umod, len) != 0) {
2418		err = -EFAULT;
2419		goto free_hdr;
2420	}
2421
2422	/* Sanity checks against insmoding binaries or wrong arch,
2423	   weird elf version */
2424	if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
2425	    || hdr->e_type != ET_REL
2426	    || !elf_check_arch(hdr)
2427	    || hdr->e_shentsize != sizeof(Elf_Shdr)) {
2428		err = -ENOEXEC;
2429		goto free_hdr;
2430	}
2431
2432	if (hdr->e_shoff >= len ||
2433	    hdr->e_shnum * sizeof(Elf_Shdr) > len - hdr->e_shoff) {
2434		err = -ENOEXEC;
2435		goto free_hdr;
2436	}
2437
2438	info->hdr = hdr;
2439	info->len = len;
2440	return 0;
2441
2442free_hdr:
2443	vfree(hdr);
2444	return err;
2445}
2446
2447static void free_copy(struct load_info *info)
2448{
2449	vfree(info->hdr);
2450}
2451
2452static int rewrite_section_headers(struct load_info *info)
2453{
2454	unsigned int i;
2455
2456	/* This should always be true, but let's be sure. */
2457	info->sechdrs[0].sh_addr = 0;
2458
2459	for (i = 1; i < info->hdr->e_shnum; i++) {
2460		Elf_Shdr *shdr = &info->sechdrs[i];
2461		if (shdr->sh_type != SHT_NOBITS
2462		    && info->len < shdr->sh_offset + shdr->sh_size) {
2463			printk(KERN_ERR "Module len %lu truncated\n",
2464			       info->len);
2465			return -ENOEXEC;
2466		}
2467
2468		/* Mark all sections sh_addr with their address in the
2469		   temporary image. */
2470		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2471
2472#ifndef CONFIG_MODULE_UNLOAD
2473		/* Don't load .exit sections */
2474		if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2475			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2476#endif
2477	}
2478
2479	/* Track but don't keep modinfo and version sections. */
2480	info->index.vers = find_sec(info, "__versions");
2481	info->index.info = find_sec(info, ".modinfo");
2482	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2483	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2484	return 0;
2485}
2486
2487/*
2488 * Set up our basic convenience variables (pointers to section headers,
2489 * search for module section index etc), and do some basic section
2490 * verification.
2491 *
2492 * Return the temporary module pointer (we'll replace it with the final
2493 * one when we move the module sections around).
2494 */
2495static struct module *setup_load_info(struct load_info *info)
2496{
2497	unsigned int i;
2498	int err;
2499	struct module *mod;
2500
2501	/* Set up the convenience variables */
2502	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2503	info->secstrings = (void *)info->hdr
2504		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2505
2506	err = rewrite_section_headers(info);
2507	if (err)
2508		return ERR_PTR(err);
2509
2510	/* Find internal symbols and strings. */
2511	for (i = 1; i < info->hdr->e_shnum; i++) {
2512		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2513			info->index.sym = i;
2514			info->index.str = info->sechdrs[i].sh_link;
2515			info->strtab = (char *)info->hdr
2516				+ info->sechdrs[info->index.str].sh_offset;
2517			break;
2518		}
2519	}
2520
2521	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2522	if (!info->index.mod) {
2523		printk(KERN_WARNING "No module found in object\n");
2524		return ERR_PTR(-ENOEXEC);
2525	}
2526	/* This is temporary: point mod into copy of data. */
2527	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2528
2529	if (info->index.sym == 0) {
2530		printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
2531		       mod->name);
2532		return ERR_PTR(-ENOEXEC);
2533	}
2534
2535	info->index.pcpu = find_pcpusec(info);
2536
2537	/* Check module struct version now, before we try to use module. */
2538	if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2539		return ERR_PTR(-ENOEXEC);
2540
2541	return mod;
2542}
2543
2544static int check_modinfo(struct module *mod, struct load_info *info)
2545{
2546	const char *modmagic = get_modinfo(info, "vermagic");
2547	int err;
2548
2549	/* This is allowed: modprobe --force will invalidate it. */
2550	if (!modmagic) {
2551		err = try_to_force_load(mod, "bad vermagic");
2552		if (err)
2553			return err;
2554	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2555		printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
2556		       mod->name, modmagic, vermagic);
2557		return -ENOEXEC;
2558	}
2559
2560	if (!get_modinfo(info, "intree"))
2561		add_taint_module(mod, TAINT_OOT_MODULE);
2562
2563	if (get_modinfo(info, "staging")) {
2564		add_taint_module(mod, TAINT_CRAP);
2565		printk(KERN_WARNING "%s: module is from the staging directory,"
2566		       " the quality is unknown, you have been warned.\n",
2567		       mod->name);
2568	}
2569
2570	/* Set up license info based on the info section */
2571	set_license(mod, get_modinfo(info, "license"));
2572
2573	return 0;
2574}
2575
2576static void find_module_sections(struct module *mod, struct load_info *info)
2577{
2578	mod->kp = section_objs(info, "__param",
2579			       sizeof(*mod->kp), &mod->num_kp);
2580	mod->syms = section_objs(info, "__ksymtab",
2581				 sizeof(*mod->syms), &mod->num_syms);
2582	mod->crcs = section_addr(info, "__kcrctab");
2583	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2584				     sizeof(*mod->gpl_syms),
2585				     &mod->num_gpl_syms);
2586	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2587	mod->gpl_future_syms = section_objs(info,
2588					    "__ksymtab_gpl_future",
2589					    sizeof(*mod->gpl_future_syms),
2590					    &mod->num_gpl_future_syms);
2591	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2592
2593#ifdef CONFIG_UNUSED_SYMBOLS
2594	mod->unused_syms = section_objs(info, "__ksymtab_unused",
2595					sizeof(*mod->unused_syms),
2596					&mod->num_unused_syms);
2597	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2598	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2599					    sizeof(*mod->unused_gpl_syms),
2600					    &mod->num_unused_gpl_syms);
2601	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2602#endif
2603#ifdef CONFIG_CONSTRUCTORS
2604	mod->ctors = section_objs(info, ".ctors",
2605				  sizeof(*mod->ctors), &mod->num_ctors);
2606#endif
2607
2608#ifdef CONFIG_TRACEPOINTS
2609	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2610					     sizeof(*mod->tracepoints_ptrs),
2611					     &mod->num_tracepoints);
2612#endif
2613#ifdef HAVE_JUMP_LABEL
2614	mod->jump_entries = section_objs(info, "__jump_table",
2615					sizeof(*mod->jump_entries),
2616					&mod->num_jump_entries);
2617#endif
2618#ifdef CONFIG_EVENT_TRACING
2619	mod->trace_events = section_objs(info, "_ftrace_events",
2620					 sizeof(*mod->trace_events),
2621					 &mod->num_trace_events);
2622	/*
2623	 * This section contains pointers to allocated objects in the trace
2624	 * code and not scanning it leads to false positives.
2625	 */
2626	kmemleak_scan_area(mod->trace_events, sizeof(*mod->trace_events) *
2627			   mod->num_trace_events, GFP_KERNEL);
2628#endif
2629#ifdef CONFIG_TRACING
2630	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2631					 sizeof(*mod->trace_bprintk_fmt_start),
2632					 &mod->num_trace_bprintk_fmt);
2633	/*
2634	 * This section contains pointers to allocated objects in the trace
2635	 * code and not scanning it leads to false positives.
2636	 */
2637	kmemleak_scan_area(mod->trace_bprintk_fmt_start,
2638			   sizeof(*mod->trace_bprintk_fmt_start) *
2639			   mod->num_trace_bprintk_fmt, GFP_KERNEL);
2640#endif
2641#ifdef CONFIG_FTRACE_MCOUNT_RECORD
2642	/* sechdrs[0].sh_size is always zero */
2643	mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2644					     sizeof(*mod->ftrace_callsites),
2645					     &mod->num_ftrace_callsites);
2646#endif
2647
2648	mod->extable = section_objs(info, "__ex_table",
2649				    sizeof(*mod->extable), &mod->num_exentries);
2650
2651	if (section_addr(info, "__obsparm"))
2652		printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
2653		       mod->name);
2654
2655	info->debug = section_objs(info, "__verbose",
2656				   sizeof(*info->debug), &info->num_debug);
2657}
2658
2659static int move_module(struct module *mod, struct load_info *info)
2660{
2661	int i;
2662	void *ptr;
2663
2664	/* Do the allocs. */
2665	ptr = module_alloc_update_bounds(mod->core_size);
2666	/*
2667	 * The pointer to this block is stored in the module structure
2668	 * which is inside the block. Just mark it as not being a
2669	 * leak.
2670	 */
2671	kmemleak_not_leak(ptr);
2672	if (!ptr)
2673		return -ENOMEM;
2674
2675	memset(ptr, 0, mod->core_size);
2676	mod->module_core = ptr;
2677
2678	ptr = module_alloc_update_bounds(mod->init_size);
2679	/*
2680	 * The pointer to this block is stored in the module structure
2681	 * which is inside the block. This block doesn't need to be
2682	 * scanned as it contains data and code that will be freed
2683	 * after the module is initialized.
2684	 */
2685	kmemleak_ignore(ptr);
2686	if (!ptr && mod->init_size) {
2687		module_free(mod, mod->module_core);
2688		return -ENOMEM;
2689	}
2690	memset(ptr, 0, mod->init_size);
2691	mod->module_init = ptr;
2692
2693	/* Transfer each section which specifies SHF_ALLOC */
2694	pr_debug("final section addresses:\n");
2695	for (i = 0; i < info->hdr->e_shnum; i++) {
2696		void *dest;
2697		Elf_Shdr *shdr = &info->sechdrs[i];
2698
2699		if (!(shdr->sh_flags & SHF_ALLOC))
2700			continue;
2701
2702		if (shdr->sh_entsize & INIT_OFFSET_MASK)
2703			dest = mod->module_init
2704				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2705		else
2706			dest = mod->module_core + shdr->sh_entsize;
2707
2708		if (shdr->sh_type != SHT_NOBITS)
2709			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2710		/* Update sh_addr to point to copy in image. */
2711		shdr->sh_addr = (unsigned long)dest;
2712		pr_debug("\t0x%lx %s\n",
2713			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2714	}
2715
2716	return 0;
2717}
2718
2719static int check_module_license_and_versions(struct module *mod)
2720{
2721	/*
2722	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2723	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2724	 * using GPL-only symbols it needs.
2725	 */
2726	if (strcmp(mod->name, "ndiswrapper") == 0)
2727		add_taint(TAINT_PROPRIETARY_MODULE);
2728
2729	/* driverloader was caught wrongly pretending to be under GPL */
2730	if (strcmp(mod->name, "driverloader") == 0)
2731		add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
2732
2733#ifdef CONFIG_MODVERSIONS
2734	if ((mod->num_syms && !mod->crcs)
2735	    || (mod->num_gpl_syms && !mod->gpl_crcs)
2736	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2737#ifdef CONFIG_UNUSED_SYMBOLS
2738	    || (mod->num_unused_syms && !mod->unused_crcs)
2739	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2740#endif
2741		) {
2742		return try_to_force_load(mod,
2743					 "no versions for exported symbols");
2744	}
2745#endif
2746	return 0;
2747}
2748
2749static void flush_module_icache(const struct module *mod)
2750{
2751	mm_segment_t old_fs;
2752
2753	/* flush the icache in correct context */
2754	old_fs = get_fs();
2755	set_fs(KERNEL_DS);
2756
2757	/*
2758	 * Flush the instruction cache, since we've played with text.
2759	 * Do it before processing of module parameters, so the module
2760	 * can provide parameter accessor functions of its own.
2761	 */
2762	if (mod->module_init)
2763		flush_icache_range((unsigned long)mod->module_init,
2764				   (unsigned long)mod->module_init
2765				   + mod->init_size);
2766	flush_icache_range((unsigned long)mod->module_core,
2767			   (unsigned long)mod->module_core + mod->core_size);
2768
2769	set_fs(old_fs);
2770}
2771
2772int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2773				     Elf_Shdr *sechdrs,
2774				     char *secstrings,
2775				     struct module *mod)
2776{
2777	return 0;
2778}
2779
2780static struct module *layout_and_allocate(struct load_info *info)
2781{
2782	/* Module within temporary copy. */
2783	struct module *mod;
2784	Elf_Shdr *pcpusec;
2785	int err;
2786
2787	mod = setup_load_info(info);
2788	if (IS_ERR(mod))
2789		return mod;
2790
2791	err = check_modinfo(mod, info);
2792	if (err)
2793		return ERR_PTR(err);
2794
2795	/* Allow arches to frob section contents and sizes.  */
2796	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2797					info->secstrings, mod);
2798	if (err < 0)
2799		goto out;
2800
2801	pcpusec = &info->sechdrs[info->index.pcpu];
2802	if (pcpusec->sh_size) {
2803		/* We have a special allocation for this section. */
2804		err = percpu_modalloc(mod,
2805				      pcpusec->sh_size, pcpusec->sh_addralign);
2806		if (err)
2807			goto out;
2808		pcpusec->sh_flags &= ~(unsigned long)SHF_ALLOC;
2809	}
2810
2811	/* Determine total sizes, and put offsets in sh_entsize.  For now
2812	   this is done generically; there doesn't appear to be any
2813	   special cases for the architectures. */
2814	layout_sections(mod, info);
2815	layout_symtab(mod, info);
2816
2817	/* Allocate and move to the final place */
2818	err = move_module(mod, info);
2819	if (err)
2820		goto free_percpu;
2821
2822	/* Module has been copied to its final place now: return it. */
2823	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2824	kmemleak_load_module(mod, info);
2825	return mod;
2826
2827free_percpu:
2828	percpu_modfree(mod);
2829out:
2830	return ERR_PTR(err);
2831}
2832
2833/* mod is no longer valid after this! */
2834static void module_deallocate(struct module *mod, struct load_info *info)
2835{
2836	percpu_modfree(mod);
2837	module_free(mod, mod->module_init);
2838	module_free(mod, mod->module_core);
2839}
2840
2841int __weak module_finalize(const Elf_Ehdr *hdr,
2842			   const Elf_Shdr *sechdrs,
2843			   struct module *me)
2844{
2845	return 0;
2846}
2847
2848static int post_relocation(struct module *mod, const struct load_info *info)
2849{
2850	/* Sort exception table now relocations are done. */
2851	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2852
2853	/* Copy relocated percpu area over. */
2854	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2855		       info->sechdrs[info->index.pcpu].sh_size);
2856
2857	/* Setup kallsyms-specific fields. */
2858	add_kallsyms(mod, info);
2859
2860	/* Arch-specific module finalizing. */
2861	return module_finalize(info->hdr, info->sechdrs, mod);
2862}
2863
2864/* Allocate and load the module: note that size of section 0 is always
2865   zero, and we rely on this for optional sections. */
2866static struct module *load_module(void __user *umod,
2867				  unsigned long len,
2868				  const char __user *uargs)
2869{
2870	struct load_info info = { NULL, };
2871	struct module *mod;
2872	long err;
2873
2874	pr_debug("load_module: umod=%p, len=%lu, uargs=%p\n",
2875	       umod, len, uargs);
2876
2877	/* Copy in the blobs from userspace, check they are vaguely sane. */
2878	err = copy_and_check(&info, umod, len, uargs);
2879	if (err)
2880		return ERR_PTR(err);
2881
2882	/* Figure out module layout, and allocate all the memory. */
2883	mod = layout_and_allocate(&info);
2884	if (IS_ERR(mod)) {
2885		err = PTR_ERR(mod);
2886		goto free_copy;
2887	}
2888
2889	/* Now module is in final location, initialize linked lists, etc. */
2890	err = module_unload_init(mod);
2891	if (err)
2892		goto free_module;
2893
2894	/* Now we've got everything in the final locations, we can
2895	 * find optional sections. */
2896	find_module_sections(mod, &info);
2897
2898	err = check_module_license_and_versions(mod);
2899	if (err)
2900		goto free_unload;
2901
2902	/* Set up MODINFO_ATTR fields */
2903	setup_modinfo(mod, &info);
2904
2905	/* Fix up syms, so that st_value is a pointer to location. */
2906	err = simplify_symbols(mod, &info);
2907	if (err < 0)
2908		goto free_modinfo;
2909
2910	err = apply_relocations(mod, &info);
2911	if (err < 0)
2912		goto free_modinfo;
2913
2914	err = post_relocation(mod, &info);
2915	if (err < 0)
2916		goto free_modinfo;
2917
2918	flush_module_icache(mod);
2919
2920	/* Now copy in args */
2921	mod->args = strndup_user(uargs, ~0UL >> 1);
2922	if (IS_ERR(mod->args)) {
2923		err = PTR_ERR(mod->args);
2924		goto free_arch_cleanup;
2925	}
2926
2927	/* Mark state as coming so strong_try_module_get() ignores us. */
2928	mod->state = MODULE_STATE_COMING;
2929
2930	/* Now sew it into the lists so we can get lockdep and oops
2931	 * info during argument parsing.  No one should access us, since
2932	 * strong_try_module_get() will fail.
2933	 * lockdep/oops can run asynchronous, so use the RCU list insertion
2934	 * function to insert in a way safe to concurrent readers.
2935	 * The mutex protects against concurrent writers.
2936	 */
2937	mutex_lock(&module_mutex);
2938	if (find_module(mod->name)) {
2939		err = -EEXIST;
2940		goto unlock;
2941	}
2942
2943	/* This has to be done once we're sure module name is unique. */
2944	dynamic_debug_setup(info.debug, info.num_debug);
2945
2946	/* Find duplicate symbols */
2947	err = verify_export_symbols(mod);
2948	if (err < 0)
2949		goto ddebug;
2950
2951	module_bug_finalize(info.hdr, info.sechdrs, mod);
2952	list_add_rcu(&mod->list, &modules);
2953	mutex_unlock(&module_mutex);
2954
2955	/* Module is ready to execute: parsing args may do that. */
2956	err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
2957			 -32768, 32767, &ddebug_dyndbg_module_param_cb);
2958	if (err < 0)
2959		goto unlink;
2960
2961	/* Link in to syfs. */
2962	err = mod_sysfs_setup(mod, &info, mod->kp, mod->num_kp);
2963	if (err < 0)
2964		goto unlink;
2965
2966	/* Get rid of temporary copy. */
2967	free_copy(&info);
2968
2969	/* Done! */
2970	trace_module_load(mod);
2971	return mod;
2972
2973 unlink:
2974	mutex_lock(&module_mutex);
2975	/* Unlink carefully: kallsyms could be walking list. */
2976	list_del_rcu(&mod->list);
2977	module_bug_cleanup(mod);
2978
2979 ddebug:
2980	dynamic_debug_remove(info.debug);
2981 unlock:
2982	mutex_unlock(&module_mutex);
2983	synchronize_sched();
2984	kfree(mod->args);
2985 free_arch_cleanup:
2986	module_arch_cleanup(mod);
2987 free_modinfo:
2988	free_modinfo(mod);
2989 free_unload:
2990	module_unload_free(mod);
2991 free_module:
2992	module_deallocate(mod, &info);
2993 free_copy:
2994	free_copy(&info);
2995	return ERR_PTR(err);
2996}
2997
2998/* Call module constructors. */
2999static void do_mod_ctors(struct module *mod)
3000{
3001#ifdef CONFIG_CONSTRUCTORS
3002	unsigned long i;
3003
3004	for (i = 0; i < mod->num_ctors; i++)
3005		mod->ctors[i]();
3006#endif
3007}
3008
3009/* This is where the real work happens */
3010SYSCALL_DEFINE3(init_module, void __user *, umod,
3011		unsigned long, len, const char __user *, uargs)
3012{
3013	struct module *mod;
3014	int ret = 0;
3015
3016	/* Must have permission */
3017	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3018		return -EPERM;
3019
3020	/* Do all the hard work */
3021	mod = load_module(umod, len, uargs);
3022	if (IS_ERR(mod))
3023		return PTR_ERR(mod);
3024
3025	blocking_notifier_call_chain(&module_notify_list,
3026			MODULE_STATE_COMING, mod);
3027
3028	/* Set RO and NX regions for core */
3029	set_section_ro_nx(mod->module_core,
3030				mod->core_text_size,
3031				mod->core_ro_size,
3032				mod->core_size);
3033
3034	/* Set RO and NX regions for init */
3035	set_section_ro_nx(mod->module_init,
3036				mod->init_text_size,
3037				mod->init_ro_size,
3038				mod->init_size);
3039
3040	do_mod_ctors(mod);
3041	/* Start the module */
3042	if (mod->init != NULL)
3043		ret = do_one_initcall(mod->init);
3044	if (ret < 0) {
3045		/* Init routine failed: abort.  Try to protect us from
3046                   buggy refcounters. */
3047		mod->state = MODULE_STATE_GOING;
3048		synchronize_sched();
3049		module_put(mod);
3050		blocking_notifier_call_chain(&module_notify_list,
3051					     MODULE_STATE_GOING, mod);
3052		free_module(mod);
3053		wake_up(&module_wq);
3054		return ret;
3055	}
3056	if (ret > 0) {
3057		printk(KERN_WARNING
3058"%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
3059"%s: loading module anyway...\n",
3060		       __func__, mod->name, ret,
3061		       __func__);
3062		dump_stack();
3063	}
3064
3065	/* Now it's a first class citizen!  Wake up anyone waiting for it. */
3066	mod->state = MODULE_STATE_LIVE;
3067	wake_up(&module_wq);
3068	blocking_notifier_call_chain(&module_notify_list,
3069				     MODULE_STATE_LIVE, mod);
3070
3071	/* We need to finish all async code before the module init sequence is done */
3072	async_synchronize_full();
3073
3074	mutex_lock(&module_mutex);
3075	/* Drop initial reference. */
3076	module_put(mod);
3077	trim_init_extable(mod);
3078#ifdef CONFIG_KALLSYMS
3079	mod->num_symtab = mod->core_num_syms;
3080	mod->symtab = mod->core_symtab;
3081	mod->strtab = mod->core_strtab;
3082#endif
3083	unset_module_init_ro_nx(mod);
3084	module_free(mod, mod->module_init);
3085	mod->module_init = NULL;
3086	mod->init_size = 0;
3087	mod->init_ro_size = 0;
3088	mod->init_text_size = 0;
3089	mutex_unlock(&module_mutex);
3090
3091	return 0;
3092}
3093
3094static inline int within(unsigned long addr, void *start, unsigned long size)
3095{
3096	return ((void *)addr >= start && (void *)addr < start + size);
3097}
3098
3099#ifdef CONFIG_KALLSYMS
3100/*
3101 * This ignores the intensely annoying "mapping symbols" found
3102 * in ARM ELF files: $a, $t and $d.
3103 */
3104static inline int is_arm_mapping_symbol(const char *str)
3105{
3106	return str[0] == '$' && strchr("atd", str[1])
3107	       && (str[2] == '\0' || str[2] == '.');
3108}
3109
3110static const char *get_ksymbol(struct module *mod,
3111			       unsigned long addr,
3112			       unsigned long *size,
3113			       unsigned long *offset)
3114{
3115	unsigned int i, best = 0;
3116	unsigned long nextval;
3117
3118	/* At worse, next value is at end of module */
3119	if (within_module_init(addr, mod))
3120		nextval = (unsigned long)mod->module_init+mod->init_text_size;
3121	else
3122		nextval = (unsigned long)mod->module_core+mod->core_text_size;
3123
3124	/* Scan for closest preceding symbol, and next symbol. (ELF
3125	   starts real symbols at 1). */
3126	for (i = 1; i < mod->num_symtab; i++) {
3127		if (mod->symtab[i].st_shndx == SHN_UNDEF)
3128			continue;
3129
3130		/* We ignore unnamed symbols: they're uninformative
3131		 * and inserted at a whim. */
3132		if (mod->symtab[i].st_value <= addr
3133		    && mod->symtab[i].st_value > mod->symtab[best].st_value
3134		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3135		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3136			best = i;
3137		if (mod->symtab[i].st_value > addr
3138		    && mod->symtab[i].st_value < nextval
3139		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3140		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3141			nextval = mod->symtab[i].st_value;
3142	}
3143
3144	if (!best)
3145		return NULL;
3146
3147	if (size)
3148		*size = nextval - mod->symtab[best].st_value;
3149	if (offset)
3150		*offset = addr - mod->symtab[best].st_value;
3151	return mod->strtab + mod->symtab[best].st_name;
3152}
3153
3154/* For kallsyms to ask for address resolution.  NULL means not found.  Careful
3155 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3156const char *module_address_lookup(unsigned long addr,
3157			    unsigned long *size,
3158			    unsigned long *offset,
3159			    char **modname,
3160			    char *namebuf)
3161{
3162	struct module *mod;
3163	const char *ret = NULL;
3164
3165	preempt_disable();
3166	list_for_each_entry_rcu(mod, &modules, list) {
3167		if (within_module_init(addr, mod) ||
3168		    within_module_core(addr, mod)) {
3169			if (modname)
3170				*modname = mod->name;
3171			ret = get_ksymbol(mod, addr, size, offset);
3172			break;
3173		}
3174	}
3175	/* Make a copy in here where it's safe */
3176	if (ret) {
3177		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3178		ret = namebuf;
3179	}
3180	preempt_enable();
3181	return ret;
3182}
3183
3184int lookup_module_symbol_name(unsigned long addr, char *symname)
3185{
3186	struct module *mod;
3187
3188	preempt_disable();
3189	list_for_each_entry_rcu(mod, &modules, list) {
3190		if (within_module_init(addr, mod) ||
3191		    within_module_core(addr, mod)) {
3192			const char *sym;
3193
3194			sym = get_ksymbol(mod, addr, NULL, NULL);
3195			if (!sym)
3196				goto out;
3197			strlcpy(symname, sym, KSYM_NAME_LEN);
3198			preempt_enable();
3199			return 0;
3200		}
3201	}
3202out:
3203	preempt_enable();
3204	return -ERANGE;
3205}
3206
3207int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3208			unsigned long *offset, char *modname, char *name)
3209{
3210	struct module *mod;
3211
3212	preempt_disable();
3213	list_for_each_entry_rcu(mod, &modules, list) {
3214		if (within_module_init(addr, mod) ||
3215		    within_module_core(addr, mod)) {
3216			const char *sym;
3217
3218			sym = get_ksymbol(mod, addr, size, offset);
3219			if (!sym)
3220				goto out;
3221			if (modname)
3222				strlcpy(modname, mod->name, MODULE_NAME_LEN);
3223			if (name)
3224				strlcpy(name, sym, KSYM_NAME_LEN);
3225			preempt_enable();
3226			return 0;
3227		}
3228	}
3229out:
3230	preempt_enable();
3231	return -ERANGE;
3232}
3233
3234int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3235			char *name, char *module_name, int *exported)
3236{
3237	struct module *mod;
3238
3239	preempt_disable();
3240	list_for_each_entry_rcu(mod, &modules, list) {
3241		if (symnum < mod->num_symtab) {
3242			*value = mod->symtab[symnum].st_value;
3243			*type = mod->symtab[symnum].st_info;
3244			strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
3245				KSYM_NAME_LEN);
3246			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3247			*exported = is_exported(name, *value, mod);
3248			preempt_enable();
3249			return 0;
3250		}
3251		symnum -= mod->num_symtab;
3252	}
3253	preempt_enable();
3254	return -ERANGE;
3255}
3256
3257static unsigned long mod_find_symname(struct module *mod, const char *name)
3258{
3259	unsigned int i;
3260
3261	for (i = 0; i < mod->num_symtab; i++)
3262		if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
3263		    mod->symtab[i].st_info != 'U')
3264			return mod->symtab[i].st_value;
3265	return 0;
3266}
3267
3268/* Look for this name: can be of form module:name. */
3269unsigned long module_kallsyms_lookup_name(const char *name)
3270{
3271	struct module *mod;
3272	char *colon;
3273	unsigned long ret = 0;
3274
3275	/* Don't lock: we're in enough trouble already. */
3276	preempt_disable();
3277	if ((colon = strchr(name, ':')) != NULL) {
3278		*colon = '\0';
3279		if ((mod = find_module(name)) != NULL)
3280			ret = mod_find_symname(mod, colon+1);
3281		*colon = ':';
3282	} else {
3283		list_for_each_entry_rcu(mod, &modules, list)
3284			if ((ret = mod_find_symname(mod, name)) != 0)
3285				break;
3286	}
3287	preempt_enable();
3288	return ret;
3289}
3290
3291int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3292					     struct module *, unsigned long),
3293				   void *data)
3294{
3295	struct module *mod;
3296	unsigned int i;
3297	int ret;
3298
3299	list_for_each_entry(mod, &modules, list) {
3300		for (i = 0; i < mod->num_symtab; i++) {
3301			ret = fn(data, mod->strtab + mod->symtab[i].st_name,
3302				 mod, mod->symtab[i].st_value);
3303			if (ret != 0)
3304				return ret;
3305		}
3306	}
3307	return 0;
3308}
3309#endif /* CONFIG_KALLSYMS */
3310
3311static char *module_flags(struct module *mod, char *buf)
3312{
3313	int bx = 0;
3314
3315	if (mod->taints ||
3316	    mod->state == MODULE_STATE_GOING ||
3317	    mod->state == MODULE_STATE_COMING) {
3318		buf[bx++] = '(';
3319		bx += module_flags_taint(mod, buf + bx);
3320		/* Show a - for module-is-being-unloaded */
3321		if (mod->state == MODULE_STATE_GOING)
3322			buf[bx++] = '-';
3323		/* Show a + for module-is-being-loaded */
3324		if (mod->state == MODULE_STATE_COMING)
3325			buf[bx++] = '+';
3326		buf[bx++] = ')';
3327	}
3328	buf[bx] = '\0';
3329
3330	return buf;
3331}
3332
3333#ifdef CONFIG_PROC_FS
3334/* Called by the /proc file system to return a list of modules. */
3335static void *m_start(struct seq_file *m, loff_t *pos)
3336{
3337	mutex_lock(&module_mutex);
3338	return seq_list_start(&modules, *pos);
3339}
3340
3341static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3342{
3343	return seq_list_next(p, &modules, pos);
3344}
3345
3346static void m_stop(struct seq_file *m, void *p)
3347{
3348	mutex_unlock(&module_mutex);
3349}
3350
3351static int m_show(struct seq_file *m, void *p)
3352{
3353	struct module *mod = list_entry(p, struct module, list);
3354	char buf[8];
3355
3356	seq_printf(m, "%s %u",
3357		   mod->name, mod->init_size + mod->core_size);
3358	print_unload_info(m, mod);
3359
3360	/* Informative for users. */
3361	seq_printf(m, " %s",
3362		   mod->state == MODULE_STATE_GOING ? "Unloading":
3363		   mod->state == MODULE_STATE_COMING ? "Loading":
3364		   "Live");
3365	/* Used by oprofile and other similar tools. */
3366	seq_printf(m, " 0x%pK", mod->module_core);
3367
3368	/* Taints info */
3369	if (mod->taints)
3370		seq_printf(m, " %s", module_flags(mod, buf));
3371
3372	seq_printf(m, "\n");
3373	return 0;
3374}
3375
3376/* Format: modulename size refcount deps address
3377
3378   Where refcount is a number or -, and deps is a comma-separated list
3379   of depends or -.
3380*/
3381static const struct seq_operations modules_op = {
3382	.start	= m_start,
3383	.next	= m_next,
3384	.stop	= m_stop,
3385	.show	= m_show
3386};
3387
3388static int modules_open(struct inode *inode, struct file *file)
3389{
3390	return seq_open(file, &modules_op);
3391}
3392
3393static const struct file_operations proc_modules_operations = {
3394	.open		= modules_open,
3395	.read		= seq_read,
3396	.llseek		= seq_lseek,
3397	.release	= seq_release,
3398};
3399
3400static int __init proc_modules_init(void)
3401{
3402	proc_create("modules", 0, NULL, &proc_modules_operations);
3403	return 0;
3404}
3405module_init(proc_modules_init);
3406#endif
3407
3408/* Given an address, look for it in the module exception tables. */
3409const struct exception_table_entry *search_module_extables(unsigned long addr)
3410{
3411	const struct exception_table_entry *e = NULL;
3412	struct module *mod;
3413
3414	preempt_disable();
3415	list_for_each_entry_rcu(mod, &modules, list) {
3416		if (mod->num_exentries == 0)
3417			continue;
3418
3419		e = search_extable(mod->extable,
3420				   mod->extable + mod->num_exentries - 1,
3421				   addr);
3422		if (e)
3423			break;
3424	}
3425	preempt_enable();
3426
3427	/* Now, if we found one, we are running inside it now, hence
3428	   we cannot unload the module, hence no refcnt needed. */
3429	return e;
3430}
3431
3432/*
3433 * is_module_address - is this address inside a module?
3434 * @addr: the address to check.
3435 *
3436 * See is_module_text_address() if you simply want to see if the address
3437 * is code (not data).
3438 */
3439bool is_module_address(unsigned long addr)
3440{
3441	bool ret;
3442
3443	preempt_disable();
3444	ret = __module_address(addr) != NULL;
3445	preempt_enable();
3446
3447	return ret;
3448}
3449
3450/*
3451 * __module_address - get the module which contains an address.
3452 * @addr: the address.
3453 *
3454 * Must be called with preempt disabled or module mutex held so that
3455 * module doesn't get freed during this.
3456 */
3457struct module *__module_address(unsigned long addr)
3458{
3459	struct module *mod;
3460
3461	if (addr < module_addr_min || addr > module_addr_max)
3462		return NULL;
3463
3464	list_for_each_entry_rcu(mod, &modules, list)
3465		if (within_module_core(addr, mod)
3466		    || within_module_init(addr, mod))
3467			return mod;
3468	return NULL;
3469}
3470EXPORT_SYMBOL_GPL(__module_address);
3471
3472/*
3473 * is_module_text_address - is this address inside module code?
3474 * @addr: the address to check.
3475 *
3476 * See is_module_address() if you simply want to see if the address is
3477 * anywhere in a module.  See kernel_text_address() for testing if an
3478 * address corresponds to kernel or module code.
3479 */
3480bool is_module_text_address(unsigned long addr)
3481{
3482	bool ret;
3483
3484	preempt_disable();
3485	ret = __module_text_address(addr) != NULL;
3486	preempt_enable();
3487
3488	return ret;
3489}
3490
3491/*
3492 * __module_text_address - get the module whose code contains an address.
3493 * @addr: the address.
3494 *
3495 * Must be called with preempt disabled or module mutex held so that
3496 * module doesn't get freed during this.
3497 */
3498struct module *__module_text_address(unsigned long addr)
3499{
3500	struct module *mod = __module_address(addr);
3501	if (mod) {
3502		/* Make sure it's within the text section. */
3503		if (!within(addr, mod->module_init, mod->init_text_size)
3504		    && !within(addr, mod->module_core, mod->core_text_size))
3505			mod = NULL;
3506	}
3507	return mod;
3508}
3509EXPORT_SYMBOL_GPL(__module_text_address);
3510
3511/* Don't grab lock, we're oopsing. */
3512void print_modules(void)
3513{
3514	struct module *mod;
3515	char buf[8];
3516
3517	printk(KERN_DEFAULT "Modules linked in:");
3518	/* Most callers should already have preempt disabled, but make sure */
3519	preempt_disable();
3520	list_for_each_entry_rcu(mod, &modules, list)
3521		printk(" %s%s", mod->name, module_flags(mod, buf));
3522	preempt_enable();
3523	if (last_unloaded_module[0])
3524		printk(" [last unloaded: %s]", last_unloaded_module);
3525	printk("\n");
3526}
3527
3528#ifdef CONFIG_MODVERSIONS
3529/* Generate the signature for all relevant module structures here.
3530 * If these change, we don't want to try to parse the module. */
3531void module_layout(struct module *mod,
3532		   struct modversion_info *ver,
3533		   struct kernel_param *kp,
3534		   struct kernel_symbol *ks,
3535		   struct tracepoint * const *tp)
3536{
3537}
3538EXPORT_SYMBOL(module_layout);
3539#endif