Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7#include <linux/slab.h>
8#include <linux/iversion.h>
9#include "misc.h"
10#include "delayed-inode.h"
11#include "disk-io.h"
12#include "transaction.h"
13#include "ctree.h"
14#include "qgroup.h"
15
16#define BTRFS_DELAYED_WRITEBACK 512
17#define BTRFS_DELAYED_BACKGROUND 128
18#define BTRFS_DELAYED_BATCH 16
19
20static struct kmem_cache *delayed_node_cache;
21
22int __init btrfs_delayed_inode_init(void)
23{
24 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
25 sizeof(struct btrfs_delayed_node),
26 0,
27 SLAB_MEM_SPREAD,
28 NULL);
29 if (!delayed_node_cache)
30 return -ENOMEM;
31 return 0;
32}
33
34void __cold btrfs_delayed_inode_exit(void)
35{
36 kmem_cache_destroy(delayed_node_cache);
37}
38
39static inline void btrfs_init_delayed_node(
40 struct btrfs_delayed_node *delayed_node,
41 struct btrfs_root *root, u64 inode_id)
42{
43 delayed_node->root = root;
44 delayed_node->inode_id = inode_id;
45 refcount_set(&delayed_node->refs, 0);
46 delayed_node->ins_root = RB_ROOT_CACHED;
47 delayed_node->del_root = RB_ROOT_CACHED;
48 mutex_init(&delayed_node->mutex);
49 INIT_LIST_HEAD(&delayed_node->n_list);
50 INIT_LIST_HEAD(&delayed_node->p_list);
51}
52
53static inline int btrfs_is_continuous_delayed_item(
54 struct btrfs_delayed_item *item1,
55 struct btrfs_delayed_item *item2)
56{
57 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
58 item1->key.objectid == item2->key.objectid &&
59 item1->key.type == item2->key.type &&
60 item1->key.offset + 1 == item2->key.offset)
61 return 1;
62 return 0;
63}
64
65static struct btrfs_delayed_node *btrfs_get_delayed_node(
66 struct btrfs_inode *btrfs_inode)
67{
68 struct btrfs_root *root = btrfs_inode->root;
69 u64 ino = btrfs_ino(btrfs_inode);
70 struct btrfs_delayed_node *node;
71
72 node = READ_ONCE(btrfs_inode->delayed_node);
73 if (node) {
74 refcount_inc(&node->refs);
75 return node;
76 }
77
78 spin_lock(&root->inode_lock);
79 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
80
81 if (node) {
82 if (btrfs_inode->delayed_node) {
83 refcount_inc(&node->refs); /* can be accessed */
84 BUG_ON(btrfs_inode->delayed_node != node);
85 spin_unlock(&root->inode_lock);
86 return node;
87 }
88
89 /*
90 * It's possible that we're racing into the middle of removing
91 * this node from the radix tree. In this case, the refcount
92 * was zero and it should never go back to one. Just return
93 * NULL like it was never in the radix at all; our release
94 * function is in the process of removing it.
95 *
96 * Some implementations of refcount_inc refuse to bump the
97 * refcount once it has hit zero. If we don't do this dance
98 * here, refcount_inc() may decide to just WARN_ONCE() instead
99 * of actually bumping the refcount.
100 *
101 * If this node is properly in the radix, we want to bump the
102 * refcount twice, once for the inode and once for this get
103 * operation.
104 */
105 if (refcount_inc_not_zero(&node->refs)) {
106 refcount_inc(&node->refs);
107 btrfs_inode->delayed_node = node;
108 } else {
109 node = NULL;
110 }
111
112 spin_unlock(&root->inode_lock);
113 return node;
114 }
115 spin_unlock(&root->inode_lock);
116
117 return NULL;
118}
119
120/* Will return either the node or PTR_ERR(-ENOMEM) */
121static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
122 struct btrfs_inode *btrfs_inode)
123{
124 struct btrfs_delayed_node *node;
125 struct btrfs_root *root = btrfs_inode->root;
126 u64 ino = btrfs_ino(btrfs_inode);
127 int ret;
128
129again:
130 node = btrfs_get_delayed_node(btrfs_inode);
131 if (node)
132 return node;
133
134 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
135 if (!node)
136 return ERR_PTR(-ENOMEM);
137 btrfs_init_delayed_node(node, root, ino);
138
139 /* cached in the btrfs inode and can be accessed */
140 refcount_set(&node->refs, 2);
141
142 ret = radix_tree_preload(GFP_NOFS);
143 if (ret) {
144 kmem_cache_free(delayed_node_cache, node);
145 return ERR_PTR(ret);
146 }
147
148 spin_lock(&root->inode_lock);
149 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
150 if (ret == -EEXIST) {
151 spin_unlock(&root->inode_lock);
152 kmem_cache_free(delayed_node_cache, node);
153 radix_tree_preload_end();
154 goto again;
155 }
156 btrfs_inode->delayed_node = node;
157 spin_unlock(&root->inode_lock);
158 radix_tree_preload_end();
159
160 return node;
161}
162
163/*
164 * Call it when holding delayed_node->mutex
165 *
166 * If mod = 1, add this node into the prepared list.
167 */
168static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
169 struct btrfs_delayed_node *node,
170 int mod)
171{
172 spin_lock(&root->lock);
173 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
174 if (!list_empty(&node->p_list))
175 list_move_tail(&node->p_list, &root->prepare_list);
176 else if (mod)
177 list_add_tail(&node->p_list, &root->prepare_list);
178 } else {
179 list_add_tail(&node->n_list, &root->node_list);
180 list_add_tail(&node->p_list, &root->prepare_list);
181 refcount_inc(&node->refs); /* inserted into list */
182 root->nodes++;
183 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
184 }
185 spin_unlock(&root->lock);
186}
187
188/* Call it when holding delayed_node->mutex */
189static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
190 struct btrfs_delayed_node *node)
191{
192 spin_lock(&root->lock);
193 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
194 root->nodes--;
195 refcount_dec(&node->refs); /* not in the list */
196 list_del_init(&node->n_list);
197 if (!list_empty(&node->p_list))
198 list_del_init(&node->p_list);
199 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
200 }
201 spin_unlock(&root->lock);
202}
203
204static struct btrfs_delayed_node *btrfs_first_delayed_node(
205 struct btrfs_delayed_root *delayed_root)
206{
207 struct list_head *p;
208 struct btrfs_delayed_node *node = NULL;
209
210 spin_lock(&delayed_root->lock);
211 if (list_empty(&delayed_root->node_list))
212 goto out;
213
214 p = delayed_root->node_list.next;
215 node = list_entry(p, struct btrfs_delayed_node, n_list);
216 refcount_inc(&node->refs);
217out:
218 spin_unlock(&delayed_root->lock);
219
220 return node;
221}
222
223static struct btrfs_delayed_node *btrfs_next_delayed_node(
224 struct btrfs_delayed_node *node)
225{
226 struct btrfs_delayed_root *delayed_root;
227 struct list_head *p;
228 struct btrfs_delayed_node *next = NULL;
229
230 delayed_root = node->root->fs_info->delayed_root;
231 spin_lock(&delayed_root->lock);
232 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
233 /* not in the list */
234 if (list_empty(&delayed_root->node_list))
235 goto out;
236 p = delayed_root->node_list.next;
237 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
238 goto out;
239 else
240 p = node->n_list.next;
241
242 next = list_entry(p, struct btrfs_delayed_node, n_list);
243 refcount_inc(&next->refs);
244out:
245 spin_unlock(&delayed_root->lock);
246
247 return next;
248}
249
250static void __btrfs_release_delayed_node(
251 struct btrfs_delayed_node *delayed_node,
252 int mod)
253{
254 struct btrfs_delayed_root *delayed_root;
255
256 if (!delayed_node)
257 return;
258
259 delayed_root = delayed_node->root->fs_info->delayed_root;
260
261 mutex_lock(&delayed_node->mutex);
262 if (delayed_node->count)
263 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
264 else
265 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
266 mutex_unlock(&delayed_node->mutex);
267
268 if (refcount_dec_and_test(&delayed_node->refs)) {
269 struct btrfs_root *root = delayed_node->root;
270
271 spin_lock(&root->inode_lock);
272 /*
273 * Once our refcount goes to zero, nobody is allowed to bump it
274 * back up. We can delete it now.
275 */
276 ASSERT(refcount_read(&delayed_node->refs) == 0);
277 radix_tree_delete(&root->delayed_nodes_tree,
278 delayed_node->inode_id);
279 spin_unlock(&root->inode_lock);
280 kmem_cache_free(delayed_node_cache, delayed_node);
281 }
282}
283
284static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
285{
286 __btrfs_release_delayed_node(node, 0);
287}
288
289static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
290 struct btrfs_delayed_root *delayed_root)
291{
292 struct list_head *p;
293 struct btrfs_delayed_node *node = NULL;
294
295 spin_lock(&delayed_root->lock);
296 if (list_empty(&delayed_root->prepare_list))
297 goto out;
298
299 p = delayed_root->prepare_list.next;
300 list_del_init(p);
301 node = list_entry(p, struct btrfs_delayed_node, p_list);
302 refcount_inc(&node->refs);
303out:
304 spin_unlock(&delayed_root->lock);
305
306 return node;
307}
308
309static inline void btrfs_release_prepared_delayed_node(
310 struct btrfs_delayed_node *node)
311{
312 __btrfs_release_delayed_node(node, 1);
313}
314
315static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
316{
317 struct btrfs_delayed_item *item;
318 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
319 if (item) {
320 item->data_len = data_len;
321 item->ins_or_del = 0;
322 item->bytes_reserved = 0;
323 item->delayed_node = NULL;
324 refcount_set(&item->refs, 1);
325 }
326 return item;
327}
328
329/*
330 * __btrfs_lookup_delayed_item - look up the delayed item by key
331 * @delayed_node: pointer to the delayed node
332 * @key: the key to look up
333 * @prev: used to store the prev item if the right item isn't found
334 * @next: used to store the next item if the right item isn't found
335 *
336 * Note: if we don't find the right item, we will return the prev item and
337 * the next item.
338 */
339static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
340 struct rb_root *root,
341 struct btrfs_key *key,
342 struct btrfs_delayed_item **prev,
343 struct btrfs_delayed_item **next)
344{
345 struct rb_node *node, *prev_node = NULL;
346 struct btrfs_delayed_item *delayed_item = NULL;
347 int ret = 0;
348
349 node = root->rb_node;
350
351 while (node) {
352 delayed_item = rb_entry(node, struct btrfs_delayed_item,
353 rb_node);
354 prev_node = node;
355 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
356 if (ret < 0)
357 node = node->rb_right;
358 else if (ret > 0)
359 node = node->rb_left;
360 else
361 return delayed_item;
362 }
363
364 if (prev) {
365 if (!prev_node)
366 *prev = NULL;
367 else if (ret < 0)
368 *prev = delayed_item;
369 else if ((node = rb_prev(prev_node)) != NULL) {
370 *prev = rb_entry(node, struct btrfs_delayed_item,
371 rb_node);
372 } else
373 *prev = NULL;
374 }
375
376 if (next) {
377 if (!prev_node)
378 *next = NULL;
379 else if (ret > 0)
380 *next = delayed_item;
381 else if ((node = rb_next(prev_node)) != NULL) {
382 *next = rb_entry(node, struct btrfs_delayed_item,
383 rb_node);
384 } else
385 *next = NULL;
386 }
387 return NULL;
388}
389
390static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
391 struct btrfs_delayed_node *delayed_node,
392 struct btrfs_key *key)
393{
394 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
395 NULL, NULL);
396}
397
398static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
399 struct btrfs_delayed_item *ins,
400 int action)
401{
402 struct rb_node **p, *node;
403 struct rb_node *parent_node = NULL;
404 struct rb_root_cached *root;
405 struct btrfs_delayed_item *item;
406 int cmp;
407 bool leftmost = true;
408
409 if (action == BTRFS_DELAYED_INSERTION_ITEM)
410 root = &delayed_node->ins_root;
411 else if (action == BTRFS_DELAYED_DELETION_ITEM)
412 root = &delayed_node->del_root;
413 else
414 BUG();
415 p = &root->rb_root.rb_node;
416 node = &ins->rb_node;
417
418 while (*p) {
419 parent_node = *p;
420 item = rb_entry(parent_node, struct btrfs_delayed_item,
421 rb_node);
422
423 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
424 if (cmp < 0) {
425 p = &(*p)->rb_right;
426 leftmost = false;
427 } else if (cmp > 0) {
428 p = &(*p)->rb_left;
429 } else {
430 return -EEXIST;
431 }
432 }
433
434 rb_link_node(node, parent_node, p);
435 rb_insert_color_cached(node, root, leftmost);
436 ins->delayed_node = delayed_node;
437 ins->ins_or_del = action;
438
439 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
440 action == BTRFS_DELAYED_INSERTION_ITEM &&
441 ins->key.offset >= delayed_node->index_cnt)
442 delayed_node->index_cnt = ins->key.offset + 1;
443
444 delayed_node->count++;
445 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
446 return 0;
447}
448
449static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
450 struct btrfs_delayed_item *item)
451{
452 return __btrfs_add_delayed_item(node, item,
453 BTRFS_DELAYED_INSERTION_ITEM);
454}
455
456static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
457 struct btrfs_delayed_item *item)
458{
459 return __btrfs_add_delayed_item(node, item,
460 BTRFS_DELAYED_DELETION_ITEM);
461}
462
463static void finish_one_item(struct btrfs_delayed_root *delayed_root)
464{
465 int seq = atomic_inc_return(&delayed_root->items_seq);
466
467 /* atomic_dec_return implies a barrier */
468 if ((atomic_dec_return(&delayed_root->items) <
469 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
470 cond_wake_up_nomb(&delayed_root->wait);
471}
472
473static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
474{
475 struct rb_root_cached *root;
476 struct btrfs_delayed_root *delayed_root;
477
478 /* Not associated with any delayed_node */
479 if (!delayed_item->delayed_node)
480 return;
481 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
482
483 BUG_ON(!delayed_root);
484 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
485 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
486
487 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
488 root = &delayed_item->delayed_node->ins_root;
489 else
490 root = &delayed_item->delayed_node->del_root;
491
492 rb_erase_cached(&delayed_item->rb_node, root);
493 delayed_item->delayed_node->count--;
494
495 finish_one_item(delayed_root);
496}
497
498static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
499{
500 if (item) {
501 __btrfs_remove_delayed_item(item);
502 if (refcount_dec_and_test(&item->refs))
503 kfree(item);
504 }
505}
506
507static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
508 struct btrfs_delayed_node *delayed_node)
509{
510 struct rb_node *p;
511 struct btrfs_delayed_item *item = NULL;
512
513 p = rb_first_cached(&delayed_node->ins_root);
514 if (p)
515 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
516
517 return item;
518}
519
520static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
521 struct btrfs_delayed_node *delayed_node)
522{
523 struct rb_node *p;
524 struct btrfs_delayed_item *item = NULL;
525
526 p = rb_first_cached(&delayed_node->del_root);
527 if (p)
528 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
529
530 return item;
531}
532
533static struct btrfs_delayed_item *__btrfs_next_delayed_item(
534 struct btrfs_delayed_item *item)
535{
536 struct rb_node *p;
537 struct btrfs_delayed_item *next = NULL;
538
539 p = rb_next(&item->rb_node);
540 if (p)
541 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
542
543 return next;
544}
545
546static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
547 struct btrfs_root *root,
548 struct btrfs_delayed_item *item)
549{
550 struct btrfs_block_rsv *src_rsv;
551 struct btrfs_block_rsv *dst_rsv;
552 struct btrfs_fs_info *fs_info = root->fs_info;
553 u64 num_bytes;
554 int ret;
555
556 if (!trans->bytes_reserved)
557 return 0;
558
559 src_rsv = trans->block_rsv;
560 dst_rsv = &fs_info->delayed_block_rsv;
561
562 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
563
564 /*
565 * Here we migrate space rsv from transaction rsv, since have already
566 * reserved space when starting a transaction. So no need to reserve
567 * qgroup space here.
568 */
569 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
570 if (!ret) {
571 trace_btrfs_space_reservation(fs_info, "delayed_item",
572 item->key.objectid,
573 num_bytes, 1);
574 item->bytes_reserved = num_bytes;
575 }
576
577 return ret;
578}
579
580static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
581 struct btrfs_delayed_item *item)
582{
583 struct btrfs_block_rsv *rsv;
584 struct btrfs_fs_info *fs_info = root->fs_info;
585
586 if (!item->bytes_reserved)
587 return;
588
589 rsv = &fs_info->delayed_block_rsv;
590 /*
591 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
592 * to release/reserve qgroup space.
593 */
594 trace_btrfs_space_reservation(fs_info, "delayed_item",
595 item->key.objectid, item->bytes_reserved,
596 0);
597 btrfs_block_rsv_release(fs_info, rsv,
598 item->bytes_reserved);
599}
600
601static int btrfs_delayed_inode_reserve_metadata(
602 struct btrfs_trans_handle *trans,
603 struct btrfs_root *root,
604 struct btrfs_inode *inode,
605 struct btrfs_delayed_node *node)
606{
607 struct btrfs_fs_info *fs_info = root->fs_info;
608 struct btrfs_block_rsv *src_rsv;
609 struct btrfs_block_rsv *dst_rsv;
610 u64 num_bytes;
611 int ret;
612
613 src_rsv = trans->block_rsv;
614 dst_rsv = &fs_info->delayed_block_rsv;
615
616 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
617
618 /*
619 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
620 * which doesn't reserve space for speed. This is a problem since we
621 * still need to reserve space for this update, so try to reserve the
622 * space.
623 *
624 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
625 * we always reserve enough to update the inode item.
626 */
627 if (!src_rsv || (!trans->bytes_reserved &&
628 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
629 ret = btrfs_qgroup_reserve_meta_prealloc(root,
630 fs_info->nodesize, true);
631 if (ret < 0)
632 return ret;
633 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
634 BTRFS_RESERVE_NO_FLUSH);
635 /*
636 * Since we're under a transaction reserve_metadata_bytes could
637 * try to commit the transaction which will make it return
638 * EAGAIN to make us stop the transaction we have, so return
639 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
640 */
641 if (ret == -EAGAIN) {
642 ret = -ENOSPC;
643 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
644 }
645 if (!ret) {
646 node->bytes_reserved = num_bytes;
647 trace_btrfs_space_reservation(fs_info,
648 "delayed_inode",
649 btrfs_ino(inode),
650 num_bytes, 1);
651 } else {
652 btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
653 }
654 return ret;
655 }
656
657 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
658 if (!ret) {
659 trace_btrfs_space_reservation(fs_info, "delayed_inode",
660 btrfs_ino(inode), num_bytes, 1);
661 node->bytes_reserved = num_bytes;
662 }
663
664 return ret;
665}
666
667static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
668 struct btrfs_delayed_node *node,
669 bool qgroup_free)
670{
671 struct btrfs_block_rsv *rsv;
672
673 if (!node->bytes_reserved)
674 return;
675
676 rsv = &fs_info->delayed_block_rsv;
677 trace_btrfs_space_reservation(fs_info, "delayed_inode",
678 node->inode_id, node->bytes_reserved, 0);
679 btrfs_block_rsv_release(fs_info, rsv,
680 node->bytes_reserved);
681 if (qgroup_free)
682 btrfs_qgroup_free_meta_prealloc(node->root,
683 node->bytes_reserved);
684 else
685 btrfs_qgroup_convert_reserved_meta(node->root,
686 node->bytes_reserved);
687 node->bytes_reserved = 0;
688}
689
690/*
691 * This helper will insert some continuous items into the same leaf according
692 * to the free space of the leaf.
693 */
694static int btrfs_batch_insert_items(struct btrfs_root *root,
695 struct btrfs_path *path,
696 struct btrfs_delayed_item *item)
697{
698 struct btrfs_delayed_item *curr, *next;
699 int free_space;
700 int total_data_size = 0, total_size = 0;
701 struct extent_buffer *leaf;
702 char *data_ptr;
703 struct btrfs_key *keys;
704 u32 *data_size;
705 struct list_head head;
706 int slot;
707 int nitems;
708 int i;
709 int ret = 0;
710
711 BUG_ON(!path->nodes[0]);
712
713 leaf = path->nodes[0];
714 free_space = btrfs_leaf_free_space(leaf);
715 INIT_LIST_HEAD(&head);
716
717 next = item;
718 nitems = 0;
719
720 /*
721 * count the number of the continuous items that we can insert in batch
722 */
723 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
724 free_space) {
725 total_data_size += next->data_len;
726 total_size += next->data_len + sizeof(struct btrfs_item);
727 list_add_tail(&next->tree_list, &head);
728 nitems++;
729
730 curr = next;
731 next = __btrfs_next_delayed_item(curr);
732 if (!next)
733 break;
734
735 if (!btrfs_is_continuous_delayed_item(curr, next))
736 break;
737 }
738
739 if (!nitems) {
740 ret = 0;
741 goto out;
742 }
743
744 /*
745 * we need allocate some memory space, but it might cause the task
746 * to sleep, so we set all locked nodes in the path to blocking locks
747 * first.
748 */
749 btrfs_set_path_blocking(path);
750
751 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
752 if (!keys) {
753 ret = -ENOMEM;
754 goto out;
755 }
756
757 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
758 if (!data_size) {
759 ret = -ENOMEM;
760 goto error;
761 }
762
763 /* get keys of all the delayed items */
764 i = 0;
765 list_for_each_entry(next, &head, tree_list) {
766 keys[i] = next->key;
767 data_size[i] = next->data_len;
768 i++;
769 }
770
771 /* insert the keys of the items */
772 setup_items_for_insert(root, path, keys, data_size,
773 total_data_size, total_size, nitems);
774
775 /* insert the dir index items */
776 slot = path->slots[0];
777 list_for_each_entry_safe(curr, next, &head, tree_list) {
778 data_ptr = btrfs_item_ptr(leaf, slot, char);
779 write_extent_buffer(leaf, &curr->data,
780 (unsigned long)data_ptr,
781 curr->data_len);
782 slot++;
783
784 btrfs_delayed_item_release_metadata(root, curr);
785
786 list_del(&curr->tree_list);
787 btrfs_release_delayed_item(curr);
788 }
789
790error:
791 kfree(data_size);
792 kfree(keys);
793out:
794 return ret;
795}
796
797/*
798 * This helper can just do simple insertion that needn't extend item for new
799 * data, such as directory name index insertion, inode insertion.
800 */
801static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
802 struct btrfs_root *root,
803 struct btrfs_path *path,
804 struct btrfs_delayed_item *delayed_item)
805{
806 struct extent_buffer *leaf;
807 char *ptr;
808 int ret;
809
810 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
811 delayed_item->data_len);
812 if (ret < 0 && ret != -EEXIST)
813 return ret;
814
815 leaf = path->nodes[0];
816
817 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
818
819 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
820 delayed_item->data_len);
821 btrfs_mark_buffer_dirty(leaf);
822
823 btrfs_delayed_item_release_metadata(root, delayed_item);
824 return 0;
825}
826
827/*
828 * we insert an item first, then if there are some continuous items, we try
829 * to insert those items into the same leaf.
830 */
831static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
832 struct btrfs_path *path,
833 struct btrfs_root *root,
834 struct btrfs_delayed_node *node)
835{
836 struct btrfs_delayed_item *curr, *prev;
837 int ret = 0;
838
839do_again:
840 mutex_lock(&node->mutex);
841 curr = __btrfs_first_delayed_insertion_item(node);
842 if (!curr)
843 goto insert_end;
844
845 ret = btrfs_insert_delayed_item(trans, root, path, curr);
846 if (ret < 0) {
847 btrfs_release_path(path);
848 goto insert_end;
849 }
850
851 prev = curr;
852 curr = __btrfs_next_delayed_item(prev);
853 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
854 /* insert the continuous items into the same leaf */
855 path->slots[0]++;
856 btrfs_batch_insert_items(root, path, curr);
857 }
858 btrfs_release_delayed_item(prev);
859 btrfs_mark_buffer_dirty(path->nodes[0]);
860
861 btrfs_release_path(path);
862 mutex_unlock(&node->mutex);
863 goto do_again;
864
865insert_end:
866 mutex_unlock(&node->mutex);
867 return ret;
868}
869
870static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
871 struct btrfs_root *root,
872 struct btrfs_path *path,
873 struct btrfs_delayed_item *item)
874{
875 struct btrfs_delayed_item *curr, *next;
876 struct extent_buffer *leaf;
877 struct btrfs_key key;
878 struct list_head head;
879 int nitems, i, last_item;
880 int ret = 0;
881
882 BUG_ON(!path->nodes[0]);
883
884 leaf = path->nodes[0];
885
886 i = path->slots[0];
887 last_item = btrfs_header_nritems(leaf) - 1;
888 if (i > last_item)
889 return -ENOENT; /* FIXME: Is errno suitable? */
890
891 next = item;
892 INIT_LIST_HEAD(&head);
893 btrfs_item_key_to_cpu(leaf, &key, i);
894 nitems = 0;
895 /*
896 * count the number of the dir index items that we can delete in batch
897 */
898 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
899 list_add_tail(&next->tree_list, &head);
900 nitems++;
901
902 curr = next;
903 next = __btrfs_next_delayed_item(curr);
904 if (!next)
905 break;
906
907 if (!btrfs_is_continuous_delayed_item(curr, next))
908 break;
909
910 i++;
911 if (i > last_item)
912 break;
913 btrfs_item_key_to_cpu(leaf, &key, i);
914 }
915
916 if (!nitems)
917 return 0;
918
919 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
920 if (ret)
921 goto out;
922
923 list_for_each_entry_safe(curr, next, &head, tree_list) {
924 btrfs_delayed_item_release_metadata(root, curr);
925 list_del(&curr->tree_list);
926 btrfs_release_delayed_item(curr);
927 }
928
929out:
930 return ret;
931}
932
933static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
934 struct btrfs_path *path,
935 struct btrfs_root *root,
936 struct btrfs_delayed_node *node)
937{
938 struct btrfs_delayed_item *curr, *prev;
939 int ret = 0;
940
941do_again:
942 mutex_lock(&node->mutex);
943 curr = __btrfs_first_delayed_deletion_item(node);
944 if (!curr)
945 goto delete_fail;
946
947 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
948 if (ret < 0)
949 goto delete_fail;
950 else if (ret > 0) {
951 /*
952 * can't find the item which the node points to, so this node
953 * is invalid, just drop it.
954 */
955 prev = curr;
956 curr = __btrfs_next_delayed_item(prev);
957 btrfs_release_delayed_item(prev);
958 ret = 0;
959 btrfs_release_path(path);
960 if (curr) {
961 mutex_unlock(&node->mutex);
962 goto do_again;
963 } else
964 goto delete_fail;
965 }
966
967 btrfs_batch_delete_items(trans, root, path, curr);
968 btrfs_release_path(path);
969 mutex_unlock(&node->mutex);
970 goto do_again;
971
972delete_fail:
973 btrfs_release_path(path);
974 mutex_unlock(&node->mutex);
975 return ret;
976}
977
978static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
979{
980 struct btrfs_delayed_root *delayed_root;
981
982 if (delayed_node &&
983 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
984 BUG_ON(!delayed_node->root);
985 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
986 delayed_node->count--;
987
988 delayed_root = delayed_node->root->fs_info->delayed_root;
989 finish_one_item(delayed_root);
990 }
991}
992
993static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
994{
995 struct btrfs_delayed_root *delayed_root;
996
997 ASSERT(delayed_node->root);
998 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
999 delayed_node->count--;
1000
1001 delayed_root = delayed_node->root->fs_info->delayed_root;
1002 finish_one_item(delayed_root);
1003}
1004
1005static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1006 struct btrfs_root *root,
1007 struct btrfs_path *path,
1008 struct btrfs_delayed_node *node)
1009{
1010 struct btrfs_fs_info *fs_info = root->fs_info;
1011 struct btrfs_key key;
1012 struct btrfs_inode_item *inode_item;
1013 struct extent_buffer *leaf;
1014 int mod;
1015 int ret;
1016
1017 key.objectid = node->inode_id;
1018 key.type = BTRFS_INODE_ITEM_KEY;
1019 key.offset = 0;
1020
1021 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1022 mod = -1;
1023 else
1024 mod = 1;
1025
1026 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1027 if (ret > 0) {
1028 btrfs_release_path(path);
1029 return -ENOENT;
1030 } else if (ret < 0) {
1031 return ret;
1032 }
1033
1034 leaf = path->nodes[0];
1035 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1036 struct btrfs_inode_item);
1037 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1038 sizeof(struct btrfs_inode_item));
1039 btrfs_mark_buffer_dirty(leaf);
1040
1041 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1042 goto no_iref;
1043
1044 path->slots[0]++;
1045 if (path->slots[0] >= btrfs_header_nritems(leaf))
1046 goto search;
1047again:
1048 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1049 if (key.objectid != node->inode_id)
1050 goto out;
1051
1052 if (key.type != BTRFS_INODE_REF_KEY &&
1053 key.type != BTRFS_INODE_EXTREF_KEY)
1054 goto out;
1055
1056 /*
1057 * Delayed iref deletion is for the inode who has only one link,
1058 * so there is only one iref. The case that several irefs are
1059 * in the same item doesn't exist.
1060 */
1061 btrfs_del_item(trans, root, path);
1062out:
1063 btrfs_release_delayed_iref(node);
1064no_iref:
1065 btrfs_release_path(path);
1066err_out:
1067 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1068 btrfs_release_delayed_inode(node);
1069
1070 return ret;
1071
1072search:
1073 btrfs_release_path(path);
1074
1075 key.type = BTRFS_INODE_EXTREF_KEY;
1076 key.offset = -1;
1077 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1078 if (ret < 0)
1079 goto err_out;
1080 ASSERT(ret);
1081
1082 ret = 0;
1083 leaf = path->nodes[0];
1084 path->slots[0]--;
1085 goto again;
1086}
1087
1088static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1089 struct btrfs_root *root,
1090 struct btrfs_path *path,
1091 struct btrfs_delayed_node *node)
1092{
1093 int ret;
1094
1095 mutex_lock(&node->mutex);
1096 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1097 mutex_unlock(&node->mutex);
1098 return 0;
1099 }
1100
1101 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1102 mutex_unlock(&node->mutex);
1103 return ret;
1104}
1105
1106static inline int
1107__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1108 struct btrfs_path *path,
1109 struct btrfs_delayed_node *node)
1110{
1111 int ret;
1112
1113 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1114 if (ret)
1115 return ret;
1116
1117 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1118 if (ret)
1119 return ret;
1120
1121 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1122 return ret;
1123}
1124
1125/*
1126 * Called when committing the transaction.
1127 * Returns 0 on success.
1128 * Returns < 0 on error and returns with an aborted transaction with any
1129 * outstanding delayed items cleaned up.
1130 */
1131static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1132{
1133 struct btrfs_fs_info *fs_info = trans->fs_info;
1134 struct btrfs_delayed_root *delayed_root;
1135 struct btrfs_delayed_node *curr_node, *prev_node;
1136 struct btrfs_path *path;
1137 struct btrfs_block_rsv *block_rsv;
1138 int ret = 0;
1139 bool count = (nr > 0);
1140
1141 if (trans->aborted)
1142 return -EIO;
1143
1144 path = btrfs_alloc_path();
1145 if (!path)
1146 return -ENOMEM;
1147 path->leave_spinning = 1;
1148
1149 block_rsv = trans->block_rsv;
1150 trans->block_rsv = &fs_info->delayed_block_rsv;
1151
1152 delayed_root = fs_info->delayed_root;
1153
1154 curr_node = btrfs_first_delayed_node(delayed_root);
1155 while (curr_node && (!count || (count && nr--))) {
1156 ret = __btrfs_commit_inode_delayed_items(trans, path,
1157 curr_node);
1158 if (ret) {
1159 btrfs_release_delayed_node(curr_node);
1160 curr_node = NULL;
1161 btrfs_abort_transaction(trans, ret);
1162 break;
1163 }
1164
1165 prev_node = curr_node;
1166 curr_node = btrfs_next_delayed_node(curr_node);
1167 btrfs_release_delayed_node(prev_node);
1168 }
1169
1170 if (curr_node)
1171 btrfs_release_delayed_node(curr_node);
1172 btrfs_free_path(path);
1173 trans->block_rsv = block_rsv;
1174
1175 return ret;
1176}
1177
1178int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1179{
1180 return __btrfs_run_delayed_items(trans, -1);
1181}
1182
1183int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1184{
1185 return __btrfs_run_delayed_items(trans, nr);
1186}
1187
1188int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1189 struct btrfs_inode *inode)
1190{
1191 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1192 struct btrfs_path *path;
1193 struct btrfs_block_rsv *block_rsv;
1194 int ret;
1195
1196 if (!delayed_node)
1197 return 0;
1198
1199 mutex_lock(&delayed_node->mutex);
1200 if (!delayed_node->count) {
1201 mutex_unlock(&delayed_node->mutex);
1202 btrfs_release_delayed_node(delayed_node);
1203 return 0;
1204 }
1205 mutex_unlock(&delayed_node->mutex);
1206
1207 path = btrfs_alloc_path();
1208 if (!path) {
1209 btrfs_release_delayed_node(delayed_node);
1210 return -ENOMEM;
1211 }
1212 path->leave_spinning = 1;
1213
1214 block_rsv = trans->block_rsv;
1215 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1216
1217 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1218
1219 btrfs_release_delayed_node(delayed_node);
1220 btrfs_free_path(path);
1221 trans->block_rsv = block_rsv;
1222
1223 return ret;
1224}
1225
1226int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1227{
1228 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1229 struct btrfs_trans_handle *trans;
1230 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1231 struct btrfs_path *path;
1232 struct btrfs_block_rsv *block_rsv;
1233 int ret;
1234
1235 if (!delayed_node)
1236 return 0;
1237
1238 mutex_lock(&delayed_node->mutex);
1239 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1240 mutex_unlock(&delayed_node->mutex);
1241 btrfs_release_delayed_node(delayed_node);
1242 return 0;
1243 }
1244 mutex_unlock(&delayed_node->mutex);
1245
1246 trans = btrfs_join_transaction(delayed_node->root);
1247 if (IS_ERR(trans)) {
1248 ret = PTR_ERR(trans);
1249 goto out;
1250 }
1251
1252 path = btrfs_alloc_path();
1253 if (!path) {
1254 ret = -ENOMEM;
1255 goto trans_out;
1256 }
1257 path->leave_spinning = 1;
1258
1259 block_rsv = trans->block_rsv;
1260 trans->block_rsv = &fs_info->delayed_block_rsv;
1261
1262 mutex_lock(&delayed_node->mutex);
1263 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1264 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1265 path, delayed_node);
1266 else
1267 ret = 0;
1268 mutex_unlock(&delayed_node->mutex);
1269
1270 btrfs_free_path(path);
1271 trans->block_rsv = block_rsv;
1272trans_out:
1273 btrfs_end_transaction(trans);
1274 btrfs_btree_balance_dirty(fs_info);
1275out:
1276 btrfs_release_delayed_node(delayed_node);
1277
1278 return ret;
1279}
1280
1281void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1282{
1283 struct btrfs_delayed_node *delayed_node;
1284
1285 delayed_node = READ_ONCE(inode->delayed_node);
1286 if (!delayed_node)
1287 return;
1288
1289 inode->delayed_node = NULL;
1290 btrfs_release_delayed_node(delayed_node);
1291}
1292
1293struct btrfs_async_delayed_work {
1294 struct btrfs_delayed_root *delayed_root;
1295 int nr;
1296 struct btrfs_work work;
1297};
1298
1299static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1300{
1301 struct btrfs_async_delayed_work *async_work;
1302 struct btrfs_delayed_root *delayed_root;
1303 struct btrfs_trans_handle *trans;
1304 struct btrfs_path *path;
1305 struct btrfs_delayed_node *delayed_node = NULL;
1306 struct btrfs_root *root;
1307 struct btrfs_block_rsv *block_rsv;
1308 int total_done = 0;
1309
1310 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1311 delayed_root = async_work->delayed_root;
1312
1313 path = btrfs_alloc_path();
1314 if (!path)
1315 goto out;
1316
1317 do {
1318 if (atomic_read(&delayed_root->items) <
1319 BTRFS_DELAYED_BACKGROUND / 2)
1320 break;
1321
1322 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1323 if (!delayed_node)
1324 break;
1325
1326 path->leave_spinning = 1;
1327 root = delayed_node->root;
1328
1329 trans = btrfs_join_transaction(root);
1330 if (IS_ERR(trans)) {
1331 btrfs_release_path(path);
1332 btrfs_release_prepared_delayed_node(delayed_node);
1333 total_done++;
1334 continue;
1335 }
1336
1337 block_rsv = trans->block_rsv;
1338 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1339
1340 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1341
1342 trans->block_rsv = block_rsv;
1343 btrfs_end_transaction(trans);
1344 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1345
1346 btrfs_release_path(path);
1347 btrfs_release_prepared_delayed_node(delayed_node);
1348 total_done++;
1349
1350 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1351 || total_done < async_work->nr);
1352
1353 btrfs_free_path(path);
1354out:
1355 wake_up(&delayed_root->wait);
1356 kfree(async_work);
1357}
1358
1359
1360static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1361 struct btrfs_fs_info *fs_info, int nr)
1362{
1363 struct btrfs_async_delayed_work *async_work;
1364
1365 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1366 if (!async_work)
1367 return -ENOMEM;
1368
1369 async_work->delayed_root = delayed_root;
1370 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1371 btrfs_async_run_delayed_root, NULL, NULL);
1372 async_work->nr = nr;
1373
1374 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1375 return 0;
1376}
1377
1378void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1379{
1380 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1381}
1382
1383static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1384{
1385 int val = atomic_read(&delayed_root->items_seq);
1386
1387 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1388 return 1;
1389
1390 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1391 return 1;
1392
1393 return 0;
1394}
1395
1396void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1397{
1398 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1399
1400 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1401 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1402 return;
1403
1404 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1405 int seq;
1406 int ret;
1407
1408 seq = atomic_read(&delayed_root->items_seq);
1409
1410 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1411 if (ret)
1412 return;
1413
1414 wait_event_interruptible(delayed_root->wait,
1415 could_end_wait(delayed_root, seq));
1416 return;
1417 }
1418
1419 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1420}
1421
1422/* Will return 0 or -ENOMEM */
1423int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1424 const char *name, int name_len,
1425 struct btrfs_inode *dir,
1426 struct btrfs_disk_key *disk_key, u8 type,
1427 u64 index)
1428{
1429 struct btrfs_delayed_node *delayed_node;
1430 struct btrfs_delayed_item *delayed_item;
1431 struct btrfs_dir_item *dir_item;
1432 int ret;
1433
1434 delayed_node = btrfs_get_or_create_delayed_node(dir);
1435 if (IS_ERR(delayed_node))
1436 return PTR_ERR(delayed_node);
1437
1438 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1439 if (!delayed_item) {
1440 ret = -ENOMEM;
1441 goto release_node;
1442 }
1443
1444 delayed_item->key.objectid = btrfs_ino(dir);
1445 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1446 delayed_item->key.offset = index;
1447
1448 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1449 dir_item->location = *disk_key;
1450 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1451 btrfs_set_stack_dir_data_len(dir_item, 0);
1452 btrfs_set_stack_dir_name_len(dir_item, name_len);
1453 btrfs_set_stack_dir_type(dir_item, type);
1454 memcpy((char *)(dir_item + 1), name, name_len);
1455
1456 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1457 /*
1458 * we have reserved enough space when we start a new transaction,
1459 * so reserving metadata failure is impossible
1460 */
1461 BUG_ON(ret);
1462
1463 mutex_lock(&delayed_node->mutex);
1464 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1465 if (unlikely(ret)) {
1466 btrfs_err(trans->fs_info,
1467 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1468 name_len, name, delayed_node->root->root_key.objectid,
1469 delayed_node->inode_id, ret);
1470 BUG();
1471 }
1472 mutex_unlock(&delayed_node->mutex);
1473
1474release_node:
1475 btrfs_release_delayed_node(delayed_node);
1476 return ret;
1477}
1478
1479static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1480 struct btrfs_delayed_node *node,
1481 struct btrfs_key *key)
1482{
1483 struct btrfs_delayed_item *item;
1484
1485 mutex_lock(&node->mutex);
1486 item = __btrfs_lookup_delayed_insertion_item(node, key);
1487 if (!item) {
1488 mutex_unlock(&node->mutex);
1489 return 1;
1490 }
1491
1492 btrfs_delayed_item_release_metadata(node->root, item);
1493 btrfs_release_delayed_item(item);
1494 mutex_unlock(&node->mutex);
1495 return 0;
1496}
1497
1498int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1499 struct btrfs_inode *dir, u64 index)
1500{
1501 struct btrfs_delayed_node *node;
1502 struct btrfs_delayed_item *item;
1503 struct btrfs_key item_key;
1504 int ret;
1505
1506 node = btrfs_get_or_create_delayed_node(dir);
1507 if (IS_ERR(node))
1508 return PTR_ERR(node);
1509
1510 item_key.objectid = btrfs_ino(dir);
1511 item_key.type = BTRFS_DIR_INDEX_KEY;
1512 item_key.offset = index;
1513
1514 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1515 &item_key);
1516 if (!ret)
1517 goto end;
1518
1519 item = btrfs_alloc_delayed_item(0);
1520 if (!item) {
1521 ret = -ENOMEM;
1522 goto end;
1523 }
1524
1525 item->key = item_key;
1526
1527 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1528 /*
1529 * we have reserved enough space when we start a new transaction,
1530 * so reserving metadata failure is impossible.
1531 */
1532 if (ret < 0) {
1533 btrfs_err(trans->fs_info,
1534"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1535 btrfs_release_delayed_item(item);
1536 goto end;
1537 }
1538
1539 mutex_lock(&node->mutex);
1540 ret = __btrfs_add_delayed_deletion_item(node, item);
1541 if (unlikely(ret)) {
1542 btrfs_err(trans->fs_info,
1543 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1544 index, node->root->root_key.objectid,
1545 node->inode_id, ret);
1546 btrfs_delayed_item_release_metadata(dir->root, item);
1547 btrfs_release_delayed_item(item);
1548 }
1549 mutex_unlock(&node->mutex);
1550end:
1551 btrfs_release_delayed_node(node);
1552 return ret;
1553}
1554
1555int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1556{
1557 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1558
1559 if (!delayed_node)
1560 return -ENOENT;
1561
1562 /*
1563 * Since we have held i_mutex of this directory, it is impossible that
1564 * a new directory index is added into the delayed node and index_cnt
1565 * is updated now. So we needn't lock the delayed node.
1566 */
1567 if (!delayed_node->index_cnt) {
1568 btrfs_release_delayed_node(delayed_node);
1569 return -EINVAL;
1570 }
1571
1572 inode->index_cnt = delayed_node->index_cnt;
1573 btrfs_release_delayed_node(delayed_node);
1574 return 0;
1575}
1576
1577bool btrfs_readdir_get_delayed_items(struct inode *inode,
1578 struct list_head *ins_list,
1579 struct list_head *del_list)
1580{
1581 struct btrfs_delayed_node *delayed_node;
1582 struct btrfs_delayed_item *item;
1583
1584 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1585 if (!delayed_node)
1586 return false;
1587
1588 /*
1589 * We can only do one readdir with delayed items at a time because of
1590 * item->readdir_list.
1591 */
1592 inode_unlock_shared(inode);
1593 inode_lock(inode);
1594
1595 mutex_lock(&delayed_node->mutex);
1596 item = __btrfs_first_delayed_insertion_item(delayed_node);
1597 while (item) {
1598 refcount_inc(&item->refs);
1599 list_add_tail(&item->readdir_list, ins_list);
1600 item = __btrfs_next_delayed_item(item);
1601 }
1602
1603 item = __btrfs_first_delayed_deletion_item(delayed_node);
1604 while (item) {
1605 refcount_inc(&item->refs);
1606 list_add_tail(&item->readdir_list, del_list);
1607 item = __btrfs_next_delayed_item(item);
1608 }
1609 mutex_unlock(&delayed_node->mutex);
1610 /*
1611 * This delayed node is still cached in the btrfs inode, so refs
1612 * must be > 1 now, and we needn't check it is going to be freed
1613 * or not.
1614 *
1615 * Besides that, this function is used to read dir, we do not
1616 * insert/delete delayed items in this period. So we also needn't
1617 * requeue or dequeue this delayed node.
1618 */
1619 refcount_dec(&delayed_node->refs);
1620
1621 return true;
1622}
1623
1624void btrfs_readdir_put_delayed_items(struct inode *inode,
1625 struct list_head *ins_list,
1626 struct list_head *del_list)
1627{
1628 struct btrfs_delayed_item *curr, *next;
1629
1630 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1631 list_del(&curr->readdir_list);
1632 if (refcount_dec_and_test(&curr->refs))
1633 kfree(curr);
1634 }
1635
1636 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1637 list_del(&curr->readdir_list);
1638 if (refcount_dec_and_test(&curr->refs))
1639 kfree(curr);
1640 }
1641
1642 /*
1643 * The VFS is going to do up_read(), so we need to downgrade back to a
1644 * read lock.
1645 */
1646 downgrade_write(&inode->i_rwsem);
1647}
1648
1649int btrfs_should_delete_dir_index(struct list_head *del_list,
1650 u64 index)
1651{
1652 struct btrfs_delayed_item *curr;
1653 int ret = 0;
1654
1655 list_for_each_entry(curr, del_list, readdir_list) {
1656 if (curr->key.offset > index)
1657 break;
1658 if (curr->key.offset == index) {
1659 ret = 1;
1660 break;
1661 }
1662 }
1663 return ret;
1664}
1665
1666/*
1667 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1668 *
1669 */
1670int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1671 struct list_head *ins_list)
1672{
1673 struct btrfs_dir_item *di;
1674 struct btrfs_delayed_item *curr, *next;
1675 struct btrfs_key location;
1676 char *name;
1677 int name_len;
1678 int over = 0;
1679 unsigned char d_type;
1680
1681 if (list_empty(ins_list))
1682 return 0;
1683
1684 /*
1685 * Changing the data of the delayed item is impossible. So
1686 * we needn't lock them. And we have held i_mutex of the
1687 * directory, nobody can delete any directory indexes now.
1688 */
1689 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1690 list_del(&curr->readdir_list);
1691
1692 if (curr->key.offset < ctx->pos) {
1693 if (refcount_dec_and_test(&curr->refs))
1694 kfree(curr);
1695 continue;
1696 }
1697
1698 ctx->pos = curr->key.offset;
1699
1700 di = (struct btrfs_dir_item *)curr->data;
1701 name = (char *)(di + 1);
1702 name_len = btrfs_stack_dir_name_len(di);
1703
1704 d_type = fs_ftype_to_dtype(di->type);
1705 btrfs_disk_key_to_cpu(&location, &di->location);
1706
1707 over = !dir_emit(ctx, name, name_len,
1708 location.objectid, d_type);
1709
1710 if (refcount_dec_and_test(&curr->refs))
1711 kfree(curr);
1712
1713 if (over)
1714 return 1;
1715 ctx->pos++;
1716 }
1717 return 0;
1718}
1719
1720static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1721 struct btrfs_inode_item *inode_item,
1722 struct inode *inode)
1723{
1724 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1725 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1726 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1727 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1728 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1729 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1730 btrfs_set_stack_inode_generation(inode_item,
1731 BTRFS_I(inode)->generation);
1732 btrfs_set_stack_inode_sequence(inode_item,
1733 inode_peek_iversion(inode));
1734 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1735 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1736 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1737 btrfs_set_stack_inode_block_group(inode_item, 0);
1738
1739 btrfs_set_stack_timespec_sec(&inode_item->atime,
1740 inode->i_atime.tv_sec);
1741 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1742 inode->i_atime.tv_nsec);
1743
1744 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1745 inode->i_mtime.tv_sec);
1746 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1747 inode->i_mtime.tv_nsec);
1748
1749 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1750 inode->i_ctime.tv_sec);
1751 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1752 inode->i_ctime.tv_nsec);
1753
1754 btrfs_set_stack_timespec_sec(&inode_item->otime,
1755 BTRFS_I(inode)->i_otime.tv_sec);
1756 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1757 BTRFS_I(inode)->i_otime.tv_nsec);
1758}
1759
1760int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1761{
1762 struct btrfs_delayed_node *delayed_node;
1763 struct btrfs_inode_item *inode_item;
1764
1765 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1766 if (!delayed_node)
1767 return -ENOENT;
1768
1769 mutex_lock(&delayed_node->mutex);
1770 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1771 mutex_unlock(&delayed_node->mutex);
1772 btrfs_release_delayed_node(delayed_node);
1773 return -ENOENT;
1774 }
1775
1776 inode_item = &delayed_node->inode_item;
1777
1778 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1779 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1780 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1781 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1782 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1783 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1784 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1785 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1786
1787 inode_set_iversion_queried(inode,
1788 btrfs_stack_inode_sequence(inode_item));
1789 inode->i_rdev = 0;
1790 *rdev = btrfs_stack_inode_rdev(inode_item);
1791 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1792
1793 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1794 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1795
1796 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1797 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1798
1799 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1800 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1801
1802 BTRFS_I(inode)->i_otime.tv_sec =
1803 btrfs_stack_timespec_sec(&inode_item->otime);
1804 BTRFS_I(inode)->i_otime.tv_nsec =
1805 btrfs_stack_timespec_nsec(&inode_item->otime);
1806
1807 inode->i_generation = BTRFS_I(inode)->generation;
1808 BTRFS_I(inode)->index_cnt = (u64)-1;
1809
1810 mutex_unlock(&delayed_node->mutex);
1811 btrfs_release_delayed_node(delayed_node);
1812 return 0;
1813}
1814
1815int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1816 struct btrfs_root *root, struct inode *inode)
1817{
1818 struct btrfs_delayed_node *delayed_node;
1819 int ret = 0;
1820
1821 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1822 if (IS_ERR(delayed_node))
1823 return PTR_ERR(delayed_node);
1824
1825 mutex_lock(&delayed_node->mutex);
1826 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1827 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1828 goto release_node;
1829 }
1830
1831 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1832 delayed_node);
1833 if (ret)
1834 goto release_node;
1835
1836 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1837 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1838 delayed_node->count++;
1839 atomic_inc(&root->fs_info->delayed_root->items);
1840release_node:
1841 mutex_unlock(&delayed_node->mutex);
1842 btrfs_release_delayed_node(delayed_node);
1843 return ret;
1844}
1845
1846int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1847{
1848 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1849 struct btrfs_delayed_node *delayed_node;
1850
1851 /*
1852 * we don't do delayed inode updates during log recovery because it
1853 * leads to enospc problems. This means we also can't do
1854 * delayed inode refs
1855 */
1856 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1857 return -EAGAIN;
1858
1859 delayed_node = btrfs_get_or_create_delayed_node(inode);
1860 if (IS_ERR(delayed_node))
1861 return PTR_ERR(delayed_node);
1862
1863 /*
1864 * We don't reserve space for inode ref deletion is because:
1865 * - We ONLY do async inode ref deletion for the inode who has only
1866 * one link(i_nlink == 1), it means there is only one inode ref.
1867 * And in most case, the inode ref and the inode item are in the
1868 * same leaf, and we will deal with them at the same time.
1869 * Since we are sure we will reserve the space for the inode item,
1870 * it is unnecessary to reserve space for inode ref deletion.
1871 * - If the inode ref and the inode item are not in the same leaf,
1872 * We also needn't worry about enospc problem, because we reserve
1873 * much more space for the inode update than it needs.
1874 * - At the worst, we can steal some space from the global reservation.
1875 * It is very rare.
1876 */
1877 mutex_lock(&delayed_node->mutex);
1878 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1879 goto release_node;
1880
1881 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1882 delayed_node->count++;
1883 atomic_inc(&fs_info->delayed_root->items);
1884release_node:
1885 mutex_unlock(&delayed_node->mutex);
1886 btrfs_release_delayed_node(delayed_node);
1887 return 0;
1888}
1889
1890static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1891{
1892 struct btrfs_root *root = delayed_node->root;
1893 struct btrfs_fs_info *fs_info = root->fs_info;
1894 struct btrfs_delayed_item *curr_item, *prev_item;
1895
1896 mutex_lock(&delayed_node->mutex);
1897 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1898 while (curr_item) {
1899 btrfs_delayed_item_release_metadata(root, curr_item);
1900 prev_item = curr_item;
1901 curr_item = __btrfs_next_delayed_item(prev_item);
1902 btrfs_release_delayed_item(prev_item);
1903 }
1904
1905 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1906 while (curr_item) {
1907 btrfs_delayed_item_release_metadata(root, curr_item);
1908 prev_item = curr_item;
1909 curr_item = __btrfs_next_delayed_item(prev_item);
1910 btrfs_release_delayed_item(prev_item);
1911 }
1912
1913 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1914 btrfs_release_delayed_iref(delayed_node);
1915
1916 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1917 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1918 btrfs_release_delayed_inode(delayed_node);
1919 }
1920 mutex_unlock(&delayed_node->mutex);
1921}
1922
1923void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1924{
1925 struct btrfs_delayed_node *delayed_node;
1926
1927 delayed_node = btrfs_get_delayed_node(inode);
1928 if (!delayed_node)
1929 return;
1930
1931 __btrfs_kill_delayed_node(delayed_node);
1932 btrfs_release_delayed_node(delayed_node);
1933}
1934
1935void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1936{
1937 u64 inode_id = 0;
1938 struct btrfs_delayed_node *delayed_nodes[8];
1939 int i, n;
1940
1941 while (1) {
1942 spin_lock(&root->inode_lock);
1943 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1944 (void **)delayed_nodes, inode_id,
1945 ARRAY_SIZE(delayed_nodes));
1946 if (!n) {
1947 spin_unlock(&root->inode_lock);
1948 break;
1949 }
1950
1951 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1952
1953 for (i = 0; i < n; i++)
1954 refcount_inc(&delayed_nodes[i]->refs);
1955 spin_unlock(&root->inode_lock);
1956
1957 for (i = 0; i < n; i++) {
1958 __btrfs_kill_delayed_node(delayed_nodes[i]);
1959 btrfs_release_delayed_node(delayed_nodes[i]);
1960 }
1961 }
1962}
1963
1964void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1965{
1966 struct btrfs_delayed_node *curr_node, *prev_node;
1967
1968 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1969 while (curr_node) {
1970 __btrfs_kill_delayed_node(curr_node);
1971
1972 prev_node = curr_node;
1973 curr_node = btrfs_next_delayed_node(curr_node);
1974 btrfs_release_delayed_node(prev_node);
1975 }
1976}
1977
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7#include <linux/slab.h>
8#include <linux/iversion.h>
9#include <linux/sched/mm.h>
10#include "misc.h"
11#include "delayed-inode.h"
12#include "disk-io.h"
13#include "transaction.h"
14#include "ctree.h"
15#include "qgroup.h"
16#include "locking.h"
17
18#define BTRFS_DELAYED_WRITEBACK 512
19#define BTRFS_DELAYED_BACKGROUND 128
20#define BTRFS_DELAYED_BATCH 16
21
22static struct kmem_cache *delayed_node_cache;
23
24int __init btrfs_delayed_inode_init(void)
25{
26 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
27 sizeof(struct btrfs_delayed_node),
28 0,
29 SLAB_MEM_SPREAD,
30 NULL);
31 if (!delayed_node_cache)
32 return -ENOMEM;
33 return 0;
34}
35
36void __cold btrfs_delayed_inode_exit(void)
37{
38 kmem_cache_destroy(delayed_node_cache);
39}
40
41static inline void btrfs_init_delayed_node(
42 struct btrfs_delayed_node *delayed_node,
43 struct btrfs_root *root, u64 inode_id)
44{
45 delayed_node->root = root;
46 delayed_node->inode_id = inode_id;
47 refcount_set(&delayed_node->refs, 0);
48 delayed_node->ins_root = RB_ROOT_CACHED;
49 delayed_node->del_root = RB_ROOT_CACHED;
50 mutex_init(&delayed_node->mutex);
51 INIT_LIST_HEAD(&delayed_node->n_list);
52 INIT_LIST_HEAD(&delayed_node->p_list);
53}
54
55static inline int btrfs_is_continuous_delayed_item(
56 struct btrfs_delayed_item *item1,
57 struct btrfs_delayed_item *item2)
58{
59 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
60 item1->key.objectid == item2->key.objectid &&
61 item1->key.type == item2->key.type &&
62 item1->key.offset + 1 == item2->key.offset)
63 return 1;
64 return 0;
65}
66
67static struct btrfs_delayed_node *btrfs_get_delayed_node(
68 struct btrfs_inode *btrfs_inode)
69{
70 struct btrfs_root *root = btrfs_inode->root;
71 u64 ino = btrfs_ino(btrfs_inode);
72 struct btrfs_delayed_node *node;
73
74 node = READ_ONCE(btrfs_inode->delayed_node);
75 if (node) {
76 refcount_inc(&node->refs);
77 return node;
78 }
79
80 spin_lock(&root->inode_lock);
81 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
82
83 if (node) {
84 if (btrfs_inode->delayed_node) {
85 refcount_inc(&node->refs); /* can be accessed */
86 BUG_ON(btrfs_inode->delayed_node != node);
87 spin_unlock(&root->inode_lock);
88 return node;
89 }
90
91 /*
92 * It's possible that we're racing into the middle of removing
93 * this node from the radix tree. In this case, the refcount
94 * was zero and it should never go back to one. Just return
95 * NULL like it was never in the radix at all; our release
96 * function is in the process of removing it.
97 *
98 * Some implementations of refcount_inc refuse to bump the
99 * refcount once it has hit zero. If we don't do this dance
100 * here, refcount_inc() may decide to just WARN_ONCE() instead
101 * of actually bumping the refcount.
102 *
103 * If this node is properly in the radix, we want to bump the
104 * refcount twice, once for the inode and once for this get
105 * operation.
106 */
107 if (refcount_inc_not_zero(&node->refs)) {
108 refcount_inc(&node->refs);
109 btrfs_inode->delayed_node = node;
110 } else {
111 node = NULL;
112 }
113
114 spin_unlock(&root->inode_lock);
115 return node;
116 }
117 spin_unlock(&root->inode_lock);
118
119 return NULL;
120}
121
122/* Will return either the node or PTR_ERR(-ENOMEM) */
123static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
124 struct btrfs_inode *btrfs_inode)
125{
126 struct btrfs_delayed_node *node;
127 struct btrfs_root *root = btrfs_inode->root;
128 u64 ino = btrfs_ino(btrfs_inode);
129 int ret;
130
131again:
132 node = btrfs_get_delayed_node(btrfs_inode);
133 if (node)
134 return node;
135
136 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
137 if (!node)
138 return ERR_PTR(-ENOMEM);
139 btrfs_init_delayed_node(node, root, ino);
140
141 /* cached in the btrfs inode and can be accessed */
142 refcount_set(&node->refs, 2);
143
144 ret = radix_tree_preload(GFP_NOFS);
145 if (ret) {
146 kmem_cache_free(delayed_node_cache, node);
147 return ERR_PTR(ret);
148 }
149
150 spin_lock(&root->inode_lock);
151 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
152 if (ret == -EEXIST) {
153 spin_unlock(&root->inode_lock);
154 kmem_cache_free(delayed_node_cache, node);
155 radix_tree_preload_end();
156 goto again;
157 }
158 btrfs_inode->delayed_node = node;
159 spin_unlock(&root->inode_lock);
160 radix_tree_preload_end();
161
162 return node;
163}
164
165/*
166 * Call it when holding delayed_node->mutex
167 *
168 * If mod = 1, add this node into the prepared list.
169 */
170static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
171 struct btrfs_delayed_node *node,
172 int mod)
173{
174 spin_lock(&root->lock);
175 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
176 if (!list_empty(&node->p_list))
177 list_move_tail(&node->p_list, &root->prepare_list);
178 else if (mod)
179 list_add_tail(&node->p_list, &root->prepare_list);
180 } else {
181 list_add_tail(&node->n_list, &root->node_list);
182 list_add_tail(&node->p_list, &root->prepare_list);
183 refcount_inc(&node->refs); /* inserted into list */
184 root->nodes++;
185 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
186 }
187 spin_unlock(&root->lock);
188}
189
190/* Call it when holding delayed_node->mutex */
191static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
192 struct btrfs_delayed_node *node)
193{
194 spin_lock(&root->lock);
195 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
196 root->nodes--;
197 refcount_dec(&node->refs); /* not in the list */
198 list_del_init(&node->n_list);
199 if (!list_empty(&node->p_list))
200 list_del_init(&node->p_list);
201 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
202 }
203 spin_unlock(&root->lock);
204}
205
206static struct btrfs_delayed_node *btrfs_first_delayed_node(
207 struct btrfs_delayed_root *delayed_root)
208{
209 struct list_head *p;
210 struct btrfs_delayed_node *node = NULL;
211
212 spin_lock(&delayed_root->lock);
213 if (list_empty(&delayed_root->node_list))
214 goto out;
215
216 p = delayed_root->node_list.next;
217 node = list_entry(p, struct btrfs_delayed_node, n_list);
218 refcount_inc(&node->refs);
219out:
220 spin_unlock(&delayed_root->lock);
221
222 return node;
223}
224
225static struct btrfs_delayed_node *btrfs_next_delayed_node(
226 struct btrfs_delayed_node *node)
227{
228 struct btrfs_delayed_root *delayed_root;
229 struct list_head *p;
230 struct btrfs_delayed_node *next = NULL;
231
232 delayed_root = node->root->fs_info->delayed_root;
233 spin_lock(&delayed_root->lock);
234 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
235 /* not in the list */
236 if (list_empty(&delayed_root->node_list))
237 goto out;
238 p = delayed_root->node_list.next;
239 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
240 goto out;
241 else
242 p = node->n_list.next;
243
244 next = list_entry(p, struct btrfs_delayed_node, n_list);
245 refcount_inc(&next->refs);
246out:
247 spin_unlock(&delayed_root->lock);
248
249 return next;
250}
251
252static void __btrfs_release_delayed_node(
253 struct btrfs_delayed_node *delayed_node,
254 int mod)
255{
256 struct btrfs_delayed_root *delayed_root;
257
258 if (!delayed_node)
259 return;
260
261 delayed_root = delayed_node->root->fs_info->delayed_root;
262
263 mutex_lock(&delayed_node->mutex);
264 if (delayed_node->count)
265 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
266 else
267 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
268 mutex_unlock(&delayed_node->mutex);
269
270 if (refcount_dec_and_test(&delayed_node->refs)) {
271 struct btrfs_root *root = delayed_node->root;
272
273 spin_lock(&root->inode_lock);
274 /*
275 * Once our refcount goes to zero, nobody is allowed to bump it
276 * back up. We can delete it now.
277 */
278 ASSERT(refcount_read(&delayed_node->refs) == 0);
279 radix_tree_delete(&root->delayed_nodes_tree,
280 delayed_node->inode_id);
281 spin_unlock(&root->inode_lock);
282 kmem_cache_free(delayed_node_cache, delayed_node);
283 }
284}
285
286static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
287{
288 __btrfs_release_delayed_node(node, 0);
289}
290
291static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
292 struct btrfs_delayed_root *delayed_root)
293{
294 struct list_head *p;
295 struct btrfs_delayed_node *node = NULL;
296
297 spin_lock(&delayed_root->lock);
298 if (list_empty(&delayed_root->prepare_list))
299 goto out;
300
301 p = delayed_root->prepare_list.next;
302 list_del_init(p);
303 node = list_entry(p, struct btrfs_delayed_node, p_list);
304 refcount_inc(&node->refs);
305out:
306 spin_unlock(&delayed_root->lock);
307
308 return node;
309}
310
311static inline void btrfs_release_prepared_delayed_node(
312 struct btrfs_delayed_node *node)
313{
314 __btrfs_release_delayed_node(node, 1);
315}
316
317static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
318{
319 struct btrfs_delayed_item *item;
320 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
321 if (item) {
322 item->data_len = data_len;
323 item->ins_or_del = 0;
324 item->bytes_reserved = 0;
325 item->delayed_node = NULL;
326 refcount_set(&item->refs, 1);
327 }
328 return item;
329}
330
331/*
332 * __btrfs_lookup_delayed_item - look up the delayed item by key
333 * @delayed_node: pointer to the delayed node
334 * @key: the key to look up
335 * @prev: used to store the prev item if the right item isn't found
336 * @next: used to store the next item if the right item isn't found
337 *
338 * Note: if we don't find the right item, we will return the prev item and
339 * the next item.
340 */
341static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
342 struct rb_root *root,
343 struct btrfs_key *key,
344 struct btrfs_delayed_item **prev,
345 struct btrfs_delayed_item **next)
346{
347 struct rb_node *node, *prev_node = NULL;
348 struct btrfs_delayed_item *delayed_item = NULL;
349 int ret = 0;
350
351 node = root->rb_node;
352
353 while (node) {
354 delayed_item = rb_entry(node, struct btrfs_delayed_item,
355 rb_node);
356 prev_node = node;
357 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
358 if (ret < 0)
359 node = node->rb_right;
360 else if (ret > 0)
361 node = node->rb_left;
362 else
363 return delayed_item;
364 }
365
366 if (prev) {
367 if (!prev_node)
368 *prev = NULL;
369 else if (ret < 0)
370 *prev = delayed_item;
371 else if ((node = rb_prev(prev_node)) != NULL) {
372 *prev = rb_entry(node, struct btrfs_delayed_item,
373 rb_node);
374 } else
375 *prev = NULL;
376 }
377
378 if (next) {
379 if (!prev_node)
380 *next = NULL;
381 else if (ret > 0)
382 *next = delayed_item;
383 else if ((node = rb_next(prev_node)) != NULL) {
384 *next = rb_entry(node, struct btrfs_delayed_item,
385 rb_node);
386 } else
387 *next = NULL;
388 }
389 return NULL;
390}
391
392static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
393 struct btrfs_delayed_node *delayed_node,
394 struct btrfs_key *key)
395{
396 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
397 NULL, NULL);
398}
399
400static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
401 struct btrfs_delayed_item *ins,
402 int action)
403{
404 struct rb_node **p, *node;
405 struct rb_node *parent_node = NULL;
406 struct rb_root_cached *root;
407 struct btrfs_delayed_item *item;
408 int cmp;
409 bool leftmost = true;
410
411 if (action == BTRFS_DELAYED_INSERTION_ITEM)
412 root = &delayed_node->ins_root;
413 else if (action == BTRFS_DELAYED_DELETION_ITEM)
414 root = &delayed_node->del_root;
415 else
416 BUG();
417 p = &root->rb_root.rb_node;
418 node = &ins->rb_node;
419
420 while (*p) {
421 parent_node = *p;
422 item = rb_entry(parent_node, struct btrfs_delayed_item,
423 rb_node);
424
425 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
426 if (cmp < 0) {
427 p = &(*p)->rb_right;
428 leftmost = false;
429 } else if (cmp > 0) {
430 p = &(*p)->rb_left;
431 } else {
432 return -EEXIST;
433 }
434 }
435
436 rb_link_node(node, parent_node, p);
437 rb_insert_color_cached(node, root, leftmost);
438 ins->delayed_node = delayed_node;
439 ins->ins_or_del = action;
440
441 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
442 action == BTRFS_DELAYED_INSERTION_ITEM &&
443 ins->key.offset >= delayed_node->index_cnt)
444 delayed_node->index_cnt = ins->key.offset + 1;
445
446 delayed_node->count++;
447 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
448 return 0;
449}
450
451static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
452 struct btrfs_delayed_item *item)
453{
454 return __btrfs_add_delayed_item(node, item,
455 BTRFS_DELAYED_INSERTION_ITEM);
456}
457
458static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
459 struct btrfs_delayed_item *item)
460{
461 return __btrfs_add_delayed_item(node, item,
462 BTRFS_DELAYED_DELETION_ITEM);
463}
464
465static void finish_one_item(struct btrfs_delayed_root *delayed_root)
466{
467 int seq = atomic_inc_return(&delayed_root->items_seq);
468
469 /* atomic_dec_return implies a barrier */
470 if ((atomic_dec_return(&delayed_root->items) <
471 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
472 cond_wake_up_nomb(&delayed_root->wait);
473}
474
475static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
476{
477 struct rb_root_cached *root;
478 struct btrfs_delayed_root *delayed_root;
479
480 /* Not associated with any delayed_node */
481 if (!delayed_item->delayed_node)
482 return;
483 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
484
485 BUG_ON(!delayed_root);
486 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
487 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
488
489 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
490 root = &delayed_item->delayed_node->ins_root;
491 else
492 root = &delayed_item->delayed_node->del_root;
493
494 rb_erase_cached(&delayed_item->rb_node, root);
495 delayed_item->delayed_node->count--;
496
497 finish_one_item(delayed_root);
498}
499
500static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
501{
502 if (item) {
503 __btrfs_remove_delayed_item(item);
504 if (refcount_dec_and_test(&item->refs))
505 kfree(item);
506 }
507}
508
509static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
510 struct btrfs_delayed_node *delayed_node)
511{
512 struct rb_node *p;
513 struct btrfs_delayed_item *item = NULL;
514
515 p = rb_first_cached(&delayed_node->ins_root);
516 if (p)
517 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
518
519 return item;
520}
521
522static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
523 struct btrfs_delayed_node *delayed_node)
524{
525 struct rb_node *p;
526 struct btrfs_delayed_item *item = NULL;
527
528 p = rb_first_cached(&delayed_node->del_root);
529 if (p)
530 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
531
532 return item;
533}
534
535static struct btrfs_delayed_item *__btrfs_next_delayed_item(
536 struct btrfs_delayed_item *item)
537{
538 struct rb_node *p;
539 struct btrfs_delayed_item *next = NULL;
540
541 p = rb_next(&item->rb_node);
542 if (p)
543 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
544
545 return next;
546}
547
548static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
549 struct btrfs_root *root,
550 struct btrfs_delayed_item *item)
551{
552 struct btrfs_block_rsv *src_rsv;
553 struct btrfs_block_rsv *dst_rsv;
554 struct btrfs_fs_info *fs_info = root->fs_info;
555 u64 num_bytes;
556 int ret;
557
558 if (!trans->bytes_reserved)
559 return 0;
560
561 src_rsv = trans->block_rsv;
562 dst_rsv = &fs_info->delayed_block_rsv;
563
564 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
565
566 /*
567 * Here we migrate space rsv from transaction rsv, since have already
568 * reserved space when starting a transaction. So no need to reserve
569 * qgroup space here.
570 */
571 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
572 if (!ret) {
573 trace_btrfs_space_reservation(fs_info, "delayed_item",
574 item->key.objectid,
575 num_bytes, 1);
576 item->bytes_reserved = num_bytes;
577 }
578
579 return ret;
580}
581
582static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
583 struct btrfs_delayed_item *item)
584{
585 struct btrfs_block_rsv *rsv;
586 struct btrfs_fs_info *fs_info = root->fs_info;
587
588 if (!item->bytes_reserved)
589 return;
590
591 rsv = &fs_info->delayed_block_rsv;
592 /*
593 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
594 * to release/reserve qgroup space.
595 */
596 trace_btrfs_space_reservation(fs_info, "delayed_item",
597 item->key.objectid, item->bytes_reserved,
598 0);
599 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
600}
601
602static int btrfs_delayed_inode_reserve_metadata(
603 struct btrfs_trans_handle *trans,
604 struct btrfs_root *root,
605 struct btrfs_inode *inode,
606 struct btrfs_delayed_node *node)
607{
608 struct btrfs_fs_info *fs_info = root->fs_info;
609 struct btrfs_block_rsv *src_rsv;
610 struct btrfs_block_rsv *dst_rsv;
611 u64 num_bytes;
612 int ret;
613
614 src_rsv = trans->block_rsv;
615 dst_rsv = &fs_info->delayed_block_rsv;
616
617 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
618
619 /*
620 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
621 * which doesn't reserve space for speed. This is a problem since we
622 * still need to reserve space for this update, so try to reserve the
623 * space.
624 *
625 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
626 * we always reserve enough to update the inode item.
627 */
628 if (!src_rsv || (!trans->bytes_reserved &&
629 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
630 ret = btrfs_qgroup_reserve_meta_prealloc(root,
631 fs_info->nodesize, true);
632 if (ret < 0)
633 return ret;
634 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
635 BTRFS_RESERVE_NO_FLUSH);
636 /*
637 * Since we're under a transaction reserve_metadata_bytes could
638 * try to commit the transaction which will make it return
639 * EAGAIN to make us stop the transaction we have, so return
640 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
641 */
642 if (ret == -EAGAIN) {
643 ret = -ENOSPC;
644 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
645 }
646 if (!ret) {
647 node->bytes_reserved = num_bytes;
648 trace_btrfs_space_reservation(fs_info,
649 "delayed_inode",
650 btrfs_ino(inode),
651 num_bytes, 1);
652 } else {
653 btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
654 }
655 return ret;
656 }
657
658 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
659 if (!ret) {
660 trace_btrfs_space_reservation(fs_info, "delayed_inode",
661 btrfs_ino(inode), num_bytes, 1);
662 node->bytes_reserved = num_bytes;
663 }
664
665 return ret;
666}
667
668static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
669 struct btrfs_delayed_node *node,
670 bool qgroup_free)
671{
672 struct btrfs_block_rsv *rsv;
673
674 if (!node->bytes_reserved)
675 return;
676
677 rsv = &fs_info->delayed_block_rsv;
678 trace_btrfs_space_reservation(fs_info, "delayed_inode",
679 node->inode_id, node->bytes_reserved, 0);
680 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
681 if (qgroup_free)
682 btrfs_qgroup_free_meta_prealloc(node->root,
683 node->bytes_reserved);
684 else
685 btrfs_qgroup_convert_reserved_meta(node->root,
686 node->bytes_reserved);
687 node->bytes_reserved = 0;
688}
689
690/*
691 * This helper will insert some continuous items into the same leaf according
692 * to the free space of the leaf.
693 */
694static int btrfs_batch_insert_items(struct btrfs_root *root,
695 struct btrfs_path *path,
696 struct btrfs_delayed_item *item)
697{
698 struct btrfs_delayed_item *curr, *next;
699 int free_space;
700 int total_data_size = 0, total_size = 0;
701 struct extent_buffer *leaf;
702 char *data_ptr;
703 struct btrfs_key *keys;
704 u32 *data_size;
705 struct list_head head;
706 int slot;
707 int nitems;
708 int i;
709 int ret = 0;
710
711 BUG_ON(!path->nodes[0]);
712
713 leaf = path->nodes[0];
714 free_space = btrfs_leaf_free_space(leaf);
715 INIT_LIST_HEAD(&head);
716
717 next = item;
718 nitems = 0;
719
720 /*
721 * count the number of the continuous items that we can insert in batch
722 */
723 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
724 free_space) {
725 total_data_size += next->data_len;
726 total_size += next->data_len + sizeof(struct btrfs_item);
727 list_add_tail(&next->tree_list, &head);
728 nitems++;
729
730 curr = next;
731 next = __btrfs_next_delayed_item(curr);
732 if (!next)
733 break;
734
735 if (!btrfs_is_continuous_delayed_item(curr, next))
736 break;
737 }
738
739 if (!nitems) {
740 ret = 0;
741 goto out;
742 }
743
744 /*
745 * we need allocate some memory space, but it might cause the task
746 * to sleep, so we set all locked nodes in the path to blocking locks
747 * first.
748 */
749 btrfs_set_path_blocking(path);
750
751 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
752 if (!keys) {
753 ret = -ENOMEM;
754 goto out;
755 }
756
757 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
758 if (!data_size) {
759 ret = -ENOMEM;
760 goto error;
761 }
762
763 /* get keys of all the delayed items */
764 i = 0;
765 list_for_each_entry(next, &head, tree_list) {
766 keys[i] = next->key;
767 data_size[i] = next->data_len;
768 i++;
769 }
770
771 /* insert the keys of the items */
772 setup_items_for_insert(root, path, keys, data_size,
773 total_data_size, total_size, nitems);
774
775 /* insert the dir index items */
776 slot = path->slots[0];
777 list_for_each_entry_safe(curr, next, &head, tree_list) {
778 data_ptr = btrfs_item_ptr(leaf, slot, char);
779 write_extent_buffer(leaf, &curr->data,
780 (unsigned long)data_ptr,
781 curr->data_len);
782 slot++;
783
784 btrfs_delayed_item_release_metadata(root, curr);
785
786 list_del(&curr->tree_list);
787 btrfs_release_delayed_item(curr);
788 }
789
790error:
791 kfree(data_size);
792 kfree(keys);
793out:
794 return ret;
795}
796
797/*
798 * This helper can just do simple insertion that needn't extend item for new
799 * data, such as directory name index insertion, inode insertion.
800 */
801static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
802 struct btrfs_root *root,
803 struct btrfs_path *path,
804 struct btrfs_delayed_item *delayed_item)
805{
806 struct extent_buffer *leaf;
807 unsigned int nofs_flag;
808 char *ptr;
809 int ret;
810
811 nofs_flag = memalloc_nofs_save();
812 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
813 delayed_item->data_len);
814 memalloc_nofs_restore(nofs_flag);
815 if (ret < 0 && ret != -EEXIST)
816 return ret;
817
818 leaf = path->nodes[0];
819
820 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
821
822 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
823 delayed_item->data_len);
824 btrfs_mark_buffer_dirty(leaf);
825
826 btrfs_delayed_item_release_metadata(root, delayed_item);
827 return 0;
828}
829
830/*
831 * we insert an item first, then if there are some continuous items, we try
832 * to insert those items into the same leaf.
833 */
834static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
835 struct btrfs_path *path,
836 struct btrfs_root *root,
837 struct btrfs_delayed_node *node)
838{
839 struct btrfs_delayed_item *curr, *prev;
840 int ret = 0;
841
842do_again:
843 mutex_lock(&node->mutex);
844 curr = __btrfs_first_delayed_insertion_item(node);
845 if (!curr)
846 goto insert_end;
847
848 ret = btrfs_insert_delayed_item(trans, root, path, curr);
849 if (ret < 0) {
850 btrfs_release_path(path);
851 goto insert_end;
852 }
853
854 prev = curr;
855 curr = __btrfs_next_delayed_item(prev);
856 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
857 /* insert the continuous items into the same leaf */
858 path->slots[0]++;
859 btrfs_batch_insert_items(root, path, curr);
860 }
861 btrfs_release_delayed_item(prev);
862 btrfs_mark_buffer_dirty(path->nodes[0]);
863
864 btrfs_release_path(path);
865 mutex_unlock(&node->mutex);
866 goto do_again;
867
868insert_end:
869 mutex_unlock(&node->mutex);
870 return ret;
871}
872
873static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
874 struct btrfs_root *root,
875 struct btrfs_path *path,
876 struct btrfs_delayed_item *item)
877{
878 struct btrfs_delayed_item *curr, *next;
879 struct extent_buffer *leaf;
880 struct btrfs_key key;
881 struct list_head head;
882 int nitems, i, last_item;
883 int ret = 0;
884
885 BUG_ON(!path->nodes[0]);
886
887 leaf = path->nodes[0];
888
889 i = path->slots[0];
890 last_item = btrfs_header_nritems(leaf) - 1;
891 if (i > last_item)
892 return -ENOENT; /* FIXME: Is errno suitable? */
893
894 next = item;
895 INIT_LIST_HEAD(&head);
896 btrfs_item_key_to_cpu(leaf, &key, i);
897 nitems = 0;
898 /*
899 * count the number of the dir index items that we can delete in batch
900 */
901 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
902 list_add_tail(&next->tree_list, &head);
903 nitems++;
904
905 curr = next;
906 next = __btrfs_next_delayed_item(curr);
907 if (!next)
908 break;
909
910 if (!btrfs_is_continuous_delayed_item(curr, next))
911 break;
912
913 i++;
914 if (i > last_item)
915 break;
916 btrfs_item_key_to_cpu(leaf, &key, i);
917 }
918
919 if (!nitems)
920 return 0;
921
922 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
923 if (ret)
924 goto out;
925
926 list_for_each_entry_safe(curr, next, &head, tree_list) {
927 btrfs_delayed_item_release_metadata(root, curr);
928 list_del(&curr->tree_list);
929 btrfs_release_delayed_item(curr);
930 }
931
932out:
933 return ret;
934}
935
936static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
937 struct btrfs_path *path,
938 struct btrfs_root *root,
939 struct btrfs_delayed_node *node)
940{
941 struct btrfs_delayed_item *curr, *prev;
942 unsigned int nofs_flag;
943 int ret = 0;
944
945do_again:
946 mutex_lock(&node->mutex);
947 curr = __btrfs_first_delayed_deletion_item(node);
948 if (!curr)
949 goto delete_fail;
950
951 nofs_flag = memalloc_nofs_save();
952 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
953 memalloc_nofs_restore(nofs_flag);
954 if (ret < 0)
955 goto delete_fail;
956 else if (ret > 0) {
957 /*
958 * can't find the item which the node points to, so this node
959 * is invalid, just drop it.
960 */
961 prev = curr;
962 curr = __btrfs_next_delayed_item(prev);
963 btrfs_release_delayed_item(prev);
964 ret = 0;
965 btrfs_release_path(path);
966 if (curr) {
967 mutex_unlock(&node->mutex);
968 goto do_again;
969 } else
970 goto delete_fail;
971 }
972
973 btrfs_batch_delete_items(trans, root, path, curr);
974 btrfs_release_path(path);
975 mutex_unlock(&node->mutex);
976 goto do_again;
977
978delete_fail:
979 btrfs_release_path(path);
980 mutex_unlock(&node->mutex);
981 return ret;
982}
983
984static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
985{
986 struct btrfs_delayed_root *delayed_root;
987
988 if (delayed_node &&
989 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
990 BUG_ON(!delayed_node->root);
991 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
992 delayed_node->count--;
993
994 delayed_root = delayed_node->root->fs_info->delayed_root;
995 finish_one_item(delayed_root);
996 }
997}
998
999static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1000{
1001 struct btrfs_delayed_root *delayed_root;
1002
1003 ASSERT(delayed_node->root);
1004 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1005 delayed_node->count--;
1006
1007 delayed_root = delayed_node->root->fs_info->delayed_root;
1008 finish_one_item(delayed_root);
1009}
1010
1011static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1012 struct btrfs_root *root,
1013 struct btrfs_path *path,
1014 struct btrfs_delayed_node *node)
1015{
1016 struct btrfs_fs_info *fs_info = root->fs_info;
1017 struct btrfs_key key;
1018 struct btrfs_inode_item *inode_item;
1019 struct extent_buffer *leaf;
1020 unsigned int nofs_flag;
1021 int mod;
1022 int ret;
1023
1024 key.objectid = node->inode_id;
1025 key.type = BTRFS_INODE_ITEM_KEY;
1026 key.offset = 0;
1027
1028 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1029 mod = -1;
1030 else
1031 mod = 1;
1032
1033 nofs_flag = memalloc_nofs_save();
1034 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1035 memalloc_nofs_restore(nofs_flag);
1036 if (ret > 0) {
1037 btrfs_release_path(path);
1038 return -ENOENT;
1039 } else if (ret < 0) {
1040 return ret;
1041 }
1042
1043 leaf = path->nodes[0];
1044 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1045 struct btrfs_inode_item);
1046 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1047 sizeof(struct btrfs_inode_item));
1048 btrfs_mark_buffer_dirty(leaf);
1049
1050 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1051 goto no_iref;
1052
1053 path->slots[0]++;
1054 if (path->slots[0] >= btrfs_header_nritems(leaf))
1055 goto search;
1056again:
1057 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1058 if (key.objectid != node->inode_id)
1059 goto out;
1060
1061 if (key.type != BTRFS_INODE_REF_KEY &&
1062 key.type != BTRFS_INODE_EXTREF_KEY)
1063 goto out;
1064
1065 /*
1066 * Delayed iref deletion is for the inode who has only one link,
1067 * so there is only one iref. The case that several irefs are
1068 * in the same item doesn't exist.
1069 */
1070 btrfs_del_item(trans, root, path);
1071out:
1072 btrfs_release_delayed_iref(node);
1073no_iref:
1074 btrfs_release_path(path);
1075err_out:
1076 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1077 btrfs_release_delayed_inode(node);
1078
1079 return ret;
1080
1081search:
1082 btrfs_release_path(path);
1083
1084 key.type = BTRFS_INODE_EXTREF_KEY;
1085 key.offset = -1;
1086
1087 nofs_flag = memalloc_nofs_save();
1088 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1089 memalloc_nofs_restore(nofs_flag);
1090 if (ret < 0)
1091 goto err_out;
1092 ASSERT(ret);
1093
1094 ret = 0;
1095 leaf = path->nodes[0];
1096 path->slots[0]--;
1097 goto again;
1098}
1099
1100static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1101 struct btrfs_root *root,
1102 struct btrfs_path *path,
1103 struct btrfs_delayed_node *node)
1104{
1105 int ret;
1106
1107 mutex_lock(&node->mutex);
1108 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1109 mutex_unlock(&node->mutex);
1110 return 0;
1111 }
1112
1113 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1114 mutex_unlock(&node->mutex);
1115 return ret;
1116}
1117
1118static inline int
1119__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1120 struct btrfs_path *path,
1121 struct btrfs_delayed_node *node)
1122{
1123 int ret;
1124
1125 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1126 if (ret)
1127 return ret;
1128
1129 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1130 if (ret)
1131 return ret;
1132
1133 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1134 return ret;
1135}
1136
1137/*
1138 * Called when committing the transaction.
1139 * Returns 0 on success.
1140 * Returns < 0 on error and returns with an aborted transaction with any
1141 * outstanding delayed items cleaned up.
1142 */
1143static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1144{
1145 struct btrfs_fs_info *fs_info = trans->fs_info;
1146 struct btrfs_delayed_root *delayed_root;
1147 struct btrfs_delayed_node *curr_node, *prev_node;
1148 struct btrfs_path *path;
1149 struct btrfs_block_rsv *block_rsv;
1150 int ret = 0;
1151 bool count = (nr > 0);
1152
1153 if (TRANS_ABORTED(trans))
1154 return -EIO;
1155
1156 path = btrfs_alloc_path();
1157 if (!path)
1158 return -ENOMEM;
1159 path->leave_spinning = 1;
1160
1161 block_rsv = trans->block_rsv;
1162 trans->block_rsv = &fs_info->delayed_block_rsv;
1163
1164 delayed_root = fs_info->delayed_root;
1165
1166 curr_node = btrfs_first_delayed_node(delayed_root);
1167 while (curr_node && (!count || (count && nr--))) {
1168 ret = __btrfs_commit_inode_delayed_items(trans, path,
1169 curr_node);
1170 if (ret) {
1171 btrfs_release_delayed_node(curr_node);
1172 curr_node = NULL;
1173 btrfs_abort_transaction(trans, ret);
1174 break;
1175 }
1176
1177 prev_node = curr_node;
1178 curr_node = btrfs_next_delayed_node(curr_node);
1179 btrfs_release_delayed_node(prev_node);
1180 }
1181
1182 if (curr_node)
1183 btrfs_release_delayed_node(curr_node);
1184 btrfs_free_path(path);
1185 trans->block_rsv = block_rsv;
1186
1187 return ret;
1188}
1189
1190int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1191{
1192 return __btrfs_run_delayed_items(trans, -1);
1193}
1194
1195int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1196{
1197 return __btrfs_run_delayed_items(trans, nr);
1198}
1199
1200int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1201 struct btrfs_inode *inode)
1202{
1203 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1204 struct btrfs_path *path;
1205 struct btrfs_block_rsv *block_rsv;
1206 int ret;
1207
1208 if (!delayed_node)
1209 return 0;
1210
1211 mutex_lock(&delayed_node->mutex);
1212 if (!delayed_node->count) {
1213 mutex_unlock(&delayed_node->mutex);
1214 btrfs_release_delayed_node(delayed_node);
1215 return 0;
1216 }
1217 mutex_unlock(&delayed_node->mutex);
1218
1219 path = btrfs_alloc_path();
1220 if (!path) {
1221 btrfs_release_delayed_node(delayed_node);
1222 return -ENOMEM;
1223 }
1224 path->leave_spinning = 1;
1225
1226 block_rsv = trans->block_rsv;
1227 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1228
1229 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1230
1231 btrfs_release_delayed_node(delayed_node);
1232 btrfs_free_path(path);
1233 trans->block_rsv = block_rsv;
1234
1235 return ret;
1236}
1237
1238int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1239{
1240 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1241 struct btrfs_trans_handle *trans;
1242 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1243 struct btrfs_path *path;
1244 struct btrfs_block_rsv *block_rsv;
1245 int ret;
1246
1247 if (!delayed_node)
1248 return 0;
1249
1250 mutex_lock(&delayed_node->mutex);
1251 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1252 mutex_unlock(&delayed_node->mutex);
1253 btrfs_release_delayed_node(delayed_node);
1254 return 0;
1255 }
1256 mutex_unlock(&delayed_node->mutex);
1257
1258 trans = btrfs_join_transaction(delayed_node->root);
1259 if (IS_ERR(trans)) {
1260 ret = PTR_ERR(trans);
1261 goto out;
1262 }
1263
1264 path = btrfs_alloc_path();
1265 if (!path) {
1266 ret = -ENOMEM;
1267 goto trans_out;
1268 }
1269 path->leave_spinning = 1;
1270
1271 block_rsv = trans->block_rsv;
1272 trans->block_rsv = &fs_info->delayed_block_rsv;
1273
1274 mutex_lock(&delayed_node->mutex);
1275 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1276 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1277 path, delayed_node);
1278 else
1279 ret = 0;
1280 mutex_unlock(&delayed_node->mutex);
1281
1282 btrfs_free_path(path);
1283 trans->block_rsv = block_rsv;
1284trans_out:
1285 btrfs_end_transaction(trans);
1286 btrfs_btree_balance_dirty(fs_info);
1287out:
1288 btrfs_release_delayed_node(delayed_node);
1289
1290 return ret;
1291}
1292
1293void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1294{
1295 struct btrfs_delayed_node *delayed_node;
1296
1297 delayed_node = READ_ONCE(inode->delayed_node);
1298 if (!delayed_node)
1299 return;
1300
1301 inode->delayed_node = NULL;
1302 btrfs_release_delayed_node(delayed_node);
1303}
1304
1305struct btrfs_async_delayed_work {
1306 struct btrfs_delayed_root *delayed_root;
1307 int nr;
1308 struct btrfs_work work;
1309};
1310
1311static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1312{
1313 struct btrfs_async_delayed_work *async_work;
1314 struct btrfs_delayed_root *delayed_root;
1315 struct btrfs_trans_handle *trans;
1316 struct btrfs_path *path;
1317 struct btrfs_delayed_node *delayed_node = NULL;
1318 struct btrfs_root *root;
1319 struct btrfs_block_rsv *block_rsv;
1320 int total_done = 0;
1321
1322 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1323 delayed_root = async_work->delayed_root;
1324
1325 path = btrfs_alloc_path();
1326 if (!path)
1327 goto out;
1328
1329 do {
1330 if (atomic_read(&delayed_root->items) <
1331 BTRFS_DELAYED_BACKGROUND / 2)
1332 break;
1333
1334 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1335 if (!delayed_node)
1336 break;
1337
1338 path->leave_spinning = 1;
1339 root = delayed_node->root;
1340
1341 trans = btrfs_join_transaction(root);
1342 if (IS_ERR(trans)) {
1343 btrfs_release_path(path);
1344 btrfs_release_prepared_delayed_node(delayed_node);
1345 total_done++;
1346 continue;
1347 }
1348
1349 block_rsv = trans->block_rsv;
1350 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1351
1352 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1353
1354 trans->block_rsv = block_rsv;
1355 btrfs_end_transaction(trans);
1356 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1357
1358 btrfs_release_path(path);
1359 btrfs_release_prepared_delayed_node(delayed_node);
1360 total_done++;
1361
1362 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1363 || total_done < async_work->nr);
1364
1365 btrfs_free_path(path);
1366out:
1367 wake_up(&delayed_root->wait);
1368 kfree(async_work);
1369}
1370
1371
1372static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1373 struct btrfs_fs_info *fs_info, int nr)
1374{
1375 struct btrfs_async_delayed_work *async_work;
1376
1377 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1378 if (!async_work)
1379 return -ENOMEM;
1380
1381 async_work->delayed_root = delayed_root;
1382 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1383 NULL);
1384 async_work->nr = nr;
1385
1386 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1387 return 0;
1388}
1389
1390void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1391{
1392 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1393}
1394
1395static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1396{
1397 int val = atomic_read(&delayed_root->items_seq);
1398
1399 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1400 return 1;
1401
1402 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1403 return 1;
1404
1405 return 0;
1406}
1407
1408void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1409{
1410 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1411
1412 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1413 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1414 return;
1415
1416 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1417 int seq;
1418 int ret;
1419
1420 seq = atomic_read(&delayed_root->items_seq);
1421
1422 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1423 if (ret)
1424 return;
1425
1426 wait_event_interruptible(delayed_root->wait,
1427 could_end_wait(delayed_root, seq));
1428 return;
1429 }
1430
1431 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1432}
1433
1434/* Will return 0 or -ENOMEM */
1435int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1436 const char *name, int name_len,
1437 struct btrfs_inode *dir,
1438 struct btrfs_disk_key *disk_key, u8 type,
1439 u64 index)
1440{
1441 struct btrfs_delayed_node *delayed_node;
1442 struct btrfs_delayed_item *delayed_item;
1443 struct btrfs_dir_item *dir_item;
1444 int ret;
1445
1446 delayed_node = btrfs_get_or_create_delayed_node(dir);
1447 if (IS_ERR(delayed_node))
1448 return PTR_ERR(delayed_node);
1449
1450 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1451 if (!delayed_item) {
1452 ret = -ENOMEM;
1453 goto release_node;
1454 }
1455
1456 delayed_item->key.objectid = btrfs_ino(dir);
1457 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1458 delayed_item->key.offset = index;
1459
1460 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1461 dir_item->location = *disk_key;
1462 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1463 btrfs_set_stack_dir_data_len(dir_item, 0);
1464 btrfs_set_stack_dir_name_len(dir_item, name_len);
1465 btrfs_set_stack_dir_type(dir_item, type);
1466 memcpy((char *)(dir_item + 1), name, name_len);
1467
1468 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1469 /*
1470 * we have reserved enough space when we start a new transaction,
1471 * so reserving metadata failure is impossible
1472 */
1473 BUG_ON(ret);
1474
1475 mutex_lock(&delayed_node->mutex);
1476 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1477 if (unlikely(ret)) {
1478 btrfs_err(trans->fs_info,
1479 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1480 name_len, name, delayed_node->root->root_key.objectid,
1481 delayed_node->inode_id, ret);
1482 BUG();
1483 }
1484 mutex_unlock(&delayed_node->mutex);
1485
1486release_node:
1487 btrfs_release_delayed_node(delayed_node);
1488 return ret;
1489}
1490
1491static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1492 struct btrfs_delayed_node *node,
1493 struct btrfs_key *key)
1494{
1495 struct btrfs_delayed_item *item;
1496
1497 mutex_lock(&node->mutex);
1498 item = __btrfs_lookup_delayed_insertion_item(node, key);
1499 if (!item) {
1500 mutex_unlock(&node->mutex);
1501 return 1;
1502 }
1503
1504 btrfs_delayed_item_release_metadata(node->root, item);
1505 btrfs_release_delayed_item(item);
1506 mutex_unlock(&node->mutex);
1507 return 0;
1508}
1509
1510int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1511 struct btrfs_inode *dir, u64 index)
1512{
1513 struct btrfs_delayed_node *node;
1514 struct btrfs_delayed_item *item;
1515 struct btrfs_key item_key;
1516 int ret;
1517
1518 node = btrfs_get_or_create_delayed_node(dir);
1519 if (IS_ERR(node))
1520 return PTR_ERR(node);
1521
1522 item_key.objectid = btrfs_ino(dir);
1523 item_key.type = BTRFS_DIR_INDEX_KEY;
1524 item_key.offset = index;
1525
1526 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1527 &item_key);
1528 if (!ret)
1529 goto end;
1530
1531 item = btrfs_alloc_delayed_item(0);
1532 if (!item) {
1533 ret = -ENOMEM;
1534 goto end;
1535 }
1536
1537 item->key = item_key;
1538
1539 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1540 /*
1541 * we have reserved enough space when we start a new transaction,
1542 * so reserving metadata failure is impossible.
1543 */
1544 if (ret < 0) {
1545 btrfs_err(trans->fs_info,
1546"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1547 btrfs_release_delayed_item(item);
1548 goto end;
1549 }
1550
1551 mutex_lock(&node->mutex);
1552 ret = __btrfs_add_delayed_deletion_item(node, item);
1553 if (unlikely(ret)) {
1554 btrfs_err(trans->fs_info,
1555 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1556 index, node->root->root_key.objectid,
1557 node->inode_id, ret);
1558 btrfs_delayed_item_release_metadata(dir->root, item);
1559 btrfs_release_delayed_item(item);
1560 }
1561 mutex_unlock(&node->mutex);
1562end:
1563 btrfs_release_delayed_node(node);
1564 return ret;
1565}
1566
1567int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1568{
1569 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1570
1571 if (!delayed_node)
1572 return -ENOENT;
1573
1574 /*
1575 * Since we have held i_mutex of this directory, it is impossible that
1576 * a new directory index is added into the delayed node and index_cnt
1577 * is updated now. So we needn't lock the delayed node.
1578 */
1579 if (!delayed_node->index_cnt) {
1580 btrfs_release_delayed_node(delayed_node);
1581 return -EINVAL;
1582 }
1583
1584 inode->index_cnt = delayed_node->index_cnt;
1585 btrfs_release_delayed_node(delayed_node);
1586 return 0;
1587}
1588
1589bool btrfs_readdir_get_delayed_items(struct inode *inode,
1590 struct list_head *ins_list,
1591 struct list_head *del_list)
1592{
1593 struct btrfs_delayed_node *delayed_node;
1594 struct btrfs_delayed_item *item;
1595
1596 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1597 if (!delayed_node)
1598 return false;
1599
1600 /*
1601 * We can only do one readdir with delayed items at a time because of
1602 * item->readdir_list.
1603 */
1604 inode_unlock_shared(inode);
1605 inode_lock(inode);
1606
1607 mutex_lock(&delayed_node->mutex);
1608 item = __btrfs_first_delayed_insertion_item(delayed_node);
1609 while (item) {
1610 refcount_inc(&item->refs);
1611 list_add_tail(&item->readdir_list, ins_list);
1612 item = __btrfs_next_delayed_item(item);
1613 }
1614
1615 item = __btrfs_first_delayed_deletion_item(delayed_node);
1616 while (item) {
1617 refcount_inc(&item->refs);
1618 list_add_tail(&item->readdir_list, del_list);
1619 item = __btrfs_next_delayed_item(item);
1620 }
1621 mutex_unlock(&delayed_node->mutex);
1622 /*
1623 * This delayed node is still cached in the btrfs inode, so refs
1624 * must be > 1 now, and we needn't check it is going to be freed
1625 * or not.
1626 *
1627 * Besides that, this function is used to read dir, we do not
1628 * insert/delete delayed items in this period. So we also needn't
1629 * requeue or dequeue this delayed node.
1630 */
1631 refcount_dec(&delayed_node->refs);
1632
1633 return true;
1634}
1635
1636void btrfs_readdir_put_delayed_items(struct inode *inode,
1637 struct list_head *ins_list,
1638 struct list_head *del_list)
1639{
1640 struct btrfs_delayed_item *curr, *next;
1641
1642 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1643 list_del(&curr->readdir_list);
1644 if (refcount_dec_and_test(&curr->refs))
1645 kfree(curr);
1646 }
1647
1648 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1649 list_del(&curr->readdir_list);
1650 if (refcount_dec_and_test(&curr->refs))
1651 kfree(curr);
1652 }
1653
1654 /*
1655 * The VFS is going to do up_read(), so we need to downgrade back to a
1656 * read lock.
1657 */
1658 downgrade_write(&inode->i_rwsem);
1659}
1660
1661int btrfs_should_delete_dir_index(struct list_head *del_list,
1662 u64 index)
1663{
1664 struct btrfs_delayed_item *curr;
1665 int ret = 0;
1666
1667 list_for_each_entry(curr, del_list, readdir_list) {
1668 if (curr->key.offset > index)
1669 break;
1670 if (curr->key.offset == index) {
1671 ret = 1;
1672 break;
1673 }
1674 }
1675 return ret;
1676}
1677
1678/*
1679 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1680 *
1681 */
1682int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1683 struct list_head *ins_list)
1684{
1685 struct btrfs_dir_item *di;
1686 struct btrfs_delayed_item *curr, *next;
1687 struct btrfs_key location;
1688 char *name;
1689 int name_len;
1690 int over = 0;
1691 unsigned char d_type;
1692
1693 if (list_empty(ins_list))
1694 return 0;
1695
1696 /*
1697 * Changing the data of the delayed item is impossible. So
1698 * we needn't lock them. And we have held i_mutex of the
1699 * directory, nobody can delete any directory indexes now.
1700 */
1701 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1702 list_del(&curr->readdir_list);
1703
1704 if (curr->key.offset < ctx->pos) {
1705 if (refcount_dec_and_test(&curr->refs))
1706 kfree(curr);
1707 continue;
1708 }
1709
1710 ctx->pos = curr->key.offset;
1711
1712 di = (struct btrfs_dir_item *)curr->data;
1713 name = (char *)(di + 1);
1714 name_len = btrfs_stack_dir_name_len(di);
1715
1716 d_type = fs_ftype_to_dtype(di->type);
1717 btrfs_disk_key_to_cpu(&location, &di->location);
1718
1719 over = !dir_emit(ctx, name, name_len,
1720 location.objectid, d_type);
1721
1722 if (refcount_dec_and_test(&curr->refs))
1723 kfree(curr);
1724
1725 if (over)
1726 return 1;
1727 ctx->pos++;
1728 }
1729 return 0;
1730}
1731
1732static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1733 struct btrfs_inode_item *inode_item,
1734 struct inode *inode)
1735{
1736 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1737 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1738 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1739 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1740 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1741 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1742 btrfs_set_stack_inode_generation(inode_item,
1743 BTRFS_I(inode)->generation);
1744 btrfs_set_stack_inode_sequence(inode_item,
1745 inode_peek_iversion(inode));
1746 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1747 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1748 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1749 btrfs_set_stack_inode_block_group(inode_item, 0);
1750
1751 btrfs_set_stack_timespec_sec(&inode_item->atime,
1752 inode->i_atime.tv_sec);
1753 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1754 inode->i_atime.tv_nsec);
1755
1756 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1757 inode->i_mtime.tv_sec);
1758 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1759 inode->i_mtime.tv_nsec);
1760
1761 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1762 inode->i_ctime.tv_sec);
1763 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1764 inode->i_ctime.tv_nsec);
1765
1766 btrfs_set_stack_timespec_sec(&inode_item->otime,
1767 BTRFS_I(inode)->i_otime.tv_sec);
1768 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1769 BTRFS_I(inode)->i_otime.tv_nsec);
1770}
1771
1772int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1773{
1774 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1775 struct btrfs_delayed_node *delayed_node;
1776 struct btrfs_inode_item *inode_item;
1777
1778 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1779 if (!delayed_node)
1780 return -ENOENT;
1781
1782 mutex_lock(&delayed_node->mutex);
1783 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1784 mutex_unlock(&delayed_node->mutex);
1785 btrfs_release_delayed_node(delayed_node);
1786 return -ENOENT;
1787 }
1788
1789 inode_item = &delayed_node->inode_item;
1790
1791 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1792 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1793 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1794 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1795 round_up(i_size_read(inode), fs_info->sectorsize));
1796 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1797 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1798 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1799 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1800 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1801
1802 inode_set_iversion_queried(inode,
1803 btrfs_stack_inode_sequence(inode_item));
1804 inode->i_rdev = 0;
1805 *rdev = btrfs_stack_inode_rdev(inode_item);
1806 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1807
1808 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1809 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1810
1811 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1812 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1813
1814 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1815 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1816
1817 BTRFS_I(inode)->i_otime.tv_sec =
1818 btrfs_stack_timespec_sec(&inode_item->otime);
1819 BTRFS_I(inode)->i_otime.tv_nsec =
1820 btrfs_stack_timespec_nsec(&inode_item->otime);
1821
1822 inode->i_generation = BTRFS_I(inode)->generation;
1823 BTRFS_I(inode)->index_cnt = (u64)-1;
1824
1825 mutex_unlock(&delayed_node->mutex);
1826 btrfs_release_delayed_node(delayed_node);
1827 return 0;
1828}
1829
1830int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1831 struct btrfs_root *root, struct inode *inode)
1832{
1833 struct btrfs_delayed_node *delayed_node;
1834 int ret = 0;
1835
1836 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1837 if (IS_ERR(delayed_node))
1838 return PTR_ERR(delayed_node);
1839
1840 mutex_lock(&delayed_node->mutex);
1841 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1842 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1843 goto release_node;
1844 }
1845
1846 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1847 delayed_node);
1848 if (ret)
1849 goto release_node;
1850
1851 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1852 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1853 delayed_node->count++;
1854 atomic_inc(&root->fs_info->delayed_root->items);
1855release_node:
1856 mutex_unlock(&delayed_node->mutex);
1857 btrfs_release_delayed_node(delayed_node);
1858 return ret;
1859}
1860
1861int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1862{
1863 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1864 struct btrfs_delayed_node *delayed_node;
1865
1866 /*
1867 * we don't do delayed inode updates during log recovery because it
1868 * leads to enospc problems. This means we also can't do
1869 * delayed inode refs
1870 */
1871 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1872 return -EAGAIN;
1873
1874 delayed_node = btrfs_get_or_create_delayed_node(inode);
1875 if (IS_ERR(delayed_node))
1876 return PTR_ERR(delayed_node);
1877
1878 /*
1879 * We don't reserve space for inode ref deletion is because:
1880 * - We ONLY do async inode ref deletion for the inode who has only
1881 * one link(i_nlink == 1), it means there is only one inode ref.
1882 * And in most case, the inode ref and the inode item are in the
1883 * same leaf, and we will deal with them at the same time.
1884 * Since we are sure we will reserve the space for the inode item,
1885 * it is unnecessary to reserve space for inode ref deletion.
1886 * - If the inode ref and the inode item are not in the same leaf,
1887 * We also needn't worry about enospc problem, because we reserve
1888 * much more space for the inode update than it needs.
1889 * - At the worst, we can steal some space from the global reservation.
1890 * It is very rare.
1891 */
1892 mutex_lock(&delayed_node->mutex);
1893 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1894 goto release_node;
1895
1896 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1897 delayed_node->count++;
1898 atomic_inc(&fs_info->delayed_root->items);
1899release_node:
1900 mutex_unlock(&delayed_node->mutex);
1901 btrfs_release_delayed_node(delayed_node);
1902 return 0;
1903}
1904
1905static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1906{
1907 struct btrfs_root *root = delayed_node->root;
1908 struct btrfs_fs_info *fs_info = root->fs_info;
1909 struct btrfs_delayed_item *curr_item, *prev_item;
1910
1911 mutex_lock(&delayed_node->mutex);
1912 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1913 while (curr_item) {
1914 btrfs_delayed_item_release_metadata(root, curr_item);
1915 prev_item = curr_item;
1916 curr_item = __btrfs_next_delayed_item(prev_item);
1917 btrfs_release_delayed_item(prev_item);
1918 }
1919
1920 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1921 while (curr_item) {
1922 btrfs_delayed_item_release_metadata(root, curr_item);
1923 prev_item = curr_item;
1924 curr_item = __btrfs_next_delayed_item(prev_item);
1925 btrfs_release_delayed_item(prev_item);
1926 }
1927
1928 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1929 btrfs_release_delayed_iref(delayed_node);
1930
1931 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1932 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1933 btrfs_release_delayed_inode(delayed_node);
1934 }
1935 mutex_unlock(&delayed_node->mutex);
1936}
1937
1938void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1939{
1940 struct btrfs_delayed_node *delayed_node;
1941
1942 delayed_node = btrfs_get_delayed_node(inode);
1943 if (!delayed_node)
1944 return;
1945
1946 __btrfs_kill_delayed_node(delayed_node);
1947 btrfs_release_delayed_node(delayed_node);
1948}
1949
1950void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1951{
1952 u64 inode_id = 0;
1953 struct btrfs_delayed_node *delayed_nodes[8];
1954 int i, n;
1955
1956 while (1) {
1957 spin_lock(&root->inode_lock);
1958 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1959 (void **)delayed_nodes, inode_id,
1960 ARRAY_SIZE(delayed_nodes));
1961 if (!n) {
1962 spin_unlock(&root->inode_lock);
1963 break;
1964 }
1965
1966 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1967 for (i = 0; i < n; i++) {
1968 /*
1969 * Don't increase refs in case the node is dead and
1970 * about to be removed from the tree in the loop below
1971 */
1972 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1973 delayed_nodes[i] = NULL;
1974 }
1975 spin_unlock(&root->inode_lock);
1976
1977 for (i = 0; i < n; i++) {
1978 if (!delayed_nodes[i])
1979 continue;
1980 __btrfs_kill_delayed_node(delayed_nodes[i]);
1981 btrfs_release_delayed_node(delayed_nodes[i]);
1982 }
1983 }
1984}
1985
1986void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1987{
1988 struct btrfs_delayed_node *curr_node, *prev_node;
1989
1990 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1991 while (curr_node) {
1992 __btrfs_kill_delayed_node(curr_node);
1993
1994 prev_node = curr_node;
1995 curr_node = btrfs_next_delayed_node(curr_node);
1996 btrfs_release_delayed_node(prev_node);
1997 }
1998}
1999