Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7#include <linux/slab.h>
8#include <linux/iversion.h>
9#include "misc.h"
10#include "delayed-inode.h"
11#include "disk-io.h"
12#include "transaction.h"
13#include "ctree.h"
14#include "qgroup.h"
15
16#define BTRFS_DELAYED_WRITEBACK 512
17#define BTRFS_DELAYED_BACKGROUND 128
18#define BTRFS_DELAYED_BATCH 16
19
20static struct kmem_cache *delayed_node_cache;
21
22int __init btrfs_delayed_inode_init(void)
23{
24 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
25 sizeof(struct btrfs_delayed_node),
26 0,
27 SLAB_MEM_SPREAD,
28 NULL);
29 if (!delayed_node_cache)
30 return -ENOMEM;
31 return 0;
32}
33
34void __cold btrfs_delayed_inode_exit(void)
35{
36 kmem_cache_destroy(delayed_node_cache);
37}
38
39static inline void btrfs_init_delayed_node(
40 struct btrfs_delayed_node *delayed_node,
41 struct btrfs_root *root, u64 inode_id)
42{
43 delayed_node->root = root;
44 delayed_node->inode_id = inode_id;
45 refcount_set(&delayed_node->refs, 0);
46 delayed_node->ins_root = RB_ROOT_CACHED;
47 delayed_node->del_root = RB_ROOT_CACHED;
48 mutex_init(&delayed_node->mutex);
49 INIT_LIST_HEAD(&delayed_node->n_list);
50 INIT_LIST_HEAD(&delayed_node->p_list);
51}
52
53static inline int btrfs_is_continuous_delayed_item(
54 struct btrfs_delayed_item *item1,
55 struct btrfs_delayed_item *item2)
56{
57 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
58 item1->key.objectid == item2->key.objectid &&
59 item1->key.type == item2->key.type &&
60 item1->key.offset + 1 == item2->key.offset)
61 return 1;
62 return 0;
63}
64
65static struct btrfs_delayed_node *btrfs_get_delayed_node(
66 struct btrfs_inode *btrfs_inode)
67{
68 struct btrfs_root *root = btrfs_inode->root;
69 u64 ino = btrfs_ino(btrfs_inode);
70 struct btrfs_delayed_node *node;
71
72 node = READ_ONCE(btrfs_inode->delayed_node);
73 if (node) {
74 refcount_inc(&node->refs);
75 return node;
76 }
77
78 spin_lock(&root->inode_lock);
79 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
80
81 if (node) {
82 if (btrfs_inode->delayed_node) {
83 refcount_inc(&node->refs); /* can be accessed */
84 BUG_ON(btrfs_inode->delayed_node != node);
85 spin_unlock(&root->inode_lock);
86 return node;
87 }
88
89 /*
90 * It's possible that we're racing into the middle of removing
91 * this node from the radix tree. In this case, the refcount
92 * was zero and it should never go back to one. Just return
93 * NULL like it was never in the radix at all; our release
94 * function is in the process of removing it.
95 *
96 * Some implementations of refcount_inc refuse to bump the
97 * refcount once it has hit zero. If we don't do this dance
98 * here, refcount_inc() may decide to just WARN_ONCE() instead
99 * of actually bumping the refcount.
100 *
101 * If this node is properly in the radix, we want to bump the
102 * refcount twice, once for the inode and once for this get
103 * operation.
104 */
105 if (refcount_inc_not_zero(&node->refs)) {
106 refcount_inc(&node->refs);
107 btrfs_inode->delayed_node = node;
108 } else {
109 node = NULL;
110 }
111
112 spin_unlock(&root->inode_lock);
113 return node;
114 }
115 spin_unlock(&root->inode_lock);
116
117 return NULL;
118}
119
120/* Will return either the node or PTR_ERR(-ENOMEM) */
121static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
122 struct btrfs_inode *btrfs_inode)
123{
124 struct btrfs_delayed_node *node;
125 struct btrfs_root *root = btrfs_inode->root;
126 u64 ino = btrfs_ino(btrfs_inode);
127 int ret;
128
129again:
130 node = btrfs_get_delayed_node(btrfs_inode);
131 if (node)
132 return node;
133
134 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
135 if (!node)
136 return ERR_PTR(-ENOMEM);
137 btrfs_init_delayed_node(node, root, ino);
138
139 /* cached in the btrfs inode and can be accessed */
140 refcount_set(&node->refs, 2);
141
142 ret = radix_tree_preload(GFP_NOFS);
143 if (ret) {
144 kmem_cache_free(delayed_node_cache, node);
145 return ERR_PTR(ret);
146 }
147
148 spin_lock(&root->inode_lock);
149 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
150 if (ret == -EEXIST) {
151 spin_unlock(&root->inode_lock);
152 kmem_cache_free(delayed_node_cache, node);
153 radix_tree_preload_end();
154 goto again;
155 }
156 btrfs_inode->delayed_node = node;
157 spin_unlock(&root->inode_lock);
158 radix_tree_preload_end();
159
160 return node;
161}
162
163/*
164 * Call it when holding delayed_node->mutex
165 *
166 * If mod = 1, add this node into the prepared list.
167 */
168static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
169 struct btrfs_delayed_node *node,
170 int mod)
171{
172 spin_lock(&root->lock);
173 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
174 if (!list_empty(&node->p_list))
175 list_move_tail(&node->p_list, &root->prepare_list);
176 else if (mod)
177 list_add_tail(&node->p_list, &root->prepare_list);
178 } else {
179 list_add_tail(&node->n_list, &root->node_list);
180 list_add_tail(&node->p_list, &root->prepare_list);
181 refcount_inc(&node->refs); /* inserted into list */
182 root->nodes++;
183 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
184 }
185 spin_unlock(&root->lock);
186}
187
188/* Call it when holding delayed_node->mutex */
189static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
190 struct btrfs_delayed_node *node)
191{
192 spin_lock(&root->lock);
193 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
194 root->nodes--;
195 refcount_dec(&node->refs); /* not in the list */
196 list_del_init(&node->n_list);
197 if (!list_empty(&node->p_list))
198 list_del_init(&node->p_list);
199 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
200 }
201 spin_unlock(&root->lock);
202}
203
204static struct btrfs_delayed_node *btrfs_first_delayed_node(
205 struct btrfs_delayed_root *delayed_root)
206{
207 struct list_head *p;
208 struct btrfs_delayed_node *node = NULL;
209
210 spin_lock(&delayed_root->lock);
211 if (list_empty(&delayed_root->node_list))
212 goto out;
213
214 p = delayed_root->node_list.next;
215 node = list_entry(p, struct btrfs_delayed_node, n_list);
216 refcount_inc(&node->refs);
217out:
218 spin_unlock(&delayed_root->lock);
219
220 return node;
221}
222
223static struct btrfs_delayed_node *btrfs_next_delayed_node(
224 struct btrfs_delayed_node *node)
225{
226 struct btrfs_delayed_root *delayed_root;
227 struct list_head *p;
228 struct btrfs_delayed_node *next = NULL;
229
230 delayed_root = node->root->fs_info->delayed_root;
231 spin_lock(&delayed_root->lock);
232 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
233 /* not in the list */
234 if (list_empty(&delayed_root->node_list))
235 goto out;
236 p = delayed_root->node_list.next;
237 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
238 goto out;
239 else
240 p = node->n_list.next;
241
242 next = list_entry(p, struct btrfs_delayed_node, n_list);
243 refcount_inc(&next->refs);
244out:
245 spin_unlock(&delayed_root->lock);
246
247 return next;
248}
249
250static void __btrfs_release_delayed_node(
251 struct btrfs_delayed_node *delayed_node,
252 int mod)
253{
254 struct btrfs_delayed_root *delayed_root;
255
256 if (!delayed_node)
257 return;
258
259 delayed_root = delayed_node->root->fs_info->delayed_root;
260
261 mutex_lock(&delayed_node->mutex);
262 if (delayed_node->count)
263 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
264 else
265 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
266 mutex_unlock(&delayed_node->mutex);
267
268 if (refcount_dec_and_test(&delayed_node->refs)) {
269 struct btrfs_root *root = delayed_node->root;
270
271 spin_lock(&root->inode_lock);
272 /*
273 * Once our refcount goes to zero, nobody is allowed to bump it
274 * back up. We can delete it now.
275 */
276 ASSERT(refcount_read(&delayed_node->refs) == 0);
277 radix_tree_delete(&root->delayed_nodes_tree,
278 delayed_node->inode_id);
279 spin_unlock(&root->inode_lock);
280 kmem_cache_free(delayed_node_cache, delayed_node);
281 }
282}
283
284static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
285{
286 __btrfs_release_delayed_node(node, 0);
287}
288
289static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
290 struct btrfs_delayed_root *delayed_root)
291{
292 struct list_head *p;
293 struct btrfs_delayed_node *node = NULL;
294
295 spin_lock(&delayed_root->lock);
296 if (list_empty(&delayed_root->prepare_list))
297 goto out;
298
299 p = delayed_root->prepare_list.next;
300 list_del_init(p);
301 node = list_entry(p, struct btrfs_delayed_node, p_list);
302 refcount_inc(&node->refs);
303out:
304 spin_unlock(&delayed_root->lock);
305
306 return node;
307}
308
309static inline void btrfs_release_prepared_delayed_node(
310 struct btrfs_delayed_node *node)
311{
312 __btrfs_release_delayed_node(node, 1);
313}
314
315static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
316{
317 struct btrfs_delayed_item *item;
318 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
319 if (item) {
320 item->data_len = data_len;
321 item->ins_or_del = 0;
322 item->bytes_reserved = 0;
323 item->delayed_node = NULL;
324 refcount_set(&item->refs, 1);
325 }
326 return item;
327}
328
329/*
330 * __btrfs_lookup_delayed_item - look up the delayed item by key
331 * @delayed_node: pointer to the delayed node
332 * @key: the key to look up
333 * @prev: used to store the prev item if the right item isn't found
334 * @next: used to store the next item if the right item isn't found
335 *
336 * Note: if we don't find the right item, we will return the prev item and
337 * the next item.
338 */
339static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
340 struct rb_root *root,
341 struct btrfs_key *key,
342 struct btrfs_delayed_item **prev,
343 struct btrfs_delayed_item **next)
344{
345 struct rb_node *node, *prev_node = NULL;
346 struct btrfs_delayed_item *delayed_item = NULL;
347 int ret = 0;
348
349 node = root->rb_node;
350
351 while (node) {
352 delayed_item = rb_entry(node, struct btrfs_delayed_item,
353 rb_node);
354 prev_node = node;
355 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
356 if (ret < 0)
357 node = node->rb_right;
358 else if (ret > 0)
359 node = node->rb_left;
360 else
361 return delayed_item;
362 }
363
364 if (prev) {
365 if (!prev_node)
366 *prev = NULL;
367 else if (ret < 0)
368 *prev = delayed_item;
369 else if ((node = rb_prev(prev_node)) != NULL) {
370 *prev = rb_entry(node, struct btrfs_delayed_item,
371 rb_node);
372 } else
373 *prev = NULL;
374 }
375
376 if (next) {
377 if (!prev_node)
378 *next = NULL;
379 else if (ret > 0)
380 *next = delayed_item;
381 else if ((node = rb_next(prev_node)) != NULL) {
382 *next = rb_entry(node, struct btrfs_delayed_item,
383 rb_node);
384 } else
385 *next = NULL;
386 }
387 return NULL;
388}
389
390static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
391 struct btrfs_delayed_node *delayed_node,
392 struct btrfs_key *key)
393{
394 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
395 NULL, NULL);
396}
397
398static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
399 struct btrfs_delayed_item *ins,
400 int action)
401{
402 struct rb_node **p, *node;
403 struct rb_node *parent_node = NULL;
404 struct rb_root_cached *root;
405 struct btrfs_delayed_item *item;
406 int cmp;
407 bool leftmost = true;
408
409 if (action == BTRFS_DELAYED_INSERTION_ITEM)
410 root = &delayed_node->ins_root;
411 else if (action == BTRFS_DELAYED_DELETION_ITEM)
412 root = &delayed_node->del_root;
413 else
414 BUG();
415 p = &root->rb_root.rb_node;
416 node = &ins->rb_node;
417
418 while (*p) {
419 parent_node = *p;
420 item = rb_entry(parent_node, struct btrfs_delayed_item,
421 rb_node);
422
423 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
424 if (cmp < 0) {
425 p = &(*p)->rb_right;
426 leftmost = false;
427 } else if (cmp > 0) {
428 p = &(*p)->rb_left;
429 } else {
430 return -EEXIST;
431 }
432 }
433
434 rb_link_node(node, parent_node, p);
435 rb_insert_color_cached(node, root, leftmost);
436 ins->delayed_node = delayed_node;
437 ins->ins_or_del = action;
438
439 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
440 action == BTRFS_DELAYED_INSERTION_ITEM &&
441 ins->key.offset >= delayed_node->index_cnt)
442 delayed_node->index_cnt = ins->key.offset + 1;
443
444 delayed_node->count++;
445 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
446 return 0;
447}
448
449static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
450 struct btrfs_delayed_item *item)
451{
452 return __btrfs_add_delayed_item(node, item,
453 BTRFS_DELAYED_INSERTION_ITEM);
454}
455
456static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
457 struct btrfs_delayed_item *item)
458{
459 return __btrfs_add_delayed_item(node, item,
460 BTRFS_DELAYED_DELETION_ITEM);
461}
462
463static void finish_one_item(struct btrfs_delayed_root *delayed_root)
464{
465 int seq = atomic_inc_return(&delayed_root->items_seq);
466
467 /* atomic_dec_return implies a barrier */
468 if ((atomic_dec_return(&delayed_root->items) <
469 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
470 cond_wake_up_nomb(&delayed_root->wait);
471}
472
473static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
474{
475 struct rb_root_cached *root;
476 struct btrfs_delayed_root *delayed_root;
477
478 /* Not associated with any delayed_node */
479 if (!delayed_item->delayed_node)
480 return;
481 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
482
483 BUG_ON(!delayed_root);
484 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
485 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
486
487 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
488 root = &delayed_item->delayed_node->ins_root;
489 else
490 root = &delayed_item->delayed_node->del_root;
491
492 rb_erase_cached(&delayed_item->rb_node, root);
493 delayed_item->delayed_node->count--;
494
495 finish_one_item(delayed_root);
496}
497
498static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
499{
500 if (item) {
501 __btrfs_remove_delayed_item(item);
502 if (refcount_dec_and_test(&item->refs))
503 kfree(item);
504 }
505}
506
507static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
508 struct btrfs_delayed_node *delayed_node)
509{
510 struct rb_node *p;
511 struct btrfs_delayed_item *item = NULL;
512
513 p = rb_first_cached(&delayed_node->ins_root);
514 if (p)
515 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
516
517 return item;
518}
519
520static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
521 struct btrfs_delayed_node *delayed_node)
522{
523 struct rb_node *p;
524 struct btrfs_delayed_item *item = NULL;
525
526 p = rb_first_cached(&delayed_node->del_root);
527 if (p)
528 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
529
530 return item;
531}
532
533static struct btrfs_delayed_item *__btrfs_next_delayed_item(
534 struct btrfs_delayed_item *item)
535{
536 struct rb_node *p;
537 struct btrfs_delayed_item *next = NULL;
538
539 p = rb_next(&item->rb_node);
540 if (p)
541 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
542
543 return next;
544}
545
546static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
547 struct btrfs_root *root,
548 struct btrfs_delayed_item *item)
549{
550 struct btrfs_block_rsv *src_rsv;
551 struct btrfs_block_rsv *dst_rsv;
552 struct btrfs_fs_info *fs_info = root->fs_info;
553 u64 num_bytes;
554 int ret;
555
556 if (!trans->bytes_reserved)
557 return 0;
558
559 src_rsv = trans->block_rsv;
560 dst_rsv = &fs_info->delayed_block_rsv;
561
562 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
563
564 /*
565 * Here we migrate space rsv from transaction rsv, since have already
566 * reserved space when starting a transaction. So no need to reserve
567 * qgroup space here.
568 */
569 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
570 if (!ret) {
571 trace_btrfs_space_reservation(fs_info, "delayed_item",
572 item->key.objectid,
573 num_bytes, 1);
574 item->bytes_reserved = num_bytes;
575 }
576
577 return ret;
578}
579
580static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
581 struct btrfs_delayed_item *item)
582{
583 struct btrfs_block_rsv *rsv;
584 struct btrfs_fs_info *fs_info = root->fs_info;
585
586 if (!item->bytes_reserved)
587 return;
588
589 rsv = &fs_info->delayed_block_rsv;
590 /*
591 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
592 * to release/reserve qgroup space.
593 */
594 trace_btrfs_space_reservation(fs_info, "delayed_item",
595 item->key.objectid, item->bytes_reserved,
596 0);
597 btrfs_block_rsv_release(fs_info, rsv,
598 item->bytes_reserved);
599}
600
601static int btrfs_delayed_inode_reserve_metadata(
602 struct btrfs_trans_handle *trans,
603 struct btrfs_root *root,
604 struct btrfs_inode *inode,
605 struct btrfs_delayed_node *node)
606{
607 struct btrfs_fs_info *fs_info = root->fs_info;
608 struct btrfs_block_rsv *src_rsv;
609 struct btrfs_block_rsv *dst_rsv;
610 u64 num_bytes;
611 int ret;
612
613 src_rsv = trans->block_rsv;
614 dst_rsv = &fs_info->delayed_block_rsv;
615
616 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
617
618 /*
619 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
620 * which doesn't reserve space for speed. This is a problem since we
621 * still need to reserve space for this update, so try to reserve the
622 * space.
623 *
624 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
625 * we always reserve enough to update the inode item.
626 */
627 if (!src_rsv || (!trans->bytes_reserved &&
628 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
629 ret = btrfs_qgroup_reserve_meta_prealloc(root,
630 fs_info->nodesize, true);
631 if (ret < 0)
632 return ret;
633 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
634 BTRFS_RESERVE_NO_FLUSH);
635 /*
636 * Since we're under a transaction reserve_metadata_bytes could
637 * try to commit the transaction which will make it return
638 * EAGAIN to make us stop the transaction we have, so return
639 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
640 */
641 if (ret == -EAGAIN) {
642 ret = -ENOSPC;
643 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
644 }
645 if (!ret) {
646 node->bytes_reserved = num_bytes;
647 trace_btrfs_space_reservation(fs_info,
648 "delayed_inode",
649 btrfs_ino(inode),
650 num_bytes, 1);
651 } else {
652 btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
653 }
654 return ret;
655 }
656
657 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
658 if (!ret) {
659 trace_btrfs_space_reservation(fs_info, "delayed_inode",
660 btrfs_ino(inode), num_bytes, 1);
661 node->bytes_reserved = num_bytes;
662 }
663
664 return ret;
665}
666
667static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
668 struct btrfs_delayed_node *node,
669 bool qgroup_free)
670{
671 struct btrfs_block_rsv *rsv;
672
673 if (!node->bytes_reserved)
674 return;
675
676 rsv = &fs_info->delayed_block_rsv;
677 trace_btrfs_space_reservation(fs_info, "delayed_inode",
678 node->inode_id, node->bytes_reserved, 0);
679 btrfs_block_rsv_release(fs_info, rsv,
680 node->bytes_reserved);
681 if (qgroup_free)
682 btrfs_qgroup_free_meta_prealloc(node->root,
683 node->bytes_reserved);
684 else
685 btrfs_qgroup_convert_reserved_meta(node->root,
686 node->bytes_reserved);
687 node->bytes_reserved = 0;
688}
689
690/*
691 * This helper will insert some continuous items into the same leaf according
692 * to the free space of the leaf.
693 */
694static int btrfs_batch_insert_items(struct btrfs_root *root,
695 struct btrfs_path *path,
696 struct btrfs_delayed_item *item)
697{
698 struct btrfs_delayed_item *curr, *next;
699 int free_space;
700 int total_data_size = 0, total_size = 0;
701 struct extent_buffer *leaf;
702 char *data_ptr;
703 struct btrfs_key *keys;
704 u32 *data_size;
705 struct list_head head;
706 int slot;
707 int nitems;
708 int i;
709 int ret = 0;
710
711 BUG_ON(!path->nodes[0]);
712
713 leaf = path->nodes[0];
714 free_space = btrfs_leaf_free_space(leaf);
715 INIT_LIST_HEAD(&head);
716
717 next = item;
718 nitems = 0;
719
720 /*
721 * count the number of the continuous items that we can insert in batch
722 */
723 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
724 free_space) {
725 total_data_size += next->data_len;
726 total_size += next->data_len + sizeof(struct btrfs_item);
727 list_add_tail(&next->tree_list, &head);
728 nitems++;
729
730 curr = next;
731 next = __btrfs_next_delayed_item(curr);
732 if (!next)
733 break;
734
735 if (!btrfs_is_continuous_delayed_item(curr, next))
736 break;
737 }
738
739 if (!nitems) {
740 ret = 0;
741 goto out;
742 }
743
744 /*
745 * we need allocate some memory space, but it might cause the task
746 * to sleep, so we set all locked nodes in the path to blocking locks
747 * first.
748 */
749 btrfs_set_path_blocking(path);
750
751 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
752 if (!keys) {
753 ret = -ENOMEM;
754 goto out;
755 }
756
757 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
758 if (!data_size) {
759 ret = -ENOMEM;
760 goto error;
761 }
762
763 /* get keys of all the delayed items */
764 i = 0;
765 list_for_each_entry(next, &head, tree_list) {
766 keys[i] = next->key;
767 data_size[i] = next->data_len;
768 i++;
769 }
770
771 /* insert the keys of the items */
772 setup_items_for_insert(root, path, keys, data_size,
773 total_data_size, total_size, nitems);
774
775 /* insert the dir index items */
776 slot = path->slots[0];
777 list_for_each_entry_safe(curr, next, &head, tree_list) {
778 data_ptr = btrfs_item_ptr(leaf, slot, char);
779 write_extent_buffer(leaf, &curr->data,
780 (unsigned long)data_ptr,
781 curr->data_len);
782 slot++;
783
784 btrfs_delayed_item_release_metadata(root, curr);
785
786 list_del(&curr->tree_list);
787 btrfs_release_delayed_item(curr);
788 }
789
790error:
791 kfree(data_size);
792 kfree(keys);
793out:
794 return ret;
795}
796
797/*
798 * This helper can just do simple insertion that needn't extend item for new
799 * data, such as directory name index insertion, inode insertion.
800 */
801static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
802 struct btrfs_root *root,
803 struct btrfs_path *path,
804 struct btrfs_delayed_item *delayed_item)
805{
806 struct extent_buffer *leaf;
807 char *ptr;
808 int ret;
809
810 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
811 delayed_item->data_len);
812 if (ret < 0 && ret != -EEXIST)
813 return ret;
814
815 leaf = path->nodes[0];
816
817 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
818
819 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
820 delayed_item->data_len);
821 btrfs_mark_buffer_dirty(leaf);
822
823 btrfs_delayed_item_release_metadata(root, delayed_item);
824 return 0;
825}
826
827/*
828 * we insert an item first, then if there are some continuous items, we try
829 * to insert those items into the same leaf.
830 */
831static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
832 struct btrfs_path *path,
833 struct btrfs_root *root,
834 struct btrfs_delayed_node *node)
835{
836 struct btrfs_delayed_item *curr, *prev;
837 int ret = 0;
838
839do_again:
840 mutex_lock(&node->mutex);
841 curr = __btrfs_first_delayed_insertion_item(node);
842 if (!curr)
843 goto insert_end;
844
845 ret = btrfs_insert_delayed_item(trans, root, path, curr);
846 if (ret < 0) {
847 btrfs_release_path(path);
848 goto insert_end;
849 }
850
851 prev = curr;
852 curr = __btrfs_next_delayed_item(prev);
853 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
854 /* insert the continuous items into the same leaf */
855 path->slots[0]++;
856 btrfs_batch_insert_items(root, path, curr);
857 }
858 btrfs_release_delayed_item(prev);
859 btrfs_mark_buffer_dirty(path->nodes[0]);
860
861 btrfs_release_path(path);
862 mutex_unlock(&node->mutex);
863 goto do_again;
864
865insert_end:
866 mutex_unlock(&node->mutex);
867 return ret;
868}
869
870static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
871 struct btrfs_root *root,
872 struct btrfs_path *path,
873 struct btrfs_delayed_item *item)
874{
875 struct btrfs_delayed_item *curr, *next;
876 struct extent_buffer *leaf;
877 struct btrfs_key key;
878 struct list_head head;
879 int nitems, i, last_item;
880 int ret = 0;
881
882 BUG_ON(!path->nodes[0]);
883
884 leaf = path->nodes[0];
885
886 i = path->slots[0];
887 last_item = btrfs_header_nritems(leaf) - 1;
888 if (i > last_item)
889 return -ENOENT; /* FIXME: Is errno suitable? */
890
891 next = item;
892 INIT_LIST_HEAD(&head);
893 btrfs_item_key_to_cpu(leaf, &key, i);
894 nitems = 0;
895 /*
896 * count the number of the dir index items that we can delete in batch
897 */
898 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
899 list_add_tail(&next->tree_list, &head);
900 nitems++;
901
902 curr = next;
903 next = __btrfs_next_delayed_item(curr);
904 if (!next)
905 break;
906
907 if (!btrfs_is_continuous_delayed_item(curr, next))
908 break;
909
910 i++;
911 if (i > last_item)
912 break;
913 btrfs_item_key_to_cpu(leaf, &key, i);
914 }
915
916 if (!nitems)
917 return 0;
918
919 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
920 if (ret)
921 goto out;
922
923 list_for_each_entry_safe(curr, next, &head, tree_list) {
924 btrfs_delayed_item_release_metadata(root, curr);
925 list_del(&curr->tree_list);
926 btrfs_release_delayed_item(curr);
927 }
928
929out:
930 return ret;
931}
932
933static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
934 struct btrfs_path *path,
935 struct btrfs_root *root,
936 struct btrfs_delayed_node *node)
937{
938 struct btrfs_delayed_item *curr, *prev;
939 int ret = 0;
940
941do_again:
942 mutex_lock(&node->mutex);
943 curr = __btrfs_first_delayed_deletion_item(node);
944 if (!curr)
945 goto delete_fail;
946
947 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
948 if (ret < 0)
949 goto delete_fail;
950 else if (ret > 0) {
951 /*
952 * can't find the item which the node points to, so this node
953 * is invalid, just drop it.
954 */
955 prev = curr;
956 curr = __btrfs_next_delayed_item(prev);
957 btrfs_release_delayed_item(prev);
958 ret = 0;
959 btrfs_release_path(path);
960 if (curr) {
961 mutex_unlock(&node->mutex);
962 goto do_again;
963 } else
964 goto delete_fail;
965 }
966
967 btrfs_batch_delete_items(trans, root, path, curr);
968 btrfs_release_path(path);
969 mutex_unlock(&node->mutex);
970 goto do_again;
971
972delete_fail:
973 btrfs_release_path(path);
974 mutex_unlock(&node->mutex);
975 return ret;
976}
977
978static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
979{
980 struct btrfs_delayed_root *delayed_root;
981
982 if (delayed_node &&
983 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
984 BUG_ON(!delayed_node->root);
985 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
986 delayed_node->count--;
987
988 delayed_root = delayed_node->root->fs_info->delayed_root;
989 finish_one_item(delayed_root);
990 }
991}
992
993static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
994{
995 struct btrfs_delayed_root *delayed_root;
996
997 ASSERT(delayed_node->root);
998 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
999 delayed_node->count--;
1000
1001 delayed_root = delayed_node->root->fs_info->delayed_root;
1002 finish_one_item(delayed_root);
1003}
1004
1005static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1006 struct btrfs_root *root,
1007 struct btrfs_path *path,
1008 struct btrfs_delayed_node *node)
1009{
1010 struct btrfs_fs_info *fs_info = root->fs_info;
1011 struct btrfs_key key;
1012 struct btrfs_inode_item *inode_item;
1013 struct extent_buffer *leaf;
1014 int mod;
1015 int ret;
1016
1017 key.objectid = node->inode_id;
1018 key.type = BTRFS_INODE_ITEM_KEY;
1019 key.offset = 0;
1020
1021 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1022 mod = -1;
1023 else
1024 mod = 1;
1025
1026 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1027 if (ret > 0) {
1028 btrfs_release_path(path);
1029 return -ENOENT;
1030 } else if (ret < 0) {
1031 return ret;
1032 }
1033
1034 leaf = path->nodes[0];
1035 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1036 struct btrfs_inode_item);
1037 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1038 sizeof(struct btrfs_inode_item));
1039 btrfs_mark_buffer_dirty(leaf);
1040
1041 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1042 goto no_iref;
1043
1044 path->slots[0]++;
1045 if (path->slots[0] >= btrfs_header_nritems(leaf))
1046 goto search;
1047again:
1048 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1049 if (key.objectid != node->inode_id)
1050 goto out;
1051
1052 if (key.type != BTRFS_INODE_REF_KEY &&
1053 key.type != BTRFS_INODE_EXTREF_KEY)
1054 goto out;
1055
1056 /*
1057 * Delayed iref deletion is for the inode who has only one link,
1058 * so there is only one iref. The case that several irefs are
1059 * in the same item doesn't exist.
1060 */
1061 btrfs_del_item(trans, root, path);
1062out:
1063 btrfs_release_delayed_iref(node);
1064no_iref:
1065 btrfs_release_path(path);
1066err_out:
1067 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1068 btrfs_release_delayed_inode(node);
1069
1070 return ret;
1071
1072search:
1073 btrfs_release_path(path);
1074
1075 key.type = BTRFS_INODE_EXTREF_KEY;
1076 key.offset = -1;
1077 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1078 if (ret < 0)
1079 goto err_out;
1080 ASSERT(ret);
1081
1082 ret = 0;
1083 leaf = path->nodes[0];
1084 path->slots[0]--;
1085 goto again;
1086}
1087
1088static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1089 struct btrfs_root *root,
1090 struct btrfs_path *path,
1091 struct btrfs_delayed_node *node)
1092{
1093 int ret;
1094
1095 mutex_lock(&node->mutex);
1096 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1097 mutex_unlock(&node->mutex);
1098 return 0;
1099 }
1100
1101 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1102 mutex_unlock(&node->mutex);
1103 return ret;
1104}
1105
1106static inline int
1107__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1108 struct btrfs_path *path,
1109 struct btrfs_delayed_node *node)
1110{
1111 int ret;
1112
1113 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1114 if (ret)
1115 return ret;
1116
1117 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1118 if (ret)
1119 return ret;
1120
1121 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1122 return ret;
1123}
1124
1125/*
1126 * Called when committing the transaction.
1127 * Returns 0 on success.
1128 * Returns < 0 on error and returns with an aborted transaction with any
1129 * outstanding delayed items cleaned up.
1130 */
1131static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1132{
1133 struct btrfs_fs_info *fs_info = trans->fs_info;
1134 struct btrfs_delayed_root *delayed_root;
1135 struct btrfs_delayed_node *curr_node, *prev_node;
1136 struct btrfs_path *path;
1137 struct btrfs_block_rsv *block_rsv;
1138 int ret = 0;
1139 bool count = (nr > 0);
1140
1141 if (trans->aborted)
1142 return -EIO;
1143
1144 path = btrfs_alloc_path();
1145 if (!path)
1146 return -ENOMEM;
1147 path->leave_spinning = 1;
1148
1149 block_rsv = trans->block_rsv;
1150 trans->block_rsv = &fs_info->delayed_block_rsv;
1151
1152 delayed_root = fs_info->delayed_root;
1153
1154 curr_node = btrfs_first_delayed_node(delayed_root);
1155 while (curr_node && (!count || (count && nr--))) {
1156 ret = __btrfs_commit_inode_delayed_items(trans, path,
1157 curr_node);
1158 if (ret) {
1159 btrfs_release_delayed_node(curr_node);
1160 curr_node = NULL;
1161 btrfs_abort_transaction(trans, ret);
1162 break;
1163 }
1164
1165 prev_node = curr_node;
1166 curr_node = btrfs_next_delayed_node(curr_node);
1167 btrfs_release_delayed_node(prev_node);
1168 }
1169
1170 if (curr_node)
1171 btrfs_release_delayed_node(curr_node);
1172 btrfs_free_path(path);
1173 trans->block_rsv = block_rsv;
1174
1175 return ret;
1176}
1177
1178int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1179{
1180 return __btrfs_run_delayed_items(trans, -1);
1181}
1182
1183int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1184{
1185 return __btrfs_run_delayed_items(trans, nr);
1186}
1187
1188int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1189 struct btrfs_inode *inode)
1190{
1191 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1192 struct btrfs_path *path;
1193 struct btrfs_block_rsv *block_rsv;
1194 int ret;
1195
1196 if (!delayed_node)
1197 return 0;
1198
1199 mutex_lock(&delayed_node->mutex);
1200 if (!delayed_node->count) {
1201 mutex_unlock(&delayed_node->mutex);
1202 btrfs_release_delayed_node(delayed_node);
1203 return 0;
1204 }
1205 mutex_unlock(&delayed_node->mutex);
1206
1207 path = btrfs_alloc_path();
1208 if (!path) {
1209 btrfs_release_delayed_node(delayed_node);
1210 return -ENOMEM;
1211 }
1212 path->leave_spinning = 1;
1213
1214 block_rsv = trans->block_rsv;
1215 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1216
1217 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1218
1219 btrfs_release_delayed_node(delayed_node);
1220 btrfs_free_path(path);
1221 trans->block_rsv = block_rsv;
1222
1223 return ret;
1224}
1225
1226int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1227{
1228 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1229 struct btrfs_trans_handle *trans;
1230 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1231 struct btrfs_path *path;
1232 struct btrfs_block_rsv *block_rsv;
1233 int ret;
1234
1235 if (!delayed_node)
1236 return 0;
1237
1238 mutex_lock(&delayed_node->mutex);
1239 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1240 mutex_unlock(&delayed_node->mutex);
1241 btrfs_release_delayed_node(delayed_node);
1242 return 0;
1243 }
1244 mutex_unlock(&delayed_node->mutex);
1245
1246 trans = btrfs_join_transaction(delayed_node->root);
1247 if (IS_ERR(trans)) {
1248 ret = PTR_ERR(trans);
1249 goto out;
1250 }
1251
1252 path = btrfs_alloc_path();
1253 if (!path) {
1254 ret = -ENOMEM;
1255 goto trans_out;
1256 }
1257 path->leave_spinning = 1;
1258
1259 block_rsv = trans->block_rsv;
1260 trans->block_rsv = &fs_info->delayed_block_rsv;
1261
1262 mutex_lock(&delayed_node->mutex);
1263 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1264 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1265 path, delayed_node);
1266 else
1267 ret = 0;
1268 mutex_unlock(&delayed_node->mutex);
1269
1270 btrfs_free_path(path);
1271 trans->block_rsv = block_rsv;
1272trans_out:
1273 btrfs_end_transaction(trans);
1274 btrfs_btree_balance_dirty(fs_info);
1275out:
1276 btrfs_release_delayed_node(delayed_node);
1277
1278 return ret;
1279}
1280
1281void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1282{
1283 struct btrfs_delayed_node *delayed_node;
1284
1285 delayed_node = READ_ONCE(inode->delayed_node);
1286 if (!delayed_node)
1287 return;
1288
1289 inode->delayed_node = NULL;
1290 btrfs_release_delayed_node(delayed_node);
1291}
1292
1293struct btrfs_async_delayed_work {
1294 struct btrfs_delayed_root *delayed_root;
1295 int nr;
1296 struct btrfs_work work;
1297};
1298
1299static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1300{
1301 struct btrfs_async_delayed_work *async_work;
1302 struct btrfs_delayed_root *delayed_root;
1303 struct btrfs_trans_handle *trans;
1304 struct btrfs_path *path;
1305 struct btrfs_delayed_node *delayed_node = NULL;
1306 struct btrfs_root *root;
1307 struct btrfs_block_rsv *block_rsv;
1308 int total_done = 0;
1309
1310 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1311 delayed_root = async_work->delayed_root;
1312
1313 path = btrfs_alloc_path();
1314 if (!path)
1315 goto out;
1316
1317 do {
1318 if (atomic_read(&delayed_root->items) <
1319 BTRFS_DELAYED_BACKGROUND / 2)
1320 break;
1321
1322 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1323 if (!delayed_node)
1324 break;
1325
1326 path->leave_spinning = 1;
1327 root = delayed_node->root;
1328
1329 trans = btrfs_join_transaction(root);
1330 if (IS_ERR(trans)) {
1331 btrfs_release_path(path);
1332 btrfs_release_prepared_delayed_node(delayed_node);
1333 total_done++;
1334 continue;
1335 }
1336
1337 block_rsv = trans->block_rsv;
1338 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1339
1340 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1341
1342 trans->block_rsv = block_rsv;
1343 btrfs_end_transaction(trans);
1344 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1345
1346 btrfs_release_path(path);
1347 btrfs_release_prepared_delayed_node(delayed_node);
1348 total_done++;
1349
1350 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1351 || total_done < async_work->nr);
1352
1353 btrfs_free_path(path);
1354out:
1355 wake_up(&delayed_root->wait);
1356 kfree(async_work);
1357}
1358
1359
1360static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1361 struct btrfs_fs_info *fs_info, int nr)
1362{
1363 struct btrfs_async_delayed_work *async_work;
1364
1365 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1366 if (!async_work)
1367 return -ENOMEM;
1368
1369 async_work->delayed_root = delayed_root;
1370 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1371 btrfs_async_run_delayed_root, NULL, NULL);
1372 async_work->nr = nr;
1373
1374 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1375 return 0;
1376}
1377
1378void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1379{
1380 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1381}
1382
1383static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1384{
1385 int val = atomic_read(&delayed_root->items_seq);
1386
1387 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1388 return 1;
1389
1390 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1391 return 1;
1392
1393 return 0;
1394}
1395
1396void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1397{
1398 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1399
1400 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1401 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1402 return;
1403
1404 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1405 int seq;
1406 int ret;
1407
1408 seq = atomic_read(&delayed_root->items_seq);
1409
1410 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1411 if (ret)
1412 return;
1413
1414 wait_event_interruptible(delayed_root->wait,
1415 could_end_wait(delayed_root, seq));
1416 return;
1417 }
1418
1419 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1420}
1421
1422/* Will return 0 or -ENOMEM */
1423int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1424 const char *name, int name_len,
1425 struct btrfs_inode *dir,
1426 struct btrfs_disk_key *disk_key, u8 type,
1427 u64 index)
1428{
1429 struct btrfs_delayed_node *delayed_node;
1430 struct btrfs_delayed_item *delayed_item;
1431 struct btrfs_dir_item *dir_item;
1432 int ret;
1433
1434 delayed_node = btrfs_get_or_create_delayed_node(dir);
1435 if (IS_ERR(delayed_node))
1436 return PTR_ERR(delayed_node);
1437
1438 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1439 if (!delayed_item) {
1440 ret = -ENOMEM;
1441 goto release_node;
1442 }
1443
1444 delayed_item->key.objectid = btrfs_ino(dir);
1445 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1446 delayed_item->key.offset = index;
1447
1448 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1449 dir_item->location = *disk_key;
1450 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1451 btrfs_set_stack_dir_data_len(dir_item, 0);
1452 btrfs_set_stack_dir_name_len(dir_item, name_len);
1453 btrfs_set_stack_dir_type(dir_item, type);
1454 memcpy((char *)(dir_item + 1), name, name_len);
1455
1456 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1457 /*
1458 * we have reserved enough space when we start a new transaction,
1459 * so reserving metadata failure is impossible
1460 */
1461 BUG_ON(ret);
1462
1463 mutex_lock(&delayed_node->mutex);
1464 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1465 if (unlikely(ret)) {
1466 btrfs_err(trans->fs_info,
1467 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1468 name_len, name, delayed_node->root->root_key.objectid,
1469 delayed_node->inode_id, ret);
1470 BUG();
1471 }
1472 mutex_unlock(&delayed_node->mutex);
1473
1474release_node:
1475 btrfs_release_delayed_node(delayed_node);
1476 return ret;
1477}
1478
1479static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1480 struct btrfs_delayed_node *node,
1481 struct btrfs_key *key)
1482{
1483 struct btrfs_delayed_item *item;
1484
1485 mutex_lock(&node->mutex);
1486 item = __btrfs_lookup_delayed_insertion_item(node, key);
1487 if (!item) {
1488 mutex_unlock(&node->mutex);
1489 return 1;
1490 }
1491
1492 btrfs_delayed_item_release_metadata(node->root, item);
1493 btrfs_release_delayed_item(item);
1494 mutex_unlock(&node->mutex);
1495 return 0;
1496}
1497
1498int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1499 struct btrfs_inode *dir, u64 index)
1500{
1501 struct btrfs_delayed_node *node;
1502 struct btrfs_delayed_item *item;
1503 struct btrfs_key item_key;
1504 int ret;
1505
1506 node = btrfs_get_or_create_delayed_node(dir);
1507 if (IS_ERR(node))
1508 return PTR_ERR(node);
1509
1510 item_key.objectid = btrfs_ino(dir);
1511 item_key.type = BTRFS_DIR_INDEX_KEY;
1512 item_key.offset = index;
1513
1514 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1515 &item_key);
1516 if (!ret)
1517 goto end;
1518
1519 item = btrfs_alloc_delayed_item(0);
1520 if (!item) {
1521 ret = -ENOMEM;
1522 goto end;
1523 }
1524
1525 item->key = item_key;
1526
1527 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1528 /*
1529 * we have reserved enough space when we start a new transaction,
1530 * so reserving metadata failure is impossible.
1531 */
1532 if (ret < 0) {
1533 btrfs_err(trans->fs_info,
1534"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1535 btrfs_release_delayed_item(item);
1536 goto end;
1537 }
1538
1539 mutex_lock(&node->mutex);
1540 ret = __btrfs_add_delayed_deletion_item(node, item);
1541 if (unlikely(ret)) {
1542 btrfs_err(trans->fs_info,
1543 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1544 index, node->root->root_key.objectid,
1545 node->inode_id, ret);
1546 btrfs_delayed_item_release_metadata(dir->root, item);
1547 btrfs_release_delayed_item(item);
1548 }
1549 mutex_unlock(&node->mutex);
1550end:
1551 btrfs_release_delayed_node(node);
1552 return ret;
1553}
1554
1555int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1556{
1557 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1558
1559 if (!delayed_node)
1560 return -ENOENT;
1561
1562 /*
1563 * Since we have held i_mutex of this directory, it is impossible that
1564 * a new directory index is added into the delayed node and index_cnt
1565 * is updated now. So we needn't lock the delayed node.
1566 */
1567 if (!delayed_node->index_cnt) {
1568 btrfs_release_delayed_node(delayed_node);
1569 return -EINVAL;
1570 }
1571
1572 inode->index_cnt = delayed_node->index_cnt;
1573 btrfs_release_delayed_node(delayed_node);
1574 return 0;
1575}
1576
1577bool btrfs_readdir_get_delayed_items(struct inode *inode,
1578 struct list_head *ins_list,
1579 struct list_head *del_list)
1580{
1581 struct btrfs_delayed_node *delayed_node;
1582 struct btrfs_delayed_item *item;
1583
1584 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1585 if (!delayed_node)
1586 return false;
1587
1588 /*
1589 * We can only do one readdir with delayed items at a time because of
1590 * item->readdir_list.
1591 */
1592 inode_unlock_shared(inode);
1593 inode_lock(inode);
1594
1595 mutex_lock(&delayed_node->mutex);
1596 item = __btrfs_first_delayed_insertion_item(delayed_node);
1597 while (item) {
1598 refcount_inc(&item->refs);
1599 list_add_tail(&item->readdir_list, ins_list);
1600 item = __btrfs_next_delayed_item(item);
1601 }
1602
1603 item = __btrfs_first_delayed_deletion_item(delayed_node);
1604 while (item) {
1605 refcount_inc(&item->refs);
1606 list_add_tail(&item->readdir_list, del_list);
1607 item = __btrfs_next_delayed_item(item);
1608 }
1609 mutex_unlock(&delayed_node->mutex);
1610 /*
1611 * This delayed node is still cached in the btrfs inode, so refs
1612 * must be > 1 now, and we needn't check it is going to be freed
1613 * or not.
1614 *
1615 * Besides that, this function is used to read dir, we do not
1616 * insert/delete delayed items in this period. So we also needn't
1617 * requeue or dequeue this delayed node.
1618 */
1619 refcount_dec(&delayed_node->refs);
1620
1621 return true;
1622}
1623
1624void btrfs_readdir_put_delayed_items(struct inode *inode,
1625 struct list_head *ins_list,
1626 struct list_head *del_list)
1627{
1628 struct btrfs_delayed_item *curr, *next;
1629
1630 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1631 list_del(&curr->readdir_list);
1632 if (refcount_dec_and_test(&curr->refs))
1633 kfree(curr);
1634 }
1635
1636 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1637 list_del(&curr->readdir_list);
1638 if (refcount_dec_and_test(&curr->refs))
1639 kfree(curr);
1640 }
1641
1642 /*
1643 * The VFS is going to do up_read(), so we need to downgrade back to a
1644 * read lock.
1645 */
1646 downgrade_write(&inode->i_rwsem);
1647}
1648
1649int btrfs_should_delete_dir_index(struct list_head *del_list,
1650 u64 index)
1651{
1652 struct btrfs_delayed_item *curr;
1653 int ret = 0;
1654
1655 list_for_each_entry(curr, del_list, readdir_list) {
1656 if (curr->key.offset > index)
1657 break;
1658 if (curr->key.offset == index) {
1659 ret = 1;
1660 break;
1661 }
1662 }
1663 return ret;
1664}
1665
1666/*
1667 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1668 *
1669 */
1670int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1671 struct list_head *ins_list)
1672{
1673 struct btrfs_dir_item *di;
1674 struct btrfs_delayed_item *curr, *next;
1675 struct btrfs_key location;
1676 char *name;
1677 int name_len;
1678 int over = 0;
1679 unsigned char d_type;
1680
1681 if (list_empty(ins_list))
1682 return 0;
1683
1684 /*
1685 * Changing the data of the delayed item is impossible. So
1686 * we needn't lock them. And we have held i_mutex of the
1687 * directory, nobody can delete any directory indexes now.
1688 */
1689 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1690 list_del(&curr->readdir_list);
1691
1692 if (curr->key.offset < ctx->pos) {
1693 if (refcount_dec_and_test(&curr->refs))
1694 kfree(curr);
1695 continue;
1696 }
1697
1698 ctx->pos = curr->key.offset;
1699
1700 di = (struct btrfs_dir_item *)curr->data;
1701 name = (char *)(di + 1);
1702 name_len = btrfs_stack_dir_name_len(di);
1703
1704 d_type = fs_ftype_to_dtype(di->type);
1705 btrfs_disk_key_to_cpu(&location, &di->location);
1706
1707 over = !dir_emit(ctx, name, name_len,
1708 location.objectid, d_type);
1709
1710 if (refcount_dec_and_test(&curr->refs))
1711 kfree(curr);
1712
1713 if (over)
1714 return 1;
1715 ctx->pos++;
1716 }
1717 return 0;
1718}
1719
1720static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1721 struct btrfs_inode_item *inode_item,
1722 struct inode *inode)
1723{
1724 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1725 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1726 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1727 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1728 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1729 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1730 btrfs_set_stack_inode_generation(inode_item,
1731 BTRFS_I(inode)->generation);
1732 btrfs_set_stack_inode_sequence(inode_item,
1733 inode_peek_iversion(inode));
1734 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1735 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1736 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1737 btrfs_set_stack_inode_block_group(inode_item, 0);
1738
1739 btrfs_set_stack_timespec_sec(&inode_item->atime,
1740 inode->i_atime.tv_sec);
1741 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1742 inode->i_atime.tv_nsec);
1743
1744 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1745 inode->i_mtime.tv_sec);
1746 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1747 inode->i_mtime.tv_nsec);
1748
1749 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1750 inode->i_ctime.tv_sec);
1751 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1752 inode->i_ctime.tv_nsec);
1753
1754 btrfs_set_stack_timespec_sec(&inode_item->otime,
1755 BTRFS_I(inode)->i_otime.tv_sec);
1756 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1757 BTRFS_I(inode)->i_otime.tv_nsec);
1758}
1759
1760int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1761{
1762 struct btrfs_delayed_node *delayed_node;
1763 struct btrfs_inode_item *inode_item;
1764
1765 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1766 if (!delayed_node)
1767 return -ENOENT;
1768
1769 mutex_lock(&delayed_node->mutex);
1770 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1771 mutex_unlock(&delayed_node->mutex);
1772 btrfs_release_delayed_node(delayed_node);
1773 return -ENOENT;
1774 }
1775
1776 inode_item = &delayed_node->inode_item;
1777
1778 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1779 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1780 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1781 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1782 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1783 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1784 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1785 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1786
1787 inode_set_iversion_queried(inode,
1788 btrfs_stack_inode_sequence(inode_item));
1789 inode->i_rdev = 0;
1790 *rdev = btrfs_stack_inode_rdev(inode_item);
1791 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1792
1793 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1794 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1795
1796 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1797 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1798
1799 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1800 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1801
1802 BTRFS_I(inode)->i_otime.tv_sec =
1803 btrfs_stack_timespec_sec(&inode_item->otime);
1804 BTRFS_I(inode)->i_otime.tv_nsec =
1805 btrfs_stack_timespec_nsec(&inode_item->otime);
1806
1807 inode->i_generation = BTRFS_I(inode)->generation;
1808 BTRFS_I(inode)->index_cnt = (u64)-1;
1809
1810 mutex_unlock(&delayed_node->mutex);
1811 btrfs_release_delayed_node(delayed_node);
1812 return 0;
1813}
1814
1815int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1816 struct btrfs_root *root, struct inode *inode)
1817{
1818 struct btrfs_delayed_node *delayed_node;
1819 int ret = 0;
1820
1821 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1822 if (IS_ERR(delayed_node))
1823 return PTR_ERR(delayed_node);
1824
1825 mutex_lock(&delayed_node->mutex);
1826 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1827 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1828 goto release_node;
1829 }
1830
1831 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1832 delayed_node);
1833 if (ret)
1834 goto release_node;
1835
1836 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1837 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1838 delayed_node->count++;
1839 atomic_inc(&root->fs_info->delayed_root->items);
1840release_node:
1841 mutex_unlock(&delayed_node->mutex);
1842 btrfs_release_delayed_node(delayed_node);
1843 return ret;
1844}
1845
1846int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1847{
1848 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1849 struct btrfs_delayed_node *delayed_node;
1850
1851 /*
1852 * we don't do delayed inode updates during log recovery because it
1853 * leads to enospc problems. This means we also can't do
1854 * delayed inode refs
1855 */
1856 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1857 return -EAGAIN;
1858
1859 delayed_node = btrfs_get_or_create_delayed_node(inode);
1860 if (IS_ERR(delayed_node))
1861 return PTR_ERR(delayed_node);
1862
1863 /*
1864 * We don't reserve space for inode ref deletion is because:
1865 * - We ONLY do async inode ref deletion for the inode who has only
1866 * one link(i_nlink == 1), it means there is only one inode ref.
1867 * And in most case, the inode ref and the inode item are in the
1868 * same leaf, and we will deal with them at the same time.
1869 * Since we are sure we will reserve the space for the inode item,
1870 * it is unnecessary to reserve space for inode ref deletion.
1871 * - If the inode ref and the inode item are not in the same leaf,
1872 * We also needn't worry about enospc problem, because we reserve
1873 * much more space for the inode update than it needs.
1874 * - At the worst, we can steal some space from the global reservation.
1875 * It is very rare.
1876 */
1877 mutex_lock(&delayed_node->mutex);
1878 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1879 goto release_node;
1880
1881 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1882 delayed_node->count++;
1883 atomic_inc(&fs_info->delayed_root->items);
1884release_node:
1885 mutex_unlock(&delayed_node->mutex);
1886 btrfs_release_delayed_node(delayed_node);
1887 return 0;
1888}
1889
1890static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1891{
1892 struct btrfs_root *root = delayed_node->root;
1893 struct btrfs_fs_info *fs_info = root->fs_info;
1894 struct btrfs_delayed_item *curr_item, *prev_item;
1895
1896 mutex_lock(&delayed_node->mutex);
1897 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1898 while (curr_item) {
1899 btrfs_delayed_item_release_metadata(root, curr_item);
1900 prev_item = curr_item;
1901 curr_item = __btrfs_next_delayed_item(prev_item);
1902 btrfs_release_delayed_item(prev_item);
1903 }
1904
1905 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1906 while (curr_item) {
1907 btrfs_delayed_item_release_metadata(root, curr_item);
1908 prev_item = curr_item;
1909 curr_item = __btrfs_next_delayed_item(prev_item);
1910 btrfs_release_delayed_item(prev_item);
1911 }
1912
1913 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1914 btrfs_release_delayed_iref(delayed_node);
1915
1916 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1917 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1918 btrfs_release_delayed_inode(delayed_node);
1919 }
1920 mutex_unlock(&delayed_node->mutex);
1921}
1922
1923void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1924{
1925 struct btrfs_delayed_node *delayed_node;
1926
1927 delayed_node = btrfs_get_delayed_node(inode);
1928 if (!delayed_node)
1929 return;
1930
1931 __btrfs_kill_delayed_node(delayed_node);
1932 btrfs_release_delayed_node(delayed_node);
1933}
1934
1935void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1936{
1937 u64 inode_id = 0;
1938 struct btrfs_delayed_node *delayed_nodes[8];
1939 int i, n;
1940
1941 while (1) {
1942 spin_lock(&root->inode_lock);
1943 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1944 (void **)delayed_nodes, inode_id,
1945 ARRAY_SIZE(delayed_nodes));
1946 if (!n) {
1947 spin_unlock(&root->inode_lock);
1948 break;
1949 }
1950
1951 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1952
1953 for (i = 0; i < n; i++)
1954 refcount_inc(&delayed_nodes[i]->refs);
1955 spin_unlock(&root->inode_lock);
1956
1957 for (i = 0; i < n; i++) {
1958 __btrfs_kill_delayed_node(delayed_nodes[i]);
1959 btrfs_release_delayed_node(delayed_nodes[i]);
1960 }
1961 }
1962}
1963
1964void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1965{
1966 struct btrfs_delayed_node *curr_node, *prev_node;
1967
1968 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1969 while (curr_node) {
1970 __btrfs_kill_delayed_node(curr_node);
1971
1972 prev_node = curr_node;
1973 curr_node = btrfs_next_delayed_node(curr_node);
1974 btrfs_release_delayed_node(prev_node);
1975 }
1976}
1977
1/*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20#include <linux/slab.h>
21#include "delayed-inode.h"
22#include "disk-io.h"
23#include "transaction.h"
24#include "ctree.h"
25
26#define BTRFS_DELAYED_WRITEBACK 512
27#define BTRFS_DELAYED_BACKGROUND 128
28#define BTRFS_DELAYED_BATCH 16
29
30static struct kmem_cache *delayed_node_cache;
31
32int __init btrfs_delayed_inode_init(void)
33{
34 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 sizeof(struct btrfs_delayed_node),
36 0,
37 SLAB_MEM_SPREAD,
38 NULL);
39 if (!delayed_node_cache)
40 return -ENOMEM;
41 return 0;
42}
43
44void btrfs_delayed_inode_exit(void)
45{
46 kmem_cache_destroy(delayed_node_cache);
47}
48
49static inline void btrfs_init_delayed_node(
50 struct btrfs_delayed_node *delayed_node,
51 struct btrfs_root *root, u64 inode_id)
52{
53 delayed_node->root = root;
54 delayed_node->inode_id = inode_id;
55 atomic_set(&delayed_node->refs, 0);
56 delayed_node->ins_root = RB_ROOT;
57 delayed_node->del_root = RB_ROOT;
58 mutex_init(&delayed_node->mutex);
59 INIT_LIST_HEAD(&delayed_node->n_list);
60 INIT_LIST_HEAD(&delayed_node->p_list);
61}
62
63static inline int btrfs_is_continuous_delayed_item(
64 struct btrfs_delayed_item *item1,
65 struct btrfs_delayed_item *item2)
66{
67 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
68 item1->key.objectid == item2->key.objectid &&
69 item1->key.type == item2->key.type &&
70 item1->key.offset + 1 == item2->key.offset)
71 return 1;
72 return 0;
73}
74
75static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
76{
77 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
78 struct btrfs_root *root = btrfs_inode->root;
79 u64 ino = btrfs_ino(inode);
80 struct btrfs_delayed_node *node;
81
82 node = ACCESS_ONCE(btrfs_inode->delayed_node);
83 if (node) {
84 atomic_inc(&node->refs);
85 return node;
86 }
87
88 spin_lock(&root->inode_lock);
89 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
90 if (node) {
91 if (btrfs_inode->delayed_node) {
92 atomic_inc(&node->refs); /* can be accessed */
93 BUG_ON(btrfs_inode->delayed_node != node);
94 spin_unlock(&root->inode_lock);
95 return node;
96 }
97 btrfs_inode->delayed_node = node;
98 /* can be accessed and cached in the inode */
99 atomic_add(2, &node->refs);
100 spin_unlock(&root->inode_lock);
101 return node;
102 }
103 spin_unlock(&root->inode_lock);
104
105 return NULL;
106}
107
108/* Will return either the node or PTR_ERR(-ENOMEM) */
109static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
110 struct inode *inode)
111{
112 struct btrfs_delayed_node *node;
113 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
114 struct btrfs_root *root = btrfs_inode->root;
115 u64 ino = btrfs_ino(inode);
116 int ret;
117
118again:
119 node = btrfs_get_delayed_node(inode);
120 if (node)
121 return node;
122
123 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
124 if (!node)
125 return ERR_PTR(-ENOMEM);
126 btrfs_init_delayed_node(node, root, ino);
127
128 /* cached in the btrfs inode and can be accessed */
129 atomic_add(2, &node->refs);
130
131 ret = radix_tree_preload(GFP_NOFS);
132 if (ret) {
133 kmem_cache_free(delayed_node_cache, node);
134 return ERR_PTR(ret);
135 }
136
137 spin_lock(&root->inode_lock);
138 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
139 if (ret == -EEXIST) {
140 spin_unlock(&root->inode_lock);
141 kmem_cache_free(delayed_node_cache, node);
142 radix_tree_preload_end();
143 goto again;
144 }
145 btrfs_inode->delayed_node = node;
146 spin_unlock(&root->inode_lock);
147 radix_tree_preload_end();
148
149 return node;
150}
151
152/*
153 * Call it when holding delayed_node->mutex
154 *
155 * If mod = 1, add this node into the prepared list.
156 */
157static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
158 struct btrfs_delayed_node *node,
159 int mod)
160{
161 spin_lock(&root->lock);
162 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
163 if (!list_empty(&node->p_list))
164 list_move_tail(&node->p_list, &root->prepare_list);
165 else if (mod)
166 list_add_tail(&node->p_list, &root->prepare_list);
167 } else {
168 list_add_tail(&node->n_list, &root->node_list);
169 list_add_tail(&node->p_list, &root->prepare_list);
170 atomic_inc(&node->refs); /* inserted into list */
171 root->nodes++;
172 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
173 }
174 spin_unlock(&root->lock);
175}
176
177/* Call it when holding delayed_node->mutex */
178static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
179 struct btrfs_delayed_node *node)
180{
181 spin_lock(&root->lock);
182 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
183 root->nodes--;
184 atomic_dec(&node->refs); /* not in the list */
185 list_del_init(&node->n_list);
186 if (!list_empty(&node->p_list))
187 list_del_init(&node->p_list);
188 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
189 }
190 spin_unlock(&root->lock);
191}
192
193static struct btrfs_delayed_node *btrfs_first_delayed_node(
194 struct btrfs_delayed_root *delayed_root)
195{
196 struct list_head *p;
197 struct btrfs_delayed_node *node = NULL;
198
199 spin_lock(&delayed_root->lock);
200 if (list_empty(&delayed_root->node_list))
201 goto out;
202
203 p = delayed_root->node_list.next;
204 node = list_entry(p, struct btrfs_delayed_node, n_list);
205 atomic_inc(&node->refs);
206out:
207 spin_unlock(&delayed_root->lock);
208
209 return node;
210}
211
212static struct btrfs_delayed_node *btrfs_next_delayed_node(
213 struct btrfs_delayed_node *node)
214{
215 struct btrfs_delayed_root *delayed_root;
216 struct list_head *p;
217 struct btrfs_delayed_node *next = NULL;
218
219 delayed_root = node->root->fs_info->delayed_root;
220 spin_lock(&delayed_root->lock);
221 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
222 /* not in the list */
223 if (list_empty(&delayed_root->node_list))
224 goto out;
225 p = delayed_root->node_list.next;
226 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
227 goto out;
228 else
229 p = node->n_list.next;
230
231 next = list_entry(p, struct btrfs_delayed_node, n_list);
232 atomic_inc(&next->refs);
233out:
234 spin_unlock(&delayed_root->lock);
235
236 return next;
237}
238
239static void __btrfs_release_delayed_node(
240 struct btrfs_delayed_node *delayed_node,
241 int mod)
242{
243 struct btrfs_delayed_root *delayed_root;
244
245 if (!delayed_node)
246 return;
247
248 delayed_root = delayed_node->root->fs_info->delayed_root;
249
250 mutex_lock(&delayed_node->mutex);
251 if (delayed_node->count)
252 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
253 else
254 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
255 mutex_unlock(&delayed_node->mutex);
256
257 if (atomic_dec_and_test(&delayed_node->refs)) {
258 bool free = false;
259 struct btrfs_root *root = delayed_node->root;
260 spin_lock(&root->inode_lock);
261 if (atomic_read(&delayed_node->refs) == 0) {
262 radix_tree_delete(&root->delayed_nodes_tree,
263 delayed_node->inode_id);
264 free = true;
265 }
266 spin_unlock(&root->inode_lock);
267 if (free)
268 kmem_cache_free(delayed_node_cache, delayed_node);
269 }
270}
271
272static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
273{
274 __btrfs_release_delayed_node(node, 0);
275}
276
277static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
278 struct btrfs_delayed_root *delayed_root)
279{
280 struct list_head *p;
281 struct btrfs_delayed_node *node = NULL;
282
283 spin_lock(&delayed_root->lock);
284 if (list_empty(&delayed_root->prepare_list))
285 goto out;
286
287 p = delayed_root->prepare_list.next;
288 list_del_init(p);
289 node = list_entry(p, struct btrfs_delayed_node, p_list);
290 atomic_inc(&node->refs);
291out:
292 spin_unlock(&delayed_root->lock);
293
294 return node;
295}
296
297static inline void btrfs_release_prepared_delayed_node(
298 struct btrfs_delayed_node *node)
299{
300 __btrfs_release_delayed_node(node, 1);
301}
302
303static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
304{
305 struct btrfs_delayed_item *item;
306 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
307 if (item) {
308 item->data_len = data_len;
309 item->ins_or_del = 0;
310 item->bytes_reserved = 0;
311 item->delayed_node = NULL;
312 atomic_set(&item->refs, 1);
313 }
314 return item;
315}
316
317/*
318 * __btrfs_lookup_delayed_item - look up the delayed item by key
319 * @delayed_node: pointer to the delayed node
320 * @key: the key to look up
321 * @prev: used to store the prev item if the right item isn't found
322 * @next: used to store the next item if the right item isn't found
323 *
324 * Note: if we don't find the right item, we will return the prev item and
325 * the next item.
326 */
327static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
328 struct rb_root *root,
329 struct btrfs_key *key,
330 struct btrfs_delayed_item **prev,
331 struct btrfs_delayed_item **next)
332{
333 struct rb_node *node, *prev_node = NULL;
334 struct btrfs_delayed_item *delayed_item = NULL;
335 int ret = 0;
336
337 node = root->rb_node;
338
339 while (node) {
340 delayed_item = rb_entry(node, struct btrfs_delayed_item,
341 rb_node);
342 prev_node = node;
343 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
344 if (ret < 0)
345 node = node->rb_right;
346 else if (ret > 0)
347 node = node->rb_left;
348 else
349 return delayed_item;
350 }
351
352 if (prev) {
353 if (!prev_node)
354 *prev = NULL;
355 else if (ret < 0)
356 *prev = delayed_item;
357 else if ((node = rb_prev(prev_node)) != NULL) {
358 *prev = rb_entry(node, struct btrfs_delayed_item,
359 rb_node);
360 } else
361 *prev = NULL;
362 }
363
364 if (next) {
365 if (!prev_node)
366 *next = NULL;
367 else if (ret > 0)
368 *next = delayed_item;
369 else if ((node = rb_next(prev_node)) != NULL) {
370 *next = rb_entry(node, struct btrfs_delayed_item,
371 rb_node);
372 } else
373 *next = NULL;
374 }
375 return NULL;
376}
377
378static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
379 struct btrfs_delayed_node *delayed_node,
380 struct btrfs_key *key)
381{
382 return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
383 NULL, NULL);
384}
385
386static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
387 struct btrfs_delayed_item *ins,
388 int action)
389{
390 struct rb_node **p, *node;
391 struct rb_node *parent_node = NULL;
392 struct rb_root *root;
393 struct btrfs_delayed_item *item;
394 int cmp;
395
396 if (action == BTRFS_DELAYED_INSERTION_ITEM)
397 root = &delayed_node->ins_root;
398 else if (action == BTRFS_DELAYED_DELETION_ITEM)
399 root = &delayed_node->del_root;
400 else
401 BUG();
402 p = &root->rb_node;
403 node = &ins->rb_node;
404
405 while (*p) {
406 parent_node = *p;
407 item = rb_entry(parent_node, struct btrfs_delayed_item,
408 rb_node);
409
410 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
411 if (cmp < 0)
412 p = &(*p)->rb_right;
413 else if (cmp > 0)
414 p = &(*p)->rb_left;
415 else
416 return -EEXIST;
417 }
418
419 rb_link_node(node, parent_node, p);
420 rb_insert_color(node, root);
421 ins->delayed_node = delayed_node;
422 ins->ins_or_del = action;
423
424 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
425 action == BTRFS_DELAYED_INSERTION_ITEM &&
426 ins->key.offset >= delayed_node->index_cnt)
427 delayed_node->index_cnt = ins->key.offset + 1;
428
429 delayed_node->count++;
430 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
431 return 0;
432}
433
434static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
435 struct btrfs_delayed_item *item)
436{
437 return __btrfs_add_delayed_item(node, item,
438 BTRFS_DELAYED_INSERTION_ITEM);
439}
440
441static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
442 struct btrfs_delayed_item *item)
443{
444 return __btrfs_add_delayed_item(node, item,
445 BTRFS_DELAYED_DELETION_ITEM);
446}
447
448static void finish_one_item(struct btrfs_delayed_root *delayed_root)
449{
450 int seq = atomic_inc_return(&delayed_root->items_seq);
451
452 /*
453 * atomic_dec_return implies a barrier for waitqueue_active
454 */
455 if ((atomic_dec_return(&delayed_root->items) <
456 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
457 waitqueue_active(&delayed_root->wait))
458 wake_up(&delayed_root->wait);
459}
460
461static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
462{
463 struct rb_root *root;
464 struct btrfs_delayed_root *delayed_root;
465
466 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
467
468 BUG_ON(!delayed_root);
469 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
470 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
471
472 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
473 root = &delayed_item->delayed_node->ins_root;
474 else
475 root = &delayed_item->delayed_node->del_root;
476
477 rb_erase(&delayed_item->rb_node, root);
478 delayed_item->delayed_node->count--;
479
480 finish_one_item(delayed_root);
481}
482
483static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
484{
485 if (item) {
486 __btrfs_remove_delayed_item(item);
487 if (atomic_dec_and_test(&item->refs))
488 kfree(item);
489 }
490}
491
492static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
493 struct btrfs_delayed_node *delayed_node)
494{
495 struct rb_node *p;
496 struct btrfs_delayed_item *item = NULL;
497
498 p = rb_first(&delayed_node->ins_root);
499 if (p)
500 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
501
502 return item;
503}
504
505static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
506 struct btrfs_delayed_node *delayed_node)
507{
508 struct rb_node *p;
509 struct btrfs_delayed_item *item = NULL;
510
511 p = rb_first(&delayed_node->del_root);
512 if (p)
513 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
514
515 return item;
516}
517
518static struct btrfs_delayed_item *__btrfs_next_delayed_item(
519 struct btrfs_delayed_item *item)
520{
521 struct rb_node *p;
522 struct btrfs_delayed_item *next = NULL;
523
524 p = rb_next(&item->rb_node);
525 if (p)
526 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
527
528 return next;
529}
530
531static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
532 struct btrfs_fs_info *fs_info,
533 struct btrfs_delayed_item *item)
534{
535 struct btrfs_block_rsv *src_rsv;
536 struct btrfs_block_rsv *dst_rsv;
537 u64 num_bytes;
538 int ret;
539
540 if (!trans->bytes_reserved)
541 return 0;
542
543 src_rsv = trans->block_rsv;
544 dst_rsv = &fs_info->delayed_block_rsv;
545
546 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
547 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
548 if (!ret) {
549 trace_btrfs_space_reservation(fs_info, "delayed_item",
550 item->key.objectid,
551 num_bytes, 1);
552 item->bytes_reserved = num_bytes;
553 }
554
555 return ret;
556}
557
558static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
559 struct btrfs_delayed_item *item)
560{
561 struct btrfs_block_rsv *rsv;
562
563 if (!item->bytes_reserved)
564 return;
565
566 rsv = &fs_info->delayed_block_rsv;
567 trace_btrfs_space_reservation(fs_info, "delayed_item",
568 item->key.objectid, item->bytes_reserved,
569 0);
570 btrfs_block_rsv_release(fs_info, rsv,
571 item->bytes_reserved);
572}
573
574static int btrfs_delayed_inode_reserve_metadata(
575 struct btrfs_trans_handle *trans,
576 struct btrfs_root *root,
577 struct inode *inode,
578 struct btrfs_delayed_node *node)
579{
580 struct btrfs_fs_info *fs_info = root->fs_info;
581 struct btrfs_block_rsv *src_rsv;
582 struct btrfs_block_rsv *dst_rsv;
583 u64 num_bytes;
584 int ret;
585 bool release = false;
586
587 src_rsv = trans->block_rsv;
588 dst_rsv = &fs_info->delayed_block_rsv;
589
590 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
591
592 /*
593 * If our block_rsv is the delalloc block reserve then check and see if
594 * we have our extra reservation for updating the inode. If not fall
595 * through and try to reserve space quickly.
596 *
597 * We used to try and steal from the delalloc block rsv or the global
598 * reserve, but we'd steal a full reservation, which isn't kind. We are
599 * here through delalloc which means we've likely just cowed down close
600 * to the leaf that contains the inode, so we would steal less just
601 * doing the fallback inode update, so if we do end up having to steal
602 * from the global block rsv we hopefully only steal one or two blocks
603 * worth which is less likely to hurt us.
604 */
605 if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
606 spin_lock(&BTRFS_I(inode)->lock);
607 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
608 &BTRFS_I(inode)->runtime_flags))
609 release = true;
610 else
611 src_rsv = NULL;
612 spin_unlock(&BTRFS_I(inode)->lock);
613 }
614
615 /*
616 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
617 * which doesn't reserve space for speed. This is a problem since we
618 * still need to reserve space for this update, so try to reserve the
619 * space.
620 *
621 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
622 * we're accounted for.
623 */
624 if (!src_rsv || (!trans->bytes_reserved &&
625 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
626 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
627 BTRFS_RESERVE_NO_FLUSH);
628 /*
629 * Since we're under a transaction reserve_metadata_bytes could
630 * try to commit the transaction which will make it return
631 * EAGAIN to make us stop the transaction we have, so return
632 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
633 */
634 if (ret == -EAGAIN)
635 ret = -ENOSPC;
636 if (!ret) {
637 node->bytes_reserved = num_bytes;
638 trace_btrfs_space_reservation(fs_info,
639 "delayed_inode",
640 btrfs_ino(inode),
641 num_bytes, 1);
642 }
643 return ret;
644 }
645
646 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
647
648 /*
649 * Migrate only takes a reservation, it doesn't touch the size of the
650 * block_rsv. This is to simplify people who don't normally have things
651 * migrated from their block rsv. If they go to release their
652 * reservation, that will decrease the size as well, so if migrate
653 * reduced size we'd end up with a negative size. But for the
654 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
655 * but we could in fact do this reserve/migrate dance several times
656 * between the time we did the original reservation and we'd clean it
657 * up. So to take care of this, release the space for the meta
658 * reservation here. I think it may be time for a documentation page on
659 * how block rsvs. work.
660 */
661 if (!ret) {
662 trace_btrfs_space_reservation(fs_info, "delayed_inode",
663 btrfs_ino(inode), num_bytes, 1);
664 node->bytes_reserved = num_bytes;
665 }
666
667 if (release) {
668 trace_btrfs_space_reservation(fs_info, "delalloc",
669 btrfs_ino(inode), num_bytes, 0);
670 btrfs_block_rsv_release(fs_info, src_rsv, num_bytes);
671 }
672
673 return ret;
674}
675
676static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
677 struct btrfs_delayed_node *node)
678{
679 struct btrfs_block_rsv *rsv;
680
681 if (!node->bytes_reserved)
682 return;
683
684 rsv = &fs_info->delayed_block_rsv;
685 trace_btrfs_space_reservation(fs_info, "delayed_inode",
686 node->inode_id, node->bytes_reserved, 0);
687 btrfs_block_rsv_release(fs_info, rsv,
688 node->bytes_reserved);
689 node->bytes_reserved = 0;
690}
691
692/*
693 * This helper will insert some continuous items into the same leaf according
694 * to the free space of the leaf.
695 */
696static int btrfs_batch_insert_items(struct btrfs_root *root,
697 struct btrfs_path *path,
698 struct btrfs_delayed_item *item)
699{
700 struct btrfs_fs_info *fs_info = root->fs_info;
701 struct btrfs_delayed_item *curr, *next;
702 int free_space;
703 int total_data_size = 0, total_size = 0;
704 struct extent_buffer *leaf;
705 char *data_ptr;
706 struct btrfs_key *keys;
707 u32 *data_size;
708 struct list_head head;
709 int slot;
710 int nitems;
711 int i;
712 int ret = 0;
713
714 BUG_ON(!path->nodes[0]);
715
716 leaf = path->nodes[0];
717 free_space = btrfs_leaf_free_space(fs_info, leaf);
718 INIT_LIST_HEAD(&head);
719
720 next = item;
721 nitems = 0;
722
723 /*
724 * count the number of the continuous items that we can insert in batch
725 */
726 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
727 free_space) {
728 total_data_size += next->data_len;
729 total_size += next->data_len + sizeof(struct btrfs_item);
730 list_add_tail(&next->tree_list, &head);
731 nitems++;
732
733 curr = next;
734 next = __btrfs_next_delayed_item(curr);
735 if (!next)
736 break;
737
738 if (!btrfs_is_continuous_delayed_item(curr, next))
739 break;
740 }
741
742 if (!nitems) {
743 ret = 0;
744 goto out;
745 }
746
747 /*
748 * we need allocate some memory space, but it might cause the task
749 * to sleep, so we set all locked nodes in the path to blocking locks
750 * first.
751 */
752 btrfs_set_path_blocking(path);
753
754 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
755 if (!keys) {
756 ret = -ENOMEM;
757 goto out;
758 }
759
760 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
761 if (!data_size) {
762 ret = -ENOMEM;
763 goto error;
764 }
765
766 /* get keys of all the delayed items */
767 i = 0;
768 list_for_each_entry(next, &head, tree_list) {
769 keys[i] = next->key;
770 data_size[i] = next->data_len;
771 i++;
772 }
773
774 /* reset all the locked nodes in the patch to spinning locks. */
775 btrfs_clear_path_blocking(path, NULL, 0);
776
777 /* insert the keys of the items */
778 setup_items_for_insert(root, path, keys, data_size,
779 total_data_size, total_size, nitems);
780
781 /* insert the dir index items */
782 slot = path->slots[0];
783 list_for_each_entry_safe(curr, next, &head, tree_list) {
784 data_ptr = btrfs_item_ptr(leaf, slot, char);
785 write_extent_buffer(leaf, &curr->data,
786 (unsigned long)data_ptr,
787 curr->data_len);
788 slot++;
789
790 btrfs_delayed_item_release_metadata(fs_info, curr);
791
792 list_del(&curr->tree_list);
793 btrfs_release_delayed_item(curr);
794 }
795
796error:
797 kfree(data_size);
798 kfree(keys);
799out:
800 return ret;
801}
802
803/*
804 * This helper can just do simple insertion that needn't extend item for new
805 * data, such as directory name index insertion, inode insertion.
806 */
807static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
808 struct btrfs_root *root,
809 struct btrfs_path *path,
810 struct btrfs_delayed_item *delayed_item)
811{
812 struct btrfs_fs_info *fs_info = root->fs_info;
813 struct extent_buffer *leaf;
814 char *ptr;
815 int ret;
816
817 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
818 delayed_item->data_len);
819 if (ret < 0 && ret != -EEXIST)
820 return ret;
821
822 leaf = path->nodes[0];
823
824 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
825
826 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
827 delayed_item->data_len);
828 btrfs_mark_buffer_dirty(leaf);
829
830 btrfs_delayed_item_release_metadata(fs_info, delayed_item);
831 return 0;
832}
833
834/*
835 * we insert an item first, then if there are some continuous items, we try
836 * to insert those items into the same leaf.
837 */
838static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
839 struct btrfs_path *path,
840 struct btrfs_root *root,
841 struct btrfs_delayed_node *node)
842{
843 struct btrfs_delayed_item *curr, *prev;
844 int ret = 0;
845
846do_again:
847 mutex_lock(&node->mutex);
848 curr = __btrfs_first_delayed_insertion_item(node);
849 if (!curr)
850 goto insert_end;
851
852 ret = btrfs_insert_delayed_item(trans, root, path, curr);
853 if (ret < 0) {
854 btrfs_release_path(path);
855 goto insert_end;
856 }
857
858 prev = curr;
859 curr = __btrfs_next_delayed_item(prev);
860 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
861 /* insert the continuous items into the same leaf */
862 path->slots[0]++;
863 btrfs_batch_insert_items(root, path, curr);
864 }
865 btrfs_release_delayed_item(prev);
866 btrfs_mark_buffer_dirty(path->nodes[0]);
867
868 btrfs_release_path(path);
869 mutex_unlock(&node->mutex);
870 goto do_again;
871
872insert_end:
873 mutex_unlock(&node->mutex);
874 return ret;
875}
876
877static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
878 struct btrfs_root *root,
879 struct btrfs_path *path,
880 struct btrfs_delayed_item *item)
881{
882 struct btrfs_fs_info *fs_info = root->fs_info;
883 struct btrfs_delayed_item *curr, *next;
884 struct extent_buffer *leaf;
885 struct btrfs_key key;
886 struct list_head head;
887 int nitems, i, last_item;
888 int ret = 0;
889
890 BUG_ON(!path->nodes[0]);
891
892 leaf = path->nodes[0];
893
894 i = path->slots[0];
895 last_item = btrfs_header_nritems(leaf) - 1;
896 if (i > last_item)
897 return -ENOENT; /* FIXME: Is errno suitable? */
898
899 next = item;
900 INIT_LIST_HEAD(&head);
901 btrfs_item_key_to_cpu(leaf, &key, i);
902 nitems = 0;
903 /*
904 * count the number of the dir index items that we can delete in batch
905 */
906 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
907 list_add_tail(&next->tree_list, &head);
908 nitems++;
909
910 curr = next;
911 next = __btrfs_next_delayed_item(curr);
912 if (!next)
913 break;
914
915 if (!btrfs_is_continuous_delayed_item(curr, next))
916 break;
917
918 i++;
919 if (i > last_item)
920 break;
921 btrfs_item_key_to_cpu(leaf, &key, i);
922 }
923
924 if (!nitems)
925 return 0;
926
927 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
928 if (ret)
929 goto out;
930
931 list_for_each_entry_safe(curr, next, &head, tree_list) {
932 btrfs_delayed_item_release_metadata(fs_info, curr);
933 list_del(&curr->tree_list);
934 btrfs_release_delayed_item(curr);
935 }
936
937out:
938 return ret;
939}
940
941static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
942 struct btrfs_path *path,
943 struct btrfs_root *root,
944 struct btrfs_delayed_node *node)
945{
946 struct btrfs_delayed_item *curr, *prev;
947 int ret = 0;
948
949do_again:
950 mutex_lock(&node->mutex);
951 curr = __btrfs_first_delayed_deletion_item(node);
952 if (!curr)
953 goto delete_fail;
954
955 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
956 if (ret < 0)
957 goto delete_fail;
958 else if (ret > 0) {
959 /*
960 * can't find the item which the node points to, so this node
961 * is invalid, just drop it.
962 */
963 prev = curr;
964 curr = __btrfs_next_delayed_item(prev);
965 btrfs_release_delayed_item(prev);
966 ret = 0;
967 btrfs_release_path(path);
968 if (curr) {
969 mutex_unlock(&node->mutex);
970 goto do_again;
971 } else
972 goto delete_fail;
973 }
974
975 btrfs_batch_delete_items(trans, root, path, curr);
976 btrfs_release_path(path);
977 mutex_unlock(&node->mutex);
978 goto do_again;
979
980delete_fail:
981 btrfs_release_path(path);
982 mutex_unlock(&node->mutex);
983 return ret;
984}
985
986static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
987{
988 struct btrfs_delayed_root *delayed_root;
989
990 if (delayed_node &&
991 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
992 BUG_ON(!delayed_node->root);
993 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
994 delayed_node->count--;
995
996 delayed_root = delayed_node->root->fs_info->delayed_root;
997 finish_one_item(delayed_root);
998 }
999}
1000
1001static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1002{
1003 struct btrfs_delayed_root *delayed_root;
1004
1005 ASSERT(delayed_node->root);
1006 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1007 delayed_node->count--;
1008
1009 delayed_root = delayed_node->root->fs_info->delayed_root;
1010 finish_one_item(delayed_root);
1011}
1012
1013static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1014 struct btrfs_root *root,
1015 struct btrfs_path *path,
1016 struct btrfs_delayed_node *node)
1017{
1018 struct btrfs_fs_info *fs_info = root->fs_info;
1019 struct btrfs_key key;
1020 struct btrfs_inode_item *inode_item;
1021 struct extent_buffer *leaf;
1022 int mod;
1023 int ret;
1024
1025 key.objectid = node->inode_id;
1026 key.type = BTRFS_INODE_ITEM_KEY;
1027 key.offset = 0;
1028
1029 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1030 mod = -1;
1031 else
1032 mod = 1;
1033
1034 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1035 if (ret > 0) {
1036 btrfs_release_path(path);
1037 return -ENOENT;
1038 } else if (ret < 0) {
1039 return ret;
1040 }
1041
1042 leaf = path->nodes[0];
1043 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1044 struct btrfs_inode_item);
1045 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1046 sizeof(struct btrfs_inode_item));
1047 btrfs_mark_buffer_dirty(leaf);
1048
1049 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1050 goto no_iref;
1051
1052 path->slots[0]++;
1053 if (path->slots[0] >= btrfs_header_nritems(leaf))
1054 goto search;
1055again:
1056 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1057 if (key.objectid != node->inode_id)
1058 goto out;
1059
1060 if (key.type != BTRFS_INODE_REF_KEY &&
1061 key.type != BTRFS_INODE_EXTREF_KEY)
1062 goto out;
1063
1064 /*
1065 * Delayed iref deletion is for the inode who has only one link,
1066 * so there is only one iref. The case that several irefs are
1067 * in the same item doesn't exist.
1068 */
1069 btrfs_del_item(trans, root, path);
1070out:
1071 btrfs_release_delayed_iref(node);
1072no_iref:
1073 btrfs_release_path(path);
1074err_out:
1075 btrfs_delayed_inode_release_metadata(fs_info, node);
1076 btrfs_release_delayed_inode(node);
1077
1078 return ret;
1079
1080search:
1081 btrfs_release_path(path);
1082
1083 key.type = BTRFS_INODE_EXTREF_KEY;
1084 key.offset = -1;
1085 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1086 if (ret < 0)
1087 goto err_out;
1088 ASSERT(ret);
1089
1090 ret = 0;
1091 leaf = path->nodes[0];
1092 path->slots[0]--;
1093 goto again;
1094}
1095
1096static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 struct btrfs_delayed_node *node)
1100{
1101 int ret;
1102
1103 mutex_lock(&node->mutex);
1104 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1105 mutex_unlock(&node->mutex);
1106 return 0;
1107 }
1108
1109 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1110 mutex_unlock(&node->mutex);
1111 return ret;
1112}
1113
1114static inline int
1115__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1116 struct btrfs_path *path,
1117 struct btrfs_delayed_node *node)
1118{
1119 int ret;
1120
1121 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1122 if (ret)
1123 return ret;
1124
1125 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1126 if (ret)
1127 return ret;
1128
1129 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1130 return ret;
1131}
1132
1133/*
1134 * Called when committing the transaction.
1135 * Returns 0 on success.
1136 * Returns < 0 on error and returns with an aborted transaction with any
1137 * outstanding delayed items cleaned up.
1138 */
1139static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1140 struct btrfs_fs_info *fs_info, int nr)
1141{
1142 struct btrfs_delayed_root *delayed_root;
1143 struct btrfs_delayed_node *curr_node, *prev_node;
1144 struct btrfs_path *path;
1145 struct btrfs_block_rsv *block_rsv;
1146 int ret = 0;
1147 bool count = (nr > 0);
1148
1149 if (trans->aborted)
1150 return -EIO;
1151
1152 path = btrfs_alloc_path();
1153 if (!path)
1154 return -ENOMEM;
1155 path->leave_spinning = 1;
1156
1157 block_rsv = trans->block_rsv;
1158 trans->block_rsv = &fs_info->delayed_block_rsv;
1159
1160 delayed_root = fs_info->delayed_root;
1161
1162 curr_node = btrfs_first_delayed_node(delayed_root);
1163 while (curr_node && (!count || (count && nr--))) {
1164 ret = __btrfs_commit_inode_delayed_items(trans, path,
1165 curr_node);
1166 if (ret) {
1167 btrfs_release_delayed_node(curr_node);
1168 curr_node = NULL;
1169 btrfs_abort_transaction(trans, ret);
1170 break;
1171 }
1172
1173 prev_node = curr_node;
1174 curr_node = btrfs_next_delayed_node(curr_node);
1175 btrfs_release_delayed_node(prev_node);
1176 }
1177
1178 if (curr_node)
1179 btrfs_release_delayed_node(curr_node);
1180 btrfs_free_path(path);
1181 trans->block_rsv = block_rsv;
1182
1183 return ret;
1184}
1185
1186int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1187 struct btrfs_fs_info *fs_info)
1188{
1189 return __btrfs_run_delayed_items(trans, fs_info, -1);
1190}
1191
1192int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1193 struct btrfs_fs_info *fs_info, int nr)
1194{
1195 return __btrfs_run_delayed_items(trans, fs_info, nr);
1196}
1197
1198int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1199 struct inode *inode)
1200{
1201 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1202 struct btrfs_path *path;
1203 struct btrfs_block_rsv *block_rsv;
1204 int ret;
1205
1206 if (!delayed_node)
1207 return 0;
1208
1209 mutex_lock(&delayed_node->mutex);
1210 if (!delayed_node->count) {
1211 mutex_unlock(&delayed_node->mutex);
1212 btrfs_release_delayed_node(delayed_node);
1213 return 0;
1214 }
1215 mutex_unlock(&delayed_node->mutex);
1216
1217 path = btrfs_alloc_path();
1218 if (!path) {
1219 btrfs_release_delayed_node(delayed_node);
1220 return -ENOMEM;
1221 }
1222 path->leave_spinning = 1;
1223
1224 block_rsv = trans->block_rsv;
1225 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1226
1227 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1228
1229 btrfs_release_delayed_node(delayed_node);
1230 btrfs_free_path(path);
1231 trans->block_rsv = block_rsv;
1232
1233 return ret;
1234}
1235
1236int btrfs_commit_inode_delayed_inode(struct inode *inode)
1237{
1238 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1239 struct btrfs_trans_handle *trans;
1240 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1241 struct btrfs_path *path;
1242 struct btrfs_block_rsv *block_rsv;
1243 int ret;
1244
1245 if (!delayed_node)
1246 return 0;
1247
1248 mutex_lock(&delayed_node->mutex);
1249 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1250 mutex_unlock(&delayed_node->mutex);
1251 btrfs_release_delayed_node(delayed_node);
1252 return 0;
1253 }
1254 mutex_unlock(&delayed_node->mutex);
1255
1256 trans = btrfs_join_transaction(delayed_node->root);
1257 if (IS_ERR(trans)) {
1258 ret = PTR_ERR(trans);
1259 goto out;
1260 }
1261
1262 path = btrfs_alloc_path();
1263 if (!path) {
1264 ret = -ENOMEM;
1265 goto trans_out;
1266 }
1267 path->leave_spinning = 1;
1268
1269 block_rsv = trans->block_rsv;
1270 trans->block_rsv = &fs_info->delayed_block_rsv;
1271
1272 mutex_lock(&delayed_node->mutex);
1273 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1274 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1275 path, delayed_node);
1276 else
1277 ret = 0;
1278 mutex_unlock(&delayed_node->mutex);
1279
1280 btrfs_free_path(path);
1281 trans->block_rsv = block_rsv;
1282trans_out:
1283 btrfs_end_transaction(trans);
1284 btrfs_btree_balance_dirty(fs_info);
1285out:
1286 btrfs_release_delayed_node(delayed_node);
1287
1288 return ret;
1289}
1290
1291void btrfs_remove_delayed_node(struct inode *inode)
1292{
1293 struct btrfs_delayed_node *delayed_node;
1294
1295 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1296 if (!delayed_node)
1297 return;
1298
1299 BTRFS_I(inode)->delayed_node = NULL;
1300 btrfs_release_delayed_node(delayed_node);
1301}
1302
1303struct btrfs_async_delayed_work {
1304 struct btrfs_delayed_root *delayed_root;
1305 int nr;
1306 struct btrfs_work work;
1307};
1308
1309static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1310{
1311 struct btrfs_async_delayed_work *async_work;
1312 struct btrfs_delayed_root *delayed_root;
1313 struct btrfs_trans_handle *trans;
1314 struct btrfs_path *path;
1315 struct btrfs_delayed_node *delayed_node = NULL;
1316 struct btrfs_root *root;
1317 struct btrfs_block_rsv *block_rsv;
1318 int total_done = 0;
1319
1320 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1321 delayed_root = async_work->delayed_root;
1322
1323 path = btrfs_alloc_path();
1324 if (!path)
1325 goto out;
1326
1327again:
1328 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1329 goto free_path;
1330
1331 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1332 if (!delayed_node)
1333 goto free_path;
1334
1335 path->leave_spinning = 1;
1336 root = delayed_node->root;
1337
1338 trans = btrfs_join_transaction(root);
1339 if (IS_ERR(trans))
1340 goto release_path;
1341
1342 block_rsv = trans->block_rsv;
1343 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1344
1345 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1346
1347 trans->block_rsv = block_rsv;
1348 btrfs_end_transaction(trans);
1349 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1350
1351release_path:
1352 btrfs_release_path(path);
1353 total_done++;
1354
1355 btrfs_release_prepared_delayed_node(delayed_node);
1356 if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
1357 total_done < async_work->nr)
1358 goto again;
1359
1360free_path:
1361 btrfs_free_path(path);
1362out:
1363 wake_up(&delayed_root->wait);
1364 kfree(async_work);
1365}
1366
1367
1368static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1369 struct btrfs_fs_info *fs_info, int nr)
1370{
1371 struct btrfs_async_delayed_work *async_work;
1372
1373 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
1374 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1375 return 0;
1376
1377 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1378 if (!async_work)
1379 return -ENOMEM;
1380
1381 async_work->delayed_root = delayed_root;
1382 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1383 btrfs_async_run_delayed_root, NULL, NULL);
1384 async_work->nr = nr;
1385
1386 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1387 return 0;
1388}
1389
1390void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1391{
1392 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1393}
1394
1395static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1396{
1397 int val = atomic_read(&delayed_root->items_seq);
1398
1399 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1400 return 1;
1401
1402 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1403 return 1;
1404
1405 return 0;
1406}
1407
1408void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1409{
1410 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1411
1412 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1413 return;
1414
1415 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1416 int seq;
1417 int ret;
1418
1419 seq = atomic_read(&delayed_root->items_seq);
1420
1421 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1422 if (ret)
1423 return;
1424
1425 wait_event_interruptible(delayed_root->wait,
1426 could_end_wait(delayed_root, seq));
1427 return;
1428 }
1429
1430 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1431}
1432
1433/* Will return 0 or -ENOMEM */
1434int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1435 struct btrfs_fs_info *fs_info,
1436 const char *name, int name_len,
1437 struct inode *dir,
1438 struct btrfs_disk_key *disk_key, u8 type,
1439 u64 index)
1440{
1441 struct btrfs_delayed_node *delayed_node;
1442 struct btrfs_delayed_item *delayed_item;
1443 struct btrfs_dir_item *dir_item;
1444 int ret;
1445
1446 delayed_node = btrfs_get_or_create_delayed_node(dir);
1447 if (IS_ERR(delayed_node))
1448 return PTR_ERR(delayed_node);
1449
1450 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1451 if (!delayed_item) {
1452 ret = -ENOMEM;
1453 goto release_node;
1454 }
1455
1456 delayed_item->key.objectid = btrfs_ino(dir);
1457 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1458 delayed_item->key.offset = index;
1459
1460 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1461 dir_item->location = *disk_key;
1462 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1463 btrfs_set_stack_dir_data_len(dir_item, 0);
1464 btrfs_set_stack_dir_name_len(dir_item, name_len);
1465 btrfs_set_stack_dir_type(dir_item, type);
1466 memcpy((char *)(dir_item + 1), name, name_len);
1467
1468 ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
1469 /*
1470 * we have reserved enough space when we start a new transaction,
1471 * so reserving metadata failure is impossible
1472 */
1473 BUG_ON(ret);
1474
1475
1476 mutex_lock(&delayed_node->mutex);
1477 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1478 if (unlikely(ret)) {
1479 btrfs_err(fs_info,
1480 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1481 name_len, name, delayed_node->root->objectid,
1482 delayed_node->inode_id, ret);
1483 BUG();
1484 }
1485 mutex_unlock(&delayed_node->mutex);
1486
1487release_node:
1488 btrfs_release_delayed_node(delayed_node);
1489 return ret;
1490}
1491
1492static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1493 struct btrfs_delayed_node *node,
1494 struct btrfs_key *key)
1495{
1496 struct btrfs_delayed_item *item;
1497
1498 mutex_lock(&node->mutex);
1499 item = __btrfs_lookup_delayed_insertion_item(node, key);
1500 if (!item) {
1501 mutex_unlock(&node->mutex);
1502 return 1;
1503 }
1504
1505 btrfs_delayed_item_release_metadata(fs_info, item);
1506 btrfs_release_delayed_item(item);
1507 mutex_unlock(&node->mutex);
1508 return 0;
1509}
1510
1511int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1512 struct btrfs_fs_info *fs_info,
1513 struct inode *dir, u64 index)
1514{
1515 struct btrfs_delayed_node *node;
1516 struct btrfs_delayed_item *item;
1517 struct btrfs_key item_key;
1518 int ret;
1519
1520 node = btrfs_get_or_create_delayed_node(dir);
1521 if (IS_ERR(node))
1522 return PTR_ERR(node);
1523
1524 item_key.objectid = btrfs_ino(dir);
1525 item_key.type = BTRFS_DIR_INDEX_KEY;
1526 item_key.offset = index;
1527
1528 ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1529 if (!ret)
1530 goto end;
1531
1532 item = btrfs_alloc_delayed_item(0);
1533 if (!item) {
1534 ret = -ENOMEM;
1535 goto end;
1536 }
1537
1538 item->key = item_key;
1539
1540 ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
1541 /*
1542 * we have reserved enough space when we start a new transaction,
1543 * so reserving metadata failure is impossible.
1544 */
1545 BUG_ON(ret);
1546
1547 mutex_lock(&node->mutex);
1548 ret = __btrfs_add_delayed_deletion_item(node, item);
1549 if (unlikely(ret)) {
1550 btrfs_err(fs_info,
1551 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1552 index, node->root->objectid, node->inode_id, ret);
1553 BUG();
1554 }
1555 mutex_unlock(&node->mutex);
1556end:
1557 btrfs_release_delayed_node(node);
1558 return ret;
1559}
1560
1561int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1562{
1563 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1564
1565 if (!delayed_node)
1566 return -ENOENT;
1567
1568 /*
1569 * Since we have held i_mutex of this directory, it is impossible that
1570 * a new directory index is added into the delayed node and index_cnt
1571 * is updated now. So we needn't lock the delayed node.
1572 */
1573 if (!delayed_node->index_cnt) {
1574 btrfs_release_delayed_node(delayed_node);
1575 return -EINVAL;
1576 }
1577
1578 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1579 btrfs_release_delayed_node(delayed_node);
1580 return 0;
1581}
1582
1583bool btrfs_readdir_get_delayed_items(struct inode *inode,
1584 struct list_head *ins_list,
1585 struct list_head *del_list)
1586{
1587 struct btrfs_delayed_node *delayed_node;
1588 struct btrfs_delayed_item *item;
1589
1590 delayed_node = btrfs_get_delayed_node(inode);
1591 if (!delayed_node)
1592 return false;
1593
1594 /*
1595 * We can only do one readdir with delayed items at a time because of
1596 * item->readdir_list.
1597 */
1598 inode_unlock_shared(inode);
1599 inode_lock(inode);
1600
1601 mutex_lock(&delayed_node->mutex);
1602 item = __btrfs_first_delayed_insertion_item(delayed_node);
1603 while (item) {
1604 atomic_inc(&item->refs);
1605 list_add_tail(&item->readdir_list, ins_list);
1606 item = __btrfs_next_delayed_item(item);
1607 }
1608
1609 item = __btrfs_first_delayed_deletion_item(delayed_node);
1610 while (item) {
1611 atomic_inc(&item->refs);
1612 list_add_tail(&item->readdir_list, del_list);
1613 item = __btrfs_next_delayed_item(item);
1614 }
1615 mutex_unlock(&delayed_node->mutex);
1616 /*
1617 * This delayed node is still cached in the btrfs inode, so refs
1618 * must be > 1 now, and we needn't check it is going to be freed
1619 * or not.
1620 *
1621 * Besides that, this function is used to read dir, we do not
1622 * insert/delete delayed items in this period. So we also needn't
1623 * requeue or dequeue this delayed node.
1624 */
1625 atomic_dec(&delayed_node->refs);
1626
1627 return true;
1628}
1629
1630void btrfs_readdir_put_delayed_items(struct inode *inode,
1631 struct list_head *ins_list,
1632 struct list_head *del_list)
1633{
1634 struct btrfs_delayed_item *curr, *next;
1635
1636 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1637 list_del(&curr->readdir_list);
1638 if (atomic_dec_and_test(&curr->refs))
1639 kfree(curr);
1640 }
1641
1642 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1643 list_del(&curr->readdir_list);
1644 if (atomic_dec_and_test(&curr->refs))
1645 kfree(curr);
1646 }
1647
1648 /*
1649 * The VFS is going to do up_read(), so we need to downgrade back to a
1650 * read lock.
1651 */
1652 downgrade_write(&inode->i_rwsem);
1653}
1654
1655int btrfs_should_delete_dir_index(struct list_head *del_list,
1656 u64 index)
1657{
1658 struct btrfs_delayed_item *curr, *next;
1659 int ret;
1660
1661 if (list_empty(del_list))
1662 return 0;
1663
1664 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1665 if (curr->key.offset > index)
1666 break;
1667
1668 list_del(&curr->readdir_list);
1669 ret = (curr->key.offset == index);
1670
1671 if (atomic_dec_and_test(&curr->refs))
1672 kfree(curr);
1673
1674 if (ret)
1675 return 1;
1676 else
1677 continue;
1678 }
1679 return 0;
1680}
1681
1682/*
1683 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1684 *
1685 */
1686int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1687 struct list_head *ins_list)
1688{
1689 struct btrfs_dir_item *di;
1690 struct btrfs_delayed_item *curr, *next;
1691 struct btrfs_key location;
1692 char *name;
1693 int name_len;
1694 int over = 0;
1695 unsigned char d_type;
1696
1697 if (list_empty(ins_list))
1698 return 0;
1699
1700 /*
1701 * Changing the data of the delayed item is impossible. So
1702 * we needn't lock them. And we have held i_mutex of the
1703 * directory, nobody can delete any directory indexes now.
1704 */
1705 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1706 list_del(&curr->readdir_list);
1707
1708 if (curr->key.offset < ctx->pos) {
1709 if (atomic_dec_and_test(&curr->refs))
1710 kfree(curr);
1711 continue;
1712 }
1713
1714 ctx->pos = curr->key.offset;
1715
1716 di = (struct btrfs_dir_item *)curr->data;
1717 name = (char *)(di + 1);
1718 name_len = btrfs_stack_dir_name_len(di);
1719
1720 d_type = btrfs_filetype_table[di->type];
1721 btrfs_disk_key_to_cpu(&location, &di->location);
1722
1723 over = !dir_emit(ctx, name, name_len,
1724 location.objectid, d_type);
1725
1726 if (atomic_dec_and_test(&curr->refs))
1727 kfree(curr);
1728
1729 if (over)
1730 return 1;
1731 }
1732 return 0;
1733}
1734
1735static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1736 struct btrfs_inode_item *inode_item,
1737 struct inode *inode)
1738{
1739 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1740 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1741 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1742 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1743 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1744 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1745 btrfs_set_stack_inode_generation(inode_item,
1746 BTRFS_I(inode)->generation);
1747 btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1748 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1749 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1750 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1751 btrfs_set_stack_inode_block_group(inode_item, 0);
1752
1753 btrfs_set_stack_timespec_sec(&inode_item->atime,
1754 inode->i_atime.tv_sec);
1755 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1756 inode->i_atime.tv_nsec);
1757
1758 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1759 inode->i_mtime.tv_sec);
1760 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1761 inode->i_mtime.tv_nsec);
1762
1763 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1764 inode->i_ctime.tv_sec);
1765 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1766 inode->i_ctime.tv_nsec);
1767
1768 btrfs_set_stack_timespec_sec(&inode_item->otime,
1769 BTRFS_I(inode)->i_otime.tv_sec);
1770 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1771 BTRFS_I(inode)->i_otime.tv_nsec);
1772}
1773
1774int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1775{
1776 struct btrfs_delayed_node *delayed_node;
1777 struct btrfs_inode_item *inode_item;
1778
1779 delayed_node = btrfs_get_delayed_node(inode);
1780 if (!delayed_node)
1781 return -ENOENT;
1782
1783 mutex_lock(&delayed_node->mutex);
1784 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1785 mutex_unlock(&delayed_node->mutex);
1786 btrfs_release_delayed_node(delayed_node);
1787 return -ENOENT;
1788 }
1789
1790 inode_item = &delayed_node->inode_item;
1791
1792 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1793 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1794 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1795 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1796 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1797 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1798 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1799 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1800
1801 inode->i_version = btrfs_stack_inode_sequence(inode_item);
1802 inode->i_rdev = 0;
1803 *rdev = btrfs_stack_inode_rdev(inode_item);
1804 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1805
1806 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1807 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1808
1809 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1810 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1811
1812 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1813 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1814
1815 BTRFS_I(inode)->i_otime.tv_sec =
1816 btrfs_stack_timespec_sec(&inode_item->otime);
1817 BTRFS_I(inode)->i_otime.tv_nsec =
1818 btrfs_stack_timespec_nsec(&inode_item->otime);
1819
1820 inode->i_generation = BTRFS_I(inode)->generation;
1821 BTRFS_I(inode)->index_cnt = (u64)-1;
1822
1823 mutex_unlock(&delayed_node->mutex);
1824 btrfs_release_delayed_node(delayed_node);
1825 return 0;
1826}
1827
1828int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1829 struct btrfs_root *root, struct inode *inode)
1830{
1831 struct btrfs_delayed_node *delayed_node;
1832 int ret = 0;
1833
1834 delayed_node = btrfs_get_or_create_delayed_node(inode);
1835 if (IS_ERR(delayed_node))
1836 return PTR_ERR(delayed_node);
1837
1838 mutex_lock(&delayed_node->mutex);
1839 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1840 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1841 goto release_node;
1842 }
1843
1844 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1845 delayed_node);
1846 if (ret)
1847 goto release_node;
1848
1849 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1850 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1851 delayed_node->count++;
1852 atomic_inc(&root->fs_info->delayed_root->items);
1853release_node:
1854 mutex_unlock(&delayed_node->mutex);
1855 btrfs_release_delayed_node(delayed_node);
1856 return ret;
1857}
1858
1859int btrfs_delayed_delete_inode_ref(struct inode *inode)
1860{
1861 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1862 struct btrfs_delayed_node *delayed_node;
1863
1864 /*
1865 * we don't do delayed inode updates during log recovery because it
1866 * leads to enospc problems. This means we also can't do
1867 * delayed inode refs
1868 */
1869 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1870 return -EAGAIN;
1871
1872 delayed_node = btrfs_get_or_create_delayed_node(inode);
1873 if (IS_ERR(delayed_node))
1874 return PTR_ERR(delayed_node);
1875
1876 /*
1877 * We don't reserve space for inode ref deletion is because:
1878 * - We ONLY do async inode ref deletion for the inode who has only
1879 * one link(i_nlink == 1), it means there is only one inode ref.
1880 * And in most case, the inode ref and the inode item are in the
1881 * same leaf, and we will deal with them at the same time.
1882 * Since we are sure we will reserve the space for the inode item,
1883 * it is unnecessary to reserve space for inode ref deletion.
1884 * - If the inode ref and the inode item are not in the same leaf,
1885 * We also needn't worry about enospc problem, because we reserve
1886 * much more space for the inode update than it needs.
1887 * - At the worst, we can steal some space from the global reservation.
1888 * It is very rare.
1889 */
1890 mutex_lock(&delayed_node->mutex);
1891 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1892 goto release_node;
1893
1894 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1895 delayed_node->count++;
1896 atomic_inc(&fs_info->delayed_root->items);
1897release_node:
1898 mutex_unlock(&delayed_node->mutex);
1899 btrfs_release_delayed_node(delayed_node);
1900 return 0;
1901}
1902
1903static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1904{
1905 struct btrfs_root *root = delayed_node->root;
1906 struct btrfs_fs_info *fs_info = root->fs_info;
1907 struct btrfs_delayed_item *curr_item, *prev_item;
1908
1909 mutex_lock(&delayed_node->mutex);
1910 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1911 while (curr_item) {
1912 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1913 prev_item = curr_item;
1914 curr_item = __btrfs_next_delayed_item(prev_item);
1915 btrfs_release_delayed_item(prev_item);
1916 }
1917
1918 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1919 while (curr_item) {
1920 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1921 prev_item = curr_item;
1922 curr_item = __btrfs_next_delayed_item(prev_item);
1923 btrfs_release_delayed_item(prev_item);
1924 }
1925
1926 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1927 btrfs_release_delayed_iref(delayed_node);
1928
1929 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1930 btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
1931 btrfs_release_delayed_inode(delayed_node);
1932 }
1933 mutex_unlock(&delayed_node->mutex);
1934}
1935
1936void btrfs_kill_delayed_inode_items(struct inode *inode)
1937{
1938 struct btrfs_delayed_node *delayed_node;
1939
1940 delayed_node = btrfs_get_delayed_node(inode);
1941 if (!delayed_node)
1942 return;
1943
1944 __btrfs_kill_delayed_node(delayed_node);
1945 btrfs_release_delayed_node(delayed_node);
1946}
1947
1948void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1949{
1950 u64 inode_id = 0;
1951 struct btrfs_delayed_node *delayed_nodes[8];
1952 int i, n;
1953
1954 while (1) {
1955 spin_lock(&root->inode_lock);
1956 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1957 (void **)delayed_nodes, inode_id,
1958 ARRAY_SIZE(delayed_nodes));
1959 if (!n) {
1960 spin_unlock(&root->inode_lock);
1961 break;
1962 }
1963
1964 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1965
1966 for (i = 0; i < n; i++)
1967 atomic_inc(&delayed_nodes[i]->refs);
1968 spin_unlock(&root->inode_lock);
1969
1970 for (i = 0; i < n; i++) {
1971 __btrfs_kill_delayed_node(delayed_nodes[i]);
1972 btrfs_release_delayed_node(delayed_nodes[i]);
1973 }
1974 }
1975}
1976
1977void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1978{
1979 struct btrfs_delayed_node *curr_node, *prev_node;
1980
1981 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1982 while (curr_node) {
1983 __btrfs_kill_delayed_node(curr_node);
1984
1985 prev_node = curr_node;
1986 curr_node = btrfs_next_delayed_node(curr_node);
1987 btrfs_release_delayed_node(prev_node);
1988 }
1989}
1990