Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7#include <linux/slab.h>
8#include <linux/iversion.h>
9#include "misc.h"
10#include "delayed-inode.h"
11#include "disk-io.h"
12#include "transaction.h"
13#include "ctree.h"
14#include "qgroup.h"
15
16#define BTRFS_DELAYED_WRITEBACK 512
17#define BTRFS_DELAYED_BACKGROUND 128
18#define BTRFS_DELAYED_BATCH 16
19
20static struct kmem_cache *delayed_node_cache;
21
22int __init btrfs_delayed_inode_init(void)
23{
24 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
25 sizeof(struct btrfs_delayed_node),
26 0,
27 SLAB_MEM_SPREAD,
28 NULL);
29 if (!delayed_node_cache)
30 return -ENOMEM;
31 return 0;
32}
33
34void __cold btrfs_delayed_inode_exit(void)
35{
36 kmem_cache_destroy(delayed_node_cache);
37}
38
39static inline void btrfs_init_delayed_node(
40 struct btrfs_delayed_node *delayed_node,
41 struct btrfs_root *root, u64 inode_id)
42{
43 delayed_node->root = root;
44 delayed_node->inode_id = inode_id;
45 refcount_set(&delayed_node->refs, 0);
46 delayed_node->ins_root = RB_ROOT_CACHED;
47 delayed_node->del_root = RB_ROOT_CACHED;
48 mutex_init(&delayed_node->mutex);
49 INIT_LIST_HEAD(&delayed_node->n_list);
50 INIT_LIST_HEAD(&delayed_node->p_list);
51}
52
53static inline int btrfs_is_continuous_delayed_item(
54 struct btrfs_delayed_item *item1,
55 struct btrfs_delayed_item *item2)
56{
57 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
58 item1->key.objectid == item2->key.objectid &&
59 item1->key.type == item2->key.type &&
60 item1->key.offset + 1 == item2->key.offset)
61 return 1;
62 return 0;
63}
64
65static struct btrfs_delayed_node *btrfs_get_delayed_node(
66 struct btrfs_inode *btrfs_inode)
67{
68 struct btrfs_root *root = btrfs_inode->root;
69 u64 ino = btrfs_ino(btrfs_inode);
70 struct btrfs_delayed_node *node;
71
72 node = READ_ONCE(btrfs_inode->delayed_node);
73 if (node) {
74 refcount_inc(&node->refs);
75 return node;
76 }
77
78 spin_lock(&root->inode_lock);
79 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
80
81 if (node) {
82 if (btrfs_inode->delayed_node) {
83 refcount_inc(&node->refs); /* can be accessed */
84 BUG_ON(btrfs_inode->delayed_node != node);
85 spin_unlock(&root->inode_lock);
86 return node;
87 }
88
89 /*
90 * It's possible that we're racing into the middle of removing
91 * this node from the radix tree. In this case, the refcount
92 * was zero and it should never go back to one. Just return
93 * NULL like it was never in the radix at all; our release
94 * function is in the process of removing it.
95 *
96 * Some implementations of refcount_inc refuse to bump the
97 * refcount once it has hit zero. If we don't do this dance
98 * here, refcount_inc() may decide to just WARN_ONCE() instead
99 * of actually bumping the refcount.
100 *
101 * If this node is properly in the radix, we want to bump the
102 * refcount twice, once for the inode and once for this get
103 * operation.
104 */
105 if (refcount_inc_not_zero(&node->refs)) {
106 refcount_inc(&node->refs);
107 btrfs_inode->delayed_node = node;
108 } else {
109 node = NULL;
110 }
111
112 spin_unlock(&root->inode_lock);
113 return node;
114 }
115 spin_unlock(&root->inode_lock);
116
117 return NULL;
118}
119
120/* Will return either the node or PTR_ERR(-ENOMEM) */
121static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
122 struct btrfs_inode *btrfs_inode)
123{
124 struct btrfs_delayed_node *node;
125 struct btrfs_root *root = btrfs_inode->root;
126 u64 ino = btrfs_ino(btrfs_inode);
127 int ret;
128
129again:
130 node = btrfs_get_delayed_node(btrfs_inode);
131 if (node)
132 return node;
133
134 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
135 if (!node)
136 return ERR_PTR(-ENOMEM);
137 btrfs_init_delayed_node(node, root, ino);
138
139 /* cached in the btrfs inode and can be accessed */
140 refcount_set(&node->refs, 2);
141
142 ret = radix_tree_preload(GFP_NOFS);
143 if (ret) {
144 kmem_cache_free(delayed_node_cache, node);
145 return ERR_PTR(ret);
146 }
147
148 spin_lock(&root->inode_lock);
149 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
150 if (ret == -EEXIST) {
151 spin_unlock(&root->inode_lock);
152 kmem_cache_free(delayed_node_cache, node);
153 radix_tree_preload_end();
154 goto again;
155 }
156 btrfs_inode->delayed_node = node;
157 spin_unlock(&root->inode_lock);
158 radix_tree_preload_end();
159
160 return node;
161}
162
163/*
164 * Call it when holding delayed_node->mutex
165 *
166 * If mod = 1, add this node into the prepared list.
167 */
168static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
169 struct btrfs_delayed_node *node,
170 int mod)
171{
172 spin_lock(&root->lock);
173 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
174 if (!list_empty(&node->p_list))
175 list_move_tail(&node->p_list, &root->prepare_list);
176 else if (mod)
177 list_add_tail(&node->p_list, &root->prepare_list);
178 } else {
179 list_add_tail(&node->n_list, &root->node_list);
180 list_add_tail(&node->p_list, &root->prepare_list);
181 refcount_inc(&node->refs); /* inserted into list */
182 root->nodes++;
183 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
184 }
185 spin_unlock(&root->lock);
186}
187
188/* Call it when holding delayed_node->mutex */
189static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
190 struct btrfs_delayed_node *node)
191{
192 spin_lock(&root->lock);
193 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
194 root->nodes--;
195 refcount_dec(&node->refs); /* not in the list */
196 list_del_init(&node->n_list);
197 if (!list_empty(&node->p_list))
198 list_del_init(&node->p_list);
199 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
200 }
201 spin_unlock(&root->lock);
202}
203
204static struct btrfs_delayed_node *btrfs_first_delayed_node(
205 struct btrfs_delayed_root *delayed_root)
206{
207 struct list_head *p;
208 struct btrfs_delayed_node *node = NULL;
209
210 spin_lock(&delayed_root->lock);
211 if (list_empty(&delayed_root->node_list))
212 goto out;
213
214 p = delayed_root->node_list.next;
215 node = list_entry(p, struct btrfs_delayed_node, n_list);
216 refcount_inc(&node->refs);
217out:
218 spin_unlock(&delayed_root->lock);
219
220 return node;
221}
222
223static struct btrfs_delayed_node *btrfs_next_delayed_node(
224 struct btrfs_delayed_node *node)
225{
226 struct btrfs_delayed_root *delayed_root;
227 struct list_head *p;
228 struct btrfs_delayed_node *next = NULL;
229
230 delayed_root = node->root->fs_info->delayed_root;
231 spin_lock(&delayed_root->lock);
232 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
233 /* not in the list */
234 if (list_empty(&delayed_root->node_list))
235 goto out;
236 p = delayed_root->node_list.next;
237 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
238 goto out;
239 else
240 p = node->n_list.next;
241
242 next = list_entry(p, struct btrfs_delayed_node, n_list);
243 refcount_inc(&next->refs);
244out:
245 spin_unlock(&delayed_root->lock);
246
247 return next;
248}
249
250static void __btrfs_release_delayed_node(
251 struct btrfs_delayed_node *delayed_node,
252 int mod)
253{
254 struct btrfs_delayed_root *delayed_root;
255
256 if (!delayed_node)
257 return;
258
259 delayed_root = delayed_node->root->fs_info->delayed_root;
260
261 mutex_lock(&delayed_node->mutex);
262 if (delayed_node->count)
263 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
264 else
265 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
266 mutex_unlock(&delayed_node->mutex);
267
268 if (refcount_dec_and_test(&delayed_node->refs)) {
269 struct btrfs_root *root = delayed_node->root;
270
271 spin_lock(&root->inode_lock);
272 /*
273 * Once our refcount goes to zero, nobody is allowed to bump it
274 * back up. We can delete it now.
275 */
276 ASSERT(refcount_read(&delayed_node->refs) == 0);
277 radix_tree_delete(&root->delayed_nodes_tree,
278 delayed_node->inode_id);
279 spin_unlock(&root->inode_lock);
280 kmem_cache_free(delayed_node_cache, delayed_node);
281 }
282}
283
284static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
285{
286 __btrfs_release_delayed_node(node, 0);
287}
288
289static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
290 struct btrfs_delayed_root *delayed_root)
291{
292 struct list_head *p;
293 struct btrfs_delayed_node *node = NULL;
294
295 spin_lock(&delayed_root->lock);
296 if (list_empty(&delayed_root->prepare_list))
297 goto out;
298
299 p = delayed_root->prepare_list.next;
300 list_del_init(p);
301 node = list_entry(p, struct btrfs_delayed_node, p_list);
302 refcount_inc(&node->refs);
303out:
304 spin_unlock(&delayed_root->lock);
305
306 return node;
307}
308
309static inline void btrfs_release_prepared_delayed_node(
310 struct btrfs_delayed_node *node)
311{
312 __btrfs_release_delayed_node(node, 1);
313}
314
315static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
316{
317 struct btrfs_delayed_item *item;
318 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
319 if (item) {
320 item->data_len = data_len;
321 item->ins_or_del = 0;
322 item->bytes_reserved = 0;
323 item->delayed_node = NULL;
324 refcount_set(&item->refs, 1);
325 }
326 return item;
327}
328
329/*
330 * __btrfs_lookup_delayed_item - look up the delayed item by key
331 * @delayed_node: pointer to the delayed node
332 * @key: the key to look up
333 * @prev: used to store the prev item if the right item isn't found
334 * @next: used to store the next item if the right item isn't found
335 *
336 * Note: if we don't find the right item, we will return the prev item and
337 * the next item.
338 */
339static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
340 struct rb_root *root,
341 struct btrfs_key *key,
342 struct btrfs_delayed_item **prev,
343 struct btrfs_delayed_item **next)
344{
345 struct rb_node *node, *prev_node = NULL;
346 struct btrfs_delayed_item *delayed_item = NULL;
347 int ret = 0;
348
349 node = root->rb_node;
350
351 while (node) {
352 delayed_item = rb_entry(node, struct btrfs_delayed_item,
353 rb_node);
354 prev_node = node;
355 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
356 if (ret < 0)
357 node = node->rb_right;
358 else if (ret > 0)
359 node = node->rb_left;
360 else
361 return delayed_item;
362 }
363
364 if (prev) {
365 if (!prev_node)
366 *prev = NULL;
367 else if (ret < 0)
368 *prev = delayed_item;
369 else if ((node = rb_prev(prev_node)) != NULL) {
370 *prev = rb_entry(node, struct btrfs_delayed_item,
371 rb_node);
372 } else
373 *prev = NULL;
374 }
375
376 if (next) {
377 if (!prev_node)
378 *next = NULL;
379 else if (ret > 0)
380 *next = delayed_item;
381 else if ((node = rb_next(prev_node)) != NULL) {
382 *next = rb_entry(node, struct btrfs_delayed_item,
383 rb_node);
384 } else
385 *next = NULL;
386 }
387 return NULL;
388}
389
390static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
391 struct btrfs_delayed_node *delayed_node,
392 struct btrfs_key *key)
393{
394 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
395 NULL, NULL);
396}
397
398static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
399 struct btrfs_delayed_item *ins,
400 int action)
401{
402 struct rb_node **p, *node;
403 struct rb_node *parent_node = NULL;
404 struct rb_root_cached *root;
405 struct btrfs_delayed_item *item;
406 int cmp;
407 bool leftmost = true;
408
409 if (action == BTRFS_DELAYED_INSERTION_ITEM)
410 root = &delayed_node->ins_root;
411 else if (action == BTRFS_DELAYED_DELETION_ITEM)
412 root = &delayed_node->del_root;
413 else
414 BUG();
415 p = &root->rb_root.rb_node;
416 node = &ins->rb_node;
417
418 while (*p) {
419 parent_node = *p;
420 item = rb_entry(parent_node, struct btrfs_delayed_item,
421 rb_node);
422
423 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
424 if (cmp < 0) {
425 p = &(*p)->rb_right;
426 leftmost = false;
427 } else if (cmp > 0) {
428 p = &(*p)->rb_left;
429 } else {
430 return -EEXIST;
431 }
432 }
433
434 rb_link_node(node, parent_node, p);
435 rb_insert_color_cached(node, root, leftmost);
436 ins->delayed_node = delayed_node;
437 ins->ins_or_del = action;
438
439 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
440 action == BTRFS_DELAYED_INSERTION_ITEM &&
441 ins->key.offset >= delayed_node->index_cnt)
442 delayed_node->index_cnt = ins->key.offset + 1;
443
444 delayed_node->count++;
445 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
446 return 0;
447}
448
449static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
450 struct btrfs_delayed_item *item)
451{
452 return __btrfs_add_delayed_item(node, item,
453 BTRFS_DELAYED_INSERTION_ITEM);
454}
455
456static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
457 struct btrfs_delayed_item *item)
458{
459 return __btrfs_add_delayed_item(node, item,
460 BTRFS_DELAYED_DELETION_ITEM);
461}
462
463static void finish_one_item(struct btrfs_delayed_root *delayed_root)
464{
465 int seq = atomic_inc_return(&delayed_root->items_seq);
466
467 /* atomic_dec_return implies a barrier */
468 if ((atomic_dec_return(&delayed_root->items) <
469 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
470 cond_wake_up_nomb(&delayed_root->wait);
471}
472
473static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
474{
475 struct rb_root_cached *root;
476 struct btrfs_delayed_root *delayed_root;
477
478 /* Not associated with any delayed_node */
479 if (!delayed_item->delayed_node)
480 return;
481 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
482
483 BUG_ON(!delayed_root);
484 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
485 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
486
487 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
488 root = &delayed_item->delayed_node->ins_root;
489 else
490 root = &delayed_item->delayed_node->del_root;
491
492 rb_erase_cached(&delayed_item->rb_node, root);
493 delayed_item->delayed_node->count--;
494
495 finish_one_item(delayed_root);
496}
497
498static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
499{
500 if (item) {
501 __btrfs_remove_delayed_item(item);
502 if (refcount_dec_and_test(&item->refs))
503 kfree(item);
504 }
505}
506
507static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
508 struct btrfs_delayed_node *delayed_node)
509{
510 struct rb_node *p;
511 struct btrfs_delayed_item *item = NULL;
512
513 p = rb_first_cached(&delayed_node->ins_root);
514 if (p)
515 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
516
517 return item;
518}
519
520static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
521 struct btrfs_delayed_node *delayed_node)
522{
523 struct rb_node *p;
524 struct btrfs_delayed_item *item = NULL;
525
526 p = rb_first_cached(&delayed_node->del_root);
527 if (p)
528 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
529
530 return item;
531}
532
533static struct btrfs_delayed_item *__btrfs_next_delayed_item(
534 struct btrfs_delayed_item *item)
535{
536 struct rb_node *p;
537 struct btrfs_delayed_item *next = NULL;
538
539 p = rb_next(&item->rb_node);
540 if (p)
541 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
542
543 return next;
544}
545
546static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
547 struct btrfs_root *root,
548 struct btrfs_delayed_item *item)
549{
550 struct btrfs_block_rsv *src_rsv;
551 struct btrfs_block_rsv *dst_rsv;
552 struct btrfs_fs_info *fs_info = root->fs_info;
553 u64 num_bytes;
554 int ret;
555
556 if (!trans->bytes_reserved)
557 return 0;
558
559 src_rsv = trans->block_rsv;
560 dst_rsv = &fs_info->delayed_block_rsv;
561
562 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
563
564 /*
565 * Here we migrate space rsv from transaction rsv, since have already
566 * reserved space when starting a transaction. So no need to reserve
567 * qgroup space here.
568 */
569 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
570 if (!ret) {
571 trace_btrfs_space_reservation(fs_info, "delayed_item",
572 item->key.objectid,
573 num_bytes, 1);
574 item->bytes_reserved = num_bytes;
575 }
576
577 return ret;
578}
579
580static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
581 struct btrfs_delayed_item *item)
582{
583 struct btrfs_block_rsv *rsv;
584 struct btrfs_fs_info *fs_info = root->fs_info;
585
586 if (!item->bytes_reserved)
587 return;
588
589 rsv = &fs_info->delayed_block_rsv;
590 /*
591 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
592 * to release/reserve qgroup space.
593 */
594 trace_btrfs_space_reservation(fs_info, "delayed_item",
595 item->key.objectid, item->bytes_reserved,
596 0);
597 btrfs_block_rsv_release(fs_info, rsv,
598 item->bytes_reserved);
599}
600
601static int btrfs_delayed_inode_reserve_metadata(
602 struct btrfs_trans_handle *trans,
603 struct btrfs_root *root,
604 struct btrfs_inode *inode,
605 struct btrfs_delayed_node *node)
606{
607 struct btrfs_fs_info *fs_info = root->fs_info;
608 struct btrfs_block_rsv *src_rsv;
609 struct btrfs_block_rsv *dst_rsv;
610 u64 num_bytes;
611 int ret;
612
613 src_rsv = trans->block_rsv;
614 dst_rsv = &fs_info->delayed_block_rsv;
615
616 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
617
618 /*
619 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
620 * which doesn't reserve space for speed. This is a problem since we
621 * still need to reserve space for this update, so try to reserve the
622 * space.
623 *
624 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
625 * we always reserve enough to update the inode item.
626 */
627 if (!src_rsv || (!trans->bytes_reserved &&
628 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
629 ret = btrfs_qgroup_reserve_meta_prealloc(root,
630 fs_info->nodesize, true);
631 if (ret < 0)
632 return ret;
633 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
634 BTRFS_RESERVE_NO_FLUSH);
635 /*
636 * Since we're under a transaction reserve_metadata_bytes could
637 * try to commit the transaction which will make it return
638 * EAGAIN to make us stop the transaction we have, so return
639 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
640 */
641 if (ret == -EAGAIN) {
642 ret = -ENOSPC;
643 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
644 }
645 if (!ret) {
646 node->bytes_reserved = num_bytes;
647 trace_btrfs_space_reservation(fs_info,
648 "delayed_inode",
649 btrfs_ino(inode),
650 num_bytes, 1);
651 } else {
652 btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
653 }
654 return ret;
655 }
656
657 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
658 if (!ret) {
659 trace_btrfs_space_reservation(fs_info, "delayed_inode",
660 btrfs_ino(inode), num_bytes, 1);
661 node->bytes_reserved = num_bytes;
662 }
663
664 return ret;
665}
666
667static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
668 struct btrfs_delayed_node *node,
669 bool qgroup_free)
670{
671 struct btrfs_block_rsv *rsv;
672
673 if (!node->bytes_reserved)
674 return;
675
676 rsv = &fs_info->delayed_block_rsv;
677 trace_btrfs_space_reservation(fs_info, "delayed_inode",
678 node->inode_id, node->bytes_reserved, 0);
679 btrfs_block_rsv_release(fs_info, rsv,
680 node->bytes_reserved);
681 if (qgroup_free)
682 btrfs_qgroup_free_meta_prealloc(node->root,
683 node->bytes_reserved);
684 else
685 btrfs_qgroup_convert_reserved_meta(node->root,
686 node->bytes_reserved);
687 node->bytes_reserved = 0;
688}
689
690/*
691 * This helper will insert some continuous items into the same leaf according
692 * to the free space of the leaf.
693 */
694static int btrfs_batch_insert_items(struct btrfs_root *root,
695 struct btrfs_path *path,
696 struct btrfs_delayed_item *item)
697{
698 struct btrfs_delayed_item *curr, *next;
699 int free_space;
700 int total_data_size = 0, total_size = 0;
701 struct extent_buffer *leaf;
702 char *data_ptr;
703 struct btrfs_key *keys;
704 u32 *data_size;
705 struct list_head head;
706 int slot;
707 int nitems;
708 int i;
709 int ret = 0;
710
711 BUG_ON(!path->nodes[0]);
712
713 leaf = path->nodes[0];
714 free_space = btrfs_leaf_free_space(leaf);
715 INIT_LIST_HEAD(&head);
716
717 next = item;
718 nitems = 0;
719
720 /*
721 * count the number of the continuous items that we can insert in batch
722 */
723 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
724 free_space) {
725 total_data_size += next->data_len;
726 total_size += next->data_len + sizeof(struct btrfs_item);
727 list_add_tail(&next->tree_list, &head);
728 nitems++;
729
730 curr = next;
731 next = __btrfs_next_delayed_item(curr);
732 if (!next)
733 break;
734
735 if (!btrfs_is_continuous_delayed_item(curr, next))
736 break;
737 }
738
739 if (!nitems) {
740 ret = 0;
741 goto out;
742 }
743
744 /*
745 * we need allocate some memory space, but it might cause the task
746 * to sleep, so we set all locked nodes in the path to blocking locks
747 * first.
748 */
749 btrfs_set_path_blocking(path);
750
751 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
752 if (!keys) {
753 ret = -ENOMEM;
754 goto out;
755 }
756
757 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
758 if (!data_size) {
759 ret = -ENOMEM;
760 goto error;
761 }
762
763 /* get keys of all the delayed items */
764 i = 0;
765 list_for_each_entry(next, &head, tree_list) {
766 keys[i] = next->key;
767 data_size[i] = next->data_len;
768 i++;
769 }
770
771 /* insert the keys of the items */
772 setup_items_for_insert(root, path, keys, data_size,
773 total_data_size, total_size, nitems);
774
775 /* insert the dir index items */
776 slot = path->slots[0];
777 list_for_each_entry_safe(curr, next, &head, tree_list) {
778 data_ptr = btrfs_item_ptr(leaf, slot, char);
779 write_extent_buffer(leaf, &curr->data,
780 (unsigned long)data_ptr,
781 curr->data_len);
782 slot++;
783
784 btrfs_delayed_item_release_metadata(root, curr);
785
786 list_del(&curr->tree_list);
787 btrfs_release_delayed_item(curr);
788 }
789
790error:
791 kfree(data_size);
792 kfree(keys);
793out:
794 return ret;
795}
796
797/*
798 * This helper can just do simple insertion that needn't extend item for new
799 * data, such as directory name index insertion, inode insertion.
800 */
801static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
802 struct btrfs_root *root,
803 struct btrfs_path *path,
804 struct btrfs_delayed_item *delayed_item)
805{
806 struct extent_buffer *leaf;
807 char *ptr;
808 int ret;
809
810 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
811 delayed_item->data_len);
812 if (ret < 0 && ret != -EEXIST)
813 return ret;
814
815 leaf = path->nodes[0];
816
817 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
818
819 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
820 delayed_item->data_len);
821 btrfs_mark_buffer_dirty(leaf);
822
823 btrfs_delayed_item_release_metadata(root, delayed_item);
824 return 0;
825}
826
827/*
828 * we insert an item first, then if there are some continuous items, we try
829 * to insert those items into the same leaf.
830 */
831static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
832 struct btrfs_path *path,
833 struct btrfs_root *root,
834 struct btrfs_delayed_node *node)
835{
836 struct btrfs_delayed_item *curr, *prev;
837 int ret = 0;
838
839do_again:
840 mutex_lock(&node->mutex);
841 curr = __btrfs_first_delayed_insertion_item(node);
842 if (!curr)
843 goto insert_end;
844
845 ret = btrfs_insert_delayed_item(trans, root, path, curr);
846 if (ret < 0) {
847 btrfs_release_path(path);
848 goto insert_end;
849 }
850
851 prev = curr;
852 curr = __btrfs_next_delayed_item(prev);
853 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
854 /* insert the continuous items into the same leaf */
855 path->slots[0]++;
856 btrfs_batch_insert_items(root, path, curr);
857 }
858 btrfs_release_delayed_item(prev);
859 btrfs_mark_buffer_dirty(path->nodes[0]);
860
861 btrfs_release_path(path);
862 mutex_unlock(&node->mutex);
863 goto do_again;
864
865insert_end:
866 mutex_unlock(&node->mutex);
867 return ret;
868}
869
870static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
871 struct btrfs_root *root,
872 struct btrfs_path *path,
873 struct btrfs_delayed_item *item)
874{
875 struct btrfs_delayed_item *curr, *next;
876 struct extent_buffer *leaf;
877 struct btrfs_key key;
878 struct list_head head;
879 int nitems, i, last_item;
880 int ret = 0;
881
882 BUG_ON(!path->nodes[0]);
883
884 leaf = path->nodes[0];
885
886 i = path->slots[0];
887 last_item = btrfs_header_nritems(leaf) - 1;
888 if (i > last_item)
889 return -ENOENT; /* FIXME: Is errno suitable? */
890
891 next = item;
892 INIT_LIST_HEAD(&head);
893 btrfs_item_key_to_cpu(leaf, &key, i);
894 nitems = 0;
895 /*
896 * count the number of the dir index items that we can delete in batch
897 */
898 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
899 list_add_tail(&next->tree_list, &head);
900 nitems++;
901
902 curr = next;
903 next = __btrfs_next_delayed_item(curr);
904 if (!next)
905 break;
906
907 if (!btrfs_is_continuous_delayed_item(curr, next))
908 break;
909
910 i++;
911 if (i > last_item)
912 break;
913 btrfs_item_key_to_cpu(leaf, &key, i);
914 }
915
916 if (!nitems)
917 return 0;
918
919 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
920 if (ret)
921 goto out;
922
923 list_for_each_entry_safe(curr, next, &head, tree_list) {
924 btrfs_delayed_item_release_metadata(root, curr);
925 list_del(&curr->tree_list);
926 btrfs_release_delayed_item(curr);
927 }
928
929out:
930 return ret;
931}
932
933static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
934 struct btrfs_path *path,
935 struct btrfs_root *root,
936 struct btrfs_delayed_node *node)
937{
938 struct btrfs_delayed_item *curr, *prev;
939 int ret = 0;
940
941do_again:
942 mutex_lock(&node->mutex);
943 curr = __btrfs_first_delayed_deletion_item(node);
944 if (!curr)
945 goto delete_fail;
946
947 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
948 if (ret < 0)
949 goto delete_fail;
950 else if (ret > 0) {
951 /*
952 * can't find the item which the node points to, so this node
953 * is invalid, just drop it.
954 */
955 prev = curr;
956 curr = __btrfs_next_delayed_item(prev);
957 btrfs_release_delayed_item(prev);
958 ret = 0;
959 btrfs_release_path(path);
960 if (curr) {
961 mutex_unlock(&node->mutex);
962 goto do_again;
963 } else
964 goto delete_fail;
965 }
966
967 btrfs_batch_delete_items(trans, root, path, curr);
968 btrfs_release_path(path);
969 mutex_unlock(&node->mutex);
970 goto do_again;
971
972delete_fail:
973 btrfs_release_path(path);
974 mutex_unlock(&node->mutex);
975 return ret;
976}
977
978static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
979{
980 struct btrfs_delayed_root *delayed_root;
981
982 if (delayed_node &&
983 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
984 BUG_ON(!delayed_node->root);
985 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
986 delayed_node->count--;
987
988 delayed_root = delayed_node->root->fs_info->delayed_root;
989 finish_one_item(delayed_root);
990 }
991}
992
993static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
994{
995 struct btrfs_delayed_root *delayed_root;
996
997 ASSERT(delayed_node->root);
998 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
999 delayed_node->count--;
1000
1001 delayed_root = delayed_node->root->fs_info->delayed_root;
1002 finish_one_item(delayed_root);
1003}
1004
1005static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1006 struct btrfs_root *root,
1007 struct btrfs_path *path,
1008 struct btrfs_delayed_node *node)
1009{
1010 struct btrfs_fs_info *fs_info = root->fs_info;
1011 struct btrfs_key key;
1012 struct btrfs_inode_item *inode_item;
1013 struct extent_buffer *leaf;
1014 int mod;
1015 int ret;
1016
1017 key.objectid = node->inode_id;
1018 key.type = BTRFS_INODE_ITEM_KEY;
1019 key.offset = 0;
1020
1021 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1022 mod = -1;
1023 else
1024 mod = 1;
1025
1026 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1027 if (ret > 0) {
1028 btrfs_release_path(path);
1029 return -ENOENT;
1030 } else if (ret < 0) {
1031 return ret;
1032 }
1033
1034 leaf = path->nodes[0];
1035 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1036 struct btrfs_inode_item);
1037 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1038 sizeof(struct btrfs_inode_item));
1039 btrfs_mark_buffer_dirty(leaf);
1040
1041 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1042 goto no_iref;
1043
1044 path->slots[0]++;
1045 if (path->slots[0] >= btrfs_header_nritems(leaf))
1046 goto search;
1047again:
1048 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1049 if (key.objectid != node->inode_id)
1050 goto out;
1051
1052 if (key.type != BTRFS_INODE_REF_KEY &&
1053 key.type != BTRFS_INODE_EXTREF_KEY)
1054 goto out;
1055
1056 /*
1057 * Delayed iref deletion is for the inode who has only one link,
1058 * so there is only one iref. The case that several irefs are
1059 * in the same item doesn't exist.
1060 */
1061 btrfs_del_item(trans, root, path);
1062out:
1063 btrfs_release_delayed_iref(node);
1064no_iref:
1065 btrfs_release_path(path);
1066err_out:
1067 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1068 btrfs_release_delayed_inode(node);
1069
1070 return ret;
1071
1072search:
1073 btrfs_release_path(path);
1074
1075 key.type = BTRFS_INODE_EXTREF_KEY;
1076 key.offset = -1;
1077 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1078 if (ret < 0)
1079 goto err_out;
1080 ASSERT(ret);
1081
1082 ret = 0;
1083 leaf = path->nodes[0];
1084 path->slots[0]--;
1085 goto again;
1086}
1087
1088static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1089 struct btrfs_root *root,
1090 struct btrfs_path *path,
1091 struct btrfs_delayed_node *node)
1092{
1093 int ret;
1094
1095 mutex_lock(&node->mutex);
1096 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1097 mutex_unlock(&node->mutex);
1098 return 0;
1099 }
1100
1101 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1102 mutex_unlock(&node->mutex);
1103 return ret;
1104}
1105
1106static inline int
1107__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1108 struct btrfs_path *path,
1109 struct btrfs_delayed_node *node)
1110{
1111 int ret;
1112
1113 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1114 if (ret)
1115 return ret;
1116
1117 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1118 if (ret)
1119 return ret;
1120
1121 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1122 return ret;
1123}
1124
1125/*
1126 * Called when committing the transaction.
1127 * Returns 0 on success.
1128 * Returns < 0 on error and returns with an aborted transaction with any
1129 * outstanding delayed items cleaned up.
1130 */
1131static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1132{
1133 struct btrfs_fs_info *fs_info = trans->fs_info;
1134 struct btrfs_delayed_root *delayed_root;
1135 struct btrfs_delayed_node *curr_node, *prev_node;
1136 struct btrfs_path *path;
1137 struct btrfs_block_rsv *block_rsv;
1138 int ret = 0;
1139 bool count = (nr > 0);
1140
1141 if (trans->aborted)
1142 return -EIO;
1143
1144 path = btrfs_alloc_path();
1145 if (!path)
1146 return -ENOMEM;
1147 path->leave_spinning = 1;
1148
1149 block_rsv = trans->block_rsv;
1150 trans->block_rsv = &fs_info->delayed_block_rsv;
1151
1152 delayed_root = fs_info->delayed_root;
1153
1154 curr_node = btrfs_first_delayed_node(delayed_root);
1155 while (curr_node && (!count || (count && nr--))) {
1156 ret = __btrfs_commit_inode_delayed_items(trans, path,
1157 curr_node);
1158 if (ret) {
1159 btrfs_release_delayed_node(curr_node);
1160 curr_node = NULL;
1161 btrfs_abort_transaction(trans, ret);
1162 break;
1163 }
1164
1165 prev_node = curr_node;
1166 curr_node = btrfs_next_delayed_node(curr_node);
1167 btrfs_release_delayed_node(prev_node);
1168 }
1169
1170 if (curr_node)
1171 btrfs_release_delayed_node(curr_node);
1172 btrfs_free_path(path);
1173 trans->block_rsv = block_rsv;
1174
1175 return ret;
1176}
1177
1178int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1179{
1180 return __btrfs_run_delayed_items(trans, -1);
1181}
1182
1183int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1184{
1185 return __btrfs_run_delayed_items(trans, nr);
1186}
1187
1188int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1189 struct btrfs_inode *inode)
1190{
1191 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1192 struct btrfs_path *path;
1193 struct btrfs_block_rsv *block_rsv;
1194 int ret;
1195
1196 if (!delayed_node)
1197 return 0;
1198
1199 mutex_lock(&delayed_node->mutex);
1200 if (!delayed_node->count) {
1201 mutex_unlock(&delayed_node->mutex);
1202 btrfs_release_delayed_node(delayed_node);
1203 return 0;
1204 }
1205 mutex_unlock(&delayed_node->mutex);
1206
1207 path = btrfs_alloc_path();
1208 if (!path) {
1209 btrfs_release_delayed_node(delayed_node);
1210 return -ENOMEM;
1211 }
1212 path->leave_spinning = 1;
1213
1214 block_rsv = trans->block_rsv;
1215 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1216
1217 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1218
1219 btrfs_release_delayed_node(delayed_node);
1220 btrfs_free_path(path);
1221 trans->block_rsv = block_rsv;
1222
1223 return ret;
1224}
1225
1226int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1227{
1228 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1229 struct btrfs_trans_handle *trans;
1230 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1231 struct btrfs_path *path;
1232 struct btrfs_block_rsv *block_rsv;
1233 int ret;
1234
1235 if (!delayed_node)
1236 return 0;
1237
1238 mutex_lock(&delayed_node->mutex);
1239 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1240 mutex_unlock(&delayed_node->mutex);
1241 btrfs_release_delayed_node(delayed_node);
1242 return 0;
1243 }
1244 mutex_unlock(&delayed_node->mutex);
1245
1246 trans = btrfs_join_transaction(delayed_node->root);
1247 if (IS_ERR(trans)) {
1248 ret = PTR_ERR(trans);
1249 goto out;
1250 }
1251
1252 path = btrfs_alloc_path();
1253 if (!path) {
1254 ret = -ENOMEM;
1255 goto trans_out;
1256 }
1257 path->leave_spinning = 1;
1258
1259 block_rsv = trans->block_rsv;
1260 trans->block_rsv = &fs_info->delayed_block_rsv;
1261
1262 mutex_lock(&delayed_node->mutex);
1263 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1264 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1265 path, delayed_node);
1266 else
1267 ret = 0;
1268 mutex_unlock(&delayed_node->mutex);
1269
1270 btrfs_free_path(path);
1271 trans->block_rsv = block_rsv;
1272trans_out:
1273 btrfs_end_transaction(trans);
1274 btrfs_btree_balance_dirty(fs_info);
1275out:
1276 btrfs_release_delayed_node(delayed_node);
1277
1278 return ret;
1279}
1280
1281void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1282{
1283 struct btrfs_delayed_node *delayed_node;
1284
1285 delayed_node = READ_ONCE(inode->delayed_node);
1286 if (!delayed_node)
1287 return;
1288
1289 inode->delayed_node = NULL;
1290 btrfs_release_delayed_node(delayed_node);
1291}
1292
1293struct btrfs_async_delayed_work {
1294 struct btrfs_delayed_root *delayed_root;
1295 int nr;
1296 struct btrfs_work work;
1297};
1298
1299static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1300{
1301 struct btrfs_async_delayed_work *async_work;
1302 struct btrfs_delayed_root *delayed_root;
1303 struct btrfs_trans_handle *trans;
1304 struct btrfs_path *path;
1305 struct btrfs_delayed_node *delayed_node = NULL;
1306 struct btrfs_root *root;
1307 struct btrfs_block_rsv *block_rsv;
1308 int total_done = 0;
1309
1310 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1311 delayed_root = async_work->delayed_root;
1312
1313 path = btrfs_alloc_path();
1314 if (!path)
1315 goto out;
1316
1317 do {
1318 if (atomic_read(&delayed_root->items) <
1319 BTRFS_DELAYED_BACKGROUND / 2)
1320 break;
1321
1322 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1323 if (!delayed_node)
1324 break;
1325
1326 path->leave_spinning = 1;
1327 root = delayed_node->root;
1328
1329 trans = btrfs_join_transaction(root);
1330 if (IS_ERR(trans)) {
1331 btrfs_release_path(path);
1332 btrfs_release_prepared_delayed_node(delayed_node);
1333 total_done++;
1334 continue;
1335 }
1336
1337 block_rsv = trans->block_rsv;
1338 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1339
1340 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1341
1342 trans->block_rsv = block_rsv;
1343 btrfs_end_transaction(trans);
1344 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1345
1346 btrfs_release_path(path);
1347 btrfs_release_prepared_delayed_node(delayed_node);
1348 total_done++;
1349
1350 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1351 || total_done < async_work->nr);
1352
1353 btrfs_free_path(path);
1354out:
1355 wake_up(&delayed_root->wait);
1356 kfree(async_work);
1357}
1358
1359
1360static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1361 struct btrfs_fs_info *fs_info, int nr)
1362{
1363 struct btrfs_async_delayed_work *async_work;
1364
1365 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1366 if (!async_work)
1367 return -ENOMEM;
1368
1369 async_work->delayed_root = delayed_root;
1370 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1371 btrfs_async_run_delayed_root, NULL, NULL);
1372 async_work->nr = nr;
1373
1374 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1375 return 0;
1376}
1377
1378void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1379{
1380 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1381}
1382
1383static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1384{
1385 int val = atomic_read(&delayed_root->items_seq);
1386
1387 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1388 return 1;
1389
1390 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1391 return 1;
1392
1393 return 0;
1394}
1395
1396void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1397{
1398 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1399
1400 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1401 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1402 return;
1403
1404 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1405 int seq;
1406 int ret;
1407
1408 seq = atomic_read(&delayed_root->items_seq);
1409
1410 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1411 if (ret)
1412 return;
1413
1414 wait_event_interruptible(delayed_root->wait,
1415 could_end_wait(delayed_root, seq));
1416 return;
1417 }
1418
1419 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1420}
1421
1422/* Will return 0 or -ENOMEM */
1423int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1424 const char *name, int name_len,
1425 struct btrfs_inode *dir,
1426 struct btrfs_disk_key *disk_key, u8 type,
1427 u64 index)
1428{
1429 struct btrfs_delayed_node *delayed_node;
1430 struct btrfs_delayed_item *delayed_item;
1431 struct btrfs_dir_item *dir_item;
1432 int ret;
1433
1434 delayed_node = btrfs_get_or_create_delayed_node(dir);
1435 if (IS_ERR(delayed_node))
1436 return PTR_ERR(delayed_node);
1437
1438 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1439 if (!delayed_item) {
1440 ret = -ENOMEM;
1441 goto release_node;
1442 }
1443
1444 delayed_item->key.objectid = btrfs_ino(dir);
1445 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1446 delayed_item->key.offset = index;
1447
1448 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1449 dir_item->location = *disk_key;
1450 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1451 btrfs_set_stack_dir_data_len(dir_item, 0);
1452 btrfs_set_stack_dir_name_len(dir_item, name_len);
1453 btrfs_set_stack_dir_type(dir_item, type);
1454 memcpy((char *)(dir_item + 1), name, name_len);
1455
1456 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1457 /*
1458 * we have reserved enough space when we start a new transaction,
1459 * so reserving metadata failure is impossible
1460 */
1461 BUG_ON(ret);
1462
1463 mutex_lock(&delayed_node->mutex);
1464 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1465 if (unlikely(ret)) {
1466 btrfs_err(trans->fs_info,
1467 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1468 name_len, name, delayed_node->root->root_key.objectid,
1469 delayed_node->inode_id, ret);
1470 BUG();
1471 }
1472 mutex_unlock(&delayed_node->mutex);
1473
1474release_node:
1475 btrfs_release_delayed_node(delayed_node);
1476 return ret;
1477}
1478
1479static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1480 struct btrfs_delayed_node *node,
1481 struct btrfs_key *key)
1482{
1483 struct btrfs_delayed_item *item;
1484
1485 mutex_lock(&node->mutex);
1486 item = __btrfs_lookup_delayed_insertion_item(node, key);
1487 if (!item) {
1488 mutex_unlock(&node->mutex);
1489 return 1;
1490 }
1491
1492 btrfs_delayed_item_release_metadata(node->root, item);
1493 btrfs_release_delayed_item(item);
1494 mutex_unlock(&node->mutex);
1495 return 0;
1496}
1497
1498int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1499 struct btrfs_inode *dir, u64 index)
1500{
1501 struct btrfs_delayed_node *node;
1502 struct btrfs_delayed_item *item;
1503 struct btrfs_key item_key;
1504 int ret;
1505
1506 node = btrfs_get_or_create_delayed_node(dir);
1507 if (IS_ERR(node))
1508 return PTR_ERR(node);
1509
1510 item_key.objectid = btrfs_ino(dir);
1511 item_key.type = BTRFS_DIR_INDEX_KEY;
1512 item_key.offset = index;
1513
1514 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1515 &item_key);
1516 if (!ret)
1517 goto end;
1518
1519 item = btrfs_alloc_delayed_item(0);
1520 if (!item) {
1521 ret = -ENOMEM;
1522 goto end;
1523 }
1524
1525 item->key = item_key;
1526
1527 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1528 /*
1529 * we have reserved enough space when we start a new transaction,
1530 * so reserving metadata failure is impossible.
1531 */
1532 if (ret < 0) {
1533 btrfs_err(trans->fs_info,
1534"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1535 btrfs_release_delayed_item(item);
1536 goto end;
1537 }
1538
1539 mutex_lock(&node->mutex);
1540 ret = __btrfs_add_delayed_deletion_item(node, item);
1541 if (unlikely(ret)) {
1542 btrfs_err(trans->fs_info,
1543 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1544 index, node->root->root_key.objectid,
1545 node->inode_id, ret);
1546 btrfs_delayed_item_release_metadata(dir->root, item);
1547 btrfs_release_delayed_item(item);
1548 }
1549 mutex_unlock(&node->mutex);
1550end:
1551 btrfs_release_delayed_node(node);
1552 return ret;
1553}
1554
1555int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1556{
1557 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1558
1559 if (!delayed_node)
1560 return -ENOENT;
1561
1562 /*
1563 * Since we have held i_mutex of this directory, it is impossible that
1564 * a new directory index is added into the delayed node and index_cnt
1565 * is updated now. So we needn't lock the delayed node.
1566 */
1567 if (!delayed_node->index_cnt) {
1568 btrfs_release_delayed_node(delayed_node);
1569 return -EINVAL;
1570 }
1571
1572 inode->index_cnt = delayed_node->index_cnt;
1573 btrfs_release_delayed_node(delayed_node);
1574 return 0;
1575}
1576
1577bool btrfs_readdir_get_delayed_items(struct inode *inode,
1578 struct list_head *ins_list,
1579 struct list_head *del_list)
1580{
1581 struct btrfs_delayed_node *delayed_node;
1582 struct btrfs_delayed_item *item;
1583
1584 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1585 if (!delayed_node)
1586 return false;
1587
1588 /*
1589 * We can only do one readdir with delayed items at a time because of
1590 * item->readdir_list.
1591 */
1592 inode_unlock_shared(inode);
1593 inode_lock(inode);
1594
1595 mutex_lock(&delayed_node->mutex);
1596 item = __btrfs_first_delayed_insertion_item(delayed_node);
1597 while (item) {
1598 refcount_inc(&item->refs);
1599 list_add_tail(&item->readdir_list, ins_list);
1600 item = __btrfs_next_delayed_item(item);
1601 }
1602
1603 item = __btrfs_first_delayed_deletion_item(delayed_node);
1604 while (item) {
1605 refcount_inc(&item->refs);
1606 list_add_tail(&item->readdir_list, del_list);
1607 item = __btrfs_next_delayed_item(item);
1608 }
1609 mutex_unlock(&delayed_node->mutex);
1610 /*
1611 * This delayed node is still cached in the btrfs inode, so refs
1612 * must be > 1 now, and we needn't check it is going to be freed
1613 * or not.
1614 *
1615 * Besides that, this function is used to read dir, we do not
1616 * insert/delete delayed items in this period. So we also needn't
1617 * requeue or dequeue this delayed node.
1618 */
1619 refcount_dec(&delayed_node->refs);
1620
1621 return true;
1622}
1623
1624void btrfs_readdir_put_delayed_items(struct inode *inode,
1625 struct list_head *ins_list,
1626 struct list_head *del_list)
1627{
1628 struct btrfs_delayed_item *curr, *next;
1629
1630 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1631 list_del(&curr->readdir_list);
1632 if (refcount_dec_and_test(&curr->refs))
1633 kfree(curr);
1634 }
1635
1636 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1637 list_del(&curr->readdir_list);
1638 if (refcount_dec_and_test(&curr->refs))
1639 kfree(curr);
1640 }
1641
1642 /*
1643 * The VFS is going to do up_read(), so we need to downgrade back to a
1644 * read lock.
1645 */
1646 downgrade_write(&inode->i_rwsem);
1647}
1648
1649int btrfs_should_delete_dir_index(struct list_head *del_list,
1650 u64 index)
1651{
1652 struct btrfs_delayed_item *curr;
1653 int ret = 0;
1654
1655 list_for_each_entry(curr, del_list, readdir_list) {
1656 if (curr->key.offset > index)
1657 break;
1658 if (curr->key.offset == index) {
1659 ret = 1;
1660 break;
1661 }
1662 }
1663 return ret;
1664}
1665
1666/*
1667 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1668 *
1669 */
1670int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1671 struct list_head *ins_list)
1672{
1673 struct btrfs_dir_item *di;
1674 struct btrfs_delayed_item *curr, *next;
1675 struct btrfs_key location;
1676 char *name;
1677 int name_len;
1678 int over = 0;
1679 unsigned char d_type;
1680
1681 if (list_empty(ins_list))
1682 return 0;
1683
1684 /*
1685 * Changing the data of the delayed item is impossible. So
1686 * we needn't lock them. And we have held i_mutex of the
1687 * directory, nobody can delete any directory indexes now.
1688 */
1689 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1690 list_del(&curr->readdir_list);
1691
1692 if (curr->key.offset < ctx->pos) {
1693 if (refcount_dec_and_test(&curr->refs))
1694 kfree(curr);
1695 continue;
1696 }
1697
1698 ctx->pos = curr->key.offset;
1699
1700 di = (struct btrfs_dir_item *)curr->data;
1701 name = (char *)(di + 1);
1702 name_len = btrfs_stack_dir_name_len(di);
1703
1704 d_type = fs_ftype_to_dtype(di->type);
1705 btrfs_disk_key_to_cpu(&location, &di->location);
1706
1707 over = !dir_emit(ctx, name, name_len,
1708 location.objectid, d_type);
1709
1710 if (refcount_dec_and_test(&curr->refs))
1711 kfree(curr);
1712
1713 if (over)
1714 return 1;
1715 ctx->pos++;
1716 }
1717 return 0;
1718}
1719
1720static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1721 struct btrfs_inode_item *inode_item,
1722 struct inode *inode)
1723{
1724 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1725 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1726 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1727 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1728 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1729 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1730 btrfs_set_stack_inode_generation(inode_item,
1731 BTRFS_I(inode)->generation);
1732 btrfs_set_stack_inode_sequence(inode_item,
1733 inode_peek_iversion(inode));
1734 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1735 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1736 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1737 btrfs_set_stack_inode_block_group(inode_item, 0);
1738
1739 btrfs_set_stack_timespec_sec(&inode_item->atime,
1740 inode->i_atime.tv_sec);
1741 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1742 inode->i_atime.tv_nsec);
1743
1744 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1745 inode->i_mtime.tv_sec);
1746 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1747 inode->i_mtime.tv_nsec);
1748
1749 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1750 inode->i_ctime.tv_sec);
1751 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1752 inode->i_ctime.tv_nsec);
1753
1754 btrfs_set_stack_timespec_sec(&inode_item->otime,
1755 BTRFS_I(inode)->i_otime.tv_sec);
1756 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1757 BTRFS_I(inode)->i_otime.tv_nsec);
1758}
1759
1760int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1761{
1762 struct btrfs_delayed_node *delayed_node;
1763 struct btrfs_inode_item *inode_item;
1764
1765 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1766 if (!delayed_node)
1767 return -ENOENT;
1768
1769 mutex_lock(&delayed_node->mutex);
1770 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1771 mutex_unlock(&delayed_node->mutex);
1772 btrfs_release_delayed_node(delayed_node);
1773 return -ENOENT;
1774 }
1775
1776 inode_item = &delayed_node->inode_item;
1777
1778 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1779 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1780 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1781 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1782 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1783 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1784 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1785 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1786
1787 inode_set_iversion_queried(inode,
1788 btrfs_stack_inode_sequence(inode_item));
1789 inode->i_rdev = 0;
1790 *rdev = btrfs_stack_inode_rdev(inode_item);
1791 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1792
1793 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1794 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1795
1796 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1797 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1798
1799 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1800 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1801
1802 BTRFS_I(inode)->i_otime.tv_sec =
1803 btrfs_stack_timespec_sec(&inode_item->otime);
1804 BTRFS_I(inode)->i_otime.tv_nsec =
1805 btrfs_stack_timespec_nsec(&inode_item->otime);
1806
1807 inode->i_generation = BTRFS_I(inode)->generation;
1808 BTRFS_I(inode)->index_cnt = (u64)-1;
1809
1810 mutex_unlock(&delayed_node->mutex);
1811 btrfs_release_delayed_node(delayed_node);
1812 return 0;
1813}
1814
1815int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1816 struct btrfs_root *root, struct inode *inode)
1817{
1818 struct btrfs_delayed_node *delayed_node;
1819 int ret = 0;
1820
1821 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1822 if (IS_ERR(delayed_node))
1823 return PTR_ERR(delayed_node);
1824
1825 mutex_lock(&delayed_node->mutex);
1826 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1827 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1828 goto release_node;
1829 }
1830
1831 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1832 delayed_node);
1833 if (ret)
1834 goto release_node;
1835
1836 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1837 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1838 delayed_node->count++;
1839 atomic_inc(&root->fs_info->delayed_root->items);
1840release_node:
1841 mutex_unlock(&delayed_node->mutex);
1842 btrfs_release_delayed_node(delayed_node);
1843 return ret;
1844}
1845
1846int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1847{
1848 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1849 struct btrfs_delayed_node *delayed_node;
1850
1851 /*
1852 * we don't do delayed inode updates during log recovery because it
1853 * leads to enospc problems. This means we also can't do
1854 * delayed inode refs
1855 */
1856 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1857 return -EAGAIN;
1858
1859 delayed_node = btrfs_get_or_create_delayed_node(inode);
1860 if (IS_ERR(delayed_node))
1861 return PTR_ERR(delayed_node);
1862
1863 /*
1864 * We don't reserve space for inode ref deletion is because:
1865 * - We ONLY do async inode ref deletion for the inode who has only
1866 * one link(i_nlink == 1), it means there is only one inode ref.
1867 * And in most case, the inode ref and the inode item are in the
1868 * same leaf, and we will deal with them at the same time.
1869 * Since we are sure we will reserve the space for the inode item,
1870 * it is unnecessary to reserve space for inode ref deletion.
1871 * - If the inode ref and the inode item are not in the same leaf,
1872 * We also needn't worry about enospc problem, because we reserve
1873 * much more space for the inode update than it needs.
1874 * - At the worst, we can steal some space from the global reservation.
1875 * It is very rare.
1876 */
1877 mutex_lock(&delayed_node->mutex);
1878 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1879 goto release_node;
1880
1881 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1882 delayed_node->count++;
1883 atomic_inc(&fs_info->delayed_root->items);
1884release_node:
1885 mutex_unlock(&delayed_node->mutex);
1886 btrfs_release_delayed_node(delayed_node);
1887 return 0;
1888}
1889
1890static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1891{
1892 struct btrfs_root *root = delayed_node->root;
1893 struct btrfs_fs_info *fs_info = root->fs_info;
1894 struct btrfs_delayed_item *curr_item, *prev_item;
1895
1896 mutex_lock(&delayed_node->mutex);
1897 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1898 while (curr_item) {
1899 btrfs_delayed_item_release_metadata(root, curr_item);
1900 prev_item = curr_item;
1901 curr_item = __btrfs_next_delayed_item(prev_item);
1902 btrfs_release_delayed_item(prev_item);
1903 }
1904
1905 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1906 while (curr_item) {
1907 btrfs_delayed_item_release_metadata(root, curr_item);
1908 prev_item = curr_item;
1909 curr_item = __btrfs_next_delayed_item(prev_item);
1910 btrfs_release_delayed_item(prev_item);
1911 }
1912
1913 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1914 btrfs_release_delayed_iref(delayed_node);
1915
1916 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1917 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1918 btrfs_release_delayed_inode(delayed_node);
1919 }
1920 mutex_unlock(&delayed_node->mutex);
1921}
1922
1923void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1924{
1925 struct btrfs_delayed_node *delayed_node;
1926
1927 delayed_node = btrfs_get_delayed_node(inode);
1928 if (!delayed_node)
1929 return;
1930
1931 __btrfs_kill_delayed_node(delayed_node);
1932 btrfs_release_delayed_node(delayed_node);
1933}
1934
1935void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1936{
1937 u64 inode_id = 0;
1938 struct btrfs_delayed_node *delayed_nodes[8];
1939 int i, n;
1940
1941 while (1) {
1942 spin_lock(&root->inode_lock);
1943 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1944 (void **)delayed_nodes, inode_id,
1945 ARRAY_SIZE(delayed_nodes));
1946 if (!n) {
1947 spin_unlock(&root->inode_lock);
1948 break;
1949 }
1950
1951 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1952
1953 for (i = 0; i < n; i++)
1954 refcount_inc(&delayed_nodes[i]->refs);
1955 spin_unlock(&root->inode_lock);
1956
1957 for (i = 0; i < n; i++) {
1958 __btrfs_kill_delayed_node(delayed_nodes[i]);
1959 btrfs_release_delayed_node(delayed_nodes[i]);
1960 }
1961 }
1962}
1963
1964void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1965{
1966 struct btrfs_delayed_node *curr_node, *prev_node;
1967
1968 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1969 while (curr_node) {
1970 __btrfs_kill_delayed_node(curr_node);
1971
1972 prev_node = curr_node;
1973 curr_node = btrfs_next_delayed_node(curr_node);
1974 btrfs_release_delayed_node(prev_node);
1975 }
1976}
1977
1/*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20#include <linux/slab.h>
21#include "delayed-inode.h"
22#include "disk-io.h"
23#include "transaction.h"
24
25#define BTRFS_DELAYED_WRITEBACK 400
26#define BTRFS_DELAYED_BACKGROUND 100
27
28static struct kmem_cache *delayed_node_cache;
29
30int __init btrfs_delayed_inode_init(void)
31{
32 delayed_node_cache = kmem_cache_create("delayed_node",
33 sizeof(struct btrfs_delayed_node),
34 0,
35 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36 NULL);
37 if (!delayed_node_cache)
38 return -ENOMEM;
39 return 0;
40}
41
42void btrfs_delayed_inode_exit(void)
43{
44 if (delayed_node_cache)
45 kmem_cache_destroy(delayed_node_cache);
46}
47
48static inline void btrfs_init_delayed_node(
49 struct btrfs_delayed_node *delayed_node,
50 struct btrfs_root *root, u64 inode_id)
51{
52 delayed_node->root = root;
53 delayed_node->inode_id = inode_id;
54 atomic_set(&delayed_node->refs, 0);
55 delayed_node->count = 0;
56 delayed_node->in_list = 0;
57 delayed_node->inode_dirty = 0;
58 delayed_node->ins_root = RB_ROOT;
59 delayed_node->del_root = RB_ROOT;
60 mutex_init(&delayed_node->mutex);
61 delayed_node->index_cnt = 0;
62 INIT_LIST_HEAD(&delayed_node->n_list);
63 INIT_LIST_HEAD(&delayed_node->p_list);
64 delayed_node->bytes_reserved = 0;
65}
66
67static inline int btrfs_is_continuous_delayed_item(
68 struct btrfs_delayed_item *item1,
69 struct btrfs_delayed_item *item2)
70{
71 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
72 item1->key.objectid == item2->key.objectid &&
73 item1->key.type == item2->key.type &&
74 item1->key.offset + 1 == item2->key.offset)
75 return 1;
76 return 0;
77}
78
79static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
80 struct btrfs_root *root)
81{
82 return root->fs_info->delayed_root;
83}
84
85static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
86{
87 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
88 struct btrfs_root *root = btrfs_inode->root;
89 u64 ino = btrfs_ino(inode);
90 struct btrfs_delayed_node *node;
91
92 node = ACCESS_ONCE(btrfs_inode->delayed_node);
93 if (node) {
94 atomic_inc(&node->refs);
95 return node;
96 }
97
98 spin_lock(&root->inode_lock);
99 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
100 if (node) {
101 if (btrfs_inode->delayed_node) {
102 atomic_inc(&node->refs); /* can be accessed */
103 BUG_ON(btrfs_inode->delayed_node != node);
104 spin_unlock(&root->inode_lock);
105 return node;
106 }
107 btrfs_inode->delayed_node = node;
108 atomic_inc(&node->refs); /* can be accessed */
109 atomic_inc(&node->refs); /* cached in the inode */
110 spin_unlock(&root->inode_lock);
111 return node;
112 }
113 spin_unlock(&root->inode_lock);
114
115 return NULL;
116}
117
118static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
119 struct inode *inode)
120{
121 struct btrfs_delayed_node *node;
122 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
123 struct btrfs_root *root = btrfs_inode->root;
124 u64 ino = btrfs_ino(inode);
125 int ret;
126
127again:
128 node = btrfs_get_delayed_node(inode);
129 if (node)
130 return node;
131
132 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
133 if (!node)
134 return ERR_PTR(-ENOMEM);
135 btrfs_init_delayed_node(node, root, ino);
136
137 atomic_inc(&node->refs); /* cached in the btrfs inode */
138 atomic_inc(&node->refs); /* can be accessed */
139
140 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
141 if (ret) {
142 kmem_cache_free(delayed_node_cache, node);
143 return ERR_PTR(ret);
144 }
145
146 spin_lock(&root->inode_lock);
147 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
148 if (ret == -EEXIST) {
149 kmem_cache_free(delayed_node_cache, node);
150 spin_unlock(&root->inode_lock);
151 radix_tree_preload_end();
152 goto again;
153 }
154 btrfs_inode->delayed_node = node;
155 spin_unlock(&root->inode_lock);
156 radix_tree_preload_end();
157
158 return node;
159}
160
161/*
162 * Call it when holding delayed_node->mutex
163 *
164 * If mod = 1, add this node into the prepared list.
165 */
166static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
167 struct btrfs_delayed_node *node,
168 int mod)
169{
170 spin_lock(&root->lock);
171 if (node->in_list) {
172 if (!list_empty(&node->p_list))
173 list_move_tail(&node->p_list, &root->prepare_list);
174 else if (mod)
175 list_add_tail(&node->p_list, &root->prepare_list);
176 } else {
177 list_add_tail(&node->n_list, &root->node_list);
178 list_add_tail(&node->p_list, &root->prepare_list);
179 atomic_inc(&node->refs); /* inserted into list */
180 root->nodes++;
181 node->in_list = 1;
182 }
183 spin_unlock(&root->lock);
184}
185
186/* Call it when holding delayed_node->mutex */
187static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
188 struct btrfs_delayed_node *node)
189{
190 spin_lock(&root->lock);
191 if (node->in_list) {
192 root->nodes--;
193 atomic_dec(&node->refs); /* not in the list */
194 list_del_init(&node->n_list);
195 if (!list_empty(&node->p_list))
196 list_del_init(&node->p_list);
197 node->in_list = 0;
198 }
199 spin_unlock(&root->lock);
200}
201
202struct btrfs_delayed_node *btrfs_first_delayed_node(
203 struct btrfs_delayed_root *delayed_root)
204{
205 struct list_head *p;
206 struct btrfs_delayed_node *node = NULL;
207
208 spin_lock(&delayed_root->lock);
209 if (list_empty(&delayed_root->node_list))
210 goto out;
211
212 p = delayed_root->node_list.next;
213 node = list_entry(p, struct btrfs_delayed_node, n_list);
214 atomic_inc(&node->refs);
215out:
216 spin_unlock(&delayed_root->lock);
217
218 return node;
219}
220
221struct btrfs_delayed_node *btrfs_next_delayed_node(
222 struct btrfs_delayed_node *node)
223{
224 struct btrfs_delayed_root *delayed_root;
225 struct list_head *p;
226 struct btrfs_delayed_node *next = NULL;
227
228 delayed_root = node->root->fs_info->delayed_root;
229 spin_lock(&delayed_root->lock);
230 if (!node->in_list) { /* not in the list */
231 if (list_empty(&delayed_root->node_list))
232 goto out;
233 p = delayed_root->node_list.next;
234 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
235 goto out;
236 else
237 p = node->n_list.next;
238
239 next = list_entry(p, struct btrfs_delayed_node, n_list);
240 atomic_inc(&next->refs);
241out:
242 spin_unlock(&delayed_root->lock);
243
244 return next;
245}
246
247static void __btrfs_release_delayed_node(
248 struct btrfs_delayed_node *delayed_node,
249 int mod)
250{
251 struct btrfs_delayed_root *delayed_root;
252
253 if (!delayed_node)
254 return;
255
256 delayed_root = delayed_node->root->fs_info->delayed_root;
257
258 mutex_lock(&delayed_node->mutex);
259 if (delayed_node->count)
260 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
261 else
262 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
263 mutex_unlock(&delayed_node->mutex);
264
265 if (atomic_dec_and_test(&delayed_node->refs)) {
266 struct btrfs_root *root = delayed_node->root;
267 spin_lock(&root->inode_lock);
268 if (atomic_read(&delayed_node->refs) == 0) {
269 radix_tree_delete(&root->delayed_nodes_tree,
270 delayed_node->inode_id);
271 kmem_cache_free(delayed_node_cache, delayed_node);
272 }
273 spin_unlock(&root->inode_lock);
274 }
275}
276
277static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
278{
279 __btrfs_release_delayed_node(node, 0);
280}
281
282struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
283 struct btrfs_delayed_root *delayed_root)
284{
285 struct list_head *p;
286 struct btrfs_delayed_node *node = NULL;
287
288 spin_lock(&delayed_root->lock);
289 if (list_empty(&delayed_root->prepare_list))
290 goto out;
291
292 p = delayed_root->prepare_list.next;
293 list_del_init(p);
294 node = list_entry(p, struct btrfs_delayed_node, p_list);
295 atomic_inc(&node->refs);
296out:
297 spin_unlock(&delayed_root->lock);
298
299 return node;
300}
301
302static inline void btrfs_release_prepared_delayed_node(
303 struct btrfs_delayed_node *node)
304{
305 __btrfs_release_delayed_node(node, 1);
306}
307
308struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
309{
310 struct btrfs_delayed_item *item;
311 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
312 if (item) {
313 item->data_len = data_len;
314 item->ins_or_del = 0;
315 item->bytes_reserved = 0;
316 item->delayed_node = NULL;
317 atomic_set(&item->refs, 1);
318 }
319 return item;
320}
321
322/*
323 * __btrfs_lookup_delayed_item - look up the delayed item by key
324 * @delayed_node: pointer to the delayed node
325 * @key: the key to look up
326 * @prev: used to store the prev item if the right item isn't found
327 * @next: used to store the next item if the right item isn't found
328 *
329 * Note: if we don't find the right item, we will return the prev item and
330 * the next item.
331 */
332static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
333 struct rb_root *root,
334 struct btrfs_key *key,
335 struct btrfs_delayed_item **prev,
336 struct btrfs_delayed_item **next)
337{
338 struct rb_node *node, *prev_node = NULL;
339 struct btrfs_delayed_item *delayed_item = NULL;
340 int ret = 0;
341
342 node = root->rb_node;
343
344 while (node) {
345 delayed_item = rb_entry(node, struct btrfs_delayed_item,
346 rb_node);
347 prev_node = node;
348 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
349 if (ret < 0)
350 node = node->rb_right;
351 else if (ret > 0)
352 node = node->rb_left;
353 else
354 return delayed_item;
355 }
356
357 if (prev) {
358 if (!prev_node)
359 *prev = NULL;
360 else if (ret < 0)
361 *prev = delayed_item;
362 else if ((node = rb_prev(prev_node)) != NULL) {
363 *prev = rb_entry(node, struct btrfs_delayed_item,
364 rb_node);
365 } else
366 *prev = NULL;
367 }
368
369 if (next) {
370 if (!prev_node)
371 *next = NULL;
372 else if (ret > 0)
373 *next = delayed_item;
374 else if ((node = rb_next(prev_node)) != NULL) {
375 *next = rb_entry(node, struct btrfs_delayed_item,
376 rb_node);
377 } else
378 *next = NULL;
379 }
380 return NULL;
381}
382
383struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
384 struct btrfs_delayed_node *delayed_node,
385 struct btrfs_key *key)
386{
387 struct btrfs_delayed_item *item;
388
389 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
390 NULL, NULL);
391 return item;
392}
393
394struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
395 struct btrfs_delayed_node *delayed_node,
396 struct btrfs_key *key)
397{
398 struct btrfs_delayed_item *item;
399
400 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
401 NULL, NULL);
402 return item;
403}
404
405struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
406 struct btrfs_delayed_node *delayed_node,
407 struct btrfs_key *key)
408{
409 struct btrfs_delayed_item *item, *next;
410
411 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
412 NULL, &next);
413 if (!item)
414 item = next;
415
416 return item;
417}
418
419struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
420 struct btrfs_delayed_node *delayed_node,
421 struct btrfs_key *key)
422{
423 struct btrfs_delayed_item *item, *next;
424
425 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
426 NULL, &next);
427 if (!item)
428 item = next;
429
430 return item;
431}
432
433static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
434 struct btrfs_delayed_item *ins,
435 int action)
436{
437 struct rb_node **p, *node;
438 struct rb_node *parent_node = NULL;
439 struct rb_root *root;
440 struct btrfs_delayed_item *item;
441 int cmp;
442
443 if (action == BTRFS_DELAYED_INSERTION_ITEM)
444 root = &delayed_node->ins_root;
445 else if (action == BTRFS_DELAYED_DELETION_ITEM)
446 root = &delayed_node->del_root;
447 else
448 BUG();
449 p = &root->rb_node;
450 node = &ins->rb_node;
451
452 while (*p) {
453 parent_node = *p;
454 item = rb_entry(parent_node, struct btrfs_delayed_item,
455 rb_node);
456
457 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
458 if (cmp < 0)
459 p = &(*p)->rb_right;
460 else if (cmp > 0)
461 p = &(*p)->rb_left;
462 else
463 return -EEXIST;
464 }
465
466 rb_link_node(node, parent_node, p);
467 rb_insert_color(node, root);
468 ins->delayed_node = delayed_node;
469 ins->ins_or_del = action;
470
471 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
472 action == BTRFS_DELAYED_INSERTION_ITEM &&
473 ins->key.offset >= delayed_node->index_cnt)
474 delayed_node->index_cnt = ins->key.offset + 1;
475
476 delayed_node->count++;
477 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
478 return 0;
479}
480
481static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
482 struct btrfs_delayed_item *item)
483{
484 return __btrfs_add_delayed_item(node, item,
485 BTRFS_DELAYED_INSERTION_ITEM);
486}
487
488static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
489 struct btrfs_delayed_item *item)
490{
491 return __btrfs_add_delayed_item(node, item,
492 BTRFS_DELAYED_DELETION_ITEM);
493}
494
495static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
496{
497 struct rb_root *root;
498 struct btrfs_delayed_root *delayed_root;
499
500 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
501
502 BUG_ON(!delayed_root);
503 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
504 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
505
506 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
507 root = &delayed_item->delayed_node->ins_root;
508 else
509 root = &delayed_item->delayed_node->del_root;
510
511 rb_erase(&delayed_item->rb_node, root);
512 delayed_item->delayed_node->count--;
513 atomic_dec(&delayed_root->items);
514 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
515 waitqueue_active(&delayed_root->wait))
516 wake_up(&delayed_root->wait);
517}
518
519static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
520{
521 if (item) {
522 __btrfs_remove_delayed_item(item);
523 if (atomic_dec_and_test(&item->refs))
524 kfree(item);
525 }
526}
527
528struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
529 struct btrfs_delayed_node *delayed_node)
530{
531 struct rb_node *p;
532 struct btrfs_delayed_item *item = NULL;
533
534 p = rb_first(&delayed_node->ins_root);
535 if (p)
536 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
537
538 return item;
539}
540
541struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
542 struct btrfs_delayed_node *delayed_node)
543{
544 struct rb_node *p;
545 struct btrfs_delayed_item *item = NULL;
546
547 p = rb_first(&delayed_node->del_root);
548 if (p)
549 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
550
551 return item;
552}
553
554struct btrfs_delayed_item *__btrfs_next_delayed_item(
555 struct btrfs_delayed_item *item)
556{
557 struct rb_node *p;
558 struct btrfs_delayed_item *next = NULL;
559
560 p = rb_next(&item->rb_node);
561 if (p)
562 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
563
564 return next;
565}
566
567static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
568 u64 root_id)
569{
570 struct btrfs_key root_key;
571
572 if (root->objectid == root_id)
573 return root;
574
575 root_key.objectid = root_id;
576 root_key.type = BTRFS_ROOT_ITEM_KEY;
577 root_key.offset = (u64)-1;
578 return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
579}
580
581static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
582 struct btrfs_root *root,
583 struct btrfs_delayed_item *item)
584{
585 struct btrfs_block_rsv *src_rsv;
586 struct btrfs_block_rsv *dst_rsv;
587 u64 num_bytes;
588 int ret;
589
590 if (!trans->bytes_reserved)
591 return 0;
592
593 src_rsv = trans->block_rsv;
594 dst_rsv = &root->fs_info->global_block_rsv;
595
596 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
597 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
598 if (!ret)
599 item->bytes_reserved = num_bytes;
600
601 return ret;
602}
603
604static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
605 struct btrfs_delayed_item *item)
606{
607 struct btrfs_block_rsv *rsv;
608
609 if (!item->bytes_reserved)
610 return;
611
612 rsv = &root->fs_info->global_block_rsv;
613 btrfs_block_rsv_release(root, rsv,
614 item->bytes_reserved);
615}
616
617static int btrfs_delayed_inode_reserve_metadata(
618 struct btrfs_trans_handle *trans,
619 struct btrfs_root *root,
620 struct btrfs_delayed_node *node)
621{
622 struct btrfs_block_rsv *src_rsv;
623 struct btrfs_block_rsv *dst_rsv;
624 u64 num_bytes;
625 int ret;
626
627 if (!trans->bytes_reserved)
628 return 0;
629
630 src_rsv = trans->block_rsv;
631 dst_rsv = &root->fs_info->global_block_rsv;
632
633 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
634 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
635 if (!ret)
636 node->bytes_reserved = num_bytes;
637
638 return ret;
639}
640
641static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
642 struct btrfs_delayed_node *node)
643{
644 struct btrfs_block_rsv *rsv;
645
646 if (!node->bytes_reserved)
647 return;
648
649 rsv = &root->fs_info->global_block_rsv;
650 btrfs_block_rsv_release(root, rsv,
651 node->bytes_reserved);
652 node->bytes_reserved = 0;
653}
654
655/*
656 * This helper will insert some continuous items into the same leaf according
657 * to the free space of the leaf.
658 */
659static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
660 struct btrfs_root *root,
661 struct btrfs_path *path,
662 struct btrfs_delayed_item *item)
663{
664 struct btrfs_delayed_item *curr, *next;
665 int free_space;
666 int total_data_size = 0, total_size = 0;
667 struct extent_buffer *leaf;
668 char *data_ptr;
669 struct btrfs_key *keys;
670 u32 *data_size;
671 struct list_head head;
672 int slot;
673 int nitems;
674 int i;
675 int ret = 0;
676
677 BUG_ON(!path->nodes[0]);
678
679 leaf = path->nodes[0];
680 free_space = btrfs_leaf_free_space(root, leaf);
681 INIT_LIST_HEAD(&head);
682
683 next = item;
684 nitems = 0;
685
686 /*
687 * count the number of the continuous items that we can insert in batch
688 */
689 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
690 free_space) {
691 total_data_size += next->data_len;
692 total_size += next->data_len + sizeof(struct btrfs_item);
693 list_add_tail(&next->tree_list, &head);
694 nitems++;
695
696 curr = next;
697 next = __btrfs_next_delayed_item(curr);
698 if (!next)
699 break;
700
701 if (!btrfs_is_continuous_delayed_item(curr, next))
702 break;
703 }
704
705 if (!nitems) {
706 ret = 0;
707 goto out;
708 }
709
710 /*
711 * we need allocate some memory space, but it might cause the task
712 * to sleep, so we set all locked nodes in the path to blocking locks
713 * first.
714 */
715 btrfs_set_path_blocking(path);
716
717 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
718 if (!keys) {
719 ret = -ENOMEM;
720 goto out;
721 }
722
723 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
724 if (!data_size) {
725 ret = -ENOMEM;
726 goto error;
727 }
728
729 /* get keys of all the delayed items */
730 i = 0;
731 list_for_each_entry(next, &head, tree_list) {
732 keys[i] = next->key;
733 data_size[i] = next->data_len;
734 i++;
735 }
736
737 /* reset all the locked nodes in the patch to spinning locks. */
738 btrfs_clear_path_blocking(path, NULL, 0);
739
740 /* insert the keys of the items */
741 ret = setup_items_for_insert(trans, root, path, keys, data_size,
742 total_data_size, total_size, nitems);
743 if (ret)
744 goto error;
745
746 /* insert the dir index items */
747 slot = path->slots[0];
748 list_for_each_entry_safe(curr, next, &head, tree_list) {
749 data_ptr = btrfs_item_ptr(leaf, slot, char);
750 write_extent_buffer(leaf, &curr->data,
751 (unsigned long)data_ptr,
752 curr->data_len);
753 slot++;
754
755 btrfs_delayed_item_release_metadata(root, curr);
756
757 list_del(&curr->tree_list);
758 btrfs_release_delayed_item(curr);
759 }
760
761error:
762 kfree(data_size);
763 kfree(keys);
764out:
765 return ret;
766}
767
768/*
769 * This helper can just do simple insertion that needn't extend item for new
770 * data, such as directory name index insertion, inode insertion.
771 */
772static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
773 struct btrfs_root *root,
774 struct btrfs_path *path,
775 struct btrfs_delayed_item *delayed_item)
776{
777 struct extent_buffer *leaf;
778 struct btrfs_item *item;
779 char *ptr;
780 int ret;
781
782 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
783 delayed_item->data_len);
784 if (ret < 0 && ret != -EEXIST)
785 return ret;
786
787 leaf = path->nodes[0];
788
789 item = btrfs_item_nr(leaf, path->slots[0]);
790 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
791
792 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
793 delayed_item->data_len);
794 btrfs_mark_buffer_dirty(leaf);
795
796 btrfs_delayed_item_release_metadata(root, delayed_item);
797 return 0;
798}
799
800/*
801 * we insert an item first, then if there are some continuous items, we try
802 * to insert those items into the same leaf.
803 */
804static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
805 struct btrfs_path *path,
806 struct btrfs_root *root,
807 struct btrfs_delayed_node *node)
808{
809 struct btrfs_delayed_item *curr, *prev;
810 int ret = 0;
811
812do_again:
813 mutex_lock(&node->mutex);
814 curr = __btrfs_first_delayed_insertion_item(node);
815 if (!curr)
816 goto insert_end;
817
818 ret = btrfs_insert_delayed_item(trans, root, path, curr);
819 if (ret < 0) {
820 btrfs_release_path(path);
821 goto insert_end;
822 }
823
824 prev = curr;
825 curr = __btrfs_next_delayed_item(prev);
826 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
827 /* insert the continuous items into the same leaf */
828 path->slots[0]++;
829 btrfs_batch_insert_items(trans, root, path, curr);
830 }
831 btrfs_release_delayed_item(prev);
832 btrfs_mark_buffer_dirty(path->nodes[0]);
833
834 btrfs_release_path(path);
835 mutex_unlock(&node->mutex);
836 goto do_again;
837
838insert_end:
839 mutex_unlock(&node->mutex);
840 return ret;
841}
842
843static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
844 struct btrfs_root *root,
845 struct btrfs_path *path,
846 struct btrfs_delayed_item *item)
847{
848 struct btrfs_delayed_item *curr, *next;
849 struct extent_buffer *leaf;
850 struct btrfs_key key;
851 struct list_head head;
852 int nitems, i, last_item;
853 int ret = 0;
854
855 BUG_ON(!path->nodes[0]);
856
857 leaf = path->nodes[0];
858
859 i = path->slots[0];
860 last_item = btrfs_header_nritems(leaf) - 1;
861 if (i > last_item)
862 return -ENOENT; /* FIXME: Is errno suitable? */
863
864 next = item;
865 INIT_LIST_HEAD(&head);
866 btrfs_item_key_to_cpu(leaf, &key, i);
867 nitems = 0;
868 /*
869 * count the number of the dir index items that we can delete in batch
870 */
871 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
872 list_add_tail(&next->tree_list, &head);
873 nitems++;
874
875 curr = next;
876 next = __btrfs_next_delayed_item(curr);
877 if (!next)
878 break;
879
880 if (!btrfs_is_continuous_delayed_item(curr, next))
881 break;
882
883 i++;
884 if (i > last_item)
885 break;
886 btrfs_item_key_to_cpu(leaf, &key, i);
887 }
888
889 if (!nitems)
890 return 0;
891
892 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
893 if (ret)
894 goto out;
895
896 list_for_each_entry_safe(curr, next, &head, tree_list) {
897 btrfs_delayed_item_release_metadata(root, curr);
898 list_del(&curr->tree_list);
899 btrfs_release_delayed_item(curr);
900 }
901
902out:
903 return ret;
904}
905
906static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
907 struct btrfs_path *path,
908 struct btrfs_root *root,
909 struct btrfs_delayed_node *node)
910{
911 struct btrfs_delayed_item *curr, *prev;
912 int ret = 0;
913
914do_again:
915 mutex_lock(&node->mutex);
916 curr = __btrfs_first_delayed_deletion_item(node);
917 if (!curr)
918 goto delete_fail;
919
920 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
921 if (ret < 0)
922 goto delete_fail;
923 else if (ret > 0) {
924 /*
925 * can't find the item which the node points to, so this node
926 * is invalid, just drop it.
927 */
928 prev = curr;
929 curr = __btrfs_next_delayed_item(prev);
930 btrfs_release_delayed_item(prev);
931 ret = 0;
932 btrfs_release_path(path);
933 if (curr)
934 goto do_again;
935 else
936 goto delete_fail;
937 }
938
939 btrfs_batch_delete_items(trans, root, path, curr);
940 btrfs_release_path(path);
941 mutex_unlock(&node->mutex);
942 goto do_again;
943
944delete_fail:
945 btrfs_release_path(path);
946 mutex_unlock(&node->mutex);
947 return ret;
948}
949
950static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
951{
952 struct btrfs_delayed_root *delayed_root;
953
954 if (delayed_node && delayed_node->inode_dirty) {
955 BUG_ON(!delayed_node->root);
956 delayed_node->inode_dirty = 0;
957 delayed_node->count--;
958
959 delayed_root = delayed_node->root->fs_info->delayed_root;
960 atomic_dec(&delayed_root->items);
961 if (atomic_read(&delayed_root->items) <
962 BTRFS_DELAYED_BACKGROUND &&
963 waitqueue_active(&delayed_root->wait))
964 wake_up(&delayed_root->wait);
965 }
966}
967
968static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
969 struct btrfs_root *root,
970 struct btrfs_path *path,
971 struct btrfs_delayed_node *node)
972{
973 struct btrfs_key key;
974 struct btrfs_inode_item *inode_item;
975 struct extent_buffer *leaf;
976 int ret;
977
978 mutex_lock(&node->mutex);
979 if (!node->inode_dirty) {
980 mutex_unlock(&node->mutex);
981 return 0;
982 }
983
984 key.objectid = node->inode_id;
985 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
986 key.offset = 0;
987 ret = btrfs_lookup_inode(trans, root, path, &key, 1);
988 if (ret > 0) {
989 btrfs_release_path(path);
990 mutex_unlock(&node->mutex);
991 return -ENOENT;
992 } else if (ret < 0) {
993 mutex_unlock(&node->mutex);
994 return ret;
995 }
996
997 btrfs_unlock_up_safe(path, 1);
998 leaf = path->nodes[0];
999 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_inode_item);
1001 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1002 sizeof(struct btrfs_inode_item));
1003 btrfs_mark_buffer_dirty(leaf);
1004 btrfs_release_path(path);
1005
1006 btrfs_delayed_inode_release_metadata(root, node);
1007 btrfs_release_delayed_inode(node);
1008 mutex_unlock(&node->mutex);
1009
1010 return 0;
1011}
1012
1013/* Called when committing the transaction. */
1014int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1015 struct btrfs_root *root)
1016{
1017 struct btrfs_delayed_root *delayed_root;
1018 struct btrfs_delayed_node *curr_node, *prev_node;
1019 struct btrfs_path *path;
1020 struct btrfs_block_rsv *block_rsv;
1021 int ret = 0;
1022
1023 path = btrfs_alloc_path();
1024 if (!path)
1025 return -ENOMEM;
1026 path->leave_spinning = 1;
1027
1028 block_rsv = trans->block_rsv;
1029 trans->block_rsv = &root->fs_info->global_block_rsv;
1030
1031 delayed_root = btrfs_get_delayed_root(root);
1032
1033 curr_node = btrfs_first_delayed_node(delayed_root);
1034 while (curr_node) {
1035 root = curr_node->root;
1036 ret = btrfs_insert_delayed_items(trans, path, root,
1037 curr_node);
1038 if (!ret)
1039 ret = btrfs_delete_delayed_items(trans, path, root,
1040 curr_node);
1041 if (!ret)
1042 ret = btrfs_update_delayed_inode(trans, root, path,
1043 curr_node);
1044 if (ret) {
1045 btrfs_release_delayed_node(curr_node);
1046 break;
1047 }
1048
1049 prev_node = curr_node;
1050 curr_node = btrfs_next_delayed_node(curr_node);
1051 btrfs_release_delayed_node(prev_node);
1052 }
1053
1054 btrfs_free_path(path);
1055 trans->block_rsv = block_rsv;
1056 return ret;
1057}
1058
1059static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1060 struct btrfs_delayed_node *node)
1061{
1062 struct btrfs_path *path;
1063 struct btrfs_block_rsv *block_rsv;
1064 int ret;
1065
1066 path = btrfs_alloc_path();
1067 if (!path)
1068 return -ENOMEM;
1069 path->leave_spinning = 1;
1070
1071 block_rsv = trans->block_rsv;
1072 trans->block_rsv = &node->root->fs_info->global_block_rsv;
1073
1074 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1075 if (!ret)
1076 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1077 if (!ret)
1078 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1079 btrfs_free_path(path);
1080
1081 trans->block_rsv = block_rsv;
1082 return ret;
1083}
1084
1085int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1086 struct inode *inode)
1087{
1088 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1089 int ret;
1090
1091 if (!delayed_node)
1092 return 0;
1093
1094 mutex_lock(&delayed_node->mutex);
1095 if (!delayed_node->count) {
1096 mutex_unlock(&delayed_node->mutex);
1097 btrfs_release_delayed_node(delayed_node);
1098 return 0;
1099 }
1100 mutex_unlock(&delayed_node->mutex);
1101
1102 ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
1103 btrfs_release_delayed_node(delayed_node);
1104 return ret;
1105}
1106
1107void btrfs_remove_delayed_node(struct inode *inode)
1108{
1109 struct btrfs_delayed_node *delayed_node;
1110
1111 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1112 if (!delayed_node)
1113 return;
1114
1115 BTRFS_I(inode)->delayed_node = NULL;
1116 btrfs_release_delayed_node(delayed_node);
1117}
1118
1119struct btrfs_async_delayed_node {
1120 struct btrfs_root *root;
1121 struct btrfs_delayed_node *delayed_node;
1122 struct btrfs_work work;
1123};
1124
1125static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1126{
1127 struct btrfs_async_delayed_node *async_node;
1128 struct btrfs_trans_handle *trans;
1129 struct btrfs_path *path;
1130 struct btrfs_delayed_node *delayed_node = NULL;
1131 struct btrfs_root *root;
1132 struct btrfs_block_rsv *block_rsv;
1133 unsigned long nr = 0;
1134 int need_requeue = 0;
1135 int ret;
1136
1137 async_node = container_of(work, struct btrfs_async_delayed_node, work);
1138
1139 path = btrfs_alloc_path();
1140 if (!path)
1141 goto out;
1142 path->leave_spinning = 1;
1143
1144 delayed_node = async_node->delayed_node;
1145 root = delayed_node->root;
1146
1147 trans = btrfs_join_transaction(root);
1148 if (IS_ERR(trans))
1149 goto free_path;
1150
1151 block_rsv = trans->block_rsv;
1152 trans->block_rsv = &root->fs_info->global_block_rsv;
1153
1154 ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1155 if (!ret)
1156 ret = btrfs_delete_delayed_items(trans, path, root,
1157 delayed_node);
1158
1159 if (!ret)
1160 btrfs_update_delayed_inode(trans, root, path, delayed_node);
1161
1162 /*
1163 * Maybe new delayed items have been inserted, so we need requeue
1164 * the work. Besides that, we must dequeue the empty delayed nodes
1165 * to avoid the race between delayed items balance and the worker.
1166 * The race like this:
1167 * Task1 Worker thread
1168 * count == 0, needn't requeue
1169 * also needn't insert the
1170 * delayed node into prepare
1171 * list again.
1172 * add lots of delayed items
1173 * queue the delayed node
1174 * already in the list,
1175 * and not in the prepare
1176 * list, it means the delayed
1177 * node is being dealt with
1178 * by the worker.
1179 * do delayed items balance
1180 * the delayed node is being
1181 * dealt with by the worker
1182 * now, just wait.
1183 * the worker goto idle.
1184 * Task1 will sleep until the transaction is commited.
1185 */
1186 mutex_lock(&delayed_node->mutex);
1187 if (delayed_node->count)
1188 need_requeue = 1;
1189 else
1190 btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1191 delayed_node);
1192 mutex_unlock(&delayed_node->mutex);
1193
1194 nr = trans->blocks_used;
1195
1196 trans->block_rsv = block_rsv;
1197 btrfs_end_transaction_dmeta(trans, root);
1198 __btrfs_btree_balance_dirty(root, nr);
1199free_path:
1200 btrfs_free_path(path);
1201out:
1202 if (need_requeue)
1203 btrfs_requeue_work(&async_node->work);
1204 else {
1205 btrfs_release_prepared_delayed_node(delayed_node);
1206 kfree(async_node);
1207 }
1208}
1209
1210static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1211 struct btrfs_root *root, int all)
1212{
1213 struct btrfs_async_delayed_node *async_node;
1214 struct btrfs_delayed_node *curr;
1215 int count = 0;
1216
1217again:
1218 curr = btrfs_first_prepared_delayed_node(delayed_root);
1219 if (!curr)
1220 return 0;
1221
1222 async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1223 if (!async_node) {
1224 btrfs_release_prepared_delayed_node(curr);
1225 return -ENOMEM;
1226 }
1227
1228 async_node->root = root;
1229 async_node->delayed_node = curr;
1230
1231 async_node->work.func = btrfs_async_run_delayed_node_done;
1232 async_node->work.flags = 0;
1233
1234 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1235 count++;
1236
1237 if (all || count < 4)
1238 goto again;
1239
1240 return 0;
1241}
1242
1243void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1244{
1245 struct btrfs_delayed_root *delayed_root;
1246 delayed_root = btrfs_get_delayed_root(root);
1247 WARN_ON(btrfs_first_delayed_node(delayed_root));
1248}
1249
1250void btrfs_balance_delayed_items(struct btrfs_root *root)
1251{
1252 struct btrfs_delayed_root *delayed_root;
1253
1254 delayed_root = btrfs_get_delayed_root(root);
1255
1256 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1257 return;
1258
1259 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1260 int ret;
1261 ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1262 if (ret)
1263 return;
1264
1265 wait_event_interruptible_timeout(
1266 delayed_root->wait,
1267 (atomic_read(&delayed_root->items) <
1268 BTRFS_DELAYED_BACKGROUND),
1269 HZ);
1270 return;
1271 }
1272
1273 btrfs_wq_run_delayed_node(delayed_root, root, 0);
1274}
1275
1276int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1277 struct btrfs_root *root, const char *name,
1278 int name_len, struct inode *dir,
1279 struct btrfs_disk_key *disk_key, u8 type,
1280 u64 index)
1281{
1282 struct btrfs_delayed_node *delayed_node;
1283 struct btrfs_delayed_item *delayed_item;
1284 struct btrfs_dir_item *dir_item;
1285 int ret;
1286
1287 delayed_node = btrfs_get_or_create_delayed_node(dir);
1288 if (IS_ERR(delayed_node))
1289 return PTR_ERR(delayed_node);
1290
1291 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1292 if (!delayed_item) {
1293 ret = -ENOMEM;
1294 goto release_node;
1295 }
1296
1297 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1298 /*
1299 * we have reserved enough space when we start a new transaction,
1300 * so reserving metadata failure is impossible
1301 */
1302 BUG_ON(ret);
1303
1304 delayed_item->key.objectid = btrfs_ino(dir);
1305 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1306 delayed_item->key.offset = index;
1307
1308 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1309 dir_item->location = *disk_key;
1310 dir_item->transid = cpu_to_le64(trans->transid);
1311 dir_item->data_len = 0;
1312 dir_item->name_len = cpu_to_le16(name_len);
1313 dir_item->type = type;
1314 memcpy((char *)(dir_item + 1), name, name_len);
1315
1316 mutex_lock(&delayed_node->mutex);
1317 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1318 if (unlikely(ret)) {
1319 printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1320 "the insertion tree of the delayed node"
1321 "(root id: %llu, inode id: %llu, errno: %d)\n",
1322 name,
1323 (unsigned long long)delayed_node->root->objectid,
1324 (unsigned long long)delayed_node->inode_id,
1325 ret);
1326 BUG();
1327 }
1328 mutex_unlock(&delayed_node->mutex);
1329
1330release_node:
1331 btrfs_release_delayed_node(delayed_node);
1332 return ret;
1333}
1334
1335static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1336 struct btrfs_delayed_node *node,
1337 struct btrfs_key *key)
1338{
1339 struct btrfs_delayed_item *item;
1340
1341 mutex_lock(&node->mutex);
1342 item = __btrfs_lookup_delayed_insertion_item(node, key);
1343 if (!item) {
1344 mutex_unlock(&node->mutex);
1345 return 1;
1346 }
1347
1348 btrfs_delayed_item_release_metadata(root, item);
1349 btrfs_release_delayed_item(item);
1350 mutex_unlock(&node->mutex);
1351 return 0;
1352}
1353
1354int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1355 struct btrfs_root *root, struct inode *dir,
1356 u64 index)
1357{
1358 struct btrfs_delayed_node *node;
1359 struct btrfs_delayed_item *item;
1360 struct btrfs_key item_key;
1361 int ret;
1362
1363 node = btrfs_get_or_create_delayed_node(dir);
1364 if (IS_ERR(node))
1365 return PTR_ERR(node);
1366
1367 item_key.objectid = btrfs_ino(dir);
1368 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1369 item_key.offset = index;
1370
1371 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1372 if (!ret)
1373 goto end;
1374
1375 item = btrfs_alloc_delayed_item(0);
1376 if (!item) {
1377 ret = -ENOMEM;
1378 goto end;
1379 }
1380
1381 item->key = item_key;
1382
1383 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1384 /*
1385 * we have reserved enough space when we start a new transaction,
1386 * so reserving metadata failure is impossible.
1387 */
1388 BUG_ON(ret);
1389
1390 mutex_lock(&node->mutex);
1391 ret = __btrfs_add_delayed_deletion_item(node, item);
1392 if (unlikely(ret)) {
1393 printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1394 "into the deletion tree of the delayed node"
1395 "(root id: %llu, inode id: %llu, errno: %d)\n",
1396 (unsigned long long)index,
1397 (unsigned long long)node->root->objectid,
1398 (unsigned long long)node->inode_id,
1399 ret);
1400 BUG();
1401 }
1402 mutex_unlock(&node->mutex);
1403end:
1404 btrfs_release_delayed_node(node);
1405 return ret;
1406}
1407
1408int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1409{
1410 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1411
1412 if (!delayed_node)
1413 return -ENOENT;
1414
1415 /*
1416 * Since we have held i_mutex of this directory, it is impossible that
1417 * a new directory index is added into the delayed node and index_cnt
1418 * is updated now. So we needn't lock the delayed node.
1419 */
1420 if (!delayed_node->index_cnt) {
1421 btrfs_release_delayed_node(delayed_node);
1422 return -EINVAL;
1423 }
1424
1425 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1426 btrfs_release_delayed_node(delayed_node);
1427 return 0;
1428}
1429
1430void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1431 struct list_head *del_list)
1432{
1433 struct btrfs_delayed_node *delayed_node;
1434 struct btrfs_delayed_item *item;
1435
1436 delayed_node = btrfs_get_delayed_node(inode);
1437 if (!delayed_node)
1438 return;
1439
1440 mutex_lock(&delayed_node->mutex);
1441 item = __btrfs_first_delayed_insertion_item(delayed_node);
1442 while (item) {
1443 atomic_inc(&item->refs);
1444 list_add_tail(&item->readdir_list, ins_list);
1445 item = __btrfs_next_delayed_item(item);
1446 }
1447
1448 item = __btrfs_first_delayed_deletion_item(delayed_node);
1449 while (item) {
1450 atomic_inc(&item->refs);
1451 list_add_tail(&item->readdir_list, del_list);
1452 item = __btrfs_next_delayed_item(item);
1453 }
1454 mutex_unlock(&delayed_node->mutex);
1455 /*
1456 * This delayed node is still cached in the btrfs inode, so refs
1457 * must be > 1 now, and we needn't check it is going to be freed
1458 * or not.
1459 *
1460 * Besides that, this function is used to read dir, we do not
1461 * insert/delete delayed items in this period. So we also needn't
1462 * requeue or dequeue this delayed node.
1463 */
1464 atomic_dec(&delayed_node->refs);
1465}
1466
1467void btrfs_put_delayed_items(struct list_head *ins_list,
1468 struct list_head *del_list)
1469{
1470 struct btrfs_delayed_item *curr, *next;
1471
1472 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1473 list_del(&curr->readdir_list);
1474 if (atomic_dec_and_test(&curr->refs))
1475 kfree(curr);
1476 }
1477
1478 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1479 list_del(&curr->readdir_list);
1480 if (atomic_dec_and_test(&curr->refs))
1481 kfree(curr);
1482 }
1483}
1484
1485int btrfs_should_delete_dir_index(struct list_head *del_list,
1486 u64 index)
1487{
1488 struct btrfs_delayed_item *curr, *next;
1489 int ret;
1490
1491 if (list_empty(del_list))
1492 return 0;
1493
1494 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1495 if (curr->key.offset > index)
1496 break;
1497
1498 list_del(&curr->readdir_list);
1499 ret = (curr->key.offset == index);
1500
1501 if (atomic_dec_and_test(&curr->refs))
1502 kfree(curr);
1503
1504 if (ret)
1505 return 1;
1506 else
1507 continue;
1508 }
1509 return 0;
1510}
1511
1512/*
1513 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1514 *
1515 */
1516int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1517 filldir_t filldir,
1518 struct list_head *ins_list)
1519{
1520 struct btrfs_dir_item *di;
1521 struct btrfs_delayed_item *curr, *next;
1522 struct btrfs_key location;
1523 char *name;
1524 int name_len;
1525 int over = 0;
1526 unsigned char d_type;
1527
1528 if (list_empty(ins_list))
1529 return 0;
1530
1531 /*
1532 * Changing the data of the delayed item is impossible. So
1533 * we needn't lock them. And we have held i_mutex of the
1534 * directory, nobody can delete any directory indexes now.
1535 */
1536 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1537 list_del(&curr->readdir_list);
1538
1539 if (curr->key.offset < filp->f_pos) {
1540 if (atomic_dec_and_test(&curr->refs))
1541 kfree(curr);
1542 continue;
1543 }
1544
1545 filp->f_pos = curr->key.offset;
1546
1547 di = (struct btrfs_dir_item *)curr->data;
1548 name = (char *)(di + 1);
1549 name_len = le16_to_cpu(di->name_len);
1550
1551 d_type = btrfs_filetype_table[di->type];
1552 btrfs_disk_key_to_cpu(&location, &di->location);
1553
1554 over = filldir(dirent, name, name_len, curr->key.offset,
1555 location.objectid, d_type);
1556
1557 if (atomic_dec_and_test(&curr->refs))
1558 kfree(curr);
1559
1560 if (over)
1561 return 1;
1562 }
1563 return 0;
1564}
1565
1566BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1567 generation, 64);
1568BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1569 sequence, 64);
1570BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1571 transid, 64);
1572BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1573BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1574 nbytes, 64);
1575BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1576 block_group, 64);
1577BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1578BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1579BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1580BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1581BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1582BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1583
1584BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1585BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1586
1587static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1588 struct btrfs_inode_item *inode_item,
1589 struct inode *inode)
1590{
1591 btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1592 btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1593 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1594 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1595 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1596 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1597 btrfs_set_stack_inode_generation(inode_item,
1598 BTRFS_I(inode)->generation);
1599 btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
1600 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1601 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1602 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1603 btrfs_set_stack_inode_block_group(inode_item, 0);
1604
1605 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1606 inode->i_atime.tv_sec);
1607 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1608 inode->i_atime.tv_nsec);
1609
1610 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1611 inode->i_mtime.tv_sec);
1612 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1613 inode->i_mtime.tv_nsec);
1614
1615 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1616 inode->i_ctime.tv_sec);
1617 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1618 inode->i_ctime.tv_nsec);
1619}
1620
1621int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1622{
1623 struct btrfs_delayed_node *delayed_node;
1624 struct btrfs_inode_item *inode_item;
1625 struct btrfs_timespec *tspec;
1626
1627 delayed_node = btrfs_get_delayed_node(inode);
1628 if (!delayed_node)
1629 return -ENOENT;
1630
1631 mutex_lock(&delayed_node->mutex);
1632 if (!delayed_node->inode_dirty) {
1633 mutex_unlock(&delayed_node->mutex);
1634 btrfs_release_delayed_node(delayed_node);
1635 return -ENOENT;
1636 }
1637
1638 inode_item = &delayed_node->inode_item;
1639
1640 inode->i_uid = btrfs_stack_inode_uid(inode_item);
1641 inode->i_gid = btrfs_stack_inode_gid(inode_item);
1642 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1643 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1644 inode->i_nlink = btrfs_stack_inode_nlink(inode_item);
1645 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1646 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1647 BTRFS_I(inode)->sequence = btrfs_stack_inode_sequence(inode_item);
1648 inode->i_rdev = 0;
1649 *rdev = btrfs_stack_inode_rdev(inode_item);
1650 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1651
1652 tspec = btrfs_inode_atime(inode_item);
1653 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1654 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1655
1656 tspec = btrfs_inode_mtime(inode_item);
1657 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1658 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1659
1660 tspec = btrfs_inode_ctime(inode_item);
1661 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1662 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1663
1664 inode->i_generation = BTRFS_I(inode)->generation;
1665 BTRFS_I(inode)->index_cnt = (u64)-1;
1666
1667 mutex_unlock(&delayed_node->mutex);
1668 btrfs_release_delayed_node(delayed_node);
1669 return 0;
1670}
1671
1672int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1673 struct btrfs_root *root, struct inode *inode)
1674{
1675 struct btrfs_delayed_node *delayed_node;
1676 int ret = 0;
1677
1678 delayed_node = btrfs_get_or_create_delayed_node(inode);
1679 if (IS_ERR(delayed_node))
1680 return PTR_ERR(delayed_node);
1681
1682 mutex_lock(&delayed_node->mutex);
1683 if (delayed_node->inode_dirty) {
1684 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1685 goto release_node;
1686 }
1687
1688 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1689 /*
1690 * we must reserve enough space when we start a new transaction,
1691 * so reserving metadata failure is impossible
1692 */
1693 BUG_ON(ret);
1694
1695 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1696 delayed_node->inode_dirty = 1;
1697 delayed_node->count++;
1698 atomic_inc(&root->fs_info->delayed_root->items);
1699release_node:
1700 mutex_unlock(&delayed_node->mutex);
1701 btrfs_release_delayed_node(delayed_node);
1702 return ret;
1703}
1704
1705static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1706{
1707 struct btrfs_root *root = delayed_node->root;
1708 struct btrfs_delayed_item *curr_item, *prev_item;
1709
1710 mutex_lock(&delayed_node->mutex);
1711 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1712 while (curr_item) {
1713 btrfs_delayed_item_release_metadata(root, curr_item);
1714 prev_item = curr_item;
1715 curr_item = __btrfs_next_delayed_item(prev_item);
1716 btrfs_release_delayed_item(prev_item);
1717 }
1718
1719 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1720 while (curr_item) {
1721 btrfs_delayed_item_release_metadata(root, curr_item);
1722 prev_item = curr_item;
1723 curr_item = __btrfs_next_delayed_item(prev_item);
1724 btrfs_release_delayed_item(prev_item);
1725 }
1726
1727 if (delayed_node->inode_dirty) {
1728 btrfs_delayed_inode_release_metadata(root, delayed_node);
1729 btrfs_release_delayed_inode(delayed_node);
1730 }
1731 mutex_unlock(&delayed_node->mutex);
1732}
1733
1734void btrfs_kill_delayed_inode_items(struct inode *inode)
1735{
1736 struct btrfs_delayed_node *delayed_node;
1737
1738 delayed_node = btrfs_get_delayed_node(inode);
1739 if (!delayed_node)
1740 return;
1741
1742 __btrfs_kill_delayed_node(delayed_node);
1743 btrfs_release_delayed_node(delayed_node);
1744}
1745
1746void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1747{
1748 u64 inode_id = 0;
1749 struct btrfs_delayed_node *delayed_nodes[8];
1750 int i, n;
1751
1752 while (1) {
1753 spin_lock(&root->inode_lock);
1754 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1755 (void **)delayed_nodes, inode_id,
1756 ARRAY_SIZE(delayed_nodes));
1757 if (!n) {
1758 spin_unlock(&root->inode_lock);
1759 break;
1760 }
1761
1762 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1763
1764 for (i = 0; i < n; i++)
1765 atomic_inc(&delayed_nodes[i]->refs);
1766 spin_unlock(&root->inode_lock);
1767
1768 for (i = 0; i < n; i++) {
1769 __btrfs_kill_delayed_node(delayed_nodes[i]);
1770 btrfs_release_delayed_node(delayed_nodes[i]);
1771 }
1772 }
1773}