Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   4 * Written by Miao Xie <miaox@cn.fujitsu.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/slab.h>
   8#include <linux/iversion.h>
   9#include "misc.h"
  10#include "delayed-inode.h"
  11#include "disk-io.h"
  12#include "transaction.h"
  13#include "ctree.h"
  14#include "qgroup.h"
  15
  16#define BTRFS_DELAYED_WRITEBACK		512
  17#define BTRFS_DELAYED_BACKGROUND	128
  18#define BTRFS_DELAYED_BATCH		16
  19
  20static struct kmem_cache *delayed_node_cache;
  21
  22int __init btrfs_delayed_inode_init(void)
  23{
  24	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  25					sizeof(struct btrfs_delayed_node),
  26					0,
  27					SLAB_MEM_SPREAD,
  28					NULL);
  29	if (!delayed_node_cache)
  30		return -ENOMEM;
  31	return 0;
  32}
  33
  34void __cold btrfs_delayed_inode_exit(void)
  35{
  36	kmem_cache_destroy(delayed_node_cache);
 
  37}
  38
  39static inline void btrfs_init_delayed_node(
  40				struct btrfs_delayed_node *delayed_node,
  41				struct btrfs_root *root, u64 inode_id)
  42{
  43	delayed_node->root = root;
  44	delayed_node->inode_id = inode_id;
  45	refcount_set(&delayed_node->refs, 0);
  46	delayed_node->ins_root = RB_ROOT_CACHED;
  47	delayed_node->del_root = RB_ROOT_CACHED;
 
 
  48	mutex_init(&delayed_node->mutex);
 
  49	INIT_LIST_HEAD(&delayed_node->n_list);
  50	INIT_LIST_HEAD(&delayed_node->p_list);
 
 
  51}
  52
  53static inline int btrfs_is_continuous_delayed_item(
  54					struct btrfs_delayed_item *item1,
  55					struct btrfs_delayed_item *item2)
  56{
  57	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  58	    item1->key.objectid == item2->key.objectid &&
  59	    item1->key.type == item2->key.type &&
  60	    item1->key.offset + 1 == item2->key.offset)
  61		return 1;
  62	return 0;
  63}
  64
  65static struct btrfs_delayed_node *btrfs_get_delayed_node(
  66		struct btrfs_inode *btrfs_inode)
 
 
 
 
 
  67{
 
  68	struct btrfs_root *root = btrfs_inode->root;
  69	u64 ino = btrfs_ino(btrfs_inode);
  70	struct btrfs_delayed_node *node;
  71
  72	node = READ_ONCE(btrfs_inode->delayed_node);
  73	if (node) {
  74		refcount_inc(&node->refs);
  75		return node;
  76	}
  77
  78	spin_lock(&root->inode_lock);
  79	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  80
  81	if (node) {
  82		if (btrfs_inode->delayed_node) {
  83			refcount_inc(&node->refs);	/* can be accessed */
  84			BUG_ON(btrfs_inode->delayed_node != node);
  85			spin_unlock(&root->inode_lock);
  86			return node;
  87		}
  88
  89		/*
  90		 * It's possible that we're racing into the middle of removing
  91		 * this node from the radix tree.  In this case, the refcount
  92		 * was zero and it should never go back to one.  Just return
  93		 * NULL like it was never in the radix at all; our release
  94		 * function is in the process of removing it.
  95		 *
  96		 * Some implementations of refcount_inc refuse to bump the
  97		 * refcount once it has hit zero.  If we don't do this dance
  98		 * here, refcount_inc() may decide to just WARN_ONCE() instead
  99		 * of actually bumping the refcount.
 100		 *
 101		 * If this node is properly in the radix, we want to bump the
 102		 * refcount twice, once for the inode and once for this get
 103		 * operation.
 104		 */
 105		if (refcount_inc_not_zero(&node->refs)) {
 106			refcount_inc(&node->refs);
 107			btrfs_inode->delayed_node = node;
 108		} else {
 109			node = NULL;
 110		}
 111
 112		spin_unlock(&root->inode_lock);
 113		return node;
 114	}
 115	spin_unlock(&root->inode_lock);
 116
 117	return NULL;
 118}
 119
 120/* Will return either the node or PTR_ERR(-ENOMEM) */
 121static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 122		struct btrfs_inode *btrfs_inode)
 123{
 124	struct btrfs_delayed_node *node;
 
 125	struct btrfs_root *root = btrfs_inode->root;
 126	u64 ino = btrfs_ino(btrfs_inode);
 127	int ret;
 128
 129again:
 130	node = btrfs_get_delayed_node(btrfs_inode);
 131	if (node)
 132		return node;
 133
 134	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
 135	if (!node)
 136		return ERR_PTR(-ENOMEM);
 137	btrfs_init_delayed_node(node, root, ino);
 138
 139	/* cached in the btrfs inode and can be accessed */
 140	refcount_set(&node->refs, 2);
 141
 142	ret = radix_tree_preload(GFP_NOFS);
 143	if (ret) {
 144		kmem_cache_free(delayed_node_cache, node);
 145		return ERR_PTR(ret);
 146	}
 147
 148	spin_lock(&root->inode_lock);
 149	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 150	if (ret == -EEXIST) {
 151		spin_unlock(&root->inode_lock);
 152		kmem_cache_free(delayed_node_cache, node);
 
 153		radix_tree_preload_end();
 154		goto again;
 155	}
 156	btrfs_inode->delayed_node = node;
 157	spin_unlock(&root->inode_lock);
 158	radix_tree_preload_end();
 159
 160	return node;
 161}
 162
 163/*
 164 * Call it when holding delayed_node->mutex
 165 *
 166 * If mod = 1, add this node into the prepared list.
 167 */
 168static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 169				     struct btrfs_delayed_node *node,
 170				     int mod)
 171{
 172	spin_lock(&root->lock);
 173	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 174		if (!list_empty(&node->p_list))
 175			list_move_tail(&node->p_list, &root->prepare_list);
 176		else if (mod)
 177			list_add_tail(&node->p_list, &root->prepare_list);
 178	} else {
 179		list_add_tail(&node->n_list, &root->node_list);
 180		list_add_tail(&node->p_list, &root->prepare_list);
 181		refcount_inc(&node->refs);	/* inserted into list */
 182		root->nodes++;
 183		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 184	}
 185	spin_unlock(&root->lock);
 186}
 187
 188/* Call it when holding delayed_node->mutex */
 189static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 190				       struct btrfs_delayed_node *node)
 191{
 192	spin_lock(&root->lock);
 193	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 194		root->nodes--;
 195		refcount_dec(&node->refs);	/* not in the list */
 196		list_del_init(&node->n_list);
 197		if (!list_empty(&node->p_list))
 198			list_del_init(&node->p_list);
 199		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 200	}
 201	spin_unlock(&root->lock);
 202}
 203
 204static struct btrfs_delayed_node *btrfs_first_delayed_node(
 205			struct btrfs_delayed_root *delayed_root)
 206{
 207	struct list_head *p;
 208	struct btrfs_delayed_node *node = NULL;
 209
 210	spin_lock(&delayed_root->lock);
 211	if (list_empty(&delayed_root->node_list))
 212		goto out;
 213
 214	p = delayed_root->node_list.next;
 215	node = list_entry(p, struct btrfs_delayed_node, n_list);
 216	refcount_inc(&node->refs);
 217out:
 218	spin_unlock(&delayed_root->lock);
 219
 220	return node;
 221}
 222
 223static struct btrfs_delayed_node *btrfs_next_delayed_node(
 224						struct btrfs_delayed_node *node)
 225{
 226	struct btrfs_delayed_root *delayed_root;
 227	struct list_head *p;
 228	struct btrfs_delayed_node *next = NULL;
 229
 230	delayed_root = node->root->fs_info->delayed_root;
 231	spin_lock(&delayed_root->lock);
 232	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 233		/* not in the list */
 234		if (list_empty(&delayed_root->node_list))
 235			goto out;
 236		p = delayed_root->node_list.next;
 237	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
 238		goto out;
 239	else
 240		p = node->n_list.next;
 241
 242	next = list_entry(p, struct btrfs_delayed_node, n_list);
 243	refcount_inc(&next->refs);
 244out:
 245	spin_unlock(&delayed_root->lock);
 246
 247	return next;
 248}
 249
 250static void __btrfs_release_delayed_node(
 251				struct btrfs_delayed_node *delayed_node,
 252				int mod)
 253{
 254	struct btrfs_delayed_root *delayed_root;
 255
 256	if (!delayed_node)
 257		return;
 258
 259	delayed_root = delayed_node->root->fs_info->delayed_root;
 260
 261	mutex_lock(&delayed_node->mutex);
 262	if (delayed_node->count)
 263		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 264	else
 265		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 266	mutex_unlock(&delayed_node->mutex);
 267
 268	if (refcount_dec_and_test(&delayed_node->refs)) {
 269		struct btrfs_root *root = delayed_node->root;
 270
 271		spin_lock(&root->inode_lock);
 272		/*
 273		 * Once our refcount goes to zero, nobody is allowed to bump it
 274		 * back up.  We can delete it now.
 275		 */
 276		ASSERT(refcount_read(&delayed_node->refs) == 0);
 277		radix_tree_delete(&root->delayed_nodes_tree,
 278				  delayed_node->inode_id);
 279		spin_unlock(&root->inode_lock);
 280		kmem_cache_free(delayed_node_cache, delayed_node);
 281	}
 282}
 283
 284static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 285{
 286	__btrfs_release_delayed_node(node, 0);
 287}
 288
 289static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 290					struct btrfs_delayed_root *delayed_root)
 291{
 292	struct list_head *p;
 293	struct btrfs_delayed_node *node = NULL;
 294
 295	spin_lock(&delayed_root->lock);
 296	if (list_empty(&delayed_root->prepare_list))
 297		goto out;
 298
 299	p = delayed_root->prepare_list.next;
 300	list_del_init(p);
 301	node = list_entry(p, struct btrfs_delayed_node, p_list);
 302	refcount_inc(&node->refs);
 303out:
 304	spin_unlock(&delayed_root->lock);
 305
 306	return node;
 307}
 308
 309static inline void btrfs_release_prepared_delayed_node(
 310					struct btrfs_delayed_node *node)
 311{
 312	__btrfs_release_delayed_node(node, 1);
 313}
 314
 315static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 316{
 317	struct btrfs_delayed_item *item;
 318	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 319	if (item) {
 320		item->data_len = data_len;
 321		item->ins_or_del = 0;
 322		item->bytes_reserved = 0;
 323		item->delayed_node = NULL;
 324		refcount_set(&item->refs, 1);
 325	}
 326	return item;
 327}
 328
 329/*
 330 * __btrfs_lookup_delayed_item - look up the delayed item by key
 331 * @delayed_node: pointer to the delayed node
 332 * @key:	  the key to look up
 333 * @prev:	  used to store the prev item if the right item isn't found
 334 * @next:	  used to store the next item if the right item isn't found
 335 *
 336 * Note: if we don't find the right item, we will return the prev item and
 337 * the next item.
 338 */
 339static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 340				struct rb_root *root,
 341				struct btrfs_key *key,
 342				struct btrfs_delayed_item **prev,
 343				struct btrfs_delayed_item **next)
 344{
 345	struct rb_node *node, *prev_node = NULL;
 346	struct btrfs_delayed_item *delayed_item = NULL;
 347	int ret = 0;
 348
 349	node = root->rb_node;
 350
 351	while (node) {
 352		delayed_item = rb_entry(node, struct btrfs_delayed_item,
 353					rb_node);
 354		prev_node = node;
 355		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 356		if (ret < 0)
 357			node = node->rb_right;
 358		else if (ret > 0)
 359			node = node->rb_left;
 360		else
 361			return delayed_item;
 362	}
 363
 364	if (prev) {
 365		if (!prev_node)
 366			*prev = NULL;
 367		else if (ret < 0)
 368			*prev = delayed_item;
 369		else if ((node = rb_prev(prev_node)) != NULL) {
 370			*prev = rb_entry(node, struct btrfs_delayed_item,
 371					 rb_node);
 372		} else
 373			*prev = NULL;
 374	}
 375
 376	if (next) {
 377		if (!prev_node)
 378			*next = NULL;
 379		else if (ret > 0)
 380			*next = delayed_item;
 381		else if ((node = rb_next(prev_node)) != NULL) {
 382			*next = rb_entry(node, struct btrfs_delayed_item,
 383					 rb_node);
 384		} else
 385			*next = NULL;
 386	}
 387	return NULL;
 388}
 389
 390static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 391					struct btrfs_delayed_node *delayed_node,
 392					struct btrfs_key *key)
 393{
 394	return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
 
 
 395					   NULL, NULL);
 
 396}
 397
 398static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 399				    struct btrfs_delayed_item *ins,
 400				    int action)
 401{
 402	struct rb_node **p, *node;
 403	struct rb_node *parent_node = NULL;
 404	struct rb_root_cached *root;
 405	struct btrfs_delayed_item *item;
 406	int cmp;
 407	bool leftmost = true;
 408
 409	if (action == BTRFS_DELAYED_INSERTION_ITEM)
 410		root = &delayed_node->ins_root;
 411	else if (action == BTRFS_DELAYED_DELETION_ITEM)
 412		root = &delayed_node->del_root;
 413	else
 414		BUG();
 415	p = &root->rb_root.rb_node;
 416	node = &ins->rb_node;
 417
 418	while (*p) {
 419		parent_node = *p;
 420		item = rb_entry(parent_node, struct btrfs_delayed_item,
 421				 rb_node);
 422
 423		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 424		if (cmp < 0) {
 425			p = &(*p)->rb_right;
 426			leftmost = false;
 427		} else if (cmp > 0) {
 428			p = &(*p)->rb_left;
 429		} else {
 430			return -EEXIST;
 431		}
 432	}
 433
 434	rb_link_node(node, parent_node, p);
 435	rb_insert_color_cached(node, root, leftmost);
 436	ins->delayed_node = delayed_node;
 437	ins->ins_or_del = action;
 438
 439	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 440	    action == BTRFS_DELAYED_INSERTION_ITEM &&
 441	    ins->key.offset >= delayed_node->index_cnt)
 442			delayed_node->index_cnt = ins->key.offset + 1;
 443
 444	delayed_node->count++;
 445	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 446	return 0;
 447}
 448
 449static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 450					      struct btrfs_delayed_item *item)
 451{
 452	return __btrfs_add_delayed_item(node, item,
 453					BTRFS_DELAYED_INSERTION_ITEM);
 454}
 455
 456static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 457					     struct btrfs_delayed_item *item)
 458{
 459	return __btrfs_add_delayed_item(node, item,
 460					BTRFS_DELAYED_DELETION_ITEM);
 461}
 462
 463static void finish_one_item(struct btrfs_delayed_root *delayed_root)
 464{
 465	int seq = atomic_inc_return(&delayed_root->items_seq);
 466
 467	/* atomic_dec_return implies a barrier */
 468	if ((atomic_dec_return(&delayed_root->items) <
 469	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
 470		cond_wake_up_nomb(&delayed_root->wait);
 
 471}
 472
 473static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 474{
 475	struct rb_root_cached *root;
 476	struct btrfs_delayed_root *delayed_root;
 477
 478	/* Not associated with any delayed_node */
 479	if (!delayed_item->delayed_node)
 480		return;
 481	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 482
 483	BUG_ON(!delayed_root);
 484	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 485	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 486
 487	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 488		root = &delayed_item->delayed_node->ins_root;
 489	else
 490		root = &delayed_item->delayed_node->del_root;
 491
 492	rb_erase_cached(&delayed_item->rb_node, root);
 493	delayed_item->delayed_node->count--;
 494
 495	finish_one_item(delayed_root);
 496}
 497
 498static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 499{
 500	if (item) {
 501		__btrfs_remove_delayed_item(item);
 502		if (refcount_dec_and_test(&item->refs))
 503			kfree(item);
 504	}
 505}
 506
 507static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 508					struct btrfs_delayed_node *delayed_node)
 509{
 510	struct rb_node *p;
 511	struct btrfs_delayed_item *item = NULL;
 512
 513	p = rb_first_cached(&delayed_node->ins_root);
 514	if (p)
 515		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 516
 517	return item;
 518}
 519
 520static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 521					struct btrfs_delayed_node *delayed_node)
 522{
 523	struct rb_node *p;
 524	struct btrfs_delayed_item *item = NULL;
 525
 526	p = rb_first_cached(&delayed_node->del_root);
 527	if (p)
 528		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 529
 530	return item;
 531}
 532
 533static struct btrfs_delayed_item *__btrfs_next_delayed_item(
 534						struct btrfs_delayed_item *item)
 535{
 536	struct rb_node *p;
 537	struct btrfs_delayed_item *next = NULL;
 538
 539	p = rb_next(&item->rb_node);
 540	if (p)
 541		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 542
 543	return next;
 544}
 545
 546static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 547					       struct btrfs_root *root,
 548					       struct btrfs_delayed_item *item)
 549{
 550	struct btrfs_block_rsv *src_rsv;
 551	struct btrfs_block_rsv *dst_rsv;
 552	struct btrfs_fs_info *fs_info = root->fs_info;
 553	u64 num_bytes;
 554	int ret;
 555
 556	if (!trans->bytes_reserved)
 557		return 0;
 558
 559	src_rsv = trans->block_rsv;
 560	dst_rsv = &fs_info->delayed_block_rsv;
 561
 562	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 563
 564	/*
 565	 * Here we migrate space rsv from transaction rsv, since have already
 566	 * reserved space when starting a transaction.  So no need to reserve
 567	 * qgroup space here.
 568	 */
 569	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 570	if (!ret) {
 571		trace_btrfs_space_reservation(fs_info, "delayed_item",
 572					      item->key.objectid,
 573					      num_bytes, 1);
 574		item->bytes_reserved = num_bytes;
 575	}
 576
 577	return ret;
 578}
 579
 580static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 581						struct btrfs_delayed_item *item)
 582{
 583	struct btrfs_block_rsv *rsv;
 584	struct btrfs_fs_info *fs_info = root->fs_info;
 585
 586	if (!item->bytes_reserved)
 587		return;
 588
 589	rsv = &fs_info->delayed_block_rsv;
 590	/*
 591	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
 592	 * to release/reserve qgroup space.
 593	 */
 594	trace_btrfs_space_reservation(fs_info, "delayed_item",
 595				      item->key.objectid, item->bytes_reserved,
 596				      0);
 597	btrfs_block_rsv_release(fs_info, rsv,
 598				item->bytes_reserved);
 599}
 600
 601static int btrfs_delayed_inode_reserve_metadata(
 602					struct btrfs_trans_handle *trans,
 603					struct btrfs_root *root,
 604					struct btrfs_inode *inode,
 605					struct btrfs_delayed_node *node)
 606{
 607	struct btrfs_fs_info *fs_info = root->fs_info;
 608	struct btrfs_block_rsv *src_rsv;
 609	struct btrfs_block_rsv *dst_rsv;
 610	u64 num_bytes;
 611	int ret;
 
 612
 613	src_rsv = trans->block_rsv;
 614	dst_rsv = &fs_info->delayed_block_rsv;
 615
 616	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
 617
 618	/*
 619	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 620	 * which doesn't reserve space for speed.  This is a problem since we
 621	 * still need to reserve space for this update, so try to reserve the
 622	 * space.
 623	 *
 624	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 625	 * we always reserve enough to update the inode item.
 626	 */
 627	if (!src_rsv || (!trans->bytes_reserved &&
 628			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
 629		ret = btrfs_qgroup_reserve_meta_prealloc(root,
 630				fs_info->nodesize, true);
 631		if (ret < 0)
 632			return ret;
 633		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
 634					  BTRFS_RESERVE_NO_FLUSH);
 635		/*
 636		 * Since we're under a transaction reserve_metadata_bytes could
 637		 * try to commit the transaction which will make it return
 638		 * EAGAIN to make us stop the transaction we have, so return
 639		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
 640		 */
 641		if (ret == -EAGAIN) {
 642			ret = -ENOSPC;
 643			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
 644		}
 645		if (!ret) {
 646			node->bytes_reserved = num_bytes;
 647			trace_btrfs_space_reservation(fs_info,
 648						      "delayed_inode",
 649						      btrfs_ino(inode),
 650						      num_bytes, 1);
 651		} else {
 652			btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
 653		}
 654		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 655	}
 656
 657	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658	if (!ret) {
 659		trace_btrfs_space_reservation(fs_info, "delayed_inode",
 660					      btrfs_ino(inode), num_bytes, 1);
 661		node->bytes_reserved = num_bytes;
 662	}
 663
 
 
 
 
 
 
 664	return ret;
 665}
 666
 667static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
 668						struct btrfs_delayed_node *node,
 669						bool qgroup_free)
 670{
 671	struct btrfs_block_rsv *rsv;
 672
 673	if (!node->bytes_reserved)
 674		return;
 675
 676	rsv = &fs_info->delayed_block_rsv;
 677	trace_btrfs_space_reservation(fs_info, "delayed_inode",
 678				      node->inode_id, node->bytes_reserved, 0);
 679	btrfs_block_rsv_release(fs_info, rsv,
 680				node->bytes_reserved);
 681	if (qgroup_free)
 682		btrfs_qgroup_free_meta_prealloc(node->root,
 683				node->bytes_reserved);
 684	else
 685		btrfs_qgroup_convert_reserved_meta(node->root,
 686				node->bytes_reserved);
 687	node->bytes_reserved = 0;
 688}
 689
 690/*
 691 * This helper will insert some continuous items into the same leaf according
 692 * to the free space of the leaf.
 693 */
 694static int btrfs_batch_insert_items(struct btrfs_root *root,
 695				    struct btrfs_path *path,
 696				    struct btrfs_delayed_item *item)
 697{
 698	struct btrfs_delayed_item *curr, *next;
 699	int free_space;
 700	int total_data_size = 0, total_size = 0;
 701	struct extent_buffer *leaf;
 702	char *data_ptr;
 703	struct btrfs_key *keys;
 704	u32 *data_size;
 705	struct list_head head;
 706	int slot;
 707	int nitems;
 708	int i;
 709	int ret = 0;
 710
 711	BUG_ON(!path->nodes[0]);
 712
 713	leaf = path->nodes[0];
 714	free_space = btrfs_leaf_free_space(leaf);
 715	INIT_LIST_HEAD(&head);
 716
 717	next = item;
 718	nitems = 0;
 719
 720	/*
 721	 * count the number of the continuous items that we can insert in batch
 722	 */
 723	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 724	       free_space) {
 725		total_data_size += next->data_len;
 726		total_size += next->data_len + sizeof(struct btrfs_item);
 727		list_add_tail(&next->tree_list, &head);
 728		nitems++;
 729
 730		curr = next;
 731		next = __btrfs_next_delayed_item(curr);
 732		if (!next)
 733			break;
 734
 735		if (!btrfs_is_continuous_delayed_item(curr, next))
 736			break;
 737	}
 738
 739	if (!nitems) {
 740		ret = 0;
 741		goto out;
 742	}
 743
 744	/*
 745	 * we need allocate some memory space, but it might cause the task
 746	 * to sleep, so we set all locked nodes in the path to blocking locks
 747	 * first.
 748	 */
 749	btrfs_set_path_blocking(path);
 750
 751	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
 752	if (!keys) {
 753		ret = -ENOMEM;
 754		goto out;
 755	}
 756
 757	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
 758	if (!data_size) {
 759		ret = -ENOMEM;
 760		goto error;
 761	}
 762
 763	/* get keys of all the delayed items */
 764	i = 0;
 765	list_for_each_entry(next, &head, tree_list) {
 766		keys[i] = next->key;
 767		data_size[i] = next->data_len;
 768		i++;
 769	}
 770
 
 
 
 771	/* insert the keys of the items */
 772	setup_items_for_insert(root, path, keys, data_size,
 773			       total_data_size, total_size, nitems);
 774
 775	/* insert the dir index items */
 776	slot = path->slots[0];
 777	list_for_each_entry_safe(curr, next, &head, tree_list) {
 778		data_ptr = btrfs_item_ptr(leaf, slot, char);
 779		write_extent_buffer(leaf, &curr->data,
 780				    (unsigned long)data_ptr,
 781				    curr->data_len);
 782		slot++;
 783
 784		btrfs_delayed_item_release_metadata(root, curr);
 785
 786		list_del(&curr->tree_list);
 787		btrfs_release_delayed_item(curr);
 788	}
 789
 790error:
 791	kfree(data_size);
 792	kfree(keys);
 793out:
 794	return ret;
 795}
 796
 797/*
 798 * This helper can just do simple insertion that needn't extend item for new
 799 * data, such as directory name index insertion, inode insertion.
 800 */
 801static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 802				     struct btrfs_root *root,
 803				     struct btrfs_path *path,
 804				     struct btrfs_delayed_item *delayed_item)
 805{
 806	struct extent_buffer *leaf;
 807	char *ptr;
 808	int ret;
 809
 810	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 811				      delayed_item->data_len);
 812	if (ret < 0 && ret != -EEXIST)
 813		return ret;
 814
 815	leaf = path->nodes[0];
 816
 817	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 818
 819	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 820			    delayed_item->data_len);
 821	btrfs_mark_buffer_dirty(leaf);
 822
 823	btrfs_delayed_item_release_metadata(root, delayed_item);
 824	return 0;
 825}
 826
 827/*
 828 * we insert an item first, then if there are some continuous items, we try
 829 * to insert those items into the same leaf.
 830 */
 831static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 832				      struct btrfs_path *path,
 833				      struct btrfs_root *root,
 834				      struct btrfs_delayed_node *node)
 835{
 836	struct btrfs_delayed_item *curr, *prev;
 837	int ret = 0;
 838
 839do_again:
 840	mutex_lock(&node->mutex);
 841	curr = __btrfs_first_delayed_insertion_item(node);
 842	if (!curr)
 843		goto insert_end;
 844
 845	ret = btrfs_insert_delayed_item(trans, root, path, curr);
 846	if (ret < 0) {
 847		btrfs_release_path(path);
 848		goto insert_end;
 849	}
 850
 851	prev = curr;
 852	curr = __btrfs_next_delayed_item(prev);
 853	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 854		/* insert the continuous items into the same leaf */
 855		path->slots[0]++;
 856		btrfs_batch_insert_items(root, path, curr);
 857	}
 858	btrfs_release_delayed_item(prev);
 859	btrfs_mark_buffer_dirty(path->nodes[0]);
 860
 861	btrfs_release_path(path);
 862	mutex_unlock(&node->mutex);
 863	goto do_again;
 864
 865insert_end:
 866	mutex_unlock(&node->mutex);
 867	return ret;
 868}
 869
 870static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 871				    struct btrfs_root *root,
 872				    struct btrfs_path *path,
 873				    struct btrfs_delayed_item *item)
 874{
 875	struct btrfs_delayed_item *curr, *next;
 876	struct extent_buffer *leaf;
 877	struct btrfs_key key;
 878	struct list_head head;
 879	int nitems, i, last_item;
 880	int ret = 0;
 881
 882	BUG_ON(!path->nodes[0]);
 883
 884	leaf = path->nodes[0];
 885
 886	i = path->slots[0];
 887	last_item = btrfs_header_nritems(leaf) - 1;
 888	if (i > last_item)
 889		return -ENOENT;	/* FIXME: Is errno suitable? */
 890
 891	next = item;
 892	INIT_LIST_HEAD(&head);
 893	btrfs_item_key_to_cpu(leaf, &key, i);
 894	nitems = 0;
 895	/*
 896	 * count the number of the dir index items that we can delete in batch
 897	 */
 898	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 899		list_add_tail(&next->tree_list, &head);
 900		nitems++;
 901
 902		curr = next;
 903		next = __btrfs_next_delayed_item(curr);
 904		if (!next)
 905			break;
 906
 907		if (!btrfs_is_continuous_delayed_item(curr, next))
 908			break;
 909
 910		i++;
 911		if (i > last_item)
 912			break;
 913		btrfs_item_key_to_cpu(leaf, &key, i);
 914	}
 915
 916	if (!nitems)
 917		return 0;
 918
 919	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 920	if (ret)
 921		goto out;
 922
 923	list_for_each_entry_safe(curr, next, &head, tree_list) {
 924		btrfs_delayed_item_release_metadata(root, curr);
 925		list_del(&curr->tree_list);
 926		btrfs_release_delayed_item(curr);
 927	}
 928
 929out:
 930	return ret;
 931}
 932
 933static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 934				      struct btrfs_path *path,
 935				      struct btrfs_root *root,
 936				      struct btrfs_delayed_node *node)
 937{
 938	struct btrfs_delayed_item *curr, *prev;
 939	int ret = 0;
 940
 941do_again:
 942	mutex_lock(&node->mutex);
 943	curr = __btrfs_first_delayed_deletion_item(node);
 944	if (!curr)
 945		goto delete_fail;
 946
 947	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 948	if (ret < 0)
 949		goto delete_fail;
 950	else if (ret > 0) {
 951		/*
 952		 * can't find the item which the node points to, so this node
 953		 * is invalid, just drop it.
 954		 */
 955		prev = curr;
 956		curr = __btrfs_next_delayed_item(prev);
 957		btrfs_release_delayed_item(prev);
 958		ret = 0;
 959		btrfs_release_path(path);
 960		if (curr) {
 961			mutex_unlock(&node->mutex);
 962			goto do_again;
 963		} else
 964			goto delete_fail;
 965	}
 966
 967	btrfs_batch_delete_items(trans, root, path, curr);
 968	btrfs_release_path(path);
 969	mutex_unlock(&node->mutex);
 970	goto do_again;
 971
 972delete_fail:
 973	btrfs_release_path(path);
 974	mutex_unlock(&node->mutex);
 975	return ret;
 976}
 977
 978static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
 979{
 980	struct btrfs_delayed_root *delayed_root;
 981
 982	if (delayed_node &&
 983	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
 984		BUG_ON(!delayed_node->root);
 985		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
 986		delayed_node->count--;
 987
 988		delayed_root = delayed_node->root->fs_info->delayed_root;
 989		finish_one_item(delayed_root);
 990	}
 991}
 992
 993static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
 994{
 995	struct btrfs_delayed_root *delayed_root;
 996
 997	ASSERT(delayed_node->root);
 998	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
 999	delayed_node->count--;
1000
1001	delayed_root = delayed_node->root->fs_info->delayed_root;
1002	finish_one_item(delayed_root);
1003}
1004
1005static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1006					struct btrfs_root *root,
1007					struct btrfs_path *path,
1008					struct btrfs_delayed_node *node)
1009{
1010	struct btrfs_fs_info *fs_info = root->fs_info;
1011	struct btrfs_key key;
1012	struct btrfs_inode_item *inode_item;
1013	struct extent_buffer *leaf;
1014	int mod;
1015	int ret;
1016
1017	key.objectid = node->inode_id;
1018	key.type = BTRFS_INODE_ITEM_KEY;
1019	key.offset = 0;
1020
1021	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1022		mod = -1;
1023	else
1024		mod = 1;
1025
1026	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1027	if (ret > 0) {
1028		btrfs_release_path(path);
1029		return -ENOENT;
1030	} else if (ret < 0) {
1031		return ret;
1032	}
1033
1034	leaf = path->nodes[0];
1035	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1036				    struct btrfs_inode_item);
1037	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1038			    sizeof(struct btrfs_inode_item));
1039	btrfs_mark_buffer_dirty(leaf);
1040
1041	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1042		goto no_iref;
1043
1044	path->slots[0]++;
1045	if (path->slots[0] >= btrfs_header_nritems(leaf))
1046		goto search;
1047again:
1048	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1049	if (key.objectid != node->inode_id)
1050		goto out;
1051
1052	if (key.type != BTRFS_INODE_REF_KEY &&
1053	    key.type != BTRFS_INODE_EXTREF_KEY)
1054		goto out;
1055
1056	/*
1057	 * Delayed iref deletion is for the inode who has only one link,
1058	 * so there is only one iref. The case that several irefs are
1059	 * in the same item doesn't exist.
1060	 */
1061	btrfs_del_item(trans, root, path);
1062out:
1063	btrfs_release_delayed_iref(node);
1064no_iref:
1065	btrfs_release_path(path);
1066err_out:
1067	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1068	btrfs_release_delayed_inode(node);
1069
1070	return ret;
1071
1072search:
1073	btrfs_release_path(path);
1074
1075	key.type = BTRFS_INODE_EXTREF_KEY;
1076	key.offset = -1;
1077	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1078	if (ret < 0)
1079		goto err_out;
1080	ASSERT(ret);
1081
1082	ret = 0;
1083	leaf = path->nodes[0];
1084	path->slots[0]--;
1085	goto again;
1086}
1087
1088static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1089					     struct btrfs_root *root,
1090					     struct btrfs_path *path,
1091					     struct btrfs_delayed_node *node)
1092{
1093	int ret;
1094
1095	mutex_lock(&node->mutex);
1096	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1097		mutex_unlock(&node->mutex);
1098		return 0;
1099	}
1100
1101	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1102	mutex_unlock(&node->mutex);
1103	return ret;
1104}
1105
1106static inline int
1107__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1108				   struct btrfs_path *path,
1109				   struct btrfs_delayed_node *node)
1110{
1111	int ret;
1112
1113	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1114	if (ret)
1115		return ret;
1116
1117	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1118	if (ret)
1119		return ret;
1120
1121	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1122	return ret;
1123}
1124
1125/*
1126 * Called when committing the transaction.
1127 * Returns 0 on success.
1128 * Returns < 0 on error and returns with an aborted transaction with any
1129 * outstanding delayed items cleaned up.
1130 */
1131static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
 
1132{
1133	struct btrfs_fs_info *fs_info = trans->fs_info;
1134	struct btrfs_delayed_root *delayed_root;
1135	struct btrfs_delayed_node *curr_node, *prev_node;
1136	struct btrfs_path *path;
1137	struct btrfs_block_rsv *block_rsv;
1138	int ret = 0;
1139	bool count = (nr > 0);
1140
1141	if (trans->aborted)
1142		return -EIO;
1143
1144	path = btrfs_alloc_path();
1145	if (!path)
1146		return -ENOMEM;
1147	path->leave_spinning = 1;
1148
1149	block_rsv = trans->block_rsv;
1150	trans->block_rsv = &fs_info->delayed_block_rsv;
1151
1152	delayed_root = fs_info->delayed_root;
1153
1154	curr_node = btrfs_first_delayed_node(delayed_root);
1155	while (curr_node && (!count || (count && nr--))) {
1156		ret = __btrfs_commit_inode_delayed_items(trans, path,
1157							 curr_node);
1158		if (ret) {
1159			btrfs_release_delayed_node(curr_node);
1160			curr_node = NULL;
1161			btrfs_abort_transaction(trans, ret);
1162			break;
1163		}
1164
1165		prev_node = curr_node;
1166		curr_node = btrfs_next_delayed_node(curr_node);
1167		btrfs_release_delayed_node(prev_node);
1168	}
1169
1170	if (curr_node)
1171		btrfs_release_delayed_node(curr_node);
1172	btrfs_free_path(path);
1173	trans->block_rsv = block_rsv;
1174
1175	return ret;
1176}
1177
1178int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
 
1179{
1180	return __btrfs_run_delayed_items(trans, -1);
1181}
1182
1183int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
 
1184{
1185	return __btrfs_run_delayed_items(trans, nr);
1186}
1187
1188int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1189				     struct btrfs_inode *inode)
1190{
1191	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1192	struct btrfs_path *path;
1193	struct btrfs_block_rsv *block_rsv;
1194	int ret;
1195
1196	if (!delayed_node)
1197		return 0;
1198
1199	mutex_lock(&delayed_node->mutex);
1200	if (!delayed_node->count) {
1201		mutex_unlock(&delayed_node->mutex);
1202		btrfs_release_delayed_node(delayed_node);
1203		return 0;
1204	}
1205	mutex_unlock(&delayed_node->mutex);
1206
1207	path = btrfs_alloc_path();
1208	if (!path) {
1209		btrfs_release_delayed_node(delayed_node);
1210		return -ENOMEM;
1211	}
1212	path->leave_spinning = 1;
1213
1214	block_rsv = trans->block_rsv;
1215	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1216
1217	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1218
1219	btrfs_release_delayed_node(delayed_node);
1220	btrfs_free_path(path);
1221	trans->block_rsv = block_rsv;
1222
1223	return ret;
1224}
1225
1226int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1227{
1228	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1229	struct btrfs_trans_handle *trans;
1230	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1231	struct btrfs_path *path;
1232	struct btrfs_block_rsv *block_rsv;
1233	int ret;
1234
1235	if (!delayed_node)
1236		return 0;
1237
1238	mutex_lock(&delayed_node->mutex);
1239	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1240		mutex_unlock(&delayed_node->mutex);
1241		btrfs_release_delayed_node(delayed_node);
1242		return 0;
1243	}
1244	mutex_unlock(&delayed_node->mutex);
1245
1246	trans = btrfs_join_transaction(delayed_node->root);
1247	if (IS_ERR(trans)) {
1248		ret = PTR_ERR(trans);
1249		goto out;
1250	}
1251
1252	path = btrfs_alloc_path();
1253	if (!path) {
1254		ret = -ENOMEM;
1255		goto trans_out;
1256	}
1257	path->leave_spinning = 1;
1258
1259	block_rsv = trans->block_rsv;
1260	trans->block_rsv = &fs_info->delayed_block_rsv;
1261
1262	mutex_lock(&delayed_node->mutex);
1263	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1264		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1265						   path, delayed_node);
1266	else
1267		ret = 0;
1268	mutex_unlock(&delayed_node->mutex);
1269
1270	btrfs_free_path(path);
1271	trans->block_rsv = block_rsv;
1272trans_out:
1273	btrfs_end_transaction(trans);
1274	btrfs_btree_balance_dirty(fs_info);
1275out:
1276	btrfs_release_delayed_node(delayed_node);
1277
1278	return ret;
1279}
1280
1281void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1282{
1283	struct btrfs_delayed_node *delayed_node;
1284
1285	delayed_node = READ_ONCE(inode->delayed_node);
1286	if (!delayed_node)
1287		return;
1288
1289	inode->delayed_node = NULL;
1290	btrfs_release_delayed_node(delayed_node);
1291}
1292
1293struct btrfs_async_delayed_work {
1294	struct btrfs_delayed_root *delayed_root;
1295	int nr;
1296	struct btrfs_work work;
1297};
1298
1299static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1300{
1301	struct btrfs_async_delayed_work *async_work;
1302	struct btrfs_delayed_root *delayed_root;
1303	struct btrfs_trans_handle *trans;
1304	struct btrfs_path *path;
1305	struct btrfs_delayed_node *delayed_node = NULL;
1306	struct btrfs_root *root;
1307	struct btrfs_block_rsv *block_rsv;
1308	int total_done = 0;
1309
1310	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1311	delayed_root = async_work->delayed_root;
1312
1313	path = btrfs_alloc_path();
1314	if (!path)
1315		goto out;
1316
1317	do {
1318		if (atomic_read(&delayed_root->items) <
1319		    BTRFS_DELAYED_BACKGROUND / 2)
1320			break;
1321
1322		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1323		if (!delayed_node)
1324			break;
1325
1326		path->leave_spinning = 1;
1327		root = delayed_node->root;
1328
1329		trans = btrfs_join_transaction(root);
1330		if (IS_ERR(trans)) {
1331			btrfs_release_path(path);
1332			btrfs_release_prepared_delayed_node(delayed_node);
1333			total_done++;
1334			continue;
1335		}
1336
1337		block_rsv = trans->block_rsv;
1338		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1339
1340		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1341
1342		trans->block_rsv = block_rsv;
1343		btrfs_end_transaction(trans);
1344		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1345
1346		btrfs_release_path(path);
1347		btrfs_release_prepared_delayed_node(delayed_node);
1348		total_done++;
1349
1350	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1351		 || total_done < async_work->nr);
 
1352
 
1353	btrfs_free_path(path);
1354out:
1355	wake_up(&delayed_root->wait);
1356	kfree(async_work);
1357}
1358
1359
1360static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1361				     struct btrfs_fs_info *fs_info, int nr)
1362{
1363	struct btrfs_async_delayed_work *async_work;
1364
 
 
 
1365	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1366	if (!async_work)
1367		return -ENOMEM;
1368
1369	async_work->delayed_root = delayed_root;
1370	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1371			btrfs_async_run_delayed_root, NULL, NULL);
1372	async_work->nr = nr;
1373
1374	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1375	return 0;
1376}
1377
1378void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1379{
1380	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
 
 
1381}
1382
1383static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1384{
1385	int val = atomic_read(&delayed_root->items_seq);
1386
1387	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1388		return 1;
1389
1390	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1391		return 1;
1392
1393	return 0;
1394}
1395
1396void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1397{
1398	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
 
 
1399
1400	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1401		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1402		return;
1403
1404	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1405		int seq;
1406		int ret;
1407
1408		seq = atomic_read(&delayed_root->items_seq);
1409
1410		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1411		if (ret)
1412			return;
1413
1414		wait_event_interruptible(delayed_root->wait,
1415					 could_end_wait(delayed_root, seq));
1416		return;
1417	}
1418
1419	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1420}
1421
1422/* Will return 0 or -ENOMEM */
1423int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1424				   const char *name, int name_len,
1425				   struct btrfs_inode *dir,
1426				   struct btrfs_disk_key *disk_key, u8 type,
1427				   u64 index)
1428{
1429	struct btrfs_delayed_node *delayed_node;
1430	struct btrfs_delayed_item *delayed_item;
1431	struct btrfs_dir_item *dir_item;
1432	int ret;
1433
1434	delayed_node = btrfs_get_or_create_delayed_node(dir);
1435	if (IS_ERR(delayed_node))
1436		return PTR_ERR(delayed_node);
1437
1438	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1439	if (!delayed_item) {
1440		ret = -ENOMEM;
1441		goto release_node;
1442	}
1443
1444	delayed_item->key.objectid = btrfs_ino(dir);
1445	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1446	delayed_item->key.offset = index;
1447
1448	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1449	dir_item->location = *disk_key;
1450	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1451	btrfs_set_stack_dir_data_len(dir_item, 0);
1452	btrfs_set_stack_dir_name_len(dir_item, name_len);
1453	btrfs_set_stack_dir_type(dir_item, type);
1454	memcpy((char *)(dir_item + 1), name, name_len);
1455
1456	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1457	/*
1458	 * we have reserved enough space when we start a new transaction,
1459	 * so reserving metadata failure is impossible
1460	 */
1461	BUG_ON(ret);
1462
 
1463	mutex_lock(&delayed_node->mutex);
1464	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1465	if (unlikely(ret)) {
1466		btrfs_err(trans->fs_info,
1467			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1468			  name_len, name, delayed_node->root->root_key.objectid,
1469			  delayed_node->inode_id, ret);
 
1470		BUG();
1471	}
1472	mutex_unlock(&delayed_node->mutex);
1473
1474release_node:
1475	btrfs_release_delayed_node(delayed_node);
1476	return ret;
1477}
1478
1479static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1480					       struct btrfs_delayed_node *node,
1481					       struct btrfs_key *key)
1482{
1483	struct btrfs_delayed_item *item;
1484
1485	mutex_lock(&node->mutex);
1486	item = __btrfs_lookup_delayed_insertion_item(node, key);
1487	if (!item) {
1488		mutex_unlock(&node->mutex);
1489		return 1;
1490	}
1491
1492	btrfs_delayed_item_release_metadata(node->root, item);
1493	btrfs_release_delayed_item(item);
1494	mutex_unlock(&node->mutex);
1495	return 0;
1496}
1497
1498int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1499				   struct btrfs_inode *dir, u64 index)
 
1500{
1501	struct btrfs_delayed_node *node;
1502	struct btrfs_delayed_item *item;
1503	struct btrfs_key item_key;
1504	int ret;
1505
1506	node = btrfs_get_or_create_delayed_node(dir);
1507	if (IS_ERR(node))
1508		return PTR_ERR(node);
1509
1510	item_key.objectid = btrfs_ino(dir);
1511	item_key.type = BTRFS_DIR_INDEX_KEY;
1512	item_key.offset = index;
1513
1514	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1515						  &item_key);
1516	if (!ret)
1517		goto end;
1518
1519	item = btrfs_alloc_delayed_item(0);
1520	if (!item) {
1521		ret = -ENOMEM;
1522		goto end;
1523	}
1524
1525	item->key = item_key;
1526
1527	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1528	/*
1529	 * we have reserved enough space when we start a new transaction,
1530	 * so reserving metadata failure is impossible.
1531	 */
1532	if (ret < 0) {
1533		btrfs_err(trans->fs_info,
1534"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1535		btrfs_release_delayed_item(item);
1536		goto end;
1537	}
1538
1539	mutex_lock(&node->mutex);
1540	ret = __btrfs_add_delayed_deletion_item(node, item);
1541	if (unlikely(ret)) {
1542		btrfs_err(trans->fs_info,
1543			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1544			  index, node->root->root_key.objectid,
1545			  node->inode_id, ret);
1546		btrfs_delayed_item_release_metadata(dir->root, item);
1547		btrfs_release_delayed_item(item);
1548	}
1549	mutex_unlock(&node->mutex);
1550end:
1551	btrfs_release_delayed_node(node);
1552	return ret;
1553}
1554
1555int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1556{
1557	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1558
1559	if (!delayed_node)
1560		return -ENOENT;
1561
1562	/*
1563	 * Since we have held i_mutex of this directory, it is impossible that
1564	 * a new directory index is added into the delayed node and index_cnt
1565	 * is updated now. So we needn't lock the delayed node.
1566	 */
1567	if (!delayed_node->index_cnt) {
1568		btrfs_release_delayed_node(delayed_node);
1569		return -EINVAL;
1570	}
1571
1572	inode->index_cnt = delayed_node->index_cnt;
1573	btrfs_release_delayed_node(delayed_node);
1574	return 0;
1575}
1576
1577bool btrfs_readdir_get_delayed_items(struct inode *inode,
1578				     struct list_head *ins_list,
1579				     struct list_head *del_list)
1580{
1581	struct btrfs_delayed_node *delayed_node;
1582	struct btrfs_delayed_item *item;
1583
1584	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1585	if (!delayed_node)
1586		return false;
1587
1588	/*
1589	 * We can only do one readdir with delayed items at a time because of
1590	 * item->readdir_list.
1591	 */
1592	inode_unlock_shared(inode);
1593	inode_lock(inode);
1594
1595	mutex_lock(&delayed_node->mutex);
1596	item = __btrfs_first_delayed_insertion_item(delayed_node);
1597	while (item) {
1598		refcount_inc(&item->refs);
1599		list_add_tail(&item->readdir_list, ins_list);
1600		item = __btrfs_next_delayed_item(item);
1601	}
1602
1603	item = __btrfs_first_delayed_deletion_item(delayed_node);
1604	while (item) {
1605		refcount_inc(&item->refs);
1606		list_add_tail(&item->readdir_list, del_list);
1607		item = __btrfs_next_delayed_item(item);
1608	}
1609	mutex_unlock(&delayed_node->mutex);
1610	/*
1611	 * This delayed node is still cached in the btrfs inode, so refs
1612	 * must be > 1 now, and we needn't check it is going to be freed
1613	 * or not.
1614	 *
1615	 * Besides that, this function is used to read dir, we do not
1616	 * insert/delete delayed items in this period. So we also needn't
1617	 * requeue or dequeue this delayed node.
1618	 */
1619	refcount_dec(&delayed_node->refs);
1620
1621	return true;
1622}
1623
1624void btrfs_readdir_put_delayed_items(struct inode *inode,
1625				     struct list_head *ins_list,
1626				     struct list_head *del_list)
1627{
1628	struct btrfs_delayed_item *curr, *next;
1629
1630	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1631		list_del(&curr->readdir_list);
1632		if (refcount_dec_and_test(&curr->refs))
1633			kfree(curr);
1634	}
1635
1636	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1637		list_del(&curr->readdir_list);
1638		if (refcount_dec_and_test(&curr->refs))
1639			kfree(curr);
1640	}
1641
1642	/*
1643	 * The VFS is going to do up_read(), so we need to downgrade back to a
1644	 * read lock.
1645	 */
1646	downgrade_write(&inode->i_rwsem);
1647}
1648
1649int btrfs_should_delete_dir_index(struct list_head *del_list,
1650				  u64 index)
1651{
1652	struct btrfs_delayed_item *curr;
1653	int ret = 0;
 
 
 
1654
1655	list_for_each_entry(curr, del_list, readdir_list) {
1656		if (curr->key.offset > index)
1657			break;
1658		if (curr->key.offset == index) {
1659			ret = 1;
1660			break;
1661		}
 
 
 
 
 
 
 
1662	}
1663	return ret;
1664}
1665
1666/*
1667 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1668 *
1669 */
1670int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1671				    struct list_head *ins_list)
1672{
1673	struct btrfs_dir_item *di;
1674	struct btrfs_delayed_item *curr, *next;
1675	struct btrfs_key location;
1676	char *name;
1677	int name_len;
1678	int over = 0;
1679	unsigned char d_type;
1680
1681	if (list_empty(ins_list))
1682		return 0;
1683
1684	/*
1685	 * Changing the data of the delayed item is impossible. So
1686	 * we needn't lock them. And we have held i_mutex of the
1687	 * directory, nobody can delete any directory indexes now.
1688	 */
1689	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1690		list_del(&curr->readdir_list);
1691
1692		if (curr->key.offset < ctx->pos) {
1693			if (refcount_dec_and_test(&curr->refs))
1694				kfree(curr);
1695			continue;
1696		}
1697
1698		ctx->pos = curr->key.offset;
1699
1700		di = (struct btrfs_dir_item *)curr->data;
1701		name = (char *)(di + 1);
1702		name_len = btrfs_stack_dir_name_len(di);
1703
1704		d_type = fs_ftype_to_dtype(di->type);
1705		btrfs_disk_key_to_cpu(&location, &di->location);
1706
1707		over = !dir_emit(ctx, name, name_len,
1708			       location.objectid, d_type);
1709
1710		if (refcount_dec_and_test(&curr->refs))
1711			kfree(curr);
1712
1713		if (over)
1714			return 1;
1715		ctx->pos++;
1716	}
1717	return 0;
1718}
1719
1720static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1721				  struct btrfs_inode_item *inode_item,
1722				  struct inode *inode)
1723{
1724	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1725	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1726	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1727	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1728	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1729	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1730	btrfs_set_stack_inode_generation(inode_item,
1731					 BTRFS_I(inode)->generation);
1732	btrfs_set_stack_inode_sequence(inode_item,
1733				       inode_peek_iversion(inode));
1734	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1735	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1736	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1737	btrfs_set_stack_inode_block_group(inode_item, 0);
1738
1739	btrfs_set_stack_timespec_sec(&inode_item->atime,
1740				     inode->i_atime.tv_sec);
1741	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1742				      inode->i_atime.tv_nsec);
1743
1744	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1745				     inode->i_mtime.tv_sec);
1746	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1747				      inode->i_mtime.tv_nsec);
1748
1749	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1750				     inode->i_ctime.tv_sec);
1751	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1752				      inode->i_ctime.tv_nsec);
1753
1754	btrfs_set_stack_timespec_sec(&inode_item->otime,
1755				     BTRFS_I(inode)->i_otime.tv_sec);
1756	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1757				     BTRFS_I(inode)->i_otime.tv_nsec);
1758}
1759
1760int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1761{
1762	struct btrfs_delayed_node *delayed_node;
1763	struct btrfs_inode_item *inode_item;
 
1764
1765	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1766	if (!delayed_node)
1767		return -ENOENT;
1768
1769	mutex_lock(&delayed_node->mutex);
1770	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1771		mutex_unlock(&delayed_node->mutex);
1772		btrfs_release_delayed_node(delayed_node);
1773		return -ENOENT;
1774	}
1775
1776	inode_item = &delayed_node->inode_item;
1777
1778	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1779	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1780	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1781	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1782	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1783	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1784	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1785        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1786
1787	inode_set_iversion_queried(inode,
1788				   btrfs_stack_inode_sequence(inode_item));
1789	inode->i_rdev = 0;
1790	*rdev = btrfs_stack_inode_rdev(inode_item);
1791	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1792
1793	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1794	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1795
1796	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1797	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1798
1799	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1800	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1801
1802	BTRFS_I(inode)->i_otime.tv_sec =
1803		btrfs_stack_timespec_sec(&inode_item->otime);
1804	BTRFS_I(inode)->i_otime.tv_nsec =
1805		btrfs_stack_timespec_nsec(&inode_item->otime);
1806
1807	inode->i_generation = BTRFS_I(inode)->generation;
1808	BTRFS_I(inode)->index_cnt = (u64)-1;
1809
1810	mutex_unlock(&delayed_node->mutex);
1811	btrfs_release_delayed_node(delayed_node);
1812	return 0;
1813}
1814
1815int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1816			       struct btrfs_root *root, struct inode *inode)
1817{
1818	struct btrfs_delayed_node *delayed_node;
1819	int ret = 0;
1820
1821	delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1822	if (IS_ERR(delayed_node))
1823		return PTR_ERR(delayed_node);
1824
1825	mutex_lock(&delayed_node->mutex);
1826	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1827		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1828		goto release_node;
1829	}
1830
1831	ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1832						   delayed_node);
1833	if (ret)
1834		goto release_node;
1835
1836	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1837	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1838	delayed_node->count++;
1839	atomic_inc(&root->fs_info->delayed_root->items);
1840release_node:
1841	mutex_unlock(&delayed_node->mutex);
1842	btrfs_release_delayed_node(delayed_node);
1843	return ret;
1844}
1845
1846int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1847{
1848	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1849	struct btrfs_delayed_node *delayed_node;
1850
1851	/*
1852	 * we don't do delayed inode updates during log recovery because it
1853	 * leads to enospc problems.  This means we also can't do
1854	 * delayed inode refs
1855	 */
1856	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1857		return -EAGAIN;
1858
1859	delayed_node = btrfs_get_or_create_delayed_node(inode);
1860	if (IS_ERR(delayed_node))
1861		return PTR_ERR(delayed_node);
1862
1863	/*
1864	 * We don't reserve space for inode ref deletion is because:
1865	 * - We ONLY do async inode ref deletion for the inode who has only
1866	 *   one link(i_nlink == 1), it means there is only one inode ref.
1867	 *   And in most case, the inode ref and the inode item are in the
1868	 *   same leaf, and we will deal with them at the same time.
1869	 *   Since we are sure we will reserve the space for the inode item,
1870	 *   it is unnecessary to reserve space for inode ref deletion.
1871	 * - If the inode ref and the inode item are not in the same leaf,
1872	 *   We also needn't worry about enospc problem, because we reserve
1873	 *   much more space for the inode update than it needs.
1874	 * - At the worst, we can steal some space from the global reservation.
1875	 *   It is very rare.
1876	 */
1877	mutex_lock(&delayed_node->mutex);
1878	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1879		goto release_node;
1880
1881	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1882	delayed_node->count++;
1883	atomic_inc(&fs_info->delayed_root->items);
1884release_node:
1885	mutex_unlock(&delayed_node->mutex);
1886	btrfs_release_delayed_node(delayed_node);
1887	return 0;
1888}
1889
1890static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1891{
1892	struct btrfs_root *root = delayed_node->root;
1893	struct btrfs_fs_info *fs_info = root->fs_info;
1894	struct btrfs_delayed_item *curr_item, *prev_item;
1895
1896	mutex_lock(&delayed_node->mutex);
1897	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1898	while (curr_item) {
1899		btrfs_delayed_item_release_metadata(root, curr_item);
1900		prev_item = curr_item;
1901		curr_item = __btrfs_next_delayed_item(prev_item);
1902		btrfs_release_delayed_item(prev_item);
1903	}
1904
1905	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1906	while (curr_item) {
1907		btrfs_delayed_item_release_metadata(root, curr_item);
1908		prev_item = curr_item;
1909		curr_item = __btrfs_next_delayed_item(prev_item);
1910		btrfs_release_delayed_item(prev_item);
1911	}
1912
1913	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1914		btrfs_release_delayed_iref(delayed_node);
1915
1916	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1917		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1918		btrfs_release_delayed_inode(delayed_node);
1919	}
1920	mutex_unlock(&delayed_node->mutex);
1921}
1922
1923void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1924{
1925	struct btrfs_delayed_node *delayed_node;
1926
1927	delayed_node = btrfs_get_delayed_node(inode);
1928	if (!delayed_node)
1929		return;
1930
1931	__btrfs_kill_delayed_node(delayed_node);
1932	btrfs_release_delayed_node(delayed_node);
1933}
1934
1935void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1936{
1937	u64 inode_id = 0;
1938	struct btrfs_delayed_node *delayed_nodes[8];
1939	int i, n;
1940
1941	while (1) {
1942		spin_lock(&root->inode_lock);
1943		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1944					   (void **)delayed_nodes, inode_id,
1945					   ARRAY_SIZE(delayed_nodes));
1946		if (!n) {
1947			spin_unlock(&root->inode_lock);
1948			break;
1949		}
1950
1951		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1952
1953		for (i = 0; i < n; i++)
1954			refcount_inc(&delayed_nodes[i]->refs);
1955		spin_unlock(&root->inode_lock);
1956
1957		for (i = 0; i < n; i++) {
1958			__btrfs_kill_delayed_node(delayed_nodes[i]);
1959			btrfs_release_delayed_node(delayed_nodes[i]);
1960		}
1961	}
1962}
1963
1964void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1965{
 
1966	struct btrfs_delayed_node *curr_node, *prev_node;
1967
1968	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
 
 
1969	while (curr_node) {
1970		__btrfs_kill_delayed_node(curr_node);
1971
1972		prev_node = curr_node;
1973		curr_node = btrfs_next_delayed_node(curr_node);
1974		btrfs_release_delayed_node(prev_node);
1975	}
1976}
1977
v3.15
 
   1/*
   2 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   3 * Written by Miao Xie <miaox@cn.fujitsu.com>
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public
   7 * License v2 as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 * General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public
  15 * License along with this program; if not, write to the
  16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17 * Boston, MA 021110-1307, USA.
  18 */
  19
  20#include <linux/slab.h>
 
 
  21#include "delayed-inode.h"
  22#include "disk-io.h"
  23#include "transaction.h"
  24#include "ctree.h"
 
  25
  26#define BTRFS_DELAYED_WRITEBACK		512
  27#define BTRFS_DELAYED_BACKGROUND	128
  28#define BTRFS_DELAYED_BATCH		16
  29
  30static struct kmem_cache *delayed_node_cache;
  31
  32int __init btrfs_delayed_inode_init(void)
  33{
  34	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  35					sizeof(struct btrfs_delayed_node),
  36					0,
  37					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  38					NULL);
  39	if (!delayed_node_cache)
  40		return -ENOMEM;
  41	return 0;
  42}
  43
  44void btrfs_delayed_inode_exit(void)
  45{
  46	if (delayed_node_cache)
  47		kmem_cache_destroy(delayed_node_cache);
  48}
  49
  50static inline void btrfs_init_delayed_node(
  51				struct btrfs_delayed_node *delayed_node,
  52				struct btrfs_root *root, u64 inode_id)
  53{
  54	delayed_node->root = root;
  55	delayed_node->inode_id = inode_id;
  56	atomic_set(&delayed_node->refs, 0);
  57	delayed_node->count = 0;
  58	delayed_node->flags = 0;
  59	delayed_node->ins_root = RB_ROOT;
  60	delayed_node->del_root = RB_ROOT;
  61	mutex_init(&delayed_node->mutex);
  62	delayed_node->index_cnt = 0;
  63	INIT_LIST_HEAD(&delayed_node->n_list);
  64	INIT_LIST_HEAD(&delayed_node->p_list);
  65	delayed_node->bytes_reserved = 0;
  66	memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
  67}
  68
  69static inline int btrfs_is_continuous_delayed_item(
  70					struct btrfs_delayed_item *item1,
  71					struct btrfs_delayed_item *item2)
  72{
  73	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  74	    item1->key.objectid == item2->key.objectid &&
  75	    item1->key.type == item2->key.type &&
  76	    item1->key.offset + 1 == item2->key.offset)
  77		return 1;
  78	return 0;
  79}
  80
  81static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  82							struct btrfs_root *root)
  83{
  84	return root->fs_info->delayed_root;
  85}
  86
  87static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  88{
  89	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  90	struct btrfs_root *root = btrfs_inode->root;
  91	u64 ino = btrfs_ino(inode);
  92	struct btrfs_delayed_node *node;
  93
  94	node = ACCESS_ONCE(btrfs_inode->delayed_node);
  95	if (node) {
  96		atomic_inc(&node->refs);
  97		return node;
  98	}
  99
 100	spin_lock(&root->inode_lock);
 101	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
 
 102	if (node) {
 103		if (btrfs_inode->delayed_node) {
 104			atomic_inc(&node->refs);	/* can be accessed */
 105			BUG_ON(btrfs_inode->delayed_node != node);
 106			spin_unlock(&root->inode_lock);
 107			return node;
 108		}
 109		btrfs_inode->delayed_node = node;
 110		/* can be accessed and cached in the inode */
 111		atomic_add(2, &node->refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 112		spin_unlock(&root->inode_lock);
 113		return node;
 114	}
 115	spin_unlock(&root->inode_lock);
 116
 117	return NULL;
 118}
 119
 120/* Will return either the node or PTR_ERR(-ENOMEM) */
 121static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 122							struct inode *inode)
 123{
 124	struct btrfs_delayed_node *node;
 125	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
 126	struct btrfs_root *root = btrfs_inode->root;
 127	u64 ino = btrfs_ino(inode);
 128	int ret;
 129
 130again:
 131	node = btrfs_get_delayed_node(inode);
 132	if (node)
 133		return node;
 134
 135	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
 136	if (!node)
 137		return ERR_PTR(-ENOMEM);
 138	btrfs_init_delayed_node(node, root, ino);
 139
 140	/* cached in the btrfs inode and can be accessed */
 141	atomic_add(2, &node->refs);
 142
 143	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
 144	if (ret) {
 145		kmem_cache_free(delayed_node_cache, node);
 146		return ERR_PTR(ret);
 147	}
 148
 149	spin_lock(&root->inode_lock);
 150	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 151	if (ret == -EEXIST) {
 
 152		kmem_cache_free(delayed_node_cache, node);
 153		spin_unlock(&root->inode_lock);
 154		radix_tree_preload_end();
 155		goto again;
 156	}
 157	btrfs_inode->delayed_node = node;
 158	spin_unlock(&root->inode_lock);
 159	radix_tree_preload_end();
 160
 161	return node;
 162}
 163
 164/*
 165 * Call it when holding delayed_node->mutex
 166 *
 167 * If mod = 1, add this node into the prepared list.
 168 */
 169static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 170				     struct btrfs_delayed_node *node,
 171				     int mod)
 172{
 173	spin_lock(&root->lock);
 174	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 175		if (!list_empty(&node->p_list))
 176			list_move_tail(&node->p_list, &root->prepare_list);
 177		else if (mod)
 178			list_add_tail(&node->p_list, &root->prepare_list);
 179	} else {
 180		list_add_tail(&node->n_list, &root->node_list);
 181		list_add_tail(&node->p_list, &root->prepare_list);
 182		atomic_inc(&node->refs);	/* inserted into list */
 183		root->nodes++;
 184		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 185	}
 186	spin_unlock(&root->lock);
 187}
 188
 189/* Call it when holding delayed_node->mutex */
 190static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 191				       struct btrfs_delayed_node *node)
 192{
 193	spin_lock(&root->lock);
 194	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 195		root->nodes--;
 196		atomic_dec(&node->refs);	/* not in the list */
 197		list_del_init(&node->n_list);
 198		if (!list_empty(&node->p_list))
 199			list_del_init(&node->p_list);
 200		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 201	}
 202	spin_unlock(&root->lock);
 203}
 204
 205static struct btrfs_delayed_node *btrfs_first_delayed_node(
 206			struct btrfs_delayed_root *delayed_root)
 207{
 208	struct list_head *p;
 209	struct btrfs_delayed_node *node = NULL;
 210
 211	spin_lock(&delayed_root->lock);
 212	if (list_empty(&delayed_root->node_list))
 213		goto out;
 214
 215	p = delayed_root->node_list.next;
 216	node = list_entry(p, struct btrfs_delayed_node, n_list);
 217	atomic_inc(&node->refs);
 218out:
 219	spin_unlock(&delayed_root->lock);
 220
 221	return node;
 222}
 223
 224static struct btrfs_delayed_node *btrfs_next_delayed_node(
 225						struct btrfs_delayed_node *node)
 226{
 227	struct btrfs_delayed_root *delayed_root;
 228	struct list_head *p;
 229	struct btrfs_delayed_node *next = NULL;
 230
 231	delayed_root = node->root->fs_info->delayed_root;
 232	spin_lock(&delayed_root->lock);
 233	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 234		/* not in the list */
 235		if (list_empty(&delayed_root->node_list))
 236			goto out;
 237		p = delayed_root->node_list.next;
 238	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
 239		goto out;
 240	else
 241		p = node->n_list.next;
 242
 243	next = list_entry(p, struct btrfs_delayed_node, n_list);
 244	atomic_inc(&next->refs);
 245out:
 246	spin_unlock(&delayed_root->lock);
 247
 248	return next;
 249}
 250
 251static void __btrfs_release_delayed_node(
 252				struct btrfs_delayed_node *delayed_node,
 253				int mod)
 254{
 255	struct btrfs_delayed_root *delayed_root;
 256
 257	if (!delayed_node)
 258		return;
 259
 260	delayed_root = delayed_node->root->fs_info->delayed_root;
 261
 262	mutex_lock(&delayed_node->mutex);
 263	if (delayed_node->count)
 264		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 265	else
 266		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 267	mutex_unlock(&delayed_node->mutex);
 268
 269	if (atomic_dec_and_test(&delayed_node->refs)) {
 270		struct btrfs_root *root = delayed_node->root;
 
 271		spin_lock(&root->inode_lock);
 272		if (atomic_read(&delayed_node->refs) == 0) {
 273			radix_tree_delete(&root->delayed_nodes_tree,
 274					  delayed_node->inode_id);
 275			kmem_cache_free(delayed_node_cache, delayed_node);
 276		}
 
 
 277		spin_unlock(&root->inode_lock);
 
 278	}
 279}
 280
 281static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 282{
 283	__btrfs_release_delayed_node(node, 0);
 284}
 285
 286static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 287					struct btrfs_delayed_root *delayed_root)
 288{
 289	struct list_head *p;
 290	struct btrfs_delayed_node *node = NULL;
 291
 292	spin_lock(&delayed_root->lock);
 293	if (list_empty(&delayed_root->prepare_list))
 294		goto out;
 295
 296	p = delayed_root->prepare_list.next;
 297	list_del_init(p);
 298	node = list_entry(p, struct btrfs_delayed_node, p_list);
 299	atomic_inc(&node->refs);
 300out:
 301	spin_unlock(&delayed_root->lock);
 302
 303	return node;
 304}
 305
 306static inline void btrfs_release_prepared_delayed_node(
 307					struct btrfs_delayed_node *node)
 308{
 309	__btrfs_release_delayed_node(node, 1);
 310}
 311
 312static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 313{
 314	struct btrfs_delayed_item *item;
 315	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 316	if (item) {
 317		item->data_len = data_len;
 318		item->ins_or_del = 0;
 319		item->bytes_reserved = 0;
 320		item->delayed_node = NULL;
 321		atomic_set(&item->refs, 1);
 322	}
 323	return item;
 324}
 325
 326/*
 327 * __btrfs_lookup_delayed_item - look up the delayed item by key
 328 * @delayed_node: pointer to the delayed node
 329 * @key:	  the key to look up
 330 * @prev:	  used to store the prev item if the right item isn't found
 331 * @next:	  used to store the next item if the right item isn't found
 332 *
 333 * Note: if we don't find the right item, we will return the prev item and
 334 * the next item.
 335 */
 336static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 337				struct rb_root *root,
 338				struct btrfs_key *key,
 339				struct btrfs_delayed_item **prev,
 340				struct btrfs_delayed_item **next)
 341{
 342	struct rb_node *node, *prev_node = NULL;
 343	struct btrfs_delayed_item *delayed_item = NULL;
 344	int ret = 0;
 345
 346	node = root->rb_node;
 347
 348	while (node) {
 349		delayed_item = rb_entry(node, struct btrfs_delayed_item,
 350					rb_node);
 351		prev_node = node;
 352		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 353		if (ret < 0)
 354			node = node->rb_right;
 355		else if (ret > 0)
 356			node = node->rb_left;
 357		else
 358			return delayed_item;
 359	}
 360
 361	if (prev) {
 362		if (!prev_node)
 363			*prev = NULL;
 364		else if (ret < 0)
 365			*prev = delayed_item;
 366		else if ((node = rb_prev(prev_node)) != NULL) {
 367			*prev = rb_entry(node, struct btrfs_delayed_item,
 368					 rb_node);
 369		} else
 370			*prev = NULL;
 371	}
 372
 373	if (next) {
 374		if (!prev_node)
 375			*next = NULL;
 376		else if (ret > 0)
 377			*next = delayed_item;
 378		else if ((node = rb_next(prev_node)) != NULL) {
 379			*next = rb_entry(node, struct btrfs_delayed_item,
 380					 rb_node);
 381		} else
 382			*next = NULL;
 383	}
 384	return NULL;
 385}
 386
 387static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 388					struct btrfs_delayed_node *delayed_node,
 389					struct btrfs_key *key)
 390{
 391	struct btrfs_delayed_item *item;
 392
 393	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
 394					   NULL, NULL);
 395	return item;
 396}
 397
 398static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 399				    struct btrfs_delayed_item *ins,
 400				    int action)
 401{
 402	struct rb_node **p, *node;
 403	struct rb_node *parent_node = NULL;
 404	struct rb_root *root;
 405	struct btrfs_delayed_item *item;
 406	int cmp;
 
 407
 408	if (action == BTRFS_DELAYED_INSERTION_ITEM)
 409		root = &delayed_node->ins_root;
 410	else if (action == BTRFS_DELAYED_DELETION_ITEM)
 411		root = &delayed_node->del_root;
 412	else
 413		BUG();
 414	p = &root->rb_node;
 415	node = &ins->rb_node;
 416
 417	while (*p) {
 418		parent_node = *p;
 419		item = rb_entry(parent_node, struct btrfs_delayed_item,
 420				 rb_node);
 421
 422		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 423		if (cmp < 0)
 424			p = &(*p)->rb_right;
 425		else if (cmp > 0)
 
 426			p = &(*p)->rb_left;
 427		else
 428			return -EEXIST;
 
 429	}
 430
 431	rb_link_node(node, parent_node, p);
 432	rb_insert_color(node, root);
 433	ins->delayed_node = delayed_node;
 434	ins->ins_or_del = action;
 435
 436	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 437	    action == BTRFS_DELAYED_INSERTION_ITEM &&
 438	    ins->key.offset >= delayed_node->index_cnt)
 439			delayed_node->index_cnt = ins->key.offset + 1;
 440
 441	delayed_node->count++;
 442	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 443	return 0;
 444}
 445
 446static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 447					      struct btrfs_delayed_item *item)
 448{
 449	return __btrfs_add_delayed_item(node, item,
 450					BTRFS_DELAYED_INSERTION_ITEM);
 451}
 452
 453static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 454					     struct btrfs_delayed_item *item)
 455{
 456	return __btrfs_add_delayed_item(node, item,
 457					BTRFS_DELAYED_DELETION_ITEM);
 458}
 459
 460static void finish_one_item(struct btrfs_delayed_root *delayed_root)
 461{
 462	int seq = atomic_inc_return(&delayed_root->items_seq);
 
 
 463	if ((atomic_dec_return(&delayed_root->items) <
 464	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
 465	    waitqueue_active(&delayed_root->wait))
 466		wake_up(&delayed_root->wait);
 467}
 468
 469static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 470{
 471	struct rb_root *root;
 472	struct btrfs_delayed_root *delayed_root;
 473
 
 
 
 474	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 475
 476	BUG_ON(!delayed_root);
 477	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 478	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 479
 480	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 481		root = &delayed_item->delayed_node->ins_root;
 482	else
 483		root = &delayed_item->delayed_node->del_root;
 484
 485	rb_erase(&delayed_item->rb_node, root);
 486	delayed_item->delayed_node->count--;
 487
 488	finish_one_item(delayed_root);
 489}
 490
 491static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 492{
 493	if (item) {
 494		__btrfs_remove_delayed_item(item);
 495		if (atomic_dec_and_test(&item->refs))
 496			kfree(item);
 497	}
 498}
 499
 500static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 501					struct btrfs_delayed_node *delayed_node)
 502{
 503	struct rb_node *p;
 504	struct btrfs_delayed_item *item = NULL;
 505
 506	p = rb_first(&delayed_node->ins_root);
 507	if (p)
 508		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 509
 510	return item;
 511}
 512
 513static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 514					struct btrfs_delayed_node *delayed_node)
 515{
 516	struct rb_node *p;
 517	struct btrfs_delayed_item *item = NULL;
 518
 519	p = rb_first(&delayed_node->del_root);
 520	if (p)
 521		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 522
 523	return item;
 524}
 525
 526static struct btrfs_delayed_item *__btrfs_next_delayed_item(
 527						struct btrfs_delayed_item *item)
 528{
 529	struct rb_node *p;
 530	struct btrfs_delayed_item *next = NULL;
 531
 532	p = rb_next(&item->rb_node);
 533	if (p)
 534		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 535
 536	return next;
 537}
 538
 539static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 540					       struct btrfs_root *root,
 541					       struct btrfs_delayed_item *item)
 542{
 543	struct btrfs_block_rsv *src_rsv;
 544	struct btrfs_block_rsv *dst_rsv;
 
 545	u64 num_bytes;
 546	int ret;
 547
 548	if (!trans->bytes_reserved)
 549		return 0;
 550
 551	src_rsv = trans->block_rsv;
 552	dst_rsv = &root->fs_info->delayed_block_rsv;
 
 
 553
 554	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 555	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 
 
 
 
 556	if (!ret) {
 557		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
 558					      item->key.objectid,
 559					      num_bytes, 1);
 560		item->bytes_reserved = num_bytes;
 561	}
 562
 563	return ret;
 564}
 565
 566static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 567						struct btrfs_delayed_item *item)
 568{
 569	struct btrfs_block_rsv *rsv;
 
 570
 571	if (!item->bytes_reserved)
 572		return;
 573
 574	rsv = &root->fs_info->delayed_block_rsv;
 575	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
 
 
 
 
 576				      item->key.objectid, item->bytes_reserved,
 577				      0);
 578	btrfs_block_rsv_release(root, rsv,
 579				item->bytes_reserved);
 580}
 581
 582static int btrfs_delayed_inode_reserve_metadata(
 583					struct btrfs_trans_handle *trans,
 584					struct btrfs_root *root,
 585					struct inode *inode,
 586					struct btrfs_delayed_node *node)
 587{
 
 588	struct btrfs_block_rsv *src_rsv;
 589	struct btrfs_block_rsv *dst_rsv;
 590	u64 num_bytes;
 591	int ret;
 592	bool release = false;
 593
 594	src_rsv = trans->block_rsv;
 595	dst_rsv = &root->fs_info->delayed_block_rsv;
 596
 597	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 598
 599	/*
 600	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 601	 * which doesn't reserve space for speed.  This is a problem since we
 602	 * still need to reserve space for this update, so try to reserve the
 603	 * space.
 604	 *
 605	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 606	 * we're accounted for.
 607	 */
 608	if (!src_rsv || (!trans->bytes_reserved &&
 609			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
 
 
 
 
 610		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
 611					  BTRFS_RESERVE_NO_FLUSH);
 612		/*
 613		 * Since we're under a transaction reserve_metadata_bytes could
 614		 * try to commit the transaction which will make it return
 615		 * EAGAIN to make us stop the transaction we have, so return
 616		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
 617		 */
 618		if (ret == -EAGAIN)
 619			ret = -ENOSPC;
 
 
 620		if (!ret) {
 621			node->bytes_reserved = num_bytes;
 622			trace_btrfs_space_reservation(root->fs_info,
 623						      "delayed_inode",
 624						      btrfs_ino(inode),
 625						      num_bytes, 1);
 
 
 626		}
 627		return ret;
 628	} else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
 629		spin_lock(&BTRFS_I(inode)->lock);
 630		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
 631				       &BTRFS_I(inode)->runtime_flags)) {
 632			spin_unlock(&BTRFS_I(inode)->lock);
 633			release = true;
 634			goto migrate;
 635		}
 636		spin_unlock(&BTRFS_I(inode)->lock);
 637
 638		/* Ok we didn't have space pre-reserved.  This shouldn't happen
 639		 * too often but it can happen if we do delalloc to an existing
 640		 * inode which gets dirtied because of the time update, and then
 641		 * isn't touched again until after the transaction commits and
 642		 * then we try to write out the data.  First try to be nice and
 643		 * reserve something strictly for us.  If not be a pain and try
 644		 * to steal from the delalloc block rsv.
 645		 */
 646		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
 647					  BTRFS_RESERVE_NO_FLUSH);
 648		if (!ret)
 649			goto out;
 650
 651		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 652		if (!WARN_ON(ret))
 653			goto out;
 654
 655		/*
 656		 * Ok this is a problem, let's just steal from the global rsv
 657		 * since this really shouldn't happen that often.
 658		 */
 659		ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
 660					      dst_rsv, num_bytes);
 661		goto out;
 662	}
 663
 664migrate:
 665	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 666
 667out:
 668	/*
 669	 * Migrate only takes a reservation, it doesn't touch the size of the
 670	 * block_rsv.  This is to simplify people who don't normally have things
 671	 * migrated from their block rsv.  If they go to release their
 672	 * reservation, that will decrease the size as well, so if migrate
 673	 * reduced size we'd end up with a negative size.  But for the
 674	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
 675	 * but we could in fact do this reserve/migrate dance several times
 676	 * between the time we did the original reservation and we'd clean it
 677	 * up.  So to take care of this, release the space for the meta
 678	 * reservation here.  I think it may be time for a documentation page on
 679	 * how block rsvs. work.
 680	 */
 681	if (!ret) {
 682		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
 683					      btrfs_ino(inode), num_bytes, 1);
 684		node->bytes_reserved = num_bytes;
 685	}
 686
 687	if (release) {
 688		trace_btrfs_space_reservation(root->fs_info, "delalloc",
 689					      btrfs_ino(inode), num_bytes, 0);
 690		btrfs_block_rsv_release(root, src_rsv, num_bytes);
 691	}
 692
 693	return ret;
 694}
 695
 696static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
 697						struct btrfs_delayed_node *node)
 
 698{
 699	struct btrfs_block_rsv *rsv;
 700
 701	if (!node->bytes_reserved)
 702		return;
 703
 704	rsv = &root->fs_info->delayed_block_rsv;
 705	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
 706				      node->inode_id, node->bytes_reserved, 0);
 707	btrfs_block_rsv_release(root, rsv,
 
 
 
 
 
 
 708				node->bytes_reserved);
 709	node->bytes_reserved = 0;
 710}
 711
 712/*
 713 * This helper will insert some continuous items into the same leaf according
 714 * to the free space of the leaf.
 715 */
 716static int btrfs_batch_insert_items(struct btrfs_root *root,
 717				    struct btrfs_path *path,
 718				    struct btrfs_delayed_item *item)
 719{
 720	struct btrfs_delayed_item *curr, *next;
 721	int free_space;
 722	int total_data_size = 0, total_size = 0;
 723	struct extent_buffer *leaf;
 724	char *data_ptr;
 725	struct btrfs_key *keys;
 726	u32 *data_size;
 727	struct list_head head;
 728	int slot;
 729	int nitems;
 730	int i;
 731	int ret = 0;
 732
 733	BUG_ON(!path->nodes[0]);
 734
 735	leaf = path->nodes[0];
 736	free_space = btrfs_leaf_free_space(root, leaf);
 737	INIT_LIST_HEAD(&head);
 738
 739	next = item;
 740	nitems = 0;
 741
 742	/*
 743	 * count the number of the continuous items that we can insert in batch
 744	 */
 745	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 746	       free_space) {
 747		total_data_size += next->data_len;
 748		total_size += next->data_len + sizeof(struct btrfs_item);
 749		list_add_tail(&next->tree_list, &head);
 750		nitems++;
 751
 752		curr = next;
 753		next = __btrfs_next_delayed_item(curr);
 754		if (!next)
 755			break;
 756
 757		if (!btrfs_is_continuous_delayed_item(curr, next))
 758			break;
 759	}
 760
 761	if (!nitems) {
 762		ret = 0;
 763		goto out;
 764	}
 765
 766	/*
 767	 * we need allocate some memory space, but it might cause the task
 768	 * to sleep, so we set all locked nodes in the path to blocking locks
 769	 * first.
 770	 */
 771	btrfs_set_path_blocking(path);
 772
 773	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
 774	if (!keys) {
 775		ret = -ENOMEM;
 776		goto out;
 777	}
 778
 779	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
 780	if (!data_size) {
 781		ret = -ENOMEM;
 782		goto error;
 783	}
 784
 785	/* get keys of all the delayed items */
 786	i = 0;
 787	list_for_each_entry(next, &head, tree_list) {
 788		keys[i] = next->key;
 789		data_size[i] = next->data_len;
 790		i++;
 791	}
 792
 793	/* reset all the locked nodes in the patch to spinning locks. */
 794	btrfs_clear_path_blocking(path, NULL, 0);
 795
 796	/* insert the keys of the items */
 797	setup_items_for_insert(root, path, keys, data_size,
 798			       total_data_size, total_size, nitems);
 799
 800	/* insert the dir index items */
 801	slot = path->slots[0];
 802	list_for_each_entry_safe(curr, next, &head, tree_list) {
 803		data_ptr = btrfs_item_ptr(leaf, slot, char);
 804		write_extent_buffer(leaf, &curr->data,
 805				    (unsigned long)data_ptr,
 806				    curr->data_len);
 807		slot++;
 808
 809		btrfs_delayed_item_release_metadata(root, curr);
 810
 811		list_del(&curr->tree_list);
 812		btrfs_release_delayed_item(curr);
 813	}
 814
 815error:
 816	kfree(data_size);
 817	kfree(keys);
 818out:
 819	return ret;
 820}
 821
 822/*
 823 * This helper can just do simple insertion that needn't extend item for new
 824 * data, such as directory name index insertion, inode insertion.
 825 */
 826static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 827				     struct btrfs_root *root,
 828				     struct btrfs_path *path,
 829				     struct btrfs_delayed_item *delayed_item)
 830{
 831	struct extent_buffer *leaf;
 832	char *ptr;
 833	int ret;
 834
 835	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 836				      delayed_item->data_len);
 837	if (ret < 0 && ret != -EEXIST)
 838		return ret;
 839
 840	leaf = path->nodes[0];
 841
 842	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 843
 844	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 845			    delayed_item->data_len);
 846	btrfs_mark_buffer_dirty(leaf);
 847
 848	btrfs_delayed_item_release_metadata(root, delayed_item);
 849	return 0;
 850}
 851
 852/*
 853 * we insert an item first, then if there are some continuous items, we try
 854 * to insert those items into the same leaf.
 855 */
 856static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 857				      struct btrfs_path *path,
 858				      struct btrfs_root *root,
 859				      struct btrfs_delayed_node *node)
 860{
 861	struct btrfs_delayed_item *curr, *prev;
 862	int ret = 0;
 863
 864do_again:
 865	mutex_lock(&node->mutex);
 866	curr = __btrfs_first_delayed_insertion_item(node);
 867	if (!curr)
 868		goto insert_end;
 869
 870	ret = btrfs_insert_delayed_item(trans, root, path, curr);
 871	if (ret < 0) {
 872		btrfs_release_path(path);
 873		goto insert_end;
 874	}
 875
 876	prev = curr;
 877	curr = __btrfs_next_delayed_item(prev);
 878	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 879		/* insert the continuous items into the same leaf */
 880		path->slots[0]++;
 881		btrfs_batch_insert_items(root, path, curr);
 882	}
 883	btrfs_release_delayed_item(prev);
 884	btrfs_mark_buffer_dirty(path->nodes[0]);
 885
 886	btrfs_release_path(path);
 887	mutex_unlock(&node->mutex);
 888	goto do_again;
 889
 890insert_end:
 891	mutex_unlock(&node->mutex);
 892	return ret;
 893}
 894
 895static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 896				    struct btrfs_root *root,
 897				    struct btrfs_path *path,
 898				    struct btrfs_delayed_item *item)
 899{
 900	struct btrfs_delayed_item *curr, *next;
 901	struct extent_buffer *leaf;
 902	struct btrfs_key key;
 903	struct list_head head;
 904	int nitems, i, last_item;
 905	int ret = 0;
 906
 907	BUG_ON(!path->nodes[0]);
 908
 909	leaf = path->nodes[0];
 910
 911	i = path->slots[0];
 912	last_item = btrfs_header_nritems(leaf) - 1;
 913	if (i > last_item)
 914		return -ENOENT;	/* FIXME: Is errno suitable? */
 915
 916	next = item;
 917	INIT_LIST_HEAD(&head);
 918	btrfs_item_key_to_cpu(leaf, &key, i);
 919	nitems = 0;
 920	/*
 921	 * count the number of the dir index items that we can delete in batch
 922	 */
 923	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 924		list_add_tail(&next->tree_list, &head);
 925		nitems++;
 926
 927		curr = next;
 928		next = __btrfs_next_delayed_item(curr);
 929		if (!next)
 930			break;
 931
 932		if (!btrfs_is_continuous_delayed_item(curr, next))
 933			break;
 934
 935		i++;
 936		if (i > last_item)
 937			break;
 938		btrfs_item_key_to_cpu(leaf, &key, i);
 939	}
 940
 941	if (!nitems)
 942		return 0;
 943
 944	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 945	if (ret)
 946		goto out;
 947
 948	list_for_each_entry_safe(curr, next, &head, tree_list) {
 949		btrfs_delayed_item_release_metadata(root, curr);
 950		list_del(&curr->tree_list);
 951		btrfs_release_delayed_item(curr);
 952	}
 953
 954out:
 955	return ret;
 956}
 957
 958static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 959				      struct btrfs_path *path,
 960				      struct btrfs_root *root,
 961				      struct btrfs_delayed_node *node)
 962{
 963	struct btrfs_delayed_item *curr, *prev;
 964	int ret = 0;
 965
 966do_again:
 967	mutex_lock(&node->mutex);
 968	curr = __btrfs_first_delayed_deletion_item(node);
 969	if (!curr)
 970		goto delete_fail;
 971
 972	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 973	if (ret < 0)
 974		goto delete_fail;
 975	else if (ret > 0) {
 976		/*
 977		 * can't find the item which the node points to, so this node
 978		 * is invalid, just drop it.
 979		 */
 980		prev = curr;
 981		curr = __btrfs_next_delayed_item(prev);
 982		btrfs_release_delayed_item(prev);
 983		ret = 0;
 984		btrfs_release_path(path);
 985		if (curr) {
 986			mutex_unlock(&node->mutex);
 987			goto do_again;
 988		} else
 989			goto delete_fail;
 990	}
 991
 992	btrfs_batch_delete_items(trans, root, path, curr);
 993	btrfs_release_path(path);
 994	mutex_unlock(&node->mutex);
 995	goto do_again;
 996
 997delete_fail:
 998	btrfs_release_path(path);
 999	mutex_unlock(&node->mutex);
1000	return ret;
1001}
1002
1003static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1004{
1005	struct btrfs_delayed_root *delayed_root;
1006
1007	if (delayed_node &&
1008	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1009		BUG_ON(!delayed_node->root);
1010		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1011		delayed_node->count--;
1012
1013		delayed_root = delayed_node->root->fs_info->delayed_root;
1014		finish_one_item(delayed_root);
1015	}
1016}
1017
1018static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1019{
1020	struct btrfs_delayed_root *delayed_root;
1021
1022	ASSERT(delayed_node->root);
1023	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1024	delayed_node->count--;
1025
1026	delayed_root = delayed_node->root->fs_info->delayed_root;
1027	finish_one_item(delayed_root);
1028}
1029
1030static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1031					struct btrfs_root *root,
1032					struct btrfs_path *path,
1033					struct btrfs_delayed_node *node)
1034{
 
1035	struct btrfs_key key;
1036	struct btrfs_inode_item *inode_item;
1037	struct extent_buffer *leaf;
1038	int mod;
1039	int ret;
1040
1041	key.objectid = node->inode_id;
1042	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1043	key.offset = 0;
1044
1045	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1046		mod = -1;
1047	else
1048		mod = 1;
1049
1050	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1051	if (ret > 0) {
1052		btrfs_release_path(path);
1053		return -ENOENT;
1054	} else if (ret < 0) {
1055		return ret;
1056	}
1057
1058	leaf = path->nodes[0];
1059	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1060				    struct btrfs_inode_item);
1061	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1062			    sizeof(struct btrfs_inode_item));
1063	btrfs_mark_buffer_dirty(leaf);
1064
1065	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1066		goto no_iref;
1067
1068	path->slots[0]++;
1069	if (path->slots[0] >= btrfs_header_nritems(leaf))
1070		goto search;
1071again:
1072	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1073	if (key.objectid != node->inode_id)
1074		goto out;
1075
1076	if (key.type != BTRFS_INODE_REF_KEY &&
1077	    key.type != BTRFS_INODE_EXTREF_KEY)
1078		goto out;
1079
1080	/*
1081	 * Delayed iref deletion is for the inode who has only one link,
1082	 * so there is only one iref. The case that several irefs are
1083	 * in the same item doesn't exist.
1084	 */
1085	btrfs_del_item(trans, root, path);
1086out:
1087	btrfs_release_delayed_iref(node);
1088no_iref:
1089	btrfs_release_path(path);
1090err_out:
1091	btrfs_delayed_inode_release_metadata(root, node);
1092	btrfs_release_delayed_inode(node);
1093
1094	return ret;
1095
1096search:
1097	btrfs_release_path(path);
1098
1099	btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1100	key.offset = -1;
1101	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1102	if (ret < 0)
1103		goto err_out;
1104	ASSERT(ret);
1105
1106	ret = 0;
1107	leaf = path->nodes[0];
1108	path->slots[0]--;
1109	goto again;
1110}
1111
1112static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1113					     struct btrfs_root *root,
1114					     struct btrfs_path *path,
1115					     struct btrfs_delayed_node *node)
1116{
1117	int ret;
1118
1119	mutex_lock(&node->mutex);
1120	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1121		mutex_unlock(&node->mutex);
1122		return 0;
1123	}
1124
1125	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1126	mutex_unlock(&node->mutex);
1127	return ret;
1128}
1129
1130static inline int
1131__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1132				   struct btrfs_path *path,
1133				   struct btrfs_delayed_node *node)
1134{
1135	int ret;
1136
1137	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1138	if (ret)
1139		return ret;
1140
1141	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1142	if (ret)
1143		return ret;
1144
1145	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1146	return ret;
1147}
1148
1149/*
1150 * Called when committing the transaction.
1151 * Returns 0 on success.
1152 * Returns < 0 on error and returns with an aborted transaction with any
1153 * outstanding delayed items cleaned up.
1154 */
1155static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1156				     struct btrfs_root *root, int nr)
1157{
 
1158	struct btrfs_delayed_root *delayed_root;
1159	struct btrfs_delayed_node *curr_node, *prev_node;
1160	struct btrfs_path *path;
1161	struct btrfs_block_rsv *block_rsv;
1162	int ret = 0;
1163	bool count = (nr > 0);
1164
1165	if (trans->aborted)
1166		return -EIO;
1167
1168	path = btrfs_alloc_path();
1169	if (!path)
1170		return -ENOMEM;
1171	path->leave_spinning = 1;
1172
1173	block_rsv = trans->block_rsv;
1174	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1175
1176	delayed_root = btrfs_get_delayed_root(root);
1177
1178	curr_node = btrfs_first_delayed_node(delayed_root);
1179	while (curr_node && (!count || (count && nr--))) {
1180		ret = __btrfs_commit_inode_delayed_items(trans, path,
1181							 curr_node);
1182		if (ret) {
1183			btrfs_release_delayed_node(curr_node);
1184			curr_node = NULL;
1185			btrfs_abort_transaction(trans, root, ret);
1186			break;
1187		}
1188
1189		prev_node = curr_node;
1190		curr_node = btrfs_next_delayed_node(curr_node);
1191		btrfs_release_delayed_node(prev_node);
1192	}
1193
1194	if (curr_node)
1195		btrfs_release_delayed_node(curr_node);
1196	btrfs_free_path(path);
1197	trans->block_rsv = block_rsv;
1198
1199	return ret;
1200}
1201
1202int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1203			    struct btrfs_root *root)
1204{
1205	return __btrfs_run_delayed_items(trans, root, -1);
1206}
1207
1208int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1209			       struct btrfs_root *root, int nr)
1210{
1211	return __btrfs_run_delayed_items(trans, root, nr);
1212}
1213
1214int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1215				     struct inode *inode)
1216{
1217	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1218	struct btrfs_path *path;
1219	struct btrfs_block_rsv *block_rsv;
1220	int ret;
1221
1222	if (!delayed_node)
1223		return 0;
1224
1225	mutex_lock(&delayed_node->mutex);
1226	if (!delayed_node->count) {
1227		mutex_unlock(&delayed_node->mutex);
1228		btrfs_release_delayed_node(delayed_node);
1229		return 0;
1230	}
1231	mutex_unlock(&delayed_node->mutex);
1232
1233	path = btrfs_alloc_path();
1234	if (!path) {
1235		btrfs_release_delayed_node(delayed_node);
1236		return -ENOMEM;
1237	}
1238	path->leave_spinning = 1;
1239
1240	block_rsv = trans->block_rsv;
1241	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1242
1243	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1244
1245	btrfs_release_delayed_node(delayed_node);
1246	btrfs_free_path(path);
1247	trans->block_rsv = block_rsv;
1248
1249	return ret;
1250}
1251
1252int btrfs_commit_inode_delayed_inode(struct inode *inode)
1253{
 
1254	struct btrfs_trans_handle *trans;
1255	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1256	struct btrfs_path *path;
1257	struct btrfs_block_rsv *block_rsv;
1258	int ret;
1259
1260	if (!delayed_node)
1261		return 0;
1262
1263	mutex_lock(&delayed_node->mutex);
1264	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1265		mutex_unlock(&delayed_node->mutex);
1266		btrfs_release_delayed_node(delayed_node);
1267		return 0;
1268	}
1269	mutex_unlock(&delayed_node->mutex);
1270
1271	trans = btrfs_join_transaction(delayed_node->root);
1272	if (IS_ERR(trans)) {
1273		ret = PTR_ERR(trans);
1274		goto out;
1275	}
1276
1277	path = btrfs_alloc_path();
1278	if (!path) {
1279		ret = -ENOMEM;
1280		goto trans_out;
1281	}
1282	path->leave_spinning = 1;
1283
1284	block_rsv = trans->block_rsv;
1285	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1286
1287	mutex_lock(&delayed_node->mutex);
1288	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1289		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1290						   path, delayed_node);
1291	else
1292		ret = 0;
1293	mutex_unlock(&delayed_node->mutex);
1294
1295	btrfs_free_path(path);
1296	trans->block_rsv = block_rsv;
1297trans_out:
1298	btrfs_end_transaction(trans, delayed_node->root);
1299	btrfs_btree_balance_dirty(delayed_node->root);
1300out:
1301	btrfs_release_delayed_node(delayed_node);
1302
1303	return ret;
1304}
1305
1306void btrfs_remove_delayed_node(struct inode *inode)
1307{
1308	struct btrfs_delayed_node *delayed_node;
1309
1310	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1311	if (!delayed_node)
1312		return;
1313
1314	BTRFS_I(inode)->delayed_node = NULL;
1315	btrfs_release_delayed_node(delayed_node);
1316}
1317
1318struct btrfs_async_delayed_work {
1319	struct btrfs_delayed_root *delayed_root;
1320	int nr;
1321	struct btrfs_work work;
1322};
1323
1324static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1325{
1326	struct btrfs_async_delayed_work *async_work;
1327	struct btrfs_delayed_root *delayed_root;
1328	struct btrfs_trans_handle *trans;
1329	struct btrfs_path *path;
1330	struct btrfs_delayed_node *delayed_node = NULL;
1331	struct btrfs_root *root;
1332	struct btrfs_block_rsv *block_rsv;
1333	int total_done = 0;
1334
1335	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1336	delayed_root = async_work->delayed_root;
1337
1338	path = btrfs_alloc_path();
1339	if (!path)
1340		goto out;
1341
1342again:
1343	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1344		goto free_path;
 
1345
1346	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1347	if (!delayed_node)
1348		goto free_path;
1349
1350	path->leave_spinning = 1;
1351	root = delayed_node->root;
1352
1353	trans = btrfs_join_transaction(root);
1354	if (IS_ERR(trans))
1355		goto release_path;
 
 
 
 
1356
1357	block_rsv = trans->block_rsv;
1358	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1359
1360	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1361
1362	trans->block_rsv = block_rsv;
1363	btrfs_end_transaction(trans, root);
1364	btrfs_btree_balance_dirty_nodelay(root);
1365
1366release_path:
1367	btrfs_release_path(path);
1368	total_done++;
1369
1370	btrfs_release_prepared_delayed_node(delayed_node);
1371	if (async_work->nr == 0 || total_done < async_work->nr)
1372		goto again;
1373
1374free_path:
1375	btrfs_free_path(path);
1376out:
1377	wake_up(&delayed_root->wait);
1378	kfree(async_work);
1379}
1380
1381
1382static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1383				     struct btrfs_root *root, int nr)
1384{
1385	struct btrfs_async_delayed_work *async_work;
1386
1387	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1388		return 0;
1389
1390	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1391	if (!async_work)
1392		return -ENOMEM;
1393
1394	async_work->delayed_root = delayed_root;
1395	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root,
1396			NULL, NULL);
1397	async_work->nr = nr;
1398
1399	btrfs_queue_work(root->fs_info->delayed_workers, &async_work->work);
1400	return 0;
1401}
1402
1403void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1404{
1405	struct btrfs_delayed_root *delayed_root;
1406	delayed_root = btrfs_get_delayed_root(root);
1407	WARN_ON(btrfs_first_delayed_node(delayed_root));
1408}
1409
1410static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1411{
1412	int val = atomic_read(&delayed_root->items_seq);
1413
1414	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1415		return 1;
1416
1417	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1418		return 1;
1419
1420	return 0;
1421}
1422
1423void btrfs_balance_delayed_items(struct btrfs_root *root)
1424{
1425	struct btrfs_delayed_root *delayed_root;
1426
1427	delayed_root = btrfs_get_delayed_root(root);
1428
1429	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
 
1430		return;
1431
1432	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1433		int seq;
1434		int ret;
1435
1436		seq = atomic_read(&delayed_root->items_seq);
1437
1438		ret = btrfs_wq_run_delayed_node(delayed_root, root, 0);
1439		if (ret)
1440			return;
1441
1442		wait_event_interruptible(delayed_root->wait,
1443					 could_end_wait(delayed_root, seq));
1444		return;
1445	}
1446
1447	btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH);
1448}
1449
1450/* Will return 0 or -ENOMEM */
1451int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1452				   struct btrfs_root *root, const char *name,
1453				   int name_len, struct inode *dir,
1454				   struct btrfs_disk_key *disk_key, u8 type,
1455				   u64 index)
1456{
1457	struct btrfs_delayed_node *delayed_node;
1458	struct btrfs_delayed_item *delayed_item;
1459	struct btrfs_dir_item *dir_item;
1460	int ret;
1461
1462	delayed_node = btrfs_get_or_create_delayed_node(dir);
1463	if (IS_ERR(delayed_node))
1464		return PTR_ERR(delayed_node);
1465
1466	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1467	if (!delayed_item) {
1468		ret = -ENOMEM;
1469		goto release_node;
1470	}
1471
1472	delayed_item->key.objectid = btrfs_ino(dir);
1473	btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1474	delayed_item->key.offset = index;
1475
1476	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1477	dir_item->location = *disk_key;
1478	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1479	btrfs_set_stack_dir_data_len(dir_item, 0);
1480	btrfs_set_stack_dir_name_len(dir_item, name_len);
1481	btrfs_set_stack_dir_type(dir_item, type);
1482	memcpy((char *)(dir_item + 1), name, name_len);
1483
1484	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1485	/*
1486	 * we have reserved enough space when we start a new transaction,
1487	 * so reserving metadata failure is impossible
1488	 */
1489	BUG_ON(ret);
1490
1491
1492	mutex_lock(&delayed_node->mutex);
1493	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1494	if (unlikely(ret)) {
1495		btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
1496				"into the insertion tree of the delayed node"
1497				"(root id: %llu, inode id: %llu, errno: %d)",
1498				name_len, name, delayed_node->root->objectid,
1499				delayed_node->inode_id, ret);
1500		BUG();
1501	}
1502	mutex_unlock(&delayed_node->mutex);
1503
1504release_node:
1505	btrfs_release_delayed_node(delayed_node);
1506	return ret;
1507}
1508
1509static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1510					       struct btrfs_delayed_node *node,
1511					       struct btrfs_key *key)
1512{
1513	struct btrfs_delayed_item *item;
1514
1515	mutex_lock(&node->mutex);
1516	item = __btrfs_lookup_delayed_insertion_item(node, key);
1517	if (!item) {
1518		mutex_unlock(&node->mutex);
1519		return 1;
1520	}
1521
1522	btrfs_delayed_item_release_metadata(root, item);
1523	btrfs_release_delayed_item(item);
1524	mutex_unlock(&node->mutex);
1525	return 0;
1526}
1527
1528int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1529				   struct btrfs_root *root, struct inode *dir,
1530				   u64 index)
1531{
1532	struct btrfs_delayed_node *node;
1533	struct btrfs_delayed_item *item;
1534	struct btrfs_key item_key;
1535	int ret;
1536
1537	node = btrfs_get_or_create_delayed_node(dir);
1538	if (IS_ERR(node))
1539		return PTR_ERR(node);
1540
1541	item_key.objectid = btrfs_ino(dir);
1542	btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1543	item_key.offset = index;
1544
1545	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
 
1546	if (!ret)
1547		goto end;
1548
1549	item = btrfs_alloc_delayed_item(0);
1550	if (!item) {
1551		ret = -ENOMEM;
1552		goto end;
1553	}
1554
1555	item->key = item_key;
1556
1557	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1558	/*
1559	 * we have reserved enough space when we start a new transaction,
1560	 * so reserving metadata failure is impossible.
1561	 */
1562	BUG_ON(ret);
 
 
 
 
 
1563
1564	mutex_lock(&node->mutex);
1565	ret = __btrfs_add_delayed_deletion_item(node, item);
1566	if (unlikely(ret)) {
1567		btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
1568				"into the deletion tree of the delayed node"
1569				"(root id: %llu, inode id: %llu, errno: %d)",
1570				index, node->root->objectid, node->inode_id,
1571				ret);
1572		BUG();
1573	}
1574	mutex_unlock(&node->mutex);
1575end:
1576	btrfs_release_delayed_node(node);
1577	return ret;
1578}
1579
1580int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1581{
1582	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1583
1584	if (!delayed_node)
1585		return -ENOENT;
1586
1587	/*
1588	 * Since we have held i_mutex of this directory, it is impossible that
1589	 * a new directory index is added into the delayed node and index_cnt
1590	 * is updated now. So we needn't lock the delayed node.
1591	 */
1592	if (!delayed_node->index_cnt) {
1593		btrfs_release_delayed_node(delayed_node);
1594		return -EINVAL;
1595	}
1596
1597	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1598	btrfs_release_delayed_node(delayed_node);
1599	return 0;
1600}
1601
1602void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1603			     struct list_head *del_list)
 
1604{
1605	struct btrfs_delayed_node *delayed_node;
1606	struct btrfs_delayed_item *item;
1607
1608	delayed_node = btrfs_get_delayed_node(inode);
1609	if (!delayed_node)
1610		return;
 
 
 
 
 
 
 
1611
1612	mutex_lock(&delayed_node->mutex);
1613	item = __btrfs_first_delayed_insertion_item(delayed_node);
1614	while (item) {
1615		atomic_inc(&item->refs);
1616		list_add_tail(&item->readdir_list, ins_list);
1617		item = __btrfs_next_delayed_item(item);
1618	}
1619
1620	item = __btrfs_first_delayed_deletion_item(delayed_node);
1621	while (item) {
1622		atomic_inc(&item->refs);
1623		list_add_tail(&item->readdir_list, del_list);
1624		item = __btrfs_next_delayed_item(item);
1625	}
1626	mutex_unlock(&delayed_node->mutex);
1627	/*
1628	 * This delayed node is still cached in the btrfs inode, so refs
1629	 * must be > 1 now, and we needn't check it is going to be freed
1630	 * or not.
1631	 *
1632	 * Besides that, this function is used to read dir, we do not
1633	 * insert/delete delayed items in this period. So we also needn't
1634	 * requeue or dequeue this delayed node.
1635	 */
1636	atomic_dec(&delayed_node->refs);
 
 
1637}
1638
1639void btrfs_put_delayed_items(struct list_head *ins_list,
1640			     struct list_head *del_list)
 
1641{
1642	struct btrfs_delayed_item *curr, *next;
1643
1644	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1645		list_del(&curr->readdir_list);
1646		if (atomic_dec_and_test(&curr->refs))
1647			kfree(curr);
1648	}
1649
1650	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1651		list_del(&curr->readdir_list);
1652		if (atomic_dec_and_test(&curr->refs))
1653			kfree(curr);
1654	}
 
 
 
 
 
 
1655}
1656
1657int btrfs_should_delete_dir_index(struct list_head *del_list,
1658				  u64 index)
1659{
1660	struct btrfs_delayed_item *curr, *next;
1661	int ret;
1662
1663	if (list_empty(del_list))
1664		return 0;
1665
1666	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1667		if (curr->key.offset > index)
1668			break;
1669
1670		list_del(&curr->readdir_list);
1671		ret = (curr->key.offset == index);
1672
1673		if (atomic_dec_and_test(&curr->refs))
1674			kfree(curr);
1675
1676		if (ret)
1677			return 1;
1678		else
1679			continue;
1680	}
1681	return 0;
1682}
1683
1684/*
1685 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1686 *
1687 */
1688int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1689				    struct list_head *ins_list)
1690{
1691	struct btrfs_dir_item *di;
1692	struct btrfs_delayed_item *curr, *next;
1693	struct btrfs_key location;
1694	char *name;
1695	int name_len;
1696	int over = 0;
1697	unsigned char d_type;
1698
1699	if (list_empty(ins_list))
1700		return 0;
1701
1702	/*
1703	 * Changing the data of the delayed item is impossible. So
1704	 * we needn't lock them. And we have held i_mutex of the
1705	 * directory, nobody can delete any directory indexes now.
1706	 */
1707	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1708		list_del(&curr->readdir_list);
1709
1710		if (curr->key.offset < ctx->pos) {
1711			if (atomic_dec_and_test(&curr->refs))
1712				kfree(curr);
1713			continue;
1714		}
1715
1716		ctx->pos = curr->key.offset;
1717
1718		di = (struct btrfs_dir_item *)curr->data;
1719		name = (char *)(di + 1);
1720		name_len = btrfs_stack_dir_name_len(di);
1721
1722		d_type = btrfs_filetype_table[di->type];
1723		btrfs_disk_key_to_cpu(&location, &di->location);
1724
1725		over = !dir_emit(ctx, name, name_len,
1726			       location.objectid, d_type);
1727
1728		if (atomic_dec_and_test(&curr->refs))
1729			kfree(curr);
1730
1731		if (over)
1732			return 1;
 
1733	}
1734	return 0;
1735}
1736
1737static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1738				  struct btrfs_inode_item *inode_item,
1739				  struct inode *inode)
1740{
1741	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1742	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1743	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1744	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1745	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1746	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1747	btrfs_set_stack_inode_generation(inode_item,
1748					 BTRFS_I(inode)->generation);
1749	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
 
1750	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1751	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1752	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1753	btrfs_set_stack_inode_block_group(inode_item, 0);
1754
1755	btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1756				     inode->i_atime.tv_sec);
1757	btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1758				      inode->i_atime.tv_nsec);
1759
1760	btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1761				     inode->i_mtime.tv_sec);
1762	btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1763				      inode->i_mtime.tv_nsec);
1764
1765	btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1766				     inode->i_ctime.tv_sec);
1767	btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1768				      inode->i_ctime.tv_nsec);
 
 
 
 
 
1769}
1770
1771int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1772{
1773	struct btrfs_delayed_node *delayed_node;
1774	struct btrfs_inode_item *inode_item;
1775	struct btrfs_timespec *tspec;
1776
1777	delayed_node = btrfs_get_delayed_node(inode);
1778	if (!delayed_node)
1779		return -ENOENT;
1780
1781	mutex_lock(&delayed_node->mutex);
1782	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1783		mutex_unlock(&delayed_node->mutex);
1784		btrfs_release_delayed_node(delayed_node);
1785		return -ENOENT;
1786	}
1787
1788	inode_item = &delayed_node->inode_item;
1789
1790	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1791	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1792	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1793	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1794	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1795	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1796	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1797	inode->i_version = btrfs_stack_inode_sequence(inode_item);
 
 
 
1798	inode->i_rdev = 0;
1799	*rdev = btrfs_stack_inode_rdev(inode_item);
1800	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1801
1802	tspec = btrfs_inode_atime(inode_item);
1803	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1804	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1805
1806	tspec = btrfs_inode_mtime(inode_item);
1807	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1808	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1809
1810	tspec = btrfs_inode_ctime(inode_item);
1811	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1812	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
 
 
1813
1814	inode->i_generation = BTRFS_I(inode)->generation;
1815	BTRFS_I(inode)->index_cnt = (u64)-1;
1816
1817	mutex_unlock(&delayed_node->mutex);
1818	btrfs_release_delayed_node(delayed_node);
1819	return 0;
1820}
1821
1822int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1823			       struct btrfs_root *root, struct inode *inode)
1824{
1825	struct btrfs_delayed_node *delayed_node;
1826	int ret = 0;
1827
1828	delayed_node = btrfs_get_or_create_delayed_node(inode);
1829	if (IS_ERR(delayed_node))
1830		return PTR_ERR(delayed_node);
1831
1832	mutex_lock(&delayed_node->mutex);
1833	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1834		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1835		goto release_node;
1836	}
1837
1838	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1839						   delayed_node);
1840	if (ret)
1841		goto release_node;
1842
1843	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1844	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1845	delayed_node->count++;
1846	atomic_inc(&root->fs_info->delayed_root->items);
1847release_node:
1848	mutex_unlock(&delayed_node->mutex);
1849	btrfs_release_delayed_node(delayed_node);
1850	return ret;
1851}
1852
1853int btrfs_delayed_delete_inode_ref(struct inode *inode)
1854{
 
1855	struct btrfs_delayed_node *delayed_node;
1856
 
 
 
 
 
 
 
 
1857	delayed_node = btrfs_get_or_create_delayed_node(inode);
1858	if (IS_ERR(delayed_node))
1859		return PTR_ERR(delayed_node);
1860
1861	/*
1862	 * We don't reserve space for inode ref deletion is because:
1863	 * - We ONLY do async inode ref deletion for the inode who has only
1864	 *   one link(i_nlink == 1), it means there is only one inode ref.
1865	 *   And in most case, the inode ref and the inode item are in the
1866	 *   same leaf, and we will deal with them at the same time.
1867	 *   Since we are sure we will reserve the space for the inode item,
1868	 *   it is unnecessary to reserve space for inode ref deletion.
1869	 * - If the inode ref and the inode item are not in the same leaf,
1870	 *   We also needn't worry about enospc problem, because we reserve
1871	 *   much more space for the inode update than it needs.
1872	 * - At the worst, we can steal some space from the global reservation.
1873	 *   It is very rare.
1874	 */
1875	mutex_lock(&delayed_node->mutex);
1876	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1877		goto release_node;
1878
1879	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1880	delayed_node->count++;
1881	atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
1882release_node:
1883	mutex_unlock(&delayed_node->mutex);
1884	btrfs_release_delayed_node(delayed_node);
1885	return 0;
1886}
1887
1888static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1889{
1890	struct btrfs_root *root = delayed_node->root;
 
1891	struct btrfs_delayed_item *curr_item, *prev_item;
1892
1893	mutex_lock(&delayed_node->mutex);
1894	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1895	while (curr_item) {
1896		btrfs_delayed_item_release_metadata(root, curr_item);
1897		prev_item = curr_item;
1898		curr_item = __btrfs_next_delayed_item(prev_item);
1899		btrfs_release_delayed_item(prev_item);
1900	}
1901
1902	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1903	while (curr_item) {
1904		btrfs_delayed_item_release_metadata(root, curr_item);
1905		prev_item = curr_item;
1906		curr_item = __btrfs_next_delayed_item(prev_item);
1907		btrfs_release_delayed_item(prev_item);
1908	}
1909
1910	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1911		btrfs_release_delayed_iref(delayed_node);
1912
1913	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1914		btrfs_delayed_inode_release_metadata(root, delayed_node);
1915		btrfs_release_delayed_inode(delayed_node);
1916	}
1917	mutex_unlock(&delayed_node->mutex);
1918}
1919
1920void btrfs_kill_delayed_inode_items(struct inode *inode)
1921{
1922	struct btrfs_delayed_node *delayed_node;
1923
1924	delayed_node = btrfs_get_delayed_node(inode);
1925	if (!delayed_node)
1926		return;
1927
1928	__btrfs_kill_delayed_node(delayed_node);
1929	btrfs_release_delayed_node(delayed_node);
1930}
1931
1932void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1933{
1934	u64 inode_id = 0;
1935	struct btrfs_delayed_node *delayed_nodes[8];
1936	int i, n;
1937
1938	while (1) {
1939		spin_lock(&root->inode_lock);
1940		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1941					   (void **)delayed_nodes, inode_id,
1942					   ARRAY_SIZE(delayed_nodes));
1943		if (!n) {
1944			spin_unlock(&root->inode_lock);
1945			break;
1946		}
1947
1948		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1949
1950		for (i = 0; i < n; i++)
1951			atomic_inc(&delayed_nodes[i]->refs);
1952		spin_unlock(&root->inode_lock);
1953
1954		for (i = 0; i < n; i++) {
1955			__btrfs_kill_delayed_node(delayed_nodes[i]);
1956			btrfs_release_delayed_node(delayed_nodes[i]);
1957		}
1958	}
1959}
1960
1961void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1962{
1963	struct btrfs_delayed_root *delayed_root;
1964	struct btrfs_delayed_node *curr_node, *prev_node;
1965
1966	delayed_root = btrfs_get_delayed_root(root);
1967
1968	curr_node = btrfs_first_delayed_node(delayed_root);
1969	while (curr_node) {
1970		__btrfs_kill_delayed_node(curr_node);
1971
1972		prev_node = curr_node;
1973		curr_node = btrfs_next_delayed_node(curr_node);
1974		btrfs_release_delayed_node(prev_node);
1975	}
1976}
1977