Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Security plug functions
   4 *
   5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   8 * Copyright (C) 2016 Mellanox Technologies
   9 */
  10
  11#define pr_fmt(fmt) "LSM: " fmt
  12
  13#include <linux/bpf.h>
  14#include <linux/capability.h>
  15#include <linux/dcache.h>
  16#include <linux/export.h>
  17#include <linux/init.h>
  18#include <linux/kernel.h>
 
  19#include <linux/lsm_hooks.h>
  20#include <linux/integrity.h>
  21#include <linux/ima.h>
  22#include <linux/evm.h>
  23#include <linux/fsnotify.h>
  24#include <linux/mman.h>
  25#include <linux/mount.h>
  26#include <linux/personality.h>
  27#include <linux/backing-dev.h>
  28#include <linux/string.h>
  29#include <linux/msg.h>
  30#include <net/flow.h>
  31
  32#define MAX_LSM_EVM_XATTR	2
  33
  34/* How many LSMs were built into the kernel? */
  35#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
  36#define EARLY_LSM_COUNT (__end_early_lsm_info - __start_early_lsm_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  37
  38struct security_hook_heads security_hook_heads __lsm_ro_after_init;
  39static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
  40
  41static struct kmem_cache *lsm_file_cache;
  42static struct kmem_cache *lsm_inode_cache;
  43
  44char *lsm_names;
  45static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
  46
  47/* Boot-time LSM user choice */
  48static __initdata const char *chosen_lsm_order;
  49static __initdata const char *chosen_major_lsm;
  50
  51static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
  52
  53/* Ordered list of LSMs to initialize. */
  54static __initdata struct lsm_info **ordered_lsms;
  55static __initdata struct lsm_info *exclusive;
  56
  57static __initdata bool debug;
  58#define init_debug(...)						\
  59	do {							\
  60		if (debug)					\
  61			pr_info(__VA_ARGS__);			\
  62	} while (0)
  63
  64static bool __init is_enabled(struct lsm_info *lsm)
  65{
  66	if (!lsm->enabled)
  67		return false;
  68
  69	return *lsm->enabled;
  70}
  71
  72/* Mark an LSM's enabled flag. */
  73static int lsm_enabled_true __initdata = 1;
  74static int lsm_enabled_false __initdata = 0;
  75static void __init set_enabled(struct lsm_info *lsm, bool enabled)
  76{
  77	/*
  78	 * When an LSM hasn't configured an enable variable, we can use
  79	 * a hard-coded location for storing the default enabled state.
  80	 */
  81	if (!lsm->enabled) {
  82		if (enabled)
  83			lsm->enabled = &lsm_enabled_true;
  84		else
  85			lsm->enabled = &lsm_enabled_false;
  86	} else if (lsm->enabled == &lsm_enabled_true) {
  87		if (!enabled)
  88			lsm->enabled = &lsm_enabled_false;
  89	} else if (lsm->enabled == &lsm_enabled_false) {
  90		if (enabled)
  91			lsm->enabled = &lsm_enabled_true;
  92	} else {
  93		*lsm->enabled = enabled;
  94	}
  95}
  96
  97/* Is an LSM already listed in the ordered LSMs list? */
  98static bool __init exists_ordered_lsm(struct lsm_info *lsm)
  99{
 100	struct lsm_info **check;
 101
 102	for (check = ordered_lsms; *check; check++)
 103		if (*check == lsm)
 104			return true;
 105
 106	return false;
 107}
 108
 109/* Append an LSM to the list of ordered LSMs to initialize. */
 110static int last_lsm __initdata;
 111static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
 112{
 113	/* Ignore duplicate selections. */
 114	if (exists_ordered_lsm(lsm))
 115		return;
 116
 117	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
 118		return;
 119
 120	/* Enable this LSM, if it is not already set. */
 121	if (!lsm->enabled)
 122		lsm->enabled = &lsm_enabled_true;
 123	ordered_lsms[last_lsm++] = lsm;
 124
 125	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
 126		   is_enabled(lsm) ? "en" : "dis");
 127}
 128
 129/* Is an LSM allowed to be initialized? */
 130static bool __init lsm_allowed(struct lsm_info *lsm)
 131{
 132	/* Skip if the LSM is disabled. */
 133	if (!is_enabled(lsm))
 134		return false;
 135
 136	/* Not allowed if another exclusive LSM already initialized. */
 137	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
 138		init_debug("exclusive disabled: %s\n", lsm->name);
 139		return false;
 140	}
 141
 142	return true;
 143}
 144
 145static void __init lsm_set_blob_size(int *need, int *lbs)
 146{
 147	int offset;
 148
 149	if (*need > 0) {
 150		offset = *lbs;
 151		*lbs += *need;
 152		*need = offset;
 153	}
 154}
 155
 156static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
 157{
 158	if (!needed)
 159		return;
 160
 161	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
 162	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
 163	/*
 164	 * The inode blob gets an rcu_head in addition to
 165	 * what the modules might need.
 166	 */
 167	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
 168		blob_sizes.lbs_inode = sizeof(struct rcu_head);
 169	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
 170	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
 171	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
 
 172	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
 173}
 174
 175/* Prepare LSM for initialization. */
 176static void __init prepare_lsm(struct lsm_info *lsm)
 177{
 178	int enabled = lsm_allowed(lsm);
 179
 180	/* Record enablement (to handle any following exclusive LSMs). */
 181	set_enabled(lsm, enabled);
 182
 183	/* If enabled, do pre-initialization work. */
 184	if (enabled) {
 185		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
 186			exclusive = lsm;
 187			init_debug("exclusive chosen: %s\n", lsm->name);
 188		}
 189
 190		lsm_set_blob_sizes(lsm->blobs);
 191	}
 192}
 193
 194/* Initialize a given LSM, if it is enabled. */
 195static void __init initialize_lsm(struct lsm_info *lsm)
 196{
 197	if (is_enabled(lsm)) {
 198		int ret;
 199
 200		init_debug("initializing %s\n", lsm->name);
 201		ret = lsm->init();
 202		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
 203	}
 204}
 205
 206/* Populate ordered LSMs list from comma-separated LSM name list. */
 207static void __init ordered_lsm_parse(const char *order, const char *origin)
 208{
 209	struct lsm_info *lsm;
 210	char *sep, *name, *next;
 211
 212	/* LSM_ORDER_FIRST is always first. */
 213	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 214		if (lsm->order == LSM_ORDER_FIRST)
 215			append_ordered_lsm(lsm, "first");
 216	}
 217
 218	/* Process "security=", if given. */
 219	if (chosen_major_lsm) {
 220		struct lsm_info *major;
 221
 222		/*
 223		 * To match the original "security=" behavior, this
 224		 * explicitly does NOT fallback to another Legacy Major
 225		 * if the selected one was separately disabled: disable
 226		 * all non-matching Legacy Major LSMs.
 227		 */
 228		for (major = __start_lsm_info; major < __end_lsm_info;
 229		     major++) {
 230			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
 231			    strcmp(major->name, chosen_major_lsm) != 0) {
 232				set_enabled(major, false);
 233				init_debug("security=%s disabled: %s\n",
 234					   chosen_major_lsm, major->name);
 235			}
 236		}
 237	}
 238
 239	sep = kstrdup(order, GFP_KERNEL);
 240	next = sep;
 241	/* Walk the list, looking for matching LSMs. */
 242	while ((name = strsep(&next, ",")) != NULL) {
 243		bool found = false;
 244
 245		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 246			if (lsm->order == LSM_ORDER_MUTABLE &&
 247			    strcmp(lsm->name, name) == 0) {
 248				append_ordered_lsm(lsm, origin);
 249				found = true;
 250			}
 251		}
 252
 253		if (!found)
 254			init_debug("%s ignored: %s\n", origin, name);
 255	}
 256
 257	/* Process "security=", if given. */
 258	if (chosen_major_lsm) {
 259		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 260			if (exists_ordered_lsm(lsm))
 261				continue;
 262			if (strcmp(lsm->name, chosen_major_lsm) == 0)
 263				append_ordered_lsm(lsm, "security=");
 264		}
 265	}
 266
 267	/* Disable all LSMs not in the ordered list. */
 268	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 269		if (exists_ordered_lsm(lsm))
 270			continue;
 271		set_enabled(lsm, false);
 272		init_debug("%s disabled: %s\n", origin, lsm->name);
 273	}
 274
 275	kfree(sep);
 276}
 277
 278static void __init lsm_early_cred(struct cred *cred);
 279static void __init lsm_early_task(struct task_struct *task);
 280
 281static int lsm_append(const char *new, char **result);
 282
 283static void __init ordered_lsm_init(void)
 284{
 285	struct lsm_info **lsm;
 286
 287	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
 288				GFP_KERNEL);
 289
 290	if (chosen_lsm_order) {
 291		if (chosen_major_lsm) {
 292			pr_info("security= is ignored because it is superseded by lsm=\n");
 293			chosen_major_lsm = NULL;
 294		}
 295		ordered_lsm_parse(chosen_lsm_order, "cmdline");
 296	} else
 297		ordered_lsm_parse(builtin_lsm_order, "builtin");
 298
 299	for (lsm = ordered_lsms; *lsm; lsm++)
 300		prepare_lsm(*lsm);
 301
 302	init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
 303	init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
 304	init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
 305	init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
 306	init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
 307	init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
 
 308
 309	/*
 310	 * Create any kmem_caches needed for blobs
 311	 */
 312	if (blob_sizes.lbs_file)
 313		lsm_file_cache = kmem_cache_create("lsm_file_cache",
 314						   blob_sizes.lbs_file, 0,
 315						   SLAB_PANIC, NULL);
 316	if (blob_sizes.lbs_inode)
 317		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
 318						    blob_sizes.lbs_inode, 0,
 319						    SLAB_PANIC, NULL);
 320
 321	lsm_early_cred((struct cred *) current->cred);
 322	lsm_early_task(current);
 323	for (lsm = ordered_lsms; *lsm; lsm++)
 324		initialize_lsm(*lsm);
 325
 326	kfree(ordered_lsms);
 327}
 328
 329int __init early_security_init(void)
 330{
 331	int i;
 332	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
 333	struct lsm_info *lsm;
 334
 335	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
 336	     i++)
 337		INIT_HLIST_HEAD(&list[i]);
 338
 339	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 340		if (!lsm->enabled)
 341			lsm->enabled = &lsm_enabled_true;
 342		prepare_lsm(lsm);
 343		initialize_lsm(lsm);
 344	}
 345
 346	return 0;
 347}
 348
 349/**
 350 * security_init - initializes the security framework
 351 *
 352 * This should be called early in the kernel initialization sequence.
 353 */
 354int __init security_init(void)
 355{
 356	struct lsm_info *lsm;
 357
 358	pr_info("Security Framework initializing\n");
 359
 360	/*
 361	 * Append the names of the early LSM modules now that kmalloc() is
 362	 * available
 363	 */
 364	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 365		if (lsm->enabled)
 366			lsm_append(lsm->name, &lsm_names);
 367	}
 368
 369	/* Load LSMs in specified order. */
 370	ordered_lsm_init();
 371
 372	return 0;
 373}
 374
 375/* Save user chosen LSM */
 376static int __init choose_major_lsm(char *str)
 377{
 378	chosen_major_lsm = str;
 379	return 1;
 380}
 381__setup("security=", choose_major_lsm);
 382
 383/* Explicitly choose LSM initialization order. */
 384static int __init choose_lsm_order(char *str)
 385{
 386	chosen_lsm_order = str;
 387	return 1;
 388}
 389__setup("lsm=", choose_lsm_order);
 390
 391/* Enable LSM order debugging. */
 392static int __init enable_debug(char *str)
 393{
 394	debug = true;
 395	return 1;
 396}
 397__setup("lsm.debug", enable_debug);
 398
 399static bool match_last_lsm(const char *list, const char *lsm)
 400{
 401	const char *last;
 402
 403	if (WARN_ON(!list || !lsm))
 404		return false;
 405	last = strrchr(list, ',');
 406	if (last)
 407		/* Pass the comma, strcmp() will check for '\0' */
 408		last++;
 409	else
 410		last = list;
 411	return !strcmp(last, lsm);
 412}
 413
 414static int lsm_append(const char *new, char **result)
 415{
 416	char *cp;
 417
 418	if (*result == NULL) {
 419		*result = kstrdup(new, GFP_KERNEL);
 420		if (*result == NULL)
 421			return -ENOMEM;
 422	} else {
 423		/* Check if it is the last registered name */
 424		if (match_last_lsm(*result, new))
 425			return 0;
 426		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
 427		if (cp == NULL)
 428			return -ENOMEM;
 429		kfree(*result);
 430		*result = cp;
 431	}
 432	return 0;
 433}
 434
 435/**
 436 * security_add_hooks - Add a modules hooks to the hook lists.
 437 * @hooks: the hooks to add
 438 * @count: the number of hooks to add
 439 * @lsm: the name of the security module
 440 *
 441 * Each LSM has to register its hooks with the infrastructure.
 442 */
 443void __init security_add_hooks(struct security_hook_list *hooks, int count,
 444				char *lsm)
 445{
 446	int i;
 447
 448	for (i = 0; i < count; i++) {
 449		hooks[i].lsm = lsm;
 450		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
 451	}
 452
 453	/*
 454	 * Don't try to append during early_security_init(), we'll come back
 455	 * and fix this up afterwards.
 456	 */
 457	if (slab_is_available()) {
 458		if (lsm_append(lsm, &lsm_names) < 0)
 459			panic("%s - Cannot get early memory.\n", __func__);
 460	}
 461}
 462
 463int call_blocking_lsm_notifier(enum lsm_event event, void *data)
 464{
 465	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
 466					    event, data);
 467}
 468EXPORT_SYMBOL(call_blocking_lsm_notifier);
 469
 470int register_blocking_lsm_notifier(struct notifier_block *nb)
 471{
 472	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
 473						nb);
 474}
 475EXPORT_SYMBOL(register_blocking_lsm_notifier);
 476
 477int unregister_blocking_lsm_notifier(struct notifier_block *nb)
 478{
 479	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
 480						  nb);
 481}
 482EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
 483
 484/**
 485 * lsm_cred_alloc - allocate a composite cred blob
 486 * @cred: the cred that needs a blob
 487 * @gfp: allocation type
 488 *
 489 * Allocate the cred blob for all the modules
 490 *
 491 * Returns 0, or -ENOMEM if memory can't be allocated.
 492 */
 493static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
 494{
 495	if (blob_sizes.lbs_cred == 0) {
 496		cred->security = NULL;
 497		return 0;
 498	}
 499
 500	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
 501	if (cred->security == NULL)
 502		return -ENOMEM;
 503	return 0;
 504}
 505
 506/**
 507 * lsm_early_cred - during initialization allocate a composite cred blob
 508 * @cred: the cred that needs a blob
 509 *
 510 * Allocate the cred blob for all the modules
 511 */
 512static void __init lsm_early_cred(struct cred *cred)
 513{
 514	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
 515
 516	if (rc)
 517		panic("%s: Early cred alloc failed.\n", __func__);
 518}
 519
 520/**
 521 * lsm_file_alloc - allocate a composite file blob
 522 * @file: the file that needs a blob
 523 *
 524 * Allocate the file blob for all the modules
 525 *
 526 * Returns 0, or -ENOMEM if memory can't be allocated.
 527 */
 528static int lsm_file_alloc(struct file *file)
 529{
 530	if (!lsm_file_cache) {
 531		file->f_security = NULL;
 532		return 0;
 533	}
 534
 535	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
 536	if (file->f_security == NULL)
 537		return -ENOMEM;
 538	return 0;
 539}
 540
 541/**
 542 * lsm_inode_alloc - allocate a composite inode blob
 543 * @inode: the inode that needs a blob
 544 *
 545 * Allocate the inode blob for all the modules
 546 *
 547 * Returns 0, or -ENOMEM if memory can't be allocated.
 548 */
 549int lsm_inode_alloc(struct inode *inode)
 550{
 551	if (!lsm_inode_cache) {
 552		inode->i_security = NULL;
 553		return 0;
 554	}
 555
 556	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
 557	if (inode->i_security == NULL)
 558		return -ENOMEM;
 559	return 0;
 560}
 561
 562/**
 563 * lsm_task_alloc - allocate a composite task blob
 564 * @task: the task that needs a blob
 565 *
 566 * Allocate the task blob for all the modules
 567 *
 568 * Returns 0, or -ENOMEM if memory can't be allocated.
 569 */
 570static int lsm_task_alloc(struct task_struct *task)
 571{
 572	if (blob_sizes.lbs_task == 0) {
 573		task->security = NULL;
 574		return 0;
 575	}
 576
 577	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
 578	if (task->security == NULL)
 579		return -ENOMEM;
 580	return 0;
 581}
 582
 583/**
 584 * lsm_ipc_alloc - allocate a composite ipc blob
 585 * @kip: the ipc that needs a blob
 586 *
 587 * Allocate the ipc blob for all the modules
 588 *
 589 * Returns 0, or -ENOMEM if memory can't be allocated.
 590 */
 591static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
 592{
 593	if (blob_sizes.lbs_ipc == 0) {
 594		kip->security = NULL;
 595		return 0;
 596	}
 597
 598	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
 599	if (kip->security == NULL)
 600		return -ENOMEM;
 601	return 0;
 602}
 603
 604/**
 605 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
 606 * @mp: the msg_msg that needs a blob
 607 *
 608 * Allocate the ipc blob for all the modules
 609 *
 610 * Returns 0, or -ENOMEM if memory can't be allocated.
 611 */
 612static int lsm_msg_msg_alloc(struct msg_msg *mp)
 613{
 614	if (blob_sizes.lbs_msg_msg == 0) {
 615		mp->security = NULL;
 616		return 0;
 617	}
 618
 619	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
 620	if (mp->security == NULL)
 621		return -ENOMEM;
 622	return 0;
 623}
 624
 625/**
 626 * lsm_early_task - during initialization allocate a composite task blob
 627 * @task: the task that needs a blob
 628 *
 629 * Allocate the task blob for all the modules
 630 */
 631static void __init lsm_early_task(struct task_struct *task)
 632{
 633	int rc = lsm_task_alloc(task);
 634
 635	if (rc)
 636		panic("%s: Early task alloc failed.\n", __func__);
 637}
 638
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639/*
 640 * Hook list operation macros.
 641 *
 642 * call_void_hook:
 643 *	This is a hook that does not return a value.
 644 *
 645 * call_int_hook:
 646 *	This is a hook that returns a value.
 647 */
 648
 649#define call_void_hook(FUNC, ...)				\
 650	do {							\
 651		struct security_hook_list *P;			\
 652								\
 653		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
 654			P->hook.FUNC(__VA_ARGS__);		\
 655	} while (0)
 656
 657#define call_int_hook(FUNC, IRC, ...) ({			\
 658	int RC = IRC;						\
 659	do {							\
 660		struct security_hook_list *P;			\
 661								\
 662		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
 663			RC = P->hook.FUNC(__VA_ARGS__);		\
 664			if (RC != 0)				\
 665				break;				\
 666		}						\
 667	} while (0);						\
 668	RC;							\
 669})
 670
 671/* Security operations */
 672
 673int security_binder_set_context_mgr(struct task_struct *mgr)
 674{
 675	return call_int_hook(binder_set_context_mgr, 0, mgr);
 676}
 677
 678int security_binder_transaction(struct task_struct *from,
 679				struct task_struct *to)
 680{
 681	return call_int_hook(binder_transaction, 0, from, to);
 682}
 683
 684int security_binder_transfer_binder(struct task_struct *from,
 685				    struct task_struct *to)
 686{
 687	return call_int_hook(binder_transfer_binder, 0, from, to);
 688}
 689
 690int security_binder_transfer_file(struct task_struct *from,
 691				  struct task_struct *to, struct file *file)
 692{
 693	return call_int_hook(binder_transfer_file, 0, from, to, file);
 694}
 695
 696int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 697{
 698	return call_int_hook(ptrace_access_check, 0, child, mode);
 699}
 700
 701int security_ptrace_traceme(struct task_struct *parent)
 702{
 703	return call_int_hook(ptrace_traceme, 0, parent);
 704}
 705
 706int security_capget(struct task_struct *target,
 707		     kernel_cap_t *effective,
 708		     kernel_cap_t *inheritable,
 709		     kernel_cap_t *permitted)
 710{
 711	return call_int_hook(capget, 0, target,
 712				effective, inheritable, permitted);
 713}
 714
 715int security_capset(struct cred *new, const struct cred *old,
 716		    const kernel_cap_t *effective,
 717		    const kernel_cap_t *inheritable,
 718		    const kernel_cap_t *permitted)
 719{
 720	return call_int_hook(capset, 0, new, old,
 721				effective, inheritable, permitted);
 722}
 723
 724int security_capable(const struct cred *cred,
 725		     struct user_namespace *ns,
 726		     int cap,
 727		     unsigned int opts)
 728{
 729	return call_int_hook(capable, 0, cred, ns, cap, opts);
 730}
 731
 732int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 733{
 734	return call_int_hook(quotactl, 0, cmds, type, id, sb);
 735}
 736
 737int security_quota_on(struct dentry *dentry)
 738{
 739	return call_int_hook(quota_on, 0, dentry);
 740}
 741
 742int security_syslog(int type)
 743{
 744	return call_int_hook(syslog, 0, type);
 745}
 746
 747int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
 748{
 749	return call_int_hook(settime, 0, ts, tz);
 750}
 751
 752int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 753{
 754	struct security_hook_list *hp;
 755	int cap_sys_admin = 1;
 756	int rc;
 757
 758	/*
 759	 * The module will respond with a positive value if
 760	 * it thinks the __vm_enough_memory() call should be
 761	 * made with the cap_sys_admin set. If all of the modules
 762	 * agree that it should be set it will. If any module
 763	 * thinks it should not be set it won't.
 764	 */
 765	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
 766		rc = hp->hook.vm_enough_memory(mm, pages);
 767		if (rc <= 0) {
 768			cap_sys_admin = 0;
 769			break;
 770		}
 771	}
 772	return __vm_enough_memory(mm, pages, cap_sys_admin);
 773}
 774
 775int security_bprm_set_creds(struct linux_binprm *bprm)
 
 
 
 
 
 776{
 777	return call_int_hook(bprm_set_creds, 0, bprm);
 778}
 779
 780int security_bprm_check(struct linux_binprm *bprm)
 781{
 782	int ret;
 783
 784	ret = call_int_hook(bprm_check_security, 0, bprm);
 785	if (ret)
 786		return ret;
 787	return ima_bprm_check(bprm);
 788}
 789
 790void security_bprm_committing_creds(struct linux_binprm *bprm)
 791{
 792	call_void_hook(bprm_committing_creds, bprm);
 793}
 794
 795void security_bprm_committed_creds(struct linux_binprm *bprm)
 796{
 797	call_void_hook(bprm_committed_creds, bprm);
 798}
 799
 800int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
 801{
 802	return call_int_hook(fs_context_dup, 0, fc, src_fc);
 803}
 804
 805int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
 806{
 807	return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
 808}
 809
 810int security_sb_alloc(struct super_block *sb)
 811{
 812	return call_int_hook(sb_alloc_security, 0, sb);
 
 
 
 
 
 
 
 
 
 
 
 
 813}
 814
 815void security_sb_free(struct super_block *sb)
 816{
 817	call_void_hook(sb_free_security, sb);
 
 
 818}
 819
 820void security_free_mnt_opts(void **mnt_opts)
 821{
 822	if (!*mnt_opts)
 823		return;
 824	call_void_hook(sb_free_mnt_opts, *mnt_opts);
 825	*mnt_opts = NULL;
 826}
 827EXPORT_SYMBOL(security_free_mnt_opts);
 828
 829int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
 830{
 831	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
 832}
 833EXPORT_SYMBOL(security_sb_eat_lsm_opts);
 834
 
 
 
 
 
 
 
 835int security_sb_remount(struct super_block *sb,
 836			void *mnt_opts)
 837{
 838	return call_int_hook(sb_remount, 0, sb, mnt_opts);
 839}
 840EXPORT_SYMBOL(security_sb_remount);
 841
 842int security_sb_kern_mount(struct super_block *sb)
 843{
 844	return call_int_hook(sb_kern_mount, 0, sb);
 845}
 846
 847int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 848{
 849	return call_int_hook(sb_show_options, 0, m, sb);
 850}
 851
 852int security_sb_statfs(struct dentry *dentry)
 853{
 854	return call_int_hook(sb_statfs, 0, dentry);
 855}
 856
 857int security_sb_mount(const char *dev_name, const struct path *path,
 858                       const char *type, unsigned long flags, void *data)
 859{
 860	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
 861}
 862
 863int security_sb_umount(struct vfsmount *mnt, int flags)
 864{
 865	return call_int_hook(sb_umount, 0, mnt, flags);
 866}
 867
 868int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
 869{
 870	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
 871}
 872
 873int security_sb_set_mnt_opts(struct super_block *sb,
 874				void *mnt_opts,
 875				unsigned long kern_flags,
 876				unsigned long *set_kern_flags)
 877{
 878	return call_int_hook(sb_set_mnt_opts,
 879				mnt_opts ? -EOPNOTSUPP : 0, sb,
 880				mnt_opts, kern_flags, set_kern_flags);
 881}
 882EXPORT_SYMBOL(security_sb_set_mnt_opts);
 883
 884int security_sb_clone_mnt_opts(const struct super_block *oldsb,
 885				struct super_block *newsb,
 886				unsigned long kern_flags,
 887				unsigned long *set_kern_flags)
 888{
 889	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
 890				kern_flags, set_kern_flags);
 891}
 892EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 893
 894int security_add_mnt_opt(const char *option, const char *val, int len,
 895			 void **mnt_opts)
 896{
 897	return call_int_hook(sb_add_mnt_opt, -EINVAL,
 898					option, val, len, mnt_opts);
 899}
 900EXPORT_SYMBOL(security_add_mnt_opt);
 901
 902int security_move_mount(const struct path *from_path, const struct path *to_path)
 903{
 904	return call_int_hook(move_mount, 0, from_path, to_path);
 905}
 906
 907int security_path_notify(const struct path *path, u64 mask,
 908				unsigned int obj_type)
 909{
 910	return call_int_hook(path_notify, 0, path, mask, obj_type);
 911}
 912
 913int security_inode_alloc(struct inode *inode)
 914{
 915	int rc = lsm_inode_alloc(inode);
 916
 917	if (unlikely(rc))
 918		return rc;
 919	rc = call_int_hook(inode_alloc_security, 0, inode);
 920	if (unlikely(rc))
 921		security_inode_free(inode);
 922	return rc;
 923}
 924
 925static void inode_free_by_rcu(struct rcu_head *head)
 926{
 927	/*
 928	 * The rcu head is at the start of the inode blob
 929	 */
 930	kmem_cache_free(lsm_inode_cache, head);
 931}
 932
 933void security_inode_free(struct inode *inode)
 934{
 935	integrity_inode_free(inode);
 936	call_void_hook(inode_free_security, inode);
 937	/*
 938	 * The inode may still be referenced in a path walk and
 939	 * a call to security_inode_permission() can be made
 940	 * after inode_free_security() is called. Ideally, the VFS
 941	 * wouldn't do this, but fixing that is a much harder
 942	 * job. For now, simply free the i_security via RCU, and
 943	 * leave the current inode->i_security pointer intact.
 944	 * The inode will be freed after the RCU grace period too.
 945	 */
 946	if (inode->i_security)
 947		call_rcu((struct rcu_head *)inode->i_security,
 948				inode_free_by_rcu);
 949}
 950
 951int security_dentry_init_security(struct dentry *dentry, int mode,
 952					const struct qstr *name, void **ctx,
 953					u32 *ctxlen)
 954{
 955	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
 956				name, ctx, ctxlen);
 957}
 958EXPORT_SYMBOL(security_dentry_init_security);
 959
 960int security_dentry_create_files_as(struct dentry *dentry, int mode,
 961				    struct qstr *name,
 962				    const struct cred *old, struct cred *new)
 963{
 964	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
 965				name, old, new);
 966}
 967EXPORT_SYMBOL(security_dentry_create_files_as);
 968
 969int security_inode_init_security(struct inode *inode, struct inode *dir,
 970				 const struct qstr *qstr,
 971				 const initxattrs initxattrs, void *fs_data)
 972{
 973	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
 974	struct xattr *lsm_xattr, *evm_xattr, *xattr;
 975	int ret;
 976
 977	if (unlikely(IS_PRIVATE(inode)))
 978		return 0;
 979
 980	if (!initxattrs)
 981		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
 982				     dir, qstr, NULL, NULL, NULL);
 983	memset(new_xattrs, 0, sizeof(new_xattrs));
 984	lsm_xattr = new_xattrs;
 985	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
 986						&lsm_xattr->name,
 987						&lsm_xattr->value,
 988						&lsm_xattr->value_len);
 989	if (ret)
 990		goto out;
 991
 992	evm_xattr = lsm_xattr + 1;
 993	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
 994	if (ret)
 995		goto out;
 996	ret = initxattrs(inode, new_xattrs, fs_data);
 997out:
 998	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
 999		kfree(xattr->value);
1000	return (ret == -EOPNOTSUPP) ? 0 : ret;
1001}
1002EXPORT_SYMBOL(security_inode_init_security);
1003
 
 
 
 
 
 
 
 
1004int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1005				     const struct qstr *qstr, const char **name,
1006				     void **value, size_t *len)
1007{
1008	if (unlikely(IS_PRIVATE(inode)))
1009		return -EOPNOTSUPP;
1010	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1011			     qstr, name, value, len);
1012}
1013EXPORT_SYMBOL(security_old_inode_init_security);
1014
1015#ifdef CONFIG_SECURITY_PATH
1016int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1017			unsigned int dev)
1018{
1019	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1020		return 0;
1021	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1022}
1023EXPORT_SYMBOL(security_path_mknod);
1024
1025int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1026{
1027	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1028		return 0;
1029	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1030}
1031EXPORT_SYMBOL(security_path_mkdir);
1032
1033int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1034{
1035	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1036		return 0;
1037	return call_int_hook(path_rmdir, 0, dir, dentry);
1038}
1039
1040int security_path_unlink(const struct path *dir, struct dentry *dentry)
1041{
1042	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1043		return 0;
1044	return call_int_hook(path_unlink, 0, dir, dentry);
1045}
1046EXPORT_SYMBOL(security_path_unlink);
1047
1048int security_path_symlink(const struct path *dir, struct dentry *dentry,
1049			  const char *old_name)
1050{
1051	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1052		return 0;
1053	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1054}
1055
1056int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1057		       struct dentry *new_dentry)
1058{
1059	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1060		return 0;
1061	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1062}
1063
1064int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1065			 const struct path *new_dir, struct dentry *new_dentry,
1066			 unsigned int flags)
1067{
1068	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1069		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1070		return 0;
1071
1072	if (flags & RENAME_EXCHANGE) {
1073		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1074					old_dir, old_dentry);
1075		if (err)
1076			return err;
1077	}
1078
1079	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1080				new_dentry);
1081}
1082EXPORT_SYMBOL(security_path_rename);
1083
1084int security_path_truncate(const struct path *path)
1085{
1086	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1087		return 0;
1088	return call_int_hook(path_truncate, 0, path);
1089}
1090
1091int security_path_chmod(const struct path *path, umode_t mode)
1092{
1093	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1094		return 0;
1095	return call_int_hook(path_chmod, 0, path, mode);
1096}
1097
1098int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1099{
1100	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1101		return 0;
1102	return call_int_hook(path_chown, 0, path, uid, gid);
1103}
1104
1105int security_path_chroot(const struct path *path)
1106{
1107	return call_int_hook(path_chroot, 0, path);
1108}
1109#endif
1110
1111int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1112{
1113	if (unlikely(IS_PRIVATE(dir)))
1114		return 0;
1115	return call_int_hook(inode_create, 0, dir, dentry, mode);
1116}
1117EXPORT_SYMBOL_GPL(security_inode_create);
1118
1119int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1120			 struct dentry *new_dentry)
1121{
1122	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1123		return 0;
1124	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1125}
1126
1127int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1128{
1129	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1130		return 0;
1131	return call_int_hook(inode_unlink, 0, dir, dentry);
1132}
1133
1134int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1135			    const char *old_name)
1136{
1137	if (unlikely(IS_PRIVATE(dir)))
1138		return 0;
1139	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1140}
1141
1142int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1143{
1144	if (unlikely(IS_PRIVATE(dir)))
1145		return 0;
1146	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1147}
1148EXPORT_SYMBOL_GPL(security_inode_mkdir);
1149
1150int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1151{
1152	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1153		return 0;
1154	return call_int_hook(inode_rmdir, 0, dir, dentry);
1155}
1156
1157int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1158{
1159	if (unlikely(IS_PRIVATE(dir)))
1160		return 0;
1161	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1162}
1163
1164int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1165			   struct inode *new_dir, struct dentry *new_dentry,
1166			   unsigned int flags)
1167{
1168        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1169            (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1170		return 0;
1171
1172	if (flags & RENAME_EXCHANGE) {
1173		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1174						     old_dir, old_dentry);
1175		if (err)
1176			return err;
1177	}
1178
1179	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1180					   new_dir, new_dentry);
1181}
1182
1183int security_inode_readlink(struct dentry *dentry)
1184{
1185	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1186		return 0;
1187	return call_int_hook(inode_readlink, 0, dentry);
1188}
1189
1190int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1191			       bool rcu)
1192{
1193	if (unlikely(IS_PRIVATE(inode)))
1194		return 0;
1195	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1196}
1197
1198int security_inode_permission(struct inode *inode, int mask)
1199{
1200	if (unlikely(IS_PRIVATE(inode)))
1201		return 0;
1202	return call_int_hook(inode_permission, 0, inode, mask);
1203}
1204
1205int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1206{
1207	int ret;
1208
1209	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1210		return 0;
1211	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1212	if (ret)
1213		return ret;
1214	return evm_inode_setattr(dentry, attr);
1215}
1216EXPORT_SYMBOL_GPL(security_inode_setattr);
1217
1218int security_inode_getattr(const struct path *path)
1219{
1220	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1221		return 0;
1222	return call_int_hook(inode_getattr, 0, path);
1223}
1224
1225int security_inode_setxattr(struct dentry *dentry, const char *name,
 
1226			    const void *value, size_t size, int flags)
1227{
1228	int ret;
1229
1230	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1231		return 0;
1232	/*
1233	 * SELinux and Smack integrate the cap call,
1234	 * so assume that all LSMs supplying this call do so.
1235	 */
1236	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1237				flags);
1238
1239	if (ret == 1)
1240		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1241	if (ret)
1242		return ret;
1243	ret = ima_inode_setxattr(dentry, name, value, size);
1244	if (ret)
1245		return ret;
1246	return evm_inode_setxattr(dentry, name, value, size);
1247}
1248
1249void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1250				  const void *value, size_t size, int flags)
1251{
1252	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1253		return;
1254	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1255	evm_inode_post_setxattr(dentry, name, value, size);
1256}
1257
1258int security_inode_getxattr(struct dentry *dentry, const char *name)
1259{
1260	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1261		return 0;
1262	return call_int_hook(inode_getxattr, 0, dentry, name);
1263}
1264
1265int security_inode_listxattr(struct dentry *dentry)
1266{
1267	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1268		return 0;
1269	return call_int_hook(inode_listxattr, 0, dentry);
1270}
1271
1272int security_inode_removexattr(struct dentry *dentry, const char *name)
 
1273{
1274	int ret;
1275
1276	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1277		return 0;
1278	/*
1279	 * SELinux and Smack integrate the cap call,
1280	 * so assume that all LSMs supplying this call do so.
1281	 */
1282	ret = call_int_hook(inode_removexattr, 1, dentry, name);
1283	if (ret == 1)
1284		ret = cap_inode_removexattr(dentry, name);
1285	if (ret)
1286		return ret;
1287	ret = ima_inode_removexattr(dentry, name);
1288	if (ret)
1289		return ret;
1290	return evm_inode_removexattr(dentry, name);
1291}
1292
1293int security_inode_need_killpriv(struct dentry *dentry)
1294{
1295	return call_int_hook(inode_need_killpriv, 0, dentry);
1296}
1297
1298int security_inode_killpriv(struct dentry *dentry)
 
1299{
1300	return call_int_hook(inode_killpriv, 0, dentry);
1301}
1302
1303int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
 
 
1304{
1305	struct security_hook_list *hp;
1306	int rc;
1307
1308	if (unlikely(IS_PRIVATE(inode)))
1309		return -EOPNOTSUPP;
1310	/*
1311	 * Only one module will provide an attribute with a given name.
1312	 */
1313	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1314		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1315		if (rc != -EOPNOTSUPP)
1316			return rc;
1317	}
1318	return -EOPNOTSUPP;
1319}
1320
1321int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1322{
1323	struct security_hook_list *hp;
1324	int rc;
1325
1326	if (unlikely(IS_PRIVATE(inode)))
1327		return -EOPNOTSUPP;
1328	/*
1329	 * Only one module will provide an attribute with a given name.
1330	 */
1331	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1332		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1333								flags);
1334		if (rc != -EOPNOTSUPP)
1335			return rc;
1336	}
1337	return -EOPNOTSUPP;
1338}
1339
1340int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1341{
1342	if (unlikely(IS_PRIVATE(inode)))
1343		return 0;
1344	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1345}
1346EXPORT_SYMBOL(security_inode_listsecurity);
1347
1348void security_inode_getsecid(struct inode *inode, u32 *secid)
1349{
1350	call_void_hook(inode_getsecid, inode, secid);
1351}
1352
1353int security_inode_copy_up(struct dentry *src, struct cred **new)
1354{
1355	return call_int_hook(inode_copy_up, 0, src, new);
1356}
1357EXPORT_SYMBOL(security_inode_copy_up);
1358
1359int security_inode_copy_up_xattr(const char *name)
1360{
1361	return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1362}
1363EXPORT_SYMBOL(security_inode_copy_up_xattr);
1364
1365int security_kernfs_init_security(struct kernfs_node *kn_dir,
1366				  struct kernfs_node *kn)
1367{
1368	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1369}
1370
1371int security_file_permission(struct file *file, int mask)
1372{
1373	int ret;
1374
1375	ret = call_int_hook(file_permission, 0, file, mask);
1376	if (ret)
1377		return ret;
1378
1379	return fsnotify_perm(file, mask);
1380}
1381
1382int security_file_alloc(struct file *file)
1383{
1384	int rc = lsm_file_alloc(file);
1385
1386	if (rc)
1387		return rc;
1388	rc = call_int_hook(file_alloc_security, 0, file);
1389	if (unlikely(rc))
1390		security_file_free(file);
1391	return rc;
1392}
1393
1394void security_file_free(struct file *file)
1395{
1396	void *blob;
1397
1398	call_void_hook(file_free_security, file);
1399
1400	blob = file->f_security;
1401	if (blob) {
1402		file->f_security = NULL;
1403		kmem_cache_free(lsm_file_cache, blob);
1404	}
1405}
1406
1407int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1408{
1409	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1410}
 
1411
1412static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1413{
1414	/*
1415	 * Does we have PROT_READ and does the application expect
1416	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1417	 */
1418	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1419		return prot;
1420	if (!(current->personality & READ_IMPLIES_EXEC))
1421		return prot;
1422	/*
1423	 * if that's an anonymous mapping, let it.
1424	 */
1425	if (!file)
1426		return prot | PROT_EXEC;
1427	/*
1428	 * ditto if it's not on noexec mount, except that on !MMU we need
1429	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1430	 */
1431	if (!path_noexec(&file->f_path)) {
1432#ifndef CONFIG_MMU
1433		if (file->f_op->mmap_capabilities) {
1434			unsigned caps = file->f_op->mmap_capabilities(file);
1435			if (!(caps & NOMMU_MAP_EXEC))
1436				return prot;
1437		}
1438#endif
1439		return prot | PROT_EXEC;
1440	}
1441	/* anything on noexec mount won't get PROT_EXEC */
1442	return prot;
1443}
1444
1445int security_mmap_file(struct file *file, unsigned long prot,
1446			unsigned long flags)
1447{
1448	int ret;
1449	ret = call_int_hook(mmap_file, 0, file, prot,
1450					mmap_prot(file, prot), flags);
1451	if (ret)
1452		return ret;
1453	return ima_file_mmap(file, prot);
1454}
1455
1456int security_mmap_addr(unsigned long addr)
1457{
1458	return call_int_hook(mmap_addr, 0, addr);
1459}
1460
1461int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1462			    unsigned long prot)
1463{
1464	return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
 
 
 
 
 
1465}
1466
1467int security_file_lock(struct file *file, unsigned int cmd)
1468{
1469	return call_int_hook(file_lock, 0, file, cmd);
1470}
1471
1472int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1473{
1474	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1475}
1476
1477void security_file_set_fowner(struct file *file)
1478{
1479	call_void_hook(file_set_fowner, file);
1480}
1481
1482int security_file_send_sigiotask(struct task_struct *tsk,
1483				  struct fown_struct *fown, int sig)
1484{
1485	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1486}
1487
1488int security_file_receive(struct file *file)
1489{
1490	return call_int_hook(file_receive, 0, file);
1491}
1492
1493int security_file_open(struct file *file)
1494{
1495	int ret;
1496
1497	ret = call_int_hook(file_open, 0, file);
1498	if (ret)
1499		return ret;
1500
1501	return fsnotify_perm(file, MAY_OPEN);
1502}
1503
1504int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1505{
1506	int rc = lsm_task_alloc(task);
1507
1508	if (rc)
1509		return rc;
1510	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1511	if (unlikely(rc))
1512		security_task_free(task);
1513	return rc;
1514}
1515
1516void security_task_free(struct task_struct *task)
1517{
1518	call_void_hook(task_free, task);
1519
1520	kfree(task->security);
1521	task->security = NULL;
1522}
1523
1524int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1525{
1526	int rc = lsm_cred_alloc(cred, gfp);
1527
1528	if (rc)
1529		return rc;
1530
1531	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1532	if (unlikely(rc))
1533		security_cred_free(cred);
1534	return rc;
1535}
1536
1537void security_cred_free(struct cred *cred)
1538{
1539	/*
1540	 * There is a failure case in prepare_creds() that
1541	 * may result in a call here with ->security being NULL.
1542	 */
1543	if (unlikely(cred->security == NULL))
1544		return;
1545
1546	call_void_hook(cred_free, cred);
1547
1548	kfree(cred->security);
1549	cred->security = NULL;
1550}
1551
1552int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1553{
1554	int rc = lsm_cred_alloc(new, gfp);
1555
1556	if (rc)
1557		return rc;
1558
1559	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1560	if (unlikely(rc))
1561		security_cred_free(new);
1562	return rc;
1563}
1564
1565void security_transfer_creds(struct cred *new, const struct cred *old)
1566{
1567	call_void_hook(cred_transfer, new, old);
1568}
1569
1570void security_cred_getsecid(const struct cred *c, u32 *secid)
1571{
1572	*secid = 0;
1573	call_void_hook(cred_getsecid, c, secid);
1574}
1575EXPORT_SYMBOL(security_cred_getsecid);
1576
1577int security_kernel_act_as(struct cred *new, u32 secid)
1578{
1579	return call_int_hook(kernel_act_as, 0, new, secid);
1580}
1581
1582int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1583{
1584	return call_int_hook(kernel_create_files_as, 0, new, inode);
1585}
1586
1587int security_kernel_module_request(char *kmod_name)
1588{
1589	int ret;
1590
1591	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1592	if (ret)
1593		return ret;
1594	return integrity_kernel_module_request(kmod_name);
1595}
1596
1597int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
 
1598{
1599	int ret;
1600
1601	ret = call_int_hook(kernel_read_file, 0, file, id);
1602	if (ret)
1603		return ret;
1604	return ima_read_file(file, id);
1605}
1606EXPORT_SYMBOL_GPL(security_kernel_read_file);
1607
1608int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1609				   enum kernel_read_file_id id)
1610{
1611	int ret;
1612
1613	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1614	if (ret)
1615		return ret;
1616	return ima_post_read_file(file, buf, size, id);
1617}
1618EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1619
1620int security_kernel_load_data(enum kernel_load_data_id id)
1621{
1622	int ret;
1623
1624	ret = call_int_hook(kernel_load_data, 0, id);
1625	if (ret)
1626		return ret;
1627	return ima_load_data(id);
1628}
1629EXPORT_SYMBOL_GPL(security_kernel_load_data);
1630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1631int security_task_fix_setuid(struct cred *new, const struct cred *old,
1632			     int flags)
1633{
1634	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1635}
1636
 
 
 
 
 
 
1637int security_task_setpgid(struct task_struct *p, pid_t pgid)
1638{
1639	return call_int_hook(task_setpgid, 0, p, pgid);
1640}
1641
1642int security_task_getpgid(struct task_struct *p)
1643{
1644	return call_int_hook(task_getpgid, 0, p);
1645}
1646
1647int security_task_getsid(struct task_struct *p)
1648{
1649	return call_int_hook(task_getsid, 0, p);
1650}
1651
1652void security_task_getsecid(struct task_struct *p, u32 *secid)
 
 
 
 
 
 
 
1653{
1654	*secid = 0;
1655	call_void_hook(task_getsecid, p, secid);
1656}
1657EXPORT_SYMBOL(security_task_getsecid);
1658
1659int security_task_setnice(struct task_struct *p, int nice)
1660{
1661	return call_int_hook(task_setnice, 0, p, nice);
1662}
1663
1664int security_task_setioprio(struct task_struct *p, int ioprio)
1665{
1666	return call_int_hook(task_setioprio, 0, p, ioprio);
1667}
1668
1669int security_task_getioprio(struct task_struct *p)
1670{
1671	return call_int_hook(task_getioprio, 0, p);
1672}
1673
1674int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1675			  unsigned int flags)
1676{
1677	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1678}
1679
1680int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1681		struct rlimit *new_rlim)
1682{
1683	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1684}
1685
1686int security_task_setscheduler(struct task_struct *p)
1687{
1688	return call_int_hook(task_setscheduler, 0, p);
1689}
1690
1691int security_task_getscheduler(struct task_struct *p)
1692{
1693	return call_int_hook(task_getscheduler, 0, p);
1694}
1695
1696int security_task_movememory(struct task_struct *p)
1697{
1698	return call_int_hook(task_movememory, 0, p);
1699}
1700
1701int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1702			int sig, const struct cred *cred)
1703{
1704	return call_int_hook(task_kill, 0, p, info, sig, cred);
1705}
1706
1707int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1708			 unsigned long arg4, unsigned long arg5)
1709{
1710	int thisrc;
1711	int rc = -ENOSYS;
1712	struct security_hook_list *hp;
1713
1714	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1715		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1716		if (thisrc != -ENOSYS) {
1717			rc = thisrc;
1718			if (thisrc != 0)
1719				break;
1720		}
1721	}
1722	return rc;
1723}
1724
1725void security_task_to_inode(struct task_struct *p, struct inode *inode)
1726{
1727	call_void_hook(task_to_inode, p, inode);
1728}
1729
1730int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1731{
1732	return call_int_hook(ipc_permission, 0, ipcp, flag);
1733}
1734
1735void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1736{
1737	*secid = 0;
1738	call_void_hook(ipc_getsecid, ipcp, secid);
1739}
1740
1741int security_msg_msg_alloc(struct msg_msg *msg)
1742{
1743	int rc = lsm_msg_msg_alloc(msg);
1744
1745	if (unlikely(rc))
1746		return rc;
1747	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1748	if (unlikely(rc))
1749		security_msg_msg_free(msg);
1750	return rc;
1751}
1752
1753void security_msg_msg_free(struct msg_msg *msg)
1754{
1755	call_void_hook(msg_msg_free_security, msg);
1756	kfree(msg->security);
1757	msg->security = NULL;
1758}
1759
1760int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1761{
1762	int rc = lsm_ipc_alloc(msq);
1763
1764	if (unlikely(rc))
1765		return rc;
1766	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1767	if (unlikely(rc))
1768		security_msg_queue_free(msq);
1769	return rc;
1770}
1771
1772void security_msg_queue_free(struct kern_ipc_perm *msq)
1773{
1774	call_void_hook(msg_queue_free_security, msq);
1775	kfree(msq->security);
1776	msq->security = NULL;
1777}
1778
1779int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1780{
1781	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1782}
1783
1784int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1785{
1786	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1787}
1788
1789int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1790			       struct msg_msg *msg, int msqflg)
1791{
1792	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1793}
1794
1795int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1796			       struct task_struct *target, long type, int mode)
1797{
1798	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1799}
1800
1801int security_shm_alloc(struct kern_ipc_perm *shp)
1802{
1803	int rc = lsm_ipc_alloc(shp);
1804
1805	if (unlikely(rc))
1806		return rc;
1807	rc = call_int_hook(shm_alloc_security, 0, shp);
1808	if (unlikely(rc))
1809		security_shm_free(shp);
1810	return rc;
1811}
1812
1813void security_shm_free(struct kern_ipc_perm *shp)
1814{
1815	call_void_hook(shm_free_security, shp);
1816	kfree(shp->security);
1817	shp->security = NULL;
1818}
1819
1820int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1821{
1822	return call_int_hook(shm_associate, 0, shp, shmflg);
1823}
1824
1825int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1826{
1827	return call_int_hook(shm_shmctl, 0, shp, cmd);
1828}
1829
1830int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1831{
1832	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1833}
1834
1835int security_sem_alloc(struct kern_ipc_perm *sma)
1836{
1837	int rc = lsm_ipc_alloc(sma);
1838
1839	if (unlikely(rc))
1840		return rc;
1841	rc = call_int_hook(sem_alloc_security, 0, sma);
1842	if (unlikely(rc))
1843		security_sem_free(sma);
1844	return rc;
1845}
1846
1847void security_sem_free(struct kern_ipc_perm *sma)
1848{
1849	call_void_hook(sem_free_security, sma);
1850	kfree(sma->security);
1851	sma->security = NULL;
1852}
1853
1854int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1855{
1856	return call_int_hook(sem_associate, 0, sma, semflg);
1857}
1858
1859int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1860{
1861	return call_int_hook(sem_semctl, 0, sma, cmd);
1862}
1863
1864int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1865			unsigned nsops, int alter)
1866{
1867	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1868}
1869
1870void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1871{
1872	if (unlikely(inode && IS_PRIVATE(inode)))
1873		return;
1874	call_void_hook(d_instantiate, dentry, inode);
1875}
1876EXPORT_SYMBOL(security_d_instantiate);
1877
1878int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1879				char **value)
1880{
1881	struct security_hook_list *hp;
1882
1883	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1884		if (lsm != NULL && strcmp(lsm, hp->lsm))
1885			continue;
1886		return hp->hook.getprocattr(p, name, value);
1887	}
1888	return -EINVAL;
1889}
1890
1891int security_setprocattr(const char *lsm, const char *name, void *value,
1892			 size_t size)
1893{
1894	struct security_hook_list *hp;
1895
1896	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1897		if (lsm != NULL && strcmp(lsm, hp->lsm))
1898			continue;
1899		return hp->hook.setprocattr(name, value, size);
1900	}
1901	return -EINVAL;
1902}
1903
1904int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1905{
1906	return call_int_hook(netlink_send, 0, sk, skb);
1907}
1908
1909int security_ismaclabel(const char *name)
1910{
1911	return call_int_hook(ismaclabel, 0, name);
1912}
1913EXPORT_SYMBOL(security_ismaclabel);
1914
1915int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1916{
1917	return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1918				seclen);
 
 
 
 
 
 
 
 
 
 
 
 
1919}
1920EXPORT_SYMBOL(security_secid_to_secctx);
1921
1922int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1923{
1924	*secid = 0;
1925	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1926}
1927EXPORT_SYMBOL(security_secctx_to_secid);
1928
1929void security_release_secctx(char *secdata, u32 seclen)
1930{
1931	call_void_hook(release_secctx, secdata, seclen);
1932}
1933EXPORT_SYMBOL(security_release_secctx);
1934
1935void security_inode_invalidate_secctx(struct inode *inode)
1936{
1937	call_void_hook(inode_invalidate_secctx, inode);
1938}
1939EXPORT_SYMBOL(security_inode_invalidate_secctx);
1940
1941int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1942{
1943	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1944}
1945EXPORT_SYMBOL(security_inode_notifysecctx);
1946
1947int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1948{
1949	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1950}
1951EXPORT_SYMBOL(security_inode_setsecctx);
1952
1953int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1954{
1955	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1956}
1957EXPORT_SYMBOL(security_inode_getsecctx);
1958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1959#ifdef CONFIG_SECURITY_NETWORK
1960
1961int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1962{
1963	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1964}
1965EXPORT_SYMBOL(security_unix_stream_connect);
1966
1967int security_unix_may_send(struct socket *sock,  struct socket *other)
1968{
1969	return call_int_hook(unix_may_send, 0, sock, other);
1970}
1971EXPORT_SYMBOL(security_unix_may_send);
1972
1973int security_socket_create(int family, int type, int protocol, int kern)
1974{
1975	return call_int_hook(socket_create, 0, family, type, protocol, kern);
1976}
1977
1978int security_socket_post_create(struct socket *sock, int family,
1979				int type, int protocol, int kern)
1980{
1981	return call_int_hook(socket_post_create, 0, sock, family, type,
1982						protocol, kern);
1983}
1984
1985int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1986{
1987	return call_int_hook(socket_socketpair, 0, socka, sockb);
1988}
1989EXPORT_SYMBOL(security_socket_socketpair);
1990
1991int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1992{
1993	return call_int_hook(socket_bind, 0, sock, address, addrlen);
1994}
1995
1996int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1997{
1998	return call_int_hook(socket_connect, 0, sock, address, addrlen);
1999}
2000
2001int security_socket_listen(struct socket *sock, int backlog)
2002{
2003	return call_int_hook(socket_listen, 0, sock, backlog);
2004}
2005
2006int security_socket_accept(struct socket *sock, struct socket *newsock)
2007{
2008	return call_int_hook(socket_accept, 0, sock, newsock);
2009}
2010
2011int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2012{
2013	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2014}
2015
2016int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2017			    int size, int flags)
2018{
2019	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2020}
2021
2022int security_socket_getsockname(struct socket *sock)
2023{
2024	return call_int_hook(socket_getsockname, 0, sock);
2025}
2026
2027int security_socket_getpeername(struct socket *sock)
2028{
2029	return call_int_hook(socket_getpeername, 0, sock);
2030}
2031
2032int security_socket_getsockopt(struct socket *sock, int level, int optname)
2033{
2034	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2035}
2036
2037int security_socket_setsockopt(struct socket *sock, int level, int optname)
2038{
2039	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2040}
2041
2042int security_socket_shutdown(struct socket *sock, int how)
2043{
2044	return call_int_hook(socket_shutdown, 0, sock, how);
2045}
2046
2047int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2048{
2049	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2050}
2051EXPORT_SYMBOL(security_sock_rcv_skb);
2052
2053int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2054				      int __user *optlen, unsigned len)
2055{
2056	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2057				optval, optlen, len);
2058}
2059
2060int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2061{
2062	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2063			     skb, secid);
2064}
2065EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2066
2067int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2068{
2069	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2070}
2071
2072void security_sk_free(struct sock *sk)
2073{
2074	call_void_hook(sk_free_security, sk);
2075}
2076
2077void security_sk_clone(const struct sock *sk, struct sock *newsk)
2078{
2079	call_void_hook(sk_clone_security, sk, newsk);
2080}
2081EXPORT_SYMBOL(security_sk_clone);
2082
2083void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2084{
2085	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2086}
2087EXPORT_SYMBOL(security_sk_classify_flow);
2088
2089void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
 
2090{
2091	call_void_hook(req_classify_flow, req, fl);
2092}
2093EXPORT_SYMBOL(security_req_classify_flow);
2094
2095void security_sock_graft(struct sock *sk, struct socket *parent)
2096{
2097	call_void_hook(sock_graft, sk, parent);
2098}
2099EXPORT_SYMBOL(security_sock_graft);
2100
2101int security_inet_conn_request(struct sock *sk,
2102			struct sk_buff *skb, struct request_sock *req)
2103{
2104	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2105}
2106EXPORT_SYMBOL(security_inet_conn_request);
2107
2108void security_inet_csk_clone(struct sock *newsk,
2109			const struct request_sock *req)
2110{
2111	call_void_hook(inet_csk_clone, newsk, req);
2112}
2113
2114void security_inet_conn_established(struct sock *sk,
2115			struct sk_buff *skb)
2116{
2117	call_void_hook(inet_conn_established, sk, skb);
2118}
2119EXPORT_SYMBOL(security_inet_conn_established);
2120
2121int security_secmark_relabel_packet(u32 secid)
2122{
2123	return call_int_hook(secmark_relabel_packet, 0, secid);
2124}
2125EXPORT_SYMBOL(security_secmark_relabel_packet);
2126
2127void security_secmark_refcount_inc(void)
2128{
2129	call_void_hook(secmark_refcount_inc);
2130}
2131EXPORT_SYMBOL(security_secmark_refcount_inc);
2132
2133void security_secmark_refcount_dec(void)
2134{
2135	call_void_hook(secmark_refcount_dec);
2136}
2137EXPORT_SYMBOL(security_secmark_refcount_dec);
2138
2139int security_tun_dev_alloc_security(void **security)
2140{
2141	return call_int_hook(tun_dev_alloc_security, 0, security);
2142}
2143EXPORT_SYMBOL(security_tun_dev_alloc_security);
2144
2145void security_tun_dev_free_security(void *security)
2146{
2147	call_void_hook(tun_dev_free_security, security);
2148}
2149EXPORT_SYMBOL(security_tun_dev_free_security);
2150
2151int security_tun_dev_create(void)
2152{
2153	return call_int_hook(tun_dev_create, 0);
2154}
2155EXPORT_SYMBOL(security_tun_dev_create);
2156
2157int security_tun_dev_attach_queue(void *security)
2158{
2159	return call_int_hook(tun_dev_attach_queue, 0, security);
2160}
2161EXPORT_SYMBOL(security_tun_dev_attach_queue);
2162
2163int security_tun_dev_attach(struct sock *sk, void *security)
2164{
2165	return call_int_hook(tun_dev_attach, 0, sk, security);
2166}
2167EXPORT_SYMBOL(security_tun_dev_attach);
2168
2169int security_tun_dev_open(void *security)
2170{
2171	return call_int_hook(tun_dev_open, 0, security);
2172}
2173EXPORT_SYMBOL(security_tun_dev_open);
2174
2175int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2176{
2177	return call_int_hook(sctp_assoc_request, 0, ep, skb);
2178}
2179EXPORT_SYMBOL(security_sctp_assoc_request);
2180
2181int security_sctp_bind_connect(struct sock *sk, int optname,
2182			       struct sockaddr *address, int addrlen)
2183{
2184	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2185			     address, addrlen);
2186}
2187EXPORT_SYMBOL(security_sctp_bind_connect);
2188
2189void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2190			    struct sock *newsk)
2191{
2192	call_void_hook(sctp_sk_clone, ep, sk, newsk);
2193}
2194EXPORT_SYMBOL(security_sctp_sk_clone);
2195
2196#endif	/* CONFIG_SECURITY_NETWORK */
2197
2198#ifdef CONFIG_SECURITY_INFINIBAND
2199
2200int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2201{
2202	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2203}
2204EXPORT_SYMBOL(security_ib_pkey_access);
2205
2206int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2207{
2208	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2209}
2210EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2211
2212int security_ib_alloc_security(void **sec)
2213{
2214	return call_int_hook(ib_alloc_security, 0, sec);
2215}
2216EXPORT_SYMBOL(security_ib_alloc_security);
2217
2218void security_ib_free_security(void *sec)
2219{
2220	call_void_hook(ib_free_security, sec);
2221}
2222EXPORT_SYMBOL(security_ib_free_security);
2223#endif	/* CONFIG_SECURITY_INFINIBAND */
2224
2225#ifdef CONFIG_SECURITY_NETWORK_XFRM
2226
2227int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2228			       struct xfrm_user_sec_ctx *sec_ctx,
2229			       gfp_t gfp)
2230{
2231	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2232}
2233EXPORT_SYMBOL(security_xfrm_policy_alloc);
2234
2235int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2236			      struct xfrm_sec_ctx **new_ctxp)
2237{
2238	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2239}
2240
2241void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2242{
2243	call_void_hook(xfrm_policy_free_security, ctx);
2244}
2245EXPORT_SYMBOL(security_xfrm_policy_free);
2246
2247int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2248{
2249	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2250}
2251
2252int security_xfrm_state_alloc(struct xfrm_state *x,
2253			      struct xfrm_user_sec_ctx *sec_ctx)
2254{
2255	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2256}
2257EXPORT_SYMBOL(security_xfrm_state_alloc);
2258
2259int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2260				      struct xfrm_sec_ctx *polsec, u32 secid)
2261{
2262	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2263}
2264
2265int security_xfrm_state_delete(struct xfrm_state *x)
2266{
2267	return call_int_hook(xfrm_state_delete_security, 0, x);
2268}
2269EXPORT_SYMBOL(security_xfrm_state_delete);
2270
2271void security_xfrm_state_free(struct xfrm_state *x)
2272{
2273	call_void_hook(xfrm_state_free_security, x);
2274}
2275
2276int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2277{
2278	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2279}
2280
2281int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2282				       struct xfrm_policy *xp,
2283				       const struct flowi *fl)
2284{
2285	struct security_hook_list *hp;
2286	int rc = 1;
2287
2288	/*
2289	 * Since this function is expected to return 0 or 1, the judgment
2290	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2291	 * we can use the first LSM's judgment because currently only SELinux
2292	 * supplies this call.
2293	 *
2294	 * For speed optimization, we explicitly break the loop rather than
2295	 * using the macro
2296	 */
2297	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2298				list) {
2299		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2300		break;
2301	}
2302	return rc;
2303}
2304
2305int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2306{
2307	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2308}
2309
2310void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2311{
2312	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2313				0);
2314
2315	BUG_ON(rc);
2316}
2317EXPORT_SYMBOL(security_skb_classify_flow);
2318
2319#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2320
2321#ifdef CONFIG_KEYS
2322
2323int security_key_alloc(struct key *key, const struct cred *cred,
2324		       unsigned long flags)
2325{
2326	return call_int_hook(key_alloc, 0, key, cred, flags);
2327}
2328
2329void security_key_free(struct key *key)
2330{
2331	call_void_hook(key_free, key);
2332}
2333
2334int security_key_permission(key_ref_t key_ref,
2335			    const struct cred *cred, unsigned perm)
2336{
2337	return call_int_hook(key_permission, 0, key_ref, cred, perm);
2338}
2339
2340int security_key_getsecurity(struct key *key, char **_buffer)
2341{
2342	*_buffer = NULL;
2343	return call_int_hook(key_getsecurity, 0, key, _buffer);
2344}
2345
2346#endif	/* CONFIG_KEYS */
2347
2348#ifdef CONFIG_AUDIT
2349
2350int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2351{
2352	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2353}
2354
2355int security_audit_rule_known(struct audit_krule *krule)
2356{
2357	return call_int_hook(audit_rule_known, 0, krule);
2358}
2359
2360void security_audit_rule_free(void *lsmrule)
2361{
2362	call_void_hook(audit_rule_free, lsmrule);
2363}
2364
2365int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2366{
2367	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2368}
2369#endif /* CONFIG_AUDIT */
2370
2371#ifdef CONFIG_BPF_SYSCALL
2372int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2373{
2374	return call_int_hook(bpf, 0, cmd, attr, size);
2375}
2376int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2377{
2378	return call_int_hook(bpf_map, 0, map, fmode);
2379}
2380int security_bpf_prog(struct bpf_prog *prog)
2381{
2382	return call_int_hook(bpf_prog, 0, prog);
2383}
2384int security_bpf_map_alloc(struct bpf_map *map)
2385{
2386	return call_int_hook(bpf_map_alloc_security, 0, map);
2387}
2388int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2389{
2390	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2391}
2392void security_bpf_map_free(struct bpf_map *map)
2393{
2394	call_void_hook(bpf_map_free_security, map);
2395}
2396void security_bpf_prog_free(struct bpf_prog_aux *aux)
2397{
2398	call_void_hook(bpf_prog_free_security, aux);
2399}
2400#endif /* CONFIG_BPF_SYSCALL */
2401
2402int security_locked_down(enum lockdown_reason what)
2403{
2404	return call_int_hook(locked_down, 0, what);
2405}
2406EXPORT_SYMBOL(security_locked_down);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Security plug functions
   4 *
   5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   8 * Copyright (C) 2016 Mellanox Technologies
   9 */
  10
  11#define pr_fmt(fmt) "LSM: " fmt
  12
  13#include <linux/bpf.h>
  14#include <linux/capability.h>
  15#include <linux/dcache.h>
  16#include <linux/export.h>
  17#include <linux/init.h>
  18#include <linux/kernel.h>
  19#include <linux/kernel_read_file.h>
  20#include <linux/lsm_hooks.h>
  21#include <linux/integrity.h>
  22#include <linux/ima.h>
  23#include <linux/evm.h>
  24#include <linux/fsnotify.h>
  25#include <linux/mman.h>
  26#include <linux/mount.h>
  27#include <linux/personality.h>
  28#include <linux/backing-dev.h>
  29#include <linux/string.h>
  30#include <linux/msg.h>
  31#include <net/flow.h>
  32
  33#define MAX_LSM_EVM_XATTR	2
  34
  35/* How many LSMs were built into the kernel? */
  36#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
  37
  38/*
  39 * These are descriptions of the reasons that can be passed to the
  40 * security_locked_down() LSM hook. Placing this array here allows
  41 * all security modules to use the same descriptions for auditing
  42 * purposes.
  43 */
  44const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
  45	[LOCKDOWN_NONE] = "none",
  46	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
  47	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
  48	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
  49	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
  50	[LOCKDOWN_HIBERNATION] = "hibernation",
  51	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
  52	[LOCKDOWN_IOPORT] = "raw io port access",
  53	[LOCKDOWN_MSR] = "raw MSR access",
  54	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
  55	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
  56	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
  57	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
  58	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
  59	[LOCKDOWN_DEBUGFS] = "debugfs access",
  60	[LOCKDOWN_XMON_WR] = "xmon write access",
  61	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
  62	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
  63	[LOCKDOWN_KCORE] = "/proc/kcore access",
  64	[LOCKDOWN_KPROBES] = "use of kprobes",
  65	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
  66	[LOCKDOWN_PERF] = "unsafe use of perf",
  67	[LOCKDOWN_TRACEFS] = "use of tracefs",
  68	[LOCKDOWN_XMON_RW] = "xmon read and write access",
  69	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
  70	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
  71};
  72
  73struct security_hook_heads security_hook_heads __lsm_ro_after_init;
  74static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
  75
  76static struct kmem_cache *lsm_file_cache;
  77static struct kmem_cache *lsm_inode_cache;
  78
  79char *lsm_names;
  80static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
  81
  82/* Boot-time LSM user choice */
  83static __initdata const char *chosen_lsm_order;
  84static __initdata const char *chosen_major_lsm;
  85
  86static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
  87
  88/* Ordered list of LSMs to initialize. */
  89static __initdata struct lsm_info **ordered_lsms;
  90static __initdata struct lsm_info *exclusive;
  91
  92static __initdata bool debug;
  93#define init_debug(...)						\
  94	do {							\
  95		if (debug)					\
  96			pr_info(__VA_ARGS__);			\
  97	} while (0)
  98
  99static bool __init is_enabled(struct lsm_info *lsm)
 100{
 101	if (!lsm->enabled)
 102		return false;
 103
 104	return *lsm->enabled;
 105}
 106
 107/* Mark an LSM's enabled flag. */
 108static int lsm_enabled_true __initdata = 1;
 109static int lsm_enabled_false __initdata = 0;
 110static void __init set_enabled(struct lsm_info *lsm, bool enabled)
 111{
 112	/*
 113	 * When an LSM hasn't configured an enable variable, we can use
 114	 * a hard-coded location for storing the default enabled state.
 115	 */
 116	if (!lsm->enabled) {
 117		if (enabled)
 118			lsm->enabled = &lsm_enabled_true;
 119		else
 120			lsm->enabled = &lsm_enabled_false;
 121	} else if (lsm->enabled == &lsm_enabled_true) {
 122		if (!enabled)
 123			lsm->enabled = &lsm_enabled_false;
 124	} else if (lsm->enabled == &lsm_enabled_false) {
 125		if (enabled)
 126			lsm->enabled = &lsm_enabled_true;
 127	} else {
 128		*lsm->enabled = enabled;
 129	}
 130}
 131
 132/* Is an LSM already listed in the ordered LSMs list? */
 133static bool __init exists_ordered_lsm(struct lsm_info *lsm)
 134{
 135	struct lsm_info **check;
 136
 137	for (check = ordered_lsms; *check; check++)
 138		if (*check == lsm)
 139			return true;
 140
 141	return false;
 142}
 143
 144/* Append an LSM to the list of ordered LSMs to initialize. */
 145static int last_lsm __initdata;
 146static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
 147{
 148	/* Ignore duplicate selections. */
 149	if (exists_ordered_lsm(lsm))
 150		return;
 151
 152	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
 153		return;
 154
 155	/* Enable this LSM, if it is not already set. */
 156	if (!lsm->enabled)
 157		lsm->enabled = &lsm_enabled_true;
 158	ordered_lsms[last_lsm++] = lsm;
 159
 160	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
 161		   is_enabled(lsm) ? "en" : "dis");
 162}
 163
 164/* Is an LSM allowed to be initialized? */
 165static bool __init lsm_allowed(struct lsm_info *lsm)
 166{
 167	/* Skip if the LSM is disabled. */
 168	if (!is_enabled(lsm))
 169		return false;
 170
 171	/* Not allowed if another exclusive LSM already initialized. */
 172	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
 173		init_debug("exclusive disabled: %s\n", lsm->name);
 174		return false;
 175	}
 176
 177	return true;
 178}
 179
 180static void __init lsm_set_blob_size(int *need, int *lbs)
 181{
 182	int offset;
 183
 184	if (*need > 0) {
 185		offset = *lbs;
 186		*lbs += *need;
 187		*need = offset;
 188	}
 189}
 190
 191static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
 192{
 193	if (!needed)
 194		return;
 195
 196	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
 197	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
 198	/*
 199	 * The inode blob gets an rcu_head in addition to
 200	 * what the modules might need.
 201	 */
 202	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
 203		blob_sizes.lbs_inode = sizeof(struct rcu_head);
 204	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
 205	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
 206	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
 207	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
 208	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
 209}
 210
 211/* Prepare LSM for initialization. */
 212static void __init prepare_lsm(struct lsm_info *lsm)
 213{
 214	int enabled = lsm_allowed(lsm);
 215
 216	/* Record enablement (to handle any following exclusive LSMs). */
 217	set_enabled(lsm, enabled);
 218
 219	/* If enabled, do pre-initialization work. */
 220	if (enabled) {
 221		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
 222			exclusive = lsm;
 223			init_debug("exclusive chosen: %s\n", lsm->name);
 224		}
 225
 226		lsm_set_blob_sizes(lsm->blobs);
 227	}
 228}
 229
 230/* Initialize a given LSM, if it is enabled. */
 231static void __init initialize_lsm(struct lsm_info *lsm)
 232{
 233	if (is_enabled(lsm)) {
 234		int ret;
 235
 236		init_debug("initializing %s\n", lsm->name);
 237		ret = lsm->init();
 238		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
 239	}
 240}
 241
 242/* Populate ordered LSMs list from comma-separated LSM name list. */
 243static void __init ordered_lsm_parse(const char *order, const char *origin)
 244{
 245	struct lsm_info *lsm;
 246	char *sep, *name, *next;
 247
 248	/* LSM_ORDER_FIRST is always first. */
 249	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 250		if (lsm->order == LSM_ORDER_FIRST)
 251			append_ordered_lsm(lsm, "first");
 252	}
 253
 254	/* Process "security=", if given. */
 255	if (chosen_major_lsm) {
 256		struct lsm_info *major;
 257
 258		/*
 259		 * To match the original "security=" behavior, this
 260		 * explicitly does NOT fallback to another Legacy Major
 261		 * if the selected one was separately disabled: disable
 262		 * all non-matching Legacy Major LSMs.
 263		 */
 264		for (major = __start_lsm_info; major < __end_lsm_info;
 265		     major++) {
 266			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
 267			    strcmp(major->name, chosen_major_lsm) != 0) {
 268				set_enabled(major, false);
 269				init_debug("security=%s disabled: %s\n",
 270					   chosen_major_lsm, major->name);
 271			}
 272		}
 273	}
 274
 275	sep = kstrdup(order, GFP_KERNEL);
 276	next = sep;
 277	/* Walk the list, looking for matching LSMs. */
 278	while ((name = strsep(&next, ",")) != NULL) {
 279		bool found = false;
 280
 281		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 282			if (lsm->order == LSM_ORDER_MUTABLE &&
 283			    strcmp(lsm->name, name) == 0) {
 284				append_ordered_lsm(lsm, origin);
 285				found = true;
 286			}
 287		}
 288
 289		if (!found)
 290			init_debug("%s ignored: %s\n", origin, name);
 291	}
 292
 293	/* Process "security=", if given. */
 294	if (chosen_major_lsm) {
 295		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 296			if (exists_ordered_lsm(lsm))
 297				continue;
 298			if (strcmp(lsm->name, chosen_major_lsm) == 0)
 299				append_ordered_lsm(lsm, "security=");
 300		}
 301	}
 302
 303	/* Disable all LSMs not in the ordered list. */
 304	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 305		if (exists_ordered_lsm(lsm))
 306			continue;
 307		set_enabled(lsm, false);
 308		init_debug("%s disabled: %s\n", origin, lsm->name);
 309	}
 310
 311	kfree(sep);
 312}
 313
 314static void __init lsm_early_cred(struct cred *cred);
 315static void __init lsm_early_task(struct task_struct *task);
 316
 317static int lsm_append(const char *new, char **result);
 318
 319static void __init ordered_lsm_init(void)
 320{
 321	struct lsm_info **lsm;
 322
 323	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
 324				GFP_KERNEL);
 325
 326	if (chosen_lsm_order) {
 327		if (chosen_major_lsm) {
 328			pr_info("security= is ignored because it is superseded by lsm=\n");
 329			chosen_major_lsm = NULL;
 330		}
 331		ordered_lsm_parse(chosen_lsm_order, "cmdline");
 332	} else
 333		ordered_lsm_parse(builtin_lsm_order, "builtin");
 334
 335	for (lsm = ordered_lsms; *lsm; lsm++)
 336		prepare_lsm(*lsm);
 337
 338	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
 339	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
 340	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
 341	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
 342	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
 343	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
 344	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
 345
 346	/*
 347	 * Create any kmem_caches needed for blobs
 348	 */
 349	if (blob_sizes.lbs_file)
 350		lsm_file_cache = kmem_cache_create("lsm_file_cache",
 351						   blob_sizes.lbs_file, 0,
 352						   SLAB_PANIC, NULL);
 353	if (blob_sizes.lbs_inode)
 354		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
 355						    blob_sizes.lbs_inode, 0,
 356						    SLAB_PANIC, NULL);
 357
 358	lsm_early_cred((struct cred *) current->cred);
 359	lsm_early_task(current);
 360	for (lsm = ordered_lsms; *lsm; lsm++)
 361		initialize_lsm(*lsm);
 362
 363	kfree(ordered_lsms);
 364}
 365
 366int __init early_security_init(void)
 367{
 368	int i;
 369	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
 370	struct lsm_info *lsm;
 371
 372	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
 373	     i++)
 374		INIT_HLIST_HEAD(&list[i]);
 375
 376	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 377		if (!lsm->enabled)
 378			lsm->enabled = &lsm_enabled_true;
 379		prepare_lsm(lsm);
 380		initialize_lsm(lsm);
 381	}
 382
 383	return 0;
 384}
 385
 386/**
 387 * security_init - initializes the security framework
 388 *
 389 * This should be called early in the kernel initialization sequence.
 390 */
 391int __init security_init(void)
 392{
 393	struct lsm_info *lsm;
 394
 395	pr_info("Security Framework initializing\n");
 396
 397	/*
 398	 * Append the names of the early LSM modules now that kmalloc() is
 399	 * available
 400	 */
 401	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 402		if (lsm->enabled)
 403			lsm_append(lsm->name, &lsm_names);
 404	}
 405
 406	/* Load LSMs in specified order. */
 407	ordered_lsm_init();
 408
 409	return 0;
 410}
 411
 412/* Save user chosen LSM */
 413static int __init choose_major_lsm(char *str)
 414{
 415	chosen_major_lsm = str;
 416	return 1;
 417}
 418__setup("security=", choose_major_lsm);
 419
 420/* Explicitly choose LSM initialization order. */
 421static int __init choose_lsm_order(char *str)
 422{
 423	chosen_lsm_order = str;
 424	return 1;
 425}
 426__setup("lsm=", choose_lsm_order);
 427
 428/* Enable LSM order debugging. */
 429static int __init enable_debug(char *str)
 430{
 431	debug = true;
 432	return 1;
 433}
 434__setup("lsm.debug", enable_debug);
 435
 436static bool match_last_lsm(const char *list, const char *lsm)
 437{
 438	const char *last;
 439
 440	if (WARN_ON(!list || !lsm))
 441		return false;
 442	last = strrchr(list, ',');
 443	if (last)
 444		/* Pass the comma, strcmp() will check for '\0' */
 445		last++;
 446	else
 447		last = list;
 448	return !strcmp(last, lsm);
 449}
 450
 451static int lsm_append(const char *new, char **result)
 452{
 453	char *cp;
 454
 455	if (*result == NULL) {
 456		*result = kstrdup(new, GFP_KERNEL);
 457		if (*result == NULL)
 458			return -ENOMEM;
 459	} else {
 460		/* Check if it is the last registered name */
 461		if (match_last_lsm(*result, new))
 462			return 0;
 463		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
 464		if (cp == NULL)
 465			return -ENOMEM;
 466		kfree(*result);
 467		*result = cp;
 468	}
 469	return 0;
 470}
 471
 472/**
 473 * security_add_hooks - Add a modules hooks to the hook lists.
 474 * @hooks: the hooks to add
 475 * @count: the number of hooks to add
 476 * @lsm: the name of the security module
 477 *
 478 * Each LSM has to register its hooks with the infrastructure.
 479 */
 480void __init security_add_hooks(struct security_hook_list *hooks, int count,
 481				char *lsm)
 482{
 483	int i;
 484
 485	for (i = 0; i < count; i++) {
 486		hooks[i].lsm = lsm;
 487		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
 488	}
 489
 490	/*
 491	 * Don't try to append during early_security_init(), we'll come back
 492	 * and fix this up afterwards.
 493	 */
 494	if (slab_is_available()) {
 495		if (lsm_append(lsm, &lsm_names) < 0)
 496			panic("%s - Cannot get early memory.\n", __func__);
 497	}
 498}
 499
 500int call_blocking_lsm_notifier(enum lsm_event event, void *data)
 501{
 502	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
 503					    event, data);
 504}
 505EXPORT_SYMBOL(call_blocking_lsm_notifier);
 506
 507int register_blocking_lsm_notifier(struct notifier_block *nb)
 508{
 509	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
 510						nb);
 511}
 512EXPORT_SYMBOL(register_blocking_lsm_notifier);
 513
 514int unregister_blocking_lsm_notifier(struct notifier_block *nb)
 515{
 516	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
 517						  nb);
 518}
 519EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
 520
 521/**
 522 * lsm_cred_alloc - allocate a composite cred blob
 523 * @cred: the cred that needs a blob
 524 * @gfp: allocation type
 525 *
 526 * Allocate the cred blob for all the modules
 527 *
 528 * Returns 0, or -ENOMEM if memory can't be allocated.
 529 */
 530static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
 531{
 532	if (blob_sizes.lbs_cred == 0) {
 533		cred->security = NULL;
 534		return 0;
 535	}
 536
 537	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
 538	if (cred->security == NULL)
 539		return -ENOMEM;
 540	return 0;
 541}
 542
 543/**
 544 * lsm_early_cred - during initialization allocate a composite cred blob
 545 * @cred: the cred that needs a blob
 546 *
 547 * Allocate the cred blob for all the modules
 548 */
 549static void __init lsm_early_cred(struct cred *cred)
 550{
 551	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
 552
 553	if (rc)
 554		panic("%s: Early cred alloc failed.\n", __func__);
 555}
 556
 557/**
 558 * lsm_file_alloc - allocate a composite file blob
 559 * @file: the file that needs a blob
 560 *
 561 * Allocate the file blob for all the modules
 562 *
 563 * Returns 0, or -ENOMEM if memory can't be allocated.
 564 */
 565static int lsm_file_alloc(struct file *file)
 566{
 567	if (!lsm_file_cache) {
 568		file->f_security = NULL;
 569		return 0;
 570	}
 571
 572	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
 573	if (file->f_security == NULL)
 574		return -ENOMEM;
 575	return 0;
 576}
 577
 578/**
 579 * lsm_inode_alloc - allocate a composite inode blob
 580 * @inode: the inode that needs a blob
 581 *
 582 * Allocate the inode blob for all the modules
 583 *
 584 * Returns 0, or -ENOMEM if memory can't be allocated.
 585 */
 586int lsm_inode_alloc(struct inode *inode)
 587{
 588	if (!lsm_inode_cache) {
 589		inode->i_security = NULL;
 590		return 0;
 591	}
 592
 593	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
 594	if (inode->i_security == NULL)
 595		return -ENOMEM;
 596	return 0;
 597}
 598
 599/**
 600 * lsm_task_alloc - allocate a composite task blob
 601 * @task: the task that needs a blob
 602 *
 603 * Allocate the task blob for all the modules
 604 *
 605 * Returns 0, or -ENOMEM if memory can't be allocated.
 606 */
 607static int lsm_task_alloc(struct task_struct *task)
 608{
 609	if (blob_sizes.lbs_task == 0) {
 610		task->security = NULL;
 611		return 0;
 612	}
 613
 614	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
 615	if (task->security == NULL)
 616		return -ENOMEM;
 617	return 0;
 618}
 619
 620/**
 621 * lsm_ipc_alloc - allocate a composite ipc blob
 622 * @kip: the ipc that needs a blob
 623 *
 624 * Allocate the ipc blob for all the modules
 625 *
 626 * Returns 0, or -ENOMEM if memory can't be allocated.
 627 */
 628static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
 629{
 630	if (blob_sizes.lbs_ipc == 0) {
 631		kip->security = NULL;
 632		return 0;
 633	}
 634
 635	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
 636	if (kip->security == NULL)
 637		return -ENOMEM;
 638	return 0;
 639}
 640
 641/**
 642 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
 643 * @mp: the msg_msg that needs a blob
 644 *
 645 * Allocate the ipc blob for all the modules
 646 *
 647 * Returns 0, or -ENOMEM if memory can't be allocated.
 648 */
 649static int lsm_msg_msg_alloc(struct msg_msg *mp)
 650{
 651	if (blob_sizes.lbs_msg_msg == 0) {
 652		mp->security = NULL;
 653		return 0;
 654	}
 655
 656	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
 657	if (mp->security == NULL)
 658		return -ENOMEM;
 659	return 0;
 660}
 661
 662/**
 663 * lsm_early_task - during initialization allocate a composite task blob
 664 * @task: the task that needs a blob
 665 *
 666 * Allocate the task blob for all the modules
 667 */
 668static void __init lsm_early_task(struct task_struct *task)
 669{
 670	int rc = lsm_task_alloc(task);
 671
 672	if (rc)
 673		panic("%s: Early task alloc failed.\n", __func__);
 674}
 675
 676/**
 677 * lsm_superblock_alloc - allocate a composite superblock blob
 678 * @sb: the superblock that needs a blob
 679 *
 680 * Allocate the superblock blob for all the modules
 681 *
 682 * Returns 0, or -ENOMEM if memory can't be allocated.
 683 */
 684static int lsm_superblock_alloc(struct super_block *sb)
 685{
 686	if (blob_sizes.lbs_superblock == 0) {
 687		sb->s_security = NULL;
 688		return 0;
 689	}
 690
 691	sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
 692	if (sb->s_security == NULL)
 693		return -ENOMEM;
 694	return 0;
 695}
 696
 697/*
 698 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
 699 * can be accessed with:
 700 *
 701 *	LSM_RET_DEFAULT(<hook_name>)
 702 *
 703 * The macros below define static constants for the default value of each
 704 * LSM hook.
 705 */
 706#define LSM_RET_DEFAULT(NAME) (NAME##_default)
 707#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
 708#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
 709	static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
 710#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
 711	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
 712
 713#include <linux/lsm_hook_defs.h>
 714#undef LSM_HOOK
 715
 716/*
 717 * Hook list operation macros.
 718 *
 719 * call_void_hook:
 720 *	This is a hook that does not return a value.
 721 *
 722 * call_int_hook:
 723 *	This is a hook that returns a value.
 724 */
 725
 726#define call_void_hook(FUNC, ...)				\
 727	do {							\
 728		struct security_hook_list *P;			\
 729								\
 730		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
 731			P->hook.FUNC(__VA_ARGS__);		\
 732	} while (0)
 733
 734#define call_int_hook(FUNC, IRC, ...) ({			\
 735	int RC = IRC;						\
 736	do {							\
 737		struct security_hook_list *P;			\
 738								\
 739		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
 740			RC = P->hook.FUNC(__VA_ARGS__);		\
 741			if (RC != 0)				\
 742				break;				\
 743		}						\
 744	} while (0);						\
 745	RC;							\
 746})
 747
 748/* Security operations */
 749
 750int security_binder_set_context_mgr(struct task_struct *mgr)
 751{
 752	return call_int_hook(binder_set_context_mgr, 0, mgr);
 753}
 754
 755int security_binder_transaction(struct task_struct *from,
 756				struct task_struct *to)
 757{
 758	return call_int_hook(binder_transaction, 0, from, to);
 759}
 760
 761int security_binder_transfer_binder(struct task_struct *from,
 762				    struct task_struct *to)
 763{
 764	return call_int_hook(binder_transfer_binder, 0, from, to);
 765}
 766
 767int security_binder_transfer_file(struct task_struct *from,
 768				  struct task_struct *to, struct file *file)
 769{
 770	return call_int_hook(binder_transfer_file, 0, from, to, file);
 771}
 772
 773int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 774{
 775	return call_int_hook(ptrace_access_check, 0, child, mode);
 776}
 777
 778int security_ptrace_traceme(struct task_struct *parent)
 779{
 780	return call_int_hook(ptrace_traceme, 0, parent);
 781}
 782
 783int security_capget(struct task_struct *target,
 784		     kernel_cap_t *effective,
 785		     kernel_cap_t *inheritable,
 786		     kernel_cap_t *permitted)
 787{
 788	return call_int_hook(capget, 0, target,
 789				effective, inheritable, permitted);
 790}
 791
 792int security_capset(struct cred *new, const struct cred *old,
 793		    const kernel_cap_t *effective,
 794		    const kernel_cap_t *inheritable,
 795		    const kernel_cap_t *permitted)
 796{
 797	return call_int_hook(capset, 0, new, old,
 798				effective, inheritable, permitted);
 799}
 800
 801int security_capable(const struct cred *cred,
 802		     struct user_namespace *ns,
 803		     int cap,
 804		     unsigned int opts)
 805{
 806	return call_int_hook(capable, 0, cred, ns, cap, opts);
 807}
 808
 809int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 810{
 811	return call_int_hook(quotactl, 0, cmds, type, id, sb);
 812}
 813
 814int security_quota_on(struct dentry *dentry)
 815{
 816	return call_int_hook(quota_on, 0, dentry);
 817}
 818
 819int security_syslog(int type)
 820{
 821	return call_int_hook(syslog, 0, type);
 822}
 823
 824int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
 825{
 826	return call_int_hook(settime, 0, ts, tz);
 827}
 828
 829int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 830{
 831	struct security_hook_list *hp;
 832	int cap_sys_admin = 1;
 833	int rc;
 834
 835	/*
 836	 * The module will respond with a positive value if
 837	 * it thinks the __vm_enough_memory() call should be
 838	 * made with the cap_sys_admin set. If all of the modules
 839	 * agree that it should be set it will. If any module
 840	 * thinks it should not be set it won't.
 841	 */
 842	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
 843		rc = hp->hook.vm_enough_memory(mm, pages);
 844		if (rc <= 0) {
 845			cap_sys_admin = 0;
 846			break;
 847		}
 848	}
 849	return __vm_enough_memory(mm, pages, cap_sys_admin);
 850}
 851
 852int security_bprm_creds_for_exec(struct linux_binprm *bprm)
 853{
 854	return call_int_hook(bprm_creds_for_exec, 0, bprm);
 855}
 856
 857int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
 858{
 859	return call_int_hook(bprm_creds_from_file, 0, bprm, file);
 860}
 861
 862int security_bprm_check(struct linux_binprm *bprm)
 863{
 864	int ret;
 865
 866	ret = call_int_hook(bprm_check_security, 0, bprm);
 867	if (ret)
 868		return ret;
 869	return ima_bprm_check(bprm);
 870}
 871
 872void security_bprm_committing_creds(struct linux_binprm *bprm)
 873{
 874	call_void_hook(bprm_committing_creds, bprm);
 875}
 876
 877void security_bprm_committed_creds(struct linux_binprm *bprm)
 878{
 879	call_void_hook(bprm_committed_creds, bprm);
 880}
 881
 882int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
 883{
 884	return call_int_hook(fs_context_dup, 0, fc, src_fc);
 885}
 886
 887int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
 888{
 889	return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
 890}
 891
 892int security_sb_alloc(struct super_block *sb)
 893{
 894	int rc = lsm_superblock_alloc(sb);
 895
 896	if (unlikely(rc))
 897		return rc;
 898	rc = call_int_hook(sb_alloc_security, 0, sb);
 899	if (unlikely(rc))
 900		security_sb_free(sb);
 901	return rc;
 902}
 903
 904void security_sb_delete(struct super_block *sb)
 905{
 906	call_void_hook(sb_delete, sb);
 907}
 908
 909void security_sb_free(struct super_block *sb)
 910{
 911	call_void_hook(sb_free_security, sb);
 912	kfree(sb->s_security);
 913	sb->s_security = NULL;
 914}
 915
 916void security_free_mnt_opts(void **mnt_opts)
 917{
 918	if (!*mnt_opts)
 919		return;
 920	call_void_hook(sb_free_mnt_opts, *mnt_opts);
 921	*mnt_opts = NULL;
 922}
 923EXPORT_SYMBOL(security_free_mnt_opts);
 924
 925int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
 926{
 927	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
 928}
 929EXPORT_SYMBOL(security_sb_eat_lsm_opts);
 930
 931int security_sb_mnt_opts_compat(struct super_block *sb,
 932				void *mnt_opts)
 933{
 934	return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
 935}
 936EXPORT_SYMBOL(security_sb_mnt_opts_compat);
 937
 938int security_sb_remount(struct super_block *sb,
 939			void *mnt_opts)
 940{
 941	return call_int_hook(sb_remount, 0, sb, mnt_opts);
 942}
 943EXPORT_SYMBOL(security_sb_remount);
 944
 945int security_sb_kern_mount(struct super_block *sb)
 946{
 947	return call_int_hook(sb_kern_mount, 0, sb);
 948}
 949
 950int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 951{
 952	return call_int_hook(sb_show_options, 0, m, sb);
 953}
 954
 955int security_sb_statfs(struct dentry *dentry)
 956{
 957	return call_int_hook(sb_statfs, 0, dentry);
 958}
 959
 960int security_sb_mount(const char *dev_name, const struct path *path,
 961                       const char *type, unsigned long flags, void *data)
 962{
 963	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
 964}
 965
 966int security_sb_umount(struct vfsmount *mnt, int flags)
 967{
 968	return call_int_hook(sb_umount, 0, mnt, flags);
 969}
 970
 971int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
 972{
 973	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
 974}
 975
 976int security_sb_set_mnt_opts(struct super_block *sb,
 977				void *mnt_opts,
 978				unsigned long kern_flags,
 979				unsigned long *set_kern_flags)
 980{
 981	return call_int_hook(sb_set_mnt_opts,
 982				mnt_opts ? -EOPNOTSUPP : 0, sb,
 983				mnt_opts, kern_flags, set_kern_flags);
 984}
 985EXPORT_SYMBOL(security_sb_set_mnt_opts);
 986
 987int security_sb_clone_mnt_opts(const struct super_block *oldsb,
 988				struct super_block *newsb,
 989				unsigned long kern_flags,
 990				unsigned long *set_kern_flags)
 991{
 992	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
 993				kern_flags, set_kern_flags);
 994}
 995EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 996
 997int security_add_mnt_opt(const char *option, const char *val, int len,
 998			 void **mnt_opts)
 999{
1000	return call_int_hook(sb_add_mnt_opt, -EINVAL,
1001					option, val, len, mnt_opts);
1002}
1003EXPORT_SYMBOL(security_add_mnt_opt);
1004
1005int security_move_mount(const struct path *from_path, const struct path *to_path)
1006{
1007	return call_int_hook(move_mount, 0, from_path, to_path);
1008}
1009
1010int security_path_notify(const struct path *path, u64 mask,
1011				unsigned int obj_type)
1012{
1013	return call_int_hook(path_notify, 0, path, mask, obj_type);
1014}
1015
1016int security_inode_alloc(struct inode *inode)
1017{
1018	int rc = lsm_inode_alloc(inode);
1019
1020	if (unlikely(rc))
1021		return rc;
1022	rc = call_int_hook(inode_alloc_security, 0, inode);
1023	if (unlikely(rc))
1024		security_inode_free(inode);
1025	return rc;
1026}
1027
1028static void inode_free_by_rcu(struct rcu_head *head)
1029{
1030	/*
1031	 * The rcu head is at the start of the inode blob
1032	 */
1033	kmem_cache_free(lsm_inode_cache, head);
1034}
1035
1036void security_inode_free(struct inode *inode)
1037{
1038	integrity_inode_free(inode);
1039	call_void_hook(inode_free_security, inode);
1040	/*
1041	 * The inode may still be referenced in a path walk and
1042	 * a call to security_inode_permission() can be made
1043	 * after inode_free_security() is called. Ideally, the VFS
1044	 * wouldn't do this, but fixing that is a much harder
1045	 * job. For now, simply free the i_security via RCU, and
1046	 * leave the current inode->i_security pointer intact.
1047	 * The inode will be freed after the RCU grace period too.
1048	 */
1049	if (inode->i_security)
1050		call_rcu((struct rcu_head *)inode->i_security,
1051				inode_free_by_rcu);
1052}
1053
1054int security_dentry_init_security(struct dentry *dentry, int mode,
1055					const struct qstr *name, void **ctx,
1056					u32 *ctxlen)
1057{
1058	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1059				name, ctx, ctxlen);
1060}
1061EXPORT_SYMBOL(security_dentry_init_security);
1062
1063int security_dentry_create_files_as(struct dentry *dentry, int mode,
1064				    struct qstr *name,
1065				    const struct cred *old, struct cred *new)
1066{
1067	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1068				name, old, new);
1069}
1070EXPORT_SYMBOL(security_dentry_create_files_as);
1071
1072int security_inode_init_security(struct inode *inode, struct inode *dir,
1073				 const struct qstr *qstr,
1074				 const initxattrs initxattrs, void *fs_data)
1075{
1076	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1077	struct xattr *lsm_xattr, *evm_xattr, *xattr;
1078	int ret;
1079
1080	if (unlikely(IS_PRIVATE(inode)))
1081		return 0;
1082
1083	if (!initxattrs)
1084		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1085				     dir, qstr, NULL, NULL, NULL);
1086	memset(new_xattrs, 0, sizeof(new_xattrs));
1087	lsm_xattr = new_xattrs;
1088	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1089						&lsm_xattr->name,
1090						&lsm_xattr->value,
1091						&lsm_xattr->value_len);
1092	if (ret)
1093		goto out;
1094
1095	evm_xattr = lsm_xattr + 1;
1096	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1097	if (ret)
1098		goto out;
1099	ret = initxattrs(inode, new_xattrs, fs_data);
1100out:
1101	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1102		kfree(xattr->value);
1103	return (ret == -EOPNOTSUPP) ? 0 : ret;
1104}
1105EXPORT_SYMBOL(security_inode_init_security);
1106
1107int security_inode_init_security_anon(struct inode *inode,
1108				      const struct qstr *name,
1109				      const struct inode *context_inode)
1110{
1111	return call_int_hook(inode_init_security_anon, 0, inode, name,
1112			     context_inode);
1113}
1114
1115int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1116				     const struct qstr *qstr, const char **name,
1117				     void **value, size_t *len)
1118{
1119	if (unlikely(IS_PRIVATE(inode)))
1120		return -EOPNOTSUPP;
1121	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1122			     qstr, name, value, len);
1123}
1124EXPORT_SYMBOL(security_old_inode_init_security);
1125
1126#ifdef CONFIG_SECURITY_PATH
1127int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1128			unsigned int dev)
1129{
1130	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1131		return 0;
1132	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1133}
1134EXPORT_SYMBOL(security_path_mknod);
1135
1136int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1137{
1138	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1139		return 0;
1140	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1141}
1142EXPORT_SYMBOL(security_path_mkdir);
1143
1144int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1145{
1146	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1147		return 0;
1148	return call_int_hook(path_rmdir, 0, dir, dentry);
1149}
1150
1151int security_path_unlink(const struct path *dir, struct dentry *dentry)
1152{
1153	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1154		return 0;
1155	return call_int_hook(path_unlink, 0, dir, dentry);
1156}
1157EXPORT_SYMBOL(security_path_unlink);
1158
1159int security_path_symlink(const struct path *dir, struct dentry *dentry,
1160			  const char *old_name)
1161{
1162	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1163		return 0;
1164	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1165}
1166
1167int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1168		       struct dentry *new_dentry)
1169{
1170	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1171		return 0;
1172	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1173}
1174
1175int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1176			 const struct path *new_dir, struct dentry *new_dentry,
1177			 unsigned int flags)
1178{
1179	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1180		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1181		return 0;
1182
1183	if (flags & RENAME_EXCHANGE) {
1184		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1185					old_dir, old_dentry);
1186		if (err)
1187			return err;
1188	}
1189
1190	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1191				new_dentry);
1192}
1193EXPORT_SYMBOL(security_path_rename);
1194
1195int security_path_truncate(const struct path *path)
1196{
1197	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1198		return 0;
1199	return call_int_hook(path_truncate, 0, path);
1200}
1201
1202int security_path_chmod(const struct path *path, umode_t mode)
1203{
1204	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1205		return 0;
1206	return call_int_hook(path_chmod, 0, path, mode);
1207}
1208
1209int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1210{
1211	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1212		return 0;
1213	return call_int_hook(path_chown, 0, path, uid, gid);
1214}
1215
1216int security_path_chroot(const struct path *path)
1217{
1218	return call_int_hook(path_chroot, 0, path);
1219}
1220#endif
1221
1222int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1223{
1224	if (unlikely(IS_PRIVATE(dir)))
1225		return 0;
1226	return call_int_hook(inode_create, 0, dir, dentry, mode);
1227}
1228EXPORT_SYMBOL_GPL(security_inode_create);
1229
1230int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1231			 struct dentry *new_dentry)
1232{
1233	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1234		return 0;
1235	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1236}
1237
1238int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1239{
1240	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1241		return 0;
1242	return call_int_hook(inode_unlink, 0, dir, dentry);
1243}
1244
1245int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1246			    const char *old_name)
1247{
1248	if (unlikely(IS_PRIVATE(dir)))
1249		return 0;
1250	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1251}
1252
1253int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1254{
1255	if (unlikely(IS_PRIVATE(dir)))
1256		return 0;
1257	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1258}
1259EXPORT_SYMBOL_GPL(security_inode_mkdir);
1260
1261int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1262{
1263	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1264		return 0;
1265	return call_int_hook(inode_rmdir, 0, dir, dentry);
1266}
1267
1268int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1269{
1270	if (unlikely(IS_PRIVATE(dir)))
1271		return 0;
1272	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1273}
1274
1275int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1276			   struct inode *new_dir, struct dentry *new_dentry,
1277			   unsigned int flags)
1278{
1279        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1280            (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1281		return 0;
1282
1283	if (flags & RENAME_EXCHANGE) {
1284		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1285						     old_dir, old_dentry);
1286		if (err)
1287			return err;
1288	}
1289
1290	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1291					   new_dir, new_dentry);
1292}
1293
1294int security_inode_readlink(struct dentry *dentry)
1295{
1296	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1297		return 0;
1298	return call_int_hook(inode_readlink, 0, dentry);
1299}
1300
1301int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1302			       bool rcu)
1303{
1304	if (unlikely(IS_PRIVATE(inode)))
1305		return 0;
1306	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1307}
1308
1309int security_inode_permission(struct inode *inode, int mask)
1310{
1311	if (unlikely(IS_PRIVATE(inode)))
1312		return 0;
1313	return call_int_hook(inode_permission, 0, inode, mask);
1314}
1315
1316int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1317{
1318	int ret;
1319
1320	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1321		return 0;
1322	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1323	if (ret)
1324		return ret;
1325	return evm_inode_setattr(dentry, attr);
1326}
1327EXPORT_SYMBOL_GPL(security_inode_setattr);
1328
1329int security_inode_getattr(const struct path *path)
1330{
1331	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1332		return 0;
1333	return call_int_hook(inode_getattr, 0, path);
1334}
1335
1336int security_inode_setxattr(struct user_namespace *mnt_userns,
1337			    struct dentry *dentry, const char *name,
1338			    const void *value, size_t size, int flags)
1339{
1340	int ret;
1341
1342	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1343		return 0;
1344	/*
1345	 * SELinux and Smack integrate the cap call,
1346	 * so assume that all LSMs supplying this call do so.
1347	 */
1348	ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1349			    size, flags);
1350
1351	if (ret == 1)
1352		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1353	if (ret)
1354		return ret;
1355	ret = ima_inode_setxattr(dentry, name, value, size);
1356	if (ret)
1357		return ret;
1358	return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1359}
1360
1361void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1362				  const void *value, size_t size, int flags)
1363{
1364	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1365		return;
1366	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1367	evm_inode_post_setxattr(dentry, name, value, size);
1368}
1369
1370int security_inode_getxattr(struct dentry *dentry, const char *name)
1371{
1372	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1373		return 0;
1374	return call_int_hook(inode_getxattr, 0, dentry, name);
1375}
1376
1377int security_inode_listxattr(struct dentry *dentry)
1378{
1379	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1380		return 0;
1381	return call_int_hook(inode_listxattr, 0, dentry);
1382}
1383
1384int security_inode_removexattr(struct user_namespace *mnt_userns,
1385			       struct dentry *dentry, const char *name)
1386{
1387	int ret;
1388
1389	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1390		return 0;
1391	/*
1392	 * SELinux and Smack integrate the cap call,
1393	 * so assume that all LSMs supplying this call do so.
1394	 */
1395	ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1396	if (ret == 1)
1397		ret = cap_inode_removexattr(mnt_userns, dentry, name);
1398	if (ret)
1399		return ret;
1400	ret = ima_inode_removexattr(dentry, name);
1401	if (ret)
1402		return ret;
1403	return evm_inode_removexattr(mnt_userns, dentry, name);
1404}
1405
1406int security_inode_need_killpriv(struct dentry *dentry)
1407{
1408	return call_int_hook(inode_need_killpriv, 0, dentry);
1409}
1410
1411int security_inode_killpriv(struct user_namespace *mnt_userns,
1412			    struct dentry *dentry)
1413{
1414	return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1415}
1416
1417int security_inode_getsecurity(struct user_namespace *mnt_userns,
1418			       struct inode *inode, const char *name,
1419			       void **buffer, bool alloc)
1420{
1421	struct security_hook_list *hp;
1422	int rc;
1423
1424	if (unlikely(IS_PRIVATE(inode)))
1425		return LSM_RET_DEFAULT(inode_getsecurity);
1426	/*
1427	 * Only one module will provide an attribute with a given name.
1428	 */
1429	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1430		rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1431		if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1432			return rc;
1433	}
1434	return LSM_RET_DEFAULT(inode_getsecurity);
1435}
1436
1437int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1438{
1439	struct security_hook_list *hp;
1440	int rc;
1441
1442	if (unlikely(IS_PRIVATE(inode)))
1443		return LSM_RET_DEFAULT(inode_setsecurity);
1444	/*
1445	 * Only one module will provide an attribute with a given name.
1446	 */
1447	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1448		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1449								flags);
1450		if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1451			return rc;
1452	}
1453	return LSM_RET_DEFAULT(inode_setsecurity);
1454}
1455
1456int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1457{
1458	if (unlikely(IS_PRIVATE(inode)))
1459		return 0;
1460	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1461}
1462EXPORT_SYMBOL(security_inode_listsecurity);
1463
1464void security_inode_getsecid(struct inode *inode, u32 *secid)
1465{
1466	call_void_hook(inode_getsecid, inode, secid);
1467}
1468
1469int security_inode_copy_up(struct dentry *src, struct cred **new)
1470{
1471	return call_int_hook(inode_copy_up, 0, src, new);
1472}
1473EXPORT_SYMBOL(security_inode_copy_up);
1474
1475int security_inode_copy_up_xattr(const char *name)
1476{
1477	struct security_hook_list *hp;
1478	int rc;
1479
1480	/*
1481	 * The implementation can return 0 (accept the xattr), 1 (discard the
1482	 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1483	 * any other error code incase of an error.
1484	 */
1485	hlist_for_each_entry(hp,
1486		&security_hook_heads.inode_copy_up_xattr, list) {
1487		rc = hp->hook.inode_copy_up_xattr(name);
1488		if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1489			return rc;
1490	}
1491
1492	return LSM_RET_DEFAULT(inode_copy_up_xattr);
1493}
1494EXPORT_SYMBOL(security_inode_copy_up_xattr);
1495
1496int security_kernfs_init_security(struct kernfs_node *kn_dir,
1497				  struct kernfs_node *kn)
1498{
1499	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1500}
1501
1502int security_file_permission(struct file *file, int mask)
1503{
1504	int ret;
1505
1506	ret = call_int_hook(file_permission, 0, file, mask);
1507	if (ret)
1508		return ret;
1509
1510	return fsnotify_perm(file, mask);
1511}
1512
1513int security_file_alloc(struct file *file)
1514{
1515	int rc = lsm_file_alloc(file);
1516
1517	if (rc)
1518		return rc;
1519	rc = call_int_hook(file_alloc_security, 0, file);
1520	if (unlikely(rc))
1521		security_file_free(file);
1522	return rc;
1523}
1524
1525void security_file_free(struct file *file)
1526{
1527	void *blob;
1528
1529	call_void_hook(file_free_security, file);
1530
1531	blob = file->f_security;
1532	if (blob) {
1533		file->f_security = NULL;
1534		kmem_cache_free(lsm_file_cache, blob);
1535	}
1536}
1537
1538int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1539{
1540	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1541}
1542EXPORT_SYMBOL_GPL(security_file_ioctl);
1543
1544static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1545{
1546	/*
1547	 * Does we have PROT_READ and does the application expect
1548	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1549	 */
1550	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1551		return prot;
1552	if (!(current->personality & READ_IMPLIES_EXEC))
1553		return prot;
1554	/*
1555	 * if that's an anonymous mapping, let it.
1556	 */
1557	if (!file)
1558		return prot | PROT_EXEC;
1559	/*
1560	 * ditto if it's not on noexec mount, except that on !MMU we need
1561	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1562	 */
1563	if (!path_noexec(&file->f_path)) {
1564#ifndef CONFIG_MMU
1565		if (file->f_op->mmap_capabilities) {
1566			unsigned caps = file->f_op->mmap_capabilities(file);
1567			if (!(caps & NOMMU_MAP_EXEC))
1568				return prot;
1569		}
1570#endif
1571		return prot | PROT_EXEC;
1572	}
1573	/* anything on noexec mount won't get PROT_EXEC */
1574	return prot;
1575}
1576
1577int security_mmap_file(struct file *file, unsigned long prot,
1578			unsigned long flags)
1579{
1580	int ret;
1581	ret = call_int_hook(mmap_file, 0, file, prot,
1582					mmap_prot(file, prot), flags);
1583	if (ret)
1584		return ret;
1585	return ima_file_mmap(file, prot);
1586}
1587
1588int security_mmap_addr(unsigned long addr)
1589{
1590	return call_int_hook(mmap_addr, 0, addr);
1591}
1592
1593int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1594			    unsigned long prot)
1595{
1596	int ret;
1597
1598	ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1599	if (ret)
1600		return ret;
1601	return ima_file_mprotect(vma, prot);
1602}
1603
1604int security_file_lock(struct file *file, unsigned int cmd)
1605{
1606	return call_int_hook(file_lock, 0, file, cmd);
1607}
1608
1609int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1610{
1611	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1612}
1613
1614void security_file_set_fowner(struct file *file)
1615{
1616	call_void_hook(file_set_fowner, file);
1617}
1618
1619int security_file_send_sigiotask(struct task_struct *tsk,
1620				  struct fown_struct *fown, int sig)
1621{
1622	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1623}
1624
1625int security_file_receive(struct file *file)
1626{
1627	return call_int_hook(file_receive, 0, file);
1628}
1629
1630int security_file_open(struct file *file)
1631{
1632	int ret;
1633
1634	ret = call_int_hook(file_open, 0, file);
1635	if (ret)
1636		return ret;
1637
1638	return fsnotify_perm(file, MAY_OPEN);
1639}
1640
1641int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1642{
1643	int rc = lsm_task_alloc(task);
1644
1645	if (rc)
1646		return rc;
1647	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1648	if (unlikely(rc))
1649		security_task_free(task);
1650	return rc;
1651}
1652
1653void security_task_free(struct task_struct *task)
1654{
1655	call_void_hook(task_free, task);
1656
1657	kfree(task->security);
1658	task->security = NULL;
1659}
1660
1661int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1662{
1663	int rc = lsm_cred_alloc(cred, gfp);
1664
1665	if (rc)
1666		return rc;
1667
1668	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1669	if (unlikely(rc))
1670		security_cred_free(cred);
1671	return rc;
1672}
1673
1674void security_cred_free(struct cred *cred)
1675{
1676	/*
1677	 * There is a failure case in prepare_creds() that
1678	 * may result in a call here with ->security being NULL.
1679	 */
1680	if (unlikely(cred->security == NULL))
1681		return;
1682
1683	call_void_hook(cred_free, cred);
1684
1685	kfree(cred->security);
1686	cred->security = NULL;
1687}
1688
1689int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1690{
1691	int rc = lsm_cred_alloc(new, gfp);
1692
1693	if (rc)
1694		return rc;
1695
1696	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1697	if (unlikely(rc))
1698		security_cred_free(new);
1699	return rc;
1700}
1701
1702void security_transfer_creds(struct cred *new, const struct cred *old)
1703{
1704	call_void_hook(cred_transfer, new, old);
1705}
1706
1707void security_cred_getsecid(const struct cred *c, u32 *secid)
1708{
1709	*secid = 0;
1710	call_void_hook(cred_getsecid, c, secid);
1711}
1712EXPORT_SYMBOL(security_cred_getsecid);
1713
1714int security_kernel_act_as(struct cred *new, u32 secid)
1715{
1716	return call_int_hook(kernel_act_as, 0, new, secid);
1717}
1718
1719int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1720{
1721	return call_int_hook(kernel_create_files_as, 0, new, inode);
1722}
1723
1724int security_kernel_module_request(char *kmod_name)
1725{
1726	int ret;
1727
1728	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1729	if (ret)
1730		return ret;
1731	return integrity_kernel_module_request(kmod_name);
1732}
1733
1734int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1735			      bool contents)
1736{
1737	int ret;
1738
1739	ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1740	if (ret)
1741		return ret;
1742	return ima_read_file(file, id, contents);
1743}
1744EXPORT_SYMBOL_GPL(security_kernel_read_file);
1745
1746int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1747				   enum kernel_read_file_id id)
1748{
1749	int ret;
1750
1751	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1752	if (ret)
1753		return ret;
1754	return ima_post_read_file(file, buf, size, id);
1755}
1756EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1757
1758int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1759{
1760	int ret;
1761
1762	ret = call_int_hook(kernel_load_data, 0, id, contents);
1763	if (ret)
1764		return ret;
1765	return ima_load_data(id, contents);
1766}
1767EXPORT_SYMBOL_GPL(security_kernel_load_data);
1768
1769int security_kernel_post_load_data(char *buf, loff_t size,
1770				   enum kernel_load_data_id id,
1771				   char *description)
1772{
1773	int ret;
1774
1775	ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1776			    description);
1777	if (ret)
1778		return ret;
1779	return ima_post_load_data(buf, size, id, description);
1780}
1781EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1782
1783int security_task_fix_setuid(struct cred *new, const struct cred *old,
1784			     int flags)
1785{
1786	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1787}
1788
1789int security_task_fix_setgid(struct cred *new, const struct cred *old,
1790				 int flags)
1791{
1792	return call_int_hook(task_fix_setgid, 0, new, old, flags);
1793}
1794
1795int security_task_setpgid(struct task_struct *p, pid_t pgid)
1796{
1797	return call_int_hook(task_setpgid, 0, p, pgid);
1798}
1799
1800int security_task_getpgid(struct task_struct *p)
1801{
1802	return call_int_hook(task_getpgid, 0, p);
1803}
1804
1805int security_task_getsid(struct task_struct *p)
1806{
1807	return call_int_hook(task_getsid, 0, p);
1808}
1809
1810void security_task_getsecid_subj(struct task_struct *p, u32 *secid)
1811{
1812	*secid = 0;
1813	call_void_hook(task_getsecid_subj, p, secid);
1814}
1815EXPORT_SYMBOL(security_task_getsecid_subj);
1816
1817void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1818{
1819	*secid = 0;
1820	call_void_hook(task_getsecid_obj, p, secid);
1821}
1822EXPORT_SYMBOL(security_task_getsecid_obj);
1823
1824int security_task_setnice(struct task_struct *p, int nice)
1825{
1826	return call_int_hook(task_setnice, 0, p, nice);
1827}
1828
1829int security_task_setioprio(struct task_struct *p, int ioprio)
1830{
1831	return call_int_hook(task_setioprio, 0, p, ioprio);
1832}
1833
1834int security_task_getioprio(struct task_struct *p)
1835{
1836	return call_int_hook(task_getioprio, 0, p);
1837}
1838
1839int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1840			  unsigned int flags)
1841{
1842	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1843}
1844
1845int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1846		struct rlimit *new_rlim)
1847{
1848	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1849}
1850
1851int security_task_setscheduler(struct task_struct *p)
1852{
1853	return call_int_hook(task_setscheduler, 0, p);
1854}
1855
1856int security_task_getscheduler(struct task_struct *p)
1857{
1858	return call_int_hook(task_getscheduler, 0, p);
1859}
1860
1861int security_task_movememory(struct task_struct *p)
1862{
1863	return call_int_hook(task_movememory, 0, p);
1864}
1865
1866int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1867			int sig, const struct cred *cred)
1868{
1869	return call_int_hook(task_kill, 0, p, info, sig, cred);
1870}
1871
1872int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1873			 unsigned long arg4, unsigned long arg5)
1874{
1875	int thisrc;
1876	int rc = LSM_RET_DEFAULT(task_prctl);
1877	struct security_hook_list *hp;
1878
1879	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1880		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1881		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1882			rc = thisrc;
1883			if (thisrc != 0)
1884				break;
1885		}
1886	}
1887	return rc;
1888}
1889
1890void security_task_to_inode(struct task_struct *p, struct inode *inode)
1891{
1892	call_void_hook(task_to_inode, p, inode);
1893}
1894
1895int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1896{
1897	return call_int_hook(ipc_permission, 0, ipcp, flag);
1898}
1899
1900void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1901{
1902	*secid = 0;
1903	call_void_hook(ipc_getsecid, ipcp, secid);
1904}
1905
1906int security_msg_msg_alloc(struct msg_msg *msg)
1907{
1908	int rc = lsm_msg_msg_alloc(msg);
1909
1910	if (unlikely(rc))
1911		return rc;
1912	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1913	if (unlikely(rc))
1914		security_msg_msg_free(msg);
1915	return rc;
1916}
1917
1918void security_msg_msg_free(struct msg_msg *msg)
1919{
1920	call_void_hook(msg_msg_free_security, msg);
1921	kfree(msg->security);
1922	msg->security = NULL;
1923}
1924
1925int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1926{
1927	int rc = lsm_ipc_alloc(msq);
1928
1929	if (unlikely(rc))
1930		return rc;
1931	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1932	if (unlikely(rc))
1933		security_msg_queue_free(msq);
1934	return rc;
1935}
1936
1937void security_msg_queue_free(struct kern_ipc_perm *msq)
1938{
1939	call_void_hook(msg_queue_free_security, msq);
1940	kfree(msq->security);
1941	msq->security = NULL;
1942}
1943
1944int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1945{
1946	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1947}
1948
1949int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1950{
1951	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1952}
1953
1954int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1955			       struct msg_msg *msg, int msqflg)
1956{
1957	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1958}
1959
1960int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1961			       struct task_struct *target, long type, int mode)
1962{
1963	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1964}
1965
1966int security_shm_alloc(struct kern_ipc_perm *shp)
1967{
1968	int rc = lsm_ipc_alloc(shp);
1969
1970	if (unlikely(rc))
1971		return rc;
1972	rc = call_int_hook(shm_alloc_security, 0, shp);
1973	if (unlikely(rc))
1974		security_shm_free(shp);
1975	return rc;
1976}
1977
1978void security_shm_free(struct kern_ipc_perm *shp)
1979{
1980	call_void_hook(shm_free_security, shp);
1981	kfree(shp->security);
1982	shp->security = NULL;
1983}
1984
1985int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1986{
1987	return call_int_hook(shm_associate, 0, shp, shmflg);
1988}
1989
1990int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1991{
1992	return call_int_hook(shm_shmctl, 0, shp, cmd);
1993}
1994
1995int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1996{
1997	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1998}
1999
2000int security_sem_alloc(struct kern_ipc_perm *sma)
2001{
2002	int rc = lsm_ipc_alloc(sma);
2003
2004	if (unlikely(rc))
2005		return rc;
2006	rc = call_int_hook(sem_alloc_security, 0, sma);
2007	if (unlikely(rc))
2008		security_sem_free(sma);
2009	return rc;
2010}
2011
2012void security_sem_free(struct kern_ipc_perm *sma)
2013{
2014	call_void_hook(sem_free_security, sma);
2015	kfree(sma->security);
2016	sma->security = NULL;
2017}
2018
2019int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2020{
2021	return call_int_hook(sem_associate, 0, sma, semflg);
2022}
2023
2024int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2025{
2026	return call_int_hook(sem_semctl, 0, sma, cmd);
2027}
2028
2029int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2030			unsigned nsops, int alter)
2031{
2032	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2033}
2034
2035void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2036{
2037	if (unlikely(inode && IS_PRIVATE(inode)))
2038		return;
2039	call_void_hook(d_instantiate, dentry, inode);
2040}
2041EXPORT_SYMBOL(security_d_instantiate);
2042
2043int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2044				char **value)
2045{
2046	struct security_hook_list *hp;
2047
2048	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2049		if (lsm != NULL && strcmp(lsm, hp->lsm))
2050			continue;
2051		return hp->hook.getprocattr(p, name, value);
2052	}
2053	return LSM_RET_DEFAULT(getprocattr);
2054}
2055
2056int security_setprocattr(const char *lsm, const char *name, void *value,
2057			 size_t size)
2058{
2059	struct security_hook_list *hp;
2060
2061	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2062		if (lsm != NULL && strcmp(lsm, hp->lsm))
2063			continue;
2064		return hp->hook.setprocattr(name, value, size);
2065	}
2066	return LSM_RET_DEFAULT(setprocattr);
2067}
2068
2069int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2070{
2071	return call_int_hook(netlink_send, 0, sk, skb);
2072}
2073
2074int security_ismaclabel(const char *name)
2075{
2076	return call_int_hook(ismaclabel, 0, name);
2077}
2078EXPORT_SYMBOL(security_ismaclabel);
2079
2080int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2081{
2082	struct security_hook_list *hp;
2083	int rc;
2084
2085	/*
2086	 * Currently, only one LSM can implement secid_to_secctx (i.e this
2087	 * LSM hook is not "stackable").
2088	 */
2089	hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2090		rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2091		if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2092			return rc;
2093	}
2094
2095	return LSM_RET_DEFAULT(secid_to_secctx);
2096}
2097EXPORT_SYMBOL(security_secid_to_secctx);
2098
2099int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2100{
2101	*secid = 0;
2102	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2103}
2104EXPORT_SYMBOL(security_secctx_to_secid);
2105
2106void security_release_secctx(char *secdata, u32 seclen)
2107{
2108	call_void_hook(release_secctx, secdata, seclen);
2109}
2110EXPORT_SYMBOL(security_release_secctx);
2111
2112void security_inode_invalidate_secctx(struct inode *inode)
2113{
2114	call_void_hook(inode_invalidate_secctx, inode);
2115}
2116EXPORT_SYMBOL(security_inode_invalidate_secctx);
2117
2118int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2119{
2120	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2121}
2122EXPORT_SYMBOL(security_inode_notifysecctx);
2123
2124int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2125{
2126	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2127}
2128EXPORT_SYMBOL(security_inode_setsecctx);
2129
2130int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2131{
2132	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2133}
2134EXPORT_SYMBOL(security_inode_getsecctx);
2135
2136#ifdef CONFIG_WATCH_QUEUE
2137int security_post_notification(const struct cred *w_cred,
2138			       const struct cred *cred,
2139			       struct watch_notification *n)
2140{
2141	return call_int_hook(post_notification, 0, w_cred, cred, n);
2142}
2143#endif /* CONFIG_WATCH_QUEUE */
2144
2145#ifdef CONFIG_KEY_NOTIFICATIONS
2146int security_watch_key(struct key *key)
2147{
2148	return call_int_hook(watch_key, 0, key);
2149}
2150#endif
2151
2152#ifdef CONFIG_SECURITY_NETWORK
2153
2154int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2155{
2156	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2157}
2158EXPORT_SYMBOL(security_unix_stream_connect);
2159
2160int security_unix_may_send(struct socket *sock,  struct socket *other)
2161{
2162	return call_int_hook(unix_may_send, 0, sock, other);
2163}
2164EXPORT_SYMBOL(security_unix_may_send);
2165
2166int security_socket_create(int family, int type, int protocol, int kern)
2167{
2168	return call_int_hook(socket_create, 0, family, type, protocol, kern);
2169}
2170
2171int security_socket_post_create(struct socket *sock, int family,
2172				int type, int protocol, int kern)
2173{
2174	return call_int_hook(socket_post_create, 0, sock, family, type,
2175						protocol, kern);
2176}
2177
2178int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2179{
2180	return call_int_hook(socket_socketpair, 0, socka, sockb);
2181}
2182EXPORT_SYMBOL(security_socket_socketpair);
2183
2184int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2185{
2186	return call_int_hook(socket_bind, 0, sock, address, addrlen);
2187}
2188
2189int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2190{
2191	return call_int_hook(socket_connect, 0, sock, address, addrlen);
2192}
2193
2194int security_socket_listen(struct socket *sock, int backlog)
2195{
2196	return call_int_hook(socket_listen, 0, sock, backlog);
2197}
2198
2199int security_socket_accept(struct socket *sock, struct socket *newsock)
2200{
2201	return call_int_hook(socket_accept, 0, sock, newsock);
2202}
2203
2204int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2205{
2206	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2207}
2208
2209int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2210			    int size, int flags)
2211{
2212	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2213}
2214
2215int security_socket_getsockname(struct socket *sock)
2216{
2217	return call_int_hook(socket_getsockname, 0, sock);
2218}
2219
2220int security_socket_getpeername(struct socket *sock)
2221{
2222	return call_int_hook(socket_getpeername, 0, sock);
2223}
2224
2225int security_socket_getsockopt(struct socket *sock, int level, int optname)
2226{
2227	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2228}
2229
2230int security_socket_setsockopt(struct socket *sock, int level, int optname)
2231{
2232	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2233}
2234
2235int security_socket_shutdown(struct socket *sock, int how)
2236{
2237	return call_int_hook(socket_shutdown, 0, sock, how);
2238}
2239
2240int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2241{
2242	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2243}
2244EXPORT_SYMBOL(security_sock_rcv_skb);
2245
2246int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2247				      int __user *optlen, unsigned len)
2248{
2249	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2250				optval, optlen, len);
2251}
2252
2253int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2254{
2255	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2256			     skb, secid);
2257}
2258EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2259
2260int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2261{
2262	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2263}
2264
2265void security_sk_free(struct sock *sk)
2266{
2267	call_void_hook(sk_free_security, sk);
2268}
2269
2270void security_sk_clone(const struct sock *sk, struct sock *newsk)
2271{
2272	call_void_hook(sk_clone_security, sk, newsk);
2273}
2274EXPORT_SYMBOL(security_sk_clone);
2275
2276void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2277{
2278	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2279}
2280EXPORT_SYMBOL(security_sk_classify_flow);
2281
2282void security_req_classify_flow(const struct request_sock *req,
2283				struct flowi_common *flic)
2284{
2285	call_void_hook(req_classify_flow, req, flic);
2286}
2287EXPORT_SYMBOL(security_req_classify_flow);
2288
2289void security_sock_graft(struct sock *sk, struct socket *parent)
2290{
2291	call_void_hook(sock_graft, sk, parent);
2292}
2293EXPORT_SYMBOL(security_sock_graft);
2294
2295int security_inet_conn_request(const struct sock *sk,
2296			struct sk_buff *skb, struct request_sock *req)
2297{
2298	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2299}
2300EXPORT_SYMBOL(security_inet_conn_request);
2301
2302void security_inet_csk_clone(struct sock *newsk,
2303			const struct request_sock *req)
2304{
2305	call_void_hook(inet_csk_clone, newsk, req);
2306}
2307
2308void security_inet_conn_established(struct sock *sk,
2309			struct sk_buff *skb)
2310{
2311	call_void_hook(inet_conn_established, sk, skb);
2312}
2313EXPORT_SYMBOL(security_inet_conn_established);
2314
2315int security_secmark_relabel_packet(u32 secid)
2316{
2317	return call_int_hook(secmark_relabel_packet, 0, secid);
2318}
2319EXPORT_SYMBOL(security_secmark_relabel_packet);
2320
2321void security_secmark_refcount_inc(void)
2322{
2323	call_void_hook(secmark_refcount_inc);
2324}
2325EXPORT_SYMBOL(security_secmark_refcount_inc);
2326
2327void security_secmark_refcount_dec(void)
2328{
2329	call_void_hook(secmark_refcount_dec);
2330}
2331EXPORT_SYMBOL(security_secmark_refcount_dec);
2332
2333int security_tun_dev_alloc_security(void **security)
2334{
2335	return call_int_hook(tun_dev_alloc_security, 0, security);
2336}
2337EXPORT_SYMBOL(security_tun_dev_alloc_security);
2338
2339void security_tun_dev_free_security(void *security)
2340{
2341	call_void_hook(tun_dev_free_security, security);
2342}
2343EXPORT_SYMBOL(security_tun_dev_free_security);
2344
2345int security_tun_dev_create(void)
2346{
2347	return call_int_hook(tun_dev_create, 0);
2348}
2349EXPORT_SYMBOL(security_tun_dev_create);
2350
2351int security_tun_dev_attach_queue(void *security)
2352{
2353	return call_int_hook(tun_dev_attach_queue, 0, security);
2354}
2355EXPORT_SYMBOL(security_tun_dev_attach_queue);
2356
2357int security_tun_dev_attach(struct sock *sk, void *security)
2358{
2359	return call_int_hook(tun_dev_attach, 0, sk, security);
2360}
2361EXPORT_SYMBOL(security_tun_dev_attach);
2362
2363int security_tun_dev_open(void *security)
2364{
2365	return call_int_hook(tun_dev_open, 0, security);
2366}
2367EXPORT_SYMBOL(security_tun_dev_open);
2368
2369int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2370{
2371	return call_int_hook(sctp_assoc_request, 0, ep, skb);
2372}
2373EXPORT_SYMBOL(security_sctp_assoc_request);
2374
2375int security_sctp_bind_connect(struct sock *sk, int optname,
2376			       struct sockaddr *address, int addrlen)
2377{
2378	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2379			     address, addrlen);
2380}
2381EXPORT_SYMBOL(security_sctp_bind_connect);
2382
2383void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2384			    struct sock *newsk)
2385{
2386	call_void_hook(sctp_sk_clone, ep, sk, newsk);
2387}
2388EXPORT_SYMBOL(security_sctp_sk_clone);
2389
2390#endif	/* CONFIG_SECURITY_NETWORK */
2391
2392#ifdef CONFIG_SECURITY_INFINIBAND
2393
2394int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2395{
2396	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2397}
2398EXPORT_SYMBOL(security_ib_pkey_access);
2399
2400int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2401{
2402	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2403}
2404EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2405
2406int security_ib_alloc_security(void **sec)
2407{
2408	return call_int_hook(ib_alloc_security, 0, sec);
2409}
2410EXPORT_SYMBOL(security_ib_alloc_security);
2411
2412void security_ib_free_security(void *sec)
2413{
2414	call_void_hook(ib_free_security, sec);
2415}
2416EXPORT_SYMBOL(security_ib_free_security);
2417#endif	/* CONFIG_SECURITY_INFINIBAND */
2418
2419#ifdef CONFIG_SECURITY_NETWORK_XFRM
2420
2421int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2422			       struct xfrm_user_sec_ctx *sec_ctx,
2423			       gfp_t gfp)
2424{
2425	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2426}
2427EXPORT_SYMBOL(security_xfrm_policy_alloc);
2428
2429int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2430			      struct xfrm_sec_ctx **new_ctxp)
2431{
2432	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2433}
2434
2435void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2436{
2437	call_void_hook(xfrm_policy_free_security, ctx);
2438}
2439EXPORT_SYMBOL(security_xfrm_policy_free);
2440
2441int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2442{
2443	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2444}
2445
2446int security_xfrm_state_alloc(struct xfrm_state *x,
2447			      struct xfrm_user_sec_ctx *sec_ctx)
2448{
2449	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2450}
2451EXPORT_SYMBOL(security_xfrm_state_alloc);
2452
2453int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2454				      struct xfrm_sec_ctx *polsec, u32 secid)
2455{
2456	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2457}
2458
2459int security_xfrm_state_delete(struct xfrm_state *x)
2460{
2461	return call_int_hook(xfrm_state_delete_security, 0, x);
2462}
2463EXPORT_SYMBOL(security_xfrm_state_delete);
2464
2465void security_xfrm_state_free(struct xfrm_state *x)
2466{
2467	call_void_hook(xfrm_state_free_security, x);
2468}
2469
2470int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2471{
2472	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2473}
2474
2475int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2476				       struct xfrm_policy *xp,
2477				       const struct flowi_common *flic)
2478{
2479	struct security_hook_list *hp;
2480	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2481
2482	/*
2483	 * Since this function is expected to return 0 or 1, the judgment
2484	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2485	 * we can use the first LSM's judgment because currently only SELinux
2486	 * supplies this call.
2487	 *
2488	 * For speed optimization, we explicitly break the loop rather than
2489	 * using the macro
2490	 */
2491	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2492				list) {
2493		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2494		break;
2495	}
2496	return rc;
2497}
2498
2499int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2500{
2501	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2502}
2503
2504void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2505{
2506	int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2507				0);
2508
2509	BUG_ON(rc);
2510}
2511EXPORT_SYMBOL(security_skb_classify_flow);
2512
2513#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2514
2515#ifdef CONFIG_KEYS
2516
2517int security_key_alloc(struct key *key, const struct cred *cred,
2518		       unsigned long flags)
2519{
2520	return call_int_hook(key_alloc, 0, key, cred, flags);
2521}
2522
2523void security_key_free(struct key *key)
2524{
2525	call_void_hook(key_free, key);
2526}
2527
2528int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2529			    enum key_need_perm need_perm)
2530{
2531	return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2532}
2533
2534int security_key_getsecurity(struct key *key, char **_buffer)
2535{
2536	*_buffer = NULL;
2537	return call_int_hook(key_getsecurity, 0, key, _buffer);
2538}
2539
2540#endif	/* CONFIG_KEYS */
2541
2542#ifdef CONFIG_AUDIT
2543
2544int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2545{
2546	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2547}
2548
2549int security_audit_rule_known(struct audit_krule *krule)
2550{
2551	return call_int_hook(audit_rule_known, 0, krule);
2552}
2553
2554void security_audit_rule_free(void *lsmrule)
2555{
2556	call_void_hook(audit_rule_free, lsmrule);
2557}
2558
2559int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2560{
2561	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2562}
2563#endif /* CONFIG_AUDIT */
2564
2565#ifdef CONFIG_BPF_SYSCALL
2566int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2567{
2568	return call_int_hook(bpf, 0, cmd, attr, size);
2569}
2570int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2571{
2572	return call_int_hook(bpf_map, 0, map, fmode);
2573}
2574int security_bpf_prog(struct bpf_prog *prog)
2575{
2576	return call_int_hook(bpf_prog, 0, prog);
2577}
2578int security_bpf_map_alloc(struct bpf_map *map)
2579{
2580	return call_int_hook(bpf_map_alloc_security, 0, map);
2581}
2582int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2583{
2584	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2585}
2586void security_bpf_map_free(struct bpf_map *map)
2587{
2588	call_void_hook(bpf_map_free_security, map);
2589}
2590void security_bpf_prog_free(struct bpf_prog_aux *aux)
2591{
2592	call_void_hook(bpf_prog_free_security, aux);
2593}
2594#endif /* CONFIG_BPF_SYSCALL */
2595
2596int security_locked_down(enum lockdown_reason what)
2597{
2598	return call_int_hook(locked_down, 0, what);
2599}
2600EXPORT_SYMBOL(security_locked_down);
2601
2602#ifdef CONFIG_PERF_EVENTS
2603int security_perf_event_open(struct perf_event_attr *attr, int type)
2604{
2605	return call_int_hook(perf_event_open, 0, attr, type);
2606}
2607
2608int security_perf_event_alloc(struct perf_event *event)
2609{
2610	return call_int_hook(perf_event_alloc, 0, event);
2611}
2612
2613void security_perf_event_free(struct perf_event *event)
2614{
2615	call_void_hook(perf_event_free, event);
2616}
2617
2618int security_perf_event_read(struct perf_event *event)
2619{
2620	return call_int_hook(perf_event_read, 0, event);
2621}
2622
2623int security_perf_event_write(struct perf_event *event)
2624{
2625	return call_int_hook(perf_event_write, 0, event);
2626}
2627#endif /* CONFIG_PERF_EVENTS */