Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 */
10
11#define pr_fmt(fmt) "LSM: " fmt
12
13#include <linux/bpf.h>
14#include <linux/capability.h>
15#include <linux/dcache.h>
16#include <linux/export.h>
17#include <linux/init.h>
18#include <linux/kernel.h>
19#include <linux/lsm_hooks.h>
20#include <linux/integrity.h>
21#include <linux/ima.h>
22#include <linux/evm.h>
23#include <linux/fsnotify.h>
24#include <linux/mman.h>
25#include <linux/mount.h>
26#include <linux/personality.h>
27#include <linux/backing-dev.h>
28#include <linux/string.h>
29#include <linux/msg.h>
30#include <net/flow.h>
31
32#define MAX_LSM_EVM_XATTR 2
33
34/* How many LSMs were built into the kernel? */
35#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36#define EARLY_LSM_COUNT (__end_early_lsm_info - __start_early_lsm_info)
37
38struct security_hook_heads security_hook_heads __lsm_ro_after_init;
39static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
40
41static struct kmem_cache *lsm_file_cache;
42static struct kmem_cache *lsm_inode_cache;
43
44char *lsm_names;
45static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
46
47/* Boot-time LSM user choice */
48static __initdata const char *chosen_lsm_order;
49static __initdata const char *chosen_major_lsm;
50
51static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
52
53/* Ordered list of LSMs to initialize. */
54static __initdata struct lsm_info **ordered_lsms;
55static __initdata struct lsm_info *exclusive;
56
57static __initdata bool debug;
58#define init_debug(...) \
59 do { \
60 if (debug) \
61 pr_info(__VA_ARGS__); \
62 } while (0)
63
64static bool __init is_enabled(struct lsm_info *lsm)
65{
66 if (!lsm->enabled)
67 return false;
68
69 return *lsm->enabled;
70}
71
72/* Mark an LSM's enabled flag. */
73static int lsm_enabled_true __initdata = 1;
74static int lsm_enabled_false __initdata = 0;
75static void __init set_enabled(struct lsm_info *lsm, bool enabled)
76{
77 /*
78 * When an LSM hasn't configured an enable variable, we can use
79 * a hard-coded location for storing the default enabled state.
80 */
81 if (!lsm->enabled) {
82 if (enabled)
83 lsm->enabled = &lsm_enabled_true;
84 else
85 lsm->enabled = &lsm_enabled_false;
86 } else if (lsm->enabled == &lsm_enabled_true) {
87 if (!enabled)
88 lsm->enabled = &lsm_enabled_false;
89 } else if (lsm->enabled == &lsm_enabled_false) {
90 if (enabled)
91 lsm->enabled = &lsm_enabled_true;
92 } else {
93 *lsm->enabled = enabled;
94 }
95}
96
97/* Is an LSM already listed in the ordered LSMs list? */
98static bool __init exists_ordered_lsm(struct lsm_info *lsm)
99{
100 struct lsm_info **check;
101
102 for (check = ordered_lsms; *check; check++)
103 if (*check == lsm)
104 return true;
105
106 return false;
107}
108
109/* Append an LSM to the list of ordered LSMs to initialize. */
110static int last_lsm __initdata;
111static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
112{
113 /* Ignore duplicate selections. */
114 if (exists_ordered_lsm(lsm))
115 return;
116
117 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
118 return;
119
120 /* Enable this LSM, if it is not already set. */
121 if (!lsm->enabled)
122 lsm->enabled = &lsm_enabled_true;
123 ordered_lsms[last_lsm++] = lsm;
124
125 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
126 is_enabled(lsm) ? "en" : "dis");
127}
128
129/* Is an LSM allowed to be initialized? */
130static bool __init lsm_allowed(struct lsm_info *lsm)
131{
132 /* Skip if the LSM is disabled. */
133 if (!is_enabled(lsm))
134 return false;
135
136 /* Not allowed if another exclusive LSM already initialized. */
137 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
138 init_debug("exclusive disabled: %s\n", lsm->name);
139 return false;
140 }
141
142 return true;
143}
144
145static void __init lsm_set_blob_size(int *need, int *lbs)
146{
147 int offset;
148
149 if (*need > 0) {
150 offset = *lbs;
151 *lbs += *need;
152 *need = offset;
153 }
154}
155
156static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
157{
158 if (!needed)
159 return;
160
161 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
162 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
163 /*
164 * The inode blob gets an rcu_head in addition to
165 * what the modules might need.
166 */
167 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
168 blob_sizes.lbs_inode = sizeof(struct rcu_head);
169 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
170 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
171 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
172 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
173}
174
175/* Prepare LSM for initialization. */
176static void __init prepare_lsm(struct lsm_info *lsm)
177{
178 int enabled = lsm_allowed(lsm);
179
180 /* Record enablement (to handle any following exclusive LSMs). */
181 set_enabled(lsm, enabled);
182
183 /* If enabled, do pre-initialization work. */
184 if (enabled) {
185 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
186 exclusive = lsm;
187 init_debug("exclusive chosen: %s\n", lsm->name);
188 }
189
190 lsm_set_blob_sizes(lsm->blobs);
191 }
192}
193
194/* Initialize a given LSM, if it is enabled. */
195static void __init initialize_lsm(struct lsm_info *lsm)
196{
197 if (is_enabled(lsm)) {
198 int ret;
199
200 init_debug("initializing %s\n", lsm->name);
201 ret = lsm->init();
202 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
203 }
204}
205
206/* Populate ordered LSMs list from comma-separated LSM name list. */
207static void __init ordered_lsm_parse(const char *order, const char *origin)
208{
209 struct lsm_info *lsm;
210 char *sep, *name, *next;
211
212 /* LSM_ORDER_FIRST is always first. */
213 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
214 if (lsm->order == LSM_ORDER_FIRST)
215 append_ordered_lsm(lsm, "first");
216 }
217
218 /* Process "security=", if given. */
219 if (chosen_major_lsm) {
220 struct lsm_info *major;
221
222 /*
223 * To match the original "security=" behavior, this
224 * explicitly does NOT fallback to another Legacy Major
225 * if the selected one was separately disabled: disable
226 * all non-matching Legacy Major LSMs.
227 */
228 for (major = __start_lsm_info; major < __end_lsm_info;
229 major++) {
230 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
231 strcmp(major->name, chosen_major_lsm) != 0) {
232 set_enabled(major, false);
233 init_debug("security=%s disabled: %s\n",
234 chosen_major_lsm, major->name);
235 }
236 }
237 }
238
239 sep = kstrdup(order, GFP_KERNEL);
240 next = sep;
241 /* Walk the list, looking for matching LSMs. */
242 while ((name = strsep(&next, ",")) != NULL) {
243 bool found = false;
244
245 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
246 if (lsm->order == LSM_ORDER_MUTABLE &&
247 strcmp(lsm->name, name) == 0) {
248 append_ordered_lsm(lsm, origin);
249 found = true;
250 }
251 }
252
253 if (!found)
254 init_debug("%s ignored: %s\n", origin, name);
255 }
256
257 /* Process "security=", if given. */
258 if (chosen_major_lsm) {
259 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
260 if (exists_ordered_lsm(lsm))
261 continue;
262 if (strcmp(lsm->name, chosen_major_lsm) == 0)
263 append_ordered_lsm(lsm, "security=");
264 }
265 }
266
267 /* Disable all LSMs not in the ordered list. */
268 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
269 if (exists_ordered_lsm(lsm))
270 continue;
271 set_enabled(lsm, false);
272 init_debug("%s disabled: %s\n", origin, lsm->name);
273 }
274
275 kfree(sep);
276}
277
278static void __init lsm_early_cred(struct cred *cred);
279static void __init lsm_early_task(struct task_struct *task);
280
281static int lsm_append(const char *new, char **result);
282
283static void __init ordered_lsm_init(void)
284{
285 struct lsm_info **lsm;
286
287 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
288 GFP_KERNEL);
289
290 if (chosen_lsm_order) {
291 if (chosen_major_lsm) {
292 pr_info("security= is ignored because it is superseded by lsm=\n");
293 chosen_major_lsm = NULL;
294 }
295 ordered_lsm_parse(chosen_lsm_order, "cmdline");
296 } else
297 ordered_lsm_parse(builtin_lsm_order, "builtin");
298
299 for (lsm = ordered_lsms; *lsm; lsm++)
300 prepare_lsm(*lsm);
301
302 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
303 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
304 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
305 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
306 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
307 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
308
309 /*
310 * Create any kmem_caches needed for blobs
311 */
312 if (blob_sizes.lbs_file)
313 lsm_file_cache = kmem_cache_create("lsm_file_cache",
314 blob_sizes.lbs_file, 0,
315 SLAB_PANIC, NULL);
316 if (blob_sizes.lbs_inode)
317 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
318 blob_sizes.lbs_inode, 0,
319 SLAB_PANIC, NULL);
320
321 lsm_early_cred((struct cred *) current->cred);
322 lsm_early_task(current);
323 for (lsm = ordered_lsms; *lsm; lsm++)
324 initialize_lsm(*lsm);
325
326 kfree(ordered_lsms);
327}
328
329int __init early_security_init(void)
330{
331 int i;
332 struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
333 struct lsm_info *lsm;
334
335 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
336 i++)
337 INIT_HLIST_HEAD(&list[i]);
338
339 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
340 if (!lsm->enabled)
341 lsm->enabled = &lsm_enabled_true;
342 prepare_lsm(lsm);
343 initialize_lsm(lsm);
344 }
345
346 return 0;
347}
348
349/**
350 * security_init - initializes the security framework
351 *
352 * This should be called early in the kernel initialization sequence.
353 */
354int __init security_init(void)
355{
356 struct lsm_info *lsm;
357
358 pr_info("Security Framework initializing\n");
359
360 /*
361 * Append the names of the early LSM modules now that kmalloc() is
362 * available
363 */
364 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
365 if (lsm->enabled)
366 lsm_append(lsm->name, &lsm_names);
367 }
368
369 /* Load LSMs in specified order. */
370 ordered_lsm_init();
371
372 return 0;
373}
374
375/* Save user chosen LSM */
376static int __init choose_major_lsm(char *str)
377{
378 chosen_major_lsm = str;
379 return 1;
380}
381__setup("security=", choose_major_lsm);
382
383/* Explicitly choose LSM initialization order. */
384static int __init choose_lsm_order(char *str)
385{
386 chosen_lsm_order = str;
387 return 1;
388}
389__setup("lsm=", choose_lsm_order);
390
391/* Enable LSM order debugging. */
392static int __init enable_debug(char *str)
393{
394 debug = true;
395 return 1;
396}
397__setup("lsm.debug", enable_debug);
398
399static bool match_last_lsm(const char *list, const char *lsm)
400{
401 const char *last;
402
403 if (WARN_ON(!list || !lsm))
404 return false;
405 last = strrchr(list, ',');
406 if (last)
407 /* Pass the comma, strcmp() will check for '\0' */
408 last++;
409 else
410 last = list;
411 return !strcmp(last, lsm);
412}
413
414static int lsm_append(const char *new, char **result)
415{
416 char *cp;
417
418 if (*result == NULL) {
419 *result = kstrdup(new, GFP_KERNEL);
420 if (*result == NULL)
421 return -ENOMEM;
422 } else {
423 /* Check if it is the last registered name */
424 if (match_last_lsm(*result, new))
425 return 0;
426 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
427 if (cp == NULL)
428 return -ENOMEM;
429 kfree(*result);
430 *result = cp;
431 }
432 return 0;
433}
434
435/**
436 * security_add_hooks - Add a modules hooks to the hook lists.
437 * @hooks: the hooks to add
438 * @count: the number of hooks to add
439 * @lsm: the name of the security module
440 *
441 * Each LSM has to register its hooks with the infrastructure.
442 */
443void __init security_add_hooks(struct security_hook_list *hooks, int count,
444 char *lsm)
445{
446 int i;
447
448 for (i = 0; i < count; i++) {
449 hooks[i].lsm = lsm;
450 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
451 }
452
453 /*
454 * Don't try to append during early_security_init(), we'll come back
455 * and fix this up afterwards.
456 */
457 if (slab_is_available()) {
458 if (lsm_append(lsm, &lsm_names) < 0)
459 panic("%s - Cannot get early memory.\n", __func__);
460 }
461}
462
463int call_blocking_lsm_notifier(enum lsm_event event, void *data)
464{
465 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
466 event, data);
467}
468EXPORT_SYMBOL(call_blocking_lsm_notifier);
469
470int register_blocking_lsm_notifier(struct notifier_block *nb)
471{
472 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
473 nb);
474}
475EXPORT_SYMBOL(register_blocking_lsm_notifier);
476
477int unregister_blocking_lsm_notifier(struct notifier_block *nb)
478{
479 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
480 nb);
481}
482EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
483
484/**
485 * lsm_cred_alloc - allocate a composite cred blob
486 * @cred: the cred that needs a blob
487 * @gfp: allocation type
488 *
489 * Allocate the cred blob for all the modules
490 *
491 * Returns 0, or -ENOMEM if memory can't be allocated.
492 */
493static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
494{
495 if (blob_sizes.lbs_cred == 0) {
496 cred->security = NULL;
497 return 0;
498 }
499
500 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
501 if (cred->security == NULL)
502 return -ENOMEM;
503 return 0;
504}
505
506/**
507 * lsm_early_cred - during initialization allocate a composite cred blob
508 * @cred: the cred that needs a blob
509 *
510 * Allocate the cred blob for all the modules
511 */
512static void __init lsm_early_cred(struct cred *cred)
513{
514 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
515
516 if (rc)
517 panic("%s: Early cred alloc failed.\n", __func__);
518}
519
520/**
521 * lsm_file_alloc - allocate a composite file blob
522 * @file: the file that needs a blob
523 *
524 * Allocate the file blob for all the modules
525 *
526 * Returns 0, or -ENOMEM if memory can't be allocated.
527 */
528static int lsm_file_alloc(struct file *file)
529{
530 if (!lsm_file_cache) {
531 file->f_security = NULL;
532 return 0;
533 }
534
535 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
536 if (file->f_security == NULL)
537 return -ENOMEM;
538 return 0;
539}
540
541/**
542 * lsm_inode_alloc - allocate a composite inode blob
543 * @inode: the inode that needs a blob
544 *
545 * Allocate the inode blob for all the modules
546 *
547 * Returns 0, or -ENOMEM if memory can't be allocated.
548 */
549int lsm_inode_alloc(struct inode *inode)
550{
551 if (!lsm_inode_cache) {
552 inode->i_security = NULL;
553 return 0;
554 }
555
556 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
557 if (inode->i_security == NULL)
558 return -ENOMEM;
559 return 0;
560}
561
562/**
563 * lsm_task_alloc - allocate a composite task blob
564 * @task: the task that needs a blob
565 *
566 * Allocate the task blob for all the modules
567 *
568 * Returns 0, or -ENOMEM if memory can't be allocated.
569 */
570static int lsm_task_alloc(struct task_struct *task)
571{
572 if (blob_sizes.lbs_task == 0) {
573 task->security = NULL;
574 return 0;
575 }
576
577 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
578 if (task->security == NULL)
579 return -ENOMEM;
580 return 0;
581}
582
583/**
584 * lsm_ipc_alloc - allocate a composite ipc blob
585 * @kip: the ipc that needs a blob
586 *
587 * Allocate the ipc blob for all the modules
588 *
589 * Returns 0, or -ENOMEM if memory can't be allocated.
590 */
591static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
592{
593 if (blob_sizes.lbs_ipc == 0) {
594 kip->security = NULL;
595 return 0;
596 }
597
598 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
599 if (kip->security == NULL)
600 return -ENOMEM;
601 return 0;
602}
603
604/**
605 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
606 * @mp: the msg_msg that needs a blob
607 *
608 * Allocate the ipc blob for all the modules
609 *
610 * Returns 0, or -ENOMEM if memory can't be allocated.
611 */
612static int lsm_msg_msg_alloc(struct msg_msg *mp)
613{
614 if (blob_sizes.lbs_msg_msg == 0) {
615 mp->security = NULL;
616 return 0;
617 }
618
619 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
620 if (mp->security == NULL)
621 return -ENOMEM;
622 return 0;
623}
624
625/**
626 * lsm_early_task - during initialization allocate a composite task blob
627 * @task: the task that needs a blob
628 *
629 * Allocate the task blob for all the modules
630 */
631static void __init lsm_early_task(struct task_struct *task)
632{
633 int rc = lsm_task_alloc(task);
634
635 if (rc)
636 panic("%s: Early task alloc failed.\n", __func__);
637}
638
639/*
640 * Hook list operation macros.
641 *
642 * call_void_hook:
643 * This is a hook that does not return a value.
644 *
645 * call_int_hook:
646 * This is a hook that returns a value.
647 */
648
649#define call_void_hook(FUNC, ...) \
650 do { \
651 struct security_hook_list *P; \
652 \
653 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
654 P->hook.FUNC(__VA_ARGS__); \
655 } while (0)
656
657#define call_int_hook(FUNC, IRC, ...) ({ \
658 int RC = IRC; \
659 do { \
660 struct security_hook_list *P; \
661 \
662 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
663 RC = P->hook.FUNC(__VA_ARGS__); \
664 if (RC != 0) \
665 break; \
666 } \
667 } while (0); \
668 RC; \
669})
670
671/* Security operations */
672
673int security_binder_set_context_mgr(struct task_struct *mgr)
674{
675 return call_int_hook(binder_set_context_mgr, 0, mgr);
676}
677
678int security_binder_transaction(struct task_struct *from,
679 struct task_struct *to)
680{
681 return call_int_hook(binder_transaction, 0, from, to);
682}
683
684int security_binder_transfer_binder(struct task_struct *from,
685 struct task_struct *to)
686{
687 return call_int_hook(binder_transfer_binder, 0, from, to);
688}
689
690int security_binder_transfer_file(struct task_struct *from,
691 struct task_struct *to, struct file *file)
692{
693 return call_int_hook(binder_transfer_file, 0, from, to, file);
694}
695
696int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
697{
698 return call_int_hook(ptrace_access_check, 0, child, mode);
699}
700
701int security_ptrace_traceme(struct task_struct *parent)
702{
703 return call_int_hook(ptrace_traceme, 0, parent);
704}
705
706int security_capget(struct task_struct *target,
707 kernel_cap_t *effective,
708 kernel_cap_t *inheritable,
709 kernel_cap_t *permitted)
710{
711 return call_int_hook(capget, 0, target,
712 effective, inheritable, permitted);
713}
714
715int security_capset(struct cred *new, const struct cred *old,
716 const kernel_cap_t *effective,
717 const kernel_cap_t *inheritable,
718 const kernel_cap_t *permitted)
719{
720 return call_int_hook(capset, 0, new, old,
721 effective, inheritable, permitted);
722}
723
724int security_capable(const struct cred *cred,
725 struct user_namespace *ns,
726 int cap,
727 unsigned int opts)
728{
729 return call_int_hook(capable, 0, cred, ns, cap, opts);
730}
731
732int security_quotactl(int cmds, int type, int id, struct super_block *sb)
733{
734 return call_int_hook(quotactl, 0, cmds, type, id, sb);
735}
736
737int security_quota_on(struct dentry *dentry)
738{
739 return call_int_hook(quota_on, 0, dentry);
740}
741
742int security_syslog(int type)
743{
744 return call_int_hook(syslog, 0, type);
745}
746
747int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
748{
749 return call_int_hook(settime, 0, ts, tz);
750}
751
752int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
753{
754 struct security_hook_list *hp;
755 int cap_sys_admin = 1;
756 int rc;
757
758 /*
759 * The module will respond with a positive value if
760 * it thinks the __vm_enough_memory() call should be
761 * made with the cap_sys_admin set. If all of the modules
762 * agree that it should be set it will. If any module
763 * thinks it should not be set it won't.
764 */
765 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
766 rc = hp->hook.vm_enough_memory(mm, pages);
767 if (rc <= 0) {
768 cap_sys_admin = 0;
769 break;
770 }
771 }
772 return __vm_enough_memory(mm, pages, cap_sys_admin);
773}
774
775int security_bprm_set_creds(struct linux_binprm *bprm)
776{
777 return call_int_hook(bprm_set_creds, 0, bprm);
778}
779
780int security_bprm_check(struct linux_binprm *bprm)
781{
782 int ret;
783
784 ret = call_int_hook(bprm_check_security, 0, bprm);
785 if (ret)
786 return ret;
787 return ima_bprm_check(bprm);
788}
789
790void security_bprm_committing_creds(struct linux_binprm *bprm)
791{
792 call_void_hook(bprm_committing_creds, bprm);
793}
794
795void security_bprm_committed_creds(struct linux_binprm *bprm)
796{
797 call_void_hook(bprm_committed_creds, bprm);
798}
799
800int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
801{
802 return call_int_hook(fs_context_dup, 0, fc, src_fc);
803}
804
805int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
806{
807 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
808}
809
810int security_sb_alloc(struct super_block *sb)
811{
812 return call_int_hook(sb_alloc_security, 0, sb);
813}
814
815void security_sb_free(struct super_block *sb)
816{
817 call_void_hook(sb_free_security, sb);
818}
819
820void security_free_mnt_opts(void **mnt_opts)
821{
822 if (!*mnt_opts)
823 return;
824 call_void_hook(sb_free_mnt_opts, *mnt_opts);
825 *mnt_opts = NULL;
826}
827EXPORT_SYMBOL(security_free_mnt_opts);
828
829int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
830{
831 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
832}
833EXPORT_SYMBOL(security_sb_eat_lsm_opts);
834
835int security_sb_remount(struct super_block *sb,
836 void *mnt_opts)
837{
838 return call_int_hook(sb_remount, 0, sb, mnt_opts);
839}
840EXPORT_SYMBOL(security_sb_remount);
841
842int security_sb_kern_mount(struct super_block *sb)
843{
844 return call_int_hook(sb_kern_mount, 0, sb);
845}
846
847int security_sb_show_options(struct seq_file *m, struct super_block *sb)
848{
849 return call_int_hook(sb_show_options, 0, m, sb);
850}
851
852int security_sb_statfs(struct dentry *dentry)
853{
854 return call_int_hook(sb_statfs, 0, dentry);
855}
856
857int security_sb_mount(const char *dev_name, const struct path *path,
858 const char *type, unsigned long flags, void *data)
859{
860 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
861}
862
863int security_sb_umount(struct vfsmount *mnt, int flags)
864{
865 return call_int_hook(sb_umount, 0, mnt, flags);
866}
867
868int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
869{
870 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
871}
872
873int security_sb_set_mnt_opts(struct super_block *sb,
874 void *mnt_opts,
875 unsigned long kern_flags,
876 unsigned long *set_kern_flags)
877{
878 return call_int_hook(sb_set_mnt_opts,
879 mnt_opts ? -EOPNOTSUPP : 0, sb,
880 mnt_opts, kern_flags, set_kern_flags);
881}
882EXPORT_SYMBOL(security_sb_set_mnt_opts);
883
884int security_sb_clone_mnt_opts(const struct super_block *oldsb,
885 struct super_block *newsb,
886 unsigned long kern_flags,
887 unsigned long *set_kern_flags)
888{
889 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
890 kern_flags, set_kern_flags);
891}
892EXPORT_SYMBOL(security_sb_clone_mnt_opts);
893
894int security_add_mnt_opt(const char *option, const char *val, int len,
895 void **mnt_opts)
896{
897 return call_int_hook(sb_add_mnt_opt, -EINVAL,
898 option, val, len, mnt_opts);
899}
900EXPORT_SYMBOL(security_add_mnt_opt);
901
902int security_move_mount(const struct path *from_path, const struct path *to_path)
903{
904 return call_int_hook(move_mount, 0, from_path, to_path);
905}
906
907int security_path_notify(const struct path *path, u64 mask,
908 unsigned int obj_type)
909{
910 return call_int_hook(path_notify, 0, path, mask, obj_type);
911}
912
913int security_inode_alloc(struct inode *inode)
914{
915 int rc = lsm_inode_alloc(inode);
916
917 if (unlikely(rc))
918 return rc;
919 rc = call_int_hook(inode_alloc_security, 0, inode);
920 if (unlikely(rc))
921 security_inode_free(inode);
922 return rc;
923}
924
925static void inode_free_by_rcu(struct rcu_head *head)
926{
927 /*
928 * The rcu head is at the start of the inode blob
929 */
930 kmem_cache_free(lsm_inode_cache, head);
931}
932
933void security_inode_free(struct inode *inode)
934{
935 integrity_inode_free(inode);
936 call_void_hook(inode_free_security, inode);
937 /*
938 * The inode may still be referenced in a path walk and
939 * a call to security_inode_permission() can be made
940 * after inode_free_security() is called. Ideally, the VFS
941 * wouldn't do this, but fixing that is a much harder
942 * job. For now, simply free the i_security via RCU, and
943 * leave the current inode->i_security pointer intact.
944 * The inode will be freed after the RCU grace period too.
945 */
946 if (inode->i_security)
947 call_rcu((struct rcu_head *)inode->i_security,
948 inode_free_by_rcu);
949}
950
951int security_dentry_init_security(struct dentry *dentry, int mode,
952 const struct qstr *name, void **ctx,
953 u32 *ctxlen)
954{
955 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
956 name, ctx, ctxlen);
957}
958EXPORT_SYMBOL(security_dentry_init_security);
959
960int security_dentry_create_files_as(struct dentry *dentry, int mode,
961 struct qstr *name,
962 const struct cred *old, struct cred *new)
963{
964 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
965 name, old, new);
966}
967EXPORT_SYMBOL(security_dentry_create_files_as);
968
969int security_inode_init_security(struct inode *inode, struct inode *dir,
970 const struct qstr *qstr,
971 const initxattrs initxattrs, void *fs_data)
972{
973 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
974 struct xattr *lsm_xattr, *evm_xattr, *xattr;
975 int ret;
976
977 if (unlikely(IS_PRIVATE(inode)))
978 return 0;
979
980 if (!initxattrs)
981 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
982 dir, qstr, NULL, NULL, NULL);
983 memset(new_xattrs, 0, sizeof(new_xattrs));
984 lsm_xattr = new_xattrs;
985 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
986 &lsm_xattr->name,
987 &lsm_xattr->value,
988 &lsm_xattr->value_len);
989 if (ret)
990 goto out;
991
992 evm_xattr = lsm_xattr + 1;
993 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
994 if (ret)
995 goto out;
996 ret = initxattrs(inode, new_xattrs, fs_data);
997out:
998 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
999 kfree(xattr->value);
1000 return (ret == -EOPNOTSUPP) ? 0 : ret;
1001}
1002EXPORT_SYMBOL(security_inode_init_security);
1003
1004int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1005 const struct qstr *qstr, const char **name,
1006 void **value, size_t *len)
1007{
1008 if (unlikely(IS_PRIVATE(inode)))
1009 return -EOPNOTSUPP;
1010 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1011 qstr, name, value, len);
1012}
1013EXPORT_SYMBOL(security_old_inode_init_security);
1014
1015#ifdef CONFIG_SECURITY_PATH
1016int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1017 unsigned int dev)
1018{
1019 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1020 return 0;
1021 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1022}
1023EXPORT_SYMBOL(security_path_mknod);
1024
1025int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1026{
1027 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1028 return 0;
1029 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1030}
1031EXPORT_SYMBOL(security_path_mkdir);
1032
1033int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1034{
1035 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1036 return 0;
1037 return call_int_hook(path_rmdir, 0, dir, dentry);
1038}
1039
1040int security_path_unlink(const struct path *dir, struct dentry *dentry)
1041{
1042 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1043 return 0;
1044 return call_int_hook(path_unlink, 0, dir, dentry);
1045}
1046EXPORT_SYMBOL(security_path_unlink);
1047
1048int security_path_symlink(const struct path *dir, struct dentry *dentry,
1049 const char *old_name)
1050{
1051 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1052 return 0;
1053 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1054}
1055
1056int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1057 struct dentry *new_dentry)
1058{
1059 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1060 return 0;
1061 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1062}
1063
1064int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1065 const struct path *new_dir, struct dentry *new_dentry,
1066 unsigned int flags)
1067{
1068 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1069 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1070 return 0;
1071
1072 if (flags & RENAME_EXCHANGE) {
1073 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1074 old_dir, old_dentry);
1075 if (err)
1076 return err;
1077 }
1078
1079 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1080 new_dentry);
1081}
1082EXPORT_SYMBOL(security_path_rename);
1083
1084int security_path_truncate(const struct path *path)
1085{
1086 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1087 return 0;
1088 return call_int_hook(path_truncate, 0, path);
1089}
1090
1091int security_path_chmod(const struct path *path, umode_t mode)
1092{
1093 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1094 return 0;
1095 return call_int_hook(path_chmod, 0, path, mode);
1096}
1097
1098int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1099{
1100 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1101 return 0;
1102 return call_int_hook(path_chown, 0, path, uid, gid);
1103}
1104
1105int security_path_chroot(const struct path *path)
1106{
1107 return call_int_hook(path_chroot, 0, path);
1108}
1109#endif
1110
1111int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1112{
1113 if (unlikely(IS_PRIVATE(dir)))
1114 return 0;
1115 return call_int_hook(inode_create, 0, dir, dentry, mode);
1116}
1117EXPORT_SYMBOL_GPL(security_inode_create);
1118
1119int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1120 struct dentry *new_dentry)
1121{
1122 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1123 return 0;
1124 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1125}
1126
1127int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1128{
1129 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1130 return 0;
1131 return call_int_hook(inode_unlink, 0, dir, dentry);
1132}
1133
1134int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1135 const char *old_name)
1136{
1137 if (unlikely(IS_PRIVATE(dir)))
1138 return 0;
1139 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1140}
1141
1142int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1143{
1144 if (unlikely(IS_PRIVATE(dir)))
1145 return 0;
1146 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1147}
1148EXPORT_SYMBOL_GPL(security_inode_mkdir);
1149
1150int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1151{
1152 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1153 return 0;
1154 return call_int_hook(inode_rmdir, 0, dir, dentry);
1155}
1156
1157int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1158{
1159 if (unlikely(IS_PRIVATE(dir)))
1160 return 0;
1161 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1162}
1163
1164int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1165 struct inode *new_dir, struct dentry *new_dentry,
1166 unsigned int flags)
1167{
1168 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1169 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1170 return 0;
1171
1172 if (flags & RENAME_EXCHANGE) {
1173 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1174 old_dir, old_dentry);
1175 if (err)
1176 return err;
1177 }
1178
1179 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1180 new_dir, new_dentry);
1181}
1182
1183int security_inode_readlink(struct dentry *dentry)
1184{
1185 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1186 return 0;
1187 return call_int_hook(inode_readlink, 0, dentry);
1188}
1189
1190int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1191 bool rcu)
1192{
1193 if (unlikely(IS_PRIVATE(inode)))
1194 return 0;
1195 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1196}
1197
1198int security_inode_permission(struct inode *inode, int mask)
1199{
1200 if (unlikely(IS_PRIVATE(inode)))
1201 return 0;
1202 return call_int_hook(inode_permission, 0, inode, mask);
1203}
1204
1205int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1206{
1207 int ret;
1208
1209 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1210 return 0;
1211 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1212 if (ret)
1213 return ret;
1214 return evm_inode_setattr(dentry, attr);
1215}
1216EXPORT_SYMBOL_GPL(security_inode_setattr);
1217
1218int security_inode_getattr(const struct path *path)
1219{
1220 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1221 return 0;
1222 return call_int_hook(inode_getattr, 0, path);
1223}
1224
1225int security_inode_setxattr(struct dentry *dentry, const char *name,
1226 const void *value, size_t size, int flags)
1227{
1228 int ret;
1229
1230 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1231 return 0;
1232 /*
1233 * SELinux and Smack integrate the cap call,
1234 * so assume that all LSMs supplying this call do so.
1235 */
1236 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1237 flags);
1238
1239 if (ret == 1)
1240 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1241 if (ret)
1242 return ret;
1243 ret = ima_inode_setxattr(dentry, name, value, size);
1244 if (ret)
1245 return ret;
1246 return evm_inode_setxattr(dentry, name, value, size);
1247}
1248
1249void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1250 const void *value, size_t size, int flags)
1251{
1252 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1253 return;
1254 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1255 evm_inode_post_setxattr(dentry, name, value, size);
1256}
1257
1258int security_inode_getxattr(struct dentry *dentry, const char *name)
1259{
1260 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1261 return 0;
1262 return call_int_hook(inode_getxattr, 0, dentry, name);
1263}
1264
1265int security_inode_listxattr(struct dentry *dentry)
1266{
1267 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1268 return 0;
1269 return call_int_hook(inode_listxattr, 0, dentry);
1270}
1271
1272int security_inode_removexattr(struct dentry *dentry, const char *name)
1273{
1274 int ret;
1275
1276 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1277 return 0;
1278 /*
1279 * SELinux and Smack integrate the cap call,
1280 * so assume that all LSMs supplying this call do so.
1281 */
1282 ret = call_int_hook(inode_removexattr, 1, dentry, name);
1283 if (ret == 1)
1284 ret = cap_inode_removexattr(dentry, name);
1285 if (ret)
1286 return ret;
1287 ret = ima_inode_removexattr(dentry, name);
1288 if (ret)
1289 return ret;
1290 return evm_inode_removexattr(dentry, name);
1291}
1292
1293int security_inode_need_killpriv(struct dentry *dentry)
1294{
1295 return call_int_hook(inode_need_killpriv, 0, dentry);
1296}
1297
1298int security_inode_killpriv(struct dentry *dentry)
1299{
1300 return call_int_hook(inode_killpriv, 0, dentry);
1301}
1302
1303int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1304{
1305 struct security_hook_list *hp;
1306 int rc;
1307
1308 if (unlikely(IS_PRIVATE(inode)))
1309 return -EOPNOTSUPP;
1310 /*
1311 * Only one module will provide an attribute with a given name.
1312 */
1313 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1314 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1315 if (rc != -EOPNOTSUPP)
1316 return rc;
1317 }
1318 return -EOPNOTSUPP;
1319}
1320
1321int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1322{
1323 struct security_hook_list *hp;
1324 int rc;
1325
1326 if (unlikely(IS_PRIVATE(inode)))
1327 return -EOPNOTSUPP;
1328 /*
1329 * Only one module will provide an attribute with a given name.
1330 */
1331 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1332 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1333 flags);
1334 if (rc != -EOPNOTSUPP)
1335 return rc;
1336 }
1337 return -EOPNOTSUPP;
1338}
1339
1340int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1341{
1342 if (unlikely(IS_PRIVATE(inode)))
1343 return 0;
1344 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1345}
1346EXPORT_SYMBOL(security_inode_listsecurity);
1347
1348void security_inode_getsecid(struct inode *inode, u32 *secid)
1349{
1350 call_void_hook(inode_getsecid, inode, secid);
1351}
1352
1353int security_inode_copy_up(struct dentry *src, struct cred **new)
1354{
1355 return call_int_hook(inode_copy_up, 0, src, new);
1356}
1357EXPORT_SYMBOL(security_inode_copy_up);
1358
1359int security_inode_copy_up_xattr(const char *name)
1360{
1361 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1362}
1363EXPORT_SYMBOL(security_inode_copy_up_xattr);
1364
1365int security_kernfs_init_security(struct kernfs_node *kn_dir,
1366 struct kernfs_node *kn)
1367{
1368 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1369}
1370
1371int security_file_permission(struct file *file, int mask)
1372{
1373 int ret;
1374
1375 ret = call_int_hook(file_permission, 0, file, mask);
1376 if (ret)
1377 return ret;
1378
1379 return fsnotify_perm(file, mask);
1380}
1381
1382int security_file_alloc(struct file *file)
1383{
1384 int rc = lsm_file_alloc(file);
1385
1386 if (rc)
1387 return rc;
1388 rc = call_int_hook(file_alloc_security, 0, file);
1389 if (unlikely(rc))
1390 security_file_free(file);
1391 return rc;
1392}
1393
1394void security_file_free(struct file *file)
1395{
1396 void *blob;
1397
1398 call_void_hook(file_free_security, file);
1399
1400 blob = file->f_security;
1401 if (blob) {
1402 file->f_security = NULL;
1403 kmem_cache_free(lsm_file_cache, blob);
1404 }
1405}
1406
1407int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1408{
1409 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1410}
1411
1412static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1413{
1414 /*
1415 * Does we have PROT_READ and does the application expect
1416 * it to imply PROT_EXEC? If not, nothing to talk about...
1417 */
1418 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1419 return prot;
1420 if (!(current->personality & READ_IMPLIES_EXEC))
1421 return prot;
1422 /*
1423 * if that's an anonymous mapping, let it.
1424 */
1425 if (!file)
1426 return prot | PROT_EXEC;
1427 /*
1428 * ditto if it's not on noexec mount, except that on !MMU we need
1429 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1430 */
1431 if (!path_noexec(&file->f_path)) {
1432#ifndef CONFIG_MMU
1433 if (file->f_op->mmap_capabilities) {
1434 unsigned caps = file->f_op->mmap_capabilities(file);
1435 if (!(caps & NOMMU_MAP_EXEC))
1436 return prot;
1437 }
1438#endif
1439 return prot | PROT_EXEC;
1440 }
1441 /* anything on noexec mount won't get PROT_EXEC */
1442 return prot;
1443}
1444
1445int security_mmap_file(struct file *file, unsigned long prot,
1446 unsigned long flags)
1447{
1448 int ret;
1449 ret = call_int_hook(mmap_file, 0, file, prot,
1450 mmap_prot(file, prot), flags);
1451 if (ret)
1452 return ret;
1453 return ima_file_mmap(file, prot);
1454}
1455
1456int security_mmap_addr(unsigned long addr)
1457{
1458 return call_int_hook(mmap_addr, 0, addr);
1459}
1460
1461int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1462 unsigned long prot)
1463{
1464 return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1465}
1466
1467int security_file_lock(struct file *file, unsigned int cmd)
1468{
1469 return call_int_hook(file_lock, 0, file, cmd);
1470}
1471
1472int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1473{
1474 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1475}
1476
1477void security_file_set_fowner(struct file *file)
1478{
1479 call_void_hook(file_set_fowner, file);
1480}
1481
1482int security_file_send_sigiotask(struct task_struct *tsk,
1483 struct fown_struct *fown, int sig)
1484{
1485 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1486}
1487
1488int security_file_receive(struct file *file)
1489{
1490 return call_int_hook(file_receive, 0, file);
1491}
1492
1493int security_file_open(struct file *file)
1494{
1495 int ret;
1496
1497 ret = call_int_hook(file_open, 0, file);
1498 if (ret)
1499 return ret;
1500
1501 return fsnotify_perm(file, MAY_OPEN);
1502}
1503
1504int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1505{
1506 int rc = lsm_task_alloc(task);
1507
1508 if (rc)
1509 return rc;
1510 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1511 if (unlikely(rc))
1512 security_task_free(task);
1513 return rc;
1514}
1515
1516void security_task_free(struct task_struct *task)
1517{
1518 call_void_hook(task_free, task);
1519
1520 kfree(task->security);
1521 task->security = NULL;
1522}
1523
1524int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1525{
1526 int rc = lsm_cred_alloc(cred, gfp);
1527
1528 if (rc)
1529 return rc;
1530
1531 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1532 if (unlikely(rc))
1533 security_cred_free(cred);
1534 return rc;
1535}
1536
1537void security_cred_free(struct cred *cred)
1538{
1539 /*
1540 * There is a failure case in prepare_creds() that
1541 * may result in a call here with ->security being NULL.
1542 */
1543 if (unlikely(cred->security == NULL))
1544 return;
1545
1546 call_void_hook(cred_free, cred);
1547
1548 kfree(cred->security);
1549 cred->security = NULL;
1550}
1551
1552int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1553{
1554 int rc = lsm_cred_alloc(new, gfp);
1555
1556 if (rc)
1557 return rc;
1558
1559 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1560 if (unlikely(rc))
1561 security_cred_free(new);
1562 return rc;
1563}
1564
1565void security_transfer_creds(struct cred *new, const struct cred *old)
1566{
1567 call_void_hook(cred_transfer, new, old);
1568}
1569
1570void security_cred_getsecid(const struct cred *c, u32 *secid)
1571{
1572 *secid = 0;
1573 call_void_hook(cred_getsecid, c, secid);
1574}
1575EXPORT_SYMBOL(security_cred_getsecid);
1576
1577int security_kernel_act_as(struct cred *new, u32 secid)
1578{
1579 return call_int_hook(kernel_act_as, 0, new, secid);
1580}
1581
1582int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1583{
1584 return call_int_hook(kernel_create_files_as, 0, new, inode);
1585}
1586
1587int security_kernel_module_request(char *kmod_name)
1588{
1589 int ret;
1590
1591 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1592 if (ret)
1593 return ret;
1594 return integrity_kernel_module_request(kmod_name);
1595}
1596
1597int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1598{
1599 int ret;
1600
1601 ret = call_int_hook(kernel_read_file, 0, file, id);
1602 if (ret)
1603 return ret;
1604 return ima_read_file(file, id);
1605}
1606EXPORT_SYMBOL_GPL(security_kernel_read_file);
1607
1608int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1609 enum kernel_read_file_id id)
1610{
1611 int ret;
1612
1613 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1614 if (ret)
1615 return ret;
1616 return ima_post_read_file(file, buf, size, id);
1617}
1618EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1619
1620int security_kernel_load_data(enum kernel_load_data_id id)
1621{
1622 int ret;
1623
1624 ret = call_int_hook(kernel_load_data, 0, id);
1625 if (ret)
1626 return ret;
1627 return ima_load_data(id);
1628}
1629EXPORT_SYMBOL_GPL(security_kernel_load_data);
1630
1631int security_task_fix_setuid(struct cred *new, const struct cred *old,
1632 int flags)
1633{
1634 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1635}
1636
1637int security_task_setpgid(struct task_struct *p, pid_t pgid)
1638{
1639 return call_int_hook(task_setpgid, 0, p, pgid);
1640}
1641
1642int security_task_getpgid(struct task_struct *p)
1643{
1644 return call_int_hook(task_getpgid, 0, p);
1645}
1646
1647int security_task_getsid(struct task_struct *p)
1648{
1649 return call_int_hook(task_getsid, 0, p);
1650}
1651
1652void security_task_getsecid(struct task_struct *p, u32 *secid)
1653{
1654 *secid = 0;
1655 call_void_hook(task_getsecid, p, secid);
1656}
1657EXPORT_SYMBOL(security_task_getsecid);
1658
1659int security_task_setnice(struct task_struct *p, int nice)
1660{
1661 return call_int_hook(task_setnice, 0, p, nice);
1662}
1663
1664int security_task_setioprio(struct task_struct *p, int ioprio)
1665{
1666 return call_int_hook(task_setioprio, 0, p, ioprio);
1667}
1668
1669int security_task_getioprio(struct task_struct *p)
1670{
1671 return call_int_hook(task_getioprio, 0, p);
1672}
1673
1674int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1675 unsigned int flags)
1676{
1677 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1678}
1679
1680int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1681 struct rlimit *new_rlim)
1682{
1683 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1684}
1685
1686int security_task_setscheduler(struct task_struct *p)
1687{
1688 return call_int_hook(task_setscheduler, 0, p);
1689}
1690
1691int security_task_getscheduler(struct task_struct *p)
1692{
1693 return call_int_hook(task_getscheduler, 0, p);
1694}
1695
1696int security_task_movememory(struct task_struct *p)
1697{
1698 return call_int_hook(task_movememory, 0, p);
1699}
1700
1701int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1702 int sig, const struct cred *cred)
1703{
1704 return call_int_hook(task_kill, 0, p, info, sig, cred);
1705}
1706
1707int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1708 unsigned long arg4, unsigned long arg5)
1709{
1710 int thisrc;
1711 int rc = -ENOSYS;
1712 struct security_hook_list *hp;
1713
1714 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1715 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1716 if (thisrc != -ENOSYS) {
1717 rc = thisrc;
1718 if (thisrc != 0)
1719 break;
1720 }
1721 }
1722 return rc;
1723}
1724
1725void security_task_to_inode(struct task_struct *p, struct inode *inode)
1726{
1727 call_void_hook(task_to_inode, p, inode);
1728}
1729
1730int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1731{
1732 return call_int_hook(ipc_permission, 0, ipcp, flag);
1733}
1734
1735void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1736{
1737 *secid = 0;
1738 call_void_hook(ipc_getsecid, ipcp, secid);
1739}
1740
1741int security_msg_msg_alloc(struct msg_msg *msg)
1742{
1743 int rc = lsm_msg_msg_alloc(msg);
1744
1745 if (unlikely(rc))
1746 return rc;
1747 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1748 if (unlikely(rc))
1749 security_msg_msg_free(msg);
1750 return rc;
1751}
1752
1753void security_msg_msg_free(struct msg_msg *msg)
1754{
1755 call_void_hook(msg_msg_free_security, msg);
1756 kfree(msg->security);
1757 msg->security = NULL;
1758}
1759
1760int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1761{
1762 int rc = lsm_ipc_alloc(msq);
1763
1764 if (unlikely(rc))
1765 return rc;
1766 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1767 if (unlikely(rc))
1768 security_msg_queue_free(msq);
1769 return rc;
1770}
1771
1772void security_msg_queue_free(struct kern_ipc_perm *msq)
1773{
1774 call_void_hook(msg_queue_free_security, msq);
1775 kfree(msq->security);
1776 msq->security = NULL;
1777}
1778
1779int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1780{
1781 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1782}
1783
1784int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1785{
1786 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1787}
1788
1789int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1790 struct msg_msg *msg, int msqflg)
1791{
1792 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1793}
1794
1795int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1796 struct task_struct *target, long type, int mode)
1797{
1798 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1799}
1800
1801int security_shm_alloc(struct kern_ipc_perm *shp)
1802{
1803 int rc = lsm_ipc_alloc(shp);
1804
1805 if (unlikely(rc))
1806 return rc;
1807 rc = call_int_hook(shm_alloc_security, 0, shp);
1808 if (unlikely(rc))
1809 security_shm_free(shp);
1810 return rc;
1811}
1812
1813void security_shm_free(struct kern_ipc_perm *shp)
1814{
1815 call_void_hook(shm_free_security, shp);
1816 kfree(shp->security);
1817 shp->security = NULL;
1818}
1819
1820int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1821{
1822 return call_int_hook(shm_associate, 0, shp, shmflg);
1823}
1824
1825int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1826{
1827 return call_int_hook(shm_shmctl, 0, shp, cmd);
1828}
1829
1830int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1831{
1832 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1833}
1834
1835int security_sem_alloc(struct kern_ipc_perm *sma)
1836{
1837 int rc = lsm_ipc_alloc(sma);
1838
1839 if (unlikely(rc))
1840 return rc;
1841 rc = call_int_hook(sem_alloc_security, 0, sma);
1842 if (unlikely(rc))
1843 security_sem_free(sma);
1844 return rc;
1845}
1846
1847void security_sem_free(struct kern_ipc_perm *sma)
1848{
1849 call_void_hook(sem_free_security, sma);
1850 kfree(sma->security);
1851 sma->security = NULL;
1852}
1853
1854int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1855{
1856 return call_int_hook(sem_associate, 0, sma, semflg);
1857}
1858
1859int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1860{
1861 return call_int_hook(sem_semctl, 0, sma, cmd);
1862}
1863
1864int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1865 unsigned nsops, int alter)
1866{
1867 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1868}
1869
1870void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1871{
1872 if (unlikely(inode && IS_PRIVATE(inode)))
1873 return;
1874 call_void_hook(d_instantiate, dentry, inode);
1875}
1876EXPORT_SYMBOL(security_d_instantiate);
1877
1878int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1879 char **value)
1880{
1881 struct security_hook_list *hp;
1882
1883 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1884 if (lsm != NULL && strcmp(lsm, hp->lsm))
1885 continue;
1886 return hp->hook.getprocattr(p, name, value);
1887 }
1888 return -EINVAL;
1889}
1890
1891int security_setprocattr(const char *lsm, const char *name, void *value,
1892 size_t size)
1893{
1894 struct security_hook_list *hp;
1895
1896 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1897 if (lsm != NULL && strcmp(lsm, hp->lsm))
1898 continue;
1899 return hp->hook.setprocattr(name, value, size);
1900 }
1901 return -EINVAL;
1902}
1903
1904int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1905{
1906 return call_int_hook(netlink_send, 0, sk, skb);
1907}
1908
1909int security_ismaclabel(const char *name)
1910{
1911 return call_int_hook(ismaclabel, 0, name);
1912}
1913EXPORT_SYMBOL(security_ismaclabel);
1914
1915int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1916{
1917 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1918 seclen);
1919}
1920EXPORT_SYMBOL(security_secid_to_secctx);
1921
1922int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1923{
1924 *secid = 0;
1925 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1926}
1927EXPORT_SYMBOL(security_secctx_to_secid);
1928
1929void security_release_secctx(char *secdata, u32 seclen)
1930{
1931 call_void_hook(release_secctx, secdata, seclen);
1932}
1933EXPORT_SYMBOL(security_release_secctx);
1934
1935void security_inode_invalidate_secctx(struct inode *inode)
1936{
1937 call_void_hook(inode_invalidate_secctx, inode);
1938}
1939EXPORT_SYMBOL(security_inode_invalidate_secctx);
1940
1941int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1942{
1943 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1944}
1945EXPORT_SYMBOL(security_inode_notifysecctx);
1946
1947int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1948{
1949 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1950}
1951EXPORT_SYMBOL(security_inode_setsecctx);
1952
1953int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1954{
1955 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1956}
1957EXPORT_SYMBOL(security_inode_getsecctx);
1958
1959#ifdef CONFIG_SECURITY_NETWORK
1960
1961int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1962{
1963 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1964}
1965EXPORT_SYMBOL(security_unix_stream_connect);
1966
1967int security_unix_may_send(struct socket *sock, struct socket *other)
1968{
1969 return call_int_hook(unix_may_send, 0, sock, other);
1970}
1971EXPORT_SYMBOL(security_unix_may_send);
1972
1973int security_socket_create(int family, int type, int protocol, int kern)
1974{
1975 return call_int_hook(socket_create, 0, family, type, protocol, kern);
1976}
1977
1978int security_socket_post_create(struct socket *sock, int family,
1979 int type, int protocol, int kern)
1980{
1981 return call_int_hook(socket_post_create, 0, sock, family, type,
1982 protocol, kern);
1983}
1984
1985int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1986{
1987 return call_int_hook(socket_socketpair, 0, socka, sockb);
1988}
1989EXPORT_SYMBOL(security_socket_socketpair);
1990
1991int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1992{
1993 return call_int_hook(socket_bind, 0, sock, address, addrlen);
1994}
1995
1996int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1997{
1998 return call_int_hook(socket_connect, 0, sock, address, addrlen);
1999}
2000
2001int security_socket_listen(struct socket *sock, int backlog)
2002{
2003 return call_int_hook(socket_listen, 0, sock, backlog);
2004}
2005
2006int security_socket_accept(struct socket *sock, struct socket *newsock)
2007{
2008 return call_int_hook(socket_accept, 0, sock, newsock);
2009}
2010
2011int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2012{
2013 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2014}
2015
2016int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2017 int size, int flags)
2018{
2019 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2020}
2021
2022int security_socket_getsockname(struct socket *sock)
2023{
2024 return call_int_hook(socket_getsockname, 0, sock);
2025}
2026
2027int security_socket_getpeername(struct socket *sock)
2028{
2029 return call_int_hook(socket_getpeername, 0, sock);
2030}
2031
2032int security_socket_getsockopt(struct socket *sock, int level, int optname)
2033{
2034 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2035}
2036
2037int security_socket_setsockopt(struct socket *sock, int level, int optname)
2038{
2039 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2040}
2041
2042int security_socket_shutdown(struct socket *sock, int how)
2043{
2044 return call_int_hook(socket_shutdown, 0, sock, how);
2045}
2046
2047int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2048{
2049 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2050}
2051EXPORT_SYMBOL(security_sock_rcv_skb);
2052
2053int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2054 int __user *optlen, unsigned len)
2055{
2056 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2057 optval, optlen, len);
2058}
2059
2060int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2061{
2062 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2063 skb, secid);
2064}
2065EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2066
2067int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2068{
2069 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2070}
2071
2072void security_sk_free(struct sock *sk)
2073{
2074 call_void_hook(sk_free_security, sk);
2075}
2076
2077void security_sk_clone(const struct sock *sk, struct sock *newsk)
2078{
2079 call_void_hook(sk_clone_security, sk, newsk);
2080}
2081EXPORT_SYMBOL(security_sk_clone);
2082
2083void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2084{
2085 call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2086}
2087EXPORT_SYMBOL(security_sk_classify_flow);
2088
2089void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2090{
2091 call_void_hook(req_classify_flow, req, fl);
2092}
2093EXPORT_SYMBOL(security_req_classify_flow);
2094
2095void security_sock_graft(struct sock *sk, struct socket *parent)
2096{
2097 call_void_hook(sock_graft, sk, parent);
2098}
2099EXPORT_SYMBOL(security_sock_graft);
2100
2101int security_inet_conn_request(struct sock *sk,
2102 struct sk_buff *skb, struct request_sock *req)
2103{
2104 return call_int_hook(inet_conn_request, 0, sk, skb, req);
2105}
2106EXPORT_SYMBOL(security_inet_conn_request);
2107
2108void security_inet_csk_clone(struct sock *newsk,
2109 const struct request_sock *req)
2110{
2111 call_void_hook(inet_csk_clone, newsk, req);
2112}
2113
2114void security_inet_conn_established(struct sock *sk,
2115 struct sk_buff *skb)
2116{
2117 call_void_hook(inet_conn_established, sk, skb);
2118}
2119EXPORT_SYMBOL(security_inet_conn_established);
2120
2121int security_secmark_relabel_packet(u32 secid)
2122{
2123 return call_int_hook(secmark_relabel_packet, 0, secid);
2124}
2125EXPORT_SYMBOL(security_secmark_relabel_packet);
2126
2127void security_secmark_refcount_inc(void)
2128{
2129 call_void_hook(secmark_refcount_inc);
2130}
2131EXPORT_SYMBOL(security_secmark_refcount_inc);
2132
2133void security_secmark_refcount_dec(void)
2134{
2135 call_void_hook(secmark_refcount_dec);
2136}
2137EXPORT_SYMBOL(security_secmark_refcount_dec);
2138
2139int security_tun_dev_alloc_security(void **security)
2140{
2141 return call_int_hook(tun_dev_alloc_security, 0, security);
2142}
2143EXPORT_SYMBOL(security_tun_dev_alloc_security);
2144
2145void security_tun_dev_free_security(void *security)
2146{
2147 call_void_hook(tun_dev_free_security, security);
2148}
2149EXPORT_SYMBOL(security_tun_dev_free_security);
2150
2151int security_tun_dev_create(void)
2152{
2153 return call_int_hook(tun_dev_create, 0);
2154}
2155EXPORT_SYMBOL(security_tun_dev_create);
2156
2157int security_tun_dev_attach_queue(void *security)
2158{
2159 return call_int_hook(tun_dev_attach_queue, 0, security);
2160}
2161EXPORT_SYMBOL(security_tun_dev_attach_queue);
2162
2163int security_tun_dev_attach(struct sock *sk, void *security)
2164{
2165 return call_int_hook(tun_dev_attach, 0, sk, security);
2166}
2167EXPORT_SYMBOL(security_tun_dev_attach);
2168
2169int security_tun_dev_open(void *security)
2170{
2171 return call_int_hook(tun_dev_open, 0, security);
2172}
2173EXPORT_SYMBOL(security_tun_dev_open);
2174
2175int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2176{
2177 return call_int_hook(sctp_assoc_request, 0, ep, skb);
2178}
2179EXPORT_SYMBOL(security_sctp_assoc_request);
2180
2181int security_sctp_bind_connect(struct sock *sk, int optname,
2182 struct sockaddr *address, int addrlen)
2183{
2184 return call_int_hook(sctp_bind_connect, 0, sk, optname,
2185 address, addrlen);
2186}
2187EXPORT_SYMBOL(security_sctp_bind_connect);
2188
2189void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2190 struct sock *newsk)
2191{
2192 call_void_hook(sctp_sk_clone, ep, sk, newsk);
2193}
2194EXPORT_SYMBOL(security_sctp_sk_clone);
2195
2196#endif /* CONFIG_SECURITY_NETWORK */
2197
2198#ifdef CONFIG_SECURITY_INFINIBAND
2199
2200int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2201{
2202 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2203}
2204EXPORT_SYMBOL(security_ib_pkey_access);
2205
2206int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2207{
2208 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2209}
2210EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2211
2212int security_ib_alloc_security(void **sec)
2213{
2214 return call_int_hook(ib_alloc_security, 0, sec);
2215}
2216EXPORT_SYMBOL(security_ib_alloc_security);
2217
2218void security_ib_free_security(void *sec)
2219{
2220 call_void_hook(ib_free_security, sec);
2221}
2222EXPORT_SYMBOL(security_ib_free_security);
2223#endif /* CONFIG_SECURITY_INFINIBAND */
2224
2225#ifdef CONFIG_SECURITY_NETWORK_XFRM
2226
2227int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2228 struct xfrm_user_sec_ctx *sec_ctx,
2229 gfp_t gfp)
2230{
2231 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2232}
2233EXPORT_SYMBOL(security_xfrm_policy_alloc);
2234
2235int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2236 struct xfrm_sec_ctx **new_ctxp)
2237{
2238 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2239}
2240
2241void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2242{
2243 call_void_hook(xfrm_policy_free_security, ctx);
2244}
2245EXPORT_SYMBOL(security_xfrm_policy_free);
2246
2247int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2248{
2249 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2250}
2251
2252int security_xfrm_state_alloc(struct xfrm_state *x,
2253 struct xfrm_user_sec_ctx *sec_ctx)
2254{
2255 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2256}
2257EXPORT_SYMBOL(security_xfrm_state_alloc);
2258
2259int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2260 struct xfrm_sec_ctx *polsec, u32 secid)
2261{
2262 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2263}
2264
2265int security_xfrm_state_delete(struct xfrm_state *x)
2266{
2267 return call_int_hook(xfrm_state_delete_security, 0, x);
2268}
2269EXPORT_SYMBOL(security_xfrm_state_delete);
2270
2271void security_xfrm_state_free(struct xfrm_state *x)
2272{
2273 call_void_hook(xfrm_state_free_security, x);
2274}
2275
2276int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2277{
2278 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2279}
2280
2281int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2282 struct xfrm_policy *xp,
2283 const struct flowi *fl)
2284{
2285 struct security_hook_list *hp;
2286 int rc = 1;
2287
2288 /*
2289 * Since this function is expected to return 0 or 1, the judgment
2290 * becomes difficult if multiple LSMs supply this call. Fortunately,
2291 * we can use the first LSM's judgment because currently only SELinux
2292 * supplies this call.
2293 *
2294 * For speed optimization, we explicitly break the loop rather than
2295 * using the macro
2296 */
2297 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2298 list) {
2299 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2300 break;
2301 }
2302 return rc;
2303}
2304
2305int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2306{
2307 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2308}
2309
2310void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2311{
2312 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2313 0);
2314
2315 BUG_ON(rc);
2316}
2317EXPORT_SYMBOL(security_skb_classify_flow);
2318
2319#endif /* CONFIG_SECURITY_NETWORK_XFRM */
2320
2321#ifdef CONFIG_KEYS
2322
2323int security_key_alloc(struct key *key, const struct cred *cred,
2324 unsigned long flags)
2325{
2326 return call_int_hook(key_alloc, 0, key, cred, flags);
2327}
2328
2329void security_key_free(struct key *key)
2330{
2331 call_void_hook(key_free, key);
2332}
2333
2334int security_key_permission(key_ref_t key_ref,
2335 const struct cred *cred, unsigned perm)
2336{
2337 return call_int_hook(key_permission, 0, key_ref, cred, perm);
2338}
2339
2340int security_key_getsecurity(struct key *key, char **_buffer)
2341{
2342 *_buffer = NULL;
2343 return call_int_hook(key_getsecurity, 0, key, _buffer);
2344}
2345
2346#endif /* CONFIG_KEYS */
2347
2348#ifdef CONFIG_AUDIT
2349
2350int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2351{
2352 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2353}
2354
2355int security_audit_rule_known(struct audit_krule *krule)
2356{
2357 return call_int_hook(audit_rule_known, 0, krule);
2358}
2359
2360void security_audit_rule_free(void *lsmrule)
2361{
2362 call_void_hook(audit_rule_free, lsmrule);
2363}
2364
2365int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2366{
2367 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2368}
2369#endif /* CONFIG_AUDIT */
2370
2371#ifdef CONFIG_BPF_SYSCALL
2372int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2373{
2374 return call_int_hook(bpf, 0, cmd, attr, size);
2375}
2376int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2377{
2378 return call_int_hook(bpf_map, 0, map, fmode);
2379}
2380int security_bpf_prog(struct bpf_prog *prog)
2381{
2382 return call_int_hook(bpf_prog, 0, prog);
2383}
2384int security_bpf_map_alloc(struct bpf_map *map)
2385{
2386 return call_int_hook(bpf_map_alloc_security, 0, map);
2387}
2388int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2389{
2390 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2391}
2392void security_bpf_map_free(struct bpf_map *map)
2393{
2394 call_void_hook(bpf_map_free_security, map);
2395}
2396void security_bpf_prog_free(struct bpf_prog_aux *aux)
2397{
2398 call_void_hook(bpf_prog_free_security, aux);
2399}
2400#endif /* CONFIG_BPF_SYSCALL */
2401
2402int security_locked_down(enum lockdown_reason what)
2403{
2404 return call_int_hook(locked_down, 0, what);
2405}
2406EXPORT_SYMBOL(security_locked_down);
1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 * Copyright (C) 2016 Mellanox Technologies
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 */
14
15#include <linux/bpf.h>
16#include <linux/capability.h>
17#include <linux/dcache.h>
18#include <linux/module.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/lsm_hooks.h>
22#include <linux/integrity.h>
23#include <linux/ima.h>
24#include <linux/evm.h>
25#include <linux/fsnotify.h>
26#include <linux/mman.h>
27#include <linux/mount.h>
28#include <linux/personality.h>
29#include <linux/backing-dev.h>
30#include <linux/string.h>
31#include <net/flow.h>
32
33#include <trace/events/initcall.h>
34
35#define MAX_LSM_EVM_XATTR 2
36
37/* Maximum number of letters for an LSM name string */
38#define SECURITY_NAME_MAX 10
39
40struct security_hook_heads security_hook_heads __lsm_ro_after_init;
41static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
42
43char *lsm_names;
44/* Boot-time LSM user choice */
45static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
46 CONFIG_DEFAULT_SECURITY;
47
48static void __init do_security_initcalls(void)
49{
50 int ret;
51 initcall_t *call;
52 call = __security_initcall_start;
53 trace_initcall_level("security");
54 while (call < __security_initcall_end) {
55 trace_initcall_start((*call));
56 ret = (*call) ();
57 trace_initcall_finish((*call), ret);
58 call++;
59 }
60}
61
62/**
63 * security_init - initializes the security framework
64 *
65 * This should be called early in the kernel initialization sequence.
66 */
67int __init security_init(void)
68{
69 int i;
70 struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
71
72 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
73 i++)
74 INIT_HLIST_HEAD(&list[i]);
75 pr_info("Security Framework initialized\n");
76
77 /*
78 * Load minor LSMs, with the capability module always first.
79 */
80 capability_add_hooks();
81 yama_add_hooks();
82 loadpin_add_hooks();
83
84 /*
85 * Load all the remaining security modules.
86 */
87 do_security_initcalls();
88
89 return 0;
90}
91
92/* Save user chosen LSM */
93static int __init choose_lsm(char *str)
94{
95 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
96 return 1;
97}
98__setup("security=", choose_lsm);
99
100static bool match_last_lsm(const char *list, const char *lsm)
101{
102 const char *last;
103
104 if (WARN_ON(!list || !lsm))
105 return false;
106 last = strrchr(list, ',');
107 if (last)
108 /* Pass the comma, strcmp() will check for '\0' */
109 last++;
110 else
111 last = list;
112 return !strcmp(last, lsm);
113}
114
115static int lsm_append(char *new, char **result)
116{
117 char *cp;
118
119 if (*result == NULL) {
120 *result = kstrdup(new, GFP_KERNEL);
121 } else {
122 /* Check if it is the last registered name */
123 if (match_last_lsm(*result, new))
124 return 0;
125 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
126 if (cp == NULL)
127 return -ENOMEM;
128 kfree(*result);
129 *result = cp;
130 }
131 return 0;
132}
133
134/**
135 * security_module_enable - Load given security module on boot ?
136 * @module: the name of the module
137 *
138 * Each LSM must pass this method before registering its own operations
139 * to avoid security registration races. This method may also be used
140 * to check if your LSM is currently loaded during kernel initialization.
141 *
142 * Returns:
143 *
144 * true if:
145 *
146 * - The passed LSM is the one chosen by user at boot time,
147 * - or the passed LSM is configured as the default and the user did not
148 * choose an alternate LSM at boot time.
149 *
150 * Otherwise, return false.
151 */
152int __init security_module_enable(const char *module)
153{
154 return !strcmp(module, chosen_lsm);
155}
156
157/**
158 * security_add_hooks - Add a modules hooks to the hook lists.
159 * @hooks: the hooks to add
160 * @count: the number of hooks to add
161 * @lsm: the name of the security module
162 *
163 * Each LSM has to register its hooks with the infrastructure.
164 */
165void __init security_add_hooks(struct security_hook_list *hooks, int count,
166 char *lsm)
167{
168 int i;
169
170 for (i = 0; i < count; i++) {
171 hooks[i].lsm = lsm;
172 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
173 }
174 if (lsm_append(lsm, &lsm_names) < 0)
175 panic("%s - Cannot get early memory.\n", __func__);
176}
177
178int call_lsm_notifier(enum lsm_event event, void *data)
179{
180 return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
181}
182EXPORT_SYMBOL(call_lsm_notifier);
183
184int register_lsm_notifier(struct notifier_block *nb)
185{
186 return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
187}
188EXPORT_SYMBOL(register_lsm_notifier);
189
190int unregister_lsm_notifier(struct notifier_block *nb)
191{
192 return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
193}
194EXPORT_SYMBOL(unregister_lsm_notifier);
195
196/*
197 * Hook list operation macros.
198 *
199 * call_void_hook:
200 * This is a hook that does not return a value.
201 *
202 * call_int_hook:
203 * This is a hook that returns a value.
204 */
205
206#define call_void_hook(FUNC, ...) \
207 do { \
208 struct security_hook_list *P; \
209 \
210 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
211 P->hook.FUNC(__VA_ARGS__); \
212 } while (0)
213
214#define call_int_hook(FUNC, IRC, ...) ({ \
215 int RC = IRC; \
216 do { \
217 struct security_hook_list *P; \
218 \
219 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
220 RC = P->hook.FUNC(__VA_ARGS__); \
221 if (RC != 0) \
222 break; \
223 } \
224 } while (0); \
225 RC; \
226})
227
228/* Security operations */
229
230int security_binder_set_context_mgr(struct task_struct *mgr)
231{
232 return call_int_hook(binder_set_context_mgr, 0, mgr);
233}
234
235int security_binder_transaction(struct task_struct *from,
236 struct task_struct *to)
237{
238 return call_int_hook(binder_transaction, 0, from, to);
239}
240
241int security_binder_transfer_binder(struct task_struct *from,
242 struct task_struct *to)
243{
244 return call_int_hook(binder_transfer_binder, 0, from, to);
245}
246
247int security_binder_transfer_file(struct task_struct *from,
248 struct task_struct *to, struct file *file)
249{
250 return call_int_hook(binder_transfer_file, 0, from, to, file);
251}
252
253int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
254{
255 return call_int_hook(ptrace_access_check, 0, child, mode);
256}
257
258int security_ptrace_traceme(struct task_struct *parent)
259{
260 return call_int_hook(ptrace_traceme, 0, parent);
261}
262
263int security_capget(struct task_struct *target,
264 kernel_cap_t *effective,
265 kernel_cap_t *inheritable,
266 kernel_cap_t *permitted)
267{
268 return call_int_hook(capget, 0, target,
269 effective, inheritable, permitted);
270}
271
272int security_capset(struct cred *new, const struct cred *old,
273 const kernel_cap_t *effective,
274 const kernel_cap_t *inheritable,
275 const kernel_cap_t *permitted)
276{
277 return call_int_hook(capset, 0, new, old,
278 effective, inheritable, permitted);
279}
280
281int security_capable(const struct cred *cred, struct user_namespace *ns,
282 int cap)
283{
284 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT);
285}
286
287int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
288 int cap)
289{
290 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT);
291}
292
293int security_quotactl(int cmds, int type, int id, struct super_block *sb)
294{
295 return call_int_hook(quotactl, 0, cmds, type, id, sb);
296}
297
298int security_quota_on(struct dentry *dentry)
299{
300 return call_int_hook(quota_on, 0, dentry);
301}
302
303int security_syslog(int type)
304{
305 return call_int_hook(syslog, 0, type);
306}
307
308int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
309{
310 return call_int_hook(settime, 0, ts, tz);
311}
312
313int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
314{
315 struct security_hook_list *hp;
316 int cap_sys_admin = 1;
317 int rc;
318
319 /*
320 * The module will respond with a positive value if
321 * it thinks the __vm_enough_memory() call should be
322 * made with the cap_sys_admin set. If all of the modules
323 * agree that it should be set it will. If any module
324 * thinks it should not be set it won't.
325 */
326 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
327 rc = hp->hook.vm_enough_memory(mm, pages);
328 if (rc <= 0) {
329 cap_sys_admin = 0;
330 break;
331 }
332 }
333 return __vm_enough_memory(mm, pages, cap_sys_admin);
334}
335
336int security_bprm_set_creds(struct linux_binprm *bprm)
337{
338 return call_int_hook(bprm_set_creds, 0, bprm);
339}
340
341int security_bprm_check(struct linux_binprm *bprm)
342{
343 int ret;
344
345 ret = call_int_hook(bprm_check_security, 0, bprm);
346 if (ret)
347 return ret;
348 return ima_bprm_check(bprm);
349}
350
351void security_bprm_committing_creds(struct linux_binprm *bprm)
352{
353 call_void_hook(bprm_committing_creds, bprm);
354}
355
356void security_bprm_committed_creds(struct linux_binprm *bprm)
357{
358 call_void_hook(bprm_committed_creds, bprm);
359}
360
361int security_sb_alloc(struct super_block *sb)
362{
363 return call_int_hook(sb_alloc_security, 0, sb);
364}
365
366void security_sb_free(struct super_block *sb)
367{
368 call_void_hook(sb_free_security, sb);
369}
370
371int security_sb_copy_data(char *orig, char *copy)
372{
373 return call_int_hook(sb_copy_data, 0, orig, copy);
374}
375EXPORT_SYMBOL(security_sb_copy_data);
376
377int security_sb_remount(struct super_block *sb, void *data)
378{
379 return call_int_hook(sb_remount, 0, sb, data);
380}
381
382int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
383{
384 return call_int_hook(sb_kern_mount, 0, sb, flags, data);
385}
386
387int security_sb_show_options(struct seq_file *m, struct super_block *sb)
388{
389 return call_int_hook(sb_show_options, 0, m, sb);
390}
391
392int security_sb_statfs(struct dentry *dentry)
393{
394 return call_int_hook(sb_statfs, 0, dentry);
395}
396
397int security_sb_mount(const char *dev_name, const struct path *path,
398 const char *type, unsigned long flags, void *data)
399{
400 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
401}
402
403int security_sb_umount(struct vfsmount *mnt, int flags)
404{
405 return call_int_hook(sb_umount, 0, mnt, flags);
406}
407
408int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
409{
410 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
411}
412
413int security_sb_set_mnt_opts(struct super_block *sb,
414 struct security_mnt_opts *opts,
415 unsigned long kern_flags,
416 unsigned long *set_kern_flags)
417{
418 return call_int_hook(sb_set_mnt_opts,
419 opts->num_mnt_opts ? -EOPNOTSUPP : 0, sb,
420 opts, kern_flags, set_kern_flags);
421}
422EXPORT_SYMBOL(security_sb_set_mnt_opts);
423
424int security_sb_clone_mnt_opts(const struct super_block *oldsb,
425 struct super_block *newsb,
426 unsigned long kern_flags,
427 unsigned long *set_kern_flags)
428{
429 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
430 kern_flags, set_kern_flags);
431}
432EXPORT_SYMBOL(security_sb_clone_mnt_opts);
433
434int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
435{
436 return call_int_hook(sb_parse_opts_str, 0, options, opts);
437}
438EXPORT_SYMBOL(security_sb_parse_opts_str);
439
440int security_inode_alloc(struct inode *inode)
441{
442 inode->i_security = NULL;
443 return call_int_hook(inode_alloc_security, 0, inode);
444}
445
446void security_inode_free(struct inode *inode)
447{
448 integrity_inode_free(inode);
449 call_void_hook(inode_free_security, inode);
450}
451
452int security_dentry_init_security(struct dentry *dentry, int mode,
453 const struct qstr *name, void **ctx,
454 u32 *ctxlen)
455{
456 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
457 name, ctx, ctxlen);
458}
459EXPORT_SYMBOL(security_dentry_init_security);
460
461int security_dentry_create_files_as(struct dentry *dentry, int mode,
462 struct qstr *name,
463 const struct cred *old, struct cred *new)
464{
465 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
466 name, old, new);
467}
468EXPORT_SYMBOL(security_dentry_create_files_as);
469
470int security_inode_init_security(struct inode *inode, struct inode *dir,
471 const struct qstr *qstr,
472 const initxattrs initxattrs, void *fs_data)
473{
474 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
475 struct xattr *lsm_xattr, *evm_xattr, *xattr;
476 int ret;
477
478 if (unlikely(IS_PRIVATE(inode)))
479 return 0;
480
481 if (!initxattrs)
482 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
483 dir, qstr, NULL, NULL, NULL);
484 memset(new_xattrs, 0, sizeof(new_xattrs));
485 lsm_xattr = new_xattrs;
486 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
487 &lsm_xattr->name,
488 &lsm_xattr->value,
489 &lsm_xattr->value_len);
490 if (ret)
491 goto out;
492
493 evm_xattr = lsm_xattr + 1;
494 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
495 if (ret)
496 goto out;
497 ret = initxattrs(inode, new_xattrs, fs_data);
498out:
499 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
500 kfree(xattr->value);
501 return (ret == -EOPNOTSUPP) ? 0 : ret;
502}
503EXPORT_SYMBOL(security_inode_init_security);
504
505int security_old_inode_init_security(struct inode *inode, struct inode *dir,
506 const struct qstr *qstr, const char **name,
507 void **value, size_t *len)
508{
509 if (unlikely(IS_PRIVATE(inode)))
510 return -EOPNOTSUPP;
511 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
512 qstr, name, value, len);
513}
514EXPORT_SYMBOL(security_old_inode_init_security);
515
516#ifdef CONFIG_SECURITY_PATH
517int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
518 unsigned int dev)
519{
520 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
521 return 0;
522 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
523}
524EXPORT_SYMBOL(security_path_mknod);
525
526int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
527{
528 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
529 return 0;
530 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
531}
532EXPORT_SYMBOL(security_path_mkdir);
533
534int security_path_rmdir(const struct path *dir, struct dentry *dentry)
535{
536 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
537 return 0;
538 return call_int_hook(path_rmdir, 0, dir, dentry);
539}
540
541int security_path_unlink(const struct path *dir, struct dentry *dentry)
542{
543 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
544 return 0;
545 return call_int_hook(path_unlink, 0, dir, dentry);
546}
547EXPORT_SYMBOL(security_path_unlink);
548
549int security_path_symlink(const struct path *dir, struct dentry *dentry,
550 const char *old_name)
551{
552 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
553 return 0;
554 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
555}
556
557int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
558 struct dentry *new_dentry)
559{
560 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
561 return 0;
562 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
563}
564
565int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
566 const struct path *new_dir, struct dentry *new_dentry,
567 unsigned int flags)
568{
569 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
570 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
571 return 0;
572
573 if (flags & RENAME_EXCHANGE) {
574 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
575 old_dir, old_dentry);
576 if (err)
577 return err;
578 }
579
580 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
581 new_dentry);
582}
583EXPORT_SYMBOL(security_path_rename);
584
585int security_path_truncate(const struct path *path)
586{
587 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
588 return 0;
589 return call_int_hook(path_truncate, 0, path);
590}
591
592int security_path_chmod(const struct path *path, umode_t mode)
593{
594 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
595 return 0;
596 return call_int_hook(path_chmod, 0, path, mode);
597}
598
599int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
600{
601 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
602 return 0;
603 return call_int_hook(path_chown, 0, path, uid, gid);
604}
605
606int security_path_chroot(const struct path *path)
607{
608 return call_int_hook(path_chroot, 0, path);
609}
610#endif
611
612int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
613{
614 if (unlikely(IS_PRIVATE(dir)))
615 return 0;
616 return call_int_hook(inode_create, 0, dir, dentry, mode);
617}
618EXPORT_SYMBOL_GPL(security_inode_create);
619
620int security_inode_link(struct dentry *old_dentry, struct inode *dir,
621 struct dentry *new_dentry)
622{
623 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
624 return 0;
625 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
626}
627
628int security_inode_unlink(struct inode *dir, struct dentry *dentry)
629{
630 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
631 return 0;
632 return call_int_hook(inode_unlink, 0, dir, dentry);
633}
634
635int security_inode_symlink(struct inode *dir, struct dentry *dentry,
636 const char *old_name)
637{
638 if (unlikely(IS_PRIVATE(dir)))
639 return 0;
640 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
641}
642
643int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
644{
645 if (unlikely(IS_PRIVATE(dir)))
646 return 0;
647 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
648}
649EXPORT_SYMBOL_GPL(security_inode_mkdir);
650
651int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
652{
653 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
654 return 0;
655 return call_int_hook(inode_rmdir, 0, dir, dentry);
656}
657
658int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
659{
660 if (unlikely(IS_PRIVATE(dir)))
661 return 0;
662 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
663}
664
665int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
666 struct inode *new_dir, struct dentry *new_dentry,
667 unsigned int flags)
668{
669 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
670 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
671 return 0;
672
673 if (flags & RENAME_EXCHANGE) {
674 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
675 old_dir, old_dentry);
676 if (err)
677 return err;
678 }
679
680 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
681 new_dir, new_dentry);
682}
683
684int security_inode_readlink(struct dentry *dentry)
685{
686 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
687 return 0;
688 return call_int_hook(inode_readlink, 0, dentry);
689}
690
691int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
692 bool rcu)
693{
694 if (unlikely(IS_PRIVATE(inode)))
695 return 0;
696 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
697}
698
699int security_inode_permission(struct inode *inode, int mask)
700{
701 if (unlikely(IS_PRIVATE(inode)))
702 return 0;
703 return call_int_hook(inode_permission, 0, inode, mask);
704}
705
706int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
707{
708 int ret;
709
710 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
711 return 0;
712 ret = call_int_hook(inode_setattr, 0, dentry, attr);
713 if (ret)
714 return ret;
715 return evm_inode_setattr(dentry, attr);
716}
717EXPORT_SYMBOL_GPL(security_inode_setattr);
718
719int security_inode_getattr(const struct path *path)
720{
721 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
722 return 0;
723 return call_int_hook(inode_getattr, 0, path);
724}
725
726int security_inode_setxattr(struct dentry *dentry, const char *name,
727 const void *value, size_t size, int flags)
728{
729 int ret;
730
731 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
732 return 0;
733 /*
734 * SELinux and Smack integrate the cap call,
735 * so assume that all LSMs supplying this call do so.
736 */
737 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
738 flags);
739
740 if (ret == 1)
741 ret = cap_inode_setxattr(dentry, name, value, size, flags);
742 if (ret)
743 return ret;
744 ret = ima_inode_setxattr(dentry, name, value, size);
745 if (ret)
746 return ret;
747 return evm_inode_setxattr(dentry, name, value, size);
748}
749
750void security_inode_post_setxattr(struct dentry *dentry, const char *name,
751 const void *value, size_t size, int flags)
752{
753 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
754 return;
755 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
756 evm_inode_post_setxattr(dentry, name, value, size);
757}
758
759int security_inode_getxattr(struct dentry *dentry, const char *name)
760{
761 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
762 return 0;
763 return call_int_hook(inode_getxattr, 0, dentry, name);
764}
765
766int security_inode_listxattr(struct dentry *dentry)
767{
768 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
769 return 0;
770 return call_int_hook(inode_listxattr, 0, dentry);
771}
772
773int security_inode_removexattr(struct dentry *dentry, const char *name)
774{
775 int ret;
776
777 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
778 return 0;
779 /*
780 * SELinux and Smack integrate the cap call,
781 * so assume that all LSMs supplying this call do so.
782 */
783 ret = call_int_hook(inode_removexattr, 1, dentry, name);
784 if (ret == 1)
785 ret = cap_inode_removexattr(dentry, name);
786 if (ret)
787 return ret;
788 ret = ima_inode_removexattr(dentry, name);
789 if (ret)
790 return ret;
791 return evm_inode_removexattr(dentry, name);
792}
793
794int security_inode_need_killpriv(struct dentry *dentry)
795{
796 return call_int_hook(inode_need_killpriv, 0, dentry);
797}
798
799int security_inode_killpriv(struct dentry *dentry)
800{
801 return call_int_hook(inode_killpriv, 0, dentry);
802}
803
804int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
805{
806 struct security_hook_list *hp;
807 int rc;
808
809 if (unlikely(IS_PRIVATE(inode)))
810 return -EOPNOTSUPP;
811 /*
812 * Only one module will provide an attribute with a given name.
813 */
814 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
815 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
816 if (rc != -EOPNOTSUPP)
817 return rc;
818 }
819 return -EOPNOTSUPP;
820}
821
822int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
823{
824 struct security_hook_list *hp;
825 int rc;
826
827 if (unlikely(IS_PRIVATE(inode)))
828 return -EOPNOTSUPP;
829 /*
830 * Only one module will provide an attribute with a given name.
831 */
832 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
833 rc = hp->hook.inode_setsecurity(inode, name, value, size,
834 flags);
835 if (rc != -EOPNOTSUPP)
836 return rc;
837 }
838 return -EOPNOTSUPP;
839}
840
841int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
842{
843 if (unlikely(IS_PRIVATE(inode)))
844 return 0;
845 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
846}
847EXPORT_SYMBOL(security_inode_listsecurity);
848
849void security_inode_getsecid(struct inode *inode, u32 *secid)
850{
851 call_void_hook(inode_getsecid, inode, secid);
852}
853
854int security_inode_copy_up(struct dentry *src, struct cred **new)
855{
856 return call_int_hook(inode_copy_up, 0, src, new);
857}
858EXPORT_SYMBOL(security_inode_copy_up);
859
860int security_inode_copy_up_xattr(const char *name)
861{
862 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
863}
864EXPORT_SYMBOL(security_inode_copy_up_xattr);
865
866int security_file_permission(struct file *file, int mask)
867{
868 int ret;
869
870 ret = call_int_hook(file_permission, 0, file, mask);
871 if (ret)
872 return ret;
873
874 return fsnotify_perm(file, mask);
875}
876
877int security_file_alloc(struct file *file)
878{
879 return call_int_hook(file_alloc_security, 0, file);
880}
881
882void security_file_free(struct file *file)
883{
884 call_void_hook(file_free_security, file);
885}
886
887int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
888{
889 return call_int_hook(file_ioctl, 0, file, cmd, arg);
890}
891
892static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
893{
894 /*
895 * Does we have PROT_READ and does the application expect
896 * it to imply PROT_EXEC? If not, nothing to talk about...
897 */
898 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
899 return prot;
900 if (!(current->personality & READ_IMPLIES_EXEC))
901 return prot;
902 /*
903 * if that's an anonymous mapping, let it.
904 */
905 if (!file)
906 return prot | PROT_EXEC;
907 /*
908 * ditto if it's not on noexec mount, except that on !MMU we need
909 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
910 */
911 if (!path_noexec(&file->f_path)) {
912#ifndef CONFIG_MMU
913 if (file->f_op->mmap_capabilities) {
914 unsigned caps = file->f_op->mmap_capabilities(file);
915 if (!(caps & NOMMU_MAP_EXEC))
916 return prot;
917 }
918#endif
919 return prot | PROT_EXEC;
920 }
921 /* anything on noexec mount won't get PROT_EXEC */
922 return prot;
923}
924
925int security_mmap_file(struct file *file, unsigned long prot,
926 unsigned long flags)
927{
928 int ret;
929 ret = call_int_hook(mmap_file, 0, file, prot,
930 mmap_prot(file, prot), flags);
931 if (ret)
932 return ret;
933 return ima_file_mmap(file, prot);
934}
935
936int security_mmap_addr(unsigned long addr)
937{
938 return call_int_hook(mmap_addr, 0, addr);
939}
940
941int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
942 unsigned long prot)
943{
944 return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
945}
946
947int security_file_lock(struct file *file, unsigned int cmd)
948{
949 return call_int_hook(file_lock, 0, file, cmd);
950}
951
952int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
953{
954 return call_int_hook(file_fcntl, 0, file, cmd, arg);
955}
956
957void security_file_set_fowner(struct file *file)
958{
959 call_void_hook(file_set_fowner, file);
960}
961
962int security_file_send_sigiotask(struct task_struct *tsk,
963 struct fown_struct *fown, int sig)
964{
965 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
966}
967
968int security_file_receive(struct file *file)
969{
970 return call_int_hook(file_receive, 0, file);
971}
972
973int security_file_open(struct file *file, const struct cred *cred)
974{
975 int ret;
976
977 ret = call_int_hook(file_open, 0, file, cred);
978 if (ret)
979 return ret;
980
981 return fsnotify_perm(file, MAY_OPEN);
982}
983
984int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
985{
986 return call_int_hook(task_alloc, 0, task, clone_flags);
987}
988
989void security_task_free(struct task_struct *task)
990{
991 call_void_hook(task_free, task);
992}
993
994int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
995{
996 return call_int_hook(cred_alloc_blank, 0, cred, gfp);
997}
998
999void security_cred_free(struct cred *cred)
1000{
1001 call_void_hook(cred_free, cred);
1002}
1003
1004int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1005{
1006 return call_int_hook(cred_prepare, 0, new, old, gfp);
1007}
1008
1009void security_transfer_creds(struct cred *new, const struct cred *old)
1010{
1011 call_void_hook(cred_transfer, new, old);
1012}
1013
1014void security_cred_getsecid(const struct cred *c, u32 *secid)
1015{
1016 *secid = 0;
1017 call_void_hook(cred_getsecid, c, secid);
1018}
1019EXPORT_SYMBOL(security_cred_getsecid);
1020
1021int security_kernel_act_as(struct cred *new, u32 secid)
1022{
1023 return call_int_hook(kernel_act_as, 0, new, secid);
1024}
1025
1026int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1027{
1028 return call_int_hook(kernel_create_files_as, 0, new, inode);
1029}
1030
1031int security_kernel_module_request(char *kmod_name)
1032{
1033 return call_int_hook(kernel_module_request, 0, kmod_name);
1034}
1035
1036int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1037{
1038 int ret;
1039
1040 ret = call_int_hook(kernel_read_file, 0, file, id);
1041 if (ret)
1042 return ret;
1043 return ima_read_file(file, id);
1044}
1045EXPORT_SYMBOL_GPL(security_kernel_read_file);
1046
1047int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1048 enum kernel_read_file_id id)
1049{
1050 int ret;
1051
1052 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1053 if (ret)
1054 return ret;
1055 return ima_post_read_file(file, buf, size, id);
1056}
1057EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1058
1059int security_task_fix_setuid(struct cred *new, const struct cred *old,
1060 int flags)
1061{
1062 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1063}
1064
1065int security_task_setpgid(struct task_struct *p, pid_t pgid)
1066{
1067 return call_int_hook(task_setpgid, 0, p, pgid);
1068}
1069
1070int security_task_getpgid(struct task_struct *p)
1071{
1072 return call_int_hook(task_getpgid, 0, p);
1073}
1074
1075int security_task_getsid(struct task_struct *p)
1076{
1077 return call_int_hook(task_getsid, 0, p);
1078}
1079
1080void security_task_getsecid(struct task_struct *p, u32 *secid)
1081{
1082 *secid = 0;
1083 call_void_hook(task_getsecid, p, secid);
1084}
1085EXPORT_SYMBOL(security_task_getsecid);
1086
1087int security_task_setnice(struct task_struct *p, int nice)
1088{
1089 return call_int_hook(task_setnice, 0, p, nice);
1090}
1091
1092int security_task_setioprio(struct task_struct *p, int ioprio)
1093{
1094 return call_int_hook(task_setioprio, 0, p, ioprio);
1095}
1096
1097int security_task_getioprio(struct task_struct *p)
1098{
1099 return call_int_hook(task_getioprio, 0, p);
1100}
1101
1102int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1103 unsigned int flags)
1104{
1105 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1106}
1107
1108int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1109 struct rlimit *new_rlim)
1110{
1111 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1112}
1113
1114int security_task_setscheduler(struct task_struct *p)
1115{
1116 return call_int_hook(task_setscheduler, 0, p);
1117}
1118
1119int security_task_getscheduler(struct task_struct *p)
1120{
1121 return call_int_hook(task_getscheduler, 0, p);
1122}
1123
1124int security_task_movememory(struct task_struct *p)
1125{
1126 return call_int_hook(task_movememory, 0, p);
1127}
1128
1129int security_task_kill(struct task_struct *p, struct siginfo *info,
1130 int sig, const struct cred *cred)
1131{
1132 return call_int_hook(task_kill, 0, p, info, sig, cred);
1133}
1134
1135int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1136 unsigned long arg4, unsigned long arg5)
1137{
1138 int thisrc;
1139 int rc = -ENOSYS;
1140 struct security_hook_list *hp;
1141
1142 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1143 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1144 if (thisrc != -ENOSYS) {
1145 rc = thisrc;
1146 if (thisrc != 0)
1147 break;
1148 }
1149 }
1150 return rc;
1151}
1152
1153void security_task_to_inode(struct task_struct *p, struct inode *inode)
1154{
1155 call_void_hook(task_to_inode, p, inode);
1156}
1157
1158int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1159{
1160 return call_int_hook(ipc_permission, 0, ipcp, flag);
1161}
1162
1163void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1164{
1165 *secid = 0;
1166 call_void_hook(ipc_getsecid, ipcp, secid);
1167}
1168
1169int security_msg_msg_alloc(struct msg_msg *msg)
1170{
1171 return call_int_hook(msg_msg_alloc_security, 0, msg);
1172}
1173
1174void security_msg_msg_free(struct msg_msg *msg)
1175{
1176 call_void_hook(msg_msg_free_security, msg);
1177}
1178
1179int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1180{
1181 return call_int_hook(msg_queue_alloc_security, 0, msq);
1182}
1183
1184void security_msg_queue_free(struct kern_ipc_perm *msq)
1185{
1186 call_void_hook(msg_queue_free_security, msq);
1187}
1188
1189int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1190{
1191 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1192}
1193
1194int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1195{
1196 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1197}
1198
1199int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1200 struct msg_msg *msg, int msqflg)
1201{
1202 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1203}
1204
1205int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1206 struct task_struct *target, long type, int mode)
1207{
1208 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1209}
1210
1211int security_shm_alloc(struct kern_ipc_perm *shp)
1212{
1213 return call_int_hook(shm_alloc_security, 0, shp);
1214}
1215
1216void security_shm_free(struct kern_ipc_perm *shp)
1217{
1218 call_void_hook(shm_free_security, shp);
1219}
1220
1221int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1222{
1223 return call_int_hook(shm_associate, 0, shp, shmflg);
1224}
1225
1226int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1227{
1228 return call_int_hook(shm_shmctl, 0, shp, cmd);
1229}
1230
1231int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1232{
1233 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1234}
1235
1236int security_sem_alloc(struct kern_ipc_perm *sma)
1237{
1238 return call_int_hook(sem_alloc_security, 0, sma);
1239}
1240
1241void security_sem_free(struct kern_ipc_perm *sma)
1242{
1243 call_void_hook(sem_free_security, sma);
1244}
1245
1246int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1247{
1248 return call_int_hook(sem_associate, 0, sma, semflg);
1249}
1250
1251int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1252{
1253 return call_int_hook(sem_semctl, 0, sma, cmd);
1254}
1255
1256int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1257 unsigned nsops, int alter)
1258{
1259 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1260}
1261
1262void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1263{
1264 if (unlikely(inode && IS_PRIVATE(inode)))
1265 return;
1266 call_void_hook(d_instantiate, dentry, inode);
1267}
1268EXPORT_SYMBOL(security_d_instantiate);
1269
1270int security_getprocattr(struct task_struct *p, char *name, char **value)
1271{
1272 return call_int_hook(getprocattr, -EINVAL, p, name, value);
1273}
1274
1275int security_setprocattr(const char *name, void *value, size_t size)
1276{
1277 return call_int_hook(setprocattr, -EINVAL, name, value, size);
1278}
1279
1280int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1281{
1282 return call_int_hook(netlink_send, 0, sk, skb);
1283}
1284
1285int security_ismaclabel(const char *name)
1286{
1287 return call_int_hook(ismaclabel, 0, name);
1288}
1289EXPORT_SYMBOL(security_ismaclabel);
1290
1291int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1292{
1293 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1294 seclen);
1295}
1296EXPORT_SYMBOL(security_secid_to_secctx);
1297
1298int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1299{
1300 *secid = 0;
1301 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1302}
1303EXPORT_SYMBOL(security_secctx_to_secid);
1304
1305void security_release_secctx(char *secdata, u32 seclen)
1306{
1307 call_void_hook(release_secctx, secdata, seclen);
1308}
1309EXPORT_SYMBOL(security_release_secctx);
1310
1311void security_inode_invalidate_secctx(struct inode *inode)
1312{
1313 call_void_hook(inode_invalidate_secctx, inode);
1314}
1315EXPORT_SYMBOL(security_inode_invalidate_secctx);
1316
1317int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1318{
1319 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1320}
1321EXPORT_SYMBOL(security_inode_notifysecctx);
1322
1323int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1324{
1325 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1326}
1327EXPORT_SYMBOL(security_inode_setsecctx);
1328
1329int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1330{
1331 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1332}
1333EXPORT_SYMBOL(security_inode_getsecctx);
1334
1335#ifdef CONFIG_SECURITY_NETWORK
1336
1337int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1338{
1339 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1340}
1341EXPORT_SYMBOL(security_unix_stream_connect);
1342
1343int security_unix_may_send(struct socket *sock, struct socket *other)
1344{
1345 return call_int_hook(unix_may_send, 0, sock, other);
1346}
1347EXPORT_SYMBOL(security_unix_may_send);
1348
1349int security_socket_create(int family, int type, int protocol, int kern)
1350{
1351 return call_int_hook(socket_create, 0, family, type, protocol, kern);
1352}
1353
1354int security_socket_post_create(struct socket *sock, int family,
1355 int type, int protocol, int kern)
1356{
1357 return call_int_hook(socket_post_create, 0, sock, family, type,
1358 protocol, kern);
1359}
1360
1361int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1362{
1363 return call_int_hook(socket_bind, 0, sock, address, addrlen);
1364}
1365
1366int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1367{
1368 return call_int_hook(socket_connect, 0, sock, address, addrlen);
1369}
1370
1371int security_socket_listen(struct socket *sock, int backlog)
1372{
1373 return call_int_hook(socket_listen, 0, sock, backlog);
1374}
1375
1376int security_socket_accept(struct socket *sock, struct socket *newsock)
1377{
1378 return call_int_hook(socket_accept, 0, sock, newsock);
1379}
1380
1381int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1382{
1383 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1384}
1385
1386int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1387 int size, int flags)
1388{
1389 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1390}
1391
1392int security_socket_getsockname(struct socket *sock)
1393{
1394 return call_int_hook(socket_getsockname, 0, sock);
1395}
1396
1397int security_socket_getpeername(struct socket *sock)
1398{
1399 return call_int_hook(socket_getpeername, 0, sock);
1400}
1401
1402int security_socket_getsockopt(struct socket *sock, int level, int optname)
1403{
1404 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1405}
1406
1407int security_socket_setsockopt(struct socket *sock, int level, int optname)
1408{
1409 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1410}
1411
1412int security_socket_shutdown(struct socket *sock, int how)
1413{
1414 return call_int_hook(socket_shutdown, 0, sock, how);
1415}
1416
1417int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1418{
1419 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
1420}
1421EXPORT_SYMBOL(security_sock_rcv_skb);
1422
1423int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1424 int __user *optlen, unsigned len)
1425{
1426 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
1427 optval, optlen, len);
1428}
1429
1430int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1431{
1432 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
1433 skb, secid);
1434}
1435EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1436
1437int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1438{
1439 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
1440}
1441
1442void security_sk_free(struct sock *sk)
1443{
1444 call_void_hook(sk_free_security, sk);
1445}
1446
1447void security_sk_clone(const struct sock *sk, struct sock *newsk)
1448{
1449 call_void_hook(sk_clone_security, sk, newsk);
1450}
1451EXPORT_SYMBOL(security_sk_clone);
1452
1453void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1454{
1455 call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
1456}
1457EXPORT_SYMBOL(security_sk_classify_flow);
1458
1459void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1460{
1461 call_void_hook(req_classify_flow, req, fl);
1462}
1463EXPORT_SYMBOL(security_req_classify_flow);
1464
1465void security_sock_graft(struct sock *sk, struct socket *parent)
1466{
1467 call_void_hook(sock_graft, sk, parent);
1468}
1469EXPORT_SYMBOL(security_sock_graft);
1470
1471int security_inet_conn_request(struct sock *sk,
1472 struct sk_buff *skb, struct request_sock *req)
1473{
1474 return call_int_hook(inet_conn_request, 0, sk, skb, req);
1475}
1476EXPORT_SYMBOL(security_inet_conn_request);
1477
1478void security_inet_csk_clone(struct sock *newsk,
1479 const struct request_sock *req)
1480{
1481 call_void_hook(inet_csk_clone, newsk, req);
1482}
1483
1484void security_inet_conn_established(struct sock *sk,
1485 struct sk_buff *skb)
1486{
1487 call_void_hook(inet_conn_established, sk, skb);
1488}
1489EXPORT_SYMBOL(security_inet_conn_established);
1490
1491int security_secmark_relabel_packet(u32 secid)
1492{
1493 return call_int_hook(secmark_relabel_packet, 0, secid);
1494}
1495EXPORT_SYMBOL(security_secmark_relabel_packet);
1496
1497void security_secmark_refcount_inc(void)
1498{
1499 call_void_hook(secmark_refcount_inc);
1500}
1501EXPORT_SYMBOL(security_secmark_refcount_inc);
1502
1503void security_secmark_refcount_dec(void)
1504{
1505 call_void_hook(secmark_refcount_dec);
1506}
1507EXPORT_SYMBOL(security_secmark_refcount_dec);
1508
1509int security_tun_dev_alloc_security(void **security)
1510{
1511 return call_int_hook(tun_dev_alloc_security, 0, security);
1512}
1513EXPORT_SYMBOL(security_tun_dev_alloc_security);
1514
1515void security_tun_dev_free_security(void *security)
1516{
1517 call_void_hook(tun_dev_free_security, security);
1518}
1519EXPORT_SYMBOL(security_tun_dev_free_security);
1520
1521int security_tun_dev_create(void)
1522{
1523 return call_int_hook(tun_dev_create, 0);
1524}
1525EXPORT_SYMBOL(security_tun_dev_create);
1526
1527int security_tun_dev_attach_queue(void *security)
1528{
1529 return call_int_hook(tun_dev_attach_queue, 0, security);
1530}
1531EXPORT_SYMBOL(security_tun_dev_attach_queue);
1532
1533int security_tun_dev_attach(struct sock *sk, void *security)
1534{
1535 return call_int_hook(tun_dev_attach, 0, sk, security);
1536}
1537EXPORT_SYMBOL(security_tun_dev_attach);
1538
1539int security_tun_dev_open(void *security)
1540{
1541 return call_int_hook(tun_dev_open, 0, security);
1542}
1543EXPORT_SYMBOL(security_tun_dev_open);
1544
1545int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
1546{
1547 return call_int_hook(sctp_assoc_request, 0, ep, skb);
1548}
1549EXPORT_SYMBOL(security_sctp_assoc_request);
1550
1551int security_sctp_bind_connect(struct sock *sk, int optname,
1552 struct sockaddr *address, int addrlen)
1553{
1554 return call_int_hook(sctp_bind_connect, 0, sk, optname,
1555 address, addrlen);
1556}
1557EXPORT_SYMBOL(security_sctp_bind_connect);
1558
1559void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
1560 struct sock *newsk)
1561{
1562 call_void_hook(sctp_sk_clone, ep, sk, newsk);
1563}
1564EXPORT_SYMBOL(security_sctp_sk_clone);
1565
1566#endif /* CONFIG_SECURITY_NETWORK */
1567
1568#ifdef CONFIG_SECURITY_INFINIBAND
1569
1570int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
1571{
1572 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
1573}
1574EXPORT_SYMBOL(security_ib_pkey_access);
1575
1576int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
1577{
1578 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
1579}
1580EXPORT_SYMBOL(security_ib_endport_manage_subnet);
1581
1582int security_ib_alloc_security(void **sec)
1583{
1584 return call_int_hook(ib_alloc_security, 0, sec);
1585}
1586EXPORT_SYMBOL(security_ib_alloc_security);
1587
1588void security_ib_free_security(void *sec)
1589{
1590 call_void_hook(ib_free_security, sec);
1591}
1592EXPORT_SYMBOL(security_ib_free_security);
1593#endif /* CONFIG_SECURITY_INFINIBAND */
1594
1595#ifdef CONFIG_SECURITY_NETWORK_XFRM
1596
1597int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1598 struct xfrm_user_sec_ctx *sec_ctx,
1599 gfp_t gfp)
1600{
1601 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
1602}
1603EXPORT_SYMBOL(security_xfrm_policy_alloc);
1604
1605int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1606 struct xfrm_sec_ctx **new_ctxp)
1607{
1608 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
1609}
1610
1611void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1612{
1613 call_void_hook(xfrm_policy_free_security, ctx);
1614}
1615EXPORT_SYMBOL(security_xfrm_policy_free);
1616
1617int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1618{
1619 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
1620}
1621
1622int security_xfrm_state_alloc(struct xfrm_state *x,
1623 struct xfrm_user_sec_ctx *sec_ctx)
1624{
1625 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
1626}
1627EXPORT_SYMBOL(security_xfrm_state_alloc);
1628
1629int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1630 struct xfrm_sec_ctx *polsec, u32 secid)
1631{
1632 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
1633}
1634
1635int security_xfrm_state_delete(struct xfrm_state *x)
1636{
1637 return call_int_hook(xfrm_state_delete_security, 0, x);
1638}
1639EXPORT_SYMBOL(security_xfrm_state_delete);
1640
1641void security_xfrm_state_free(struct xfrm_state *x)
1642{
1643 call_void_hook(xfrm_state_free_security, x);
1644}
1645
1646int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1647{
1648 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
1649}
1650
1651int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1652 struct xfrm_policy *xp,
1653 const struct flowi *fl)
1654{
1655 struct security_hook_list *hp;
1656 int rc = 1;
1657
1658 /*
1659 * Since this function is expected to return 0 or 1, the judgment
1660 * becomes difficult if multiple LSMs supply this call. Fortunately,
1661 * we can use the first LSM's judgment because currently only SELinux
1662 * supplies this call.
1663 *
1664 * For speed optimization, we explicitly break the loop rather than
1665 * using the macro
1666 */
1667 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
1668 list) {
1669 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
1670 break;
1671 }
1672 return rc;
1673}
1674
1675int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1676{
1677 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
1678}
1679
1680void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1681{
1682 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
1683 0);
1684
1685 BUG_ON(rc);
1686}
1687EXPORT_SYMBOL(security_skb_classify_flow);
1688
1689#endif /* CONFIG_SECURITY_NETWORK_XFRM */
1690
1691#ifdef CONFIG_KEYS
1692
1693int security_key_alloc(struct key *key, const struct cred *cred,
1694 unsigned long flags)
1695{
1696 return call_int_hook(key_alloc, 0, key, cred, flags);
1697}
1698
1699void security_key_free(struct key *key)
1700{
1701 call_void_hook(key_free, key);
1702}
1703
1704int security_key_permission(key_ref_t key_ref,
1705 const struct cred *cred, unsigned perm)
1706{
1707 return call_int_hook(key_permission, 0, key_ref, cred, perm);
1708}
1709
1710int security_key_getsecurity(struct key *key, char **_buffer)
1711{
1712 *_buffer = NULL;
1713 return call_int_hook(key_getsecurity, 0, key, _buffer);
1714}
1715
1716#endif /* CONFIG_KEYS */
1717
1718#ifdef CONFIG_AUDIT
1719
1720int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1721{
1722 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
1723}
1724
1725int security_audit_rule_known(struct audit_krule *krule)
1726{
1727 return call_int_hook(audit_rule_known, 0, krule);
1728}
1729
1730void security_audit_rule_free(void *lsmrule)
1731{
1732 call_void_hook(audit_rule_free, lsmrule);
1733}
1734
1735int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1736 struct audit_context *actx)
1737{
1738 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule,
1739 actx);
1740}
1741#endif /* CONFIG_AUDIT */
1742
1743#ifdef CONFIG_BPF_SYSCALL
1744int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
1745{
1746 return call_int_hook(bpf, 0, cmd, attr, size);
1747}
1748int security_bpf_map(struct bpf_map *map, fmode_t fmode)
1749{
1750 return call_int_hook(bpf_map, 0, map, fmode);
1751}
1752int security_bpf_prog(struct bpf_prog *prog)
1753{
1754 return call_int_hook(bpf_prog, 0, prog);
1755}
1756int security_bpf_map_alloc(struct bpf_map *map)
1757{
1758 return call_int_hook(bpf_map_alloc_security, 0, map);
1759}
1760int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
1761{
1762 return call_int_hook(bpf_prog_alloc_security, 0, aux);
1763}
1764void security_bpf_map_free(struct bpf_map *map)
1765{
1766 call_void_hook(bpf_map_free_security, map);
1767}
1768void security_bpf_prog_free(struct bpf_prog_aux *aux)
1769{
1770 call_void_hook(bpf_prog_free_security, aux);
1771}
1772#endif /* CONFIG_BPF_SYSCALL */