Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Security plug functions
   4 *
   5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   8 * Copyright (C) 2016 Mellanox Technologies
 
 
 
 
 
   9 */
  10
  11#define pr_fmt(fmt) "LSM: " fmt
  12
  13#include <linux/bpf.h>
  14#include <linux/capability.h>
  15#include <linux/dcache.h>
  16#include <linux/export.h>
  17#include <linux/init.h>
  18#include <linux/kernel.h>
  19#include <linux/lsm_hooks.h>
  20#include <linux/integrity.h>
  21#include <linux/ima.h>
  22#include <linux/evm.h>
  23#include <linux/fsnotify.h>
  24#include <linux/mman.h>
  25#include <linux/mount.h>
  26#include <linux/personality.h>
  27#include <linux/backing-dev.h>
  28#include <linux/string.h>
  29#include <linux/msg.h>
  30#include <net/flow.h>
  31
 
 
  32#define MAX_LSM_EVM_XATTR	2
  33
  34/* How many LSMs were built into the kernel? */
  35#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
  36#define EARLY_LSM_COUNT (__end_early_lsm_info - __start_early_lsm_info)
  37
  38struct security_hook_heads security_hook_heads __lsm_ro_after_init;
  39static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
  40
  41static struct kmem_cache *lsm_file_cache;
  42static struct kmem_cache *lsm_inode_cache;
  43
  44char *lsm_names;
  45static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
  46
  47/* Boot-time LSM user choice */
  48static __initdata const char *chosen_lsm_order;
  49static __initdata const char *chosen_major_lsm;
  50
  51static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
  52
  53/* Ordered list of LSMs to initialize. */
  54static __initdata struct lsm_info **ordered_lsms;
  55static __initdata struct lsm_info *exclusive;
  56
  57static __initdata bool debug;
  58#define init_debug(...)						\
  59	do {							\
  60		if (debug)					\
  61			pr_info(__VA_ARGS__);			\
  62	} while (0)
  63
  64static bool __init is_enabled(struct lsm_info *lsm)
  65{
  66	if (!lsm->enabled)
  67		return false;
  68
  69	return *lsm->enabled;
  70}
  71
  72/* Mark an LSM's enabled flag. */
  73static int lsm_enabled_true __initdata = 1;
  74static int lsm_enabled_false __initdata = 0;
  75static void __init set_enabled(struct lsm_info *lsm, bool enabled)
  76{
  77	/*
  78	 * When an LSM hasn't configured an enable variable, we can use
  79	 * a hard-coded location for storing the default enabled state.
  80	 */
  81	if (!lsm->enabled) {
  82		if (enabled)
  83			lsm->enabled = &lsm_enabled_true;
  84		else
  85			lsm->enabled = &lsm_enabled_false;
  86	} else if (lsm->enabled == &lsm_enabled_true) {
  87		if (!enabled)
  88			lsm->enabled = &lsm_enabled_false;
  89	} else if (lsm->enabled == &lsm_enabled_false) {
  90		if (enabled)
  91			lsm->enabled = &lsm_enabled_true;
  92	} else {
  93		*lsm->enabled = enabled;
  94	}
  95}
  96
  97/* Is an LSM already listed in the ordered LSMs list? */
  98static bool __init exists_ordered_lsm(struct lsm_info *lsm)
  99{
 100	struct lsm_info **check;
 101
 102	for (check = ordered_lsms; *check; check++)
 103		if (*check == lsm)
 104			return true;
 105
 106	return false;
 107}
 108
 109/* Append an LSM to the list of ordered LSMs to initialize. */
 110static int last_lsm __initdata;
 111static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
 112{
 113	/* Ignore duplicate selections. */
 114	if (exists_ordered_lsm(lsm))
 115		return;
 116
 117	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
 118		return;
 119
 120	/* Enable this LSM, if it is not already set. */
 121	if (!lsm->enabled)
 122		lsm->enabled = &lsm_enabled_true;
 123	ordered_lsms[last_lsm++] = lsm;
 124
 125	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
 126		   is_enabled(lsm) ? "en" : "dis");
 127}
 128
 129/* Is an LSM allowed to be initialized? */
 130static bool __init lsm_allowed(struct lsm_info *lsm)
 131{
 132	/* Skip if the LSM is disabled. */
 133	if (!is_enabled(lsm))
 134		return false;
 135
 136	/* Not allowed if another exclusive LSM already initialized. */
 137	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
 138		init_debug("exclusive disabled: %s\n", lsm->name);
 139		return false;
 140	}
 141
 142	return true;
 143}
 144
 145static void __init lsm_set_blob_size(int *need, int *lbs)
 146{
 147	int offset;
 148
 149	if (*need > 0) {
 150		offset = *lbs;
 151		*lbs += *need;
 152		*need = offset;
 153	}
 154}
 155
 156static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
 157{
 158	if (!needed)
 159		return;
 160
 161	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
 162	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
 163	/*
 164	 * The inode blob gets an rcu_head in addition to
 165	 * what the modules might need.
 166	 */
 167	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
 168		blob_sizes.lbs_inode = sizeof(struct rcu_head);
 169	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
 170	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
 171	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
 172	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
 173}
 174
 175/* Prepare LSM for initialization. */
 176static void __init prepare_lsm(struct lsm_info *lsm)
 177{
 178	int enabled = lsm_allowed(lsm);
 179
 180	/* Record enablement (to handle any following exclusive LSMs). */
 181	set_enabled(lsm, enabled);
 182
 183	/* If enabled, do pre-initialization work. */
 184	if (enabled) {
 185		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
 186			exclusive = lsm;
 187			init_debug("exclusive chosen: %s\n", lsm->name);
 188		}
 189
 190		lsm_set_blob_sizes(lsm->blobs);
 191	}
 192}
 193
 194/* Initialize a given LSM, if it is enabled. */
 195static void __init initialize_lsm(struct lsm_info *lsm)
 196{
 197	if (is_enabled(lsm)) {
 198		int ret;
 199
 200		init_debug("initializing %s\n", lsm->name);
 201		ret = lsm->init();
 202		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
 203	}
 204}
 205
 206/* Populate ordered LSMs list from comma-separated LSM name list. */
 207static void __init ordered_lsm_parse(const char *order, const char *origin)
 208{
 209	struct lsm_info *lsm;
 210	char *sep, *name, *next;
 211
 212	/* LSM_ORDER_FIRST is always first. */
 213	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 214		if (lsm->order == LSM_ORDER_FIRST)
 215			append_ordered_lsm(lsm, "first");
 216	}
 217
 218	/* Process "security=", if given. */
 219	if (chosen_major_lsm) {
 220		struct lsm_info *major;
 221
 222		/*
 223		 * To match the original "security=" behavior, this
 224		 * explicitly does NOT fallback to another Legacy Major
 225		 * if the selected one was separately disabled: disable
 226		 * all non-matching Legacy Major LSMs.
 227		 */
 228		for (major = __start_lsm_info; major < __end_lsm_info;
 229		     major++) {
 230			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
 231			    strcmp(major->name, chosen_major_lsm) != 0) {
 232				set_enabled(major, false);
 233				init_debug("security=%s disabled: %s\n",
 234					   chosen_major_lsm, major->name);
 235			}
 236		}
 237	}
 238
 239	sep = kstrdup(order, GFP_KERNEL);
 240	next = sep;
 241	/* Walk the list, looking for matching LSMs. */
 242	while ((name = strsep(&next, ",")) != NULL) {
 243		bool found = false;
 244
 245		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 246			if (lsm->order == LSM_ORDER_MUTABLE &&
 247			    strcmp(lsm->name, name) == 0) {
 248				append_ordered_lsm(lsm, origin);
 249				found = true;
 250			}
 251		}
 252
 253		if (!found)
 254			init_debug("%s ignored: %s\n", origin, name);
 255	}
 256
 257	/* Process "security=", if given. */
 258	if (chosen_major_lsm) {
 259		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 260			if (exists_ordered_lsm(lsm))
 261				continue;
 262			if (strcmp(lsm->name, chosen_major_lsm) == 0)
 263				append_ordered_lsm(lsm, "security=");
 264		}
 265	}
 266
 267	/* Disable all LSMs not in the ordered list. */
 268	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 269		if (exists_ordered_lsm(lsm))
 270			continue;
 271		set_enabled(lsm, false);
 272		init_debug("%s disabled: %s\n", origin, lsm->name);
 273	}
 274
 275	kfree(sep);
 276}
 277
 278static void __init lsm_early_cred(struct cred *cred);
 279static void __init lsm_early_task(struct task_struct *task);
 280
 281static int lsm_append(const char *new, char **result);
 282
 283static void __init ordered_lsm_init(void)
 284{
 285	struct lsm_info **lsm;
 286
 287	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
 288				GFP_KERNEL);
 289
 290	if (chosen_lsm_order) {
 291		if (chosen_major_lsm) {
 292			pr_info("security= is ignored because it is superseded by lsm=\n");
 293			chosen_major_lsm = NULL;
 294		}
 295		ordered_lsm_parse(chosen_lsm_order, "cmdline");
 296	} else
 297		ordered_lsm_parse(builtin_lsm_order, "builtin");
 298
 299	for (lsm = ordered_lsms; *lsm; lsm++)
 300		prepare_lsm(*lsm);
 301
 302	init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
 303	init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
 304	init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
 305	init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
 306	init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
 307	init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
 308
 309	/*
 310	 * Create any kmem_caches needed for blobs
 311	 */
 312	if (blob_sizes.lbs_file)
 313		lsm_file_cache = kmem_cache_create("lsm_file_cache",
 314						   blob_sizes.lbs_file, 0,
 315						   SLAB_PANIC, NULL);
 316	if (blob_sizes.lbs_inode)
 317		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
 318						    blob_sizes.lbs_inode, 0,
 319						    SLAB_PANIC, NULL);
 320
 321	lsm_early_cred((struct cred *) current->cred);
 322	lsm_early_task(current);
 323	for (lsm = ordered_lsms; *lsm; lsm++)
 324		initialize_lsm(*lsm);
 325
 326	kfree(ordered_lsms);
 327}
 328
 329int __init early_security_init(void)
 330{
 331	int i;
 332	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
 333	struct lsm_info *lsm;
 334
 335	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
 336	     i++)
 337		INIT_HLIST_HEAD(&list[i]);
 338
 339	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 340		if (!lsm->enabled)
 341			lsm->enabled = &lsm_enabled_true;
 342		prepare_lsm(lsm);
 343		initialize_lsm(lsm);
 344	}
 345
 346	return 0;
 347}
 348
 349/**
 350 * security_init - initializes the security framework
 351 *
 352 * This should be called early in the kernel initialization sequence.
 353 */
 354int __init security_init(void)
 355{
 356	struct lsm_info *lsm;
 
 357
 358	pr_info("Security Framework initializing\n");
 
 
 
 359
 360	/*
 361	 * Append the names of the early LSM modules now that kmalloc() is
 362	 * available
 363	 */
 364	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 365		if (lsm->enabled)
 366			lsm_append(lsm->name, &lsm_names);
 367	}
 368
 369	/* Load LSMs in specified order. */
 370	ordered_lsm_init();
 
 
 371
 372	return 0;
 373}
 374
 375/* Save user chosen LSM */
 376static int __init choose_major_lsm(char *str)
 377{
 378	chosen_major_lsm = str;
 379	return 1;
 380}
 381__setup("security=", choose_major_lsm);
 382
 383/* Explicitly choose LSM initialization order. */
 384static int __init choose_lsm_order(char *str)
 385{
 386	chosen_lsm_order = str;
 387	return 1;
 388}
 389__setup("lsm=", choose_lsm_order);
 390
 391/* Enable LSM order debugging. */
 392static int __init enable_debug(char *str)
 393{
 394	debug = true;
 395	return 1;
 396}
 397__setup("lsm.debug", enable_debug);
 398
 399static bool match_last_lsm(const char *list, const char *lsm)
 400{
 401	const char *last;
 402
 403	if (WARN_ON(!list || !lsm))
 404		return false;
 405	last = strrchr(list, ',');
 406	if (last)
 407		/* Pass the comma, strcmp() will check for '\0' */
 408		last++;
 409	else
 410		last = list;
 411	return !strcmp(last, lsm);
 412}
 413
 414static int lsm_append(const char *new, char **result)
 415{
 416	char *cp;
 417
 418	if (*result == NULL) {
 419		*result = kstrdup(new, GFP_KERNEL);
 420		if (*result == NULL)
 421			return -ENOMEM;
 422	} else {
 423		/* Check if it is the last registered name */
 424		if (match_last_lsm(*result, new))
 425			return 0;
 426		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
 427		if (cp == NULL)
 428			return -ENOMEM;
 429		kfree(*result);
 430		*result = cp;
 431	}
 432	return 0;
 433}
 434
 435/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436 * security_add_hooks - Add a modules hooks to the hook lists.
 437 * @hooks: the hooks to add
 438 * @count: the number of hooks to add
 439 * @lsm: the name of the security module
 440 *
 441 * Each LSM has to register its hooks with the infrastructure.
 442 */
 443void __init security_add_hooks(struct security_hook_list *hooks, int count,
 444				char *lsm)
 445{
 446	int i;
 447
 448	for (i = 0; i < count; i++) {
 449		hooks[i].lsm = lsm;
 450		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
 451	}
 452
 453	/*
 454	 * Don't try to append during early_security_init(), we'll come back
 455	 * and fix this up afterwards.
 456	 */
 457	if (slab_is_available()) {
 458		if (lsm_append(lsm, &lsm_names) < 0)
 459			panic("%s - Cannot get early memory.\n", __func__);
 460	}
 461}
 462
 463int call_blocking_lsm_notifier(enum lsm_event event, void *data)
 464{
 465	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
 466					    event, data);
 467}
 468EXPORT_SYMBOL(call_blocking_lsm_notifier);
 469
 470int register_blocking_lsm_notifier(struct notifier_block *nb)
 471{
 472	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
 473						nb);
 474}
 475EXPORT_SYMBOL(register_blocking_lsm_notifier);
 476
 477int unregister_blocking_lsm_notifier(struct notifier_block *nb)
 478{
 479	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
 480						  nb);
 481}
 482EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
 483
 484/**
 485 * lsm_cred_alloc - allocate a composite cred blob
 486 * @cred: the cred that needs a blob
 487 * @gfp: allocation type
 488 *
 489 * Allocate the cred blob for all the modules
 490 *
 491 * Returns 0, or -ENOMEM if memory can't be allocated.
 492 */
 493static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
 494{
 495	if (blob_sizes.lbs_cred == 0) {
 496		cred->security = NULL;
 497		return 0;
 498	}
 499
 500	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
 501	if (cred->security == NULL)
 502		return -ENOMEM;
 503	return 0;
 504}
 505
 506/**
 507 * lsm_early_cred - during initialization allocate a composite cred blob
 508 * @cred: the cred that needs a blob
 509 *
 510 * Allocate the cred blob for all the modules
 511 */
 512static void __init lsm_early_cred(struct cred *cred)
 513{
 514	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
 515
 516	if (rc)
 517		panic("%s: Early cred alloc failed.\n", __func__);
 518}
 519
 520/**
 521 * lsm_file_alloc - allocate a composite file blob
 522 * @file: the file that needs a blob
 523 *
 524 * Allocate the file blob for all the modules
 525 *
 526 * Returns 0, or -ENOMEM if memory can't be allocated.
 527 */
 528static int lsm_file_alloc(struct file *file)
 529{
 530	if (!lsm_file_cache) {
 531		file->f_security = NULL;
 532		return 0;
 533	}
 534
 535	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
 536	if (file->f_security == NULL)
 537		return -ENOMEM;
 538	return 0;
 539}
 540
 541/**
 542 * lsm_inode_alloc - allocate a composite inode blob
 543 * @inode: the inode that needs a blob
 544 *
 545 * Allocate the inode blob for all the modules
 546 *
 547 * Returns 0, or -ENOMEM if memory can't be allocated.
 548 */
 549int lsm_inode_alloc(struct inode *inode)
 550{
 551	if (!lsm_inode_cache) {
 552		inode->i_security = NULL;
 553		return 0;
 554	}
 555
 556	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
 557	if (inode->i_security == NULL)
 558		return -ENOMEM;
 559	return 0;
 560}
 561
 562/**
 563 * lsm_task_alloc - allocate a composite task blob
 564 * @task: the task that needs a blob
 565 *
 566 * Allocate the task blob for all the modules
 567 *
 568 * Returns 0, or -ENOMEM if memory can't be allocated.
 569 */
 570static int lsm_task_alloc(struct task_struct *task)
 571{
 572	if (blob_sizes.lbs_task == 0) {
 573		task->security = NULL;
 574		return 0;
 575	}
 576
 577	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
 578	if (task->security == NULL)
 579		return -ENOMEM;
 580	return 0;
 581}
 582
 583/**
 584 * lsm_ipc_alloc - allocate a composite ipc blob
 585 * @kip: the ipc that needs a blob
 586 *
 587 * Allocate the ipc blob for all the modules
 588 *
 589 * Returns 0, or -ENOMEM if memory can't be allocated.
 590 */
 591static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
 592{
 593	if (blob_sizes.lbs_ipc == 0) {
 594		kip->security = NULL;
 595		return 0;
 596	}
 597
 598	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
 599	if (kip->security == NULL)
 600		return -ENOMEM;
 601	return 0;
 602}
 603
 604/**
 605 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
 606 * @mp: the msg_msg that needs a blob
 607 *
 608 * Allocate the ipc blob for all the modules
 609 *
 610 * Returns 0, or -ENOMEM if memory can't be allocated.
 611 */
 612static int lsm_msg_msg_alloc(struct msg_msg *mp)
 613{
 614	if (blob_sizes.lbs_msg_msg == 0) {
 615		mp->security = NULL;
 616		return 0;
 617	}
 618
 619	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
 620	if (mp->security == NULL)
 621		return -ENOMEM;
 622	return 0;
 623}
 624
 625/**
 626 * lsm_early_task - during initialization allocate a composite task blob
 627 * @task: the task that needs a blob
 628 *
 629 * Allocate the task blob for all the modules
 630 */
 631static void __init lsm_early_task(struct task_struct *task)
 632{
 633	int rc = lsm_task_alloc(task);
 634
 635	if (rc)
 636		panic("%s: Early task alloc failed.\n", __func__);
 637}
 
 638
 639/*
 640 * Hook list operation macros.
 641 *
 642 * call_void_hook:
 643 *	This is a hook that does not return a value.
 644 *
 645 * call_int_hook:
 646 *	This is a hook that returns a value.
 647 */
 648
 649#define call_void_hook(FUNC, ...)				\
 650	do {							\
 651		struct security_hook_list *P;			\
 652								\
 653		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
 654			P->hook.FUNC(__VA_ARGS__);		\
 655	} while (0)
 656
 657#define call_int_hook(FUNC, IRC, ...) ({			\
 658	int RC = IRC;						\
 659	do {							\
 660		struct security_hook_list *P;			\
 661								\
 662		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
 663			RC = P->hook.FUNC(__VA_ARGS__);		\
 664			if (RC != 0)				\
 665				break;				\
 666		}						\
 667	} while (0);						\
 668	RC;							\
 669})
 670
 671/* Security operations */
 672
 673int security_binder_set_context_mgr(struct task_struct *mgr)
 674{
 675	return call_int_hook(binder_set_context_mgr, 0, mgr);
 676}
 677
 678int security_binder_transaction(struct task_struct *from,
 679				struct task_struct *to)
 680{
 681	return call_int_hook(binder_transaction, 0, from, to);
 682}
 683
 684int security_binder_transfer_binder(struct task_struct *from,
 685				    struct task_struct *to)
 686{
 687	return call_int_hook(binder_transfer_binder, 0, from, to);
 688}
 689
 690int security_binder_transfer_file(struct task_struct *from,
 691				  struct task_struct *to, struct file *file)
 692{
 693	return call_int_hook(binder_transfer_file, 0, from, to, file);
 694}
 695
 696int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 697{
 698	return call_int_hook(ptrace_access_check, 0, child, mode);
 699}
 700
 701int security_ptrace_traceme(struct task_struct *parent)
 702{
 703	return call_int_hook(ptrace_traceme, 0, parent);
 704}
 705
 706int security_capget(struct task_struct *target,
 707		     kernel_cap_t *effective,
 708		     kernel_cap_t *inheritable,
 709		     kernel_cap_t *permitted)
 710{
 711	return call_int_hook(capget, 0, target,
 712				effective, inheritable, permitted);
 713}
 714
 715int security_capset(struct cred *new, const struct cred *old,
 716		    const kernel_cap_t *effective,
 717		    const kernel_cap_t *inheritable,
 718		    const kernel_cap_t *permitted)
 719{
 720	return call_int_hook(capset, 0, new, old,
 721				effective, inheritable, permitted);
 722}
 723
 724int security_capable(const struct cred *cred,
 725		     struct user_namespace *ns,
 726		     int cap,
 727		     unsigned int opts)
 728{
 729	return call_int_hook(capable, 0, cred, ns, cap, opts);
 
 
 
 
 
 
 730}
 731
 732int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 733{
 734	return call_int_hook(quotactl, 0, cmds, type, id, sb);
 735}
 736
 737int security_quota_on(struct dentry *dentry)
 738{
 739	return call_int_hook(quota_on, 0, dentry);
 740}
 741
 742int security_syslog(int type)
 743{
 744	return call_int_hook(syslog, 0, type);
 745}
 746
 747int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
 748{
 749	return call_int_hook(settime, 0, ts, tz);
 750}
 751
 752int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 753{
 754	struct security_hook_list *hp;
 755	int cap_sys_admin = 1;
 756	int rc;
 757
 758	/*
 759	 * The module will respond with a positive value if
 760	 * it thinks the __vm_enough_memory() call should be
 761	 * made with the cap_sys_admin set. If all of the modules
 762	 * agree that it should be set it will. If any module
 763	 * thinks it should not be set it won't.
 764	 */
 765	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
 766		rc = hp->hook.vm_enough_memory(mm, pages);
 767		if (rc <= 0) {
 768			cap_sys_admin = 0;
 769			break;
 770		}
 771	}
 772	return __vm_enough_memory(mm, pages, cap_sys_admin);
 773}
 774
 775int security_bprm_set_creds(struct linux_binprm *bprm)
 776{
 777	return call_int_hook(bprm_set_creds, 0, bprm);
 778}
 779
 780int security_bprm_check(struct linux_binprm *bprm)
 781{
 782	int ret;
 783
 784	ret = call_int_hook(bprm_check_security, 0, bprm);
 785	if (ret)
 786		return ret;
 787	return ima_bprm_check(bprm);
 788}
 789
 790void security_bprm_committing_creds(struct linux_binprm *bprm)
 791{
 792	call_void_hook(bprm_committing_creds, bprm);
 793}
 794
 795void security_bprm_committed_creds(struct linux_binprm *bprm)
 796{
 797	call_void_hook(bprm_committed_creds, bprm);
 798}
 799
 800int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
 801{
 802	return call_int_hook(fs_context_dup, 0, fc, src_fc);
 803}
 804
 805int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
 806{
 807	return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
 808}
 809
 810int security_sb_alloc(struct super_block *sb)
 811{
 812	return call_int_hook(sb_alloc_security, 0, sb);
 813}
 814
 815void security_sb_free(struct super_block *sb)
 816{
 817	call_void_hook(sb_free_security, sb);
 818}
 819
 820void security_free_mnt_opts(void **mnt_opts)
 821{
 822	if (!*mnt_opts)
 823		return;
 824	call_void_hook(sb_free_mnt_opts, *mnt_opts);
 825	*mnt_opts = NULL;
 826}
 827EXPORT_SYMBOL(security_free_mnt_opts);
 828
 829int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
 830{
 831	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
 832}
 833EXPORT_SYMBOL(security_sb_eat_lsm_opts);
 834
 835int security_sb_remount(struct super_block *sb,
 836			void *mnt_opts)
 837{
 838	return call_int_hook(sb_remount, 0, sb, mnt_opts);
 839}
 840EXPORT_SYMBOL(security_sb_remount);
 841
 842int security_sb_kern_mount(struct super_block *sb)
 843{
 844	return call_int_hook(sb_kern_mount, 0, sb);
 845}
 846
 847int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 848{
 849	return call_int_hook(sb_show_options, 0, m, sb);
 850}
 851
 852int security_sb_statfs(struct dentry *dentry)
 853{
 854	return call_int_hook(sb_statfs, 0, dentry);
 855}
 856
 857int security_sb_mount(const char *dev_name, const struct path *path,
 858                       const char *type, unsigned long flags, void *data)
 859{
 860	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
 861}
 862
 863int security_sb_umount(struct vfsmount *mnt, int flags)
 864{
 865	return call_int_hook(sb_umount, 0, mnt, flags);
 866}
 867
 868int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
 869{
 870	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
 871}
 872
 873int security_sb_set_mnt_opts(struct super_block *sb,
 874				void *mnt_opts,
 875				unsigned long kern_flags,
 876				unsigned long *set_kern_flags)
 877{
 878	return call_int_hook(sb_set_mnt_opts,
 879				mnt_opts ? -EOPNOTSUPP : 0, sb,
 880				mnt_opts, kern_flags, set_kern_flags);
 881}
 882EXPORT_SYMBOL(security_sb_set_mnt_opts);
 883
 884int security_sb_clone_mnt_opts(const struct super_block *oldsb,
 885				struct super_block *newsb,
 886				unsigned long kern_flags,
 887				unsigned long *set_kern_flags)
 888{
 889	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
 890				kern_flags, set_kern_flags);
 891}
 892EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 893
 894int security_add_mnt_opt(const char *option, const char *val, int len,
 895			 void **mnt_opts)
 896{
 897	return call_int_hook(sb_add_mnt_opt, -EINVAL,
 898					option, val, len, mnt_opts);
 899}
 900EXPORT_SYMBOL(security_add_mnt_opt);
 901
 902int security_move_mount(const struct path *from_path, const struct path *to_path)
 903{
 904	return call_int_hook(move_mount, 0, from_path, to_path);
 905}
 906
 907int security_path_notify(const struct path *path, u64 mask,
 908				unsigned int obj_type)
 909{
 910	return call_int_hook(path_notify, 0, path, mask, obj_type);
 911}
 
 912
 913int security_inode_alloc(struct inode *inode)
 914{
 915	int rc = lsm_inode_alloc(inode);
 916
 917	if (unlikely(rc))
 918		return rc;
 919	rc = call_int_hook(inode_alloc_security, 0, inode);
 920	if (unlikely(rc))
 921		security_inode_free(inode);
 922	return rc;
 923}
 924
 925static void inode_free_by_rcu(struct rcu_head *head)
 926{
 927	/*
 928	 * The rcu head is at the start of the inode blob
 929	 */
 930	kmem_cache_free(lsm_inode_cache, head);
 931}
 932
 933void security_inode_free(struct inode *inode)
 934{
 935	integrity_inode_free(inode);
 936	call_void_hook(inode_free_security, inode);
 937	/*
 938	 * The inode may still be referenced in a path walk and
 939	 * a call to security_inode_permission() can be made
 940	 * after inode_free_security() is called. Ideally, the VFS
 941	 * wouldn't do this, but fixing that is a much harder
 942	 * job. For now, simply free the i_security via RCU, and
 943	 * leave the current inode->i_security pointer intact.
 944	 * The inode will be freed after the RCU grace period too.
 945	 */
 946	if (inode->i_security)
 947		call_rcu((struct rcu_head *)inode->i_security,
 948				inode_free_by_rcu);
 949}
 950
 951int security_dentry_init_security(struct dentry *dentry, int mode,
 952					const struct qstr *name, void **ctx,
 953					u32 *ctxlen)
 954{
 955	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
 956				name, ctx, ctxlen);
 957}
 958EXPORT_SYMBOL(security_dentry_init_security);
 959
 960int security_dentry_create_files_as(struct dentry *dentry, int mode,
 961				    struct qstr *name,
 962				    const struct cred *old, struct cred *new)
 963{
 964	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
 965				name, old, new);
 966}
 967EXPORT_SYMBOL(security_dentry_create_files_as);
 968
 969int security_inode_init_security(struct inode *inode, struct inode *dir,
 970				 const struct qstr *qstr,
 971				 const initxattrs initxattrs, void *fs_data)
 972{
 973	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
 974	struct xattr *lsm_xattr, *evm_xattr, *xattr;
 975	int ret;
 976
 977	if (unlikely(IS_PRIVATE(inode)))
 978		return 0;
 979
 980	if (!initxattrs)
 981		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
 982				     dir, qstr, NULL, NULL, NULL);
 983	memset(new_xattrs, 0, sizeof(new_xattrs));
 984	lsm_xattr = new_xattrs;
 985	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
 986						&lsm_xattr->name,
 987						&lsm_xattr->value,
 988						&lsm_xattr->value_len);
 989	if (ret)
 990		goto out;
 991
 992	evm_xattr = lsm_xattr + 1;
 993	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
 994	if (ret)
 995		goto out;
 996	ret = initxattrs(inode, new_xattrs, fs_data);
 997out:
 998	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
 999		kfree(xattr->value);
1000	return (ret == -EOPNOTSUPP) ? 0 : ret;
1001}
1002EXPORT_SYMBOL(security_inode_init_security);
1003
1004int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1005				     const struct qstr *qstr, const char **name,
1006				     void **value, size_t *len)
1007{
1008	if (unlikely(IS_PRIVATE(inode)))
1009		return -EOPNOTSUPP;
1010	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1011			     qstr, name, value, len);
1012}
1013EXPORT_SYMBOL(security_old_inode_init_security);
1014
1015#ifdef CONFIG_SECURITY_PATH
1016int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1017			unsigned int dev)
1018{
1019	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1020		return 0;
1021	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1022}
1023EXPORT_SYMBOL(security_path_mknod);
1024
1025int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1026{
1027	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1028		return 0;
1029	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1030}
1031EXPORT_SYMBOL(security_path_mkdir);
1032
1033int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1034{
1035	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1036		return 0;
1037	return call_int_hook(path_rmdir, 0, dir, dentry);
1038}
1039
1040int security_path_unlink(const struct path *dir, struct dentry *dentry)
1041{
1042	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1043		return 0;
1044	return call_int_hook(path_unlink, 0, dir, dentry);
1045}
1046EXPORT_SYMBOL(security_path_unlink);
1047
1048int security_path_symlink(const struct path *dir, struct dentry *dentry,
1049			  const char *old_name)
1050{
1051	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1052		return 0;
1053	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1054}
1055
1056int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1057		       struct dentry *new_dentry)
1058{
1059	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1060		return 0;
1061	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1062}
1063
1064int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1065			 const struct path *new_dir, struct dentry *new_dentry,
1066			 unsigned int flags)
1067{
1068	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1069		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1070		return 0;
1071
1072	if (flags & RENAME_EXCHANGE) {
1073		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1074					old_dir, old_dentry);
1075		if (err)
1076			return err;
1077	}
1078
1079	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1080				new_dentry);
1081}
1082EXPORT_SYMBOL(security_path_rename);
1083
1084int security_path_truncate(const struct path *path)
1085{
1086	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1087		return 0;
1088	return call_int_hook(path_truncate, 0, path);
1089}
1090
1091int security_path_chmod(const struct path *path, umode_t mode)
1092{
1093	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1094		return 0;
1095	return call_int_hook(path_chmod, 0, path, mode);
1096}
1097
1098int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1099{
1100	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1101		return 0;
1102	return call_int_hook(path_chown, 0, path, uid, gid);
1103}
1104
1105int security_path_chroot(const struct path *path)
1106{
1107	return call_int_hook(path_chroot, 0, path);
1108}
1109#endif
1110
1111int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1112{
1113	if (unlikely(IS_PRIVATE(dir)))
1114		return 0;
1115	return call_int_hook(inode_create, 0, dir, dentry, mode);
1116}
1117EXPORT_SYMBOL_GPL(security_inode_create);
1118
1119int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1120			 struct dentry *new_dentry)
1121{
1122	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1123		return 0;
1124	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1125}
1126
1127int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1128{
1129	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1130		return 0;
1131	return call_int_hook(inode_unlink, 0, dir, dentry);
1132}
1133
1134int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1135			    const char *old_name)
1136{
1137	if (unlikely(IS_PRIVATE(dir)))
1138		return 0;
1139	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1140}
1141
1142int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1143{
1144	if (unlikely(IS_PRIVATE(dir)))
1145		return 0;
1146	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1147}
1148EXPORT_SYMBOL_GPL(security_inode_mkdir);
1149
1150int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1151{
1152	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1153		return 0;
1154	return call_int_hook(inode_rmdir, 0, dir, dentry);
1155}
1156
1157int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1158{
1159	if (unlikely(IS_PRIVATE(dir)))
1160		return 0;
1161	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1162}
1163
1164int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1165			   struct inode *new_dir, struct dentry *new_dentry,
1166			   unsigned int flags)
1167{
1168        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1169            (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1170		return 0;
1171
1172	if (flags & RENAME_EXCHANGE) {
1173		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1174						     old_dir, old_dentry);
1175		if (err)
1176			return err;
1177	}
1178
1179	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1180					   new_dir, new_dentry);
1181}
1182
1183int security_inode_readlink(struct dentry *dentry)
1184{
1185	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1186		return 0;
1187	return call_int_hook(inode_readlink, 0, dentry);
1188}
1189
1190int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1191			       bool rcu)
1192{
1193	if (unlikely(IS_PRIVATE(inode)))
1194		return 0;
1195	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1196}
1197
1198int security_inode_permission(struct inode *inode, int mask)
1199{
1200	if (unlikely(IS_PRIVATE(inode)))
1201		return 0;
1202	return call_int_hook(inode_permission, 0, inode, mask);
1203}
1204
1205int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1206{
1207	int ret;
1208
1209	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1210		return 0;
1211	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1212	if (ret)
1213		return ret;
1214	return evm_inode_setattr(dentry, attr);
1215}
1216EXPORT_SYMBOL_GPL(security_inode_setattr);
1217
1218int security_inode_getattr(const struct path *path)
1219{
1220	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1221		return 0;
1222	return call_int_hook(inode_getattr, 0, path);
1223}
1224
1225int security_inode_setxattr(struct dentry *dentry, const char *name,
1226			    const void *value, size_t size, int flags)
1227{
1228	int ret;
1229
1230	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1231		return 0;
1232	/*
1233	 * SELinux and Smack integrate the cap call,
1234	 * so assume that all LSMs supplying this call do so.
1235	 */
1236	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1237				flags);
1238
1239	if (ret == 1)
1240		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1241	if (ret)
1242		return ret;
1243	ret = ima_inode_setxattr(dentry, name, value, size);
1244	if (ret)
1245		return ret;
1246	return evm_inode_setxattr(dentry, name, value, size);
1247}
1248
1249void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1250				  const void *value, size_t size, int flags)
1251{
1252	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1253		return;
1254	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1255	evm_inode_post_setxattr(dentry, name, value, size);
1256}
1257
1258int security_inode_getxattr(struct dentry *dentry, const char *name)
1259{
1260	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1261		return 0;
1262	return call_int_hook(inode_getxattr, 0, dentry, name);
1263}
1264
1265int security_inode_listxattr(struct dentry *dentry)
1266{
1267	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1268		return 0;
1269	return call_int_hook(inode_listxattr, 0, dentry);
1270}
1271
1272int security_inode_removexattr(struct dentry *dentry, const char *name)
1273{
1274	int ret;
1275
1276	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1277		return 0;
1278	/*
1279	 * SELinux and Smack integrate the cap call,
1280	 * so assume that all LSMs supplying this call do so.
1281	 */
1282	ret = call_int_hook(inode_removexattr, 1, dentry, name);
1283	if (ret == 1)
1284		ret = cap_inode_removexattr(dentry, name);
1285	if (ret)
1286		return ret;
1287	ret = ima_inode_removexattr(dentry, name);
1288	if (ret)
1289		return ret;
1290	return evm_inode_removexattr(dentry, name);
1291}
1292
1293int security_inode_need_killpriv(struct dentry *dentry)
1294{
1295	return call_int_hook(inode_need_killpriv, 0, dentry);
1296}
1297
1298int security_inode_killpriv(struct dentry *dentry)
1299{
1300	return call_int_hook(inode_killpriv, 0, dentry);
1301}
1302
1303int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1304{
1305	struct security_hook_list *hp;
1306	int rc;
1307
1308	if (unlikely(IS_PRIVATE(inode)))
1309		return -EOPNOTSUPP;
1310	/*
1311	 * Only one module will provide an attribute with a given name.
1312	 */
1313	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1314		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1315		if (rc != -EOPNOTSUPP)
1316			return rc;
1317	}
1318	return -EOPNOTSUPP;
1319}
1320
1321int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1322{
1323	struct security_hook_list *hp;
1324	int rc;
1325
1326	if (unlikely(IS_PRIVATE(inode)))
1327		return -EOPNOTSUPP;
1328	/*
1329	 * Only one module will provide an attribute with a given name.
1330	 */
1331	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1332		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1333								flags);
1334		if (rc != -EOPNOTSUPP)
1335			return rc;
1336	}
1337	return -EOPNOTSUPP;
1338}
1339
1340int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1341{
1342	if (unlikely(IS_PRIVATE(inode)))
1343		return 0;
1344	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1345}
1346EXPORT_SYMBOL(security_inode_listsecurity);
1347
1348void security_inode_getsecid(struct inode *inode, u32 *secid)
1349{
1350	call_void_hook(inode_getsecid, inode, secid);
1351}
1352
1353int security_inode_copy_up(struct dentry *src, struct cred **new)
1354{
1355	return call_int_hook(inode_copy_up, 0, src, new);
1356}
1357EXPORT_SYMBOL(security_inode_copy_up);
1358
1359int security_inode_copy_up_xattr(const char *name)
1360{
1361	return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1362}
1363EXPORT_SYMBOL(security_inode_copy_up_xattr);
1364
1365int security_kernfs_init_security(struct kernfs_node *kn_dir,
1366				  struct kernfs_node *kn)
1367{
1368	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1369}
1370
1371int security_file_permission(struct file *file, int mask)
1372{
1373	int ret;
1374
1375	ret = call_int_hook(file_permission, 0, file, mask);
1376	if (ret)
1377		return ret;
1378
1379	return fsnotify_perm(file, mask);
1380}
1381
1382int security_file_alloc(struct file *file)
1383{
1384	int rc = lsm_file_alloc(file);
1385
1386	if (rc)
1387		return rc;
1388	rc = call_int_hook(file_alloc_security, 0, file);
1389	if (unlikely(rc))
1390		security_file_free(file);
1391	return rc;
1392}
1393
1394void security_file_free(struct file *file)
1395{
1396	void *blob;
1397
1398	call_void_hook(file_free_security, file);
1399
1400	blob = file->f_security;
1401	if (blob) {
1402		file->f_security = NULL;
1403		kmem_cache_free(lsm_file_cache, blob);
1404	}
1405}
1406
1407int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1408{
1409	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1410}
1411
1412static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1413{
1414	/*
1415	 * Does we have PROT_READ and does the application expect
1416	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1417	 */
1418	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1419		return prot;
1420	if (!(current->personality & READ_IMPLIES_EXEC))
1421		return prot;
1422	/*
1423	 * if that's an anonymous mapping, let it.
1424	 */
1425	if (!file)
1426		return prot | PROT_EXEC;
1427	/*
1428	 * ditto if it's not on noexec mount, except that on !MMU we need
1429	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1430	 */
1431	if (!path_noexec(&file->f_path)) {
1432#ifndef CONFIG_MMU
1433		if (file->f_op->mmap_capabilities) {
1434			unsigned caps = file->f_op->mmap_capabilities(file);
1435			if (!(caps & NOMMU_MAP_EXEC))
1436				return prot;
1437		}
1438#endif
1439		return prot | PROT_EXEC;
1440	}
1441	/* anything on noexec mount won't get PROT_EXEC */
1442	return prot;
1443}
1444
1445int security_mmap_file(struct file *file, unsigned long prot,
1446			unsigned long flags)
1447{
1448	int ret;
1449	ret = call_int_hook(mmap_file, 0, file, prot,
1450					mmap_prot(file, prot), flags);
1451	if (ret)
1452		return ret;
1453	return ima_file_mmap(file, prot);
1454}
1455
1456int security_mmap_addr(unsigned long addr)
1457{
1458	return call_int_hook(mmap_addr, 0, addr);
1459}
1460
1461int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1462			    unsigned long prot)
1463{
1464	return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1465}
1466
1467int security_file_lock(struct file *file, unsigned int cmd)
1468{
1469	return call_int_hook(file_lock, 0, file, cmd);
1470}
1471
1472int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1473{
1474	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1475}
1476
1477void security_file_set_fowner(struct file *file)
1478{
1479	call_void_hook(file_set_fowner, file);
1480}
1481
1482int security_file_send_sigiotask(struct task_struct *tsk,
1483				  struct fown_struct *fown, int sig)
1484{
1485	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1486}
1487
1488int security_file_receive(struct file *file)
1489{
1490	return call_int_hook(file_receive, 0, file);
1491}
1492
1493int security_file_open(struct file *file)
1494{
1495	int ret;
1496
1497	ret = call_int_hook(file_open, 0, file);
1498	if (ret)
1499		return ret;
1500
1501	return fsnotify_perm(file, MAY_OPEN);
1502}
1503
1504int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1505{
1506	int rc = lsm_task_alloc(task);
1507
1508	if (rc)
1509		return rc;
1510	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1511	if (unlikely(rc))
1512		security_task_free(task);
1513	return rc;
1514}
1515
1516void security_task_free(struct task_struct *task)
1517{
1518	call_void_hook(task_free, task);
1519
1520	kfree(task->security);
1521	task->security = NULL;
1522}
1523
1524int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1525{
1526	int rc = lsm_cred_alloc(cred, gfp);
1527
1528	if (rc)
1529		return rc;
1530
1531	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1532	if (unlikely(rc))
1533		security_cred_free(cred);
1534	return rc;
1535}
1536
1537void security_cred_free(struct cred *cred)
1538{
1539	/*
1540	 * There is a failure case in prepare_creds() that
1541	 * may result in a call here with ->security being NULL.
1542	 */
1543	if (unlikely(cred->security == NULL))
1544		return;
1545
1546	call_void_hook(cred_free, cred);
1547
1548	kfree(cred->security);
1549	cred->security = NULL;
1550}
1551
1552int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1553{
1554	int rc = lsm_cred_alloc(new, gfp);
1555
1556	if (rc)
1557		return rc;
1558
1559	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1560	if (unlikely(rc))
1561		security_cred_free(new);
1562	return rc;
1563}
1564
1565void security_transfer_creds(struct cred *new, const struct cred *old)
1566{
1567	call_void_hook(cred_transfer, new, old);
1568}
1569
1570void security_cred_getsecid(const struct cred *c, u32 *secid)
1571{
1572	*secid = 0;
1573	call_void_hook(cred_getsecid, c, secid);
1574}
1575EXPORT_SYMBOL(security_cred_getsecid);
1576
1577int security_kernel_act_as(struct cred *new, u32 secid)
1578{
1579	return call_int_hook(kernel_act_as, 0, new, secid);
1580}
1581
1582int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1583{
1584	return call_int_hook(kernel_create_files_as, 0, new, inode);
1585}
1586
1587int security_kernel_module_request(char *kmod_name)
1588{
1589	int ret;
1590
1591	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1592	if (ret)
1593		return ret;
1594	return integrity_kernel_module_request(kmod_name);
1595}
1596
1597int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1598{
1599	int ret;
1600
1601	ret = call_int_hook(kernel_read_file, 0, file, id);
1602	if (ret)
1603		return ret;
1604	return ima_read_file(file, id);
1605}
1606EXPORT_SYMBOL_GPL(security_kernel_read_file);
1607
1608int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1609				   enum kernel_read_file_id id)
1610{
1611	int ret;
1612
1613	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1614	if (ret)
1615		return ret;
1616	return ima_post_read_file(file, buf, size, id);
1617}
1618EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1619
1620int security_kernel_load_data(enum kernel_load_data_id id)
1621{
1622	int ret;
1623
1624	ret = call_int_hook(kernel_load_data, 0, id);
1625	if (ret)
1626		return ret;
1627	return ima_load_data(id);
1628}
1629EXPORT_SYMBOL_GPL(security_kernel_load_data);
1630
1631int security_task_fix_setuid(struct cred *new, const struct cred *old,
1632			     int flags)
1633{
1634	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1635}
1636
1637int security_task_setpgid(struct task_struct *p, pid_t pgid)
1638{
1639	return call_int_hook(task_setpgid, 0, p, pgid);
1640}
1641
1642int security_task_getpgid(struct task_struct *p)
1643{
1644	return call_int_hook(task_getpgid, 0, p);
1645}
1646
1647int security_task_getsid(struct task_struct *p)
1648{
1649	return call_int_hook(task_getsid, 0, p);
1650}
1651
1652void security_task_getsecid(struct task_struct *p, u32 *secid)
1653{
1654	*secid = 0;
1655	call_void_hook(task_getsecid, p, secid);
1656}
1657EXPORT_SYMBOL(security_task_getsecid);
1658
1659int security_task_setnice(struct task_struct *p, int nice)
1660{
1661	return call_int_hook(task_setnice, 0, p, nice);
1662}
1663
1664int security_task_setioprio(struct task_struct *p, int ioprio)
1665{
1666	return call_int_hook(task_setioprio, 0, p, ioprio);
1667}
1668
1669int security_task_getioprio(struct task_struct *p)
1670{
1671	return call_int_hook(task_getioprio, 0, p);
1672}
1673
1674int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1675			  unsigned int flags)
1676{
1677	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1678}
1679
1680int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1681		struct rlimit *new_rlim)
1682{
1683	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1684}
1685
1686int security_task_setscheduler(struct task_struct *p)
1687{
1688	return call_int_hook(task_setscheduler, 0, p);
1689}
1690
1691int security_task_getscheduler(struct task_struct *p)
1692{
1693	return call_int_hook(task_getscheduler, 0, p);
1694}
1695
1696int security_task_movememory(struct task_struct *p)
1697{
1698	return call_int_hook(task_movememory, 0, p);
1699}
1700
1701int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1702			int sig, const struct cred *cred)
1703{
1704	return call_int_hook(task_kill, 0, p, info, sig, cred);
1705}
1706
1707int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1708			 unsigned long arg4, unsigned long arg5)
1709{
1710	int thisrc;
1711	int rc = -ENOSYS;
1712	struct security_hook_list *hp;
1713
1714	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1715		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1716		if (thisrc != -ENOSYS) {
1717			rc = thisrc;
1718			if (thisrc != 0)
1719				break;
1720		}
1721	}
1722	return rc;
1723}
1724
1725void security_task_to_inode(struct task_struct *p, struct inode *inode)
1726{
1727	call_void_hook(task_to_inode, p, inode);
1728}
1729
1730int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1731{
1732	return call_int_hook(ipc_permission, 0, ipcp, flag);
1733}
1734
1735void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1736{
1737	*secid = 0;
1738	call_void_hook(ipc_getsecid, ipcp, secid);
1739}
1740
1741int security_msg_msg_alloc(struct msg_msg *msg)
1742{
1743	int rc = lsm_msg_msg_alloc(msg);
1744
1745	if (unlikely(rc))
1746		return rc;
1747	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1748	if (unlikely(rc))
1749		security_msg_msg_free(msg);
1750	return rc;
1751}
1752
1753void security_msg_msg_free(struct msg_msg *msg)
1754{
1755	call_void_hook(msg_msg_free_security, msg);
1756	kfree(msg->security);
1757	msg->security = NULL;
1758}
1759
1760int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1761{
1762	int rc = lsm_ipc_alloc(msq);
1763
1764	if (unlikely(rc))
1765		return rc;
1766	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1767	if (unlikely(rc))
1768		security_msg_queue_free(msq);
1769	return rc;
1770}
1771
1772void security_msg_queue_free(struct kern_ipc_perm *msq)
1773{
1774	call_void_hook(msg_queue_free_security, msq);
1775	kfree(msq->security);
1776	msq->security = NULL;
1777}
1778
1779int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1780{
1781	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1782}
1783
1784int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1785{
1786	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1787}
1788
1789int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1790			       struct msg_msg *msg, int msqflg)
1791{
1792	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1793}
1794
1795int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1796			       struct task_struct *target, long type, int mode)
1797{
1798	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1799}
1800
1801int security_shm_alloc(struct kern_ipc_perm *shp)
1802{
1803	int rc = lsm_ipc_alloc(shp);
1804
1805	if (unlikely(rc))
1806		return rc;
1807	rc = call_int_hook(shm_alloc_security, 0, shp);
1808	if (unlikely(rc))
1809		security_shm_free(shp);
1810	return rc;
1811}
1812
1813void security_shm_free(struct kern_ipc_perm *shp)
1814{
1815	call_void_hook(shm_free_security, shp);
1816	kfree(shp->security);
1817	shp->security = NULL;
1818}
1819
1820int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1821{
1822	return call_int_hook(shm_associate, 0, shp, shmflg);
1823}
1824
1825int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1826{
1827	return call_int_hook(shm_shmctl, 0, shp, cmd);
1828}
1829
1830int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1831{
1832	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1833}
1834
1835int security_sem_alloc(struct kern_ipc_perm *sma)
1836{
1837	int rc = lsm_ipc_alloc(sma);
1838
1839	if (unlikely(rc))
1840		return rc;
1841	rc = call_int_hook(sem_alloc_security, 0, sma);
1842	if (unlikely(rc))
1843		security_sem_free(sma);
1844	return rc;
1845}
1846
1847void security_sem_free(struct kern_ipc_perm *sma)
1848{
1849	call_void_hook(sem_free_security, sma);
1850	kfree(sma->security);
1851	sma->security = NULL;
1852}
1853
1854int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1855{
1856	return call_int_hook(sem_associate, 0, sma, semflg);
1857}
1858
1859int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1860{
1861	return call_int_hook(sem_semctl, 0, sma, cmd);
1862}
1863
1864int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1865			unsigned nsops, int alter)
1866{
1867	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1868}
1869
1870void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1871{
1872	if (unlikely(inode && IS_PRIVATE(inode)))
1873		return;
1874	call_void_hook(d_instantiate, dentry, inode);
1875}
1876EXPORT_SYMBOL(security_d_instantiate);
1877
1878int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1879				char **value)
1880{
1881	struct security_hook_list *hp;
1882
1883	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1884		if (lsm != NULL && strcmp(lsm, hp->lsm))
1885			continue;
1886		return hp->hook.getprocattr(p, name, value);
1887	}
1888	return -EINVAL;
1889}
1890
1891int security_setprocattr(const char *lsm, const char *name, void *value,
1892			 size_t size)
1893{
1894	struct security_hook_list *hp;
1895
1896	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1897		if (lsm != NULL && strcmp(lsm, hp->lsm))
1898			continue;
1899		return hp->hook.setprocattr(name, value, size);
1900	}
1901	return -EINVAL;
1902}
1903
1904int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1905{
1906	return call_int_hook(netlink_send, 0, sk, skb);
1907}
1908
1909int security_ismaclabel(const char *name)
1910{
1911	return call_int_hook(ismaclabel, 0, name);
1912}
1913EXPORT_SYMBOL(security_ismaclabel);
1914
1915int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1916{
1917	return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1918				seclen);
1919}
1920EXPORT_SYMBOL(security_secid_to_secctx);
1921
1922int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1923{
1924	*secid = 0;
1925	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1926}
1927EXPORT_SYMBOL(security_secctx_to_secid);
1928
1929void security_release_secctx(char *secdata, u32 seclen)
1930{
1931	call_void_hook(release_secctx, secdata, seclen);
1932}
1933EXPORT_SYMBOL(security_release_secctx);
1934
1935void security_inode_invalidate_secctx(struct inode *inode)
1936{
1937	call_void_hook(inode_invalidate_secctx, inode);
1938}
1939EXPORT_SYMBOL(security_inode_invalidate_secctx);
1940
1941int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1942{
1943	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1944}
1945EXPORT_SYMBOL(security_inode_notifysecctx);
1946
1947int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1948{
1949	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1950}
1951EXPORT_SYMBOL(security_inode_setsecctx);
1952
1953int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1954{
1955	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1956}
1957EXPORT_SYMBOL(security_inode_getsecctx);
1958
1959#ifdef CONFIG_SECURITY_NETWORK
1960
1961int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1962{
1963	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1964}
1965EXPORT_SYMBOL(security_unix_stream_connect);
1966
1967int security_unix_may_send(struct socket *sock,  struct socket *other)
1968{
1969	return call_int_hook(unix_may_send, 0, sock, other);
1970}
1971EXPORT_SYMBOL(security_unix_may_send);
1972
1973int security_socket_create(int family, int type, int protocol, int kern)
1974{
1975	return call_int_hook(socket_create, 0, family, type, protocol, kern);
1976}
1977
1978int security_socket_post_create(struct socket *sock, int family,
1979				int type, int protocol, int kern)
1980{
1981	return call_int_hook(socket_post_create, 0, sock, family, type,
1982						protocol, kern);
1983}
1984
1985int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1986{
1987	return call_int_hook(socket_socketpair, 0, socka, sockb);
1988}
1989EXPORT_SYMBOL(security_socket_socketpair);
1990
1991int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1992{
1993	return call_int_hook(socket_bind, 0, sock, address, addrlen);
1994}
1995
1996int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1997{
1998	return call_int_hook(socket_connect, 0, sock, address, addrlen);
1999}
2000
2001int security_socket_listen(struct socket *sock, int backlog)
2002{
2003	return call_int_hook(socket_listen, 0, sock, backlog);
2004}
2005
2006int security_socket_accept(struct socket *sock, struct socket *newsock)
2007{
2008	return call_int_hook(socket_accept, 0, sock, newsock);
2009}
2010
2011int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2012{
2013	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2014}
2015
2016int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2017			    int size, int flags)
2018{
2019	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2020}
2021
2022int security_socket_getsockname(struct socket *sock)
2023{
2024	return call_int_hook(socket_getsockname, 0, sock);
2025}
2026
2027int security_socket_getpeername(struct socket *sock)
2028{
2029	return call_int_hook(socket_getpeername, 0, sock);
2030}
2031
2032int security_socket_getsockopt(struct socket *sock, int level, int optname)
2033{
2034	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2035}
2036
2037int security_socket_setsockopt(struct socket *sock, int level, int optname)
2038{
2039	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2040}
2041
2042int security_socket_shutdown(struct socket *sock, int how)
2043{
2044	return call_int_hook(socket_shutdown, 0, sock, how);
2045}
2046
2047int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2048{
2049	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2050}
2051EXPORT_SYMBOL(security_sock_rcv_skb);
2052
2053int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2054				      int __user *optlen, unsigned len)
2055{
2056	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2057				optval, optlen, len);
2058}
2059
2060int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2061{
2062	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2063			     skb, secid);
2064}
2065EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2066
2067int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2068{
2069	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2070}
2071
2072void security_sk_free(struct sock *sk)
2073{
2074	call_void_hook(sk_free_security, sk);
2075}
2076
2077void security_sk_clone(const struct sock *sk, struct sock *newsk)
2078{
2079	call_void_hook(sk_clone_security, sk, newsk);
2080}
2081EXPORT_SYMBOL(security_sk_clone);
2082
2083void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2084{
2085	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2086}
2087EXPORT_SYMBOL(security_sk_classify_flow);
2088
2089void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2090{
2091	call_void_hook(req_classify_flow, req, fl);
2092}
2093EXPORT_SYMBOL(security_req_classify_flow);
2094
2095void security_sock_graft(struct sock *sk, struct socket *parent)
2096{
2097	call_void_hook(sock_graft, sk, parent);
2098}
2099EXPORT_SYMBOL(security_sock_graft);
2100
2101int security_inet_conn_request(struct sock *sk,
2102			struct sk_buff *skb, struct request_sock *req)
2103{
2104	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2105}
2106EXPORT_SYMBOL(security_inet_conn_request);
2107
2108void security_inet_csk_clone(struct sock *newsk,
2109			const struct request_sock *req)
2110{
2111	call_void_hook(inet_csk_clone, newsk, req);
2112}
2113
2114void security_inet_conn_established(struct sock *sk,
2115			struct sk_buff *skb)
2116{
2117	call_void_hook(inet_conn_established, sk, skb);
2118}
2119EXPORT_SYMBOL(security_inet_conn_established);
2120
2121int security_secmark_relabel_packet(u32 secid)
2122{
2123	return call_int_hook(secmark_relabel_packet, 0, secid);
2124}
2125EXPORT_SYMBOL(security_secmark_relabel_packet);
2126
2127void security_secmark_refcount_inc(void)
2128{
2129	call_void_hook(secmark_refcount_inc);
2130}
2131EXPORT_SYMBOL(security_secmark_refcount_inc);
2132
2133void security_secmark_refcount_dec(void)
2134{
2135	call_void_hook(secmark_refcount_dec);
2136}
2137EXPORT_SYMBOL(security_secmark_refcount_dec);
2138
2139int security_tun_dev_alloc_security(void **security)
2140{
2141	return call_int_hook(tun_dev_alloc_security, 0, security);
2142}
2143EXPORT_SYMBOL(security_tun_dev_alloc_security);
2144
2145void security_tun_dev_free_security(void *security)
2146{
2147	call_void_hook(tun_dev_free_security, security);
2148}
2149EXPORT_SYMBOL(security_tun_dev_free_security);
2150
2151int security_tun_dev_create(void)
2152{
2153	return call_int_hook(tun_dev_create, 0);
2154}
2155EXPORT_SYMBOL(security_tun_dev_create);
2156
2157int security_tun_dev_attach_queue(void *security)
2158{
2159	return call_int_hook(tun_dev_attach_queue, 0, security);
2160}
2161EXPORT_SYMBOL(security_tun_dev_attach_queue);
2162
2163int security_tun_dev_attach(struct sock *sk, void *security)
2164{
2165	return call_int_hook(tun_dev_attach, 0, sk, security);
2166}
2167EXPORT_SYMBOL(security_tun_dev_attach);
2168
2169int security_tun_dev_open(void *security)
2170{
2171	return call_int_hook(tun_dev_open, 0, security);
2172}
2173EXPORT_SYMBOL(security_tun_dev_open);
2174
2175int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2176{
2177	return call_int_hook(sctp_assoc_request, 0, ep, skb);
2178}
2179EXPORT_SYMBOL(security_sctp_assoc_request);
2180
2181int security_sctp_bind_connect(struct sock *sk, int optname,
2182			       struct sockaddr *address, int addrlen)
2183{
2184	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2185			     address, addrlen);
2186}
2187EXPORT_SYMBOL(security_sctp_bind_connect);
2188
2189void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2190			    struct sock *newsk)
2191{
2192	call_void_hook(sctp_sk_clone, ep, sk, newsk);
2193}
2194EXPORT_SYMBOL(security_sctp_sk_clone);
2195
2196#endif	/* CONFIG_SECURITY_NETWORK */
2197
2198#ifdef CONFIG_SECURITY_INFINIBAND
2199
2200int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2201{
2202	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2203}
2204EXPORT_SYMBOL(security_ib_pkey_access);
2205
2206int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2207{
2208	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2209}
2210EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2211
2212int security_ib_alloc_security(void **sec)
2213{
2214	return call_int_hook(ib_alloc_security, 0, sec);
2215}
2216EXPORT_SYMBOL(security_ib_alloc_security);
2217
2218void security_ib_free_security(void *sec)
2219{
2220	call_void_hook(ib_free_security, sec);
2221}
2222EXPORT_SYMBOL(security_ib_free_security);
2223#endif	/* CONFIG_SECURITY_INFINIBAND */
2224
2225#ifdef CONFIG_SECURITY_NETWORK_XFRM
2226
2227int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2228			       struct xfrm_user_sec_ctx *sec_ctx,
2229			       gfp_t gfp)
2230{
2231	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2232}
2233EXPORT_SYMBOL(security_xfrm_policy_alloc);
2234
2235int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2236			      struct xfrm_sec_ctx **new_ctxp)
2237{
2238	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2239}
2240
2241void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2242{
2243	call_void_hook(xfrm_policy_free_security, ctx);
2244}
2245EXPORT_SYMBOL(security_xfrm_policy_free);
2246
2247int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2248{
2249	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2250}
2251
2252int security_xfrm_state_alloc(struct xfrm_state *x,
2253			      struct xfrm_user_sec_ctx *sec_ctx)
2254{
2255	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2256}
2257EXPORT_SYMBOL(security_xfrm_state_alloc);
2258
2259int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2260				      struct xfrm_sec_ctx *polsec, u32 secid)
2261{
2262	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2263}
2264
2265int security_xfrm_state_delete(struct xfrm_state *x)
2266{
2267	return call_int_hook(xfrm_state_delete_security, 0, x);
2268}
2269EXPORT_SYMBOL(security_xfrm_state_delete);
2270
2271void security_xfrm_state_free(struct xfrm_state *x)
2272{
2273	call_void_hook(xfrm_state_free_security, x);
2274}
2275
2276int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2277{
2278	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2279}
2280
2281int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2282				       struct xfrm_policy *xp,
2283				       const struct flowi *fl)
2284{
2285	struct security_hook_list *hp;
2286	int rc = 1;
2287
2288	/*
2289	 * Since this function is expected to return 0 or 1, the judgment
2290	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2291	 * we can use the first LSM's judgment because currently only SELinux
2292	 * supplies this call.
2293	 *
2294	 * For speed optimization, we explicitly break the loop rather than
2295	 * using the macro
2296	 */
2297	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2298				list) {
2299		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2300		break;
2301	}
2302	return rc;
2303}
2304
2305int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2306{
2307	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2308}
2309
2310void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2311{
2312	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2313				0);
2314
2315	BUG_ON(rc);
2316}
2317EXPORT_SYMBOL(security_skb_classify_flow);
2318
2319#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2320
2321#ifdef CONFIG_KEYS
2322
2323int security_key_alloc(struct key *key, const struct cred *cred,
2324		       unsigned long flags)
2325{
2326	return call_int_hook(key_alloc, 0, key, cred, flags);
2327}
2328
2329void security_key_free(struct key *key)
2330{
2331	call_void_hook(key_free, key);
2332}
2333
2334int security_key_permission(key_ref_t key_ref,
2335			    const struct cred *cred, unsigned perm)
2336{
2337	return call_int_hook(key_permission, 0, key_ref, cred, perm);
2338}
2339
2340int security_key_getsecurity(struct key *key, char **_buffer)
2341{
2342	*_buffer = NULL;
2343	return call_int_hook(key_getsecurity, 0, key, _buffer);
2344}
2345
2346#endif	/* CONFIG_KEYS */
2347
2348#ifdef CONFIG_AUDIT
2349
2350int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2351{
2352	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2353}
2354
2355int security_audit_rule_known(struct audit_krule *krule)
2356{
2357	return call_int_hook(audit_rule_known, 0, krule);
2358}
2359
2360void security_audit_rule_free(void *lsmrule)
2361{
2362	call_void_hook(audit_rule_free, lsmrule);
2363}
2364
2365int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
 
2366{
2367	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
 
2368}
2369#endif /* CONFIG_AUDIT */
2370
2371#ifdef CONFIG_BPF_SYSCALL
2372int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2373{
2374	return call_int_hook(bpf, 0, cmd, attr, size);
2375}
2376int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2377{
2378	return call_int_hook(bpf_map, 0, map, fmode);
2379}
2380int security_bpf_prog(struct bpf_prog *prog)
2381{
2382	return call_int_hook(bpf_prog, 0, prog);
2383}
2384int security_bpf_map_alloc(struct bpf_map *map)
2385{
2386	return call_int_hook(bpf_map_alloc_security, 0, map);
2387}
2388int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2389{
2390	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2391}
2392void security_bpf_map_free(struct bpf_map *map)
2393{
2394	call_void_hook(bpf_map_free_security, map);
2395}
2396void security_bpf_prog_free(struct bpf_prog_aux *aux)
2397{
2398	call_void_hook(bpf_prog_free_security, aux);
2399}
2400#endif /* CONFIG_BPF_SYSCALL */
2401
2402int security_locked_down(enum lockdown_reason what)
2403{
2404	return call_int_hook(locked_down, 0, what);
2405}
2406EXPORT_SYMBOL(security_locked_down);
v4.17
 
   1/*
   2 * Security plug functions
   3 *
   4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   7 * Copyright (C) 2016 Mellanox Technologies
   8 *
   9 *	This program is free software; you can redistribute it and/or modify
  10 *	it under the terms of the GNU General Public License as published by
  11 *	the Free Software Foundation; either version 2 of the License, or
  12 *	(at your option) any later version.
  13 */
  14
 
 
  15#include <linux/bpf.h>
  16#include <linux/capability.h>
  17#include <linux/dcache.h>
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/kernel.h>
  21#include <linux/lsm_hooks.h>
  22#include <linux/integrity.h>
  23#include <linux/ima.h>
  24#include <linux/evm.h>
  25#include <linux/fsnotify.h>
  26#include <linux/mman.h>
  27#include <linux/mount.h>
  28#include <linux/personality.h>
  29#include <linux/backing-dev.h>
  30#include <linux/string.h>
 
  31#include <net/flow.h>
  32
  33#include <trace/events/initcall.h>
  34
  35#define MAX_LSM_EVM_XATTR	2
  36
  37/* Maximum number of letters for an LSM name string */
  38#define SECURITY_NAME_MAX	10
 
  39
  40struct security_hook_heads security_hook_heads __lsm_ro_after_init;
  41static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
 
 
 
  42
  43char *lsm_names;
 
 
  44/* Boot-time LSM user choice */
  45static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  46	CONFIG_DEFAULT_SECURITY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  47
  48static void __init do_security_initcalls(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  49{
  50	int ret;
  51	initcall_t *call;
  52	call = __security_initcall_start;
  53	trace_initcall_level("security");
  54	while (call < __security_initcall_end) {
  55		trace_initcall_start((*call));
  56		ret = (*call) ();
  57		trace_initcall_finish((*call), ret);
  58		call++;
 
 
 
 
  59	}
 
 
  60}
  61
  62/**
  63 * security_init - initializes the security framework
  64 *
  65 * This should be called early in the kernel initialization sequence.
  66 */
  67int __init security_init(void)
  68{
  69	int i;
  70	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
  71
  72	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
  73	     i++)
  74		INIT_HLIST_HEAD(&list[i]);
  75	pr_info("Security Framework initialized\n");
  76
  77	/*
  78	 * Load minor LSMs, with the capability module always first.
 
  79	 */
  80	capability_add_hooks();
  81	yama_add_hooks();
  82	loadpin_add_hooks();
 
  83
  84	/*
  85	 * Load all the remaining security modules.
  86	 */
  87	do_security_initcalls();
  88
  89	return 0;
  90}
  91
  92/* Save user chosen LSM */
  93static int __init choose_lsm(char *str)
  94{
  95	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  96	return 1;
  97}
  98__setup("security=", choose_lsm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  99
 100static bool match_last_lsm(const char *list, const char *lsm)
 101{
 102	const char *last;
 103
 104	if (WARN_ON(!list || !lsm))
 105		return false;
 106	last = strrchr(list, ',');
 107	if (last)
 108		/* Pass the comma, strcmp() will check for '\0' */
 109		last++;
 110	else
 111		last = list;
 112	return !strcmp(last, lsm);
 113}
 114
 115static int lsm_append(char *new, char **result)
 116{
 117	char *cp;
 118
 119	if (*result == NULL) {
 120		*result = kstrdup(new, GFP_KERNEL);
 
 
 121	} else {
 122		/* Check if it is the last registered name */
 123		if (match_last_lsm(*result, new))
 124			return 0;
 125		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
 126		if (cp == NULL)
 127			return -ENOMEM;
 128		kfree(*result);
 129		*result = cp;
 130	}
 131	return 0;
 132}
 133
 134/**
 135 * security_module_enable - Load given security module on boot ?
 136 * @module: the name of the module
 137 *
 138 * Each LSM must pass this method before registering its own operations
 139 * to avoid security registration races. This method may also be used
 140 * to check if your LSM is currently loaded during kernel initialization.
 141 *
 142 * Returns:
 143 *
 144 * true if:
 145 *
 146 * - The passed LSM is the one chosen by user at boot time,
 147 * - or the passed LSM is configured as the default and the user did not
 148 *   choose an alternate LSM at boot time.
 149 *
 150 * Otherwise, return false.
 151 */
 152int __init security_module_enable(const char *module)
 153{
 154	return !strcmp(module, chosen_lsm);
 155}
 156
 157/**
 158 * security_add_hooks - Add a modules hooks to the hook lists.
 159 * @hooks: the hooks to add
 160 * @count: the number of hooks to add
 161 * @lsm: the name of the security module
 162 *
 163 * Each LSM has to register its hooks with the infrastructure.
 164 */
 165void __init security_add_hooks(struct security_hook_list *hooks, int count,
 166				char *lsm)
 167{
 168	int i;
 169
 170	for (i = 0; i < count; i++) {
 171		hooks[i].lsm = lsm;
 172		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
 173	}
 174	if (lsm_append(lsm, &lsm_names) < 0)
 175		panic("%s - Cannot get early memory.\n", __func__);
 
 
 
 
 
 
 
 176}
 177
 178int call_lsm_notifier(enum lsm_event event, void *data)
 179{
 180	return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
 
 181}
 182EXPORT_SYMBOL(call_lsm_notifier);
 183
 184int register_lsm_notifier(struct notifier_block *nb)
 185{
 186	return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
 
 187}
 188EXPORT_SYMBOL(register_lsm_notifier);
 189
 190int unregister_lsm_notifier(struct notifier_block *nb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191{
 192	return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 193}
 194EXPORT_SYMBOL(unregister_lsm_notifier);
 195
 196/*
 197 * Hook list operation macros.
 198 *
 199 * call_void_hook:
 200 *	This is a hook that does not return a value.
 201 *
 202 * call_int_hook:
 203 *	This is a hook that returns a value.
 204 */
 205
 206#define call_void_hook(FUNC, ...)				\
 207	do {							\
 208		struct security_hook_list *P;			\
 209								\
 210		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
 211			P->hook.FUNC(__VA_ARGS__);		\
 212	} while (0)
 213
 214#define call_int_hook(FUNC, IRC, ...) ({			\
 215	int RC = IRC;						\
 216	do {							\
 217		struct security_hook_list *P;			\
 218								\
 219		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
 220			RC = P->hook.FUNC(__VA_ARGS__);		\
 221			if (RC != 0)				\
 222				break;				\
 223		}						\
 224	} while (0);						\
 225	RC;							\
 226})
 227
 228/* Security operations */
 229
 230int security_binder_set_context_mgr(struct task_struct *mgr)
 231{
 232	return call_int_hook(binder_set_context_mgr, 0, mgr);
 233}
 234
 235int security_binder_transaction(struct task_struct *from,
 236				struct task_struct *to)
 237{
 238	return call_int_hook(binder_transaction, 0, from, to);
 239}
 240
 241int security_binder_transfer_binder(struct task_struct *from,
 242				    struct task_struct *to)
 243{
 244	return call_int_hook(binder_transfer_binder, 0, from, to);
 245}
 246
 247int security_binder_transfer_file(struct task_struct *from,
 248				  struct task_struct *to, struct file *file)
 249{
 250	return call_int_hook(binder_transfer_file, 0, from, to, file);
 251}
 252
 253int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 254{
 255	return call_int_hook(ptrace_access_check, 0, child, mode);
 256}
 257
 258int security_ptrace_traceme(struct task_struct *parent)
 259{
 260	return call_int_hook(ptrace_traceme, 0, parent);
 261}
 262
 263int security_capget(struct task_struct *target,
 264		     kernel_cap_t *effective,
 265		     kernel_cap_t *inheritable,
 266		     kernel_cap_t *permitted)
 267{
 268	return call_int_hook(capget, 0, target,
 269				effective, inheritable, permitted);
 270}
 271
 272int security_capset(struct cred *new, const struct cred *old,
 273		    const kernel_cap_t *effective,
 274		    const kernel_cap_t *inheritable,
 275		    const kernel_cap_t *permitted)
 276{
 277	return call_int_hook(capset, 0, new, old,
 278				effective, inheritable, permitted);
 279}
 280
 281int security_capable(const struct cred *cred, struct user_namespace *ns,
 282		     int cap)
 
 
 283{
 284	return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT);
 285}
 286
 287int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
 288			     int cap)
 289{
 290	return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT);
 291}
 292
 293int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 294{
 295	return call_int_hook(quotactl, 0, cmds, type, id, sb);
 296}
 297
 298int security_quota_on(struct dentry *dentry)
 299{
 300	return call_int_hook(quota_on, 0, dentry);
 301}
 302
 303int security_syslog(int type)
 304{
 305	return call_int_hook(syslog, 0, type);
 306}
 307
 308int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
 309{
 310	return call_int_hook(settime, 0, ts, tz);
 311}
 312
 313int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 314{
 315	struct security_hook_list *hp;
 316	int cap_sys_admin = 1;
 317	int rc;
 318
 319	/*
 320	 * The module will respond with a positive value if
 321	 * it thinks the __vm_enough_memory() call should be
 322	 * made with the cap_sys_admin set. If all of the modules
 323	 * agree that it should be set it will. If any module
 324	 * thinks it should not be set it won't.
 325	 */
 326	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
 327		rc = hp->hook.vm_enough_memory(mm, pages);
 328		if (rc <= 0) {
 329			cap_sys_admin = 0;
 330			break;
 331		}
 332	}
 333	return __vm_enough_memory(mm, pages, cap_sys_admin);
 334}
 335
 336int security_bprm_set_creds(struct linux_binprm *bprm)
 337{
 338	return call_int_hook(bprm_set_creds, 0, bprm);
 339}
 340
 341int security_bprm_check(struct linux_binprm *bprm)
 342{
 343	int ret;
 344
 345	ret = call_int_hook(bprm_check_security, 0, bprm);
 346	if (ret)
 347		return ret;
 348	return ima_bprm_check(bprm);
 349}
 350
 351void security_bprm_committing_creds(struct linux_binprm *bprm)
 352{
 353	call_void_hook(bprm_committing_creds, bprm);
 354}
 355
 356void security_bprm_committed_creds(struct linux_binprm *bprm)
 357{
 358	call_void_hook(bprm_committed_creds, bprm);
 359}
 360
 
 
 
 
 
 
 
 
 
 
 361int security_sb_alloc(struct super_block *sb)
 362{
 363	return call_int_hook(sb_alloc_security, 0, sb);
 364}
 365
 366void security_sb_free(struct super_block *sb)
 367{
 368	call_void_hook(sb_free_security, sb);
 369}
 370
 371int security_sb_copy_data(char *orig, char *copy)
 
 
 
 
 
 
 
 
 
 372{
 373	return call_int_hook(sb_copy_data, 0, orig, copy);
 374}
 375EXPORT_SYMBOL(security_sb_copy_data);
 376
 377int security_sb_remount(struct super_block *sb, void *data)
 
 378{
 379	return call_int_hook(sb_remount, 0, sb, data);
 380}
 
 381
 382int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
 383{
 384	return call_int_hook(sb_kern_mount, 0, sb, flags, data);
 385}
 386
 387int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 388{
 389	return call_int_hook(sb_show_options, 0, m, sb);
 390}
 391
 392int security_sb_statfs(struct dentry *dentry)
 393{
 394	return call_int_hook(sb_statfs, 0, dentry);
 395}
 396
 397int security_sb_mount(const char *dev_name, const struct path *path,
 398                       const char *type, unsigned long flags, void *data)
 399{
 400	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
 401}
 402
 403int security_sb_umount(struct vfsmount *mnt, int flags)
 404{
 405	return call_int_hook(sb_umount, 0, mnt, flags);
 406}
 407
 408int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
 409{
 410	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
 411}
 412
 413int security_sb_set_mnt_opts(struct super_block *sb,
 414				struct security_mnt_opts *opts,
 415				unsigned long kern_flags,
 416				unsigned long *set_kern_flags)
 417{
 418	return call_int_hook(sb_set_mnt_opts,
 419				opts->num_mnt_opts ? -EOPNOTSUPP : 0, sb,
 420				opts, kern_flags, set_kern_flags);
 421}
 422EXPORT_SYMBOL(security_sb_set_mnt_opts);
 423
 424int security_sb_clone_mnt_opts(const struct super_block *oldsb,
 425				struct super_block *newsb,
 426				unsigned long kern_flags,
 427				unsigned long *set_kern_flags)
 428{
 429	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
 430				kern_flags, set_kern_flags);
 431}
 432EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 433
 434int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
 
 435{
 436	return call_int_hook(sb_parse_opts_str, 0, options, opts);
 
 
 
 
 
 
 
 
 
 
 
 
 
 437}
 438EXPORT_SYMBOL(security_sb_parse_opts_str);
 439
 440int security_inode_alloc(struct inode *inode)
 441{
 442	inode->i_security = NULL;
 443	return call_int_hook(inode_alloc_security, 0, inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 444}
 445
 446void security_inode_free(struct inode *inode)
 447{
 448	integrity_inode_free(inode);
 449	call_void_hook(inode_free_security, inode);
 
 
 
 
 
 
 
 
 
 
 
 
 450}
 451
 452int security_dentry_init_security(struct dentry *dentry, int mode,
 453					const struct qstr *name, void **ctx,
 454					u32 *ctxlen)
 455{
 456	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
 457				name, ctx, ctxlen);
 458}
 459EXPORT_SYMBOL(security_dentry_init_security);
 460
 461int security_dentry_create_files_as(struct dentry *dentry, int mode,
 462				    struct qstr *name,
 463				    const struct cred *old, struct cred *new)
 464{
 465	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
 466				name, old, new);
 467}
 468EXPORT_SYMBOL(security_dentry_create_files_as);
 469
 470int security_inode_init_security(struct inode *inode, struct inode *dir,
 471				 const struct qstr *qstr,
 472				 const initxattrs initxattrs, void *fs_data)
 473{
 474	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
 475	struct xattr *lsm_xattr, *evm_xattr, *xattr;
 476	int ret;
 477
 478	if (unlikely(IS_PRIVATE(inode)))
 479		return 0;
 480
 481	if (!initxattrs)
 482		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
 483				     dir, qstr, NULL, NULL, NULL);
 484	memset(new_xattrs, 0, sizeof(new_xattrs));
 485	lsm_xattr = new_xattrs;
 486	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
 487						&lsm_xattr->name,
 488						&lsm_xattr->value,
 489						&lsm_xattr->value_len);
 490	if (ret)
 491		goto out;
 492
 493	evm_xattr = lsm_xattr + 1;
 494	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
 495	if (ret)
 496		goto out;
 497	ret = initxattrs(inode, new_xattrs, fs_data);
 498out:
 499	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
 500		kfree(xattr->value);
 501	return (ret == -EOPNOTSUPP) ? 0 : ret;
 502}
 503EXPORT_SYMBOL(security_inode_init_security);
 504
 505int security_old_inode_init_security(struct inode *inode, struct inode *dir,
 506				     const struct qstr *qstr, const char **name,
 507				     void **value, size_t *len)
 508{
 509	if (unlikely(IS_PRIVATE(inode)))
 510		return -EOPNOTSUPP;
 511	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
 512			     qstr, name, value, len);
 513}
 514EXPORT_SYMBOL(security_old_inode_init_security);
 515
 516#ifdef CONFIG_SECURITY_PATH
 517int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
 518			unsigned int dev)
 519{
 520	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
 521		return 0;
 522	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
 523}
 524EXPORT_SYMBOL(security_path_mknod);
 525
 526int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
 527{
 528	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
 529		return 0;
 530	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
 531}
 532EXPORT_SYMBOL(security_path_mkdir);
 533
 534int security_path_rmdir(const struct path *dir, struct dentry *dentry)
 535{
 536	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
 537		return 0;
 538	return call_int_hook(path_rmdir, 0, dir, dentry);
 539}
 540
 541int security_path_unlink(const struct path *dir, struct dentry *dentry)
 542{
 543	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
 544		return 0;
 545	return call_int_hook(path_unlink, 0, dir, dentry);
 546}
 547EXPORT_SYMBOL(security_path_unlink);
 548
 549int security_path_symlink(const struct path *dir, struct dentry *dentry,
 550			  const char *old_name)
 551{
 552	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
 553		return 0;
 554	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
 555}
 556
 557int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
 558		       struct dentry *new_dentry)
 559{
 560	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
 561		return 0;
 562	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
 563}
 564
 565int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
 566			 const struct path *new_dir, struct dentry *new_dentry,
 567			 unsigned int flags)
 568{
 569	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
 570		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
 571		return 0;
 572
 573	if (flags & RENAME_EXCHANGE) {
 574		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
 575					old_dir, old_dentry);
 576		if (err)
 577			return err;
 578	}
 579
 580	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
 581				new_dentry);
 582}
 583EXPORT_SYMBOL(security_path_rename);
 584
 585int security_path_truncate(const struct path *path)
 586{
 587	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
 588		return 0;
 589	return call_int_hook(path_truncate, 0, path);
 590}
 591
 592int security_path_chmod(const struct path *path, umode_t mode)
 593{
 594	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
 595		return 0;
 596	return call_int_hook(path_chmod, 0, path, mode);
 597}
 598
 599int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
 600{
 601	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
 602		return 0;
 603	return call_int_hook(path_chown, 0, path, uid, gid);
 604}
 605
 606int security_path_chroot(const struct path *path)
 607{
 608	return call_int_hook(path_chroot, 0, path);
 609}
 610#endif
 611
 612int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
 613{
 614	if (unlikely(IS_PRIVATE(dir)))
 615		return 0;
 616	return call_int_hook(inode_create, 0, dir, dentry, mode);
 617}
 618EXPORT_SYMBOL_GPL(security_inode_create);
 619
 620int security_inode_link(struct dentry *old_dentry, struct inode *dir,
 621			 struct dentry *new_dentry)
 622{
 623	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
 624		return 0;
 625	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
 626}
 627
 628int security_inode_unlink(struct inode *dir, struct dentry *dentry)
 629{
 630	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
 631		return 0;
 632	return call_int_hook(inode_unlink, 0, dir, dentry);
 633}
 634
 635int security_inode_symlink(struct inode *dir, struct dentry *dentry,
 636			    const char *old_name)
 637{
 638	if (unlikely(IS_PRIVATE(dir)))
 639		return 0;
 640	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
 641}
 642
 643int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 644{
 645	if (unlikely(IS_PRIVATE(dir)))
 646		return 0;
 647	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
 648}
 649EXPORT_SYMBOL_GPL(security_inode_mkdir);
 650
 651int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
 652{
 653	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
 654		return 0;
 655	return call_int_hook(inode_rmdir, 0, dir, dentry);
 656}
 657
 658int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 659{
 660	if (unlikely(IS_PRIVATE(dir)))
 661		return 0;
 662	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
 663}
 664
 665int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
 666			   struct inode *new_dir, struct dentry *new_dentry,
 667			   unsigned int flags)
 668{
 669        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
 670            (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
 671		return 0;
 672
 673	if (flags & RENAME_EXCHANGE) {
 674		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
 675						     old_dir, old_dentry);
 676		if (err)
 677			return err;
 678	}
 679
 680	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
 681					   new_dir, new_dentry);
 682}
 683
 684int security_inode_readlink(struct dentry *dentry)
 685{
 686	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
 687		return 0;
 688	return call_int_hook(inode_readlink, 0, dentry);
 689}
 690
 691int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
 692			       bool rcu)
 693{
 694	if (unlikely(IS_PRIVATE(inode)))
 695		return 0;
 696	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
 697}
 698
 699int security_inode_permission(struct inode *inode, int mask)
 700{
 701	if (unlikely(IS_PRIVATE(inode)))
 702		return 0;
 703	return call_int_hook(inode_permission, 0, inode, mask);
 704}
 705
 706int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
 707{
 708	int ret;
 709
 710	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
 711		return 0;
 712	ret = call_int_hook(inode_setattr, 0, dentry, attr);
 713	if (ret)
 714		return ret;
 715	return evm_inode_setattr(dentry, attr);
 716}
 717EXPORT_SYMBOL_GPL(security_inode_setattr);
 718
 719int security_inode_getattr(const struct path *path)
 720{
 721	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
 722		return 0;
 723	return call_int_hook(inode_getattr, 0, path);
 724}
 725
 726int security_inode_setxattr(struct dentry *dentry, const char *name,
 727			    const void *value, size_t size, int flags)
 728{
 729	int ret;
 730
 731	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
 732		return 0;
 733	/*
 734	 * SELinux and Smack integrate the cap call,
 735	 * so assume that all LSMs supplying this call do so.
 736	 */
 737	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
 738				flags);
 739
 740	if (ret == 1)
 741		ret = cap_inode_setxattr(dentry, name, value, size, flags);
 742	if (ret)
 743		return ret;
 744	ret = ima_inode_setxattr(dentry, name, value, size);
 745	if (ret)
 746		return ret;
 747	return evm_inode_setxattr(dentry, name, value, size);
 748}
 749
 750void security_inode_post_setxattr(struct dentry *dentry, const char *name,
 751				  const void *value, size_t size, int flags)
 752{
 753	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
 754		return;
 755	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
 756	evm_inode_post_setxattr(dentry, name, value, size);
 757}
 758
 759int security_inode_getxattr(struct dentry *dentry, const char *name)
 760{
 761	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
 762		return 0;
 763	return call_int_hook(inode_getxattr, 0, dentry, name);
 764}
 765
 766int security_inode_listxattr(struct dentry *dentry)
 767{
 768	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
 769		return 0;
 770	return call_int_hook(inode_listxattr, 0, dentry);
 771}
 772
 773int security_inode_removexattr(struct dentry *dentry, const char *name)
 774{
 775	int ret;
 776
 777	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
 778		return 0;
 779	/*
 780	 * SELinux and Smack integrate the cap call,
 781	 * so assume that all LSMs supplying this call do so.
 782	 */
 783	ret = call_int_hook(inode_removexattr, 1, dentry, name);
 784	if (ret == 1)
 785		ret = cap_inode_removexattr(dentry, name);
 786	if (ret)
 787		return ret;
 788	ret = ima_inode_removexattr(dentry, name);
 789	if (ret)
 790		return ret;
 791	return evm_inode_removexattr(dentry, name);
 792}
 793
 794int security_inode_need_killpriv(struct dentry *dentry)
 795{
 796	return call_int_hook(inode_need_killpriv, 0, dentry);
 797}
 798
 799int security_inode_killpriv(struct dentry *dentry)
 800{
 801	return call_int_hook(inode_killpriv, 0, dentry);
 802}
 803
 804int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
 805{
 806	struct security_hook_list *hp;
 807	int rc;
 808
 809	if (unlikely(IS_PRIVATE(inode)))
 810		return -EOPNOTSUPP;
 811	/*
 812	 * Only one module will provide an attribute with a given name.
 813	 */
 814	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
 815		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
 816		if (rc != -EOPNOTSUPP)
 817			return rc;
 818	}
 819	return -EOPNOTSUPP;
 820}
 821
 822int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
 823{
 824	struct security_hook_list *hp;
 825	int rc;
 826
 827	if (unlikely(IS_PRIVATE(inode)))
 828		return -EOPNOTSUPP;
 829	/*
 830	 * Only one module will provide an attribute with a given name.
 831	 */
 832	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
 833		rc = hp->hook.inode_setsecurity(inode, name, value, size,
 834								flags);
 835		if (rc != -EOPNOTSUPP)
 836			return rc;
 837	}
 838	return -EOPNOTSUPP;
 839}
 840
 841int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
 842{
 843	if (unlikely(IS_PRIVATE(inode)))
 844		return 0;
 845	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
 846}
 847EXPORT_SYMBOL(security_inode_listsecurity);
 848
 849void security_inode_getsecid(struct inode *inode, u32 *secid)
 850{
 851	call_void_hook(inode_getsecid, inode, secid);
 852}
 853
 854int security_inode_copy_up(struct dentry *src, struct cred **new)
 855{
 856	return call_int_hook(inode_copy_up, 0, src, new);
 857}
 858EXPORT_SYMBOL(security_inode_copy_up);
 859
 860int security_inode_copy_up_xattr(const char *name)
 861{
 862	return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
 863}
 864EXPORT_SYMBOL(security_inode_copy_up_xattr);
 865
 
 
 
 
 
 
 866int security_file_permission(struct file *file, int mask)
 867{
 868	int ret;
 869
 870	ret = call_int_hook(file_permission, 0, file, mask);
 871	if (ret)
 872		return ret;
 873
 874	return fsnotify_perm(file, mask);
 875}
 876
 877int security_file_alloc(struct file *file)
 878{
 879	return call_int_hook(file_alloc_security, 0, file);
 
 
 
 
 
 
 
 880}
 881
 882void security_file_free(struct file *file)
 883{
 
 
 884	call_void_hook(file_free_security, file);
 
 
 
 
 
 
 885}
 886
 887int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 888{
 889	return call_int_hook(file_ioctl, 0, file, cmd, arg);
 890}
 891
 892static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
 893{
 894	/*
 895	 * Does we have PROT_READ and does the application expect
 896	 * it to imply PROT_EXEC?  If not, nothing to talk about...
 897	 */
 898	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
 899		return prot;
 900	if (!(current->personality & READ_IMPLIES_EXEC))
 901		return prot;
 902	/*
 903	 * if that's an anonymous mapping, let it.
 904	 */
 905	if (!file)
 906		return prot | PROT_EXEC;
 907	/*
 908	 * ditto if it's not on noexec mount, except that on !MMU we need
 909	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
 910	 */
 911	if (!path_noexec(&file->f_path)) {
 912#ifndef CONFIG_MMU
 913		if (file->f_op->mmap_capabilities) {
 914			unsigned caps = file->f_op->mmap_capabilities(file);
 915			if (!(caps & NOMMU_MAP_EXEC))
 916				return prot;
 917		}
 918#endif
 919		return prot | PROT_EXEC;
 920	}
 921	/* anything on noexec mount won't get PROT_EXEC */
 922	return prot;
 923}
 924
 925int security_mmap_file(struct file *file, unsigned long prot,
 926			unsigned long flags)
 927{
 928	int ret;
 929	ret = call_int_hook(mmap_file, 0, file, prot,
 930					mmap_prot(file, prot), flags);
 931	if (ret)
 932		return ret;
 933	return ima_file_mmap(file, prot);
 934}
 935
 936int security_mmap_addr(unsigned long addr)
 937{
 938	return call_int_hook(mmap_addr, 0, addr);
 939}
 940
 941int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
 942			    unsigned long prot)
 943{
 944	return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
 945}
 946
 947int security_file_lock(struct file *file, unsigned int cmd)
 948{
 949	return call_int_hook(file_lock, 0, file, cmd);
 950}
 951
 952int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
 953{
 954	return call_int_hook(file_fcntl, 0, file, cmd, arg);
 955}
 956
 957void security_file_set_fowner(struct file *file)
 958{
 959	call_void_hook(file_set_fowner, file);
 960}
 961
 962int security_file_send_sigiotask(struct task_struct *tsk,
 963				  struct fown_struct *fown, int sig)
 964{
 965	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
 966}
 967
 968int security_file_receive(struct file *file)
 969{
 970	return call_int_hook(file_receive, 0, file);
 971}
 972
 973int security_file_open(struct file *file, const struct cred *cred)
 974{
 975	int ret;
 976
 977	ret = call_int_hook(file_open, 0, file, cred);
 978	if (ret)
 979		return ret;
 980
 981	return fsnotify_perm(file, MAY_OPEN);
 982}
 983
 984int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
 985{
 986	return call_int_hook(task_alloc, 0, task, clone_flags);
 
 
 
 
 
 
 
 987}
 988
 989void security_task_free(struct task_struct *task)
 990{
 991	call_void_hook(task_free, task);
 
 
 
 992}
 993
 994int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
 995{
 996	return call_int_hook(cred_alloc_blank, 0, cred, gfp);
 
 
 
 
 
 
 
 
 997}
 998
 999void security_cred_free(struct cred *cred)
1000{
 
 
 
 
 
 
 
1001	call_void_hook(cred_free, cred);
 
 
 
1002}
1003
1004int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1005{
1006	return call_int_hook(cred_prepare, 0, new, old, gfp);
 
 
 
 
 
 
 
 
1007}
1008
1009void security_transfer_creds(struct cred *new, const struct cred *old)
1010{
1011	call_void_hook(cred_transfer, new, old);
1012}
1013
1014void security_cred_getsecid(const struct cred *c, u32 *secid)
1015{
1016	*secid = 0;
1017	call_void_hook(cred_getsecid, c, secid);
1018}
1019EXPORT_SYMBOL(security_cred_getsecid);
1020
1021int security_kernel_act_as(struct cred *new, u32 secid)
1022{
1023	return call_int_hook(kernel_act_as, 0, new, secid);
1024}
1025
1026int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1027{
1028	return call_int_hook(kernel_create_files_as, 0, new, inode);
1029}
1030
1031int security_kernel_module_request(char *kmod_name)
1032{
1033	return call_int_hook(kernel_module_request, 0, kmod_name);
 
 
 
 
 
1034}
1035
1036int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1037{
1038	int ret;
1039
1040	ret = call_int_hook(kernel_read_file, 0, file, id);
1041	if (ret)
1042		return ret;
1043	return ima_read_file(file, id);
1044}
1045EXPORT_SYMBOL_GPL(security_kernel_read_file);
1046
1047int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1048				   enum kernel_read_file_id id)
1049{
1050	int ret;
1051
1052	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1053	if (ret)
1054		return ret;
1055	return ima_post_read_file(file, buf, size, id);
1056}
1057EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1058
 
 
 
 
 
 
 
 
 
 
 
1059int security_task_fix_setuid(struct cred *new, const struct cred *old,
1060			     int flags)
1061{
1062	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1063}
1064
1065int security_task_setpgid(struct task_struct *p, pid_t pgid)
1066{
1067	return call_int_hook(task_setpgid, 0, p, pgid);
1068}
1069
1070int security_task_getpgid(struct task_struct *p)
1071{
1072	return call_int_hook(task_getpgid, 0, p);
1073}
1074
1075int security_task_getsid(struct task_struct *p)
1076{
1077	return call_int_hook(task_getsid, 0, p);
1078}
1079
1080void security_task_getsecid(struct task_struct *p, u32 *secid)
1081{
1082	*secid = 0;
1083	call_void_hook(task_getsecid, p, secid);
1084}
1085EXPORT_SYMBOL(security_task_getsecid);
1086
1087int security_task_setnice(struct task_struct *p, int nice)
1088{
1089	return call_int_hook(task_setnice, 0, p, nice);
1090}
1091
1092int security_task_setioprio(struct task_struct *p, int ioprio)
1093{
1094	return call_int_hook(task_setioprio, 0, p, ioprio);
1095}
1096
1097int security_task_getioprio(struct task_struct *p)
1098{
1099	return call_int_hook(task_getioprio, 0, p);
1100}
1101
1102int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1103			  unsigned int flags)
1104{
1105	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1106}
1107
1108int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1109		struct rlimit *new_rlim)
1110{
1111	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1112}
1113
1114int security_task_setscheduler(struct task_struct *p)
1115{
1116	return call_int_hook(task_setscheduler, 0, p);
1117}
1118
1119int security_task_getscheduler(struct task_struct *p)
1120{
1121	return call_int_hook(task_getscheduler, 0, p);
1122}
1123
1124int security_task_movememory(struct task_struct *p)
1125{
1126	return call_int_hook(task_movememory, 0, p);
1127}
1128
1129int security_task_kill(struct task_struct *p, struct siginfo *info,
1130			int sig, const struct cred *cred)
1131{
1132	return call_int_hook(task_kill, 0, p, info, sig, cred);
1133}
1134
1135int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1136			 unsigned long arg4, unsigned long arg5)
1137{
1138	int thisrc;
1139	int rc = -ENOSYS;
1140	struct security_hook_list *hp;
1141
1142	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1143		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1144		if (thisrc != -ENOSYS) {
1145			rc = thisrc;
1146			if (thisrc != 0)
1147				break;
1148		}
1149	}
1150	return rc;
1151}
1152
1153void security_task_to_inode(struct task_struct *p, struct inode *inode)
1154{
1155	call_void_hook(task_to_inode, p, inode);
1156}
1157
1158int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1159{
1160	return call_int_hook(ipc_permission, 0, ipcp, flag);
1161}
1162
1163void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1164{
1165	*secid = 0;
1166	call_void_hook(ipc_getsecid, ipcp, secid);
1167}
1168
1169int security_msg_msg_alloc(struct msg_msg *msg)
1170{
1171	return call_int_hook(msg_msg_alloc_security, 0, msg);
 
 
 
 
 
 
 
1172}
1173
1174void security_msg_msg_free(struct msg_msg *msg)
1175{
1176	call_void_hook(msg_msg_free_security, msg);
 
 
1177}
1178
1179int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1180{
1181	return call_int_hook(msg_queue_alloc_security, 0, msq);
 
 
 
 
 
 
 
1182}
1183
1184void security_msg_queue_free(struct kern_ipc_perm *msq)
1185{
1186	call_void_hook(msg_queue_free_security, msq);
 
 
1187}
1188
1189int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1190{
1191	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1192}
1193
1194int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1195{
1196	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1197}
1198
1199int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1200			       struct msg_msg *msg, int msqflg)
1201{
1202	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1203}
1204
1205int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1206			       struct task_struct *target, long type, int mode)
1207{
1208	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1209}
1210
1211int security_shm_alloc(struct kern_ipc_perm *shp)
1212{
1213	return call_int_hook(shm_alloc_security, 0, shp);
 
 
 
 
 
 
 
1214}
1215
1216void security_shm_free(struct kern_ipc_perm *shp)
1217{
1218	call_void_hook(shm_free_security, shp);
 
 
1219}
1220
1221int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1222{
1223	return call_int_hook(shm_associate, 0, shp, shmflg);
1224}
1225
1226int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1227{
1228	return call_int_hook(shm_shmctl, 0, shp, cmd);
1229}
1230
1231int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1232{
1233	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1234}
1235
1236int security_sem_alloc(struct kern_ipc_perm *sma)
1237{
1238	return call_int_hook(sem_alloc_security, 0, sma);
 
 
 
 
 
 
 
1239}
1240
1241void security_sem_free(struct kern_ipc_perm *sma)
1242{
1243	call_void_hook(sem_free_security, sma);
 
 
1244}
1245
1246int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1247{
1248	return call_int_hook(sem_associate, 0, sma, semflg);
1249}
1250
1251int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1252{
1253	return call_int_hook(sem_semctl, 0, sma, cmd);
1254}
1255
1256int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1257			unsigned nsops, int alter)
1258{
1259	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1260}
1261
1262void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1263{
1264	if (unlikely(inode && IS_PRIVATE(inode)))
1265		return;
1266	call_void_hook(d_instantiate, dentry, inode);
1267}
1268EXPORT_SYMBOL(security_d_instantiate);
1269
1270int security_getprocattr(struct task_struct *p, char *name, char **value)
 
1271{
1272	return call_int_hook(getprocattr, -EINVAL, p, name, value);
 
 
 
 
 
 
 
1273}
1274
1275int security_setprocattr(const char *name, void *value, size_t size)
 
1276{
1277	return call_int_hook(setprocattr, -EINVAL, name, value, size);
 
 
 
 
 
 
 
1278}
1279
1280int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1281{
1282	return call_int_hook(netlink_send, 0, sk, skb);
1283}
1284
1285int security_ismaclabel(const char *name)
1286{
1287	return call_int_hook(ismaclabel, 0, name);
1288}
1289EXPORT_SYMBOL(security_ismaclabel);
1290
1291int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1292{
1293	return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1294				seclen);
1295}
1296EXPORT_SYMBOL(security_secid_to_secctx);
1297
1298int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1299{
1300	*secid = 0;
1301	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1302}
1303EXPORT_SYMBOL(security_secctx_to_secid);
1304
1305void security_release_secctx(char *secdata, u32 seclen)
1306{
1307	call_void_hook(release_secctx, secdata, seclen);
1308}
1309EXPORT_SYMBOL(security_release_secctx);
1310
1311void security_inode_invalidate_secctx(struct inode *inode)
1312{
1313	call_void_hook(inode_invalidate_secctx, inode);
1314}
1315EXPORT_SYMBOL(security_inode_invalidate_secctx);
1316
1317int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1318{
1319	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1320}
1321EXPORT_SYMBOL(security_inode_notifysecctx);
1322
1323int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1324{
1325	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1326}
1327EXPORT_SYMBOL(security_inode_setsecctx);
1328
1329int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1330{
1331	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1332}
1333EXPORT_SYMBOL(security_inode_getsecctx);
1334
1335#ifdef CONFIG_SECURITY_NETWORK
1336
1337int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1338{
1339	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1340}
1341EXPORT_SYMBOL(security_unix_stream_connect);
1342
1343int security_unix_may_send(struct socket *sock,  struct socket *other)
1344{
1345	return call_int_hook(unix_may_send, 0, sock, other);
1346}
1347EXPORT_SYMBOL(security_unix_may_send);
1348
1349int security_socket_create(int family, int type, int protocol, int kern)
1350{
1351	return call_int_hook(socket_create, 0, family, type, protocol, kern);
1352}
1353
1354int security_socket_post_create(struct socket *sock, int family,
1355				int type, int protocol, int kern)
1356{
1357	return call_int_hook(socket_post_create, 0, sock, family, type,
1358						protocol, kern);
1359}
1360
 
 
 
 
 
 
1361int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1362{
1363	return call_int_hook(socket_bind, 0, sock, address, addrlen);
1364}
1365
1366int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1367{
1368	return call_int_hook(socket_connect, 0, sock, address, addrlen);
1369}
1370
1371int security_socket_listen(struct socket *sock, int backlog)
1372{
1373	return call_int_hook(socket_listen, 0, sock, backlog);
1374}
1375
1376int security_socket_accept(struct socket *sock, struct socket *newsock)
1377{
1378	return call_int_hook(socket_accept, 0, sock, newsock);
1379}
1380
1381int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1382{
1383	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1384}
1385
1386int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1387			    int size, int flags)
1388{
1389	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1390}
1391
1392int security_socket_getsockname(struct socket *sock)
1393{
1394	return call_int_hook(socket_getsockname, 0, sock);
1395}
1396
1397int security_socket_getpeername(struct socket *sock)
1398{
1399	return call_int_hook(socket_getpeername, 0, sock);
1400}
1401
1402int security_socket_getsockopt(struct socket *sock, int level, int optname)
1403{
1404	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1405}
1406
1407int security_socket_setsockopt(struct socket *sock, int level, int optname)
1408{
1409	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1410}
1411
1412int security_socket_shutdown(struct socket *sock, int how)
1413{
1414	return call_int_hook(socket_shutdown, 0, sock, how);
1415}
1416
1417int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1418{
1419	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
1420}
1421EXPORT_SYMBOL(security_sock_rcv_skb);
1422
1423int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1424				      int __user *optlen, unsigned len)
1425{
1426	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
1427				optval, optlen, len);
1428}
1429
1430int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1431{
1432	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
1433			     skb, secid);
1434}
1435EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1436
1437int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1438{
1439	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
1440}
1441
1442void security_sk_free(struct sock *sk)
1443{
1444	call_void_hook(sk_free_security, sk);
1445}
1446
1447void security_sk_clone(const struct sock *sk, struct sock *newsk)
1448{
1449	call_void_hook(sk_clone_security, sk, newsk);
1450}
1451EXPORT_SYMBOL(security_sk_clone);
1452
1453void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1454{
1455	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
1456}
1457EXPORT_SYMBOL(security_sk_classify_flow);
1458
1459void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1460{
1461	call_void_hook(req_classify_flow, req, fl);
1462}
1463EXPORT_SYMBOL(security_req_classify_flow);
1464
1465void security_sock_graft(struct sock *sk, struct socket *parent)
1466{
1467	call_void_hook(sock_graft, sk, parent);
1468}
1469EXPORT_SYMBOL(security_sock_graft);
1470
1471int security_inet_conn_request(struct sock *sk,
1472			struct sk_buff *skb, struct request_sock *req)
1473{
1474	return call_int_hook(inet_conn_request, 0, sk, skb, req);
1475}
1476EXPORT_SYMBOL(security_inet_conn_request);
1477
1478void security_inet_csk_clone(struct sock *newsk,
1479			const struct request_sock *req)
1480{
1481	call_void_hook(inet_csk_clone, newsk, req);
1482}
1483
1484void security_inet_conn_established(struct sock *sk,
1485			struct sk_buff *skb)
1486{
1487	call_void_hook(inet_conn_established, sk, skb);
1488}
1489EXPORT_SYMBOL(security_inet_conn_established);
1490
1491int security_secmark_relabel_packet(u32 secid)
1492{
1493	return call_int_hook(secmark_relabel_packet, 0, secid);
1494}
1495EXPORT_SYMBOL(security_secmark_relabel_packet);
1496
1497void security_secmark_refcount_inc(void)
1498{
1499	call_void_hook(secmark_refcount_inc);
1500}
1501EXPORT_SYMBOL(security_secmark_refcount_inc);
1502
1503void security_secmark_refcount_dec(void)
1504{
1505	call_void_hook(secmark_refcount_dec);
1506}
1507EXPORT_SYMBOL(security_secmark_refcount_dec);
1508
1509int security_tun_dev_alloc_security(void **security)
1510{
1511	return call_int_hook(tun_dev_alloc_security, 0, security);
1512}
1513EXPORT_SYMBOL(security_tun_dev_alloc_security);
1514
1515void security_tun_dev_free_security(void *security)
1516{
1517	call_void_hook(tun_dev_free_security, security);
1518}
1519EXPORT_SYMBOL(security_tun_dev_free_security);
1520
1521int security_tun_dev_create(void)
1522{
1523	return call_int_hook(tun_dev_create, 0);
1524}
1525EXPORT_SYMBOL(security_tun_dev_create);
1526
1527int security_tun_dev_attach_queue(void *security)
1528{
1529	return call_int_hook(tun_dev_attach_queue, 0, security);
1530}
1531EXPORT_SYMBOL(security_tun_dev_attach_queue);
1532
1533int security_tun_dev_attach(struct sock *sk, void *security)
1534{
1535	return call_int_hook(tun_dev_attach, 0, sk, security);
1536}
1537EXPORT_SYMBOL(security_tun_dev_attach);
1538
1539int security_tun_dev_open(void *security)
1540{
1541	return call_int_hook(tun_dev_open, 0, security);
1542}
1543EXPORT_SYMBOL(security_tun_dev_open);
1544
1545int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
1546{
1547	return call_int_hook(sctp_assoc_request, 0, ep, skb);
1548}
1549EXPORT_SYMBOL(security_sctp_assoc_request);
1550
1551int security_sctp_bind_connect(struct sock *sk, int optname,
1552			       struct sockaddr *address, int addrlen)
1553{
1554	return call_int_hook(sctp_bind_connect, 0, sk, optname,
1555			     address, addrlen);
1556}
1557EXPORT_SYMBOL(security_sctp_bind_connect);
1558
1559void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
1560			    struct sock *newsk)
1561{
1562	call_void_hook(sctp_sk_clone, ep, sk, newsk);
1563}
1564EXPORT_SYMBOL(security_sctp_sk_clone);
1565
1566#endif	/* CONFIG_SECURITY_NETWORK */
1567
1568#ifdef CONFIG_SECURITY_INFINIBAND
1569
1570int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
1571{
1572	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
1573}
1574EXPORT_SYMBOL(security_ib_pkey_access);
1575
1576int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
1577{
1578	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
1579}
1580EXPORT_SYMBOL(security_ib_endport_manage_subnet);
1581
1582int security_ib_alloc_security(void **sec)
1583{
1584	return call_int_hook(ib_alloc_security, 0, sec);
1585}
1586EXPORT_SYMBOL(security_ib_alloc_security);
1587
1588void security_ib_free_security(void *sec)
1589{
1590	call_void_hook(ib_free_security, sec);
1591}
1592EXPORT_SYMBOL(security_ib_free_security);
1593#endif	/* CONFIG_SECURITY_INFINIBAND */
1594
1595#ifdef CONFIG_SECURITY_NETWORK_XFRM
1596
1597int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1598			       struct xfrm_user_sec_ctx *sec_ctx,
1599			       gfp_t gfp)
1600{
1601	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
1602}
1603EXPORT_SYMBOL(security_xfrm_policy_alloc);
1604
1605int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1606			      struct xfrm_sec_ctx **new_ctxp)
1607{
1608	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
1609}
1610
1611void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1612{
1613	call_void_hook(xfrm_policy_free_security, ctx);
1614}
1615EXPORT_SYMBOL(security_xfrm_policy_free);
1616
1617int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1618{
1619	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
1620}
1621
1622int security_xfrm_state_alloc(struct xfrm_state *x,
1623			      struct xfrm_user_sec_ctx *sec_ctx)
1624{
1625	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
1626}
1627EXPORT_SYMBOL(security_xfrm_state_alloc);
1628
1629int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1630				      struct xfrm_sec_ctx *polsec, u32 secid)
1631{
1632	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
1633}
1634
1635int security_xfrm_state_delete(struct xfrm_state *x)
1636{
1637	return call_int_hook(xfrm_state_delete_security, 0, x);
1638}
1639EXPORT_SYMBOL(security_xfrm_state_delete);
1640
1641void security_xfrm_state_free(struct xfrm_state *x)
1642{
1643	call_void_hook(xfrm_state_free_security, x);
1644}
1645
1646int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1647{
1648	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
1649}
1650
1651int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1652				       struct xfrm_policy *xp,
1653				       const struct flowi *fl)
1654{
1655	struct security_hook_list *hp;
1656	int rc = 1;
1657
1658	/*
1659	 * Since this function is expected to return 0 or 1, the judgment
1660	 * becomes difficult if multiple LSMs supply this call. Fortunately,
1661	 * we can use the first LSM's judgment because currently only SELinux
1662	 * supplies this call.
1663	 *
1664	 * For speed optimization, we explicitly break the loop rather than
1665	 * using the macro
1666	 */
1667	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
1668				list) {
1669		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
1670		break;
1671	}
1672	return rc;
1673}
1674
1675int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1676{
1677	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
1678}
1679
1680void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1681{
1682	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
1683				0);
1684
1685	BUG_ON(rc);
1686}
1687EXPORT_SYMBOL(security_skb_classify_flow);
1688
1689#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1690
1691#ifdef CONFIG_KEYS
1692
1693int security_key_alloc(struct key *key, const struct cred *cred,
1694		       unsigned long flags)
1695{
1696	return call_int_hook(key_alloc, 0, key, cred, flags);
1697}
1698
1699void security_key_free(struct key *key)
1700{
1701	call_void_hook(key_free, key);
1702}
1703
1704int security_key_permission(key_ref_t key_ref,
1705			    const struct cred *cred, unsigned perm)
1706{
1707	return call_int_hook(key_permission, 0, key_ref, cred, perm);
1708}
1709
1710int security_key_getsecurity(struct key *key, char **_buffer)
1711{
1712	*_buffer = NULL;
1713	return call_int_hook(key_getsecurity, 0, key, _buffer);
1714}
1715
1716#endif	/* CONFIG_KEYS */
1717
1718#ifdef CONFIG_AUDIT
1719
1720int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1721{
1722	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
1723}
1724
1725int security_audit_rule_known(struct audit_krule *krule)
1726{
1727	return call_int_hook(audit_rule_known, 0, krule);
1728}
1729
1730void security_audit_rule_free(void *lsmrule)
1731{
1732	call_void_hook(audit_rule_free, lsmrule);
1733}
1734
1735int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1736			      struct audit_context *actx)
1737{
1738	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule,
1739				actx);
1740}
1741#endif /* CONFIG_AUDIT */
1742
1743#ifdef CONFIG_BPF_SYSCALL
1744int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
1745{
1746	return call_int_hook(bpf, 0, cmd, attr, size);
1747}
1748int security_bpf_map(struct bpf_map *map, fmode_t fmode)
1749{
1750	return call_int_hook(bpf_map, 0, map, fmode);
1751}
1752int security_bpf_prog(struct bpf_prog *prog)
1753{
1754	return call_int_hook(bpf_prog, 0, prog);
1755}
1756int security_bpf_map_alloc(struct bpf_map *map)
1757{
1758	return call_int_hook(bpf_map_alloc_security, 0, map);
1759}
1760int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
1761{
1762	return call_int_hook(bpf_prog_alloc_security, 0, aux);
1763}
1764void security_bpf_map_free(struct bpf_map *map)
1765{
1766	call_void_hook(bpf_map_free_security, map);
1767}
1768void security_bpf_prog_free(struct bpf_prog_aux *aux)
1769{
1770	call_void_hook(bpf_prog_free_security, aux);
1771}
1772#endif /* CONFIG_BPF_SYSCALL */