Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Security plug functions
   4 *
   5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   8 * Copyright (C) 2016 Mellanox Technologies
 
 
 
 
   9 */
  10
  11#define pr_fmt(fmt) "LSM: " fmt
  12
  13#include <linux/bpf.h>
  14#include <linux/capability.h>
  15#include <linux/dcache.h>
  16#include <linux/export.h>
  17#include <linux/init.h>
  18#include <linux/kernel.h>
  19#include <linux/lsm_hooks.h>
  20#include <linux/integrity.h>
  21#include <linux/ima.h>
  22#include <linux/evm.h>
  23#include <linux/fsnotify.h>
  24#include <linux/mman.h>
  25#include <linux/mount.h>
  26#include <linux/personality.h>
  27#include <linux/backing-dev.h>
  28#include <linux/string.h>
  29#include <linux/msg.h>
  30#include <net/flow.h>
  31
  32#define MAX_LSM_EVM_XATTR	2
  33
  34/* How many LSMs were built into the kernel? */
  35#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
  36#define EARLY_LSM_COUNT (__end_early_lsm_info - __start_early_lsm_info)
  37
  38struct security_hook_heads security_hook_heads __lsm_ro_after_init;
  39static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
  40
  41static struct kmem_cache *lsm_file_cache;
  42static struct kmem_cache *lsm_inode_cache;
  43
  44char *lsm_names;
  45static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
  46
  47/* Boot-time LSM user choice */
  48static __initdata const char *chosen_lsm_order;
  49static __initdata const char *chosen_major_lsm;
  50
  51static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
  52
  53/* Ordered list of LSMs to initialize. */
  54static __initdata struct lsm_info **ordered_lsms;
  55static __initdata struct lsm_info *exclusive;
  56
  57static __initdata bool debug;
  58#define init_debug(...)						\
  59	do {							\
  60		if (debug)					\
  61			pr_info(__VA_ARGS__);			\
  62	} while (0)
  63
  64static bool __init is_enabled(struct lsm_info *lsm)
  65{
  66	if (!lsm->enabled)
  67		return false;
  68
  69	return *lsm->enabled;
  70}
  71
  72/* Mark an LSM's enabled flag. */
  73static int lsm_enabled_true __initdata = 1;
  74static int lsm_enabled_false __initdata = 0;
  75static void __init set_enabled(struct lsm_info *lsm, bool enabled)
  76{
  77	/*
  78	 * When an LSM hasn't configured an enable variable, we can use
  79	 * a hard-coded location for storing the default enabled state.
  80	 */
  81	if (!lsm->enabled) {
  82		if (enabled)
  83			lsm->enabled = &lsm_enabled_true;
  84		else
  85			lsm->enabled = &lsm_enabled_false;
  86	} else if (lsm->enabled == &lsm_enabled_true) {
  87		if (!enabled)
  88			lsm->enabled = &lsm_enabled_false;
  89	} else if (lsm->enabled == &lsm_enabled_false) {
  90		if (enabled)
  91			lsm->enabled = &lsm_enabled_true;
  92	} else {
  93		*lsm->enabled = enabled;
  94	}
  95}
  96
  97/* Is an LSM already listed in the ordered LSMs list? */
  98static bool __init exists_ordered_lsm(struct lsm_info *lsm)
  99{
 100	struct lsm_info **check;
 101
 102	for (check = ordered_lsms; *check; check++)
 103		if (*check == lsm)
 104			return true;
 105
 106	return false;
 107}
 108
 109/* Append an LSM to the list of ordered LSMs to initialize. */
 110static int last_lsm __initdata;
 111static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
 112{
 113	/* Ignore duplicate selections. */
 114	if (exists_ordered_lsm(lsm))
 115		return;
 116
 117	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
 118		return;
 119
 120	/* Enable this LSM, if it is not already set. */
 121	if (!lsm->enabled)
 122		lsm->enabled = &lsm_enabled_true;
 123	ordered_lsms[last_lsm++] = lsm;
 124
 125	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
 126		   is_enabled(lsm) ? "en" : "dis");
 127}
 128
 129/* Is an LSM allowed to be initialized? */
 130static bool __init lsm_allowed(struct lsm_info *lsm)
 131{
 132	/* Skip if the LSM is disabled. */
 133	if (!is_enabled(lsm))
 134		return false;
 135
 136	/* Not allowed if another exclusive LSM already initialized. */
 137	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
 138		init_debug("exclusive disabled: %s\n", lsm->name);
 139		return false;
 140	}
 141
 142	return true;
 143}
 144
 145static void __init lsm_set_blob_size(int *need, int *lbs)
 146{
 147	int offset;
 148
 149	if (*need > 0) {
 150		offset = *lbs;
 151		*lbs += *need;
 152		*need = offset;
 153	}
 154}
 155
 156static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
 157{
 158	if (!needed)
 159		return;
 160
 161	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
 162	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
 163	/*
 164	 * The inode blob gets an rcu_head in addition to
 165	 * what the modules might need.
 166	 */
 167	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
 168		blob_sizes.lbs_inode = sizeof(struct rcu_head);
 169	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
 170	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
 171	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
 172	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
 173}
 174
 175/* Prepare LSM for initialization. */
 176static void __init prepare_lsm(struct lsm_info *lsm)
 177{
 178	int enabled = lsm_allowed(lsm);
 179
 180	/* Record enablement (to handle any following exclusive LSMs). */
 181	set_enabled(lsm, enabled);
 182
 183	/* If enabled, do pre-initialization work. */
 184	if (enabled) {
 185		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
 186			exclusive = lsm;
 187			init_debug("exclusive chosen: %s\n", lsm->name);
 188		}
 189
 190		lsm_set_blob_sizes(lsm->blobs);
 191	}
 192}
 193
 194/* Initialize a given LSM, if it is enabled. */
 195static void __init initialize_lsm(struct lsm_info *lsm)
 196{
 197	if (is_enabled(lsm)) {
 198		int ret;
 199
 200		init_debug("initializing %s\n", lsm->name);
 201		ret = lsm->init();
 202		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
 203	}
 204}
 205
 206/* Populate ordered LSMs list from comma-separated LSM name list. */
 207static void __init ordered_lsm_parse(const char *order, const char *origin)
 208{
 209	struct lsm_info *lsm;
 210	char *sep, *name, *next;
 211
 212	/* LSM_ORDER_FIRST is always first. */
 213	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 214		if (lsm->order == LSM_ORDER_FIRST)
 215			append_ordered_lsm(lsm, "first");
 216	}
 217
 218	/* Process "security=", if given. */
 219	if (chosen_major_lsm) {
 220		struct lsm_info *major;
 221
 222		/*
 223		 * To match the original "security=" behavior, this
 224		 * explicitly does NOT fallback to another Legacy Major
 225		 * if the selected one was separately disabled: disable
 226		 * all non-matching Legacy Major LSMs.
 227		 */
 228		for (major = __start_lsm_info; major < __end_lsm_info;
 229		     major++) {
 230			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
 231			    strcmp(major->name, chosen_major_lsm) != 0) {
 232				set_enabled(major, false);
 233				init_debug("security=%s disabled: %s\n",
 234					   chosen_major_lsm, major->name);
 235			}
 236		}
 237	}
 238
 239	sep = kstrdup(order, GFP_KERNEL);
 240	next = sep;
 241	/* Walk the list, looking for matching LSMs. */
 242	while ((name = strsep(&next, ",")) != NULL) {
 243		bool found = false;
 244
 245		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 246			if (lsm->order == LSM_ORDER_MUTABLE &&
 247			    strcmp(lsm->name, name) == 0) {
 248				append_ordered_lsm(lsm, origin);
 249				found = true;
 250			}
 251		}
 252
 253		if (!found)
 254			init_debug("%s ignored: %s\n", origin, name);
 255	}
 256
 257	/* Process "security=", if given. */
 258	if (chosen_major_lsm) {
 259		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 260			if (exists_ordered_lsm(lsm))
 261				continue;
 262			if (strcmp(lsm->name, chosen_major_lsm) == 0)
 263				append_ordered_lsm(lsm, "security=");
 264		}
 265	}
 266
 267	/* Disable all LSMs not in the ordered list. */
 268	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 269		if (exists_ordered_lsm(lsm))
 270			continue;
 271		set_enabled(lsm, false);
 272		init_debug("%s disabled: %s\n", origin, lsm->name);
 273	}
 274
 275	kfree(sep);
 276}
 277
 278static void __init lsm_early_cred(struct cred *cred);
 279static void __init lsm_early_task(struct task_struct *task);
 280
 281static int lsm_append(const char *new, char **result);
 282
 283static void __init ordered_lsm_init(void)
 284{
 285	struct lsm_info **lsm;
 286
 287	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
 288				GFP_KERNEL);
 289
 290	if (chosen_lsm_order) {
 291		if (chosen_major_lsm) {
 292			pr_info("security= is ignored because it is superseded by lsm=\n");
 293			chosen_major_lsm = NULL;
 294		}
 295		ordered_lsm_parse(chosen_lsm_order, "cmdline");
 296	} else
 297		ordered_lsm_parse(builtin_lsm_order, "builtin");
 298
 299	for (lsm = ordered_lsms; *lsm; lsm++)
 300		prepare_lsm(*lsm);
 301
 302	init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
 303	init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
 304	init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
 305	init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
 306	init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
 307	init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
 308
 309	/*
 310	 * Create any kmem_caches needed for blobs
 311	 */
 312	if (blob_sizes.lbs_file)
 313		lsm_file_cache = kmem_cache_create("lsm_file_cache",
 314						   blob_sizes.lbs_file, 0,
 315						   SLAB_PANIC, NULL);
 316	if (blob_sizes.lbs_inode)
 317		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
 318						    blob_sizes.lbs_inode, 0,
 319						    SLAB_PANIC, NULL);
 320
 321	lsm_early_cred((struct cred *) current->cred);
 322	lsm_early_task(current);
 323	for (lsm = ordered_lsms; *lsm; lsm++)
 324		initialize_lsm(*lsm);
 325
 326	kfree(ordered_lsms);
 327}
 328
 329int __init early_security_init(void)
 330{
 331	int i;
 332	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
 333	struct lsm_info *lsm;
 334
 335	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
 336	     i++)
 337		INIT_HLIST_HEAD(&list[i]);
 338
 339	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 340		if (!lsm->enabled)
 341			lsm->enabled = &lsm_enabled_true;
 342		prepare_lsm(lsm);
 343		initialize_lsm(lsm);
 344	}
 345
 346	return 0;
 347}
 348
 349/**
 350 * security_init - initializes the security framework
 351 *
 352 * This should be called early in the kernel initialization sequence.
 353 */
 354int __init security_init(void)
 355{
 356	struct lsm_info *lsm;
 357
 358	pr_info("Security Framework initializing\n");
 359
 360	/*
 361	 * Append the names of the early LSM modules now that kmalloc() is
 362	 * available
 363	 */
 364	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 365		if (lsm->enabled)
 366			lsm_append(lsm->name, &lsm_names);
 367	}
 368
 369	/* Load LSMs in specified order. */
 370	ordered_lsm_init();
 371
 372	return 0;
 373}
 374
 375/* Save user chosen LSM */
 376static int __init choose_major_lsm(char *str)
 377{
 378	chosen_major_lsm = str;
 379	return 1;
 380}
 381__setup("security=", choose_major_lsm);
 382
 383/* Explicitly choose LSM initialization order. */
 384static int __init choose_lsm_order(char *str)
 385{
 386	chosen_lsm_order = str;
 387	return 1;
 388}
 389__setup("lsm=", choose_lsm_order);
 390
 391/* Enable LSM order debugging. */
 392static int __init enable_debug(char *str)
 393{
 394	debug = true;
 395	return 1;
 396}
 397__setup("lsm.debug", enable_debug);
 398
 399static bool match_last_lsm(const char *list, const char *lsm)
 400{
 401	const char *last;
 402
 403	if (WARN_ON(!list || !lsm))
 404		return false;
 405	last = strrchr(list, ',');
 406	if (last)
 407		/* Pass the comma, strcmp() will check for '\0' */
 408		last++;
 409	else
 410		last = list;
 411	return !strcmp(last, lsm);
 412}
 413
 414static int lsm_append(const char *new, char **result)
 415{
 416	char *cp;
 417
 418	if (*result == NULL) {
 419		*result = kstrdup(new, GFP_KERNEL);
 420		if (*result == NULL)
 421			return -ENOMEM;
 422	} else {
 423		/* Check if it is the last registered name */
 424		if (match_last_lsm(*result, new))
 425			return 0;
 426		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
 427		if (cp == NULL)
 428			return -ENOMEM;
 429		kfree(*result);
 430		*result = cp;
 431	}
 432	return 0;
 433}
 434
 435/**
 436 * security_add_hooks - Add a modules hooks to the hook lists.
 437 * @hooks: the hooks to add
 438 * @count: the number of hooks to add
 439 * @lsm: the name of the security module
 440 *
 441 * Each LSM has to register its hooks with the infrastructure.
 442 */
 443void __init security_add_hooks(struct security_hook_list *hooks, int count,
 444				char *lsm)
 445{
 446	int i;
 447
 448	for (i = 0; i < count; i++) {
 449		hooks[i].lsm = lsm;
 450		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
 451	}
 452
 453	/*
 454	 * Don't try to append during early_security_init(), we'll come back
 455	 * and fix this up afterwards.
 456	 */
 457	if (slab_is_available()) {
 458		if (lsm_append(lsm, &lsm_names) < 0)
 459			panic("%s - Cannot get early memory.\n", __func__);
 460	}
 461}
 462
 463int call_blocking_lsm_notifier(enum lsm_event event, void *data)
 464{
 465	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
 466					    event, data);
 467}
 468EXPORT_SYMBOL(call_blocking_lsm_notifier);
 469
 470int register_blocking_lsm_notifier(struct notifier_block *nb)
 471{
 472	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
 473						nb);
 474}
 475EXPORT_SYMBOL(register_blocking_lsm_notifier);
 476
 477int unregister_blocking_lsm_notifier(struct notifier_block *nb)
 478{
 479	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
 480						  nb);
 481}
 482EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
 483
 484/**
 485 * lsm_cred_alloc - allocate a composite cred blob
 486 * @cred: the cred that needs a blob
 487 * @gfp: allocation type
 488 *
 489 * Allocate the cred blob for all the modules
 490 *
 491 * Returns 0, or -ENOMEM if memory can't be allocated.
 492 */
 493static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
 494{
 495	if (blob_sizes.lbs_cred == 0) {
 496		cred->security = NULL;
 497		return 0;
 498	}
 499
 500	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
 501	if (cred->security == NULL)
 502		return -ENOMEM;
 503	return 0;
 504}
 505
 506/**
 507 * lsm_early_cred - during initialization allocate a composite cred blob
 508 * @cred: the cred that needs a blob
 509 *
 510 * Allocate the cred blob for all the modules
 
 
 
 
 511 */
 512static void __init lsm_early_cred(struct cred *cred)
 513{
 514	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
 515
 516	if (rc)
 517		panic("%s: Early cred alloc failed.\n", __func__);
 518}
 519
 520/**
 521 * lsm_file_alloc - allocate a composite file blob
 522 * @file: the file that needs a blob
 523 *
 524 * Allocate the file blob for all the modules
 
 
 
 525 *
 526 * Returns 0, or -ENOMEM if memory can't be allocated.
 
 527 */
 528static int lsm_file_alloc(struct file *file)
 529{
 530	if (!lsm_file_cache) {
 531		file->f_security = NULL;
 532		return 0;
 
 533	}
 534
 535	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
 536	if (file->f_security == NULL)
 537		return -ENOMEM;
 538	return 0;
 539}
 540
 541/**
 542 * lsm_inode_alloc - allocate a composite inode blob
 543 * @inode: the inode that needs a blob
 544 *
 545 * Allocate the inode blob for all the modules
 546 *
 547 * Returns 0, or -ENOMEM if memory can't be allocated.
 548 */
 549int lsm_inode_alloc(struct inode *inode)
 550{
 551	if (!lsm_inode_cache) {
 552		inode->i_security = NULL;
 553		return 0;
 554	}
 555
 556	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
 557	if (inode->i_security == NULL)
 558		return -ENOMEM;
 559	return 0;
 560}
 561
 562/**
 563 * lsm_task_alloc - allocate a composite task blob
 564 * @task: the task that needs a blob
 565 *
 566 * Allocate the task blob for all the modules
 567 *
 568 * Returns 0, or -ENOMEM if memory can't be allocated.
 569 */
 570static int lsm_task_alloc(struct task_struct *task)
 571{
 572	if (blob_sizes.lbs_task == 0) {
 573		task->security = NULL;
 574		return 0;
 575	}
 576
 577	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
 578	if (task->security == NULL)
 579		return -ENOMEM;
 580	return 0;
 581}
 582
 583/**
 584 * lsm_ipc_alloc - allocate a composite ipc blob
 585 * @kip: the ipc that needs a blob
 586 *
 587 * Allocate the ipc blob for all the modules
 588 *
 589 * Returns 0, or -ENOMEM if memory can't be allocated.
 590 */
 591static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
 592{
 593	if (blob_sizes.lbs_ipc == 0) {
 594		kip->security = NULL;
 595		return 0;
 596	}
 597
 598	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
 599	if (kip->security == NULL)
 600		return -ENOMEM;
 601	return 0;
 602}
 603
 604/**
 605 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
 606 * @mp: the msg_msg that needs a blob
 607 *
 608 * Allocate the ipc blob for all the modules
 609 *
 610 * Returns 0, or -ENOMEM if memory can't be allocated.
 611 */
 612static int lsm_msg_msg_alloc(struct msg_msg *mp)
 613{
 614	if (blob_sizes.lbs_msg_msg == 0) {
 615		mp->security = NULL;
 616		return 0;
 617	}
 618
 619	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
 620	if (mp->security == NULL)
 621		return -ENOMEM;
 622	return 0;
 623}
 624
 625/**
 626 * lsm_early_task - during initialization allocate a composite task blob
 627 * @task: the task that needs a blob
 628 *
 629 * Allocate the task blob for all the modules
 630 */
 631static void __init lsm_early_task(struct task_struct *task)
 632{
 633	int rc = lsm_task_alloc(task);
 634
 635	if (rc)
 636		panic("%s: Early task alloc failed.\n", __func__);
 637}
 638
 639/*
 640 * Hook list operation macros.
 641 *
 642 * call_void_hook:
 643 *	This is a hook that does not return a value.
 644 *
 645 * call_int_hook:
 646 *	This is a hook that returns a value.
 647 */
 648
 649#define call_void_hook(FUNC, ...)				\
 650	do {							\
 651		struct security_hook_list *P;			\
 652								\
 653		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
 654			P->hook.FUNC(__VA_ARGS__);		\
 655	} while (0)
 656
 657#define call_int_hook(FUNC, IRC, ...) ({			\
 658	int RC = IRC;						\
 659	do {							\
 660		struct security_hook_list *P;			\
 661								\
 662		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
 663			RC = P->hook.FUNC(__VA_ARGS__);		\
 664			if (RC != 0)				\
 665				break;				\
 666		}						\
 667	} while (0);						\
 668	RC;							\
 669})
 670
 671/* Security operations */
 672
 673int security_binder_set_context_mgr(struct task_struct *mgr)
 674{
 675	return call_int_hook(binder_set_context_mgr, 0, mgr);
 676}
 677
 678int security_binder_transaction(struct task_struct *from,
 679				struct task_struct *to)
 680{
 681	return call_int_hook(binder_transaction, 0, from, to);
 682}
 683
 684int security_binder_transfer_binder(struct task_struct *from,
 685				    struct task_struct *to)
 686{
 687	return call_int_hook(binder_transfer_binder, 0, from, to);
 688}
 689
 690int security_binder_transfer_file(struct task_struct *from,
 691				  struct task_struct *to, struct file *file)
 692{
 693	return call_int_hook(binder_transfer_file, 0, from, to, file);
 694}
 695
 696int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 697{
 698	return call_int_hook(ptrace_access_check, 0, child, mode);
 699}
 700
 701int security_ptrace_traceme(struct task_struct *parent)
 702{
 703	return call_int_hook(ptrace_traceme, 0, parent);
 704}
 705
 706int security_capget(struct task_struct *target,
 707		     kernel_cap_t *effective,
 708		     kernel_cap_t *inheritable,
 709		     kernel_cap_t *permitted)
 710{
 711	return call_int_hook(capget, 0, target,
 712				effective, inheritable, permitted);
 713}
 714
 715int security_capset(struct cred *new, const struct cred *old,
 716		    const kernel_cap_t *effective,
 717		    const kernel_cap_t *inheritable,
 718		    const kernel_cap_t *permitted)
 719{
 720	return call_int_hook(capset, 0, new, old,
 721				effective, inheritable, permitted);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722}
 723
 724int security_capable(const struct cred *cred,
 725		     struct user_namespace *ns,
 726		     int cap,
 727		     unsigned int opts)
 728{
 729	return call_int_hook(capable, 0, cred, ns, cap, opts);
 
 
 
 
 
 
 730}
 731
 732int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 733{
 734	return call_int_hook(quotactl, 0, cmds, type, id, sb);
 735}
 736
 737int security_quota_on(struct dentry *dentry)
 738{
 739	return call_int_hook(quota_on, 0, dentry);
 740}
 741
 742int security_syslog(int type)
 743{
 744	return call_int_hook(syslog, 0, type);
 745}
 746
 747int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
 748{
 749	return call_int_hook(settime, 0, ts, tz);
 
 
 
 
 
 
 750}
 751
 752int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 753{
 754	struct security_hook_list *hp;
 755	int cap_sys_admin = 1;
 756	int rc;
 757
 758	/*
 759	 * The module will respond with a positive value if
 760	 * it thinks the __vm_enough_memory() call should be
 761	 * made with the cap_sys_admin set. If all of the modules
 762	 * agree that it should be set it will. If any module
 763	 * thinks it should not be set it won't.
 764	 */
 765	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
 766		rc = hp->hook.vm_enough_memory(mm, pages);
 767		if (rc <= 0) {
 768			cap_sys_admin = 0;
 769			break;
 770		}
 771	}
 772	return __vm_enough_memory(mm, pages, cap_sys_admin);
 773}
 774
 775int security_bprm_set_creds(struct linux_binprm *bprm)
 776{
 777	return call_int_hook(bprm_set_creds, 0, bprm);
 778}
 779
 780int security_bprm_check(struct linux_binprm *bprm)
 781{
 782	int ret;
 783
 784	ret = call_int_hook(bprm_check_security, 0, bprm);
 785	if (ret)
 786		return ret;
 787	return ima_bprm_check(bprm);
 788}
 789
 790void security_bprm_committing_creds(struct linux_binprm *bprm)
 791{
 792	call_void_hook(bprm_committing_creds, bprm);
 793}
 794
 795void security_bprm_committed_creds(struct linux_binprm *bprm)
 796{
 797	call_void_hook(bprm_committed_creds, bprm);
 798}
 799
 800int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
 801{
 802	return call_int_hook(fs_context_dup, 0, fc, src_fc);
 803}
 804
 805int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
 806{
 807	return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
 808}
 809
 810int security_sb_alloc(struct super_block *sb)
 811{
 812	return call_int_hook(sb_alloc_security, 0, sb);
 813}
 814
 815void security_sb_free(struct super_block *sb)
 816{
 817	call_void_hook(sb_free_security, sb);
 818}
 819
 820void security_free_mnt_opts(void **mnt_opts)
 821{
 822	if (!*mnt_opts)
 823		return;
 824	call_void_hook(sb_free_mnt_opts, *mnt_opts);
 825	*mnt_opts = NULL;
 826}
 827EXPORT_SYMBOL(security_free_mnt_opts);
 828
 829int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
 830{
 831	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
 832}
 833EXPORT_SYMBOL(security_sb_eat_lsm_opts);
 834
 835int security_sb_remount(struct super_block *sb,
 836			void *mnt_opts)
 837{
 838	return call_int_hook(sb_remount, 0, sb, mnt_opts);
 839}
 840EXPORT_SYMBOL(security_sb_remount);
 841
 842int security_sb_kern_mount(struct super_block *sb)
 843{
 844	return call_int_hook(sb_kern_mount, 0, sb);
 845}
 846
 847int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 848{
 849	return call_int_hook(sb_show_options, 0, m, sb);
 850}
 851
 852int security_sb_statfs(struct dentry *dentry)
 853{
 854	return call_int_hook(sb_statfs, 0, dentry);
 855}
 856
 857int security_sb_mount(const char *dev_name, const struct path *path,
 858                       const char *type, unsigned long flags, void *data)
 859{
 860	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
 861}
 862
 863int security_sb_umount(struct vfsmount *mnt, int flags)
 864{
 865	return call_int_hook(sb_umount, 0, mnt, flags);
 866}
 867
 868int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
 869{
 870	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
 871}
 872
 873int security_sb_set_mnt_opts(struct super_block *sb,
 874				void *mnt_opts,
 875				unsigned long kern_flags,
 876				unsigned long *set_kern_flags)
 877{
 878	return call_int_hook(sb_set_mnt_opts,
 879				mnt_opts ? -EOPNOTSUPP : 0, sb,
 880				mnt_opts, kern_flags, set_kern_flags);
 881}
 882EXPORT_SYMBOL(security_sb_set_mnt_opts);
 883
 884int security_sb_clone_mnt_opts(const struct super_block *oldsb,
 885				struct super_block *newsb,
 886				unsigned long kern_flags,
 887				unsigned long *set_kern_flags)
 888{
 889	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
 890				kern_flags, set_kern_flags);
 891}
 892EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 893
 894int security_add_mnt_opt(const char *option, const char *val, int len,
 895			 void **mnt_opts)
 896{
 897	return call_int_hook(sb_add_mnt_opt, -EINVAL,
 898					option, val, len, mnt_opts);
 899}
 900EXPORT_SYMBOL(security_add_mnt_opt);
 901
 902int security_move_mount(const struct path *from_path, const struct path *to_path)
 903{
 904	return call_int_hook(move_mount, 0, from_path, to_path);
 905}
 906
 907int security_path_notify(const struct path *path, u64 mask,
 908				unsigned int obj_type)
 909{
 910	return call_int_hook(path_notify, 0, path, mask, obj_type);
 911}
 
 912
 913int security_inode_alloc(struct inode *inode)
 914{
 915	int rc = lsm_inode_alloc(inode);
 916
 917	if (unlikely(rc))
 918		return rc;
 919	rc = call_int_hook(inode_alloc_security, 0, inode);
 920	if (unlikely(rc))
 921		security_inode_free(inode);
 922	return rc;
 923}
 924
 925static void inode_free_by_rcu(struct rcu_head *head)
 926{
 927	/*
 928	 * The rcu head is at the start of the inode blob
 929	 */
 930	kmem_cache_free(lsm_inode_cache, head);
 931}
 932
 933void security_inode_free(struct inode *inode)
 934{
 935	integrity_inode_free(inode);
 936	call_void_hook(inode_free_security, inode);
 937	/*
 938	 * The inode may still be referenced in a path walk and
 939	 * a call to security_inode_permission() can be made
 940	 * after inode_free_security() is called. Ideally, the VFS
 941	 * wouldn't do this, but fixing that is a much harder
 942	 * job. For now, simply free the i_security via RCU, and
 943	 * leave the current inode->i_security pointer intact.
 944	 * The inode will be freed after the RCU grace period too.
 945	 */
 946	if (inode->i_security)
 947		call_rcu((struct rcu_head *)inode->i_security,
 948				inode_free_by_rcu);
 949}
 950
 951int security_dentry_init_security(struct dentry *dentry, int mode,
 952					const struct qstr *name, void **ctx,
 953					u32 *ctxlen)
 954{
 955	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
 956				name, ctx, ctxlen);
 957}
 958EXPORT_SYMBOL(security_dentry_init_security);
 959
 960int security_dentry_create_files_as(struct dentry *dentry, int mode,
 961				    struct qstr *name,
 962				    const struct cred *old, struct cred *new)
 963{
 964	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
 965				name, old, new);
 966}
 967EXPORT_SYMBOL(security_dentry_create_files_as);
 968
 969int security_inode_init_security(struct inode *inode, struct inode *dir,
 970				 const struct qstr *qstr,
 971				 const initxattrs initxattrs, void *fs_data)
 972{
 973	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
 974	struct xattr *lsm_xattr, *evm_xattr, *xattr;
 975	int ret;
 976
 977	if (unlikely(IS_PRIVATE(inode)))
 978		return 0;
 979
 980	if (!initxattrs)
 981		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
 982				     dir, qstr, NULL, NULL, NULL);
 983	memset(new_xattrs, 0, sizeof(new_xattrs));
 984	lsm_xattr = new_xattrs;
 985	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
 986						&lsm_xattr->name,
 987						&lsm_xattr->value,
 988						&lsm_xattr->value_len);
 989	if (ret)
 990		goto out;
 991
 992	evm_xattr = lsm_xattr + 1;
 993	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
 994	if (ret)
 995		goto out;
 996	ret = initxattrs(inode, new_xattrs, fs_data);
 997out:
 998	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
 999		kfree(xattr->value);
1000	return (ret == -EOPNOTSUPP) ? 0 : ret;
1001}
1002EXPORT_SYMBOL(security_inode_init_security);
1003
1004int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1005				     const struct qstr *qstr, const char **name,
1006				     void **value, size_t *len)
1007{
1008	if (unlikely(IS_PRIVATE(inode)))
1009		return -EOPNOTSUPP;
1010	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1011			     qstr, name, value, len);
1012}
1013EXPORT_SYMBOL(security_old_inode_init_security);
1014
1015#ifdef CONFIG_SECURITY_PATH
1016int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1017			unsigned int dev)
1018{
1019	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1020		return 0;
1021	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1022}
1023EXPORT_SYMBOL(security_path_mknod);
1024
1025int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1026{
1027	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1028		return 0;
1029	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1030}
1031EXPORT_SYMBOL(security_path_mkdir);
1032
1033int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1034{
1035	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1036		return 0;
1037	return call_int_hook(path_rmdir, 0, dir, dentry);
1038}
1039
1040int security_path_unlink(const struct path *dir, struct dentry *dentry)
1041{
1042	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1043		return 0;
1044	return call_int_hook(path_unlink, 0, dir, dentry);
1045}
1046EXPORT_SYMBOL(security_path_unlink);
1047
1048int security_path_symlink(const struct path *dir, struct dentry *dentry,
1049			  const char *old_name)
1050{
1051	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1052		return 0;
1053	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1054}
1055
1056int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1057		       struct dentry *new_dentry)
1058{
1059	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1060		return 0;
1061	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1062}
1063
1064int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1065			 const struct path *new_dir, struct dentry *new_dentry,
1066			 unsigned int flags)
1067{
1068	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1069		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1070		return 0;
1071
1072	if (flags & RENAME_EXCHANGE) {
1073		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1074					old_dir, old_dentry);
1075		if (err)
1076			return err;
1077	}
1078
1079	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1080				new_dentry);
1081}
1082EXPORT_SYMBOL(security_path_rename);
1083
1084int security_path_truncate(const struct path *path)
1085{
1086	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1087		return 0;
1088	return call_int_hook(path_truncate, 0, path);
1089}
1090
1091int security_path_chmod(const struct path *path, umode_t mode)
 
1092{
1093	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1094		return 0;
1095	return call_int_hook(path_chmod, 0, path, mode);
1096}
1097
1098int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1099{
1100	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1101		return 0;
1102	return call_int_hook(path_chown, 0, path, uid, gid);
1103}
1104
1105int security_path_chroot(const struct path *path)
1106{
1107	return call_int_hook(path_chroot, 0, path);
1108}
1109#endif
1110
1111int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1112{
1113	if (unlikely(IS_PRIVATE(dir)))
1114		return 0;
1115	return call_int_hook(inode_create, 0, dir, dentry, mode);
1116}
1117EXPORT_SYMBOL_GPL(security_inode_create);
1118
1119int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1120			 struct dentry *new_dentry)
1121{
1122	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1123		return 0;
1124	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1125}
1126
1127int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1128{
1129	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1130		return 0;
1131	return call_int_hook(inode_unlink, 0, dir, dentry);
1132}
1133
1134int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1135			    const char *old_name)
1136{
1137	if (unlikely(IS_PRIVATE(dir)))
1138		return 0;
1139	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1140}
1141
1142int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1143{
1144	if (unlikely(IS_PRIVATE(dir)))
1145		return 0;
1146	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1147}
1148EXPORT_SYMBOL_GPL(security_inode_mkdir);
1149
1150int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1151{
1152	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1153		return 0;
1154	return call_int_hook(inode_rmdir, 0, dir, dentry);
1155}
1156
1157int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1158{
1159	if (unlikely(IS_PRIVATE(dir)))
1160		return 0;
1161	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1162}
1163
1164int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1165			   struct inode *new_dir, struct dentry *new_dentry,
1166			   unsigned int flags)
1167{
1168        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1169            (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1170		return 0;
1171
1172	if (flags & RENAME_EXCHANGE) {
1173		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1174						     old_dir, old_dentry);
1175		if (err)
1176			return err;
1177	}
1178
1179	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1180					   new_dir, new_dentry);
1181}
1182
1183int security_inode_readlink(struct dentry *dentry)
1184{
1185	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1186		return 0;
1187	return call_int_hook(inode_readlink, 0, dentry);
1188}
1189
1190int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1191			       bool rcu)
1192{
1193	if (unlikely(IS_PRIVATE(inode)))
1194		return 0;
1195	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1196}
1197
1198int security_inode_permission(struct inode *inode, int mask)
1199{
1200	if (unlikely(IS_PRIVATE(inode)))
1201		return 0;
1202	return call_int_hook(inode_permission, 0, inode, mask);
1203}
1204
1205int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1206{
1207	int ret;
1208
1209	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1210		return 0;
1211	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1212	if (ret)
1213		return ret;
1214	return evm_inode_setattr(dentry, attr);
1215}
1216EXPORT_SYMBOL_GPL(security_inode_setattr);
1217
1218int security_inode_getattr(const struct path *path)
1219{
1220	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1221		return 0;
1222	return call_int_hook(inode_getattr, 0, path);
1223}
1224
1225int security_inode_setxattr(struct dentry *dentry, const char *name,
1226			    const void *value, size_t size, int flags)
1227{
1228	int ret;
1229
1230	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1231		return 0;
1232	/*
1233	 * SELinux and Smack integrate the cap call,
1234	 * so assume that all LSMs supplying this call do so.
1235	 */
1236	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1237				flags);
1238
1239	if (ret == 1)
1240		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1241	if (ret)
1242		return ret;
1243	ret = ima_inode_setxattr(dentry, name, value, size);
1244	if (ret)
1245		return ret;
1246	return evm_inode_setxattr(dentry, name, value, size);
1247}
1248
1249void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1250				  const void *value, size_t size, int flags)
1251{
1252	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1253		return;
1254	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1255	evm_inode_post_setxattr(dentry, name, value, size);
1256}
1257
1258int security_inode_getxattr(struct dentry *dentry, const char *name)
1259{
1260	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1261		return 0;
1262	return call_int_hook(inode_getxattr, 0, dentry, name);
1263}
1264
1265int security_inode_listxattr(struct dentry *dentry)
1266{
1267	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1268		return 0;
1269	return call_int_hook(inode_listxattr, 0, dentry);
1270}
1271
1272int security_inode_removexattr(struct dentry *dentry, const char *name)
1273{
1274	int ret;
1275
1276	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1277		return 0;
1278	/*
1279	 * SELinux and Smack integrate the cap call,
1280	 * so assume that all LSMs supplying this call do so.
1281	 */
1282	ret = call_int_hook(inode_removexattr, 1, dentry, name);
1283	if (ret == 1)
1284		ret = cap_inode_removexattr(dentry, name);
1285	if (ret)
1286		return ret;
1287	ret = ima_inode_removexattr(dentry, name);
1288	if (ret)
1289		return ret;
1290	return evm_inode_removexattr(dentry, name);
1291}
1292
1293int security_inode_need_killpriv(struct dentry *dentry)
1294{
1295	return call_int_hook(inode_need_killpriv, 0, dentry);
1296}
1297
1298int security_inode_killpriv(struct dentry *dentry)
1299{
1300	return call_int_hook(inode_killpriv, 0, dentry);
1301}
1302
1303int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1304{
1305	struct security_hook_list *hp;
1306	int rc;
1307
1308	if (unlikely(IS_PRIVATE(inode)))
1309		return -EOPNOTSUPP;
1310	/*
1311	 * Only one module will provide an attribute with a given name.
1312	 */
1313	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1314		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1315		if (rc != -EOPNOTSUPP)
1316			return rc;
1317	}
1318	return -EOPNOTSUPP;
1319}
1320
1321int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1322{
1323	struct security_hook_list *hp;
1324	int rc;
1325
1326	if (unlikely(IS_PRIVATE(inode)))
1327		return -EOPNOTSUPP;
1328	/*
1329	 * Only one module will provide an attribute with a given name.
1330	 */
1331	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1332		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1333								flags);
1334		if (rc != -EOPNOTSUPP)
1335			return rc;
1336	}
1337	return -EOPNOTSUPP;
1338}
1339
1340int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1341{
1342	if (unlikely(IS_PRIVATE(inode)))
1343		return 0;
1344	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1345}
1346EXPORT_SYMBOL(security_inode_listsecurity);
1347
1348void security_inode_getsecid(struct inode *inode, u32 *secid)
1349{
1350	call_void_hook(inode_getsecid, inode, secid);
1351}
1352
1353int security_inode_copy_up(struct dentry *src, struct cred **new)
1354{
1355	return call_int_hook(inode_copy_up, 0, src, new);
1356}
1357EXPORT_SYMBOL(security_inode_copy_up);
1358
1359int security_inode_copy_up_xattr(const char *name)
1360{
1361	return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1362}
1363EXPORT_SYMBOL(security_inode_copy_up_xattr);
1364
1365int security_kernfs_init_security(struct kernfs_node *kn_dir,
1366				  struct kernfs_node *kn)
1367{
1368	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1369}
1370
1371int security_file_permission(struct file *file, int mask)
1372{
1373	int ret;
1374
1375	ret = call_int_hook(file_permission, 0, file, mask);
1376	if (ret)
1377		return ret;
1378
1379	return fsnotify_perm(file, mask);
1380}
1381
1382int security_file_alloc(struct file *file)
1383{
1384	int rc = lsm_file_alloc(file);
1385
1386	if (rc)
1387		return rc;
1388	rc = call_int_hook(file_alloc_security, 0, file);
1389	if (unlikely(rc))
1390		security_file_free(file);
1391	return rc;
1392}
1393
1394void security_file_free(struct file *file)
1395{
1396	void *blob;
1397
1398	call_void_hook(file_free_security, file);
1399
1400	blob = file->f_security;
1401	if (blob) {
1402		file->f_security = NULL;
1403		kmem_cache_free(lsm_file_cache, blob);
1404	}
1405}
1406
1407int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1408{
1409	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1410}
1411
1412static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1413{
1414	/*
1415	 * Does we have PROT_READ and does the application expect
1416	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1417	 */
1418	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1419		return prot;
1420	if (!(current->personality & READ_IMPLIES_EXEC))
1421		return prot;
1422	/*
1423	 * if that's an anonymous mapping, let it.
1424	 */
1425	if (!file)
1426		return prot | PROT_EXEC;
1427	/*
1428	 * ditto if it's not on noexec mount, except that on !MMU we need
1429	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1430	 */
1431	if (!path_noexec(&file->f_path)) {
1432#ifndef CONFIG_MMU
1433		if (file->f_op->mmap_capabilities) {
1434			unsigned caps = file->f_op->mmap_capabilities(file);
1435			if (!(caps & NOMMU_MAP_EXEC))
1436				return prot;
1437		}
1438#endif
1439		return prot | PROT_EXEC;
1440	}
1441	/* anything on noexec mount won't get PROT_EXEC */
1442	return prot;
1443}
1444
1445int security_mmap_file(struct file *file, unsigned long prot,
1446			unsigned long flags)
 
1447{
1448	int ret;
1449	ret = call_int_hook(mmap_file, 0, file, prot,
1450					mmap_prot(file, prot), flags);
1451	if (ret)
1452		return ret;
1453	return ima_file_mmap(file, prot);
1454}
1455
1456int security_mmap_addr(unsigned long addr)
1457{
1458	return call_int_hook(mmap_addr, 0, addr);
1459}
1460
1461int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1462			    unsigned long prot)
1463{
1464	return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1465}
1466
1467int security_file_lock(struct file *file, unsigned int cmd)
1468{
1469	return call_int_hook(file_lock, 0, file, cmd);
1470}
1471
1472int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1473{
1474	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1475}
1476
1477void security_file_set_fowner(struct file *file)
1478{
1479	call_void_hook(file_set_fowner, file);
1480}
1481
1482int security_file_send_sigiotask(struct task_struct *tsk,
1483				  struct fown_struct *fown, int sig)
1484{
1485	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1486}
1487
1488int security_file_receive(struct file *file)
1489{
1490	return call_int_hook(file_receive, 0, file);
1491}
1492
1493int security_file_open(struct file *file)
1494{
1495	int ret;
1496
1497	ret = call_int_hook(file_open, 0, file);
1498	if (ret)
1499		return ret;
1500
1501	return fsnotify_perm(file, MAY_OPEN);
1502}
1503
1504int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1505{
1506	int rc = lsm_task_alloc(task);
1507
1508	if (rc)
1509		return rc;
1510	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1511	if (unlikely(rc))
1512		security_task_free(task);
1513	return rc;
1514}
1515
1516void security_task_free(struct task_struct *task)
1517{
1518	call_void_hook(task_free, task);
1519
1520	kfree(task->security);
1521	task->security = NULL;
1522}
1523
1524int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1525{
1526	int rc = lsm_cred_alloc(cred, gfp);
1527
1528	if (rc)
1529		return rc;
1530
1531	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1532	if (unlikely(rc))
1533		security_cred_free(cred);
1534	return rc;
1535}
1536
1537void security_cred_free(struct cred *cred)
1538{
1539	/*
1540	 * There is a failure case in prepare_creds() that
1541	 * may result in a call here with ->security being NULL.
1542	 */
1543	if (unlikely(cred->security == NULL))
1544		return;
1545
1546	call_void_hook(cred_free, cred);
1547
1548	kfree(cred->security);
1549	cred->security = NULL;
1550}
1551
1552int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1553{
1554	int rc = lsm_cred_alloc(new, gfp);
1555
1556	if (rc)
1557		return rc;
1558
1559	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1560	if (unlikely(rc))
1561		security_cred_free(new);
1562	return rc;
1563}
1564
1565void security_transfer_creds(struct cred *new, const struct cred *old)
1566{
1567	call_void_hook(cred_transfer, new, old);
1568}
1569
1570void security_cred_getsecid(const struct cred *c, u32 *secid)
1571{
1572	*secid = 0;
1573	call_void_hook(cred_getsecid, c, secid);
1574}
1575EXPORT_SYMBOL(security_cred_getsecid);
1576
1577int security_kernel_act_as(struct cred *new, u32 secid)
1578{
1579	return call_int_hook(kernel_act_as, 0, new, secid);
1580}
1581
1582int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1583{
1584	return call_int_hook(kernel_create_files_as, 0, new, inode);
1585}
1586
1587int security_kernel_module_request(char *kmod_name)
1588{
1589	int ret;
1590
1591	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1592	if (ret)
1593		return ret;
1594	return integrity_kernel_module_request(kmod_name);
1595}
1596
1597int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1598{
1599	int ret;
1600
1601	ret = call_int_hook(kernel_read_file, 0, file, id);
1602	if (ret)
1603		return ret;
1604	return ima_read_file(file, id);
1605}
1606EXPORT_SYMBOL_GPL(security_kernel_read_file);
1607
1608int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1609				   enum kernel_read_file_id id)
1610{
1611	int ret;
1612
1613	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1614	if (ret)
1615		return ret;
1616	return ima_post_read_file(file, buf, size, id);
1617}
1618EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1619
1620int security_kernel_load_data(enum kernel_load_data_id id)
1621{
1622	int ret;
1623
1624	ret = call_int_hook(kernel_load_data, 0, id);
1625	if (ret)
1626		return ret;
1627	return ima_load_data(id);
1628}
1629EXPORT_SYMBOL_GPL(security_kernel_load_data);
1630
1631int security_task_fix_setuid(struct cred *new, const struct cred *old,
1632			     int flags)
1633{
1634	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1635}
1636
1637int security_task_setpgid(struct task_struct *p, pid_t pgid)
1638{
1639	return call_int_hook(task_setpgid, 0, p, pgid);
1640}
1641
1642int security_task_getpgid(struct task_struct *p)
1643{
1644	return call_int_hook(task_getpgid, 0, p);
1645}
1646
1647int security_task_getsid(struct task_struct *p)
1648{
1649	return call_int_hook(task_getsid, 0, p);
1650}
1651
1652void security_task_getsecid(struct task_struct *p, u32 *secid)
1653{
1654	*secid = 0;
1655	call_void_hook(task_getsecid, p, secid);
1656}
1657EXPORT_SYMBOL(security_task_getsecid);
1658
1659int security_task_setnice(struct task_struct *p, int nice)
1660{
1661	return call_int_hook(task_setnice, 0, p, nice);
1662}
1663
1664int security_task_setioprio(struct task_struct *p, int ioprio)
1665{
1666	return call_int_hook(task_setioprio, 0, p, ioprio);
1667}
1668
1669int security_task_getioprio(struct task_struct *p)
1670{
1671	return call_int_hook(task_getioprio, 0, p);
1672}
1673
1674int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1675			  unsigned int flags)
1676{
1677	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1678}
1679
1680int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1681		struct rlimit *new_rlim)
1682{
1683	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1684}
1685
1686int security_task_setscheduler(struct task_struct *p)
1687{
1688	return call_int_hook(task_setscheduler, 0, p);
1689}
1690
1691int security_task_getscheduler(struct task_struct *p)
1692{
1693	return call_int_hook(task_getscheduler, 0, p);
1694}
1695
1696int security_task_movememory(struct task_struct *p)
1697{
1698	return call_int_hook(task_movememory, 0, p);
 
 
 
 
 
 
1699}
1700
1701int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1702			int sig, const struct cred *cred)
1703{
1704	return call_int_hook(task_kill, 0, p, info, sig, cred);
1705}
1706
1707int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1708			 unsigned long arg4, unsigned long arg5)
1709{
1710	int thisrc;
1711	int rc = -ENOSYS;
1712	struct security_hook_list *hp;
1713
1714	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1715		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1716		if (thisrc != -ENOSYS) {
1717			rc = thisrc;
1718			if (thisrc != 0)
1719				break;
1720		}
1721	}
1722	return rc;
1723}
1724
1725void security_task_to_inode(struct task_struct *p, struct inode *inode)
1726{
1727	call_void_hook(task_to_inode, p, inode);
1728}
1729
1730int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1731{
1732	return call_int_hook(ipc_permission, 0, ipcp, flag);
1733}
1734
1735void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1736{
1737	*secid = 0;
1738	call_void_hook(ipc_getsecid, ipcp, secid);
1739}
1740
1741int security_msg_msg_alloc(struct msg_msg *msg)
1742{
1743	int rc = lsm_msg_msg_alloc(msg);
1744
1745	if (unlikely(rc))
1746		return rc;
1747	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1748	if (unlikely(rc))
1749		security_msg_msg_free(msg);
1750	return rc;
1751}
1752
1753void security_msg_msg_free(struct msg_msg *msg)
1754{
1755	call_void_hook(msg_msg_free_security, msg);
1756	kfree(msg->security);
1757	msg->security = NULL;
1758}
1759
1760int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1761{
1762	int rc = lsm_ipc_alloc(msq);
1763
1764	if (unlikely(rc))
1765		return rc;
1766	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1767	if (unlikely(rc))
1768		security_msg_queue_free(msq);
1769	return rc;
1770}
1771
1772void security_msg_queue_free(struct kern_ipc_perm *msq)
1773{
1774	call_void_hook(msg_queue_free_security, msq);
1775	kfree(msq->security);
1776	msq->security = NULL;
1777}
1778
1779int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1780{
1781	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1782}
1783
1784int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1785{
1786	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1787}
1788
1789int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1790			       struct msg_msg *msg, int msqflg)
1791{
1792	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1793}
1794
1795int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1796			       struct task_struct *target, long type, int mode)
1797{
1798	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1799}
1800
1801int security_shm_alloc(struct kern_ipc_perm *shp)
1802{
1803	int rc = lsm_ipc_alloc(shp);
1804
1805	if (unlikely(rc))
1806		return rc;
1807	rc = call_int_hook(shm_alloc_security, 0, shp);
1808	if (unlikely(rc))
1809		security_shm_free(shp);
1810	return rc;
1811}
1812
1813void security_shm_free(struct kern_ipc_perm *shp)
1814{
1815	call_void_hook(shm_free_security, shp);
1816	kfree(shp->security);
1817	shp->security = NULL;
1818}
1819
1820int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1821{
1822	return call_int_hook(shm_associate, 0, shp, shmflg);
1823}
1824
1825int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1826{
1827	return call_int_hook(shm_shmctl, 0, shp, cmd);
1828}
1829
1830int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1831{
1832	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1833}
1834
1835int security_sem_alloc(struct kern_ipc_perm *sma)
1836{
1837	int rc = lsm_ipc_alloc(sma);
1838
1839	if (unlikely(rc))
1840		return rc;
1841	rc = call_int_hook(sem_alloc_security, 0, sma);
1842	if (unlikely(rc))
1843		security_sem_free(sma);
1844	return rc;
1845}
1846
1847void security_sem_free(struct kern_ipc_perm *sma)
1848{
1849	call_void_hook(sem_free_security, sma);
1850	kfree(sma->security);
1851	sma->security = NULL;
1852}
1853
1854int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1855{
1856	return call_int_hook(sem_associate, 0, sma, semflg);
1857}
1858
1859int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1860{
1861	return call_int_hook(sem_semctl, 0, sma, cmd);
1862}
1863
1864int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1865			unsigned nsops, int alter)
1866{
1867	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1868}
1869
1870void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1871{
1872	if (unlikely(inode && IS_PRIVATE(inode)))
1873		return;
1874	call_void_hook(d_instantiate, dentry, inode);
1875}
1876EXPORT_SYMBOL(security_d_instantiate);
1877
1878int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1879				char **value)
1880{
1881	struct security_hook_list *hp;
1882
1883	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1884		if (lsm != NULL && strcmp(lsm, hp->lsm))
1885			continue;
1886		return hp->hook.getprocattr(p, name, value);
1887	}
1888	return -EINVAL;
1889}
1890
1891int security_setprocattr(const char *lsm, const char *name, void *value,
1892			 size_t size)
1893{
1894	struct security_hook_list *hp;
1895
1896	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1897		if (lsm != NULL && strcmp(lsm, hp->lsm))
1898			continue;
1899		return hp->hook.setprocattr(name, value, size);
1900	}
1901	return -EINVAL;
1902}
1903
1904int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1905{
1906	return call_int_hook(netlink_send, 0, sk, skb);
1907}
1908
1909int security_ismaclabel(const char *name)
1910{
1911	return call_int_hook(ismaclabel, 0, name);
1912}
1913EXPORT_SYMBOL(security_ismaclabel);
1914
1915int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1916{
1917	return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1918				seclen);
1919}
1920EXPORT_SYMBOL(security_secid_to_secctx);
1921
1922int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1923{
1924	*secid = 0;
1925	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1926}
1927EXPORT_SYMBOL(security_secctx_to_secid);
1928
1929void security_release_secctx(char *secdata, u32 seclen)
1930{
1931	call_void_hook(release_secctx, secdata, seclen);
1932}
1933EXPORT_SYMBOL(security_release_secctx);
1934
1935void security_inode_invalidate_secctx(struct inode *inode)
1936{
1937	call_void_hook(inode_invalidate_secctx, inode);
1938}
1939EXPORT_SYMBOL(security_inode_invalidate_secctx);
1940
1941int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1942{
1943	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1944}
1945EXPORT_SYMBOL(security_inode_notifysecctx);
1946
1947int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1948{
1949	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1950}
1951EXPORT_SYMBOL(security_inode_setsecctx);
1952
1953int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1954{
1955	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1956}
1957EXPORT_SYMBOL(security_inode_getsecctx);
1958
1959#ifdef CONFIG_SECURITY_NETWORK
1960
1961int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1962{
1963	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1964}
1965EXPORT_SYMBOL(security_unix_stream_connect);
1966
1967int security_unix_may_send(struct socket *sock,  struct socket *other)
1968{
1969	return call_int_hook(unix_may_send, 0, sock, other);
1970}
1971EXPORT_SYMBOL(security_unix_may_send);
1972
1973int security_socket_create(int family, int type, int protocol, int kern)
1974{
1975	return call_int_hook(socket_create, 0, family, type, protocol, kern);
1976}
1977
1978int security_socket_post_create(struct socket *sock, int family,
1979				int type, int protocol, int kern)
1980{
1981	return call_int_hook(socket_post_create, 0, sock, family, type,
1982						protocol, kern);
1983}
1984
1985int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1986{
1987	return call_int_hook(socket_socketpair, 0, socka, sockb);
1988}
1989EXPORT_SYMBOL(security_socket_socketpair);
1990
1991int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1992{
1993	return call_int_hook(socket_bind, 0, sock, address, addrlen);
1994}
1995
1996int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1997{
1998	return call_int_hook(socket_connect, 0, sock, address, addrlen);
1999}
2000
2001int security_socket_listen(struct socket *sock, int backlog)
2002{
2003	return call_int_hook(socket_listen, 0, sock, backlog);
2004}
2005
2006int security_socket_accept(struct socket *sock, struct socket *newsock)
2007{
2008	return call_int_hook(socket_accept, 0, sock, newsock);
2009}
2010
2011int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2012{
2013	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2014}
2015
2016int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2017			    int size, int flags)
2018{
2019	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2020}
2021
2022int security_socket_getsockname(struct socket *sock)
2023{
2024	return call_int_hook(socket_getsockname, 0, sock);
2025}
2026
2027int security_socket_getpeername(struct socket *sock)
2028{
2029	return call_int_hook(socket_getpeername, 0, sock);
2030}
2031
2032int security_socket_getsockopt(struct socket *sock, int level, int optname)
2033{
2034	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2035}
2036
2037int security_socket_setsockopt(struct socket *sock, int level, int optname)
2038{
2039	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2040}
2041
2042int security_socket_shutdown(struct socket *sock, int how)
2043{
2044	return call_int_hook(socket_shutdown, 0, sock, how);
2045}
2046
2047int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2048{
2049	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2050}
2051EXPORT_SYMBOL(security_sock_rcv_skb);
2052
2053int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2054				      int __user *optlen, unsigned len)
2055{
2056	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2057				optval, optlen, len);
2058}
2059
2060int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2061{
2062	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2063			     skb, secid);
2064}
2065EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2066
2067int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2068{
2069	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2070}
2071
2072void security_sk_free(struct sock *sk)
2073{
2074	call_void_hook(sk_free_security, sk);
2075}
2076
2077void security_sk_clone(const struct sock *sk, struct sock *newsk)
2078{
2079	call_void_hook(sk_clone_security, sk, newsk);
2080}
2081EXPORT_SYMBOL(security_sk_clone);
2082
2083void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2084{
2085	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2086}
2087EXPORT_SYMBOL(security_sk_classify_flow);
2088
2089void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2090{
2091	call_void_hook(req_classify_flow, req, fl);
2092}
2093EXPORT_SYMBOL(security_req_classify_flow);
2094
2095void security_sock_graft(struct sock *sk, struct socket *parent)
2096{
2097	call_void_hook(sock_graft, sk, parent);
2098}
2099EXPORT_SYMBOL(security_sock_graft);
2100
2101int security_inet_conn_request(struct sock *sk,
2102			struct sk_buff *skb, struct request_sock *req)
2103{
2104	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2105}
2106EXPORT_SYMBOL(security_inet_conn_request);
2107
2108void security_inet_csk_clone(struct sock *newsk,
2109			const struct request_sock *req)
2110{
2111	call_void_hook(inet_csk_clone, newsk, req);
2112}
2113
2114void security_inet_conn_established(struct sock *sk,
2115			struct sk_buff *skb)
2116{
2117	call_void_hook(inet_conn_established, sk, skb);
2118}
2119EXPORT_SYMBOL(security_inet_conn_established);
2120
2121int security_secmark_relabel_packet(u32 secid)
2122{
2123	return call_int_hook(secmark_relabel_packet, 0, secid);
2124}
2125EXPORT_SYMBOL(security_secmark_relabel_packet);
2126
2127void security_secmark_refcount_inc(void)
2128{
2129	call_void_hook(secmark_refcount_inc);
2130}
2131EXPORT_SYMBOL(security_secmark_refcount_inc);
2132
2133void security_secmark_refcount_dec(void)
2134{
2135	call_void_hook(secmark_refcount_dec);
2136}
2137EXPORT_SYMBOL(security_secmark_refcount_dec);
2138
2139int security_tun_dev_alloc_security(void **security)
2140{
2141	return call_int_hook(tun_dev_alloc_security, 0, security);
2142}
2143EXPORT_SYMBOL(security_tun_dev_alloc_security);
2144
2145void security_tun_dev_free_security(void *security)
2146{
2147	call_void_hook(tun_dev_free_security, security);
2148}
2149EXPORT_SYMBOL(security_tun_dev_free_security);
2150
2151int security_tun_dev_create(void)
2152{
2153	return call_int_hook(tun_dev_create, 0);
2154}
2155EXPORT_SYMBOL(security_tun_dev_create);
2156
2157int security_tun_dev_attach_queue(void *security)
2158{
2159	return call_int_hook(tun_dev_attach_queue, 0, security);
2160}
2161EXPORT_SYMBOL(security_tun_dev_attach_queue);
2162
2163int security_tun_dev_attach(struct sock *sk, void *security)
2164{
2165	return call_int_hook(tun_dev_attach, 0, sk, security);
2166}
2167EXPORT_SYMBOL(security_tun_dev_attach);
2168
2169int security_tun_dev_open(void *security)
2170{
2171	return call_int_hook(tun_dev_open, 0, security);
2172}
2173EXPORT_SYMBOL(security_tun_dev_open);
2174
2175int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2176{
2177	return call_int_hook(sctp_assoc_request, 0, ep, skb);
2178}
2179EXPORT_SYMBOL(security_sctp_assoc_request);
2180
2181int security_sctp_bind_connect(struct sock *sk, int optname,
2182			       struct sockaddr *address, int addrlen)
2183{
2184	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2185			     address, addrlen);
2186}
2187EXPORT_SYMBOL(security_sctp_bind_connect);
2188
2189void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2190			    struct sock *newsk)
2191{
2192	call_void_hook(sctp_sk_clone, ep, sk, newsk);
2193}
2194EXPORT_SYMBOL(security_sctp_sk_clone);
2195
2196#endif	/* CONFIG_SECURITY_NETWORK */
2197
2198#ifdef CONFIG_SECURITY_INFINIBAND
2199
2200int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2201{
2202	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2203}
2204EXPORT_SYMBOL(security_ib_pkey_access);
2205
2206int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2207{
2208	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2209}
2210EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2211
2212int security_ib_alloc_security(void **sec)
2213{
2214	return call_int_hook(ib_alloc_security, 0, sec);
2215}
2216EXPORT_SYMBOL(security_ib_alloc_security);
2217
2218void security_ib_free_security(void *sec)
2219{
2220	call_void_hook(ib_free_security, sec);
2221}
2222EXPORT_SYMBOL(security_ib_free_security);
2223#endif	/* CONFIG_SECURITY_INFINIBAND */
2224
2225#ifdef CONFIG_SECURITY_NETWORK_XFRM
2226
2227int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2228			       struct xfrm_user_sec_ctx *sec_ctx,
2229			       gfp_t gfp)
2230{
2231	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2232}
2233EXPORT_SYMBOL(security_xfrm_policy_alloc);
2234
2235int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2236			      struct xfrm_sec_ctx **new_ctxp)
2237{
2238	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2239}
2240
2241void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2242{
2243	call_void_hook(xfrm_policy_free_security, ctx);
2244}
2245EXPORT_SYMBOL(security_xfrm_policy_free);
2246
2247int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2248{
2249	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2250}
2251
2252int security_xfrm_state_alloc(struct xfrm_state *x,
2253			      struct xfrm_user_sec_ctx *sec_ctx)
2254{
2255	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2256}
2257EXPORT_SYMBOL(security_xfrm_state_alloc);
2258
2259int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2260				      struct xfrm_sec_ctx *polsec, u32 secid)
2261{
2262	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
 
 
 
 
 
 
2263}
2264
2265int security_xfrm_state_delete(struct xfrm_state *x)
2266{
2267	return call_int_hook(xfrm_state_delete_security, 0, x);
2268}
2269EXPORT_SYMBOL(security_xfrm_state_delete);
2270
2271void security_xfrm_state_free(struct xfrm_state *x)
2272{
2273	call_void_hook(xfrm_state_free_security, x);
2274}
2275
2276int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2277{
2278	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2279}
2280
2281int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2282				       struct xfrm_policy *xp,
2283				       const struct flowi *fl)
2284{
2285	struct security_hook_list *hp;
2286	int rc = 1;
2287
2288	/*
2289	 * Since this function is expected to return 0 or 1, the judgment
2290	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2291	 * we can use the first LSM's judgment because currently only SELinux
2292	 * supplies this call.
2293	 *
2294	 * For speed optimization, we explicitly break the loop rather than
2295	 * using the macro
2296	 */
2297	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2298				list) {
2299		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2300		break;
2301	}
2302	return rc;
2303}
2304
2305int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2306{
2307	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2308}
2309
2310void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2311{
2312	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2313				0);
2314
2315	BUG_ON(rc);
2316}
2317EXPORT_SYMBOL(security_skb_classify_flow);
2318
2319#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2320
2321#ifdef CONFIG_KEYS
2322
2323int security_key_alloc(struct key *key, const struct cred *cred,
2324		       unsigned long flags)
2325{
2326	return call_int_hook(key_alloc, 0, key, cred, flags);
2327}
2328
2329void security_key_free(struct key *key)
2330{
2331	call_void_hook(key_free, key);
2332}
2333
2334int security_key_permission(key_ref_t key_ref,
2335			    const struct cred *cred, unsigned perm)
2336{
2337	return call_int_hook(key_permission, 0, key_ref, cred, perm);
2338}
2339
2340int security_key_getsecurity(struct key *key, char **_buffer)
2341{
2342	*_buffer = NULL;
2343	return call_int_hook(key_getsecurity, 0, key, _buffer);
2344}
2345
2346#endif	/* CONFIG_KEYS */
2347
2348#ifdef CONFIG_AUDIT
2349
2350int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2351{
2352	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2353}
2354
2355int security_audit_rule_known(struct audit_krule *krule)
2356{
2357	return call_int_hook(audit_rule_known, 0, krule);
2358}
2359
2360void security_audit_rule_free(void *lsmrule)
2361{
2362	call_void_hook(audit_rule_free, lsmrule);
2363}
2364
2365int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
 
2366{
2367	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2368}
2369#endif /* CONFIG_AUDIT */
2370
2371#ifdef CONFIG_BPF_SYSCALL
2372int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2373{
2374	return call_int_hook(bpf, 0, cmd, attr, size);
2375}
2376int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2377{
2378	return call_int_hook(bpf_map, 0, map, fmode);
2379}
2380int security_bpf_prog(struct bpf_prog *prog)
2381{
2382	return call_int_hook(bpf_prog, 0, prog);
2383}
2384int security_bpf_map_alloc(struct bpf_map *map)
2385{
2386	return call_int_hook(bpf_map_alloc_security, 0, map);
2387}
2388int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2389{
2390	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2391}
2392void security_bpf_map_free(struct bpf_map *map)
2393{
2394	call_void_hook(bpf_map_free_security, map);
2395}
2396void security_bpf_prog_free(struct bpf_prog_aux *aux)
2397{
2398	call_void_hook(bpf_prog_free_security, aux);
2399}
2400#endif /* CONFIG_BPF_SYSCALL */
2401
2402int security_locked_down(enum lockdown_reason what)
2403{
2404	return call_int_hook(locked_down, 0, what);
2405}
2406EXPORT_SYMBOL(security_locked_down);
v3.1
 
   1/*
   2 * Security plug functions
   3 *
   4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   7 *
   8 *	This program is free software; you can redistribute it and/or modify
   9 *	it under the terms of the GNU General Public License as published by
  10 *	the Free Software Foundation; either version 2 of the License, or
  11 *	(at your option) any later version.
  12 */
  13
 
 
 
  14#include <linux/capability.h>
  15#include <linux/module.h>
 
  16#include <linux/init.h>
  17#include <linux/kernel.h>
  18#include <linux/security.h>
 
  19#include <linux/ima.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  20
  21/* Boot-time LSM user choice */
  22static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  23	CONFIG_DEFAULT_SECURITY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  24
  25/* things that live in capability.c */
  26extern void __init security_fixup_ops(struct security_operations *ops);
 
 
 
 
 
 
 
 
  27
  28static struct security_operations *security_ops;
  29static struct security_operations default_security_ops = {
  30	.name	= "default",
  31};
  32
  33static inline int __init verify(struct security_operations *ops)
  34{
  35	/* verify the security_operations structure exists */
  36	if (!ops)
  37		return -EINVAL;
  38	security_fixup_ops(ops);
  39	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40}
  41
  42static void __init do_security_initcalls(void)
 
 
 
 
 
  43{
  44	initcall_t *call;
  45	call = __security_initcall_start;
  46	while (call < __security_initcall_end) {
  47		(*call) ();
  48		call++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  49	}
 
 
  50}
  51
  52/**
  53 * security_init - initializes the security framework
  54 *
  55 * This should be called early in the kernel initialization sequence.
  56 */
  57int __init security_init(void)
  58{
  59	printk(KERN_INFO "Security Framework initialized\n");
  60
  61	security_fixup_ops(&default_security_ops);
  62	security_ops = &default_security_ops;
  63	do_security_initcalls();
 
 
 
 
 
 
 
 
 
 
  64
  65	return 0;
  66}
  67
  68void reset_security_ops(void)
 
 
 
 
 
 
 
 
 
  69{
  70	security_ops = &default_security_ops;
 
  71}
 
  72
  73/* Save user chosen LSM */
  74static int __init choose_lsm(char *str)
  75{
  76	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  77	return 1;
  78}
  79__setup("security=", choose_lsm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80
  81/**
  82 * security_module_enable - Load given security module on boot ?
  83 * @ops: a pointer to the struct security_operations that is to be checked.
 
 
 
  84 *
  85 * Each LSM must pass this method before registering its own operations
  86 * to avoid security registration races. This method may also be used
  87 * to check if your LSM is currently loaded during kernel initialization.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  88 *
  89 * Return true if:
  90 *	-The passed LSM is the one chosen by user at boot time,
  91 *	-or the passed LSM is configured as the default and the user did not
  92 *	 choose an alternate LSM at boot time.
  93 * Otherwise, return false.
  94 */
  95int __init security_module_enable(struct security_operations *ops)
  96{
  97	return !strcmp(ops->name, chosen_lsm);
 
 
 
  98}
  99
 100/**
 101 * register_security - registers a security framework with the kernel
 102 * @ops: a pointer to the struct security_options that is to be registered
 103 *
 104 * This function allows a security module to register itself with the
 105 * kernel security subsystem.  Some rudimentary checking is done on the @ops
 106 * value passed to this function. You'll need to check first if your LSM
 107 * is allowed to register its @ops by calling security_module_enable(@ops).
 108 *
 109 * If there is already a security module registered with the kernel,
 110 * an error will be returned.  Otherwise %0 is returned on success.
 111 */
 112int __init register_security(struct security_operations *ops)
 113{
 114	if (verify(ops)) {
 115		printk(KERN_DEBUG "%s could not verify "
 116		       "security_operations structure.\n", __func__);
 117		return -EINVAL;
 118	}
 119
 120	if (security_ops != &default_security_ops)
 121		return -EAGAIN;
 
 
 
 122
 123	security_ops = ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 124
 
 
 
 125	return 0;
 126}
 127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 128/* Security operations */
 129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 131{
 132	return security_ops->ptrace_access_check(child, mode);
 133}
 134
 135int security_ptrace_traceme(struct task_struct *parent)
 136{
 137	return security_ops->ptrace_traceme(parent);
 138}
 139
 140int security_capget(struct task_struct *target,
 141		     kernel_cap_t *effective,
 142		     kernel_cap_t *inheritable,
 143		     kernel_cap_t *permitted)
 144{
 145	return security_ops->capget(target, effective, inheritable, permitted);
 
 146}
 147
 148int security_capset(struct cred *new, const struct cred *old,
 149		    const kernel_cap_t *effective,
 150		    const kernel_cap_t *inheritable,
 151		    const kernel_cap_t *permitted)
 152{
 153	return security_ops->capset(new, old,
 154				    effective, inheritable, permitted);
 155}
 156
 157int security_capable(struct user_namespace *ns, const struct cred *cred,
 158		     int cap)
 159{
 160	return security_ops->capable(current, cred, ns, cap,
 161				     SECURITY_CAP_AUDIT);
 162}
 163
 164int security_real_capable(struct task_struct *tsk, struct user_namespace *ns,
 165			  int cap)
 166{
 167	const struct cred *cred;
 168	int ret;
 169
 170	cred = get_task_cred(tsk);
 171	ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_AUDIT);
 172	put_cred(cred);
 173	return ret;
 174}
 175
 176int security_real_capable_noaudit(struct task_struct *tsk,
 177				  struct user_namespace *ns, int cap)
 
 
 178{
 179	const struct cred *cred;
 180	int ret;
 181
 182	cred = get_task_cred(tsk);
 183	ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_NOAUDIT);
 184	put_cred(cred);
 185	return ret;
 186}
 187
 188int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 189{
 190	return security_ops->quotactl(cmds, type, id, sb);
 191}
 192
 193int security_quota_on(struct dentry *dentry)
 194{
 195	return security_ops->quota_on(dentry);
 196}
 197
 198int security_syslog(int type)
 199{
 200	return security_ops->syslog(type);
 201}
 202
 203int security_settime(const struct timespec *ts, const struct timezone *tz)
 204{
 205	return security_ops->settime(ts, tz);
 206}
 207
 208int security_vm_enough_memory(long pages)
 209{
 210	WARN_ON(current->mm == NULL);
 211	return security_ops->vm_enough_memory(current->mm, pages);
 212}
 213
 214int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 215{
 216	WARN_ON(mm == NULL);
 217	return security_ops->vm_enough_memory(mm, pages);
 218}
 219
 220int security_vm_enough_memory_kern(long pages)
 221{
 222	/* If current->mm is a kernel thread then we will pass NULL,
 223	   for this specific case that is fine */
 224	return security_ops->vm_enough_memory(current->mm, pages);
 
 
 
 
 
 
 
 
 
 
 225}
 226
 227int security_bprm_set_creds(struct linux_binprm *bprm)
 228{
 229	return security_ops->bprm_set_creds(bprm);
 230}
 231
 232int security_bprm_check(struct linux_binprm *bprm)
 233{
 234	int ret;
 235
 236	ret = security_ops->bprm_check_security(bprm);
 237	if (ret)
 238		return ret;
 239	return ima_bprm_check(bprm);
 240}
 241
 242void security_bprm_committing_creds(struct linux_binprm *bprm)
 243{
 244	security_ops->bprm_committing_creds(bprm);
 245}
 246
 247void security_bprm_committed_creds(struct linux_binprm *bprm)
 248{
 249	security_ops->bprm_committed_creds(bprm);
 250}
 251
 252int security_bprm_secureexec(struct linux_binprm *bprm)
 253{
 254	return security_ops->bprm_secureexec(bprm);
 
 
 
 
 
 255}
 256
 257int security_sb_alloc(struct super_block *sb)
 258{
 259	return security_ops->sb_alloc_security(sb);
 260}
 261
 262void security_sb_free(struct super_block *sb)
 263{
 264	security_ops->sb_free_security(sb);
 
 
 
 
 
 
 
 
 265}
 
 266
 267int security_sb_copy_data(char *orig, char *copy)
 268{
 269	return security_ops->sb_copy_data(orig, copy);
 270}
 271EXPORT_SYMBOL(security_sb_copy_data);
 272
 273int security_sb_remount(struct super_block *sb, void *data)
 
 274{
 275	return security_ops->sb_remount(sb, data);
 276}
 
 277
 278int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
 279{
 280	return security_ops->sb_kern_mount(sb, flags, data);
 281}
 282
 283int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 284{
 285	return security_ops->sb_show_options(m, sb);
 286}
 287
 288int security_sb_statfs(struct dentry *dentry)
 289{
 290	return security_ops->sb_statfs(dentry);
 291}
 292
 293int security_sb_mount(char *dev_name, struct path *path,
 294                       char *type, unsigned long flags, void *data)
 295{
 296	return security_ops->sb_mount(dev_name, path, type, flags, data);
 297}
 298
 299int security_sb_umount(struct vfsmount *mnt, int flags)
 300{
 301	return security_ops->sb_umount(mnt, flags);
 302}
 303
 304int security_sb_pivotroot(struct path *old_path, struct path *new_path)
 305{
 306	return security_ops->sb_pivotroot(old_path, new_path);
 307}
 308
 309int security_sb_set_mnt_opts(struct super_block *sb,
 310				struct security_mnt_opts *opts)
 311{
 312	return security_ops->sb_set_mnt_opts(sb, opts);
 
 
 
 
 313}
 314EXPORT_SYMBOL(security_sb_set_mnt_opts);
 315
 316void security_sb_clone_mnt_opts(const struct super_block *oldsb,
 317				struct super_block *newsb)
 
 
 318{
 319	security_ops->sb_clone_mnt_opts(oldsb, newsb);
 
 320}
 321EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 322
 323int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 324{
 325	return security_ops->sb_parse_opts_str(options, opts);
 326}
 327EXPORT_SYMBOL(security_sb_parse_opts_str);
 328
 329int security_inode_alloc(struct inode *inode)
 330{
 331	inode->i_security = NULL;
 332	return security_ops->inode_alloc_security(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333}
 334
 335void security_inode_free(struct inode *inode)
 336{
 337	ima_inode_free(inode);
 338	security_ops->inode_free_security(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 339}
 
 340
 341int security_inode_init_security(struct inode *inode, struct inode *dir,
 342				 const struct qstr *qstr, char **name,
 343				 void **value, size_t *len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 344{
 345	if (unlikely(IS_PRIVATE(inode)))
 346		return -EOPNOTSUPP;
 347	return security_ops->inode_init_security(inode, dir, qstr, name, value,
 348						 len);
 349}
 350EXPORT_SYMBOL(security_inode_init_security);
 351
 352#ifdef CONFIG_SECURITY_PATH
 353int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
 354			unsigned int dev)
 355{
 356	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 357		return 0;
 358	return security_ops->path_mknod(dir, dentry, mode, dev);
 359}
 360EXPORT_SYMBOL(security_path_mknod);
 361
 362int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
 363{
 364	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 365		return 0;
 366	return security_ops->path_mkdir(dir, dentry, mode);
 367}
 368EXPORT_SYMBOL(security_path_mkdir);
 369
 370int security_path_rmdir(struct path *dir, struct dentry *dentry)
 371{
 372	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 373		return 0;
 374	return security_ops->path_rmdir(dir, dentry);
 375}
 376
 377int security_path_unlink(struct path *dir, struct dentry *dentry)
 378{
 379	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 380		return 0;
 381	return security_ops->path_unlink(dir, dentry);
 382}
 383EXPORT_SYMBOL(security_path_unlink);
 384
 385int security_path_symlink(struct path *dir, struct dentry *dentry,
 386			  const char *old_name)
 387{
 388	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 389		return 0;
 390	return security_ops->path_symlink(dir, dentry, old_name);
 391}
 392
 393int security_path_link(struct dentry *old_dentry, struct path *new_dir,
 394		       struct dentry *new_dentry)
 395{
 396	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 397		return 0;
 398	return security_ops->path_link(old_dentry, new_dir, new_dentry);
 399}
 400
 401int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
 402			 struct path *new_dir, struct dentry *new_dentry)
 
 403{
 404	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 405		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 406		return 0;
 407	return security_ops->path_rename(old_dir, old_dentry, new_dir,
 408					 new_dentry);
 
 
 
 
 
 
 
 
 409}
 410EXPORT_SYMBOL(security_path_rename);
 411
 412int security_path_truncate(struct path *path)
 413{
 414	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 415		return 0;
 416	return security_ops->path_truncate(path);
 417}
 418
 419int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
 420			mode_t mode)
 421{
 422	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 423		return 0;
 424	return security_ops->path_chmod(dentry, mnt, mode);
 425}
 426
 427int security_path_chown(struct path *path, uid_t uid, gid_t gid)
 428{
 429	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 430		return 0;
 431	return security_ops->path_chown(path, uid, gid);
 432}
 433
 434int security_path_chroot(struct path *path)
 435{
 436	return security_ops->path_chroot(path);
 437}
 438#endif
 439
 440int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
 441{
 442	if (unlikely(IS_PRIVATE(dir)))
 443		return 0;
 444	return security_ops->inode_create(dir, dentry, mode);
 445}
 446EXPORT_SYMBOL_GPL(security_inode_create);
 447
 448int security_inode_link(struct dentry *old_dentry, struct inode *dir,
 449			 struct dentry *new_dentry)
 450{
 451	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 452		return 0;
 453	return security_ops->inode_link(old_dentry, dir, new_dentry);
 454}
 455
 456int security_inode_unlink(struct inode *dir, struct dentry *dentry)
 457{
 458	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 459		return 0;
 460	return security_ops->inode_unlink(dir, dentry);
 461}
 462
 463int security_inode_symlink(struct inode *dir, struct dentry *dentry,
 464			    const char *old_name)
 465{
 466	if (unlikely(IS_PRIVATE(dir)))
 467		return 0;
 468	return security_ops->inode_symlink(dir, dentry, old_name);
 469}
 470
 471int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
 472{
 473	if (unlikely(IS_PRIVATE(dir)))
 474		return 0;
 475	return security_ops->inode_mkdir(dir, dentry, mode);
 476}
 477EXPORT_SYMBOL_GPL(security_inode_mkdir);
 478
 479int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
 480{
 481	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 482		return 0;
 483	return security_ops->inode_rmdir(dir, dentry);
 484}
 485
 486int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
 487{
 488	if (unlikely(IS_PRIVATE(dir)))
 489		return 0;
 490	return security_ops->inode_mknod(dir, dentry, mode, dev);
 491}
 492
 493int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
 494			   struct inode *new_dir, struct dentry *new_dentry)
 
 495{
 496        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 497            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 498		return 0;
 499	return security_ops->inode_rename(old_dir, old_dentry,
 
 
 
 
 
 
 
 
 500					   new_dir, new_dentry);
 501}
 502
 503int security_inode_readlink(struct dentry *dentry)
 504{
 505	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 506		return 0;
 507	return security_ops->inode_readlink(dentry);
 508}
 509
 510int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
 
 511{
 512	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 513		return 0;
 514	return security_ops->inode_follow_link(dentry, nd);
 515}
 516
 517int security_inode_permission(struct inode *inode, int mask)
 518{
 519	if (unlikely(IS_PRIVATE(inode)))
 520		return 0;
 521	return security_ops->inode_permission(inode, mask);
 522}
 523
 524int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
 525{
 526	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 
 
 527		return 0;
 528	return security_ops->inode_setattr(dentry, attr);
 
 
 
 529}
 530EXPORT_SYMBOL_GPL(security_inode_setattr);
 531
 532int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
 533{
 534	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 535		return 0;
 536	return security_ops->inode_getattr(mnt, dentry);
 537}
 538
 539int security_inode_setxattr(struct dentry *dentry, const char *name,
 540			    const void *value, size_t size, int flags)
 541{
 542	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 
 
 543		return 0;
 544	return security_ops->inode_setxattr(dentry, name, value, size, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545}
 546
 547void security_inode_post_setxattr(struct dentry *dentry, const char *name,
 548				  const void *value, size_t size, int flags)
 549{
 550	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 551		return;
 552	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
 
 553}
 554
 555int security_inode_getxattr(struct dentry *dentry, const char *name)
 556{
 557	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 558		return 0;
 559	return security_ops->inode_getxattr(dentry, name);
 560}
 561
 562int security_inode_listxattr(struct dentry *dentry)
 563{
 564	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 565		return 0;
 566	return security_ops->inode_listxattr(dentry);
 567}
 568
 569int security_inode_removexattr(struct dentry *dentry, const char *name)
 570{
 571	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 
 
 572		return 0;
 573	return security_ops->inode_removexattr(dentry, name);
 
 
 
 
 
 
 
 
 
 
 
 
 574}
 575
 576int security_inode_need_killpriv(struct dentry *dentry)
 577{
 578	return security_ops->inode_need_killpriv(dentry);
 579}
 580
 581int security_inode_killpriv(struct dentry *dentry)
 582{
 583	return security_ops->inode_killpriv(dentry);
 584}
 585
 586int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
 587{
 
 
 
 588	if (unlikely(IS_PRIVATE(inode)))
 589		return -EOPNOTSUPP;
 590	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
 
 
 
 
 
 
 
 
 591}
 592
 593int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
 594{
 
 
 
 595	if (unlikely(IS_PRIVATE(inode)))
 596		return -EOPNOTSUPP;
 597	return security_ops->inode_setsecurity(inode, name, value, size, flags);
 
 
 
 
 
 
 
 
 
 598}
 599
 600int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
 601{
 602	if (unlikely(IS_PRIVATE(inode)))
 603		return 0;
 604	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
 
 
 
 
 
 
 
 
 
 
 
 605}
 
 606
 607void security_inode_getsecid(const struct inode *inode, u32 *secid)
 608{
 609	security_ops->inode_getsecid(inode, secid);
 
 
 
 
 
 
 
 610}
 611
 612int security_file_permission(struct file *file, int mask)
 613{
 614	int ret;
 615
 616	ret = security_ops->file_permission(file, mask);
 617	if (ret)
 618		return ret;
 619
 620	return fsnotify_perm(file, mask);
 621}
 622
 623int security_file_alloc(struct file *file)
 624{
 625	return security_ops->file_alloc_security(file);
 
 
 
 
 
 
 
 626}
 627
 628void security_file_free(struct file *file)
 629{
 630	security_ops->file_free_security(file);
 
 
 
 
 
 
 
 
 631}
 632
 633int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 634{
 635	return security_ops->file_ioctl(file, cmd, arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636}
 637
 638int security_file_mmap(struct file *file, unsigned long reqprot,
 639			unsigned long prot, unsigned long flags,
 640			unsigned long addr, unsigned long addr_only)
 641{
 642	int ret;
 643
 644	ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
 645	if (ret)
 646		return ret;
 647	return ima_file_mmap(file, prot);
 648}
 649
 
 
 
 
 
 650int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
 651			    unsigned long prot)
 652{
 653	return security_ops->file_mprotect(vma, reqprot, prot);
 654}
 655
 656int security_file_lock(struct file *file, unsigned int cmd)
 657{
 658	return security_ops->file_lock(file, cmd);
 659}
 660
 661int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
 662{
 663	return security_ops->file_fcntl(file, cmd, arg);
 664}
 665
 666int security_file_set_fowner(struct file *file)
 667{
 668	return security_ops->file_set_fowner(file);
 669}
 670
 671int security_file_send_sigiotask(struct task_struct *tsk,
 672				  struct fown_struct *fown, int sig)
 673{
 674	return security_ops->file_send_sigiotask(tsk, fown, sig);
 675}
 676
 677int security_file_receive(struct file *file)
 678{
 679	return security_ops->file_receive(file);
 680}
 681
 682int security_dentry_open(struct file *file, const struct cred *cred)
 683{
 684	int ret;
 685
 686	ret = security_ops->dentry_open(file, cred);
 687	if (ret)
 688		return ret;
 689
 690	return fsnotify_perm(file, MAY_OPEN);
 691}
 692
 693int security_task_create(unsigned long clone_flags)
 694{
 695	return security_ops->task_create(clone_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 696}
 697
 698int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
 699{
 700	return security_ops->cred_alloc_blank(cred, gfp);
 
 
 
 
 
 
 
 
 701}
 702
 703void security_cred_free(struct cred *cred)
 704{
 705	security_ops->cred_free(cred);
 
 
 
 
 
 
 
 
 
 
 706}
 707
 708int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
 709{
 710	return security_ops->cred_prepare(new, old, gfp);
 
 
 
 
 
 
 
 
 711}
 712
 713void security_transfer_creds(struct cred *new, const struct cred *old)
 714{
 715	security_ops->cred_transfer(new, old);
 716}
 717
 
 
 
 
 
 
 
 718int security_kernel_act_as(struct cred *new, u32 secid)
 719{
 720	return security_ops->kernel_act_as(new, secid);
 721}
 722
 723int security_kernel_create_files_as(struct cred *new, struct inode *inode)
 724{
 725	return security_ops->kernel_create_files_as(new, inode);
 726}
 727
 728int security_kernel_module_request(char *kmod_name)
 729{
 730	return security_ops->kernel_module_request(kmod_name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731}
 
 
 
 
 
 
 
 
 
 
 
 
 732
 733int security_task_fix_setuid(struct cred *new, const struct cred *old,
 734			     int flags)
 735{
 736	return security_ops->task_fix_setuid(new, old, flags);
 737}
 738
 739int security_task_setpgid(struct task_struct *p, pid_t pgid)
 740{
 741	return security_ops->task_setpgid(p, pgid);
 742}
 743
 744int security_task_getpgid(struct task_struct *p)
 745{
 746	return security_ops->task_getpgid(p);
 747}
 748
 749int security_task_getsid(struct task_struct *p)
 750{
 751	return security_ops->task_getsid(p);
 752}
 753
 754void security_task_getsecid(struct task_struct *p, u32 *secid)
 755{
 756	security_ops->task_getsecid(p, secid);
 
 757}
 758EXPORT_SYMBOL(security_task_getsecid);
 759
 760int security_task_setnice(struct task_struct *p, int nice)
 761{
 762	return security_ops->task_setnice(p, nice);
 763}
 764
 765int security_task_setioprio(struct task_struct *p, int ioprio)
 766{
 767	return security_ops->task_setioprio(p, ioprio);
 768}
 769
 770int security_task_getioprio(struct task_struct *p)
 771{
 772	return security_ops->task_getioprio(p);
 
 
 
 
 
 
 773}
 774
 775int security_task_setrlimit(struct task_struct *p, unsigned int resource,
 776		struct rlimit *new_rlim)
 777{
 778	return security_ops->task_setrlimit(p, resource, new_rlim);
 779}
 780
 781int security_task_setscheduler(struct task_struct *p)
 782{
 783	return security_ops->task_setscheduler(p);
 784}
 785
 786int security_task_getscheduler(struct task_struct *p)
 787{
 788	return security_ops->task_getscheduler(p);
 789}
 790
 791int security_task_movememory(struct task_struct *p)
 792{
 793	return security_ops->task_movememory(p);
 794}
 795
 796int security_task_kill(struct task_struct *p, struct siginfo *info,
 797			int sig, u32 secid)
 798{
 799	return security_ops->task_kill(p, info, sig, secid);
 800}
 801
 802int security_task_wait(struct task_struct *p)
 
 803{
 804	return security_ops->task_wait(p);
 805}
 806
 807int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
 808			 unsigned long arg4, unsigned long arg5)
 809{
 810	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
 
 
 
 
 
 
 
 
 
 
 
 
 811}
 812
 813void security_task_to_inode(struct task_struct *p, struct inode *inode)
 814{
 815	security_ops->task_to_inode(p, inode);
 816}
 817
 818int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
 819{
 820	return security_ops->ipc_permission(ipcp, flag);
 821}
 822
 823void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
 824{
 825	security_ops->ipc_getsecid(ipcp, secid);
 
 826}
 827
 828int security_msg_msg_alloc(struct msg_msg *msg)
 829{
 830	return security_ops->msg_msg_alloc_security(msg);
 
 
 
 
 
 
 
 831}
 832
 833void security_msg_msg_free(struct msg_msg *msg)
 834{
 835	security_ops->msg_msg_free_security(msg);
 
 
 836}
 837
 838int security_msg_queue_alloc(struct msg_queue *msq)
 839{
 840	return security_ops->msg_queue_alloc_security(msq);
 
 
 
 
 
 
 
 841}
 842
 843void security_msg_queue_free(struct msg_queue *msq)
 844{
 845	security_ops->msg_queue_free_security(msq);
 
 
 846}
 847
 848int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
 849{
 850	return security_ops->msg_queue_associate(msq, msqflg);
 851}
 852
 853int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
 854{
 855	return security_ops->msg_queue_msgctl(msq, cmd);
 856}
 857
 858int security_msg_queue_msgsnd(struct msg_queue *msq,
 859			       struct msg_msg *msg, int msqflg)
 860{
 861	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
 862}
 863
 864int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
 865			       struct task_struct *target, long type, int mode)
 866{
 867	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
 868}
 869
 870int security_shm_alloc(struct shmid_kernel *shp)
 871{
 872	return security_ops->shm_alloc_security(shp);
 
 
 
 
 
 
 
 873}
 874
 875void security_shm_free(struct shmid_kernel *shp)
 876{
 877	security_ops->shm_free_security(shp);
 
 
 878}
 879
 880int security_shm_associate(struct shmid_kernel *shp, int shmflg)
 881{
 882	return security_ops->shm_associate(shp, shmflg);
 883}
 884
 885int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
 886{
 887	return security_ops->shm_shmctl(shp, cmd);
 888}
 889
 890int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
 891{
 892	return security_ops->shm_shmat(shp, shmaddr, shmflg);
 893}
 894
 895int security_sem_alloc(struct sem_array *sma)
 896{
 897	return security_ops->sem_alloc_security(sma);
 
 
 
 
 
 
 
 898}
 899
 900void security_sem_free(struct sem_array *sma)
 901{
 902	security_ops->sem_free_security(sma);
 
 
 903}
 904
 905int security_sem_associate(struct sem_array *sma, int semflg)
 906{
 907	return security_ops->sem_associate(sma, semflg);
 908}
 909
 910int security_sem_semctl(struct sem_array *sma, int cmd)
 911{
 912	return security_ops->sem_semctl(sma, cmd);
 913}
 914
 915int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
 916			unsigned nsops, int alter)
 917{
 918	return security_ops->sem_semop(sma, sops, nsops, alter);
 919}
 920
 921void security_d_instantiate(struct dentry *dentry, struct inode *inode)
 922{
 923	if (unlikely(inode && IS_PRIVATE(inode)))
 924		return;
 925	security_ops->d_instantiate(dentry, inode);
 926}
 927EXPORT_SYMBOL(security_d_instantiate);
 928
 929int security_getprocattr(struct task_struct *p, char *name, char **value)
 
 930{
 931	return security_ops->getprocattr(p, name, value);
 
 
 
 
 
 
 
 932}
 933
 934int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
 
 935{
 936	return security_ops->setprocattr(p, name, value, size);
 
 
 
 
 
 
 
 937}
 938
 939int security_netlink_send(struct sock *sk, struct sk_buff *skb)
 940{
 941	return security_ops->netlink_send(sk, skb);
 942}
 943
 944int security_netlink_recv(struct sk_buff *skb, int cap)
 945{
 946	return security_ops->netlink_recv(skb, cap);
 947}
 948EXPORT_SYMBOL(security_netlink_recv);
 949
 950int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
 951{
 952	return security_ops->secid_to_secctx(secid, secdata, seclen);
 
 953}
 954EXPORT_SYMBOL(security_secid_to_secctx);
 955
 956int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
 957{
 958	return security_ops->secctx_to_secid(secdata, seclen, secid);
 
 959}
 960EXPORT_SYMBOL(security_secctx_to_secid);
 961
 962void security_release_secctx(char *secdata, u32 seclen)
 963{
 964	security_ops->release_secctx(secdata, seclen);
 965}
 966EXPORT_SYMBOL(security_release_secctx);
 967
 
 
 
 
 
 
 968int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
 969{
 970	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
 971}
 972EXPORT_SYMBOL(security_inode_notifysecctx);
 973
 974int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
 975{
 976	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
 977}
 978EXPORT_SYMBOL(security_inode_setsecctx);
 979
 980int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
 981{
 982	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
 983}
 984EXPORT_SYMBOL(security_inode_getsecctx);
 985
 986#ifdef CONFIG_SECURITY_NETWORK
 987
 988int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
 989{
 990	return security_ops->unix_stream_connect(sock, other, newsk);
 991}
 992EXPORT_SYMBOL(security_unix_stream_connect);
 993
 994int security_unix_may_send(struct socket *sock,  struct socket *other)
 995{
 996	return security_ops->unix_may_send(sock, other);
 997}
 998EXPORT_SYMBOL(security_unix_may_send);
 999
1000int security_socket_create(int family, int type, int protocol, int kern)
1001{
1002	return security_ops->socket_create(family, type, protocol, kern);
1003}
1004
1005int security_socket_post_create(struct socket *sock, int family,
1006				int type, int protocol, int kern)
1007{
1008	return security_ops->socket_post_create(sock, family, type,
1009						protocol, kern);
1010}
1011
 
 
 
 
 
 
1012int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1013{
1014	return security_ops->socket_bind(sock, address, addrlen);
1015}
1016
1017int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1018{
1019	return security_ops->socket_connect(sock, address, addrlen);
1020}
1021
1022int security_socket_listen(struct socket *sock, int backlog)
1023{
1024	return security_ops->socket_listen(sock, backlog);
1025}
1026
1027int security_socket_accept(struct socket *sock, struct socket *newsock)
1028{
1029	return security_ops->socket_accept(sock, newsock);
1030}
1031
1032int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1033{
1034	return security_ops->socket_sendmsg(sock, msg, size);
1035}
1036
1037int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1038			    int size, int flags)
1039{
1040	return security_ops->socket_recvmsg(sock, msg, size, flags);
1041}
1042
1043int security_socket_getsockname(struct socket *sock)
1044{
1045	return security_ops->socket_getsockname(sock);
1046}
1047
1048int security_socket_getpeername(struct socket *sock)
1049{
1050	return security_ops->socket_getpeername(sock);
1051}
1052
1053int security_socket_getsockopt(struct socket *sock, int level, int optname)
1054{
1055	return security_ops->socket_getsockopt(sock, level, optname);
1056}
1057
1058int security_socket_setsockopt(struct socket *sock, int level, int optname)
1059{
1060	return security_ops->socket_setsockopt(sock, level, optname);
1061}
1062
1063int security_socket_shutdown(struct socket *sock, int how)
1064{
1065	return security_ops->socket_shutdown(sock, how);
1066}
1067
1068int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1069{
1070	return security_ops->socket_sock_rcv_skb(sk, skb);
1071}
1072EXPORT_SYMBOL(security_sock_rcv_skb);
1073
1074int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1075				      int __user *optlen, unsigned len)
1076{
1077	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
 
1078}
1079
1080int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1081{
1082	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
 
1083}
1084EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1085
1086int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1087{
1088	return security_ops->sk_alloc_security(sk, family, priority);
1089}
1090
1091void security_sk_free(struct sock *sk)
1092{
1093	security_ops->sk_free_security(sk);
1094}
1095
1096void security_sk_clone(const struct sock *sk, struct sock *newsk)
1097{
1098	security_ops->sk_clone_security(sk, newsk);
1099}
1100EXPORT_SYMBOL(security_sk_clone);
1101
1102void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1103{
1104	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1105}
1106EXPORT_SYMBOL(security_sk_classify_flow);
1107
1108void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1109{
1110	security_ops->req_classify_flow(req, fl);
1111}
1112EXPORT_SYMBOL(security_req_classify_flow);
1113
1114void security_sock_graft(struct sock *sk, struct socket *parent)
1115{
1116	security_ops->sock_graft(sk, parent);
1117}
1118EXPORT_SYMBOL(security_sock_graft);
1119
1120int security_inet_conn_request(struct sock *sk,
1121			struct sk_buff *skb, struct request_sock *req)
1122{
1123	return security_ops->inet_conn_request(sk, skb, req);
1124}
1125EXPORT_SYMBOL(security_inet_conn_request);
1126
1127void security_inet_csk_clone(struct sock *newsk,
1128			const struct request_sock *req)
1129{
1130	security_ops->inet_csk_clone(newsk, req);
1131}
1132
1133void security_inet_conn_established(struct sock *sk,
1134			struct sk_buff *skb)
1135{
1136	security_ops->inet_conn_established(sk, skb);
1137}
 
1138
1139int security_secmark_relabel_packet(u32 secid)
1140{
1141	return security_ops->secmark_relabel_packet(secid);
1142}
1143EXPORT_SYMBOL(security_secmark_relabel_packet);
1144
1145void security_secmark_refcount_inc(void)
1146{
1147	security_ops->secmark_refcount_inc();
1148}
1149EXPORT_SYMBOL(security_secmark_refcount_inc);
1150
1151void security_secmark_refcount_dec(void)
1152{
1153	security_ops->secmark_refcount_dec();
1154}
1155EXPORT_SYMBOL(security_secmark_refcount_dec);
1156
 
 
 
 
 
 
 
 
 
 
 
 
1157int security_tun_dev_create(void)
1158{
1159	return security_ops->tun_dev_create();
1160}
1161EXPORT_SYMBOL(security_tun_dev_create);
1162
1163void security_tun_dev_post_create(struct sock *sk)
1164{
1165	return security_ops->tun_dev_post_create(sk);
1166}
1167EXPORT_SYMBOL(security_tun_dev_post_create);
1168
1169int security_tun_dev_attach(struct sock *sk)
1170{
1171	return security_ops->tun_dev_attach(sk);
1172}
1173EXPORT_SYMBOL(security_tun_dev_attach);
1174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1175#endif	/* CONFIG_SECURITY_NETWORK */
1176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1177#ifdef CONFIG_SECURITY_NETWORK_XFRM
1178
1179int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
 
 
1180{
1181	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1182}
1183EXPORT_SYMBOL(security_xfrm_policy_alloc);
1184
1185int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1186			      struct xfrm_sec_ctx **new_ctxp)
1187{
1188	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1189}
1190
1191void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1192{
1193	security_ops->xfrm_policy_free_security(ctx);
1194}
1195EXPORT_SYMBOL(security_xfrm_policy_free);
1196
1197int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1198{
1199	return security_ops->xfrm_policy_delete_security(ctx);
1200}
1201
1202int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
 
1203{
1204	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1205}
1206EXPORT_SYMBOL(security_xfrm_state_alloc);
1207
1208int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1209				      struct xfrm_sec_ctx *polsec, u32 secid)
1210{
1211	if (!polsec)
1212		return 0;
1213	/*
1214	 * We want the context to be taken from secid which is usually
1215	 * from the sock.
1216	 */
1217	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1218}
1219
1220int security_xfrm_state_delete(struct xfrm_state *x)
1221{
1222	return security_ops->xfrm_state_delete_security(x);
1223}
1224EXPORT_SYMBOL(security_xfrm_state_delete);
1225
1226void security_xfrm_state_free(struct xfrm_state *x)
1227{
1228	security_ops->xfrm_state_free_security(x);
1229}
1230
1231int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1232{
1233	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1234}
1235
1236int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1237				       struct xfrm_policy *xp,
1238				       const struct flowi *fl)
1239{
1240	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241}
1242
1243int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1244{
1245	return security_ops->xfrm_decode_session(skb, secid, 1);
1246}
1247
1248void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1249{
1250	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
 
1251
1252	BUG_ON(rc);
1253}
1254EXPORT_SYMBOL(security_skb_classify_flow);
1255
1256#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1257
1258#ifdef CONFIG_KEYS
1259
1260int security_key_alloc(struct key *key, const struct cred *cred,
1261		       unsigned long flags)
1262{
1263	return security_ops->key_alloc(key, cred, flags);
1264}
1265
1266void security_key_free(struct key *key)
1267{
1268	security_ops->key_free(key);
1269}
1270
1271int security_key_permission(key_ref_t key_ref,
1272			    const struct cred *cred, key_perm_t perm)
1273{
1274	return security_ops->key_permission(key_ref, cred, perm);
1275}
1276
1277int security_key_getsecurity(struct key *key, char **_buffer)
1278{
1279	return security_ops->key_getsecurity(key, _buffer);
 
1280}
1281
1282#endif	/* CONFIG_KEYS */
1283
1284#ifdef CONFIG_AUDIT
1285
1286int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1287{
1288	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1289}
1290
1291int security_audit_rule_known(struct audit_krule *krule)
1292{
1293	return security_ops->audit_rule_known(krule);
1294}
1295
1296void security_audit_rule_free(void *lsmrule)
1297{
1298	security_ops->audit_rule_free(lsmrule);
1299}
1300
1301int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1302			      struct audit_context *actx)
1303{
1304	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1305}
 
1306
1307#endif /* CONFIG_AUDIT */