Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 */
10
11#define pr_fmt(fmt) "LSM: " fmt
12
13#include <linux/bpf.h>
14#include <linux/capability.h>
15#include <linux/dcache.h>
16#include <linux/export.h>
17#include <linux/init.h>
18#include <linux/kernel.h>
19#include <linux/lsm_hooks.h>
20#include <linux/integrity.h>
21#include <linux/ima.h>
22#include <linux/evm.h>
23#include <linux/fsnotify.h>
24#include <linux/mman.h>
25#include <linux/mount.h>
26#include <linux/personality.h>
27#include <linux/backing-dev.h>
28#include <linux/string.h>
29#include <linux/msg.h>
30#include <net/flow.h>
31
32#define MAX_LSM_EVM_XATTR 2
33
34/* How many LSMs were built into the kernel? */
35#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36#define EARLY_LSM_COUNT (__end_early_lsm_info - __start_early_lsm_info)
37
38struct security_hook_heads security_hook_heads __lsm_ro_after_init;
39static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
40
41static struct kmem_cache *lsm_file_cache;
42static struct kmem_cache *lsm_inode_cache;
43
44char *lsm_names;
45static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
46
47/* Boot-time LSM user choice */
48static __initdata const char *chosen_lsm_order;
49static __initdata const char *chosen_major_lsm;
50
51static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
52
53/* Ordered list of LSMs to initialize. */
54static __initdata struct lsm_info **ordered_lsms;
55static __initdata struct lsm_info *exclusive;
56
57static __initdata bool debug;
58#define init_debug(...) \
59 do { \
60 if (debug) \
61 pr_info(__VA_ARGS__); \
62 } while (0)
63
64static bool __init is_enabled(struct lsm_info *lsm)
65{
66 if (!lsm->enabled)
67 return false;
68
69 return *lsm->enabled;
70}
71
72/* Mark an LSM's enabled flag. */
73static int lsm_enabled_true __initdata = 1;
74static int lsm_enabled_false __initdata = 0;
75static void __init set_enabled(struct lsm_info *lsm, bool enabled)
76{
77 /*
78 * When an LSM hasn't configured an enable variable, we can use
79 * a hard-coded location for storing the default enabled state.
80 */
81 if (!lsm->enabled) {
82 if (enabled)
83 lsm->enabled = &lsm_enabled_true;
84 else
85 lsm->enabled = &lsm_enabled_false;
86 } else if (lsm->enabled == &lsm_enabled_true) {
87 if (!enabled)
88 lsm->enabled = &lsm_enabled_false;
89 } else if (lsm->enabled == &lsm_enabled_false) {
90 if (enabled)
91 lsm->enabled = &lsm_enabled_true;
92 } else {
93 *lsm->enabled = enabled;
94 }
95}
96
97/* Is an LSM already listed in the ordered LSMs list? */
98static bool __init exists_ordered_lsm(struct lsm_info *lsm)
99{
100 struct lsm_info **check;
101
102 for (check = ordered_lsms; *check; check++)
103 if (*check == lsm)
104 return true;
105
106 return false;
107}
108
109/* Append an LSM to the list of ordered LSMs to initialize. */
110static int last_lsm __initdata;
111static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
112{
113 /* Ignore duplicate selections. */
114 if (exists_ordered_lsm(lsm))
115 return;
116
117 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
118 return;
119
120 /* Enable this LSM, if it is not already set. */
121 if (!lsm->enabled)
122 lsm->enabled = &lsm_enabled_true;
123 ordered_lsms[last_lsm++] = lsm;
124
125 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
126 is_enabled(lsm) ? "en" : "dis");
127}
128
129/* Is an LSM allowed to be initialized? */
130static bool __init lsm_allowed(struct lsm_info *lsm)
131{
132 /* Skip if the LSM is disabled. */
133 if (!is_enabled(lsm))
134 return false;
135
136 /* Not allowed if another exclusive LSM already initialized. */
137 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
138 init_debug("exclusive disabled: %s\n", lsm->name);
139 return false;
140 }
141
142 return true;
143}
144
145static void __init lsm_set_blob_size(int *need, int *lbs)
146{
147 int offset;
148
149 if (*need > 0) {
150 offset = *lbs;
151 *lbs += *need;
152 *need = offset;
153 }
154}
155
156static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
157{
158 if (!needed)
159 return;
160
161 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
162 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
163 /*
164 * The inode blob gets an rcu_head in addition to
165 * what the modules might need.
166 */
167 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
168 blob_sizes.lbs_inode = sizeof(struct rcu_head);
169 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
170 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
171 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
172 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
173}
174
175/* Prepare LSM for initialization. */
176static void __init prepare_lsm(struct lsm_info *lsm)
177{
178 int enabled = lsm_allowed(lsm);
179
180 /* Record enablement (to handle any following exclusive LSMs). */
181 set_enabled(lsm, enabled);
182
183 /* If enabled, do pre-initialization work. */
184 if (enabled) {
185 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
186 exclusive = lsm;
187 init_debug("exclusive chosen: %s\n", lsm->name);
188 }
189
190 lsm_set_blob_sizes(lsm->blobs);
191 }
192}
193
194/* Initialize a given LSM, if it is enabled. */
195static void __init initialize_lsm(struct lsm_info *lsm)
196{
197 if (is_enabled(lsm)) {
198 int ret;
199
200 init_debug("initializing %s\n", lsm->name);
201 ret = lsm->init();
202 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
203 }
204}
205
206/* Populate ordered LSMs list from comma-separated LSM name list. */
207static void __init ordered_lsm_parse(const char *order, const char *origin)
208{
209 struct lsm_info *lsm;
210 char *sep, *name, *next;
211
212 /* LSM_ORDER_FIRST is always first. */
213 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
214 if (lsm->order == LSM_ORDER_FIRST)
215 append_ordered_lsm(lsm, "first");
216 }
217
218 /* Process "security=", if given. */
219 if (chosen_major_lsm) {
220 struct lsm_info *major;
221
222 /*
223 * To match the original "security=" behavior, this
224 * explicitly does NOT fallback to another Legacy Major
225 * if the selected one was separately disabled: disable
226 * all non-matching Legacy Major LSMs.
227 */
228 for (major = __start_lsm_info; major < __end_lsm_info;
229 major++) {
230 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
231 strcmp(major->name, chosen_major_lsm) != 0) {
232 set_enabled(major, false);
233 init_debug("security=%s disabled: %s\n",
234 chosen_major_lsm, major->name);
235 }
236 }
237 }
238
239 sep = kstrdup(order, GFP_KERNEL);
240 next = sep;
241 /* Walk the list, looking for matching LSMs. */
242 while ((name = strsep(&next, ",")) != NULL) {
243 bool found = false;
244
245 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
246 if (lsm->order == LSM_ORDER_MUTABLE &&
247 strcmp(lsm->name, name) == 0) {
248 append_ordered_lsm(lsm, origin);
249 found = true;
250 }
251 }
252
253 if (!found)
254 init_debug("%s ignored: %s\n", origin, name);
255 }
256
257 /* Process "security=", if given. */
258 if (chosen_major_lsm) {
259 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
260 if (exists_ordered_lsm(lsm))
261 continue;
262 if (strcmp(lsm->name, chosen_major_lsm) == 0)
263 append_ordered_lsm(lsm, "security=");
264 }
265 }
266
267 /* Disable all LSMs not in the ordered list. */
268 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
269 if (exists_ordered_lsm(lsm))
270 continue;
271 set_enabled(lsm, false);
272 init_debug("%s disabled: %s\n", origin, lsm->name);
273 }
274
275 kfree(sep);
276}
277
278static void __init lsm_early_cred(struct cred *cred);
279static void __init lsm_early_task(struct task_struct *task);
280
281static int lsm_append(const char *new, char **result);
282
283static void __init ordered_lsm_init(void)
284{
285 struct lsm_info **lsm;
286
287 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
288 GFP_KERNEL);
289
290 if (chosen_lsm_order) {
291 if (chosen_major_lsm) {
292 pr_info("security= is ignored because it is superseded by lsm=\n");
293 chosen_major_lsm = NULL;
294 }
295 ordered_lsm_parse(chosen_lsm_order, "cmdline");
296 } else
297 ordered_lsm_parse(builtin_lsm_order, "builtin");
298
299 for (lsm = ordered_lsms; *lsm; lsm++)
300 prepare_lsm(*lsm);
301
302 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
303 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
304 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
305 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
306 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
307 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
308
309 /*
310 * Create any kmem_caches needed for blobs
311 */
312 if (blob_sizes.lbs_file)
313 lsm_file_cache = kmem_cache_create("lsm_file_cache",
314 blob_sizes.lbs_file, 0,
315 SLAB_PANIC, NULL);
316 if (blob_sizes.lbs_inode)
317 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
318 blob_sizes.lbs_inode, 0,
319 SLAB_PANIC, NULL);
320
321 lsm_early_cred((struct cred *) current->cred);
322 lsm_early_task(current);
323 for (lsm = ordered_lsms; *lsm; lsm++)
324 initialize_lsm(*lsm);
325
326 kfree(ordered_lsms);
327}
328
329int __init early_security_init(void)
330{
331 int i;
332 struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
333 struct lsm_info *lsm;
334
335 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
336 i++)
337 INIT_HLIST_HEAD(&list[i]);
338
339 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
340 if (!lsm->enabled)
341 lsm->enabled = &lsm_enabled_true;
342 prepare_lsm(lsm);
343 initialize_lsm(lsm);
344 }
345
346 return 0;
347}
348
349/**
350 * security_init - initializes the security framework
351 *
352 * This should be called early in the kernel initialization sequence.
353 */
354int __init security_init(void)
355{
356 struct lsm_info *lsm;
357
358 pr_info("Security Framework initializing\n");
359
360 /*
361 * Append the names of the early LSM modules now that kmalloc() is
362 * available
363 */
364 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
365 if (lsm->enabled)
366 lsm_append(lsm->name, &lsm_names);
367 }
368
369 /* Load LSMs in specified order. */
370 ordered_lsm_init();
371
372 return 0;
373}
374
375/* Save user chosen LSM */
376static int __init choose_major_lsm(char *str)
377{
378 chosen_major_lsm = str;
379 return 1;
380}
381__setup("security=", choose_major_lsm);
382
383/* Explicitly choose LSM initialization order. */
384static int __init choose_lsm_order(char *str)
385{
386 chosen_lsm_order = str;
387 return 1;
388}
389__setup("lsm=", choose_lsm_order);
390
391/* Enable LSM order debugging. */
392static int __init enable_debug(char *str)
393{
394 debug = true;
395 return 1;
396}
397__setup("lsm.debug", enable_debug);
398
399static bool match_last_lsm(const char *list, const char *lsm)
400{
401 const char *last;
402
403 if (WARN_ON(!list || !lsm))
404 return false;
405 last = strrchr(list, ',');
406 if (last)
407 /* Pass the comma, strcmp() will check for '\0' */
408 last++;
409 else
410 last = list;
411 return !strcmp(last, lsm);
412}
413
414static int lsm_append(const char *new, char **result)
415{
416 char *cp;
417
418 if (*result == NULL) {
419 *result = kstrdup(new, GFP_KERNEL);
420 if (*result == NULL)
421 return -ENOMEM;
422 } else {
423 /* Check if it is the last registered name */
424 if (match_last_lsm(*result, new))
425 return 0;
426 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
427 if (cp == NULL)
428 return -ENOMEM;
429 kfree(*result);
430 *result = cp;
431 }
432 return 0;
433}
434
435/**
436 * security_add_hooks - Add a modules hooks to the hook lists.
437 * @hooks: the hooks to add
438 * @count: the number of hooks to add
439 * @lsm: the name of the security module
440 *
441 * Each LSM has to register its hooks with the infrastructure.
442 */
443void __init security_add_hooks(struct security_hook_list *hooks, int count,
444 char *lsm)
445{
446 int i;
447
448 for (i = 0; i < count; i++) {
449 hooks[i].lsm = lsm;
450 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
451 }
452
453 /*
454 * Don't try to append during early_security_init(), we'll come back
455 * and fix this up afterwards.
456 */
457 if (slab_is_available()) {
458 if (lsm_append(lsm, &lsm_names) < 0)
459 panic("%s - Cannot get early memory.\n", __func__);
460 }
461}
462
463int call_blocking_lsm_notifier(enum lsm_event event, void *data)
464{
465 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
466 event, data);
467}
468EXPORT_SYMBOL(call_blocking_lsm_notifier);
469
470int register_blocking_lsm_notifier(struct notifier_block *nb)
471{
472 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
473 nb);
474}
475EXPORT_SYMBOL(register_blocking_lsm_notifier);
476
477int unregister_blocking_lsm_notifier(struct notifier_block *nb)
478{
479 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
480 nb);
481}
482EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
483
484/**
485 * lsm_cred_alloc - allocate a composite cred blob
486 * @cred: the cred that needs a blob
487 * @gfp: allocation type
488 *
489 * Allocate the cred blob for all the modules
490 *
491 * Returns 0, or -ENOMEM if memory can't be allocated.
492 */
493static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
494{
495 if (blob_sizes.lbs_cred == 0) {
496 cred->security = NULL;
497 return 0;
498 }
499
500 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
501 if (cred->security == NULL)
502 return -ENOMEM;
503 return 0;
504}
505
506/**
507 * lsm_early_cred - during initialization allocate a composite cred blob
508 * @cred: the cred that needs a blob
509 *
510 * Allocate the cred blob for all the modules
511 */
512static void __init lsm_early_cred(struct cred *cred)
513{
514 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
515
516 if (rc)
517 panic("%s: Early cred alloc failed.\n", __func__);
518}
519
520/**
521 * lsm_file_alloc - allocate a composite file blob
522 * @file: the file that needs a blob
523 *
524 * Allocate the file blob for all the modules
525 *
526 * Returns 0, or -ENOMEM if memory can't be allocated.
527 */
528static int lsm_file_alloc(struct file *file)
529{
530 if (!lsm_file_cache) {
531 file->f_security = NULL;
532 return 0;
533 }
534
535 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
536 if (file->f_security == NULL)
537 return -ENOMEM;
538 return 0;
539}
540
541/**
542 * lsm_inode_alloc - allocate a composite inode blob
543 * @inode: the inode that needs a blob
544 *
545 * Allocate the inode blob for all the modules
546 *
547 * Returns 0, or -ENOMEM if memory can't be allocated.
548 */
549int lsm_inode_alloc(struct inode *inode)
550{
551 if (!lsm_inode_cache) {
552 inode->i_security = NULL;
553 return 0;
554 }
555
556 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
557 if (inode->i_security == NULL)
558 return -ENOMEM;
559 return 0;
560}
561
562/**
563 * lsm_task_alloc - allocate a composite task blob
564 * @task: the task that needs a blob
565 *
566 * Allocate the task blob for all the modules
567 *
568 * Returns 0, or -ENOMEM if memory can't be allocated.
569 */
570static int lsm_task_alloc(struct task_struct *task)
571{
572 if (blob_sizes.lbs_task == 0) {
573 task->security = NULL;
574 return 0;
575 }
576
577 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
578 if (task->security == NULL)
579 return -ENOMEM;
580 return 0;
581}
582
583/**
584 * lsm_ipc_alloc - allocate a composite ipc blob
585 * @kip: the ipc that needs a blob
586 *
587 * Allocate the ipc blob for all the modules
588 *
589 * Returns 0, or -ENOMEM if memory can't be allocated.
590 */
591static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
592{
593 if (blob_sizes.lbs_ipc == 0) {
594 kip->security = NULL;
595 return 0;
596 }
597
598 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
599 if (kip->security == NULL)
600 return -ENOMEM;
601 return 0;
602}
603
604/**
605 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
606 * @mp: the msg_msg that needs a blob
607 *
608 * Allocate the ipc blob for all the modules
609 *
610 * Returns 0, or -ENOMEM if memory can't be allocated.
611 */
612static int lsm_msg_msg_alloc(struct msg_msg *mp)
613{
614 if (blob_sizes.lbs_msg_msg == 0) {
615 mp->security = NULL;
616 return 0;
617 }
618
619 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
620 if (mp->security == NULL)
621 return -ENOMEM;
622 return 0;
623}
624
625/**
626 * lsm_early_task - during initialization allocate a composite task blob
627 * @task: the task that needs a blob
628 *
629 * Allocate the task blob for all the modules
630 */
631static void __init lsm_early_task(struct task_struct *task)
632{
633 int rc = lsm_task_alloc(task);
634
635 if (rc)
636 panic("%s: Early task alloc failed.\n", __func__);
637}
638
639/*
640 * Hook list operation macros.
641 *
642 * call_void_hook:
643 * This is a hook that does not return a value.
644 *
645 * call_int_hook:
646 * This is a hook that returns a value.
647 */
648
649#define call_void_hook(FUNC, ...) \
650 do { \
651 struct security_hook_list *P; \
652 \
653 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
654 P->hook.FUNC(__VA_ARGS__); \
655 } while (0)
656
657#define call_int_hook(FUNC, IRC, ...) ({ \
658 int RC = IRC; \
659 do { \
660 struct security_hook_list *P; \
661 \
662 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
663 RC = P->hook.FUNC(__VA_ARGS__); \
664 if (RC != 0) \
665 break; \
666 } \
667 } while (0); \
668 RC; \
669})
670
671/* Security operations */
672
673int security_binder_set_context_mgr(struct task_struct *mgr)
674{
675 return call_int_hook(binder_set_context_mgr, 0, mgr);
676}
677
678int security_binder_transaction(struct task_struct *from,
679 struct task_struct *to)
680{
681 return call_int_hook(binder_transaction, 0, from, to);
682}
683
684int security_binder_transfer_binder(struct task_struct *from,
685 struct task_struct *to)
686{
687 return call_int_hook(binder_transfer_binder, 0, from, to);
688}
689
690int security_binder_transfer_file(struct task_struct *from,
691 struct task_struct *to, struct file *file)
692{
693 return call_int_hook(binder_transfer_file, 0, from, to, file);
694}
695
696int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
697{
698 return call_int_hook(ptrace_access_check, 0, child, mode);
699}
700
701int security_ptrace_traceme(struct task_struct *parent)
702{
703 return call_int_hook(ptrace_traceme, 0, parent);
704}
705
706int security_capget(struct task_struct *target,
707 kernel_cap_t *effective,
708 kernel_cap_t *inheritable,
709 kernel_cap_t *permitted)
710{
711 return call_int_hook(capget, 0, target,
712 effective, inheritable, permitted);
713}
714
715int security_capset(struct cred *new, const struct cred *old,
716 const kernel_cap_t *effective,
717 const kernel_cap_t *inheritable,
718 const kernel_cap_t *permitted)
719{
720 return call_int_hook(capset, 0, new, old,
721 effective, inheritable, permitted);
722}
723
724int security_capable(const struct cred *cred,
725 struct user_namespace *ns,
726 int cap,
727 unsigned int opts)
728{
729 return call_int_hook(capable, 0, cred, ns, cap, opts);
730}
731
732int security_quotactl(int cmds, int type, int id, struct super_block *sb)
733{
734 return call_int_hook(quotactl, 0, cmds, type, id, sb);
735}
736
737int security_quota_on(struct dentry *dentry)
738{
739 return call_int_hook(quota_on, 0, dentry);
740}
741
742int security_syslog(int type)
743{
744 return call_int_hook(syslog, 0, type);
745}
746
747int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
748{
749 return call_int_hook(settime, 0, ts, tz);
750}
751
752int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
753{
754 struct security_hook_list *hp;
755 int cap_sys_admin = 1;
756 int rc;
757
758 /*
759 * The module will respond with a positive value if
760 * it thinks the __vm_enough_memory() call should be
761 * made with the cap_sys_admin set. If all of the modules
762 * agree that it should be set it will. If any module
763 * thinks it should not be set it won't.
764 */
765 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
766 rc = hp->hook.vm_enough_memory(mm, pages);
767 if (rc <= 0) {
768 cap_sys_admin = 0;
769 break;
770 }
771 }
772 return __vm_enough_memory(mm, pages, cap_sys_admin);
773}
774
775int security_bprm_set_creds(struct linux_binprm *bprm)
776{
777 return call_int_hook(bprm_set_creds, 0, bprm);
778}
779
780int security_bprm_check(struct linux_binprm *bprm)
781{
782 int ret;
783
784 ret = call_int_hook(bprm_check_security, 0, bprm);
785 if (ret)
786 return ret;
787 return ima_bprm_check(bprm);
788}
789
790void security_bprm_committing_creds(struct linux_binprm *bprm)
791{
792 call_void_hook(bprm_committing_creds, bprm);
793}
794
795void security_bprm_committed_creds(struct linux_binprm *bprm)
796{
797 call_void_hook(bprm_committed_creds, bprm);
798}
799
800int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
801{
802 return call_int_hook(fs_context_dup, 0, fc, src_fc);
803}
804
805int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
806{
807 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
808}
809
810int security_sb_alloc(struct super_block *sb)
811{
812 return call_int_hook(sb_alloc_security, 0, sb);
813}
814
815void security_sb_free(struct super_block *sb)
816{
817 call_void_hook(sb_free_security, sb);
818}
819
820void security_free_mnt_opts(void **mnt_opts)
821{
822 if (!*mnt_opts)
823 return;
824 call_void_hook(sb_free_mnt_opts, *mnt_opts);
825 *mnt_opts = NULL;
826}
827EXPORT_SYMBOL(security_free_mnt_opts);
828
829int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
830{
831 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
832}
833EXPORT_SYMBOL(security_sb_eat_lsm_opts);
834
835int security_sb_remount(struct super_block *sb,
836 void *mnt_opts)
837{
838 return call_int_hook(sb_remount, 0, sb, mnt_opts);
839}
840EXPORT_SYMBOL(security_sb_remount);
841
842int security_sb_kern_mount(struct super_block *sb)
843{
844 return call_int_hook(sb_kern_mount, 0, sb);
845}
846
847int security_sb_show_options(struct seq_file *m, struct super_block *sb)
848{
849 return call_int_hook(sb_show_options, 0, m, sb);
850}
851
852int security_sb_statfs(struct dentry *dentry)
853{
854 return call_int_hook(sb_statfs, 0, dentry);
855}
856
857int security_sb_mount(const char *dev_name, const struct path *path,
858 const char *type, unsigned long flags, void *data)
859{
860 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
861}
862
863int security_sb_umount(struct vfsmount *mnt, int flags)
864{
865 return call_int_hook(sb_umount, 0, mnt, flags);
866}
867
868int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
869{
870 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
871}
872
873int security_sb_set_mnt_opts(struct super_block *sb,
874 void *mnt_opts,
875 unsigned long kern_flags,
876 unsigned long *set_kern_flags)
877{
878 return call_int_hook(sb_set_mnt_opts,
879 mnt_opts ? -EOPNOTSUPP : 0, sb,
880 mnt_opts, kern_flags, set_kern_flags);
881}
882EXPORT_SYMBOL(security_sb_set_mnt_opts);
883
884int security_sb_clone_mnt_opts(const struct super_block *oldsb,
885 struct super_block *newsb,
886 unsigned long kern_flags,
887 unsigned long *set_kern_flags)
888{
889 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
890 kern_flags, set_kern_flags);
891}
892EXPORT_SYMBOL(security_sb_clone_mnt_opts);
893
894int security_add_mnt_opt(const char *option, const char *val, int len,
895 void **mnt_opts)
896{
897 return call_int_hook(sb_add_mnt_opt, -EINVAL,
898 option, val, len, mnt_opts);
899}
900EXPORT_SYMBOL(security_add_mnt_opt);
901
902int security_move_mount(const struct path *from_path, const struct path *to_path)
903{
904 return call_int_hook(move_mount, 0, from_path, to_path);
905}
906
907int security_path_notify(const struct path *path, u64 mask,
908 unsigned int obj_type)
909{
910 return call_int_hook(path_notify, 0, path, mask, obj_type);
911}
912
913int security_inode_alloc(struct inode *inode)
914{
915 int rc = lsm_inode_alloc(inode);
916
917 if (unlikely(rc))
918 return rc;
919 rc = call_int_hook(inode_alloc_security, 0, inode);
920 if (unlikely(rc))
921 security_inode_free(inode);
922 return rc;
923}
924
925static void inode_free_by_rcu(struct rcu_head *head)
926{
927 /*
928 * The rcu head is at the start of the inode blob
929 */
930 kmem_cache_free(lsm_inode_cache, head);
931}
932
933void security_inode_free(struct inode *inode)
934{
935 integrity_inode_free(inode);
936 call_void_hook(inode_free_security, inode);
937 /*
938 * The inode may still be referenced in a path walk and
939 * a call to security_inode_permission() can be made
940 * after inode_free_security() is called. Ideally, the VFS
941 * wouldn't do this, but fixing that is a much harder
942 * job. For now, simply free the i_security via RCU, and
943 * leave the current inode->i_security pointer intact.
944 * The inode will be freed after the RCU grace period too.
945 */
946 if (inode->i_security)
947 call_rcu((struct rcu_head *)inode->i_security,
948 inode_free_by_rcu);
949}
950
951int security_dentry_init_security(struct dentry *dentry, int mode,
952 const struct qstr *name, void **ctx,
953 u32 *ctxlen)
954{
955 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
956 name, ctx, ctxlen);
957}
958EXPORT_SYMBOL(security_dentry_init_security);
959
960int security_dentry_create_files_as(struct dentry *dentry, int mode,
961 struct qstr *name,
962 const struct cred *old, struct cred *new)
963{
964 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
965 name, old, new);
966}
967EXPORT_SYMBOL(security_dentry_create_files_as);
968
969int security_inode_init_security(struct inode *inode, struct inode *dir,
970 const struct qstr *qstr,
971 const initxattrs initxattrs, void *fs_data)
972{
973 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
974 struct xattr *lsm_xattr, *evm_xattr, *xattr;
975 int ret;
976
977 if (unlikely(IS_PRIVATE(inode)))
978 return 0;
979
980 if (!initxattrs)
981 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
982 dir, qstr, NULL, NULL, NULL);
983 memset(new_xattrs, 0, sizeof(new_xattrs));
984 lsm_xattr = new_xattrs;
985 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
986 &lsm_xattr->name,
987 &lsm_xattr->value,
988 &lsm_xattr->value_len);
989 if (ret)
990 goto out;
991
992 evm_xattr = lsm_xattr + 1;
993 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
994 if (ret)
995 goto out;
996 ret = initxattrs(inode, new_xattrs, fs_data);
997out:
998 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
999 kfree(xattr->value);
1000 return (ret == -EOPNOTSUPP) ? 0 : ret;
1001}
1002EXPORT_SYMBOL(security_inode_init_security);
1003
1004int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1005 const struct qstr *qstr, const char **name,
1006 void **value, size_t *len)
1007{
1008 if (unlikely(IS_PRIVATE(inode)))
1009 return -EOPNOTSUPP;
1010 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1011 qstr, name, value, len);
1012}
1013EXPORT_SYMBOL(security_old_inode_init_security);
1014
1015#ifdef CONFIG_SECURITY_PATH
1016int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1017 unsigned int dev)
1018{
1019 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1020 return 0;
1021 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1022}
1023EXPORT_SYMBOL(security_path_mknod);
1024
1025int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1026{
1027 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1028 return 0;
1029 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1030}
1031EXPORT_SYMBOL(security_path_mkdir);
1032
1033int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1034{
1035 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1036 return 0;
1037 return call_int_hook(path_rmdir, 0, dir, dentry);
1038}
1039
1040int security_path_unlink(const struct path *dir, struct dentry *dentry)
1041{
1042 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1043 return 0;
1044 return call_int_hook(path_unlink, 0, dir, dentry);
1045}
1046EXPORT_SYMBOL(security_path_unlink);
1047
1048int security_path_symlink(const struct path *dir, struct dentry *dentry,
1049 const char *old_name)
1050{
1051 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1052 return 0;
1053 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1054}
1055
1056int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1057 struct dentry *new_dentry)
1058{
1059 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1060 return 0;
1061 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1062}
1063
1064int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1065 const struct path *new_dir, struct dentry *new_dentry,
1066 unsigned int flags)
1067{
1068 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1069 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1070 return 0;
1071
1072 if (flags & RENAME_EXCHANGE) {
1073 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1074 old_dir, old_dentry);
1075 if (err)
1076 return err;
1077 }
1078
1079 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1080 new_dentry);
1081}
1082EXPORT_SYMBOL(security_path_rename);
1083
1084int security_path_truncate(const struct path *path)
1085{
1086 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1087 return 0;
1088 return call_int_hook(path_truncate, 0, path);
1089}
1090
1091int security_path_chmod(const struct path *path, umode_t mode)
1092{
1093 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1094 return 0;
1095 return call_int_hook(path_chmod, 0, path, mode);
1096}
1097
1098int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1099{
1100 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1101 return 0;
1102 return call_int_hook(path_chown, 0, path, uid, gid);
1103}
1104
1105int security_path_chroot(const struct path *path)
1106{
1107 return call_int_hook(path_chroot, 0, path);
1108}
1109#endif
1110
1111int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1112{
1113 if (unlikely(IS_PRIVATE(dir)))
1114 return 0;
1115 return call_int_hook(inode_create, 0, dir, dentry, mode);
1116}
1117EXPORT_SYMBOL_GPL(security_inode_create);
1118
1119int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1120 struct dentry *new_dentry)
1121{
1122 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1123 return 0;
1124 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1125}
1126
1127int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1128{
1129 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1130 return 0;
1131 return call_int_hook(inode_unlink, 0, dir, dentry);
1132}
1133
1134int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1135 const char *old_name)
1136{
1137 if (unlikely(IS_PRIVATE(dir)))
1138 return 0;
1139 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1140}
1141
1142int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1143{
1144 if (unlikely(IS_PRIVATE(dir)))
1145 return 0;
1146 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1147}
1148EXPORT_SYMBOL_GPL(security_inode_mkdir);
1149
1150int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1151{
1152 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1153 return 0;
1154 return call_int_hook(inode_rmdir, 0, dir, dentry);
1155}
1156
1157int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1158{
1159 if (unlikely(IS_PRIVATE(dir)))
1160 return 0;
1161 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1162}
1163
1164int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1165 struct inode *new_dir, struct dentry *new_dentry,
1166 unsigned int flags)
1167{
1168 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1169 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1170 return 0;
1171
1172 if (flags & RENAME_EXCHANGE) {
1173 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1174 old_dir, old_dentry);
1175 if (err)
1176 return err;
1177 }
1178
1179 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1180 new_dir, new_dentry);
1181}
1182
1183int security_inode_readlink(struct dentry *dentry)
1184{
1185 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1186 return 0;
1187 return call_int_hook(inode_readlink, 0, dentry);
1188}
1189
1190int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1191 bool rcu)
1192{
1193 if (unlikely(IS_PRIVATE(inode)))
1194 return 0;
1195 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1196}
1197
1198int security_inode_permission(struct inode *inode, int mask)
1199{
1200 if (unlikely(IS_PRIVATE(inode)))
1201 return 0;
1202 return call_int_hook(inode_permission, 0, inode, mask);
1203}
1204
1205int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1206{
1207 int ret;
1208
1209 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1210 return 0;
1211 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1212 if (ret)
1213 return ret;
1214 return evm_inode_setattr(dentry, attr);
1215}
1216EXPORT_SYMBOL_GPL(security_inode_setattr);
1217
1218int security_inode_getattr(const struct path *path)
1219{
1220 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1221 return 0;
1222 return call_int_hook(inode_getattr, 0, path);
1223}
1224
1225int security_inode_setxattr(struct dentry *dentry, const char *name,
1226 const void *value, size_t size, int flags)
1227{
1228 int ret;
1229
1230 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1231 return 0;
1232 /*
1233 * SELinux and Smack integrate the cap call,
1234 * so assume that all LSMs supplying this call do so.
1235 */
1236 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1237 flags);
1238
1239 if (ret == 1)
1240 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1241 if (ret)
1242 return ret;
1243 ret = ima_inode_setxattr(dentry, name, value, size);
1244 if (ret)
1245 return ret;
1246 return evm_inode_setxattr(dentry, name, value, size);
1247}
1248
1249void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1250 const void *value, size_t size, int flags)
1251{
1252 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1253 return;
1254 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1255 evm_inode_post_setxattr(dentry, name, value, size);
1256}
1257
1258int security_inode_getxattr(struct dentry *dentry, const char *name)
1259{
1260 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1261 return 0;
1262 return call_int_hook(inode_getxattr, 0, dentry, name);
1263}
1264
1265int security_inode_listxattr(struct dentry *dentry)
1266{
1267 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1268 return 0;
1269 return call_int_hook(inode_listxattr, 0, dentry);
1270}
1271
1272int security_inode_removexattr(struct dentry *dentry, const char *name)
1273{
1274 int ret;
1275
1276 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1277 return 0;
1278 /*
1279 * SELinux and Smack integrate the cap call,
1280 * so assume that all LSMs supplying this call do so.
1281 */
1282 ret = call_int_hook(inode_removexattr, 1, dentry, name);
1283 if (ret == 1)
1284 ret = cap_inode_removexattr(dentry, name);
1285 if (ret)
1286 return ret;
1287 ret = ima_inode_removexattr(dentry, name);
1288 if (ret)
1289 return ret;
1290 return evm_inode_removexattr(dentry, name);
1291}
1292
1293int security_inode_need_killpriv(struct dentry *dentry)
1294{
1295 return call_int_hook(inode_need_killpriv, 0, dentry);
1296}
1297
1298int security_inode_killpriv(struct dentry *dentry)
1299{
1300 return call_int_hook(inode_killpriv, 0, dentry);
1301}
1302
1303int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1304{
1305 struct security_hook_list *hp;
1306 int rc;
1307
1308 if (unlikely(IS_PRIVATE(inode)))
1309 return -EOPNOTSUPP;
1310 /*
1311 * Only one module will provide an attribute with a given name.
1312 */
1313 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1314 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1315 if (rc != -EOPNOTSUPP)
1316 return rc;
1317 }
1318 return -EOPNOTSUPP;
1319}
1320
1321int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1322{
1323 struct security_hook_list *hp;
1324 int rc;
1325
1326 if (unlikely(IS_PRIVATE(inode)))
1327 return -EOPNOTSUPP;
1328 /*
1329 * Only one module will provide an attribute with a given name.
1330 */
1331 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1332 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1333 flags);
1334 if (rc != -EOPNOTSUPP)
1335 return rc;
1336 }
1337 return -EOPNOTSUPP;
1338}
1339
1340int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1341{
1342 if (unlikely(IS_PRIVATE(inode)))
1343 return 0;
1344 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1345}
1346EXPORT_SYMBOL(security_inode_listsecurity);
1347
1348void security_inode_getsecid(struct inode *inode, u32 *secid)
1349{
1350 call_void_hook(inode_getsecid, inode, secid);
1351}
1352
1353int security_inode_copy_up(struct dentry *src, struct cred **new)
1354{
1355 return call_int_hook(inode_copy_up, 0, src, new);
1356}
1357EXPORT_SYMBOL(security_inode_copy_up);
1358
1359int security_inode_copy_up_xattr(const char *name)
1360{
1361 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1362}
1363EXPORT_SYMBOL(security_inode_copy_up_xattr);
1364
1365int security_kernfs_init_security(struct kernfs_node *kn_dir,
1366 struct kernfs_node *kn)
1367{
1368 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1369}
1370
1371int security_file_permission(struct file *file, int mask)
1372{
1373 int ret;
1374
1375 ret = call_int_hook(file_permission, 0, file, mask);
1376 if (ret)
1377 return ret;
1378
1379 return fsnotify_perm(file, mask);
1380}
1381
1382int security_file_alloc(struct file *file)
1383{
1384 int rc = lsm_file_alloc(file);
1385
1386 if (rc)
1387 return rc;
1388 rc = call_int_hook(file_alloc_security, 0, file);
1389 if (unlikely(rc))
1390 security_file_free(file);
1391 return rc;
1392}
1393
1394void security_file_free(struct file *file)
1395{
1396 void *blob;
1397
1398 call_void_hook(file_free_security, file);
1399
1400 blob = file->f_security;
1401 if (blob) {
1402 file->f_security = NULL;
1403 kmem_cache_free(lsm_file_cache, blob);
1404 }
1405}
1406
1407int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1408{
1409 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1410}
1411
1412static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1413{
1414 /*
1415 * Does we have PROT_READ and does the application expect
1416 * it to imply PROT_EXEC? If not, nothing to talk about...
1417 */
1418 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1419 return prot;
1420 if (!(current->personality & READ_IMPLIES_EXEC))
1421 return prot;
1422 /*
1423 * if that's an anonymous mapping, let it.
1424 */
1425 if (!file)
1426 return prot | PROT_EXEC;
1427 /*
1428 * ditto if it's not on noexec mount, except that on !MMU we need
1429 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1430 */
1431 if (!path_noexec(&file->f_path)) {
1432#ifndef CONFIG_MMU
1433 if (file->f_op->mmap_capabilities) {
1434 unsigned caps = file->f_op->mmap_capabilities(file);
1435 if (!(caps & NOMMU_MAP_EXEC))
1436 return prot;
1437 }
1438#endif
1439 return prot | PROT_EXEC;
1440 }
1441 /* anything on noexec mount won't get PROT_EXEC */
1442 return prot;
1443}
1444
1445int security_mmap_file(struct file *file, unsigned long prot,
1446 unsigned long flags)
1447{
1448 int ret;
1449 ret = call_int_hook(mmap_file, 0, file, prot,
1450 mmap_prot(file, prot), flags);
1451 if (ret)
1452 return ret;
1453 return ima_file_mmap(file, prot);
1454}
1455
1456int security_mmap_addr(unsigned long addr)
1457{
1458 return call_int_hook(mmap_addr, 0, addr);
1459}
1460
1461int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1462 unsigned long prot)
1463{
1464 return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1465}
1466
1467int security_file_lock(struct file *file, unsigned int cmd)
1468{
1469 return call_int_hook(file_lock, 0, file, cmd);
1470}
1471
1472int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1473{
1474 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1475}
1476
1477void security_file_set_fowner(struct file *file)
1478{
1479 call_void_hook(file_set_fowner, file);
1480}
1481
1482int security_file_send_sigiotask(struct task_struct *tsk,
1483 struct fown_struct *fown, int sig)
1484{
1485 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1486}
1487
1488int security_file_receive(struct file *file)
1489{
1490 return call_int_hook(file_receive, 0, file);
1491}
1492
1493int security_file_open(struct file *file)
1494{
1495 int ret;
1496
1497 ret = call_int_hook(file_open, 0, file);
1498 if (ret)
1499 return ret;
1500
1501 return fsnotify_perm(file, MAY_OPEN);
1502}
1503
1504int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1505{
1506 int rc = lsm_task_alloc(task);
1507
1508 if (rc)
1509 return rc;
1510 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1511 if (unlikely(rc))
1512 security_task_free(task);
1513 return rc;
1514}
1515
1516void security_task_free(struct task_struct *task)
1517{
1518 call_void_hook(task_free, task);
1519
1520 kfree(task->security);
1521 task->security = NULL;
1522}
1523
1524int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1525{
1526 int rc = lsm_cred_alloc(cred, gfp);
1527
1528 if (rc)
1529 return rc;
1530
1531 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1532 if (unlikely(rc))
1533 security_cred_free(cred);
1534 return rc;
1535}
1536
1537void security_cred_free(struct cred *cred)
1538{
1539 /*
1540 * There is a failure case in prepare_creds() that
1541 * may result in a call here with ->security being NULL.
1542 */
1543 if (unlikely(cred->security == NULL))
1544 return;
1545
1546 call_void_hook(cred_free, cred);
1547
1548 kfree(cred->security);
1549 cred->security = NULL;
1550}
1551
1552int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1553{
1554 int rc = lsm_cred_alloc(new, gfp);
1555
1556 if (rc)
1557 return rc;
1558
1559 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1560 if (unlikely(rc))
1561 security_cred_free(new);
1562 return rc;
1563}
1564
1565void security_transfer_creds(struct cred *new, const struct cred *old)
1566{
1567 call_void_hook(cred_transfer, new, old);
1568}
1569
1570void security_cred_getsecid(const struct cred *c, u32 *secid)
1571{
1572 *secid = 0;
1573 call_void_hook(cred_getsecid, c, secid);
1574}
1575EXPORT_SYMBOL(security_cred_getsecid);
1576
1577int security_kernel_act_as(struct cred *new, u32 secid)
1578{
1579 return call_int_hook(kernel_act_as, 0, new, secid);
1580}
1581
1582int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1583{
1584 return call_int_hook(kernel_create_files_as, 0, new, inode);
1585}
1586
1587int security_kernel_module_request(char *kmod_name)
1588{
1589 int ret;
1590
1591 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1592 if (ret)
1593 return ret;
1594 return integrity_kernel_module_request(kmod_name);
1595}
1596
1597int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1598{
1599 int ret;
1600
1601 ret = call_int_hook(kernel_read_file, 0, file, id);
1602 if (ret)
1603 return ret;
1604 return ima_read_file(file, id);
1605}
1606EXPORT_SYMBOL_GPL(security_kernel_read_file);
1607
1608int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1609 enum kernel_read_file_id id)
1610{
1611 int ret;
1612
1613 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1614 if (ret)
1615 return ret;
1616 return ima_post_read_file(file, buf, size, id);
1617}
1618EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1619
1620int security_kernel_load_data(enum kernel_load_data_id id)
1621{
1622 int ret;
1623
1624 ret = call_int_hook(kernel_load_data, 0, id);
1625 if (ret)
1626 return ret;
1627 return ima_load_data(id);
1628}
1629EXPORT_SYMBOL_GPL(security_kernel_load_data);
1630
1631int security_task_fix_setuid(struct cred *new, const struct cred *old,
1632 int flags)
1633{
1634 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1635}
1636
1637int security_task_setpgid(struct task_struct *p, pid_t pgid)
1638{
1639 return call_int_hook(task_setpgid, 0, p, pgid);
1640}
1641
1642int security_task_getpgid(struct task_struct *p)
1643{
1644 return call_int_hook(task_getpgid, 0, p);
1645}
1646
1647int security_task_getsid(struct task_struct *p)
1648{
1649 return call_int_hook(task_getsid, 0, p);
1650}
1651
1652void security_task_getsecid(struct task_struct *p, u32 *secid)
1653{
1654 *secid = 0;
1655 call_void_hook(task_getsecid, p, secid);
1656}
1657EXPORT_SYMBOL(security_task_getsecid);
1658
1659int security_task_setnice(struct task_struct *p, int nice)
1660{
1661 return call_int_hook(task_setnice, 0, p, nice);
1662}
1663
1664int security_task_setioprio(struct task_struct *p, int ioprio)
1665{
1666 return call_int_hook(task_setioprio, 0, p, ioprio);
1667}
1668
1669int security_task_getioprio(struct task_struct *p)
1670{
1671 return call_int_hook(task_getioprio, 0, p);
1672}
1673
1674int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1675 unsigned int flags)
1676{
1677 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1678}
1679
1680int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1681 struct rlimit *new_rlim)
1682{
1683 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1684}
1685
1686int security_task_setscheduler(struct task_struct *p)
1687{
1688 return call_int_hook(task_setscheduler, 0, p);
1689}
1690
1691int security_task_getscheduler(struct task_struct *p)
1692{
1693 return call_int_hook(task_getscheduler, 0, p);
1694}
1695
1696int security_task_movememory(struct task_struct *p)
1697{
1698 return call_int_hook(task_movememory, 0, p);
1699}
1700
1701int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1702 int sig, const struct cred *cred)
1703{
1704 return call_int_hook(task_kill, 0, p, info, sig, cred);
1705}
1706
1707int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1708 unsigned long arg4, unsigned long arg5)
1709{
1710 int thisrc;
1711 int rc = -ENOSYS;
1712 struct security_hook_list *hp;
1713
1714 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1715 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1716 if (thisrc != -ENOSYS) {
1717 rc = thisrc;
1718 if (thisrc != 0)
1719 break;
1720 }
1721 }
1722 return rc;
1723}
1724
1725void security_task_to_inode(struct task_struct *p, struct inode *inode)
1726{
1727 call_void_hook(task_to_inode, p, inode);
1728}
1729
1730int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1731{
1732 return call_int_hook(ipc_permission, 0, ipcp, flag);
1733}
1734
1735void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1736{
1737 *secid = 0;
1738 call_void_hook(ipc_getsecid, ipcp, secid);
1739}
1740
1741int security_msg_msg_alloc(struct msg_msg *msg)
1742{
1743 int rc = lsm_msg_msg_alloc(msg);
1744
1745 if (unlikely(rc))
1746 return rc;
1747 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1748 if (unlikely(rc))
1749 security_msg_msg_free(msg);
1750 return rc;
1751}
1752
1753void security_msg_msg_free(struct msg_msg *msg)
1754{
1755 call_void_hook(msg_msg_free_security, msg);
1756 kfree(msg->security);
1757 msg->security = NULL;
1758}
1759
1760int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1761{
1762 int rc = lsm_ipc_alloc(msq);
1763
1764 if (unlikely(rc))
1765 return rc;
1766 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1767 if (unlikely(rc))
1768 security_msg_queue_free(msq);
1769 return rc;
1770}
1771
1772void security_msg_queue_free(struct kern_ipc_perm *msq)
1773{
1774 call_void_hook(msg_queue_free_security, msq);
1775 kfree(msq->security);
1776 msq->security = NULL;
1777}
1778
1779int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1780{
1781 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1782}
1783
1784int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1785{
1786 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1787}
1788
1789int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1790 struct msg_msg *msg, int msqflg)
1791{
1792 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1793}
1794
1795int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1796 struct task_struct *target, long type, int mode)
1797{
1798 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1799}
1800
1801int security_shm_alloc(struct kern_ipc_perm *shp)
1802{
1803 int rc = lsm_ipc_alloc(shp);
1804
1805 if (unlikely(rc))
1806 return rc;
1807 rc = call_int_hook(shm_alloc_security, 0, shp);
1808 if (unlikely(rc))
1809 security_shm_free(shp);
1810 return rc;
1811}
1812
1813void security_shm_free(struct kern_ipc_perm *shp)
1814{
1815 call_void_hook(shm_free_security, shp);
1816 kfree(shp->security);
1817 shp->security = NULL;
1818}
1819
1820int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1821{
1822 return call_int_hook(shm_associate, 0, shp, shmflg);
1823}
1824
1825int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1826{
1827 return call_int_hook(shm_shmctl, 0, shp, cmd);
1828}
1829
1830int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1831{
1832 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1833}
1834
1835int security_sem_alloc(struct kern_ipc_perm *sma)
1836{
1837 int rc = lsm_ipc_alloc(sma);
1838
1839 if (unlikely(rc))
1840 return rc;
1841 rc = call_int_hook(sem_alloc_security, 0, sma);
1842 if (unlikely(rc))
1843 security_sem_free(sma);
1844 return rc;
1845}
1846
1847void security_sem_free(struct kern_ipc_perm *sma)
1848{
1849 call_void_hook(sem_free_security, sma);
1850 kfree(sma->security);
1851 sma->security = NULL;
1852}
1853
1854int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1855{
1856 return call_int_hook(sem_associate, 0, sma, semflg);
1857}
1858
1859int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1860{
1861 return call_int_hook(sem_semctl, 0, sma, cmd);
1862}
1863
1864int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1865 unsigned nsops, int alter)
1866{
1867 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1868}
1869
1870void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1871{
1872 if (unlikely(inode && IS_PRIVATE(inode)))
1873 return;
1874 call_void_hook(d_instantiate, dentry, inode);
1875}
1876EXPORT_SYMBOL(security_d_instantiate);
1877
1878int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1879 char **value)
1880{
1881 struct security_hook_list *hp;
1882
1883 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1884 if (lsm != NULL && strcmp(lsm, hp->lsm))
1885 continue;
1886 return hp->hook.getprocattr(p, name, value);
1887 }
1888 return -EINVAL;
1889}
1890
1891int security_setprocattr(const char *lsm, const char *name, void *value,
1892 size_t size)
1893{
1894 struct security_hook_list *hp;
1895
1896 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1897 if (lsm != NULL && strcmp(lsm, hp->lsm))
1898 continue;
1899 return hp->hook.setprocattr(name, value, size);
1900 }
1901 return -EINVAL;
1902}
1903
1904int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1905{
1906 return call_int_hook(netlink_send, 0, sk, skb);
1907}
1908
1909int security_ismaclabel(const char *name)
1910{
1911 return call_int_hook(ismaclabel, 0, name);
1912}
1913EXPORT_SYMBOL(security_ismaclabel);
1914
1915int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1916{
1917 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1918 seclen);
1919}
1920EXPORT_SYMBOL(security_secid_to_secctx);
1921
1922int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1923{
1924 *secid = 0;
1925 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1926}
1927EXPORT_SYMBOL(security_secctx_to_secid);
1928
1929void security_release_secctx(char *secdata, u32 seclen)
1930{
1931 call_void_hook(release_secctx, secdata, seclen);
1932}
1933EXPORT_SYMBOL(security_release_secctx);
1934
1935void security_inode_invalidate_secctx(struct inode *inode)
1936{
1937 call_void_hook(inode_invalidate_secctx, inode);
1938}
1939EXPORT_SYMBOL(security_inode_invalidate_secctx);
1940
1941int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1942{
1943 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1944}
1945EXPORT_SYMBOL(security_inode_notifysecctx);
1946
1947int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1948{
1949 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1950}
1951EXPORT_SYMBOL(security_inode_setsecctx);
1952
1953int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1954{
1955 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1956}
1957EXPORT_SYMBOL(security_inode_getsecctx);
1958
1959#ifdef CONFIG_SECURITY_NETWORK
1960
1961int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1962{
1963 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1964}
1965EXPORT_SYMBOL(security_unix_stream_connect);
1966
1967int security_unix_may_send(struct socket *sock, struct socket *other)
1968{
1969 return call_int_hook(unix_may_send, 0, sock, other);
1970}
1971EXPORT_SYMBOL(security_unix_may_send);
1972
1973int security_socket_create(int family, int type, int protocol, int kern)
1974{
1975 return call_int_hook(socket_create, 0, family, type, protocol, kern);
1976}
1977
1978int security_socket_post_create(struct socket *sock, int family,
1979 int type, int protocol, int kern)
1980{
1981 return call_int_hook(socket_post_create, 0, sock, family, type,
1982 protocol, kern);
1983}
1984
1985int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1986{
1987 return call_int_hook(socket_socketpair, 0, socka, sockb);
1988}
1989EXPORT_SYMBOL(security_socket_socketpair);
1990
1991int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1992{
1993 return call_int_hook(socket_bind, 0, sock, address, addrlen);
1994}
1995
1996int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1997{
1998 return call_int_hook(socket_connect, 0, sock, address, addrlen);
1999}
2000
2001int security_socket_listen(struct socket *sock, int backlog)
2002{
2003 return call_int_hook(socket_listen, 0, sock, backlog);
2004}
2005
2006int security_socket_accept(struct socket *sock, struct socket *newsock)
2007{
2008 return call_int_hook(socket_accept, 0, sock, newsock);
2009}
2010
2011int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2012{
2013 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2014}
2015
2016int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2017 int size, int flags)
2018{
2019 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2020}
2021
2022int security_socket_getsockname(struct socket *sock)
2023{
2024 return call_int_hook(socket_getsockname, 0, sock);
2025}
2026
2027int security_socket_getpeername(struct socket *sock)
2028{
2029 return call_int_hook(socket_getpeername, 0, sock);
2030}
2031
2032int security_socket_getsockopt(struct socket *sock, int level, int optname)
2033{
2034 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2035}
2036
2037int security_socket_setsockopt(struct socket *sock, int level, int optname)
2038{
2039 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2040}
2041
2042int security_socket_shutdown(struct socket *sock, int how)
2043{
2044 return call_int_hook(socket_shutdown, 0, sock, how);
2045}
2046
2047int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2048{
2049 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2050}
2051EXPORT_SYMBOL(security_sock_rcv_skb);
2052
2053int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2054 int __user *optlen, unsigned len)
2055{
2056 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2057 optval, optlen, len);
2058}
2059
2060int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2061{
2062 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2063 skb, secid);
2064}
2065EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2066
2067int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2068{
2069 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2070}
2071
2072void security_sk_free(struct sock *sk)
2073{
2074 call_void_hook(sk_free_security, sk);
2075}
2076
2077void security_sk_clone(const struct sock *sk, struct sock *newsk)
2078{
2079 call_void_hook(sk_clone_security, sk, newsk);
2080}
2081EXPORT_SYMBOL(security_sk_clone);
2082
2083void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2084{
2085 call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2086}
2087EXPORT_SYMBOL(security_sk_classify_flow);
2088
2089void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2090{
2091 call_void_hook(req_classify_flow, req, fl);
2092}
2093EXPORT_SYMBOL(security_req_classify_flow);
2094
2095void security_sock_graft(struct sock *sk, struct socket *parent)
2096{
2097 call_void_hook(sock_graft, sk, parent);
2098}
2099EXPORT_SYMBOL(security_sock_graft);
2100
2101int security_inet_conn_request(struct sock *sk,
2102 struct sk_buff *skb, struct request_sock *req)
2103{
2104 return call_int_hook(inet_conn_request, 0, sk, skb, req);
2105}
2106EXPORT_SYMBOL(security_inet_conn_request);
2107
2108void security_inet_csk_clone(struct sock *newsk,
2109 const struct request_sock *req)
2110{
2111 call_void_hook(inet_csk_clone, newsk, req);
2112}
2113
2114void security_inet_conn_established(struct sock *sk,
2115 struct sk_buff *skb)
2116{
2117 call_void_hook(inet_conn_established, sk, skb);
2118}
2119EXPORT_SYMBOL(security_inet_conn_established);
2120
2121int security_secmark_relabel_packet(u32 secid)
2122{
2123 return call_int_hook(secmark_relabel_packet, 0, secid);
2124}
2125EXPORT_SYMBOL(security_secmark_relabel_packet);
2126
2127void security_secmark_refcount_inc(void)
2128{
2129 call_void_hook(secmark_refcount_inc);
2130}
2131EXPORT_SYMBOL(security_secmark_refcount_inc);
2132
2133void security_secmark_refcount_dec(void)
2134{
2135 call_void_hook(secmark_refcount_dec);
2136}
2137EXPORT_SYMBOL(security_secmark_refcount_dec);
2138
2139int security_tun_dev_alloc_security(void **security)
2140{
2141 return call_int_hook(tun_dev_alloc_security, 0, security);
2142}
2143EXPORT_SYMBOL(security_tun_dev_alloc_security);
2144
2145void security_tun_dev_free_security(void *security)
2146{
2147 call_void_hook(tun_dev_free_security, security);
2148}
2149EXPORT_SYMBOL(security_tun_dev_free_security);
2150
2151int security_tun_dev_create(void)
2152{
2153 return call_int_hook(tun_dev_create, 0);
2154}
2155EXPORT_SYMBOL(security_tun_dev_create);
2156
2157int security_tun_dev_attach_queue(void *security)
2158{
2159 return call_int_hook(tun_dev_attach_queue, 0, security);
2160}
2161EXPORT_SYMBOL(security_tun_dev_attach_queue);
2162
2163int security_tun_dev_attach(struct sock *sk, void *security)
2164{
2165 return call_int_hook(tun_dev_attach, 0, sk, security);
2166}
2167EXPORT_SYMBOL(security_tun_dev_attach);
2168
2169int security_tun_dev_open(void *security)
2170{
2171 return call_int_hook(tun_dev_open, 0, security);
2172}
2173EXPORT_SYMBOL(security_tun_dev_open);
2174
2175int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2176{
2177 return call_int_hook(sctp_assoc_request, 0, ep, skb);
2178}
2179EXPORT_SYMBOL(security_sctp_assoc_request);
2180
2181int security_sctp_bind_connect(struct sock *sk, int optname,
2182 struct sockaddr *address, int addrlen)
2183{
2184 return call_int_hook(sctp_bind_connect, 0, sk, optname,
2185 address, addrlen);
2186}
2187EXPORT_SYMBOL(security_sctp_bind_connect);
2188
2189void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2190 struct sock *newsk)
2191{
2192 call_void_hook(sctp_sk_clone, ep, sk, newsk);
2193}
2194EXPORT_SYMBOL(security_sctp_sk_clone);
2195
2196#endif /* CONFIG_SECURITY_NETWORK */
2197
2198#ifdef CONFIG_SECURITY_INFINIBAND
2199
2200int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2201{
2202 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2203}
2204EXPORT_SYMBOL(security_ib_pkey_access);
2205
2206int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2207{
2208 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2209}
2210EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2211
2212int security_ib_alloc_security(void **sec)
2213{
2214 return call_int_hook(ib_alloc_security, 0, sec);
2215}
2216EXPORT_SYMBOL(security_ib_alloc_security);
2217
2218void security_ib_free_security(void *sec)
2219{
2220 call_void_hook(ib_free_security, sec);
2221}
2222EXPORT_SYMBOL(security_ib_free_security);
2223#endif /* CONFIG_SECURITY_INFINIBAND */
2224
2225#ifdef CONFIG_SECURITY_NETWORK_XFRM
2226
2227int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2228 struct xfrm_user_sec_ctx *sec_ctx,
2229 gfp_t gfp)
2230{
2231 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2232}
2233EXPORT_SYMBOL(security_xfrm_policy_alloc);
2234
2235int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2236 struct xfrm_sec_ctx **new_ctxp)
2237{
2238 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2239}
2240
2241void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2242{
2243 call_void_hook(xfrm_policy_free_security, ctx);
2244}
2245EXPORT_SYMBOL(security_xfrm_policy_free);
2246
2247int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2248{
2249 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2250}
2251
2252int security_xfrm_state_alloc(struct xfrm_state *x,
2253 struct xfrm_user_sec_ctx *sec_ctx)
2254{
2255 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2256}
2257EXPORT_SYMBOL(security_xfrm_state_alloc);
2258
2259int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2260 struct xfrm_sec_ctx *polsec, u32 secid)
2261{
2262 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2263}
2264
2265int security_xfrm_state_delete(struct xfrm_state *x)
2266{
2267 return call_int_hook(xfrm_state_delete_security, 0, x);
2268}
2269EXPORT_SYMBOL(security_xfrm_state_delete);
2270
2271void security_xfrm_state_free(struct xfrm_state *x)
2272{
2273 call_void_hook(xfrm_state_free_security, x);
2274}
2275
2276int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2277{
2278 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2279}
2280
2281int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2282 struct xfrm_policy *xp,
2283 const struct flowi *fl)
2284{
2285 struct security_hook_list *hp;
2286 int rc = 1;
2287
2288 /*
2289 * Since this function is expected to return 0 or 1, the judgment
2290 * becomes difficult if multiple LSMs supply this call. Fortunately,
2291 * we can use the first LSM's judgment because currently only SELinux
2292 * supplies this call.
2293 *
2294 * For speed optimization, we explicitly break the loop rather than
2295 * using the macro
2296 */
2297 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2298 list) {
2299 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2300 break;
2301 }
2302 return rc;
2303}
2304
2305int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2306{
2307 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2308}
2309
2310void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2311{
2312 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2313 0);
2314
2315 BUG_ON(rc);
2316}
2317EXPORT_SYMBOL(security_skb_classify_flow);
2318
2319#endif /* CONFIG_SECURITY_NETWORK_XFRM */
2320
2321#ifdef CONFIG_KEYS
2322
2323int security_key_alloc(struct key *key, const struct cred *cred,
2324 unsigned long flags)
2325{
2326 return call_int_hook(key_alloc, 0, key, cred, flags);
2327}
2328
2329void security_key_free(struct key *key)
2330{
2331 call_void_hook(key_free, key);
2332}
2333
2334int security_key_permission(key_ref_t key_ref,
2335 const struct cred *cred, unsigned perm)
2336{
2337 return call_int_hook(key_permission, 0, key_ref, cred, perm);
2338}
2339
2340int security_key_getsecurity(struct key *key, char **_buffer)
2341{
2342 *_buffer = NULL;
2343 return call_int_hook(key_getsecurity, 0, key, _buffer);
2344}
2345
2346#endif /* CONFIG_KEYS */
2347
2348#ifdef CONFIG_AUDIT
2349
2350int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2351{
2352 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2353}
2354
2355int security_audit_rule_known(struct audit_krule *krule)
2356{
2357 return call_int_hook(audit_rule_known, 0, krule);
2358}
2359
2360void security_audit_rule_free(void *lsmrule)
2361{
2362 call_void_hook(audit_rule_free, lsmrule);
2363}
2364
2365int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2366{
2367 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2368}
2369#endif /* CONFIG_AUDIT */
2370
2371#ifdef CONFIG_BPF_SYSCALL
2372int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2373{
2374 return call_int_hook(bpf, 0, cmd, attr, size);
2375}
2376int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2377{
2378 return call_int_hook(bpf_map, 0, map, fmode);
2379}
2380int security_bpf_prog(struct bpf_prog *prog)
2381{
2382 return call_int_hook(bpf_prog, 0, prog);
2383}
2384int security_bpf_map_alloc(struct bpf_map *map)
2385{
2386 return call_int_hook(bpf_map_alloc_security, 0, map);
2387}
2388int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2389{
2390 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2391}
2392void security_bpf_map_free(struct bpf_map *map)
2393{
2394 call_void_hook(bpf_map_free_security, map);
2395}
2396void security_bpf_prog_free(struct bpf_prog_aux *aux)
2397{
2398 call_void_hook(bpf_prog_free_security, aux);
2399}
2400#endif /* CONFIG_BPF_SYSCALL */
2401
2402int security_locked_down(enum lockdown_reason what)
2403{
2404 return call_int_hook(locked_down, 0, what);
2405}
2406EXPORT_SYMBOL(security_locked_down);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 */
10
11#define pr_fmt(fmt) "LSM: " fmt
12
13#include <linux/bpf.h>
14#include <linux/capability.h>
15#include <linux/dcache.h>
16#include <linux/export.h>
17#include <linux/init.h>
18#include <linux/kernel.h>
19#include <linux/lsm_hooks.h>
20#include <linux/integrity.h>
21#include <linux/ima.h>
22#include <linux/evm.h>
23#include <linux/fsnotify.h>
24#include <linux/mman.h>
25#include <linux/mount.h>
26#include <linux/personality.h>
27#include <linux/backing-dev.h>
28#include <linux/string.h>
29#include <linux/msg.h>
30#include <net/flow.h>
31
32#define MAX_LSM_EVM_XATTR 2
33
34/* How many LSMs were built into the kernel? */
35#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36
37/*
38 * These are descriptions of the reasons that can be passed to the
39 * security_locked_down() LSM hook. Placing this array here allows
40 * all security modules to use the same descriptions for auditing
41 * purposes.
42 */
43const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
44 [LOCKDOWN_NONE] = "none",
45 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
46 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
47 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
48 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
49 [LOCKDOWN_HIBERNATION] = "hibernation",
50 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
51 [LOCKDOWN_IOPORT] = "raw io port access",
52 [LOCKDOWN_MSR] = "raw MSR access",
53 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
54 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
55 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
56 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
57 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
58 [LOCKDOWN_DEBUGFS] = "debugfs access",
59 [LOCKDOWN_XMON_WR] = "xmon write access",
60 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
61 [LOCKDOWN_KCORE] = "/proc/kcore access",
62 [LOCKDOWN_KPROBES] = "use of kprobes",
63 [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
64 [LOCKDOWN_PERF] = "unsafe use of perf",
65 [LOCKDOWN_TRACEFS] = "use of tracefs",
66 [LOCKDOWN_XMON_RW] = "xmon read and write access",
67 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
68};
69
70struct security_hook_heads security_hook_heads __lsm_ro_after_init;
71static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
72
73static struct kmem_cache *lsm_file_cache;
74static struct kmem_cache *lsm_inode_cache;
75
76char *lsm_names;
77static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
78
79/* Boot-time LSM user choice */
80static __initdata const char *chosen_lsm_order;
81static __initdata const char *chosen_major_lsm;
82
83static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
84
85/* Ordered list of LSMs to initialize. */
86static __initdata struct lsm_info **ordered_lsms;
87static __initdata struct lsm_info *exclusive;
88
89static __initdata bool debug;
90#define init_debug(...) \
91 do { \
92 if (debug) \
93 pr_info(__VA_ARGS__); \
94 } while (0)
95
96static bool __init is_enabled(struct lsm_info *lsm)
97{
98 if (!lsm->enabled)
99 return false;
100
101 return *lsm->enabled;
102}
103
104/* Mark an LSM's enabled flag. */
105static int lsm_enabled_true __initdata = 1;
106static int lsm_enabled_false __initdata = 0;
107static void __init set_enabled(struct lsm_info *lsm, bool enabled)
108{
109 /*
110 * When an LSM hasn't configured an enable variable, we can use
111 * a hard-coded location for storing the default enabled state.
112 */
113 if (!lsm->enabled) {
114 if (enabled)
115 lsm->enabled = &lsm_enabled_true;
116 else
117 lsm->enabled = &lsm_enabled_false;
118 } else if (lsm->enabled == &lsm_enabled_true) {
119 if (!enabled)
120 lsm->enabled = &lsm_enabled_false;
121 } else if (lsm->enabled == &lsm_enabled_false) {
122 if (enabled)
123 lsm->enabled = &lsm_enabled_true;
124 } else {
125 *lsm->enabled = enabled;
126 }
127}
128
129/* Is an LSM already listed in the ordered LSMs list? */
130static bool __init exists_ordered_lsm(struct lsm_info *lsm)
131{
132 struct lsm_info **check;
133
134 for (check = ordered_lsms; *check; check++)
135 if (*check == lsm)
136 return true;
137
138 return false;
139}
140
141/* Append an LSM to the list of ordered LSMs to initialize. */
142static int last_lsm __initdata;
143static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
144{
145 /* Ignore duplicate selections. */
146 if (exists_ordered_lsm(lsm))
147 return;
148
149 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
150 return;
151
152 /* Enable this LSM, if it is not already set. */
153 if (!lsm->enabled)
154 lsm->enabled = &lsm_enabled_true;
155 ordered_lsms[last_lsm++] = lsm;
156
157 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
158 is_enabled(lsm) ? "en" : "dis");
159}
160
161/* Is an LSM allowed to be initialized? */
162static bool __init lsm_allowed(struct lsm_info *lsm)
163{
164 /* Skip if the LSM is disabled. */
165 if (!is_enabled(lsm))
166 return false;
167
168 /* Not allowed if another exclusive LSM already initialized. */
169 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
170 init_debug("exclusive disabled: %s\n", lsm->name);
171 return false;
172 }
173
174 return true;
175}
176
177static void __init lsm_set_blob_size(int *need, int *lbs)
178{
179 int offset;
180
181 if (*need > 0) {
182 offset = *lbs;
183 *lbs += *need;
184 *need = offset;
185 }
186}
187
188static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
189{
190 if (!needed)
191 return;
192
193 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
194 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
195 /*
196 * The inode blob gets an rcu_head in addition to
197 * what the modules might need.
198 */
199 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
200 blob_sizes.lbs_inode = sizeof(struct rcu_head);
201 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
202 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
203 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
204 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
205}
206
207/* Prepare LSM for initialization. */
208static void __init prepare_lsm(struct lsm_info *lsm)
209{
210 int enabled = lsm_allowed(lsm);
211
212 /* Record enablement (to handle any following exclusive LSMs). */
213 set_enabled(lsm, enabled);
214
215 /* If enabled, do pre-initialization work. */
216 if (enabled) {
217 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
218 exclusive = lsm;
219 init_debug("exclusive chosen: %s\n", lsm->name);
220 }
221
222 lsm_set_blob_sizes(lsm->blobs);
223 }
224}
225
226/* Initialize a given LSM, if it is enabled. */
227static void __init initialize_lsm(struct lsm_info *lsm)
228{
229 if (is_enabled(lsm)) {
230 int ret;
231
232 init_debug("initializing %s\n", lsm->name);
233 ret = lsm->init();
234 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
235 }
236}
237
238/* Populate ordered LSMs list from comma-separated LSM name list. */
239static void __init ordered_lsm_parse(const char *order, const char *origin)
240{
241 struct lsm_info *lsm;
242 char *sep, *name, *next;
243
244 /* LSM_ORDER_FIRST is always first. */
245 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
246 if (lsm->order == LSM_ORDER_FIRST)
247 append_ordered_lsm(lsm, "first");
248 }
249
250 /* Process "security=", if given. */
251 if (chosen_major_lsm) {
252 struct lsm_info *major;
253
254 /*
255 * To match the original "security=" behavior, this
256 * explicitly does NOT fallback to another Legacy Major
257 * if the selected one was separately disabled: disable
258 * all non-matching Legacy Major LSMs.
259 */
260 for (major = __start_lsm_info; major < __end_lsm_info;
261 major++) {
262 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
263 strcmp(major->name, chosen_major_lsm) != 0) {
264 set_enabled(major, false);
265 init_debug("security=%s disabled: %s\n",
266 chosen_major_lsm, major->name);
267 }
268 }
269 }
270
271 sep = kstrdup(order, GFP_KERNEL);
272 next = sep;
273 /* Walk the list, looking for matching LSMs. */
274 while ((name = strsep(&next, ",")) != NULL) {
275 bool found = false;
276
277 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
278 if (lsm->order == LSM_ORDER_MUTABLE &&
279 strcmp(lsm->name, name) == 0) {
280 append_ordered_lsm(lsm, origin);
281 found = true;
282 }
283 }
284
285 if (!found)
286 init_debug("%s ignored: %s\n", origin, name);
287 }
288
289 /* Process "security=", if given. */
290 if (chosen_major_lsm) {
291 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
292 if (exists_ordered_lsm(lsm))
293 continue;
294 if (strcmp(lsm->name, chosen_major_lsm) == 0)
295 append_ordered_lsm(lsm, "security=");
296 }
297 }
298
299 /* Disable all LSMs not in the ordered list. */
300 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
301 if (exists_ordered_lsm(lsm))
302 continue;
303 set_enabled(lsm, false);
304 init_debug("%s disabled: %s\n", origin, lsm->name);
305 }
306
307 kfree(sep);
308}
309
310static void __init lsm_early_cred(struct cred *cred);
311static void __init lsm_early_task(struct task_struct *task);
312
313static int lsm_append(const char *new, char **result);
314
315static void __init ordered_lsm_init(void)
316{
317 struct lsm_info **lsm;
318
319 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
320 GFP_KERNEL);
321
322 if (chosen_lsm_order) {
323 if (chosen_major_lsm) {
324 pr_info("security= is ignored because it is superseded by lsm=\n");
325 chosen_major_lsm = NULL;
326 }
327 ordered_lsm_parse(chosen_lsm_order, "cmdline");
328 } else
329 ordered_lsm_parse(builtin_lsm_order, "builtin");
330
331 for (lsm = ordered_lsms; *lsm; lsm++)
332 prepare_lsm(*lsm);
333
334 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
335 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
336 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
337 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
338 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
339 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
340
341 /*
342 * Create any kmem_caches needed for blobs
343 */
344 if (blob_sizes.lbs_file)
345 lsm_file_cache = kmem_cache_create("lsm_file_cache",
346 blob_sizes.lbs_file, 0,
347 SLAB_PANIC, NULL);
348 if (blob_sizes.lbs_inode)
349 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
350 blob_sizes.lbs_inode, 0,
351 SLAB_PANIC, NULL);
352
353 lsm_early_cred((struct cred *) current->cred);
354 lsm_early_task(current);
355 for (lsm = ordered_lsms; *lsm; lsm++)
356 initialize_lsm(*lsm);
357
358 kfree(ordered_lsms);
359}
360
361int __init early_security_init(void)
362{
363 int i;
364 struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
365 struct lsm_info *lsm;
366
367 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
368 i++)
369 INIT_HLIST_HEAD(&list[i]);
370
371 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
372 if (!lsm->enabled)
373 lsm->enabled = &lsm_enabled_true;
374 prepare_lsm(lsm);
375 initialize_lsm(lsm);
376 }
377
378 return 0;
379}
380
381/**
382 * security_init - initializes the security framework
383 *
384 * This should be called early in the kernel initialization sequence.
385 */
386int __init security_init(void)
387{
388 struct lsm_info *lsm;
389
390 pr_info("Security Framework initializing\n");
391
392 /*
393 * Append the names of the early LSM modules now that kmalloc() is
394 * available
395 */
396 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
397 if (lsm->enabled)
398 lsm_append(lsm->name, &lsm_names);
399 }
400
401 /* Load LSMs in specified order. */
402 ordered_lsm_init();
403
404 return 0;
405}
406
407/* Save user chosen LSM */
408static int __init choose_major_lsm(char *str)
409{
410 chosen_major_lsm = str;
411 return 1;
412}
413__setup("security=", choose_major_lsm);
414
415/* Explicitly choose LSM initialization order. */
416static int __init choose_lsm_order(char *str)
417{
418 chosen_lsm_order = str;
419 return 1;
420}
421__setup("lsm=", choose_lsm_order);
422
423/* Enable LSM order debugging. */
424static int __init enable_debug(char *str)
425{
426 debug = true;
427 return 1;
428}
429__setup("lsm.debug", enable_debug);
430
431static bool match_last_lsm(const char *list, const char *lsm)
432{
433 const char *last;
434
435 if (WARN_ON(!list || !lsm))
436 return false;
437 last = strrchr(list, ',');
438 if (last)
439 /* Pass the comma, strcmp() will check for '\0' */
440 last++;
441 else
442 last = list;
443 return !strcmp(last, lsm);
444}
445
446static int lsm_append(const char *new, char **result)
447{
448 char *cp;
449
450 if (*result == NULL) {
451 *result = kstrdup(new, GFP_KERNEL);
452 if (*result == NULL)
453 return -ENOMEM;
454 } else {
455 /* Check if it is the last registered name */
456 if (match_last_lsm(*result, new))
457 return 0;
458 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
459 if (cp == NULL)
460 return -ENOMEM;
461 kfree(*result);
462 *result = cp;
463 }
464 return 0;
465}
466
467/**
468 * security_add_hooks - Add a modules hooks to the hook lists.
469 * @hooks: the hooks to add
470 * @count: the number of hooks to add
471 * @lsm: the name of the security module
472 *
473 * Each LSM has to register its hooks with the infrastructure.
474 */
475void __init security_add_hooks(struct security_hook_list *hooks, int count,
476 char *lsm)
477{
478 int i;
479
480 for (i = 0; i < count; i++) {
481 hooks[i].lsm = lsm;
482 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
483 }
484
485 /*
486 * Don't try to append during early_security_init(), we'll come back
487 * and fix this up afterwards.
488 */
489 if (slab_is_available()) {
490 if (lsm_append(lsm, &lsm_names) < 0)
491 panic("%s - Cannot get early memory.\n", __func__);
492 }
493}
494
495int call_blocking_lsm_notifier(enum lsm_event event, void *data)
496{
497 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
498 event, data);
499}
500EXPORT_SYMBOL(call_blocking_lsm_notifier);
501
502int register_blocking_lsm_notifier(struct notifier_block *nb)
503{
504 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
505 nb);
506}
507EXPORT_SYMBOL(register_blocking_lsm_notifier);
508
509int unregister_blocking_lsm_notifier(struct notifier_block *nb)
510{
511 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
512 nb);
513}
514EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
515
516/**
517 * lsm_cred_alloc - allocate a composite cred blob
518 * @cred: the cred that needs a blob
519 * @gfp: allocation type
520 *
521 * Allocate the cred blob for all the modules
522 *
523 * Returns 0, or -ENOMEM if memory can't be allocated.
524 */
525static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
526{
527 if (blob_sizes.lbs_cred == 0) {
528 cred->security = NULL;
529 return 0;
530 }
531
532 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
533 if (cred->security == NULL)
534 return -ENOMEM;
535 return 0;
536}
537
538/**
539 * lsm_early_cred - during initialization allocate a composite cred blob
540 * @cred: the cred that needs a blob
541 *
542 * Allocate the cred blob for all the modules
543 */
544static void __init lsm_early_cred(struct cred *cred)
545{
546 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
547
548 if (rc)
549 panic("%s: Early cred alloc failed.\n", __func__);
550}
551
552/**
553 * lsm_file_alloc - allocate a composite file blob
554 * @file: the file that needs a blob
555 *
556 * Allocate the file blob for all the modules
557 *
558 * Returns 0, or -ENOMEM if memory can't be allocated.
559 */
560static int lsm_file_alloc(struct file *file)
561{
562 if (!lsm_file_cache) {
563 file->f_security = NULL;
564 return 0;
565 }
566
567 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
568 if (file->f_security == NULL)
569 return -ENOMEM;
570 return 0;
571}
572
573/**
574 * lsm_inode_alloc - allocate a composite inode blob
575 * @inode: the inode that needs a blob
576 *
577 * Allocate the inode blob for all the modules
578 *
579 * Returns 0, or -ENOMEM if memory can't be allocated.
580 */
581int lsm_inode_alloc(struct inode *inode)
582{
583 if (!lsm_inode_cache) {
584 inode->i_security = NULL;
585 return 0;
586 }
587
588 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
589 if (inode->i_security == NULL)
590 return -ENOMEM;
591 return 0;
592}
593
594/**
595 * lsm_task_alloc - allocate a composite task blob
596 * @task: the task that needs a blob
597 *
598 * Allocate the task blob for all the modules
599 *
600 * Returns 0, or -ENOMEM if memory can't be allocated.
601 */
602static int lsm_task_alloc(struct task_struct *task)
603{
604 if (blob_sizes.lbs_task == 0) {
605 task->security = NULL;
606 return 0;
607 }
608
609 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
610 if (task->security == NULL)
611 return -ENOMEM;
612 return 0;
613}
614
615/**
616 * lsm_ipc_alloc - allocate a composite ipc blob
617 * @kip: the ipc that needs a blob
618 *
619 * Allocate the ipc blob for all the modules
620 *
621 * Returns 0, or -ENOMEM if memory can't be allocated.
622 */
623static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
624{
625 if (blob_sizes.lbs_ipc == 0) {
626 kip->security = NULL;
627 return 0;
628 }
629
630 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
631 if (kip->security == NULL)
632 return -ENOMEM;
633 return 0;
634}
635
636/**
637 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
638 * @mp: the msg_msg that needs a blob
639 *
640 * Allocate the ipc blob for all the modules
641 *
642 * Returns 0, or -ENOMEM if memory can't be allocated.
643 */
644static int lsm_msg_msg_alloc(struct msg_msg *mp)
645{
646 if (blob_sizes.lbs_msg_msg == 0) {
647 mp->security = NULL;
648 return 0;
649 }
650
651 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
652 if (mp->security == NULL)
653 return -ENOMEM;
654 return 0;
655}
656
657/**
658 * lsm_early_task - during initialization allocate a composite task blob
659 * @task: the task that needs a blob
660 *
661 * Allocate the task blob for all the modules
662 */
663static void __init lsm_early_task(struct task_struct *task)
664{
665 int rc = lsm_task_alloc(task);
666
667 if (rc)
668 panic("%s: Early task alloc failed.\n", __func__);
669}
670
671/*
672 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
673 * can be accessed with:
674 *
675 * LSM_RET_DEFAULT(<hook_name>)
676 *
677 * The macros below define static constants for the default value of each
678 * LSM hook.
679 */
680#define LSM_RET_DEFAULT(NAME) (NAME##_default)
681#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
682#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
683 static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
684#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
685 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
686
687#include <linux/lsm_hook_defs.h>
688#undef LSM_HOOK
689
690/*
691 * Hook list operation macros.
692 *
693 * call_void_hook:
694 * This is a hook that does not return a value.
695 *
696 * call_int_hook:
697 * This is a hook that returns a value.
698 */
699
700#define call_void_hook(FUNC, ...) \
701 do { \
702 struct security_hook_list *P; \
703 \
704 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
705 P->hook.FUNC(__VA_ARGS__); \
706 } while (0)
707
708#define call_int_hook(FUNC, IRC, ...) ({ \
709 int RC = IRC; \
710 do { \
711 struct security_hook_list *P; \
712 \
713 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
714 RC = P->hook.FUNC(__VA_ARGS__); \
715 if (RC != 0) \
716 break; \
717 } \
718 } while (0); \
719 RC; \
720})
721
722/* Security operations */
723
724int security_binder_set_context_mgr(struct task_struct *mgr)
725{
726 return call_int_hook(binder_set_context_mgr, 0, mgr);
727}
728
729int security_binder_transaction(struct task_struct *from,
730 struct task_struct *to)
731{
732 return call_int_hook(binder_transaction, 0, from, to);
733}
734
735int security_binder_transfer_binder(struct task_struct *from,
736 struct task_struct *to)
737{
738 return call_int_hook(binder_transfer_binder, 0, from, to);
739}
740
741int security_binder_transfer_file(struct task_struct *from,
742 struct task_struct *to, struct file *file)
743{
744 return call_int_hook(binder_transfer_file, 0, from, to, file);
745}
746
747int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
748{
749 return call_int_hook(ptrace_access_check, 0, child, mode);
750}
751
752int security_ptrace_traceme(struct task_struct *parent)
753{
754 return call_int_hook(ptrace_traceme, 0, parent);
755}
756
757int security_capget(struct task_struct *target,
758 kernel_cap_t *effective,
759 kernel_cap_t *inheritable,
760 kernel_cap_t *permitted)
761{
762 return call_int_hook(capget, 0, target,
763 effective, inheritable, permitted);
764}
765
766int security_capset(struct cred *new, const struct cred *old,
767 const kernel_cap_t *effective,
768 const kernel_cap_t *inheritable,
769 const kernel_cap_t *permitted)
770{
771 return call_int_hook(capset, 0, new, old,
772 effective, inheritable, permitted);
773}
774
775int security_capable(const struct cred *cred,
776 struct user_namespace *ns,
777 int cap,
778 unsigned int opts)
779{
780 return call_int_hook(capable, 0, cred, ns, cap, opts);
781}
782
783int security_quotactl(int cmds, int type, int id, struct super_block *sb)
784{
785 return call_int_hook(quotactl, 0, cmds, type, id, sb);
786}
787
788int security_quota_on(struct dentry *dentry)
789{
790 return call_int_hook(quota_on, 0, dentry);
791}
792
793int security_syslog(int type)
794{
795 return call_int_hook(syslog, 0, type);
796}
797
798int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
799{
800 return call_int_hook(settime, 0, ts, tz);
801}
802
803int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
804{
805 struct security_hook_list *hp;
806 int cap_sys_admin = 1;
807 int rc;
808
809 /*
810 * The module will respond with a positive value if
811 * it thinks the __vm_enough_memory() call should be
812 * made with the cap_sys_admin set. If all of the modules
813 * agree that it should be set it will. If any module
814 * thinks it should not be set it won't.
815 */
816 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
817 rc = hp->hook.vm_enough_memory(mm, pages);
818 if (rc <= 0) {
819 cap_sys_admin = 0;
820 break;
821 }
822 }
823 return __vm_enough_memory(mm, pages, cap_sys_admin);
824}
825
826int security_bprm_creds_for_exec(struct linux_binprm *bprm)
827{
828 return call_int_hook(bprm_creds_for_exec, 0, bprm);
829}
830
831int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
832{
833 return call_int_hook(bprm_creds_from_file, 0, bprm, file);
834}
835
836int security_bprm_check(struct linux_binprm *bprm)
837{
838 int ret;
839
840 ret = call_int_hook(bprm_check_security, 0, bprm);
841 if (ret)
842 return ret;
843 return ima_bprm_check(bprm);
844}
845
846void security_bprm_committing_creds(struct linux_binprm *bprm)
847{
848 call_void_hook(bprm_committing_creds, bprm);
849}
850
851void security_bprm_committed_creds(struct linux_binprm *bprm)
852{
853 call_void_hook(bprm_committed_creds, bprm);
854}
855
856int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
857{
858 return call_int_hook(fs_context_dup, 0, fc, src_fc);
859}
860
861int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
862{
863 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
864}
865
866int security_sb_alloc(struct super_block *sb)
867{
868 return call_int_hook(sb_alloc_security, 0, sb);
869}
870
871void security_sb_free(struct super_block *sb)
872{
873 call_void_hook(sb_free_security, sb);
874}
875
876void security_free_mnt_opts(void **mnt_opts)
877{
878 if (!*mnt_opts)
879 return;
880 call_void_hook(sb_free_mnt_opts, *mnt_opts);
881 *mnt_opts = NULL;
882}
883EXPORT_SYMBOL(security_free_mnt_opts);
884
885int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
886{
887 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
888}
889EXPORT_SYMBOL(security_sb_eat_lsm_opts);
890
891int security_sb_remount(struct super_block *sb,
892 void *mnt_opts)
893{
894 return call_int_hook(sb_remount, 0, sb, mnt_opts);
895}
896EXPORT_SYMBOL(security_sb_remount);
897
898int security_sb_kern_mount(struct super_block *sb)
899{
900 return call_int_hook(sb_kern_mount, 0, sb);
901}
902
903int security_sb_show_options(struct seq_file *m, struct super_block *sb)
904{
905 return call_int_hook(sb_show_options, 0, m, sb);
906}
907
908int security_sb_statfs(struct dentry *dentry)
909{
910 return call_int_hook(sb_statfs, 0, dentry);
911}
912
913int security_sb_mount(const char *dev_name, const struct path *path,
914 const char *type, unsigned long flags, void *data)
915{
916 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
917}
918
919int security_sb_umount(struct vfsmount *mnt, int flags)
920{
921 return call_int_hook(sb_umount, 0, mnt, flags);
922}
923
924int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
925{
926 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
927}
928
929int security_sb_set_mnt_opts(struct super_block *sb,
930 void *mnt_opts,
931 unsigned long kern_flags,
932 unsigned long *set_kern_flags)
933{
934 return call_int_hook(sb_set_mnt_opts,
935 mnt_opts ? -EOPNOTSUPP : 0, sb,
936 mnt_opts, kern_flags, set_kern_flags);
937}
938EXPORT_SYMBOL(security_sb_set_mnt_opts);
939
940int security_sb_clone_mnt_opts(const struct super_block *oldsb,
941 struct super_block *newsb,
942 unsigned long kern_flags,
943 unsigned long *set_kern_flags)
944{
945 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
946 kern_flags, set_kern_flags);
947}
948EXPORT_SYMBOL(security_sb_clone_mnt_opts);
949
950int security_add_mnt_opt(const char *option, const char *val, int len,
951 void **mnt_opts)
952{
953 return call_int_hook(sb_add_mnt_opt, -EINVAL,
954 option, val, len, mnt_opts);
955}
956EXPORT_SYMBOL(security_add_mnt_opt);
957
958int security_move_mount(const struct path *from_path, const struct path *to_path)
959{
960 return call_int_hook(move_mount, 0, from_path, to_path);
961}
962
963int security_path_notify(const struct path *path, u64 mask,
964 unsigned int obj_type)
965{
966 return call_int_hook(path_notify, 0, path, mask, obj_type);
967}
968
969int security_inode_alloc(struct inode *inode)
970{
971 int rc = lsm_inode_alloc(inode);
972
973 if (unlikely(rc))
974 return rc;
975 rc = call_int_hook(inode_alloc_security, 0, inode);
976 if (unlikely(rc))
977 security_inode_free(inode);
978 return rc;
979}
980
981static void inode_free_by_rcu(struct rcu_head *head)
982{
983 /*
984 * The rcu head is at the start of the inode blob
985 */
986 kmem_cache_free(lsm_inode_cache, head);
987}
988
989void security_inode_free(struct inode *inode)
990{
991 integrity_inode_free(inode);
992 call_void_hook(inode_free_security, inode);
993 /*
994 * The inode may still be referenced in a path walk and
995 * a call to security_inode_permission() can be made
996 * after inode_free_security() is called. Ideally, the VFS
997 * wouldn't do this, but fixing that is a much harder
998 * job. For now, simply free the i_security via RCU, and
999 * leave the current inode->i_security pointer intact.
1000 * The inode will be freed after the RCU grace period too.
1001 */
1002 if (inode->i_security)
1003 call_rcu((struct rcu_head *)inode->i_security,
1004 inode_free_by_rcu);
1005}
1006
1007int security_dentry_init_security(struct dentry *dentry, int mode,
1008 const struct qstr *name, void **ctx,
1009 u32 *ctxlen)
1010{
1011 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1012 name, ctx, ctxlen);
1013}
1014EXPORT_SYMBOL(security_dentry_init_security);
1015
1016int security_dentry_create_files_as(struct dentry *dentry, int mode,
1017 struct qstr *name,
1018 const struct cred *old, struct cred *new)
1019{
1020 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1021 name, old, new);
1022}
1023EXPORT_SYMBOL(security_dentry_create_files_as);
1024
1025int security_inode_init_security(struct inode *inode, struct inode *dir,
1026 const struct qstr *qstr,
1027 const initxattrs initxattrs, void *fs_data)
1028{
1029 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1030 struct xattr *lsm_xattr, *evm_xattr, *xattr;
1031 int ret;
1032
1033 if (unlikely(IS_PRIVATE(inode)))
1034 return 0;
1035
1036 if (!initxattrs)
1037 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1038 dir, qstr, NULL, NULL, NULL);
1039 memset(new_xattrs, 0, sizeof(new_xattrs));
1040 lsm_xattr = new_xattrs;
1041 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1042 &lsm_xattr->name,
1043 &lsm_xattr->value,
1044 &lsm_xattr->value_len);
1045 if (ret)
1046 goto out;
1047
1048 evm_xattr = lsm_xattr + 1;
1049 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1050 if (ret)
1051 goto out;
1052 ret = initxattrs(inode, new_xattrs, fs_data);
1053out:
1054 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1055 kfree(xattr->value);
1056 return (ret == -EOPNOTSUPP) ? 0 : ret;
1057}
1058EXPORT_SYMBOL(security_inode_init_security);
1059
1060int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1061 const struct qstr *qstr, const char **name,
1062 void **value, size_t *len)
1063{
1064 if (unlikely(IS_PRIVATE(inode)))
1065 return -EOPNOTSUPP;
1066 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1067 qstr, name, value, len);
1068}
1069EXPORT_SYMBOL(security_old_inode_init_security);
1070
1071#ifdef CONFIG_SECURITY_PATH
1072int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1073 unsigned int dev)
1074{
1075 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1076 return 0;
1077 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1078}
1079EXPORT_SYMBOL(security_path_mknod);
1080
1081int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1082{
1083 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1084 return 0;
1085 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1086}
1087EXPORT_SYMBOL(security_path_mkdir);
1088
1089int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1090{
1091 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1092 return 0;
1093 return call_int_hook(path_rmdir, 0, dir, dentry);
1094}
1095
1096int security_path_unlink(const struct path *dir, struct dentry *dentry)
1097{
1098 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1099 return 0;
1100 return call_int_hook(path_unlink, 0, dir, dentry);
1101}
1102EXPORT_SYMBOL(security_path_unlink);
1103
1104int security_path_symlink(const struct path *dir, struct dentry *dentry,
1105 const char *old_name)
1106{
1107 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1108 return 0;
1109 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1110}
1111
1112int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1113 struct dentry *new_dentry)
1114{
1115 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1116 return 0;
1117 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1118}
1119
1120int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1121 const struct path *new_dir, struct dentry *new_dentry,
1122 unsigned int flags)
1123{
1124 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1125 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1126 return 0;
1127
1128 if (flags & RENAME_EXCHANGE) {
1129 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1130 old_dir, old_dentry);
1131 if (err)
1132 return err;
1133 }
1134
1135 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1136 new_dentry);
1137}
1138EXPORT_SYMBOL(security_path_rename);
1139
1140int security_path_truncate(const struct path *path)
1141{
1142 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1143 return 0;
1144 return call_int_hook(path_truncate, 0, path);
1145}
1146
1147int security_path_chmod(const struct path *path, umode_t mode)
1148{
1149 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1150 return 0;
1151 return call_int_hook(path_chmod, 0, path, mode);
1152}
1153
1154int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1155{
1156 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1157 return 0;
1158 return call_int_hook(path_chown, 0, path, uid, gid);
1159}
1160
1161int security_path_chroot(const struct path *path)
1162{
1163 return call_int_hook(path_chroot, 0, path);
1164}
1165#endif
1166
1167int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1168{
1169 if (unlikely(IS_PRIVATE(dir)))
1170 return 0;
1171 return call_int_hook(inode_create, 0, dir, dentry, mode);
1172}
1173EXPORT_SYMBOL_GPL(security_inode_create);
1174
1175int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1176 struct dentry *new_dentry)
1177{
1178 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1179 return 0;
1180 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1181}
1182
1183int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1184{
1185 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1186 return 0;
1187 return call_int_hook(inode_unlink, 0, dir, dentry);
1188}
1189
1190int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1191 const char *old_name)
1192{
1193 if (unlikely(IS_PRIVATE(dir)))
1194 return 0;
1195 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1196}
1197
1198int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1199{
1200 if (unlikely(IS_PRIVATE(dir)))
1201 return 0;
1202 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1203}
1204EXPORT_SYMBOL_GPL(security_inode_mkdir);
1205
1206int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1207{
1208 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1209 return 0;
1210 return call_int_hook(inode_rmdir, 0, dir, dentry);
1211}
1212
1213int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1214{
1215 if (unlikely(IS_PRIVATE(dir)))
1216 return 0;
1217 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1218}
1219
1220int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1221 struct inode *new_dir, struct dentry *new_dentry,
1222 unsigned int flags)
1223{
1224 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1225 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1226 return 0;
1227
1228 if (flags & RENAME_EXCHANGE) {
1229 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1230 old_dir, old_dentry);
1231 if (err)
1232 return err;
1233 }
1234
1235 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1236 new_dir, new_dentry);
1237}
1238
1239int security_inode_readlink(struct dentry *dentry)
1240{
1241 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1242 return 0;
1243 return call_int_hook(inode_readlink, 0, dentry);
1244}
1245
1246int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1247 bool rcu)
1248{
1249 if (unlikely(IS_PRIVATE(inode)))
1250 return 0;
1251 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1252}
1253
1254int security_inode_permission(struct inode *inode, int mask)
1255{
1256 if (unlikely(IS_PRIVATE(inode)))
1257 return 0;
1258 return call_int_hook(inode_permission, 0, inode, mask);
1259}
1260
1261int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1262{
1263 int ret;
1264
1265 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1266 return 0;
1267 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1268 if (ret)
1269 return ret;
1270 return evm_inode_setattr(dentry, attr);
1271}
1272EXPORT_SYMBOL_GPL(security_inode_setattr);
1273
1274int security_inode_getattr(const struct path *path)
1275{
1276 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1277 return 0;
1278 return call_int_hook(inode_getattr, 0, path);
1279}
1280
1281int security_inode_setxattr(struct dentry *dentry, const char *name,
1282 const void *value, size_t size, int flags)
1283{
1284 int ret;
1285
1286 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1287 return 0;
1288 /*
1289 * SELinux and Smack integrate the cap call,
1290 * so assume that all LSMs supplying this call do so.
1291 */
1292 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1293 flags);
1294
1295 if (ret == 1)
1296 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1297 if (ret)
1298 return ret;
1299 ret = ima_inode_setxattr(dentry, name, value, size);
1300 if (ret)
1301 return ret;
1302 return evm_inode_setxattr(dentry, name, value, size);
1303}
1304
1305void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1306 const void *value, size_t size, int flags)
1307{
1308 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1309 return;
1310 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1311 evm_inode_post_setxattr(dentry, name, value, size);
1312}
1313
1314int security_inode_getxattr(struct dentry *dentry, const char *name)
1315{
1316 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1317 return 0;
1318 return call_int_hook(inode_getxattr, 0, dentry, name);
1319}
1320
1321int security_inode_listxattr(struct dentry *dentry)
1322{
1323 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1324 return 0;
1325 return call_int_hook(inode_listxattr, 0, dentry);
1326}
1327
1328int security_inode_removexattr(struct dentry *dentry, const char *name)
1329{
1330 int ret;
1331
1332 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1333 return 0;
1334 /*
1335 * SELinux and Smack integrate the cap call,
1336 * so assume that all LSMs supplying this call do so.
1337 */
1338 ret = call_int_hook(inode_removexattr, 1, dentry, name);
1339 if (ret == 1)
1340 ret = cap_inode_removexattr(dentry, name);
1341 if (ret)
1342 return ret;
1343 ret = ima_inode_removexattr(dentry, name);
1344 if (ret)
1345 return ret;
1346 return evm_inode_removexattr(dentry, name);
1347}
1348
1349int security_inode_need_killpriv(struct dentry *dentry)
1350{
1351 return call_int_hook(inode_need_killpriv, 0, dentry);
1352}
1353
1354int security_inode_killpriv(struct dentry *dentry)
1355{
1356 return call_int_hook(inode_killpriv, 0, dentry);
1357}
1358
1359int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1360{
1361 struct security_hook_list *hp;
1362 int rc;
1363
1364 if (unlikely(IS_PRIVATE(inode)))
1365 return LSM_RET_DEFAULT(inode_getsecurity);
1366 /*
1367 * Only one module will provide an attribute with a given name.
1368 */
1369 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1370 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1371 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1372 return rc;
1373 }
1374 return LSM_RET_DEFAULT(inode_getsecurity);
1375}
1376
1377int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1378{
1379 struct security_hook_list *hp;
1380 int rc;
1381
1382 if (unlikely(IS_PRIVATE(inode)))
1383 return LSM_RET_DEFAULT(inode_setsecurity);
1384 /*
1385 * Only one module will provide an attribute with a given name.
1386 */
1387 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1388 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1389 flags);
1390 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1391 return rc;
1392 }
1393 return LSM_RET_DEFAULT(inode_setsecurity);
1394}
1395
1396int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1397{
1398 if (unlikely(IS_PRIVATE(inode)))
1399 return 0;
1400 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1401}
1402EXPORT_SYMBOL(security_inode_listsecurity);
1403
1404void security_inode_getsecid(struct inode *inode, u32 *secid)
1405{
1406 call_void_hook(inode_getsecid, inode, secid);
1407}
1408
1409int security_inode_copy_up(struct dentry *src, struct cred **new)
1410{
1411 return call_int_hook(inode_copy_up, 0, src, new);
1412}
1413EXPORT_SYMBOL(security_inode_copy_up);
1414
1415int security_inode_copy_up_xattr(const char *name)
1416{
1417 struct security_hook_list *hp;
1418 int rc;
1419
1420 /*
1421 * The implementation can return 0 (accept the xattr), 1 (discard the
1422 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1423 * any other error code incase of an error.
1424 */
1425 hlist_for_each_entry(hp,
1426 &security_hook_heads.inode_copy_up_xattr, list) {
1427 rc = hp->hook.inode_copy_up_xattr(name);
1428 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1429 return rc;
1430 }
1431
1432 return LSM_RET_DEFAULT(inode_copy_up_xattr);
1433}
1434EXPORT_SYMBOL(security_inode_copy_up_xattr);
1435
1436int security_kernfs_init_security(struct kernfs_node *kn_dir,
1437 struct kernfs_node *kn)
1438{
1439 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1440}
1441
1442int security_file_permission(struct file *file, int mask)
1443{
1444 int ret;
1445
1446 ret = call_int_hook(file_permission, 0, file, mask);
1447 if (ret)
1448 return ret;
1449
1450 return fsnotify_perm(file, mask);
1451}
1452
1453int security_file_alloc(struct file *file)
1454{
1455 int rc = lsm_file_alloc(file);
1456
1457 if (rc)
1458 return rc;
1459 rc = call_int_hook(file_alloc_security, 0, file);
1460 if (unlikely(rc))
1461 security_file_free(file);
1462 return rc;
1463}
1464
1465void security_file_free(struct file *file)
1466{
1467 void *blob;
1468
1469 call_void_hook(file_free_security, file);
1470
1471 blob = file->f_security;
1472 if (blob) {
1473 file->f_security = NULL;
1474 kmem_cache_free(lsm_file_cache, blob);
1475 }
1476}
1477
1478int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1479{
1480 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1481}
1482EXPORT_SYMBOL_GPL(security_file_ioctl);
1483
1484static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1485{
1486 /*
1487 * Does we have PROT_READ and does the application expect
1488 * it to imply PROT_EXEC? If not, nothing to talk about...
1489 */
1490 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1491 return prot;
1492 if (!(current->personality & READ_IMPLIES_EXEC))
1493 return prot;
1494 /*
1495 * if that's an anonymous mapping, let it.
1496 */
1497 if (!file)
1498 return prot | PROT_EXEC;
1499 /*
1500 * ditto if it's not on noexec mount, except that on !MMU we need
1501 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1502 */
1503 if (!path_noexec(&file->f_path)) {
1504#ifndef CONFIG_MMU
1505 if (file->f_op->mmap_capabilities) {
1506 unsigned caps = file->f_op->mmap_capabilities(file);
1507 if (!(caps & NOMMU_MAP_EXEC))
1508 return prot;
1509 }
1510#endif
1511 return prot | PROT_EXEC;
1512 }
1513 /* anything on noexec mount won't get PROT_EXEC */
1514 return prot;
1515}
1516
1517int security_mmap_file(struct file *file, unsigned long prot,
1518 unsigned long flags)
1519{
1520 int ret;
1521 ret = call_int_hook(mmap_file, 0, file, prot,
1522 mmap_prot(file, prot), flags);
1523 if (ret)
1524 return ret;
1525 return ima_file_mmap(file, prot);
1526}
1527
1528int security_mmap_addr(unsigned long addr)
1529{
1530 return call_int_hook(mmap_addr, 0, addr);
1531}
1532
1533int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1534 unsigned long prot)
1535{
1536 int ret;
1537
1538 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1539 if (ret)
1540 return ret;
1541 return ima_file_mprotect(vma, prot);
1542}
1543
1544int security_file_lock(struct file *file, unsigned int cmd)
1545{
1546 return call_int_hook(file_lock, 0, file, cmd);
1547}
1548
1549int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1550{
1551 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1552}
1553
1554void security_file_set_fowner(struct file *file)
1555{
1556 call_void_hook(file_set_fowner, file);
1557}
1558
1559int security_file_send_sigiotask(struct task_struct *tsk,
1560 struct fown_struct *fown, int sig)
1561{
1562 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1563}
1564
1565int security_file_receive(struct file *file)
1566{
1567 return call_int_hook(file_receive, 0, file);
1568}
1569
1570int security_file_open(struct file *file)
1571{
1572 int ret;
1573
1574 ret = call_int_hook(file_open, 0, file);
1575 if (ret)
1576 return ret;
1577
1578 return fsnotify_perm(file, MAY_OPEN);
1579}
1580
1581int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1582{
1583 int rc = lsm_task_alloc(task);
1584
1585 if (rc)
1586 return rc;
1587 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1588 if (unlikely(rc))
1589 security_task_free(task);
1590 return rc;
1591}
1592
1593void security_task_free(struct task_struct *task)
1594{
1595 call_void_hook(task_free, task);
1596
1597 kfree(task->security);
1598 task->security = NULL;
1599}
1600
1601int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1602{
1603 int rc = lsm_cred_alloc(cred, gfp);
1604
1605 if (rc)
1606 return rc;
1607
1608 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1609 if (unlikely(rc))
1610 security_cred_free(cred);
1611 return rc;
1612}
1613
1614void security_cred_free(struct cred *cred)
1615{
1616 /*
1617 * There is a failure case in prepare_creds() that
1618 * may result in a call here with ->security being NULL.
1619 */
1620 if (unlikely(cred->security == NULL))
1621 return;
1622
1623 call_void_hook(cred_free, cred);
1624
1625 kfree(cred->security);
1626 cred->security = NULL;
1627}
1628
1629int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1630{
1631 int rc = lsm_cred_alloc(new, gfp);
1632
1633 if (rc)
1634 return rc;
1635
1636 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1637 if (unlikely(rc))
1638 security_cred_free(new);
1639 return rc;
1640}
1641
1642void security_transfer_creds(struct cred *new, const struct cred *old)
1643{
1644 call_void_hook(cred_transfer, new, old);
1645}
1646
1647void security_cred_getsecid(const struct cred *c, u32 *secid)
1648{
1649 *secid = 0;
1650 call_void_hook(cred_getsecid, c, secid);
1651}
1652EXPORT_SYMBOL(security_cred_getsecid);
1653
1654int security_kernel_act_as(struct cred *new, u32 secid)
1655{
1656 return call_int_hook(kernel_act_as, 0, new, secid);
1657}
1658
1659int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1660{
1661 return call_int_hook(kernel_create_files_as, 0, new, inode);
1662}
1663
1664int security_kernel_module_request(char *kmod_name)
1665{
1666 int ret;
1667
1668 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1669 if (ret)
1670 return ret;
1671 return integrity_kernel_module_request(kmod_name);
1672}
1673
1674int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1675{
1676 int ret;
1677
1678 ret = call_int_hook(kernel_read_file, 0, file, id);
1679 if (ret)
1680 return ret;
1681 return ima_read_file(file, id);
1682}
1683EXPORT_SYMBOL_GPL(security_kernel_read_file);
1684
1685int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1686 enum kernel_read_file_id id)
1687{
1688 int ret;
1689
1690 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1691 if (ret)
1692 return ret;
1693 return ima_post_read_file(file, buf, size, id);
1694}
1695EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1696
1697int security_kernel_load_data(enum kernel_load_data_id id)
1698{
1699 int ret;
1700
1701 ret = call_int_hook(kernel_load_data, 0, id);
1702 if (ret)
1703 return ret;
1704 return ima_load_data(id);
1705}
1706EXPORT_SYMBOL_GPL(security_kernel_load_data);
1707
1708int security_task_fix_setuid(struct cred *new, const struct cred *old,
1709 int flags)
1710{
1711 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1712}
1713
1714int security_task_fix_setgid(struct cred *new, const struct cred *old,
1715 int flags)
1716{
1717 return call_int_hook(task_fix_setgid, 0, new, old, flags);
1718}
1719
1720int security_task_setpgid(struct task_struct *p, pid_t pgid)
1721{
1722 return call_int_hook(task_setpgid, 0, p, pgid);
1723}
1724
1725int security_task_getpgid(struct task_struct *p)
1726{
1727 return call_int_hook(task_getpgid, 0, p);
1728}
1729
1730int security_task_getsid(struct task_struct *p)
1731{
1732 return call_int_hook(task_getsid, 0, p);
1733}
1734
1735void security_task_getsecid(struct task_struct *p, u32 *secid)
1736{
1737 *secid = 0;
1738 call_void_hook(task_getsecid, p, secid);
1739}
1740EXPORT_SYMBOL(security_task_getsecid);
1741
1742int security_task_setnice(struct task_struct *p, int nice)
1743{
1744 return call_int_hook(task_setnice, 0, p, nice);
1745}
1746
1747int security_task_setioprio(struct task_struct *p, int ioprio)
1748{
1749 return call_int_hook(task_setioprio, 0, p, ioprio);
1750}
1751
1752int security_task_getioprio(struct task_struct *p)
1753{
1754 return call_int_hook(task_getioprio, 0, p);
1755}
1756
1757int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1758 unsigned int flags)
1759{
1760 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1761}
1762
1763int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1764 struct rlimit *new_rlim)
1765{
1766 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1767}
1768
1769int security_task_setscheduler(struct task_struct *p)
1770{
1771 return call_int_hook(task_setscheduler, 0, p);
1772}
1773
1774int security_task_getscheduler(struct task_struct *p)
1775{
1776 return call_int_hook(task_getscheduler, 0, p);
1777}
1778
1779int security_task_movememory(struct task_struct *p)
1780{
1781 return call_int_hook(task_movememory, 0, p);
1782}
1783
1784int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1785 int sig, const struct cred *cred)
1786{
1787 return call_int_hook(task_kill, 0, p, info, sig, cred);
1788}
1789
1790int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1791 unsigned long arg4, unsigned long arg5)
1792{
1793 int thisrc;
1794 int rc = LSM_RET_DEFAULT(task_prctl);
1795 struct security_hook_list *hp;
1796
1797 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1798 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1799 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1800 rc = thisrc;
1801 if (thisrc != 0)
1802 break;
1803 }
1804 }
1805 return rc;
1806}
1807
1808void security_task_to_inode(struct task_struct *p, struct inode *inode)
1809{
1810 call_void_hook(task_to_inode, p, inode);
1811}
1812
1813int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1814{
1815 return call_int_hook(ipc_permission, 0, ipcp, flag);
1816}
1817
1818void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1819{
1820 *secid = 0;
1821 call_void_hook(ipc_getsecid, ipcp, secid);
1822}
1823
1824int security_msg_msg_alloc(struct msg_msg *msg)
1825{
1826 int rc = lsm_msg_msg_alloc(msg);
1827
1828 if (unlikely(rc))
1829 return rc;
1830 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1831 if (unlikely(rc))
1832 security_msg_msg_free(msg);
1833 return rc;
1834}
1835
1836void security_msg_msg_free(struct msg_msg *msg)
1837{
1838 call_void_hook(msg_msg_free_security, msg);
1839 kfree(msg->security);
1840 msg->security = NULL;
1841}
1842
1843int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1844{
1845 int rc = lsm_ipc_alloc(msq);
1846
1847 if (unlikely(rc))
1848 return rc;
1849 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1850 if (unlikely(rc))
1851 security_msg_queue_free(msq);
1852 return rc;
1853}
1854
1855void security_msg_queue_free(struct kern_ipc_perm *msq)
1856{
1857 call_void_hook(msg_queue_free_security, msq);
1858 kfree(msq->security);
1859 msq->security = NULL;
1860}
1861
1862int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1863{
1864 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1865}
1866
1867int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1868{
1869 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1870}
1871
1872int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1873 struct msg_msg *msg, int msqflg)
1874{
1875 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1876}
1877
1878int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1879 struct task_struct *target, long type, int mode)
1880{
1881 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1882}
1883
1884int security_shm_alloc(struct kern_ipc_perm *shp)
1885{
1886 int rc = lsm_ipc_alloc(shp);
1887
1888 if (unlikely(rc))
1889 return rc;
1890 rc = call_int_hook(shm_alloc_security, 0, shp);
1891 if (unlikely(rc))
1892 security_shm_free(shp);
1893 return rc;
1894}
1895
1896void security_shm_free(struct kern_ipc_perm *shp)
1897{
1898 call_void_hook(shm_free_security, shp);
1899 kfree(shp->security);
1900 shp->security = NULL;
1901}
1902
1903int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1904{
1905 return call_int_hook(shm_associate, 0, shp, shmflg);
1906}
1907
1908int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1909{
1910 return call_int_hook(shm_shmctl, 0, shp, cmd);
1911}
1912
1913int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1914{
1915 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1916}
1917
1918int security_sem_alloc(struct kern_ipc_perm *sma)
1919{
1920 int rc = lsm_ipc_alloc(sma);
1921
1922 if (unlikely(rc))
1923 return rc;
1924 rc = call_int_hook(sem_alloc_security, 0, sma);
1925 if (unlikely(rc))
1926 security_sem_free(sma);
1927 return rc;
1928}
1929
1930void security_sem_free(struct kern_ipc_perm *sma)
1931{
1932 call_void_hook(sem_free_security, sma);
1933 kfree(sma->security);
1934 sma->security = NULL;
1935}
1936
1937int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1938{
1939 return call_int_hook(sem_associate, 0, sma, semflg);
1940}
1941
1942int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1943{
1944 return call_int_hook(sem_semctl, 0, sma, cmd);
1945}
1946
1947int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1948 unsigned nsops, int alter)
1949{
1950 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1951}
1952
1953void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1954{
1955 if (unlikely(inode && IS_PRIVATE(inode)))
1956 return;
1957 call_void_hook(d_instantiate, dentry, inode);
1958}
1959EXPORT_SYMBOL(security_d_instantiate);
1960
1961int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1962 char **value)
1963{
1964 struct security_hook_list *hp;
1965
1966 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1967 if (lsm != NULL && strcmp(lsm, hp->lsm))
1968 continue;
1969 return hp->hook.getprocattr(p, name, value);
1970 }
1971 return LSM_RET_DEFAULT(getprocattr);
1972}
1973
1974int security_setprocattr(const char *lsm, const char *name, void *value,
1975 size_t size)
1976{
1977 struct security_hook_list *hp;
1978
1979 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1980 if (lsm != NULL && strcmp(lsm, hp->lsm))
1981 continue;
1982 return hp->hook.setprocattr(name, value, size);
1983 }
1984 return LSM_RET_DEFAULT(setprocattr);
1985}
1986
1987int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1988{
1989 return call_int_hook(netlink_send, 0, sk, skb);
1990}
1991
1992int security_ismaclabel(const char *name)
1993{
1994 return call_int_hook(ismaclabel, 0, name);
1995}
1996EXPORT_SYMBOL(security_ismaclabel);
1997
1998int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1999{
2000 struct security_hook_list *hp;
2001 int rc;
2002
2003 /*
2004 * Currently, only one LSM can implement secid_to_secctx (i.e this
2005 * LSM hook is not "stackable").
2006 */
2007 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2008 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2009 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2010 return rc;
2011 }
2012
2013 return LSM_RET_DEFAULT(secid_to_secctx);
2014}
2015EXPORT_SYMBOL(security_secid_to_secctx);
2016
2017int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2018{
2019 *secid = 0;
2020 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2021}
2022EXPORT_SYMBOL(security_secctx_to_secid);
2023
2024void security_release_secctx(char *secdata, u32 seclen)
2025{
2026 call_void_hook(release_secctx, secdata, seclen);
2027}
2028EXPORT_SYMBOL(security_release_secctx);
2029
2030void security_inode_invalidate_secctx(struct inode *inode)
2031{
2032 call_void_hook(inode_invalidate_secctx, inode);
2033}
2034EXPORT_SYMBOL(security_inode_invalidate_secctx);
2035
2036int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2037{
2038 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2039}
2040EXPORT_SYMBOL(security_inode_notifysecctx);
2041
2042int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2043{
2044 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2045}
2046EXPORT_SYMBOL(security_inode_setsecctx);
2047
2048int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2049{
2050 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2051}
2052EXPORT_SYMBOL(security_inode_getsecctx);
2053
2054#ifdef CONFIG_WATCH_QUEUE
2055int security_post_notification(const struct cred *w_cred,
2056 const struct cred *cred,
2057 struct watch_notification *n)
2058{
2059 return call_int_hook(post_notification, 0, w_cred, cred, n);
2060}
2061#endif /* CONFIG_WATCH_QUEUE */
2062
2063#ifdef CONFIG_KEY_NOTIFICATIONS
2064int security_watch_key(struct key *key)
2065{
2066 return call_int_hook(watch_key, 0, key);
2067}
2068#endif
2069
2070#ifdef CONFIG_SECURITY_NETWORK
2071
2072int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2073{
2074 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2075}
2076EXPORT_SYMBOL(security_unix_stream_connect);
2077
2078int security_unix_may_send(struct socket *sock, struct socket *other)
2079{
2080 return call_int_hook(unix_may_send, 0, sock, other);
2081}
2082EXPORT_SYMBOL(security_unix_may_send);
2083
2084int security_socket_create(int family, int type, int protocol, int kern)
2085{
2086 return call_int_hook(socket_create, 0, family, type, protocol, kern);
2087}
2088
2089int security_socket_post_create(struct socket *sock, int family,
2090 int type, int protocol, int kern)
2091{
2092 return call_int_hook(socket_post_create, 0, sock, family, type,
2093 protocol, kern);
2094}
2095
2096int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2097{
2098 return call_int_hook(socket_socketpair, 0, socka, sockb);
2099}
2100EXPORT_SYMBOL(security_socket_socketpair);
2101
2102int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2103{
2104 return call_int_hook(socket_bind, 0, sock, address, addrlen);
2105}
2106
2107int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2108{
2109 return call_int_hook(socket_connect, 0, sock, address, addrlen);
2110}
2111
2112int security_socket_listen(struct socket *sock, int backlog)
2113{
2114 return call_int_hook(socket_listen, 0, sock, backlog);
2115}
2116
2117int security_socket_accept(struct socket *sock, struct socket *newsock)
2118{
2119 return call_int_hook(socket_accept, 0, sock, newsock);
2120}
2121
2122int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2123{
2124 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2125}
2126
2127int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2128 int size, int flags)
2129{
2130 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2131}
2132
2133int security_socket_getsockname(struct socket *sock)
2134{
2135 return call_int_hook(socket_getsockname, 0, sock);
2136}
2137
2138int security_socket_getpeername(struct socket *sock)
2139{
2140 return call_int_hook(socket_getpeername, 0, sock);
2141}
2142
2143int security_socket_getsockopt(struct socket *sock, int level, int optname)
2144{
2145 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2146}
2147
2148int security_socket_setsockopt(struct socket *sock, int level, int optname)
2149{
2150 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2151}
2152
2153int security_socket_shutdown(struct socket *sock, int how)
2154{
2155 return call_int_hook(socket_shutdown, 0, sock, how);
2156}
2157
2158int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2159{
2160 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2161}
2162EXPORT_SYMBOL(security_sock_rcv_skb);
2163
2164int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2165 int __user *optlen, unsigned len)
2166{
2167 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2168 optval, optlen, len);
2169}
2170
2171int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2172{
2173 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2174 skb, secid);
2175}
2176EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2177
2178int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2179{
2180 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2181}
2182
2183void security_sk_free(struct sock *sk)
2184{
2185 call_void_hook(sk_free_security, sk);
2186}
2187
2188void security_sk_clone(const struct sock *sk, struct sock *newsk)
2189{
2190 call_void_hook(sk_clone_security, sk, newsk);
2191}
2192EXPORT_SYMBOL(security_sk_clone);
2193
2194void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2195{
2196 call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2197}
2198EXPORT_SYMBOL(security_sk_classify_flow);
2199
2200void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2201{
2202 call_void_hook(req_classify_flow, req, fl);
2203}
2204EXPORT_SYMBOL(security_req_classify_flow);
2205
2206void security_sock_graft(struct sock *sk, struct socket *parent)
2207{
2208 call_void_hook(sock_graft, sk, parent);
2209}
2210EXPORT_SYMBOL(security_sock_graft);
2211
2212int security_inet_conn_request(struct sock *sk,
2213 struct sk_buff *skb, struct request_sock *req)
2214{
2215 return call_int_hook(inet_conn_request, 0, sk, skb, req);
2216}
2217EXPORT_SYMBOL(security_inet_conn_request);
2218
2219void security_inet_csk_clone(struct sock *newsk,
2220 const struct request_sock *req)
2221{
2222 call_void_hook(inet_csk_clone, newsk, req);
2223}
2224
2225void security_inet_conn_established(struct sock *sk,
2226 struct sk_buff *skb)
2227{
2228 call_void_hook(inet_conn_established, sk, skb);
2229}
2230EXPORT_SYMBOL(security_inet_conn_established);
2231
2232int security_secmark_relabel_packet(u32 secid)
2233{
2234 return call_int_hook(secmark_relabel_packet, 0, secid);
2235}
2236EXPORT_SYMBOL(security_secmark_relabel_packet);
2237
2238void security_secmark_refcount_inc(void)
2239{
2240 call_void_hook(secmark_refcount_inc);
2241}
2242EXPORT_SYMBOL(security_secmark_refcount_inc);
2243
2244void security_secmark_refcount_dec(void)
2245{
2246 call_void_hook(secmark_refcount_dec);
2247}
2248EXPORT_SYMBOL(security_secmark_refcount_dec);
2249
2250int security_tun_dev_alloc_security(void **security)
2251{
2252 return call_int_hook(tun_dev_alloc_security, 0, security);
2253}
2254EXPORT_SYMBOL(security_tun_dev_alloc_security);
2255
2256void security_tun_dev_free_security(void *security)
2257{
2258 call_void_hook(tun_dev_free_security, security);
2259}
2260EXPORT_SYMBOL(security_tun_dev_free_security);
2261
2262int security_tun_dev_create(void)
2263{
2264 return call_int_hook(tun_dev_create, 0);
2265}
2266EXPORT_SYMBOL(security_tun_dev_create);
2267
2268int security_tun_dev_attach_queue(void *security)
2269{
2270 return call_int_hook(tun_dev_attach_queue, 0, security);
2271}
2272EXPORT_SYMBOL(security_tun_dev_attach_queue);
2273
2274int security_tun_dev_attach(struct sock *sk, void *security)
2275{
2276 return call_int_hook(tun_dev_attach, 0, sk, security);
2277}
2278EXPORT_SYMBOL(security_tun_dev_attach);
2279
2280int security_tun_dev_open(void *security)
2281{
2282 return call_int_hook(tun_dev_open, 0, security);
2283}
2284EXPORT_SYMBOL(security_tun_dev_open);
2285
2286int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2287{
2288 return call_int_hook(sctp_assoc_request, 0, ep, skb);
2289}
2290EXPORT_SYMBOL(security_sctp_assoc_request);
2291
2292int security_sctp_bind_connect(struct sock *sk, int optname,
2293 struct sockaddr *address, int addrlen)
2294{
2295 return call_int_hook(sctp_bind_connect, 0, sk, optname,
2296 address, addrlen);
2297}
2298EXPORT_SYMBOL(security_sctp_bind_connect);
2299
2300void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2301 struct sock *newsk)
2302{
2303 call_void_hook(sctp_sk_clone, ep, sk, newsk);
2304}
2305EXPORT_SYMBOL(security_sctp_sk_clone);
2306
2307#endif /* CONFIG_SECURITY_NETWORK */
2308
2309#ifdef CONFIG_SECURITY_INFINIBAND
2310
2311int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2312{
2313 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2314}
2315EXPORT_SYMBOL(security_ib_pkey_access);
2316
2317int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2318{
2319 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2320}
2321EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2322
2323int security_ib_alloc_security(void **sec)
2324{
2325 return call_int_hook(ib_alloc_security, 0, sec);
2326}
2327EXPORT_SYMBOL(security_ib_alloc_security);
2328
2329void security_ib_free_security(void *sec)
2330{
2331 call_void_hook(ib_free_security, sec);
2332}
2333EXPORT_SYMBOL(security_ib_free_security);
2334#endif /* CONFIG_SECURITY_INFINIBAND */
2335
2336#ifdef CONFIG_SECURITY_NETWORK_XFRM
2337
2338int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2339 struct xfrm_user_sec_ctx *sec_ctx,
2340 gfp_t gfp)
2341{
2342 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2343}
2344EXPORT_SYMBOL(security_xfrm_policy_alloc);
2345
2346int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2347 struct xfrm_sec_ctx **new_ctxp)
2348{
2349 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2350}
2351
2352void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2353{
2354 call_void_hook(xfrm_policy_free_security, ctx);
2355}
2356EXPORT_SYMBOL(security_xfrm_policy_free);
2357
2358int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2359{
2360 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2361}
2362
2363int security_xfrm_state_alloc(struct xfrm_state *x,
2364 struct xfrm_user_sec_ctx *sec_ctx)
2365{
2366 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2367}
2368EXPORT_SYMBOL(security_xfrm_state_alloc);
2369
2370int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2371 struct xfrm_sec_ctx *polsec, u32 secid)
2372{
2373 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2374}
2375
2376int security_xfrm_state_delete(struct xfrm_state *x)
2377{
2378 return call_int_hook(xfrm_state_delete_security, 0, x);
2379}
2380EXPORT_SYMBOL(security_xfrm_state_delete);
2381
2382void security_xfrm_state_free(struct xfrm_state *x)
2383{
2384 call_void_hook(xfrm_state_free_security, x);
2385}
2386
2387int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2388{
2389 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2390}
2391
2392int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2393 struct xfrm_policy *xp,
2394 const struct flowi *fl)
2395{
2396 struct security_hook_list *hp;
2397 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2398
2399 /*
2400 * Since this function is expected to return 0 or 1, the judgment
2401 * becomes difficult if multiple LSMs supply this call. Fortunately,
2402 * we can use the first LSM's judgment because currently only SELinux
2403 * supplies this call.
2404 *
2405 * For speed optimization, we explicitly break the loop rather than
2406 * using the macro
2407 */
2408 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2409 list) {
2410 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2411 break;
2412 }
2413 return rc;
2414}
2415
2416int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2417{
2418 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2419}
2420
2421void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2422{
2423 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2424 0);
2425
2426 BUG_ON(rc);
2427}
2428EXPORT_SYMBOL(security_skb_classify_flow);
2429
2430#endif /* CONFIG_SECURITY_NETWORK_XFRM */
2431
2432#ifdef CONFIG_KEYS
2433
2434int security_key_alloc(struct key *key, const struct cred *cred,
2435 unsigned long flags)
2436{
2437 return call_int_hook(key_alloc, 0, key, cred, flags);
2438}
2439
2440void security_key_free(struct key *key)
2441{
2442 call_void_hook(key_free, key);
2443}
2444
2445int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2446 enum key_need_perm need_perm)
2447{
2448 return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2449}
2450
2451int security_key_getsecurity(struct key *key, char **_buffer)
2452{
2453 *_buffer = NULL;
2454 return call_int_hook(key_getsecurity, 0, key, _buffer);
2455}
2456
2457#endif /* CONFIG_KEYS */
2458
2459#ifdef CONFIG_AUDIT
2460
2461int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2462{
2463 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2464}
2465
2466int security_audit_rule_known(struct audit_krule *krule)
2467{
2468 return call_int_hook(audit_rule_known, 0, krule);
2469}
2470
2471void security_audit_rule_free(void *lsmrule)
2472{
2473 call_void_hook(audit_rule_free, lsmrule);
2474}
2475
2476int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2477{
2478 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2479}
2480#endif /* CONFIG_AUDIT */
2481
2482#ifdef CONFIG_BPF_SYSCALL
2483int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2484{
2485 return call_int_hook(bpf, 0, cmd, attr, size);
2486}
2487int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2488{
2489 return call_int_hook(bpf_map, 0, map, fmode);
2490}
2491int security_bpf_prog(struct bpf_prog *prog)
2492{
2493 return call_int_hook(bpf_prog, 0, prog);
2494}
2495int security_bpf_map_alloc(struct bpf_map *map)
2496{
2497 return call_int_hook(bpf_map_alloc_security, 0, map);
2498}
2499int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2500{
2501 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2502}
2503void security_bpf_map_free(struct bpf_map *map)
2504{
2505 call_void_hook(bpf_map_free_security, map);
2506}
2507void security_bpf_prog_free(struct bpf_prog_aux *aux)
2508{
2509 call_void_hook(bpf_prog_free_security, aux);
2510}
2511#endif /* CONFIG_BPF_SYSCALL */
2512
2513int security_locked_down(enum lockdown_reason what)
2514{
2515 return call_int_hook(locked_down, 0, what);
2516}
2517EXPORT_SYMBOL(security_locked_down);
2518
2519#ifdef CONFIG_PERF_EVENTS
2520int security_perf_event_open(struct perf_event_attr *attr, int type)
2521{
2522 return call_int_hook(perf_event_open, 0, attr, type);
2523}
2524
2525int security_perf_event_alloc(struct perf_event *event)
2526{
2527 return call_int_hook(perf_event_alloc, 0, event);
2528}
2529
2530void security_perf_event_free(struct perf_event *event)
2531{
2532 call_void_hook(perf_event_free, event);
2533}
2534
2535int security_perf_event_read(struct perf_event *event)
2536{
2537 return call_int_hook(perf_event_read, 0, event);
2538}
2539
2540int security_perf_event_write(struct perf_event *event)
2541{
2542 return call_int_hook(perf_event_write, 0, event);
2543}
2544#endif /* CONFIG_PERF_EVENTS */