Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
 
 
   3 * This file contains the functions which manage clocksource drivers.
   4 *
   5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/device.h>
  11#include <linux/clocksource.h>
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
  15#include <linux/tick.h>
  16#include <linux/kthread.h>
  17
  18#include "tick-internal.h"
  19#include "timekeeping_internal.h"
  20
  21/**
  22 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
  23 * @mult:	pointer to mult variable
  24 * @shift:	pointer to shift variable
  25 * @from:	frequency to convert from
  26 * @to:		frequency to convert to
  27 * @maxsec:	guaranteed runtime conversion range in seconds
  28 *
  29 * The function evaluates the shift/mult pair for the scaled math
  30 * operations of clocksources and clockevents.
  31 *
  32 * @to and @from are frequency values in HZ. For clock sources @to is
  33 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
  34 * event @to is the counter frequency and @from is NSEC_PER_SEC.
  35 *
  36 * The @maxsec conversion range argument controls the time frame in
  37 * seconds which must be covered by the runtime conversion with the
  38 * calculated mult and shift factors. This guarantees that no 64bit
  39 * overflow happens when the input value of the conversion is
  40 * multiplied with the calculated mult factor. Larger ranges may
  41 * reduce the conversion accuracy by chosing smaller mult and shift
  42 * factors.
  43 */
  44void
  45clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
  46{
  47	u64 tmp;
  48	u32 sft, sftacc= 32;
  49
  50	/*
  51	 * Calculate the shift factor which is limiting the conversion
  52	 * range:
  53	 */
  54	tmp = ((u64)maxsec * from) >> 32;
  55	while (tmp) {
  56		tmp >>=1;
  57		sftacc--;
  58	}
  59
  60	/*
  61	 * Find the conversion shift/mult pair which has the best
  62	 * accuracy and fits the maxsec conversion range:
  63	 */
  64	for (sft = 32; sft > 0; sft--) {
  65		tmp = (u64) to << sft;
  66		tmp += from / 2;
  67		do_div(tmp, from);
  68		if ((tmp >> sftacc) == 0)
  69			break;
  70	}
  71	*mult = tmp;
  72	*shift = sft;
  73}
  74EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
  75
  76/*[Clocksource internal variables]---------
  77 * curr_clocksource:
  78 *	currently selected clocksource.
  79 * suspend_clocksource:
  80 *	used to calculate the suspend time.
  81 * clocksource_list:
  82 *	linked list with the registered clocksources
  83 * clocksource_mutex:
  84 *	protects manipulations to curr_clocksource and the clocksource_list
  85 * override_name:
  86 *	Name of the user-specified clocksource.
  87 */
  88static struct clocksource *curr_clocksource;
  89static struct clocksource *suspend_clocksource;
  90static LIST_HEAD(clocksource_list);
  91static DEFINE_MUTEX(clocksource_mutex);
  92static char override_name[CS_NAME_LEN];
  93static int finished_booting;
  94static u64 suspend_start;
  95
  96#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
  97static void clocksource_watchdog_work(struct work_struct *work);
  98static void clocksource_select(void);
  99
 100static LIST_HEAD(watchdog_list);
 101static struct clocksource *watchdog;
 102static struct timer_list watchdog_timer;
 103static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
 104static DEFINE_SPINLOCK(watchdog_lock);
 105static int watchdog_running;
 106static atomic_t watchdog_reset_pending;
 107
 108static inline void clocksource_watchdog_lock(unsigned long *flags)
 109{
 110	spin_lock_irqsave(&watchdog_lock, *flags);
 111}
 112
 113static inline void clocksource_watchdog_unlock(unsigned long *flags)
 114{
 115	spin_unlock_irqrestore(&watchdog_lock, *flags);
 116}
 117
 118static int clocksource_watchdog_kthread(void *data);
 119static void __clocksource_change_rating(struct clocksource *cs, int rating);
 120
 121/*
 122 * Interval: 0.5sec Threshold: 0.0625s
 123 */
 124#define WATCHDOG_INTERVAL (HZ >> 1)
 125#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
 126
 127static void clocksource_watchdog_work(struct work_struct *work)
 128{
 129	/*
 130	 * We cannot directly run clocksource_watchdog_kthread() here, because
 131	 * clocksource_select() calls timekeeping_notify() which uses
 132	 * stop_machine(). One cannot use stop_machine() from a workqueue() due
 133	 * lock inversions wrt CPU hotplug.
 134	 *
 135	 * Also, we only ever run this work once or twice during the lifetime
 136	 * of the kernel, so there is no point in creating a more permanent
 137	 * kthread for this.
 138	 *
 139	 * If kthread_run fails the next watchdog scan over the
 140	 * watchdog_list will find the unstable clock again.
 141	 */
 142	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
 143}
 144
 145static void __clocksource_unstable(struct clocksource *cs)
 146{
 147	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
 148	cs->flags |= CLOCK_SOURCE_UNSTABLE;
 149
 150	/*
 151	 * If the clocksource is registered clocksource_watchdog_kthread() will
 152	 * re-rate and re-select.
 153	 */
 154	if (list_empty(&cs->list)) {
 155		cs->rating = 0;
 156		return;
 157	}
 158
 159	if (cs->mark_unstable)
 160		cs->mark_unstable(cs);
 161
 162	/* kick clocksource_watchdog_kthread() */
 163	if (finished_booting)
 164		schedule_work(&watchdog_work);
 165}
 166
 167/**
 168 * clocksource_mark_unstable - mark clocksource unstable via watchdog
 169 * @cs:		clocksource to be marked unstable
 170 *
 171 * This function is called by the x86 TSC code to mark clocksources as unstable;
 172 * it defers demotion and re-selection to a kthread.
 
 
 173 */
 174void clocksource_mark_unstable(struct clocksource *cs)
 175{
 176	unsigned long flags;
 177
 178	spin_lock_irqsave(&watchdog_lock, flags);
 179	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
 180		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
 181			list_add(&cs->wd_list, &watchdog_list);
 182		__clocksource_unstable(cs);
 183	}
 184	spin_unlock_irqrestore(&watchdog_lock, flags);
 185}
 186
 187static void clocksource_watchdog(struct timer_list *unused)
 188{
 189	struct clocksource *cs;
 190	u64 csnow, wdnow, cslast, wdlast, delta;
 191	int64_t wd_nsec, cs_nsec;
 192	int next_cpu, reset_pending;
 193
 194	spin_lock(&watchdog_lock);
 195	if (!watchdog_running)
 196		goto out;
 197
 198	reset_pending = atomic_read(&watchdog_reset_pending);
 199
 200	list_for_each_entry(cs, &watchdog_list, wd_list) {
 201
 202		/* Clocksource already marked unstable? */
 203		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 204			if (finished_booting)
 205				schedule_work(&watchdog_work);
 206			continue;
 207		}
 208
 209		local_irq_disable();
 210		csnow = cs->read(cs);
 211		wdnow = watchdog->read(watchdog);
 212		local_irq_enable();
 213
 214		/* Clocksource initialized ? */
 215		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
 216		    atomic_read(&watchdog_reset_pending)) {
 217			cs->flags |= CLOCK_SOURCE_WATCHDOG;
 218			cs->wd_last = wdnow;
 219			cs->cs_last = csnow;
 220			continue;
 221		}
 222
 223		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
 224		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
 225					     watchdog->shift);
 226
 227		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
 228		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
 229		wdlast = cs->wd_last; /* save these in case we print them */
 230		cslast = cs->cs_last;
 231		cs->cs_last = csnow;
 232		cs->wd_last = wdnow;
 233
 234		if (atomic_read(&watchdog_reset_pending))
 235			continue;
 236
 237		/* Check the deviation from the watchdog clocksource. */
 238		if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
 239			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
 240				smp_processor_id(), cs->name);
 241			pr_warn("                      '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
 242				watchdog->name, wdnow, wdlast, watchdog->mask);
 243			pr_warn("                      '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
 244				cs->name, csnow, cslast, cs->mask);
 245			__clocksource_unstable(cs);
 246			continue;
 247		}
 248
 249		if (cs == curr_clocksource && cs->tick_stable)
 250			cs->tick_stable(cs);
 251
 252		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
 253		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
 254		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
 255			/* Mark it valid for high-res. */
 256			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 257
 258			/*
 259			 * clocksource_done_booting() will sort it if
 260			 * finished_booting is not set yet.
 261			 */
 262			if (!finished_booting)
 263				continue;
 264
 265			/*
 266			 * If this is not the current clocksource let
 267			 * the watchdog thread reselect it. Due to the
 268			 * change to high res this clocksource might
 269			 * be preferred now. If it is the current
 270			 * clocksource let the tick code know about
 271			 * that change.
 272			 */
 273			if (cs != curr_clocksource) {
 274				cs->flags |= CLOCK_SOURCE_RESELECT;
 275				schedule_work(&watchdog_work);
 276			} else {
 277				tick_clock_notify();
 278			}
 279		}
 280	}
 281
 282	/*
 283	 * We only clear the watchdog_reset_pending, when we did a
 284	 * full cycle through all clocksources.
 285	 */
 286	if (reset_pending)
 287		atomic_dec(&watchdog_reset_pending);
 288
 289	/*
 290	 * Cycle through CPUs to check if the CPUs stay synchronized
 291	 * to each other.
 292	 */
 293	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
 294	if (next_cpu >= nr_cpu_ids)
 295		next_cpu = cpumask_first(cpu_online_mask);
 296	watchdog_timer.expires += WATCHDOG_INTERVAL;
 297	add_timer_on(&watchdog_timer, next_cpu);
 298out:
 299	spin_unlock(&watchdog_lock);
 300}
 301
 302static inline void clocksource_start_watchdog(void)
 303{
 304	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
 305		return;
 306	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
 
 307	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
 308	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
 309	watchdog_running = 1;
 310}
 311
 312static inline void clocksource_stop_watchdog(void)
 313{
 314	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
 315		return;
 316	del_timer(&watchdog_timer);
 317	watchdog_running = 0;
 318}
 319
 320static inline void clocksource_reset_watchdog(void)
 321{
 322	struct clocksource *cs;
 323
 324	list_for_each_entry(cs, &watchdog_list, wd_list)
 325		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 326}
 327
 328static void clocksource_resume_watchdog(void)
 329{
 330	atomic_inc(&watchdog_reset_pending);
 331}
 332
 333static void clocksource_enqueue_watchdog(struct clocksource *cs)
 334{
 335	INIT_LIST_HEAD(&cs->wd_list);
 336
 
 337	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 338		/* cs is a clocksource to be watched. */
 339		list_add(&cs->wd_list, &watchdog_list);
 340		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 341	} else {
 342		/* cs is a watchdog. */
 343		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 344			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 345	}
 
 346}
 347
 348static void clocksource_select_watchdog(bool fallback)
 349{
 350	struct clocksource *cs, *old_wd;
 351	unsigned long flags;
 352
 353	spin_lock_irqsave(&watchdog_lock, flags);
 354	/* save current watchdog */
 355	old_wd = watchdog;
 356	if (fallback)
 357		watchdog = NULL;
 358
 359	list_for_each_entry(cs, &clocksource_list, list) {
 360		/* cs is a clocksource to be watched. */
 361		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
 362			continue;
 363
 364		/* Skip current if we were requested for a fallback. */
 365		if (fallback && cs == old_wd)
 366			continue;
 367
 368		/* Pick the best watchdog. */
 369		if (!watchdog || cs->rating > watchdog->rating)
 370			watchdog = cs;
 371	}
 372	/* If we failed to find a fallback restore the old one. */
 373	if (!watchdog)
 374		watchdog = old_wd;
 375
 376	/* If we changed the watchdog we need to reset cycles. */
 377	if (watchdog != old_wd)
 378		clocksource_reset_watchdog();
 379
 380	/* Check if the watchdog timer needs to be started. */
 381	clocksource_start_watchdog();
 382	spin_unlock_irqrestore(&watchdog_lock, flags);
 383}
 384
 385static void clocksource_dequeue_watchdog(struct clocksource *cs)
 386{
 
 
 
 387	if (cs != watchdog) {
 388		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 389			/* cs is a watched clocksource. */
 390			list_del_init(&cs->wd_list);
 391			/* Check if the watchdog timer needs to be stopped. */
 392			clocksource_stop_watchdog();
 393		}
 394	}
 
 395}
 396
 397static int __clocksource_watchdog_kthread(void)
 398{
 399	struct clocksource *cs, *tmp;
 400	unsigned long flags;
 
 401	int select = 0;
 402
 403	spin_lock_irqsave(&watchdog_lock, flags);
 404	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
 405		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 406			list_del_init(&cs->wd_list);
 407			__clocksource_change_rating(cs, 0);
 408			select = 1;
 409		}
 410		if (cs->flags & CLOCK_SOURCE_RESELECT) {
 411			cs->flags &= ~CLOCK_SOURCE_RESELECT;
 412			select = 1;
 413		}
 414	}
 415	/* Check if the watchdog timer needs to be stopped. */
 416	clocksource_stop_watchdog();
 417	spin_unlock_irqrestore(&watchdog_lock, flags);
 418
 
 
 
 
 
 419	return select;
 420}
 421
 422static int clocksource_watchdog_kthread(void *data)
 423{
 424	mutex_lock(&clocksource_mutex);
 425	if (__clocksource_watchdog_kthread())
 426		clocksource_select();
 427	mutex_unlock(&clocksource_mutex);
 428	return 0;
 429}
 430
 431static bool clocksource_is_watchdog(struct clocksource *cs)
 432{
 433	return cs == watchdog;
 434}
 435
 436#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
 437
 438static void clocksource_enqueue_watchdog(struct clocksource *cs)
 439{
 440	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 441		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 442}
 443
 444static void clocksource_select_watchdog(bool fallback) { }
 445static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
 446static inline void clocksource_resume_watchdog(void) { }
 447static inline int __clocksource_watchdog_kthread(void) { return 0; }
 448static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
 449void clocksource_mark_unstable(struct clocksource *cs) { }
 450
 451static inline void clocksource_watchdog_lock(unsigned long *flags) { }
 452static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
 453
 454#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
 455
 456static bool clocksource_is_suspend(struct clocksource *cs)
 457{
 458	return cs == suspend_clocksource;
 459}
 460
 461static void __clocksource_suspend_select(struct clocksource *cs)
 462{
 463	/*
 464	 * Skip the clocksource which will be stopped in suspend state.
 465	 */
 466	if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
 467		return;
 468
 469	/*
 470	 * The nonstop clocksource can be selected as the suspend clocksource to
 471	 * calculate the suspend time, so it should not supply suspend/resume
 472	 * interfaces to suspend the nonstop clocksource when system suspends.
 473	 */
 474	if (cs->suspend || cs->resume) {
 475		pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
 476			cs->name);
 477	}
 478
 479	/* Pick the best rating. */
 480	if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
 481		suspend_clocksource = cs;
 482}
 483
 484/**
 485 * clocksource_suspend_select - Select the best clocksource for suspend timing
 486 * @fallback:	if select a fallback clocksource
 487 */
 488static void clocksource_suspend_select(bool fallback)
 489{
 490	struct clocksource *cs, *old_suspend;
 491
 492	old_suspend = suspend_clocksource;
 493	if (fallback)
 494		suspend_clocksource = NULL;
 495
 496	list_for_each_entry(cs, &clocksource_list, list) {
 497		/* Skip current if we were requested for a fallback. */
 498		if (fallback && cs == old_suspend)
 499			continue;
 500
 501		__clocksource_suspend_select(cs);
 502	}
 503}
 504
 505/**
 506 * clocksource_start_suspend_timing - Start measuring the suspend timing
 507 * @cs:			current clocksource from timekeeping
 508 * @start_cycles:	current cycles from timekeeping
 509 *
 510 * This function will save the start cycle values of suspend timer to calculate
 511 * the suspend time when resuming system.
 512 *
 513 * This function is called late in the suspend process from timekeeping_suspend(),
 514 * that means processes are freezed, non-boot cpus and interrupts are disabled
 515 * now. It is therefore possible to start the suspend timer without taking the
 516 * clocksource mutex.
 517 */
 518void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
 519{
 520	if (!suspend_clocksource)
 521		return;
 522
 523	/*
 524	 * If current clocksource is the suspend timer, we should use the
 525	 * tkr_mono.cycle_last value as suspend_start to avoid same reading
 526	 * from suspend timer.
 527	 */
 528	if (clocksource_is_suspend(cs)) {
 529		suspend_start = start_cycles;
 530		return;
 531	}
 532
 533	if (suspend_clocksource->enable &&
 534	    suspend_clocksource->enable(suspend_clocksource)) {
 535		pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
 536		return;
 537	}
 538
 539	suspend_start = suspend_clocksource->read(suspend_clocksource);
 540}
 541
 542/**
 543 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
 544 * @cs:		current clocksource from timekeeping
 545 * @cycle_now:	current cycles from timekeeping
 546 *
 547 * This function will calculate the suspend time from suspend timer.
 548 *
 549 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
 550 *
 551 * This function is called early in the resume process from timekeeping_resume(),
 552 * that means there is only one cpu, no processes are running and the interrupts
 553 * are disabled. It is therefore possible to stop the suspend timer without
 554 * taking the clocksource mutex.
 555 */
 556u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
 557{
 558	u64 now, delta, nsec = 0;
 559
 560	if (!suspend_clocksource)
 561		return 0;
 562
 563	/*
 564	 * If current clocksource is the suspend timer, we should use the
 565	 * tkr_mono.cycle_last value from timekeeping as current cycle to
 566	 * avoid same reading from suspend timer.
 567	 */
 568	if (clocksource_is_suspend(cs))
 569		now = cycle_now;
 570	else
 571		now = suspend_clocksource->read(suspend_clocksource);
 572
 573	if (now > suspend_start) {
 574		delta = clocksource_delta(now, suspend_start,
 575					  suspend_clocksource->mask);
 576		nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
 577				       suspend_clocksource->shift);
 578	}
 579
 580	/*
 581	 * Disable the suspend timer to save power if current clocksource is
 582	 * not the suspend timer.
 583	 */
 584	if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
 585		suspend_clocksource->disable(suspend_clocksource);
 586
 587	return nsec;
 588}
 589
 590/**
 591 * clocksource_suspend - suspend the clocksource(s)
 592 */
 593void clocksource_suspend(void)
 594{
 595	struct clocksource *cs;
 596
 597	list_for_each_entry_reverse(cs, &clocksource_list, list)
 598		if (cs->suspend)
 599			cs->suspend(cs);
 600}
 601
 602/**
 603 * clocksource_resume - resume the clocksource(s)
 604 */
 605void clocksource_resume(void)
 606{
 607	struct clocksource *cs;
 608
 609	list_for_each_entry(cs, &clocksource_list, list)
 610		if (cs->resume)
 611			cs->resume(cs);
 612
 613	clocksource_resume_watchdog();
 614}
 615
 616/**
 617 * clocksource_touch_watchdog - Update watchdog
 618 *
 619 * Update the watchdog after exception contexts such as kgdb so as not
 620 * to incorrectly trip the watchdog. This might fail when the kernel
 621 * was stopped in code which holds watchdog_lock.
 622 */
 623void clocksource_touch_watchdog(void)
 624{
 625	clocksource_resume_watchdog();
 626}
 627
 628/**
 629 * clocksource_max_adjustment- Returns max adjustment amount
 630 * @cs:         Pointer to clocksource
 631 *
 632 */
 633static u32 clocksource_max_adjustment(struct clocksource *cs)
 634{
 635	u64 ret;
 636	/*
 637	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
 638	 */
 639	ret = (u64)cs->mult * 11;
 640	do_div(ret,100);
 641	return (u32)ret;
 642}
 643
 644/**
 645 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
 646 * @mult:	cycle to nanosecond multiplier
 647 * @shift:	cycle to nanosecond divisor (power of two)
 648 * @maxadj:	maximum adjustment value to mult (~11%)
 649 * @mask:	bitmask for two's complement subtraction of non 64 bit counters
 650 * @max_cyc:	maximum cycle value before potential overflow (does not include
 651 *		any safety margin)
 652 *
 653 * NOTE: This function includes a safety margin of 50%, in other words, we
 654 * return half the number of nanoseconds the hardware counter can technically
 655 * cover. This is done so that we can potentially detect problems caused by
 656 * delayed timers or bad hardware, which might result in time intervals that
 657 * are larger than what the math used can handle without overflows.
 658 */
 659u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
 660{
 661	u64 max_nsecs, max_cycles;
 662
 663	/*
 664	 * Calculate the maximum number of cycles that we can pass to the
 665	 * cyc2ns() function without overflowing a 64-bit result.
 666	 */
 667	max_cycles = ULLONG_MAX;
 668	do_div(max_cycles, mult+maxadj);
 669
 670	/*
 671	 * The actual maximum number of cycles we can defer the clocksource is
 672	 * determined by the minimum of max_cycles and mask.
 673	 * Note: Here we subtract the maxadj to make sure we don't sleep for
 674	 * too long if there's a large negative adjustment.
 675	 */
 676	max_cycles = min(max_cycles, mask);
 677	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
 678
 679	/* return the max_cycles value as well if requested */
 680	if (max_cyc)
 681		*max_cyc = max_cycles;
 682
 683	/* Return 50% of the actual maximum, so we can detect bad values */
 684	max_nsecs >>= 1;
 685
 686	return max_nsecs;
 687}
 688
 689/**
 690 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
 691 * @cs:         Pointer to clocksource to be updated
 692 *
 693 */
 694static inline void clocksource_update_max_deferment(struct clocksource *cs)
 695{
 696	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
 697						cs->maxadj, cs->mask,
 698						&cs->max_cycles);
 699}
 700
 701#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
 702
 703static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
 704{
 705	struct clocksource *cs;
 706
 707	if (!finished_booting || list_empty(&clocksource_list))
 708		return NULL;
 709
 710	/*
 711	 * We pick the clocksource with the highest rating. If oneshot
 712	 * mode is active, we pick the highres valid clocksource with
 713	 * the best rating.
 714	 */
 715	list_for_each_entry(cs, &clocksource_list, list) {
 716		if (skipcur && cs == curr_clocksource)
 717			continue;
 718		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
 719			continue;
 720		return cs;
 721	}
 722	return NULL;
 723}
 724
 725static void __clocksource_select(bool skipcur)
 726{
 727	bool oneshot = tick_oneshot_mode_active();
 728	struct clocksource *best, *cs;
 729
 730	/* Find the best suitable clocksource */
 731	best = clocksource_find_best(oneshot, skipcur);
 732	if (!best)
 733		return;
 734
 735	if (!strlen(override_name))
 736		goto found;
 737
 738	/* Check for the override clocksource. */
 739	list_for_each_entry(cs, &clocksource_list, list) {
 740		if (skipcur && cs == curr_clocksource)
 741			continue;
 742		if (strcmp(cs->name, override_name) != 0)
 743			continue;
 744		/*
 745		 * Check to make sure we don't switch to a non-highres
 746		 * capable clocksource if the tick code is in oneshot
 747		 * mode (highres or nohz)
 748		 */
 749		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
 750			/* Override clocksource cannot be used. */
 751			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 752				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
 753					cs->name);
 754				override_name[0] = 0;
 755			} else {
 756				/*
 757				 * The override cannot be currently verified.
 758				 * Deferring to let the watchdog check.
 759				 */
 760				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
 761					cs->name);
 762			}
 763		} else
 764			/* Override clocksource can be used. */
 765			best = cs;
 766		break;
 767	}
 768
 769found:
 770	if (curr_clocksource != best && !timekeeping_notify(best)) {
 771		pr_info("Switched to clocksource %s\n", best->name);
 772		curr_clocksource = best;
 773	}
 774}
 775
 776/**
 777 * clocksource_select - Select the best clocksource available
 778 *
 779 * Private function. Must hold clocksource_mutex when called.
 780 *
 781 * Select the clocksource with the best rating, or the clocksource,
 782 * which is selected by userspace override.
 783 */
 784static void clocksource_select(void)
 785{
 786	__clocksource_select(false);
 787}
 788
 789static void clocksource_select_fallback(void)
 790{
 791	__clocksource_select(true);
 792}
 793
 794#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
 795static inline void clocksource_select(void) { }
 796static inline void clocksource_select_fallback(void) { }
 797
 798#endif
 799
 800/*
 801 * clocksource_done_booting - Called near the end of core bootup
 802 *
 803 * Hack to avoid lots of clocksource churn at boot time.
 804 * We use fs_initcall because we want this to start before
 805 * device_initcall but after subsys_initcall.
 806 */
 807static int __init clocksource_done_booting(void)
 808{
 809	mutex_lock(&clocksource_mutex);
 810	curr_clocksource = clocksource_default_clock();
 811	finished_booting = 1;
 812	/*
 813	 * Run the watchdog first to eliminate unstable clock sources
 814	 */
 815	__clocksource_watchdog_kthread();
 816	clocksource_select();
 817	mutex_unlock(&clocksource_mutex);
 818	return 0;
 819}
 820fs_initcall(clocksource_done_booting);
 821
 822/*
 823 * Enqueue the clocksource sorted by rating
 824 */
 825static void clocksource_enqueue(struct clocksource *cs)
 826{
 827	struct list_head *entry = &clocksource_list;
 828	struct clocksource *tmp;
 829
 830	list_for_each_entry(tmp, &clocksource_list, list) {
 831		/* Keep track of the place, where to insert */
 832		if (tmp->rating < cs->rating)
 833			break;
 834		entry = &tmp->list;
 835	}
 836	list_add(&cs->list, entry);
 837}
 838
 839/**
 840 * __clocksource_update_freq_scale - Used update clocksource with new freq
 841 * @cs:		clocksource to be registered
 842 * @scale:	Scale factor multiplied against freq to get clocksource hz
 843 * @freq:	clocksource frequency (cycles per second) divided by scale
 844 *
 845 * This should only be called from the clocksource->enable() method.
 846 *
 847 * This *SHOULD NOT* be called directly! Please use the
 848 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
 849 * functions.
 850 */
 851void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
 852{
 853	u64 sec;
 854
 855	/*
 856	 * Default clocksources are *special* and self-define their mult/shift.
 857	 * But, you're not special, so you should specify a freq value.
 858	 */
 859	if (freq) {
 860		/*
 861		 * Calc the maximum number of seconds which we can run before
 862		 * wrapping around. For clocksources which have a mask > 32-bit
 863		 * we need to limit the max sleep time to have a good
 864		 * conversion precision. 10 minutes is still a reasonable
 865		 * amount. That results in a shift value of 24 for a
 866		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
 867		 * ~ 0.06ppm granularity for NTP.
 868		 */
 869		sec = cs->mask;
 870		do_div(sec, freq);
 871		do_div(sec, scale);
 872		if (!sec)
 873			sec = 1;
 874		else if (sec > 600 && cs->mask > UINT_MAX)
 875			sec = 600;
 876
 877		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
 878				       NSEC_PER_SEC / scale, sec * scale);
 879	}
 880	/*
 881	 * Ensure clocksources that have large 'mult' values don't overflow
 882	 * when adjusted.
 883	 */
 884	cs->maxadj = clocksource_max_adjustment(cs);
 885	while (freq && ((cs->mult + cs->maxadj < cs->mult)
 886		|| (cs->mult - cs->maxadj > cs->mult))) {
 887		cs->mult >>= 1;
 888		cs->shift--;
 889		cs->maxadj = clocksource_max_adjustment(cs);
 890	}
 891
 892	/*
 893	 * Only warn for *special* clocksources that self-define
 894	 * their mult/shift values and don't specify a freq.
 895	 */
 896	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
 897		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
 898		cs->name);
 899
 900	clocksource_update_max_deferment(cs);
 901
 902	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
 903		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
 904}
 905EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
 906
 907/**
 908 * __clocksource_register_scale - Used to install new clocksources
 909 * @cs:		clocksource to be registered
 910 * @scale:	Scale factor multiplied against freq to get clocksource hz
 911 * @freq:	clocksource frequency (cycles per second) divided by scale
 912 *
 913 * Returns -EBUSY if registration fails, zero otherwise.
 914 *
 915 * This *SHOULD NOT* be called directly! Please use the
 916 * clocksource_register_hz() or clocksource_register_khz helper functions.
 917 */
 918int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
 919{
 920	unsigned long flags;
 921
 922	clocksource_arch_init(cs);
 923
 924	/* Initialize mult/shift and max_idle_ns */
 925	__clocksource_update_freq_scale(cs, scale, freq);
 926
 927	/* Add clocksource to the clocksource list */
 928	mutex_lock(&clocksource_mutex);
 929
 930	clocksource_watchdog_lock(&flags);
 931	clocksource_enqueue(cs);
 932	clocksource_enqueue_watchdog(cs);
 933	clocksource_watchdog_unlock(&flags);
 934
 935	clocksource_select();
 936	clocksource_select_watchdog(false);
 937	__clocksource_suspend_select(cs);
 938	mutex_unlock(&clocksource_mutex);
 939	return 0;
 940}
 941EXPORT_SYMBOL_GPL(__clocksource_register_scale);
 942
 943static void __clocksource_change_rating(struct clocksource *cs, int rating)
 944{
 945	list_del(&cs->list);
 946	cs->rating = rating;
 947	clocksource_enqueue(cs);
 948}
 949
 950/**
 951 * clocksource_change_rating - Change the rating of a registered clocksource
 952 * @cs:		clocksource to be changed
 953 * @rating:	new rating
 954 */
 955void clocksource_change_rating(struct clocksource *cs, int rating)
 956{
 957	unsigned long flags;
 958
 959	mutex_lock(&clocksource_mutex);
 960	clocksource_watchdog_lock(&flags);
 961	__clocksource_change_rating(cs, rating);
 962	clocksource_watchdog_unlock(&flags);
 963
 964	clocksource_select();
 965	clocksource_select_watchdog(false);
 966	clocksource_suspend_select(false);
 967	mutex_unlock(&clocksource_mutex);
 968}
 969EXPORT_SYMBOL(clocksource_change_rating);
 970
 971/*
 972 * Unbind clocksource @cs. Called with clocksource_mutex held
 973 */
 974static int clocksource_unbind(struct clocksource *cs)
 975{
 976	unsigned long flags;
 977
 978	if (clocksource_is_watchdog(cs)) {
 979		/* Select and try to install a replacement watchdog. */
 980		clocksource_select_watchdog(true);
 981		if (clocksource_is_watchdog(cs))
 982			return -EBUSY;
 983	}
 984
 985	if (cs == curr_clocksource) {
 986		/* Select and try to install a replacement clock source */
 987		clocksource_select_fallback();
 988		if (curr_clocksource == cs)
 989			return -EBUSY;
 990	}
 991
 992	if (clocksource_is_suspend(cs)) {
 993		/*
 994		 * Select and try to install a replacement suspend clocksource.
 995		 * If no replacement suspend clocksource, we will just let the
 996		 * clocksource go and have no suspend clocksource.
 997		 */
 998		clocksource_suspend_select(true);
 999	}
1000
1001	clocksource_watchdog_lock(&flags);
1002	clocksource_dequeue_watchdog(cs);
1003	list_del_init(&cs->list);
1004	clocksource_watchdog_unlock(&flags);
1005
1006	return 0;
1007}
1008
1009/**
1010 * clocksource_unregister - remove a registered clocksource
1011 * @cs:	clocksource to be unregistered
1012 */
1013int clocksource_unregister(struct clocksource *cs)
1014{
1015	int ret = 0;
1016
1017	mutex_lock(&clocksource_mutex);
1018	if (!list_empty(&cs->list))
1019		ret = clocksource_unbind(cs);
1020	mutex_unlock(&clocksource_mutex);
1021	return ret;
1022}
1023EXPORT_SYMBOL(clocksource_unregister);
1024
1025#ifdef CONFIG_SYSFS
1026/**
1027 * current_clocksource_show - sysfs interface for current clocksource
1028 * @dev:	unused
1029 * @attr:	unused
1030 * @buf:	char buffer to be filled with clocksource list
1031 *
1032 * Provides sysfs interface for listing current clocksource.
1033 */
1034static ssize_t current_clocksource_show(struct device *dev,
1035					struct device_attribute *attr,
1036					char *buf)
1037{
1038	ssize_t count = 0;
1039
1040	mutex_lock(&clocksource_mutex);
1041	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1042	mutex_unlock(&clocksource_mutex);
1043
1044	return count;
1045}
1046
1047ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1048{
1049	size_t ret = cnt;
1050
1051	/* strings from sysfs write are not 0 terminated! */
1052	if (!cnt || cnt >= CS_NAME_LEN)
1053		return -EINVAL;
1054
1055	/* strip of \n: */
1056	if (buf[cnt-1] == '\n')
1057		cnt--;
1058	if (cnt > 0)
1059		memcpy(dst, buf, cnt);
1060	dst[cnt] = 0;
1061	return ret;
1062}
1063
1064/**
1065 * current_clocksource_store - interface for manually overriding clocksource
1066 * @dev:	unused
1067 * @attr:	unused
1068 * @buf:	name of override clocksource
1069 * @count:	length of buffer
1070 *
1071 * Takes input from sysfs interface for manually overriding the default
1072 * clocksource selection.
1073 */
1074static ssize_t current_clocksource_store(struct device *dev,
1075					 struct device_attribute *attr,
1076					 const char *buf, size_t count)
1077{
1078	ssize_t ret;
1079
1080	mutex_lock(&clocksource_mutex);
1081
1082	ret = sysfs_get_uname(buf, override_name, count);
1083	if (ret >= 0)
1084		clocksource_select();
1085
1086	mutex_unlock(&clocksource_mutex);
1087
1088	return ret;
1089}
1090static DEVICE_ATTR_RW(current_clocksource);
1091
1092/**
1093 * unbind_clocksource_store - interface for manually unbinding clocksource
1094 * @dev:	unused
1095 * @attr:	unused
1096 * @buf:	unused
1097 * @count:	length of buffer
1098 *
1099 * Takes input from sysfs interface for manually unbinding a clocksource.
1100 */
1101static ssize_t unbind_clocksource_store(struct device *dev,
1102					struct device_attribute *attr,
1103					const char *buf, size_t count)
1104{
1105	struct clocksource *cs;
1106	char name[CS_NAME_LEN];
1107	ssize_t ret;
1108
1109	ret = sysfs_get_uname(buf, name, count);
1110	if (ret < 0)
1111		return ret;
1112
1113	ret = -ENODEV;
1114	mutex_lock(&clocksource_mutex);
1115	list_for_each_entry(cs, &clocksource_list, list) {
1116		if (strcmp(cs->name, name))
1117			continue;
1118		ret = clocksource_unbind(cs);
1119		break;
1120	}
1121	mutex_unlock(&clocksource_mutex);
1122
1123	return ret ? ret : count;
1124}
1125static DEVICE_ATTR_WO(unbind_clocksource);
1126
1127/**
1128 * available_clocksource_show - sysfs interface for listing clocksource
1129 * @dev:	unused
1130 * @attr:	unused
1131 * @buf:	char buffer to be filled with clocksource list
1132 *
1133 * Provides sysfs interface for listing registered clocksources
1134 */
1135static ssize_t available_clocksource_show(struct device *dev,
1136					  struct device_attribute *attr,
1137					  char *buf)
 
1138{
1139	struct clocksource *src;
1140	ssize_t count = 0;
1141
1142	mutex_lock(&clocksource_mutex);
1143	list_for_each_entry(src, &clocksource_list, list) {
1144		/*
1145		 * Don't show non-HRES clocksource if the tick code is
1146		 * in one shot mode (highres=on or nohz=on)
1147		 */
1148		if (!tick_oneshot_mode_active() ||
1149		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1150			count += snprintf(buf + count,
1151				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1152				  "%s ", src->name);
1153	}
1154	mutex_unlock(&clocksource_mutex);
1155
1156	count += snprintf(buf + count,
1157			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1158
1159	return count;
1160}
1161static DEVICE_ATTR_RO(available_clocksource);
1162
1163static struct attribute *clocksource_attrs[] = {
1164	&dev_attr_current_clocksource.attr,
1165	&dev_attr_unbind_clocksource.attr,
1166	&dev_attr_available_clocksource.attr,
1167	NULL
1168};
1169ATTRIBUTE_GROUPS(clocksource);
 
 
 
1170
1171static struct bus_type clocksource_subsys = {
1172	.name = "clocksource",
1173	.dev_name = "clocksource",
1174};
1175
1176static struct device device_clocksource = {
1177	.id	= 0,
1178	.bus	= &clocksource_subsys,
1179	.groups	= clocksource_groups,
1180};
1181
1182static int __init init_clocksource_sysfs(void)
1183{
1184	int error = subsys_system_register(&clocksource_subsys, NULL);
1185
1186	if (!error)
1187		error = device_register(&device_clocksource);
1188
 
 
 
 
 
 
 
 
 
 
1189	return error;
1190}
1191
1192device_initcall(init_clocksource_sysfs);
1193#endif /* CONFIG_SYSFS */
1194
1195/**
1196 * boot_override_clocksource - boot clock override
1197 * @str:	override name
1198 *
1199 * Takes a clocksource= boot argument and uses it
1200 * as the clocksource override name.
1201 */
1202static int __init boot_override_clocksource(char* str)
1203{
1204	mutex_lock(&clocksource_mutex);
1205	if (str)
1206		strlcpy(override_name, str, sizeof(override_name));
1207	mutex_unlock(&clocksource_mutex);
1208	return 1;
1209}
1210
1211__setup("clocksource=", boot_override_clocksource);
1212
1213/**
1214 * boot_override_clock - Compatibility layer for deprecated boot option
1215 * @str:	override name
1216 *
1217 * DEPRECATED! Takes a clock= boot argument and uses it
1218 * as the clocksource override name
1219 */
1220static int __init boot_override_clock(char* str)
1221{
1222	if (!strcmp(str, "pmtmr")) {
1223		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1224		return boot_override_clocksource("acpi_pm");
1225	}
1226	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1227	return boot_override_clocksource(str);
1228}
1229
1230__setup("clock=", boot_override_clock);
v4.6
 
   1/*
   2 * linux/kernel/time/clocksource.c
   3 *
   4 * This file contains the functions which manage clocksource drivers.
   5 *
   6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 *
  22 * TODO WishList:
  23 *   o Allow clocksource drivers to be unregistered
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/device.h>
  29#include <linux/clocksource.h>
  30#include <linux/init.h>
  31#include <linux/module.h>
  32#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
  33#include <linux/tick.h>
  34#include <linux/kthread.h>
  35
  36#include "tick-internal.h"
  37#include "timekeeping_internal.h"
  38
  39/**
  40 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
  41 * @mult:	pointer to mult variable
  42 * @shift:	pointer to shift variable
  43 * @from:	frequency to convert from
  44 * @to:		frequency to convert to
  45 * @maxsec:	guaranteed runtime conversion range in seconds
  46 *
  47 * The function evaluates the shift/mult pair for the scaled math
  48 * operations of clocksources and clockevents.
  49 *
  50 * @to and @from are frequency values in HZ. For clock sources @to is
  51 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
  52 * event @to is the counter frequency and @from is NSEC_PER_SEC.
  53 *
  54 * The @maxsec conversion range argument controls the time frame in
  55 * seconds which must be covered by the runtime conversion with the
  56 * calculated mult and shift factors. This guarantees that no 64bit
  57 * overflow happens when the input value of the conversion is
  58 * multiplied with the calculated mult factor. Larger ranges may
  59 * reduce the conversion accuracy by chosing smaller mult and shift
  60 * factors.
  61 */
  62void
  63clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
  64{
  65	u64 tmp;
  66	u32 sft, sftacc= 32;
  67
  68	/*
  69	 * Calculate the shift factor which is limiting the conversion
  70	 * range:
  71	 */
  72	tmp = ((u64)maxsec * from) >> 32;
  73	while (tmp) {
  74		tmp >>=1;
  75		sftacc--;
  76	}
  77
  78	/*
  79	 * Find the conversion shift/mult pair which has the best
  80	 * accuracy and fits the maxsec conversion range:
  81	 */
  82	for (sft = 32; sft > 0; sft--) {
  83		tmp = (u64) to << sft;
  84		tmp += from / 2;
  85		do_div(tmp, from);
  86		if ((tmp >> sftacc) == 0)
  87			break;
  88	}
  89	*mult = tmp;
  90	*shift = sft;
  91}
 
  92
  93/*[Clocksource internal variables]---------
  94 * curr_clocksource:
  95 *	currently selected clocksource.
 
 
  96 * clocksource_list:
  97 *	linked list with the registered clocksources
  98 * clocksource_mutex:
  99 *	protects manipulations to curr_clocksource and the clocksource_list
 100 * override_name:
 101 *	Name of the user-specified clocksource.
 102 */
 103static struct clocksource *curr_clocksource;
 
 104static LIST_HEAD(clocksource_list);
 105static DEFINE_MUTEX(clocksource_mutex);
 106static char override_name[CS_NAME_LEN];
 107static int finished_booting;
 
 108
 109#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
 110static void clocksource_watchdog_work(struct work_struct *work);
 111static void clocksource_select(void);
 112
 113static LIST_HEAD(watchdog_list);
 114static struct clocksource *watchdog;
 115static struct timer_list watchdog_timer;
 116static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
 117static DEFINE_SPINLOCK(watchdog_lock);
 118static int watchdog_running;
 119static atomic_t watchdog_reset_pending;
 120
 
 
 
 
 
 
 
 
 
 
 121static int clocksource_watchdog_kthread(void *data);
 122static void __clocksource_change_rating(struct clocksource *cs, int rating);
 123
 124/*
 125 * Interval: 0.5sec Threshold: 0.0625s
 126 */
 127#define WATCHDOG_INTERVAL (HZ >> 1)
 128#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
 129
 130static void clocksource_watchdog_work(struct work_struct *work)
 131{
 132	/*
 
 
 
 
 
 
 
 
 
 133	 * If kthread_run fails the next watchdog scan over the
 134	 * watchdog_list will find the unstable clock again.
 135	 */
 136	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
 137}
 138
 139static void __clocksource_unstable(struct clocksource *cs)
 140{
 141	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
 142	cs->flags |= CLOCK_SOURCE_UNSTABLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 143	if (finished_booting)
 144		schedule_work(&watchdog_work);
 145}
 146
 147/**
 148 * clocksource_mark_unstable - mark clocksource unstable via watchdog
 149 * @cs:		clocksource to be marked unstable
 150 *
 151 * This function is called instead of clocksource_change_rating from
 152 * cpu hotplug code to avoid a deadlock between the clocksource mutex
 153 * and the cpu hotplug mutex. It defers the update of the clocksource
 154 * to the watchdog thread.
 155 */
 156void clocksource_mark_unstable(struct clocksource *cs)
 157{
 158	unsigned long flags;
 159
 160	spin_lock_irqsave(&watchdog_lock, flags);
 161	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
 162		if (list_empty(&cs->wd_list))
 163			list_add(&cs->wd_list, &watchdog_list);
 164		__clocksource_unstable(cs);
 165	}
 166	spin_unlock_irqrestore(&watchdog_lock, flags);
 167}
 168
 169static void clocksource_watchdog(unsigned long data)
 170{
 171	struct clocksource *cs;
 172	cycle_t csnow, wdnow, cslast, wdlast, delta;
 173	int64_t wd_nsec, cs_nsec;
 174	int next_cpu, reset_pending;
 175
 176	spin_lock(&watchdog_lock);
 177	if (!watchdog_running)
 178		goto out;
 179
 180	reset_pending = atomic_read(&watchdog_reset_pending);
 181
 182	list_for_each_entry(cs, &watchdog_list, wd_list) {
 183
 184		/* Clocksource already marked unstable? */
 185		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 186			if (finished_booting)
 187				schedule_work(&watchdog_work);
 188			continue;
 189		}
 190
 191		local_irq_disable();
 192		csnow = cs->read(cs);
 193		wdnow = watchdog->read(watchdog);
 194		local_irq_enable();
 195
 196		/* Clocksource initialized ? */
 197		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
 198		    atomic_read(&watchdog_reset_pending)) {
 199			cs->flags |= CLOCK_SOURCE_WATCHDOG;
 200			cs->wd_last = wdnow;
 201			cs->cs_last = csnow;
 202			continue;
 203		}
 204
 205		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
 206		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
 207					     watchdog->shift);
 208
 209		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
 210		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
 211		wdlast = cs->wd_last; /* save these in case we print them */
 212		cslast = cs->cs_last;
 213		cs->cs_last = csnow;
 214		cs->wd_last = wdnow;
 215
 216		if (atomic_read(&watchdog_reset_pending))
 217			continue;
 218
 219		/* Check the deviation from the watchdog clocksource. */
 220		if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
 221			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
 222				smp_processor_id(), cs->name);
 223			pr_warn("                      '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
 224				watchdog->name, wdnow, wdlast, watchdog->mask);
 225			pr_warn("                      '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
 226				cs->name, csnow, cslast, cs->mask);
 227			__clocksource_unstable(cs);
 228			continue;
 229		}
 230
 
 
 
 231		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
 232		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
 233		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
 234			/* Mark it valid for high-res. */
 235			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 236
 237			/*
 238			 * clocksource_done_booting() will sort it if
 239			 * finished_booting is not set yet.
 240			 */
 241			if (!finished_booting)
 242				continue;
 243
 244			/*
 245			 * If this is not the current clocksource let
 246			 * the watchdog thread reselect it. Due to the
 247			 * change to high res this clocksource might
 248			 * be preferred now. If it is the current
 249			 * clocksource let the tick code know about
 250			 * that change.
 251			 */
 252			if (cs != curr_clocksource) {
 253				cs->flags |= CLOCK_SOURCE_RESELECT;
 254				schedule_work(&watchdog_work);
 255			} else {
 256				tick_clock_notify();
 257			}
 258		}
 259	}
 260
 261	/*
 262	 * We only clear the watchdog_reset_pending, when we did a
 263	 * full cycle through all clocksources.
 264	 */
 265	if (reset_pending)
 266		atomic_dec(&watchdog_reset_pending);
 267
 268	/*
 269	 * Cycle through CPUs to check if the CPUs stay synchronized
 270	 * to each other.
 271	 */
 272	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
 273	if (next_cpu >= nr_cpu_ids)
 274		next_cpu = cpumask_first(cpu_online_mask);
 275	watchdog_timer.expires += WATCHDOG_INTERVAL;
 276	add_timer_on(&watchdog_timer, next_cpu);
 277out:
 278	spin_unlock(&watchdog_lock);
 279}
 280
 281static inline void clocksource_start_watchdog(void)
 282{
 283	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
 284		return;
 285	init_timer(&watchdog_timer);
 286	watchdog_timer.function = clocksource_watchdog;
 287	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
 288	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
 289	watchdog_running = 1;
 290}
 291
 292static inline void clocksource_stop_watchdog(void)
 293{
 294	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
 295		return;
 296	del_timer(&watchdog_timer);
 297	watchdog_running = 0;
 298}
 299
 300static inline void clocksource_reset_watchdog(void)
 301{
 302	struct clocksource *cs;
 303
 304	list_for_each_entry(cs, &watchdog_list, wd_list)
 305		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 306}
 307
 308static void clocksource_resume_watchdog(void)
 309{
 310	atomic_inc(&watchdog_reset_pending);
 311}
 312
 313static void clocksource_enqueue_watchdog(struct clocksource *cs)
 314{
 315	unsigned long flags;
 316
 317	spin_lock_irqsave(&watchdog_lock, flags);
 318	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 319		/* cs is a clocksource to be watched. */
 320		list_add(&cs->wd_list, &watchdog_list);
 321		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 322	} else {
 323		/* cs is a watchdog. */
 324		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 325			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 326	}
 327	spin_unlock_irqrestore(&watchdog_lock, flags);
 328}
 329
 330static void clocksource_select_watchdog(bool fallback)
 331{
 332	struct clocksource *cs, *old_wd;
 333	unsigned long flags;
 334
 335	spin_lock_irqsave(&watchdog_lock, flags);
 336	/* save current watchdog */
 337	old_wd = watchdog;
 338	if (fallback)
 339		watchdog = NULL;
 340
 341	list_for_each_entry(cs, &clocksource_list, list) {
 342		/* cs is a clocksource to be watched. */
 343		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
 344			continue;
 345
 346		/* Skip current if we were requested for a fallback. */
 347		if (fallback && cs == old_wd)
 348			continue;
 349
 350		/* Pick the best watchdog. */
 351		if (!watchdog || cs->rating > watchdog->rating)
 352			watchdog = cs;
 353	}
 354	/* If we failed to find a fallback restore the old one. */
 355	if (!watchdog)
 356		watchdog = old_wd;
 357
 358	/* If we changed the watchdog we need to reset cycles. */
 359	if (watchdog != old_wd)
 360		clocksource_reset_watchdog();
 361
 362	/* Check if the watchdog timer needs to be started. */
 363	clocksource_start_watchdog();
 364	spin_unlock_irqrestore(&watchdog_lock, flags);
 365}
 366
 367static void clocksource_dequeue_watchdog(struct clocksource *cs)
 368{
 369	unsigned long flags;
 370
 371	spin_lock_irqsave(&watchdog_lock, flags);
 372	if (cs != watchdog) {
 373		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 374			/* cs is a watched clocksource. */
 375			list_del_init(&cs->wd_list);
 376			/* Check if the watchdog timer needs to be stopped. */
 377			clocksource_stop_watchdog();
 378		}
 379	}
 380	spin_unlock_irqrestore(&watchdog_lock, flags);
 381}
 382
 383static int __clocksource_watchdog_kthread(void)
 384{
 385	struct clocksource *cs, *tmp;
 386	unsigned long flags;
 387	LIST_HEAD(unstable);
 388	int select = 0;
 389
 390	spin_lock_irqsave(&watchdog_lock, flags);
 391	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
 392		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 393			list_del_init(&cs->wd_list);
 394			list_add(&cs->wd_list, &unstable);
 395			select = 1;
 396		}
 397		if (cs->flags & CLOCK_SOURCE_RESELECT) {
 398			cs->flags &= ~CLOCK_SOURCE_RESELECT;
 399			select = 1;
 400		}
 401	}
 402	/* Check if the watchdog timer needs to be stopped. */
 403	clocksource_stop_watchdog();
 404	spin_unlock_irqrestore(&watchdog_lock, flags);
 405
 406	/* Needs to be done outside of watchdog lock */
 407	list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
 408		list_del_init(&cs->wd_list);
 409		__clocksource_change_rating(cs, 0);
 410	}
 411	return select;
 412}
 413
 414static int clocksource_watchdog_kthread(void *data)
 415{
 416	mutex_lock(&clocksource_mutex);
 417	if (__clocksource_watchdog_kthread())
 418		clocksource_select();
 419	mutex_unlock(&clocksource_mutex);
 420	return 0;
 421}
 422
 423static bool clocksource_is_watchdog(struct clocksource *cs)
 424{
 425	return cs == watchdog;
 426}
 427
 428#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
 429
 430static void clocksource_enqueue_watchdog(struct clocksource *cs)
 431{
 432	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 433		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 434}
 435
 436static void clocksource_select_watchdog(bool fallback) { }
 437static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
 438static inline void clocksource_resume_watchdog(void) { }
 439static inline int __clocksource_watchdog_kthread(void) { return 0; }
 440static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
 441void clocksource_mark_unstable(struct clocksource *cs) { }
 442
 
 
 
 443#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
 444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445/**
 446 * clocksource_suspend - suspend the clocksource(s)
 447 */
 448void clocksource_suspend(void)
 449{
 450	struct clocksource *cs;
 451
 452	list_for_each_entry_reverse(cs, &clocksource_list, list)
 453		if (cs->suspend)
 454			cs->suspend(cs);
 455}
 456
 457/**
 458 * clocksource_resume - resume the clocksource(s)
 459 */
 460void clocksource_resume(void)
 461{
 462	struct clocksource *cs;
 463
 464	list_for_each_entry(cs, &clocksource_list, list)
 465		if (cs->resume)
 466			cs->resume(cs);
 467
 468	clocksource_resume_watchdog();
 469}
 470
 471/**
 472 * clocksource_touch_watchdog - Update watchdog
 473 *
 474 * Update the watchdog after exception contexts such as kgdb so as not
 475 * to incorrectly trip the watchdog. This might fail when the kernel
 476 * was stopped in code which holds watchdog_lock.
 477 */
 478void clocksource_touch_watchdog(void)
 479{
 480	clocksource_resume_watchdog();
 481}
 482
 483/**
 484 * clocksource_max_adjustment- Returns max adjustment amount
 485 * @cs:         Pointer to clocksource
 486 *
 487 */
 488static u32 clocksource_max_adjustment(struct clocksource *cs)
 489{
 490	u64 ret;
 491	/*
 492	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
 493	 */
 494	ret = (u64)cs->mult * 11;
 495	do_div(ret,100);
 496	return (u32)ret;
 497}
 498
 499/**
 500 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
 501 * @mult:	cycle to nanosecond multiplier
 502 * @shift:	cycle to nanosecond divisor (power of two)
 503 * @maxadj:	maximum adjustment value to mult (~11%)
 504 * @mask:	bitmask for two's complement subtraction of non 64 bit counters
 505 * @max_cyc:	maximum cycle value before potential overflow (does not include
 506 *		any safety margin)
 507 *
 508 * NOTE: This function includes a safety margin of 50%, in other words, we
 509 * return half the number of nanoseconds the hardware counter can technically
 510 * cover. This is done so that we can potentially detect problems caused by
 511 * delayed timers or bad hardware, which might result in time intervals that
 512 * are larger than what the math used can handle without overflows.
 513 */
 514u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
 515{
 516	u64 max_nsecs, max_cycles;
 517
 518	/*
 519	 * Calculate the maximum number of cycles that we can pass to the
 520	 * cyc2ns() function without overflowing a 64-bit result.
 521	 */
 522	max_cycles = ULLONG_MAX;
 523	do_div(max_cycles, mult+maxadj);
 524
 525	/*
 526	 * The actual maximum number of cycles we can defer the clocksource is
 527	 * determined by the minimum of max_cycles and mask.
 528	 * Note: Here we subtract the maxadj to make sure we don't sleep for
 529	 * too long if there's a large negative adjustment.
 530	 */
 531	max_cycles = min(max_cycles, mask);
 532	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
 533
 534	/* return the max_cycles value as well if requested */
 535	if (max_cyc)
 536		*max_cyc = max_cycles;
 537
 538	/* Return 50% of the actual maximum, so we can detect bad values */
 539	max_nsecs >>= 1;
 540
 541	return max_nsecs;
 542}
 543
 544/**
 545 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
 546 * @cs:         Pointer to clocksource to be updated
 547 *
 548 */
 549static inline void clocksource_update_max_deferment(struct clocksource *cs)
 550{
 551	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
 552						cs->maxadj, cs->mask,
 553						&cs->max_cycles);
 554}
 555
 556#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
 557
 558static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
 559{
 560	struct clocksource *cs;
 561
 562	if (!finished_booting || list_empty(&clocksource_list))
 563		return NULL;
 564
 565	/*
 566	 * We pick the clocksource with the highest rating. If oneshot
 567	 * mode is active, we pick the highres valid clocksource with
 568	 * the best rating.
 569	 */
 570	list_for_each_entry(cs, &clocksource_list, list) {
 571		if (skipcur && cs == curr_clocksource)
 572			continue;
 573		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
 574			continue;
 575		return cs;
 576	}
 577	return NULL;
 578}
 579
 580static void __clocksource_select(bool skipcur)
 581{
 582	bool oneshot = tick_oneshot_mode_active();
 583	struct clocksource *best, *cs;
 584
 585	/* Find the best suitable clocksource */
 586	best = clocksource_find_best(oneshot, skipcur);
 587	if (!best)
 588		return;
 589
 
 
 
 590	/* Check for the override clocksource. */
 591	list_for_each_entry(cs, &clocksource_list, list) {
 592		if (skipcur && cs == curr_clocksource)
 593			continue;
 594		if (strcmp(cs->name, override_name) != 0)
 595			continue;
 596		/*
 597		 * Check to make sure we don't switch to a non-highres
 598		 * capable clocksource if the tick code is in oneshot
 599		 * mode (highres or nohz)
 600		 */
 601		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
 602			/* Override clocksource cannot be used. */
 603			pr_warn("Override clocksource %s is not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
 604				cs->name);
 605			override_name[0] = 0;
 
 
 
 
 
 
 
 
 
 606		} else
 607			/* Override clocksource can be used. */
 608			best = cs;
 609		break;
 610	}
 611
 
 612	if (curr_clocksource != best && !timekeeping_notify(best)) {
 613		pr_info("Switched to clocksource %s\n", best->name);
 614		curr_clocksource = best;
 615	}
 616}
 617
 618/**
 619 * clocksource_select - Select the best clocksource available
 620 *
 621 * Private function. Must hold clocksource_mutex when called.
 622 *
 623 * Select the clocksource with the best rating, or the clocksource,
 624 * which is selected by userspace override.
 625 */
 626static void clocksource_select(void)
 627{
 628	__clocksource_select(false);
 629}
 630
 631static void clocksource_select_fallback(void)
 632{
 633	__clocksource_select(true);
 634}
 635
 636#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
 637static inline void clocksource_select(void) { }
 638static inline void clocksource_select_fallback(void) { }
 639
 640#endif
 641
 642/*
 643 * clocksource_done_booting - Called near the end of core bootup
 644 *
 645 * Hack to avoid lots of clocksource churn at boot time.
 646 * We use fs_initcall because we want this to start before
 647 * device_initcall but after subsys_initcall.
 648 */
 649static int __init clocksource_done_booting(void)
 650{
 651	mutex_lock(&clocksource_mutex);
 652	curr_clocksource = clocksource_default_clock();
 653	finished_booting = 1;
 654	/*
 655	 * Run the watchdog first to eliminate unstable clock sources
 656	 */
 657	__clocksource_watchdog_kthread();
 658	clocksource_select();
 659	mutex_unlock(&clocksource_mutex);
 660	return 0;
 661}
 662fs_initcall(clocksource_done_booting);
 663
 664/*
 665 * Enqueue the clocksource sorted by rating
 666 */
 667static void clocksource_enqueue(struct clocksource *cs)
 668{
 669	struct list_head *entry = &clocksource_list;
 670	struct clocksource *tmp;
 671
 672	list_for_each_entry(tmp, &clocksource_list, list)
 673		/* Keep track of the place, where to insert */
 674		if (tmp->rating >= cs->rating)
 675			entry = &tmp->list;
 
 
 676	list_add(&cs->list, entry);
 677}
 678
 679/**
 680 * __clocksource_update_freq_scale - Used update clocksource with new freq
 681 * @cs:		clocksource to be registered
 682 * @scale:	Scale factor multiplied against freq to get clocksource hz
 683 * @freq:	clocksource frequency (cycles per second) divided by scale
 684 *
 685 * This should only be called from the clocksource->enable() method.
 686 *
 687 * This *SHOULD NOT* be called directly! Please use the
 688 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
 689 * functions.
 690 */
 691void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
 692{
 693	u64 sec;
 694
 695	/*
 696	 * Default clocksources are *special* and self-define their mult/shift.
 697	 * But, you're not special, so you should specify a freq value.
 698	 */
 699	if (freq) {
 700		/*
 701		 * Calc the maximum number of seconds which we can run before
 702		 * wrapping around. For clocksources which have a mask > 32-bit
 703		 * we need to limit the max sleep time to have a good
 704		 * conversion precision. 10 minutes is still a reasonable
 705		 * amount. That results in a shift value of 24 for a
 706		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
 707		 * ~ 0.06ppm granularity for NTP.
 708		 */
 709		sec = cs->mask;
 710		do_div(sec, freq);
 711		do_div(sec, scale);
 712		if (!sec)
 713			sec = 1;
 714		else if (sec > 600 && cs->mask > UINT_MAX)
 715			sec = 600;
 716
 717		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
 718				       NSEC_PER_SEC / scale, sec * scale);
 719	}
 720	/*
 721	 * Ensure clocksources that have large 'mult' values don't overflow
 722	 * when adjusted.
 723	 */
 724	cs->maxadj = clocksource_max_adjustment(cs);
 725	while (freq && ((cs->mult + cs->maxadj < cs->mult)
 726		|| (cs->mult - cs->maxadj > cs->mult))) {
 727		cs->mult >>= 1;
 728		cs->shift--;
 729		cs->maxadj = clocksource_max_adjustment(cs);
 730	}
 731
 732	/*
 733	 * Only warn for *special* clocksources that self-define
 734	 * their mult/shift values and don't specify a freq.
 735	 */
 736	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
 737		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
 738		cs->name);
 739
 740	clocksource_update_max_deferment(cs);
 741
 742	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
 743		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
 744}
 745EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
 746
 747/**
 748 * __clocksource_register_scale - Used to install new clocksources
 749 * @cs:		clocksource to be registered
 750 * @scale:	Scale factor multiplied against freq to get clocksource hz
 751 * @freq:	clocksource frequency (cycles per second) divided by scale
 752 *
 753 * Returns -EBUSY if registration fails, zero otherwise.
 754 *
 755 * This *SHOULD NOT* be called directly! Please use the
 756 * clocksource_register_hz() or clocksource_register_khz helper functions.
 757 */
 758int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
 759{
 
 
 
 760
 761	/* Initialize mult/shift and max_idle_ns */
 762	__clocksource_update_freq_scale(cs, scale, freq);
 763
 764	/* Add clocksource to the clocksource list */
 765	mutex_lock(&clocksource_mutex);
 
 
 766	clocksource_enqueue(cs);
 767	clocksource_enqueue_watchdog(cs);
 
 
 768	clocksource_select();
 769	clocksource_select_watchdog(false);
 
 770	mutex_unlock(&clocksource_mutex);
 771	return 0;
 772}
 773EXPORT_SYMBOL_GPL(__clocksource_register_scale);
 774
 775static void __clocksource_change_rating(struct clocksource *cs, int rating)
 776{
 777	list_del(&cs->list);
 778	cs->rating = rating;
 779	clocksource_enqueue(cs);
 780}
 781
 782/**
 783 * clocksource_change_rating - Change the rating of a registered clocksource
 784 * @cs:		clocksource to be changed
 785 * @rating:	new rating
 786 */
 787void clocksource_change_rating(struct clocksource *cs, int rating)
 788{
 
 
 789	mutex_lock(&clocksource_mutex);
 
 790	__clocksource_change_rating(cs, rating);
 
 
 791	clocksource_select();
 792	clocksource_select_watchdog(false);
 
 793	mutex_unlock(&clocksource_mutex);
 794}
 795EXPORT_SYMBOL(clocksource_change_rating);
 796
 797/*
 798 * Unbind clocksource @cs. Called with clocksource_mutex held
 799 */
 800static int clocksource_unbind(struct clocksource *cs)
 801{
 
 
 802	if (clocksource_is_watchdog(cs)) {
 803		/* Select and try to install a replacement watchdog. */
 804		clocksource_select_watchdog(true);
 805		if (clocksource_is_watchdog(cs))
 806			return -EBUSY;
 807	}
 808
 809	if (cs == curr_clocksource) {
 810		/* Select and try to install a replacement clock source */
 811		clocksource_select_fallback();
 812		if (curr_clocksource == cs)
 813			return -EBUSY;
 814	}
 
 
 
 
 
 
 
 
 
 
 
 815	clocksource_dequeue_watchdog(cs);
 816	list_del_init(&cs->list);
 
 
 817	return 0;
 818}
 819
 820/**
 821 * clocksource_unregister - remove a registered clocksource
 822 * @cs:	clocksource to be unregistered
 823 */
 824int clocksource_unregister(struct clocksource *cs)
 825{
 826	int ret = 0;
 827
 828	mutex_lock(&clocksource_mutex);
 829	if (!list_empty(&cs->list))
 830		ret = clocksource_unbind(cs);
 831	mutex_unlock(&clocksource_mutex);
 832	return ret;
 833}
 834EXPORT_SYMBOL(clocksource_unregister);
 835
 836#ifdef CONFIG_SYSFS
 837/**
 838 * sysfs_show_current_clocksources - sysfs interface for current clocksource
 839 * @dev:	unused
 840 * @attr:	unused
 841 * @buf:	char buffer to be filled with clocksource list
 842 *
 843 * Provides sysfs interface for listing current clocksource.
 844 */
 845static ssize_t
 846sysfs_show_current_clocksources(struct device *dev,
 847				struct device_attribute *attr, char *buf)
 848{
 849	ssize_t count = 0;
 850
 851	mutex_lock(&clocksource_mutex);
 852	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
 853	mutex_unlock(&clocksource_mutex);
 854
 855	return count;
 856}
 857
 858ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
 859{
 860	size_t ret = cnt;
 861
 862	/* strings from sysfs write are not 0 terminated! */
 863	if (!cnt || cnt >= CS_NAME_LEN)
 864		return -EINVAL;
 865
 866	/* strip of \n: */
 867	if (buf[cnt-1] == '\n')
 868		cnt--;
 869	if (cnt > 0)
 870		memcpy(dst, buf, cnt);
 871	dst[cnt] = 0;
 872	return ret;
 873}
 874
 875/**
 876 * sysfs_override_clocksource - interface for manually overriding clocksource
 877 * @dev:	unused
 878 * @attr:	unused
 879 * @buf:	name of override clocksource
 880 * @count:	length of buffer
 881 *
 882 * Takes input from sysfs interface for manually overriding the default
 883 * clocksource selection.
 884 */
 885static ssize_t sysfs_override_clocksource(struct device *dev,
 886					  struct device_attribute *attr,
 887					  const char *buf, size_t count)
 888{
 889	ssize_t ret;
 890
 891	mutex_lock(&clocksource_mutex);
 892
 893	ret = sysfs_get_uname(buf, override_name, count);
 894	if (ret >= 0)
 895		clocksource_select();
 896
 897	mutex_unlock(&clocksource_mutex);
 898
 899	return ret;
 900}
 
 901
 902/**
 903 * sysfs_unbind_current_clocksource - interface for manually unbinding clocksource
 904 * @dev:	unused
 905 * @attr:	unused
 906 * @buf:	unused
 907 * @count:	length of buffer
 908 *
 909 * Takes input from sysfs interface for manually unbinding a clocksource.
 910 */
 911static ssize_t sysfs_unbind_clocksource(struct device *dev,
 912					struct device_attribute *attr,
 913					const char *buf, size_t count)
 914{
 915	struct clocksource *cs;
 916	char name[CS_NAME_LEN];
 917	ssize_t ret;
 918
 919	ret = sysfs_get_uname(buf, name, count);
 920	if (ret < 0)
 921		return ret;
 922
 923	ret = -ENODEV;
 924	mutex_lock(&clocksource_mutex);
 925	list_for_each_entry(cs, &clocksource_list, list) {
 926		if (strcmp(cs->name, name))
 927			continue;
 928		ret = clocksource_unbind(cs);
 929		break;
 930	}
 931	mutex_unlock(&clocksource_mutex);
 932
 933	return ret ? ret : count;
 934}
 
 935
 936/**
 937 * sysfs_show_available_clocksources - sysfs interface for listing clocksource
 938 * @dev:	unused
 939 * @attr:	unused
 940 * @buf:	char buffer to be filled with clocksource list
 941 *
 942 * Provides sysfs interface for listing registered clocksources
 943 */
 944static ssize_t
 945sysfs_show_available_clocksources(struct device *dev,
 946				  struct device_attribute *attr,
 947				  char *buf)
 948{
 949	struct clocksource *src;
 950	ssize_t count = 0;
 951
 952	mutex_lock(&clocksource_mutex);
 953	list_for_each_entry(src, &clocksource_list, list) {
 954		/*
 955		 * Don't show non-HRES clocksource if the tick code is
 956		 * in one shot mode (highres=on or nohz=on)
 957		 */
 958		if (!tick_oneshot_mode_active() ||
 959		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
 960			count += snprintf(buf + count,
 961				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
 962				  "%s ", src->name);
 963	}
 964	mutex_unlock(&clocksource_mutex);
 965
 966	count += snprintf(buf + count,
 967			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
 968
 969	return count;
 970}
 
 971
 972/*
 973 * Sysfs setup bits:
 974 */
 975static DEVICE_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
 976		   sysfs_override_clocksource);
 977
 978static DEVICE_ATTR(unbind_clocksource, 0200, NULL, sysfs_unbind_clocksource);
 979
 980static DEVICE_ATTR(available_clocksource, 0444,
 981		   sysfs_show_available_clocksources, NULL);
 982
 983static struct bus_type clocksource_subsys = {
 984	.name = "clocksource",
 985	.dev_name = "clocksource",
 986};
 987
 988static struct device device_clocksource = {
 989	.id	= 0,
 990	.bus	= &clocksource_subsys,
 
 991};
 992
 993static int __init init_clocksource_sysfs(void)
 994{
 995	int error = subsys_system_register(&clocksource_subsys, NULL);
 996
 997	if (!error)
 998		error = device_register(&device_clocksource);
 999	if (!error)
1000		error = device_create_file(
1001				&device_clocksource,
1002				&dev_attr_current_clocksource);
1003	if (!error)
1004		error = device_create_file(&device_clocksource,
1005					   &dev_attr_unbind_clocksource);
1006	if (!error)
1007		error = device_create_file(
1008				&device_clocksource,
1009				&dev_attr_available_clocksource);
1010	return error;
1011}
1012
1013device_initcall(init_clocksource_sysfs);
1014#endif /* CONFIG_SYSFS */
1015
1016/**
1017 * boot_override_clocksource - boot clock override
1018 * @str:	override name
1019 *
1020 * Takes a clocksource= boot argument and uses it
1021 * as the clocksource override name.
1022 */
1023static int __init boot_override_clocksource(char* str)
1024{
1025	mutex_lock(&clocksource_mutex);
1026	if (str)
1027		strlcpy(override_name, str, sizeof(override_name));
1028	mutex_unlock(&clocksource_mutex);
1029	return 1;
1030}
1031
1032__setup("clocksource=", boot_override_clocksource);
1033
1034/**
1035 * boot_override_clock - Compatibility layer for deprecated boot option
1036 * @str:	override name
1037 *
1038 * DEPRECATED! Takes a clock= boot argument and uses it
1039 * as the clocksource override name
1040 */
1041static int __init boot_override_clock(char* str)
1042{
1043	if (!strcmp(str, "pmtmr")) {
1044		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1045		return boot_override_clocksource("acpi_pm");
1046	}
1047	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1048	return boot_override_clocksource(str);
1049}
1050
1051__setup("clock=", boot_override_clock);