Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
 
 
   3 * This file contains the functions which manage clocksource drivers.
   4 *
   5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/device.h>
  11#include <linux/clocksource.h>
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
  15#include <linux/tick.h>
  16#include <linux/kthread.h>
  17
  18#include "tick-internal.h"
  19#include "timekeeping_internal.h"
  20
  21/**
  22 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
  23 * @mult:	pointer to mult variable
  24 * @shift:	pointer to shift variable
  25 * @from:	frequency to convert from
  26 * @to:		frequency to convert to
  27 * @maxsec:	guaranteed runtime conversion range in seconds
  28 *
  29 * The function evaluates the shift/mult pair for the scaled math
  30 * operations of clocksources and clockevents.
  31 *
  32 * @to and @from are frequency values in HZ. For clock sources @to is
  33 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
  34 * event @to is the counter frequency and @from is NSEC_PER_SEC.
  35 *
  36 * The @maxsec conversion range argument controls the time frame in
  37 * seconds which must be covered by the runtime conversion with the
  38 * calculated mult and shift factors. This guarantees that no 64bit
  39 * overflow happens when the input value of the conversion is
  40 * multiplied with the calculated mult factor. Larger ranges may
  41 * reduce the conversion accuracy by chosing smaller mult and shift
  42 * factors.
  43 */
  44void
  45clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
  46{
  47	u64 tmp;
  48	u32 sft, sftacc= 32;
  49
  50	/*
  51	 * Calculate the shift factor which is limiting the conversion
  52	 * range:
  53	 */
  54	tmp = ((u64)maxsec * from) >> 32;
  55	while (tmp) {
  56		tmp >>=1;
  57		sftacc--;
  58	}
  59
  60	/*
  61	 * Find the conversion shift/mult pair which has the best
  62	 * accuracy and fits the maxsec conversion range:
  63	 */
  64	for (sft = 32; sft > 0; sft--) {
  65		tmp = (u64) to << sft;
  66		tmp += from / 2;
  67		do_div(tmp, from);
  68		if ((tmp >> sftacc) == 0)
  69			break;
  70	}
  71	*mult = tmp;
  72	*shift = sft;
  73}
  74EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
  75
  76/*[Clocksource internal variables]---------
  77 * curr_clocksource:
  78 *	currently selected clocksource.
  79 * suspend_clocksource:
  80 *	used to calculate the suspend time.
  81 * clocksource_list:
  82 *	linked list with the registered clocksources
  83 * clocksource_mutex:
  84 *	protects manipulations to curr_clocksource and the clocksource_list
  85 * override_name:
  86 *	Name of the user-specified clocksource.
  87 */
  88static struct clocksource *curr_clocksource;
  89static struct clocksource *suspend_clocksource;
  90static LIST_HEAD(clocksource_list);
  91static DEFINE_MUTEX(clocksource_mutex);
  92static char override_name[CS_NAME_LEN];
  93static int finished_booting;
  94static u64 suspend_start;
  95
  96#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
  97static void clocksource_watchdog_work(struct work_struct *work);
  98static void clocksource_select(void);
  99
 100static LIST_HEAD(watchdog_list);
 101static struct clocksource *watchdog;
 102static struct timer_list watchdog_timer;
 103static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
 104static DEFINE_SPINLOCK(watchdog_lock);
 105static int watchdog_running;
 106static atomic_t watchdog_reset_pending;
 107
 108static inline void clocksource_watchdog_lock(unsigned long *flags)
 109{
 110	spin_lock_irqsave(&watchdog_lock, *flags);
 111}
 112
 113static inline void clocksource_watchdog_unlock(unsigned long *flags)
 114{
 115	spin_unlock_irqrestore(&watchdog_lock, *flags);
 116}
 117
 118static int clocksource_watchdog_kthread(void *data);
 119static void __clocksource_change_rating(struct clocksource *cs, int rating);
 120
 121/*
 122 * Interval: 0.5sec Threshold: 0.0625s
 123 */
 124#define WATCHDOG_INTERVAL (HZ >> 1)
 125#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
 126
 127static void clocksource_watchdog_work(struct work_struct *work)
 128{
 129	/*
 130	 * We cannot directly run clocksource_watchdog_kthread() here, because
 131	 * clocksource_select() calls timekeeping_notify() which uses
 132	 * stop_machine(). One cannot use stop_machine() from a workqueue() due
 133	 * lock inversions wrt CPU hotplug.
 134	 *
 135	 * Also, we only ever run this work once or twice during the lifetime
 136	 * of the kernel, so there is no point in creating a more permanent
 137	 * kthread for this.
 138	 *
 139	 * If kthread_run fails the next watchdog scan over the
 140	 * watchdog_list will find the unstable clock again.
 141	 */
 142	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
 143}
 144
 145static void __clocksource_unstable(struct clocksource *cs)
 146{
 147	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
 148	cs->flags |= CLOCK_SOURCE_UNSTABLE;
 149
 150	/*
 151	 * If the clocksource is registered clocksource_watchdog_kthread() will
 152	 * re-rate and re-select.
 153	 */
 154	if (list_empty(&cs->list)) {
 155		cs->rating = 0;
 156		return;
 157	}
 158
 159	if (cs->mark_unstable)
 160		cs->mark_unstable(cs);
 161
 162	/* kick clocksource_watchdog_kthread() */
 163	if (finished_booting)
 164		schedule_work(&watchdog_work);
 165}
 166
 167/**
 168 * clocksource_mark_unstable - mark clocksource unstable via watchdog
 169 * @cs:		clocksource to be marked unstable
 170 *
 171 * This function is called by the x86 TSC code to mark clocksources as unstable;
 172 * it defers demotion and re-selection to a kthread.
 
 
 173 */
 174void clocksource_mark_unstable(struct clocksource *cs)
 175{
 176	unsigned long flags;
 177
 178	spin_lock_irqsave(&watchdog_lock, flags);
 179	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
 180		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
 181			list_add(&cs->wd_list, &watchdog_list);
 182		__clocksource_unstable(cs);
 183	}
 184	spin_unlock_irqrestore(&watchdog_lock, flags);
 185}
 186
 187static void clocksource_watchdog(struct timer_list *unused)
 188{
 189	struct clocksource *cs;
 190	u64 csnow, wdnow, cslast, wdlast, delta;
 191	int64_t wd_nsec, cs_nsec;
 192	int next_cpu, reset_pending;
 193
 194	spin_lock(&watchdog_lock);
 195	if (!watchdog_running)
 196		goto out;
 197
 198	reset_pending = atomic_read(&watchdog_reset_pending);
 199
 200	list_for_each_entry(cs, &watchdog_list, wd_list) {
 201
 202		/* Clocksource already marked unstable? */
 203		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 204			if (finished_booting)
 205				schedule_work(&watchdog_work);
 206			continue;
 207		}
 208
 209		local_irq_disable();
 210		csnow = cs->read(cs);
 211		wdnow = watchdog->read(watchdog);
 212		local_irq_enable();
 213
 214		/* Clocksource initialized ? */
 215		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
 216		    atomic_read(&watchdog_reset_pending)) {
 217			cs->flags |= CLOCK_SOURCE_WATCHDOG;
 218			cs->wd_last = wdnow;
 219			cs->cs_last = csnow;
 220			continue;
 221		}
 222
 223		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
 224		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
 225					     watchdog->shift);
 226
 227		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
 228		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
 229		wdlast = cs->wd_last; /* save these in case we print them */
 230		cslast = cs->cs_last;
 231		cs->cs_last = csnow;
 232		cs->wd_last = wdnow;
 233
 234		if (atomic_read(&watchdog_reset_pending))
 235			continue;
 236
 237		/* Check the deviation from the watchdog clocksource. */
 238		if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
 239			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
 240				smp_processor_id(), cs->name);
 241			pr_warn("                      '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
 242				watchdog->name, wdnow, wdlast, watchdog->mask);
 243			pr_warn("                      '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
 244				cs->name, csnow, cslast, cs->mask);
 245			__clocksource_unstable(cs);
 246			continue;
 247		}
 248
 249		if (cs == curr_clocksource && cs->tick_stable)
 250			cs->tick_stable(cs);
 251
 252		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
 253		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
 254		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
 255			/* Mark it valid for high-res. */
 256			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 257
 258			/*
 259			 * clocksource_done_booting() will sort it if
 260			 * finished_booting is not set yet.
 261			 */
 262			if (!finished_booting)
 263				continue;
 264
 265			/*
 266			 * If this is not the current clocksource let
 267			 * the watchdog thread reselect it. Due to the
 268			 * change to high res this clocksource might
 269			 * be preferred now. If it is the current
 270			 * clocksource let the tick code know about
 271			 * that change.
 272			 */
 273			if (cs != curr_clocksource) {
 274				cs->flags |= CLOCK_SOURCE_RESELECT;
 275				schedule_work(&watchdog_work);
 276			} else {
 277				tick_clock_notify();
 278			}
 279		}
 280	}
 281
 282	/*
 283	 * We only clear the watchdog_reset_pending, when we did a
 284	 * full cycle through all clocksources.
 285	 */
 286	if (reset_pending)
 287		atomic_dec(&watchdog_reset_pending);
 288
 289	/*
 290	 * Cycle through CPUs to check if the CPUs stay synchronized
 291	 * to each other.
 292	 */
 293	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
 294	if (next_cpu >= nr_cpu_ids)
 295		next_cpu = cpumask_first(cpu_online_mask);
 296	watchdog_timer.expires += WATCHDOG_INTERVAL;
 297	add_timer_on(&watchdog_timer, next_cpu);
 298out:
 299	spin_unlock(&watchdog_lock);
 300}
 301
 302static inline void clocksource_start_watchdog(void)
 303{
 304	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
 305		return;
 306	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
 
 307	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
 308	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
 309	watchdog_running = 1;
 310}
 311
 312static inline void clocksource_stop_watchdog(void)
 313{
 314	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
 315		return;
 316	del_timer(&watchdog_timer);
 317	watchdog_running = 0;
 318}
 319
 320static inline void clocksource_reset_watchdog(void)
 321{
 322	struct clocksource *cs;
 323
 324	list_for_each_entry(cs, &watchdog_list, wd_list)
 325		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 326}
 327
 328static void clocksource_resume_watchdog(void)
 329{
 330	atomic_inc(&watchdog_reset_pending);
 331}
 332
 333static void clocksource_enqueue_watchdog(struct clocksource *cs)
 334{
 335	INIT_LIST_HEAD(&cs->wd_list);
 336
 
 337	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 338		/* cs is a clocksource to be watched. */
 339		list_add(&cs->wd_list, &watchdog_list);
 340		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 341	} else {
 342		/* cs is a watchdog. */
 343		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 344			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 345	}
 
 346}
 347
 348static void clocksource_select_watchdog(bool fallback)
 349{
 350	struct clocksource *cs, *old_wd;
 351	unsigned long flags;
 352
 353	spin_lock_irqsave(&watchdog_lock, flags);
 354	/* save current watchdog */
 355	old_wd = watchdog;
 356	if (fallback)
 357		watchdog = NULL;
 358
 359	list_for_each_entry(cs, &clocksource_list, list) {
 360		/* cs is a clocksource to be watched. */
 361		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
 362			continue;
 363
 364		/* Skip current if we were requested for a fallback. */
 365		if (fallback && cs == old_wd)
 366			continue;
 367
 368		/* Pick the best watchdog. */
 369		if (!watchdog || cs->rating > watchdog->rating)
 370			watchdog = cs;
 371	}
 372	/* If we failed to find a fallback restore the old one. */
 373	if (!watchdog)
 374		watchdog = old_wd;
 375
 376	/* If we changed the watchdog we need to reset cycles. */
 377	if (watchdog != old_wd)
 378		clocksource_reset_watchdog();
 379
 380	/* Check if the watchdog timer needs to be started. */
 381	clocksource_start_watchdog();
 382	spin_unlock_irqrestore(&watchdog_lock, flags);
 383}
 384
 385static void clocksource_dequeue_watchdog(struct clocksource *cs)
 386{
 
 
 
 387	if (cs != watchdog) {
 388		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 389			/* cs is a watched clocksource. */
 390			list_del_init(&cs->wd_list);
 391			/* Check if the watchdog timer needs to be stopped. */
 392			clocksource_stop_watchdog();
 393		}
 394	}
 
 395}
 396
 397static int __clocksource_watchdog_kthread(void)
 398{
 399	struct clocksource *cs, *tmp;
 400	unsigned long flags;
 
 401	int select = 0;
 402
 403	spin_lock_irqsave(&watchdog_lock, flags);
 404	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
 405		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 406			list_del_init(&cs->wd_list);
 407			__clocksource_change_rating(cs, 0);
 408			select = 1;
 409		}
 410		if (cs->flags & CLOCK_SOURCE_RESELECT) {
 411			cs->flags &= ~CLOCK_SOURCE_RESELECT;
 412			select = 1;
 413		}
 414	}
 415	/* Check if the watchdog timer needs to be stopped. */
 416	clocksource_stop_watchdog();
 417	spin_unlock_irqrestore(&watchdog_lock, flags);
 418
 
 
 
 
 
 419	return select;
 420}
 421
 422static int clocksource_watchdog_kthread(void *data)
 423{
 424	mutex_lock(&clocksource_mutex);
 425	if (__clocksource_watchdog_kthread())
 426		clocksource_select();
 427	mutex_unlock(&clocksource_mutex);
 428	return 0;
 429}
 430
 431static bool clocksource_is_watchdog(struct clocksource *cs)
 432{
 433	return cs == watchdog;
 434}
 435
 436#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
 437
 438static void clocksource_enqueue_watchdog(struct clocksource *cs)
 439{
 440	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 441		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 442}
 443
 444static void clocksource_select_watchdog(bool fallback) { }
 445static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
 446static inline void clocksource_resume_watchdog(void) { }
 447static inline int __clocksource_watchdog_kthread(void) { return 0; }
 448static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
 449void clocksource_mark_unstable(struct clocksource *cs) { }
 450
 451static inline void clocksource_watchdog_lock(unsigned long *flags) { }
 452static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
 453
 454#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
 455
 456static bool clocksource_is_suspend(struct clocksource *cs)
 457{
 458	return cs == suspend_clocksource;
 459}
 460
 461static void __clocksource_suspend_select(struct clocksource *cs)
 462{
 463	/*
 464	 * Skip the clocksource which will be stopped in suspend state.
 465	 */
 466	if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
 467		return;
 468
 469	/*
 470	 * The nonstop clocksource can be selected as the suspend clocksource to
 471	 * calculate the suspend time, so it should not supply suspend/resume
 472	 * interfaces to suspend the nonstop clocksource when system suspends.
 473	 */
 474	if (cs->suspend || cs->resume) {
 475		pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
 476			cs->name);
 477	}
 478
 479	/* Pick the best rating. */
 480	if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
 481		suspend_clocksource = cs;
 482}
 483
 484/**
 485 * clocksource_suspend_select - Select the best clocksource for suspend timing
 486 * @fallback:	if select a fallback clocksource
 487 */
 488static void clocksource_suspend_select(bool fallback)
 489{
 490	struct clocksource *cs, *old_suspend;
 491
 492	old_suspend = suspend_clocksource;
 493	if (fallback)
 494		suspend_clocksource = NULL;
 495
 496	list_for_each_entry(cs, &clocksource_list, list) {
 497		/* Skip current if we were requested for a fallback. */
 498		if (fallback && cs == old_suspend)
 499			continue;
 500
 501		__clocksource_suspend_select(cs);
 502	}
 503}
 504
 505/**
 506 * clocksource_start_suspend_timing - Start measuring the suspend timing
 507 * @cs:			current clocksource from timekeeping
 508 * @start_cycles:	current cycles from timekeeping
 509 *
 510 * This function will save the start cycle values of suspend timer to calculate
 511 * the suspend time when resuming system.
 512 *
 513 * This function is called late in the suspend process from timekeeping_suspend(),
 514 * that means processes are freezed, non-boot cpus and interrupts are disabled
 515 * now. It is therefore possible to start the suspend timer without taking the
 516 * clocksource mutex.
 517 */
 518void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
 519{
 520	if (!suspend_clocksource)
 521		return;
 522
 523	/*
 524	 * If current clocksource is the suspend timer, we should use the
 525	 * tkr_mono.cycle_last value as suspend_start to avoid same reading
 526	 * from suspend timer.
 527	 */
 528	if (clocksource_is_suspend(cs)) {
 529		suspend_start = start_cycles;
 530		return;
 531	}
 532
 533	if (suspend_clocksource->enable &&
 534	    suspend_clocksource->enable(suspend_clocksource)) {
 535		pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
 536		return;
 537	}
 538
 539	suspend_start = suspend_clocksource->read(suspend_clocksource);
 540}
 541
 542/**
 543 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
 544 * @cs:		current clocksource from timekeeping
 545 * @cycle_now:	current cycles from timekeeping
 546 *
 547 * This function will calculate the suspend time from suspend timer.
 548 *
 549 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
 550 *
 551 * This function is called early in the resume process from timekeeping_resume(),
 552 * that means there is only one cpu, no processes are running and the interrupts
 553 * are disabled. It is therefore possible to stop the suspend timer without
 554 * taking the clocksource mutex.
 555 */
 556u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
 557{
 558	u64 now, delta, nsec = 0;
 559
 560	if (!suspend_clocksource)
 561		return 0;
 562
 563	/*
 564	 * If current clocksource is the suspend timer, we should use the
 565	 * tkr_mono.cycle_last value from timekeeping as current cycle to
 566	 * avoid same reading from suspend timer.
 567	 */
 568	if (clocksource_is_suspend(cs))
 569		now = cycle_now;
 570	else
 571		now = suspend_clocksource->read(suspend_clocksource);
 572
 573	if (now > suspend_start) {
 574		delta = clocksource_delta(now, suspend_start,
 575					  suspend_clocksource->mask);
 576		nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
 577				       suspend_clocksource->shift);
 578	}
 579
 580	/*
 581	 * Disable the suspend timer to save power if current clocksource is
 582	 * not the suspend timer.
 583	 */
 584	if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
 585		suspend_clocksource->disable(suspend_clocksource);
 586
 587	return nsec;
 588}
 589
 590/**
 591 * clocksource_suspend - suspend the clocksource(s)
 592 */
 593void clocksource_suspend(void)
 594{
 595	struct clocksource *cs;
 596
 597	list_for_each_entry_reverse(cs, &clocksource_list, list)
 598		if (cs->suspend)
 599			cs->suspend(cs);
 600}
 601
 602/**
 603 * clocksource_resume - resume the clocksource(s)
 604 */
 605void clocksource_resume(void)
 606{
 607	struct clocksource *cs;
 608
 609	list_for_each_entry(cs, &clocksource_list, list)
 610		if (cs->resume)
 611			cs->resume(cs);
 612
 613	clocksource_resume_watchdog();
 614}
 615
 616/**
 617 * clocksource_touch_watchdog - Update watchdog
 618 *
 619 * Update the watchdog after exception contexts such as kgdb so as not
 620 * to incorrectly trip the watchdog. This might fail when the kernel
 621 * was stopped in code which holds watchdog_lock.
 622 */
 623void clocksource_touch_watchdog(void)
 624{
 625	clocksource_resume_watchdog();
 626}
 627
 628/**
 629 * clocksource_max_adjustment- Returns max adjustment amount
 630 * @cs:         Pointer to clocksource
 631 *
 632 */
 633static u32 clocksource_max_adjustment(struct clocksource *cs)
 634{
 635	u64 ret;
 636	/*
 637	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
 638	 */
 639	ret = (u64)cs->mult * 11;
 640	do_div(ret,100);
 641	return (u32)ret;
 642}
 643
 644/**
 645 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
 646 * @mult:	cycle to nanosecond multiplier
 647 * @shift:	cycle to nanosecond divisor (power of two)
 648 * @maxadj:	maximum adjustment value to mult (~11%)
 649 * @mask:	bitmask for two's complement subtraction of non 64 bit counters
 650 * @max_cyc:	maximum cycle value before potential overflow (does not include
 651 *		any safety margin)
 652 *
 653 * NOTE: This function includes a safety margin of 50%, in other words, we
 654 * return half the number of nanoseconds the hardware counter can technically
 655 * cover. This is done so that we can potentially detect problems caused by
 656 * delayed timers or bad hardware, which might result in time intervals that
 657 * are larger than what the math used can handle without overflows.
 658 */
 659u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
 660{
 661	u64 max_nsecs, max_cycles;
 662
 663	/*
 664	 * Calculate the maximum number of cycles that we can pass to the
 665	 * cyc2ns() function without overflowing a 64-bit result.
 666	 */
 667	max_cycles = ULLONG_MAX;
 668	do_div(max_cycles, mult+maxadj);
 669
 670	/*
 671	 * The actual maximum number of cycles we can defer the clocksource is
 672	 * determined by the minimum of max_cycles and mask.
 673	 * Note: Here we subtract the maxadj to make sure we don't sleep for
 674	 * too long if there's a large negative adjustment.
 675	 */
 676	max_cycles = min(max_cycles, mask);
 677	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
 678
 679	/* return the max_cycles value as well if requested */
 680	if (max_cyc)
 681		*max_cyc = max_cycles;
 682
 683	/* Return 50% of the actual maximum, so we can detect bad values */
 684	max_nsecs >>= 1;
 685
 686	return max_nsecs;
 687}
 688
 689/**
 690 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
 691 * @cs:         Pointer to clocksource to be updated
 692 *
 693 */
 694static inline void clocksource_update_max_deferment(struct clocksource *cs)
 695{
 696	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
 697						cs->maxadj, cs->mask,
 698						&cs->max_cycles);
 699}
 700
 701#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
 702
 703static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
 704{
 705	struct clocksource *cs;
 706
 707	if (!finished_booting || list_empty(&clocksource_list))
 708		return NULL;
 709
 710	/*
 711	 * We pick the clocksource with the highest rating. If oneshot
 712	 * mode is active, we pick the highres valid clocksource with
 713	 * the best rating.
 714	 */
 715	list_for_each_entry(cs, &clocksource_list, list) {
 716		if (skipcur && cs == curr_clocksource)
 717			continue;
 718		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
 719			continue;
 720		return cs;
 721	}
 722	return NULL;
 723}
 724
 725static void __clocksource_select(bool skipcur)
 726{
 727	bool oneshot = tick_oneshot_mode_active();
 728	struct clocksource *best, *cs;
 729
 730	/* Find the best suitable clocksource */
 731	best = clocksource_find_best(oneshot, skipcur);
 732	if (!best)
 733		return;
 734
 735	if (!strlen(override_name))
 736		goto found;
 737
 738	/* Check for the override clocksource. */
 739	list_for_each_entry(cs, &clocksource_list, list) {
 740		if (skipcur && cs == curr_clocksource)
 741			continue;
 742		if (strcmp(cs->name, override_name) != 0)
 743			continue;
 744		/*
 745		 * Check to make sure we don't switch to a non-highres
 746		 * capable clocksource if the tick code is in oneshot
 747		 * mode (highres or nohz)
 748		 */
 749		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
 750			/* Override clocksource cannot be used. */
 751			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 752				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
 753					cs->name);
 754				override_name[0] = 0;
 755			} else {
 756				/*
 757				 * The override cannot be currently verified.
 758				 * Deferring to let the watchdog check.
 759				 */
 760				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
 761					cs->name);
 762			}
 763		} else
 764			/* Override clocksource can be used. */
 765			best = cs;
 766		break;
 767	}
 768
 769found:
 770	if (curr_clocksource != best && !timekeeping_notify(best)) {
 771		pr_info("Switched to clocksource %s\n", best->name);
 772		curr_clocksource = best;
 773	}
 774}
 775
 776/**
 777 * clocksource_select - Select the best clocksource available
 778 *
 779 * Private function. Must hold clocksource_mutex when called.
 780 *
 781 * Select the clocksource with the best rating, or the clocksource,
 782 * which is selected by userspace override.
 783 */
 784static void clocksource_select(void)
 785{
 786	__clocksource_select(false);
 787}
 788
 789static void clocksource_select_fallback(void)
 790{
 791	__clocksource_select(true);
 792}
 793
 794#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
 795static inline void clocksource_select(void) { }
 796static inline void clocksource_select_fallback(void) { }
 797
 798#endif
 799
 800/*
 801 * clocksource_done_booting - Called near the end of core bootup
 802 *
 803 * Hack to avoid lots of clocksource churn at boot time.
 804 * We use fs_initcall because we want this to start before
 805 * device_initcall but after subsys_initcall.
 806 */
 807static int __init clocksource_done_booting(void)
 808{
 809	mutex_lock(&clocksource_mutex);
 810	curr_clocksource = clocksource_default_clock();
 811	finished_booting = 1;
 812	/*
 813	 * Run the watchdog first to eliminate unstable clock sources
 814	 */
 815	__clocksource_watchdog_kthread();
 816	clocksource_select();
 817	mutex_unlock(&clocksource_mutex);
 818	return 0;
 819}
 820fs_initcall(clocksource_done_booting);
 821
 822/*
 823 * Enqueue the clocksource sorted by rating
 824 */
 825static void clocksource_enqueue(struct clocksource *cs)
 826{
 827	struct list_head *entry = &clocksource_list;
 828	struct clocksource *tmp;
 829
 830	list_for_each_entry(tmp, &clocksource_list, list) {
 831		/* Keep track of the place, where to insert */
 832		if (tmp->rating < cs->rating)
 833			break;
 834		entry = &tmp->list;
 835	}
 836	list_add(&cs->list, entry);
 837}
 838
 839/**
 840 * __clocksource_update_freq_scale - Used update clocksource with new freq
 841 * @cs:		clocksource to be registered
 842 * @scale:	Scale factor multiplied against freq to get clocksource hz
 843 * @freq:	clocksource frequency (cycles per second) divided by scale
 844 *
 845 * This should only be called from the clocksource->enable() method.
 846 *
 847 * This *SHOULD NOT* be called directly! Please use the
 848 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
 849 * functions.
 850 */
 851void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
 852{
 853	u64 sec;
 854
 855	/*
 856	 * Default clocksources are *special* and self-define their mult/shift.
 857	 * But, you're not special, so you should specify a freq value.
 858	 */
 859	if (freq) {
 860		/*
 861		 * Calc the maximum number of seconds which we can run before
 862		 * wrapping around. For clocksources which have a mask > 32-bit
 863		 * we need to limit the max sleep time to have a good
 864		 * conversion precision. 10 minutes is still a reasonable
 865		 * amount. That results in a shift value of 24 for a
 866		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
 867		 * ~ 0.06ppm granularity for NTP.
 868		 */
 869		sec = cs->mask;
 870		do_div(sec, freq);
 871		do_div(sec, scale);
 872		if (!sec)
 873			sec = 1;
 874		else if (sec > 600 && cs->mask > UINT_MAX)
 875			sec = 600;
 876
 877		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
 878				       NSEC_PER_SEC / scale, sec * scale);
 879	}
 880	/*
 881	 * Ensure clocksources that have large 'mult' values don't overflow
 882	 * when adjusted.
 883	 */
 884	cs->maxadj = clocksource_max_adjustment(cs);
 885	while (freq && ((cs->mult + cs->maxadj < cs->mult)
 886		|| (cs->mult - cs->maxadj > cs->mult))) {
 887		cs->mult >>= 1;
 888		cs->shift--;
 889		cs->maxadj = clocksource_max_adjustment(cs);
 890	}
 891
 892	/*
 893	 * Only warn for *special* clocksources that self-define
 894	 * their mult/shift values and don't specify a freq.
 895	 */
 896	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
 897		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
 898		cs->name);
 899
 900	clocksource_update_max_deferment(cs);
 901
 902	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
 903		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
 904}
 905EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
 906
 907/**
 908 * __clocksource_register_scale - Used to install new clocksources
 909 * @cs:		clocksource to be registered
 910 * @scale:	Scale factor multiplied against freq to get clocksource hz
 911 * @freq:	clocksource frequency (cycles per second) divided by scale
 912 *
 913 * Returns -EBUSY if registration fails, zero otherwise.
 914 *
 915 * This *SHOULD NOT* be called directly! Please use the
 916 * clocksource_register_hz() or clocksource_register_khz helper functions.
 917 */
 918int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
 919{
 920	unsigned long flags;
 921
 922	clocksource_arch_init(cs);
 923
 924	/* Initialize mult/shift and max_idle_ns */
 925	__clocksource_update_freq_scale(cs, scale, freq);
 926
 927	/* Add clocksource to the clocksource list */
 928	mutex_lock(&clocksource_mutex);
 929
 930	clocksource_watchdog_lock(&flags);
 931	clocksource_enqueue(cs);
 932	clocksource_enqueue_watchdog(cs);
 933	clocksource_watchdog_unlock(&flags);
 934
 935	clocksource_select();
 936	clocksource_select_watchdog(false);
 937	__clocksource_suspend_select(cs);
 938	mutex_unlock(&clocksource_mutex);
 939	return 0;
 940}
 941EXPORT_SYMBOL_GPL(__clocksource_register_scale);
 942
 943static void __clocksource_change_rating(struct clocksource *cs, int rating)
 944{
 945	list_del(&cs->list);
 946	cs->rating = rating;
 947	clocksource_enqueue(cs);
 948}
 949
 950/**
 951 * clocksource_change_rating - Change the rating of a registered clocksource
 952 * @cs:		clocksource to be changed
 953 * @rating:	new rating
 954 */
 955void clocksource_change_rating(struct clocksource *cs, int rating)
 956{
 957	unsigned long flags;
 958
 959	mutex_lock(&clocksource_mutex);
 960	clocksource_watchdog_lock(&flags);
 961	__clocksource_change_rating(cs, rating);
 962	clocksource_watchdog_unlock(&flags);
 963
 964	clocksource_select();
 965	clocksource_select_watchdog(false);
 966	clocksource_suspend_select(false);
 967	mutex_unlock(&clocksource_mutex);
 968}
 969EXPORT_SYMBOL(clocksource_change_rating);
 970
 971/*
 972 * Unbind clocksource @cs. Called with clocksource_mutex held
 973 */
 974static int clocksource_unbind(struct clocksource *cs)
 975{
 976	unsigned long flags;
 977
 978	if (clocksource_is_watchdog(cs)) {
 979		/* Select and try to install a replacement watchdog. */
 980		clocksource_select_watchdog(true);
 981		if (clocksource_is_watchdog(cs))
 982			return -EBUSY;
 983	}
 984
 985	if (cs == curr_clocksource) {
 986		/* Select and try to install a replacement clock source */
 987		clocksource_select_fallback();
 988		if (curr_clocksource == cs)
 989			return -EBUSY;
 990	}
 991
 992	if (clocksource_is_suspend(cs)) {
 993		/*
 994		 * Select and try to install a replacement suspend clocksource.
 995		 * If no replacement suspend clocksource, we will just let the
 996		 * clocksource go and have no suspend clocksource.
 997		 */
 998		clocksource_suspend_select(true);
 999	}
1000
1001	clocksource_watchdog_lock(&flags);
1002	clocksource_dequeue_watchdog(cs);
1003	list_del_init(&cs->list);
1004	clocksource_watchdog_unlock(&flags);
1005
1006	return 0;
1007}
1008
1009/**
1010 * clocksource_unregister - remove a registered clocksource
1011 * @cs:	clocksource to be unregistered
1012 */
1013int clocksource_unregister(struct clocksource *cs)
1014{
1015	int ret = 0;
1016
1017	mutex_lock(&clocksource_mutex);
1018	if (!list_empty(&cs->list))
1019		ret = clocksource_unbind(cs);
1020	mutex_unlock(&clocksource_mutex);
1021	return ret;
1022}
1023EXPORT_SYMBOL(clocksource_unregister);
1024
1025#ifdef CONFIG_SYSFS
1026/**
1027 * current_clocksource_show - sysfs interface for current clocksource
1028 * @dev:	unused
1029 * @attr:	unused
1030 * @buf:	char buffer to be filled with clocksource list
1031 *
1032 * Provides sysfs interface for listing current clocksource.
1033 */
1034static ssize_t current_clocksource_show(struct device *dev,
1035					struct device_attribute *attr,
1036					char *buf)
1037{
1038	ssize_t count = 0;
1039
1040	mutex_lock(&clocksource_mutex);
1041	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1042	mutex_unlock(&clocksource_mutex);
1043
1044	return count;
1045}
1046
1047ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1048{
1049	size_t ret = cnt;
1050
1051	/* strings from sysfs write are not 0 terminated! */
1052	if (!cnt || cnt >= CS_NAME_LEN)
1053		return -EINVAL;
1054
1055	/* strip of \n: */
1056	if (buf[cnt-1] == '\n')
1057		cnt--;
1058	if (cnt > 0)
1059		memcpy(dst, buf, cnt);
1060	dst[cnt] = 0;
1061	return ret;
1062}
1063
1064/**
1065 * current_clocksource_store - interface for manually overriding clocksource
1066 * @dev:	unused
1067 * @attr:	unused
1068 * @buf:	name of override clocksource
1069 * @count:	length of buffer
1070 *
1071 * Takes input from sysfs interface for manually overriding the default
1072 * clocksource selection.
1073 */
1074static ssize_t current_clocksource_store(struct device *dev,
1075					 struct device_attribute *attr,
1076					 const char *buf, size_t count)
1077{
1078	ssize_t ret;
1079
1080	mutex_lock(&clocksource_mutex);
1081
1082	ret = sysfs_get_uname(buf, override_name, count);
1083	if (ret >= 0)
1084		clocksource_select();
1085
1086	mutex_unlock(&clocksource_mutex);
1087
1088	return ret;
1089}
1090static DEVICE_ATTR_RW(current_clocksource);
1091
1092/**
1093 * unbind_clocksource_store - interface for manually unbinding clocksource
1094 * @dev:	unused
1095 * @attr:	unused
1096 * @buf:	unused
1097 * @count:	length of buffer
1098 *
1099 * Takes input from sysfs interface for manually unbinding a clocksource.
1100 */
1101static ssize_t unbind_clocksource_store(struct device *dev,
1102					struct device_attribute *attr,
1103					const char *buf, size_t count)
1104{
1105	struct clocksource *cs;
1106	char name[CS_NAME_LEN];
1107	ssize_t ret;
1108
1109	ret = sysfs_get_uname(buf, name, count);
1110	if (ret < 0)
1111		return ret;
1112
1113	ret = -ENODEV;
1114	mutex_lock(&clocksource_mutex);
1115	list_for_each_entry(cs, &clocksource_list, list) {
1116		if (strcmp(cs->name, name))
1117			continue;
1118		ret = clocksource_unbind(cs);
1119		break;
1120	}
1121	mutex_unlock(&clocksource_mutex);
1122
1123	return ret ? ret : count;
1124}
1125static DEVICE_ATTR_WO(unbind_clocksource);
1126
1127/**
1128 * available_clocksource_show - sysfs interface for listing clocksource
1129 * @dev:	unused
1130 * @attr:	unused
1131 * @buf:	char buffer to be filled with clocksource list
1132 *
1133 * Provides sysfs interface for listing registered clocksources
1134 */
1135static ssize_t available_clocksource_show(struct device *dev,
1136					  struct device_attribute *attr,
1137					  char *buf)
 
1138{
1139	struct clocksource *src;
1140	ssize_t count = 0;
1141
1142	mutex_lock(&clocksource_mutex);
1143	list_for_each_entry(src, &clocksource_list, list) {
1144		/*
1145		 * Don't show non-HRES clocksource if the tick code is
1146		 * in one shot mode (highres=on or nohz=on)
1147		 */
1148		if (!tick_oneshot_mode_active() ||
1149		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1150			count += snprintf(buf + count,
1151				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1152				  "%s ", src->name);
1153	}
1154	mutex_unlock(&clocksource_mutex);
1155
1156	count += snprintf(buf + count,
1157			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1158
1159	return count;
1160}
1161static DEVICE_ATTR_RO(available_clocksource);
1162
1163static struct attribute *clocksource_attrs[] = {
1164	&dev_attr_current_clocksource.attr,
1165	&dev_attr_unbind_clocksource.attr,
1166	&dev_attr_available_clocksource.attr,
1167	NULL
1168};
1169ATTRIBUTE_GROUPS(clocksource);
 
 
 
1170
1171static struct bus_type clocksource_subsys = {
1172	.name = "clocksource",
1173	.dev_name = "clocksource",
1174};
1175
1176static struct device device_clocksource = {
1177	.id	= 0,
1178	.bus	= &clocksource_subsys,
1179	.groups	= clocksource_groups,
1180};
1181
1182static int __init init_clocksource_sysfs(void)
1183{
1184	int error = subsys_system_register(&clocksource_subsys, NULL);
1185
1186	if (!error)
1187		error = device_register(&device_clocksource);
1188
 
 
 
 
 
 
 
 
 
 
1189	return error;
1190}
1191
1192device_initcall(init_clocksource_sysfs);
1193#endif /* CONFIG_SYSFS */
1194
1195/**
1196 * boot_override_clocksource - boot clock override
1197 * @str:	override name
1198 *
1199 * Takes a clocksource= boot argument and uses it
1200 * as the clocksource override name.
1201 */
1202static int __init boot_override_clocksource(char* str)
1203{
1204	mutex_lock(&clocksource_mutex);
1205	if (str)
1206		strlcpy(override_name, str, sizeof(override_name));
1207	mutex_unlock(&clocksource_mutex);
1208	return 1;
1209}
1210
1211__setup("clocksource=", boot_override_clocksource);
1212
1213/**
1214 * boot_override_clock - Compatibility layer for deprecated boot option
1215 * @str:	override name
1216 *
1217 * DEPRECATED! Takes a clock= boot argument and uses it
1218 * as the clocksource override name
1219 */
1220static int __init boot_override_clock(char* str)
1221{
1222	if (!strcmp(str, "pmtmr")) {
1223		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1224		return boot_override_clocksource("acpi_pm");
1225	}
1226	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1227	return boot_override_clocksource(str);
1228}
1229
1230__setup("clock=", boot_override_clock);
v4.10.11
 
   1/*
   2 * linux/kernel/time/clocksource.c
   3 *
   4 * This file contains the functions which manage clocksource drivers.
   5 *
   6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 *
  22 * TODO WishList:
  23 *   o Allow clocksource drivers to be unregistered
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/device.h>
  29#include <linux/clocksource.h>
  30#include <linux/init.h>
  31#include <linux/module.h>
  32#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
  33#include <linux/tick.h>
  34#include <linux/kthread.h>
  35
  36#include "tick-internal.h"
  37#include "timekeeping_internal.h"
  38
  39/**
  40 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
  41 * @mult:	pointer to mult variable
  42 * @shift:	pointer to shift variable
  43 * @from:	frequency to convert from
  44 * @to:		frequency to convert to
  45 * @maxsec:	guaranteed runtime conversion range in seconds
  46 *
  47 * The function evaluates the shift/mult pair for the scaled math
  48 * operations of clocksources and clockevents.
  49 *
  50 * @to and @from are frequency values in HZ. For clock sources @to is
  51 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
  52 * event @to is the counter frequency and @from is NSEC_PER_SEC.
  53 *
  54 * The @maxsec conversion range argument controls the time frame in
  55 * seconds which must be covered by the runtime conversion with the
  56 * calculated mult and shift factors. This guarantees that no 64bit
  57 * overflow happens when the input value of the conversion is
  58 * multiplied with the calculated mult factor. Larger ranges may
  59 * reduce the conversion accuracy by chosing smaller mult and shift
  60 * factors.
  61 */
  62void
  63clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
  64{
  65	u64 tmp;
  66	u32 sft, sftacc= 32;
  67
  68	/*
  69	 * Calculate the shift factor which is limiting the conversion
  70	 * range:
  71	 */
  72	tmp = ((u64)maxsec * from) >> 32;
  73	while (tmp) {
  74		tmp >>=1;
  75		sftacc--;
  76	}
  77
  78	/*
  79	 * Find the conversion shift/mult pair which has the best
  80	 * accuracy and fits the maxsec conversion range:
  81	 */
  82	for (sft = 32; sft > 0; sft--) {
  83		tmp = (u64) to << sft;
  84		tmp += from / 2;
  85		do_div(tmp, from);
  86		if ((tmp >> sftacc) == 0)
  87			break;
  88	}
  89	*mult = tmp;
  90	*shift = sft;
  91}
  92EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
  93
  94/*[Clocksource internal variables]---------
  95 * curr_clocksource:
  96 *	currently selected clocksource.
 
 
  97 * clocksource_list:
  98 *	linked list with the registered clocksources
  99 * clocksource_mutex:
 100 *	protects manipulations to curr_clocksource and the clocksource_list
 101 * override_name:
 102 *	Name of the user-specified clocksource.
 103 */
 104static struct clocksource *curr_clocksource;
 
 105static LIST_HEAD(clocksource_list);
 106static DEFINE_MUTEX(clocksource_mutex);
 107static char override_name[CS_NAME_LEN];
 108static int finished_booting;
 
 109
 110#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
 111static void clocksource_watchdog_work(struct work_struct *work);
 112static void clocksource_select(void);
 113
 114static LIST_HEAD(watchdog_list);
 115static struct clocksource *watchdog;
 116static struct timer_list watchdog_timer;
 117static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
 118static DEFINE_SPINLOCK(watchdog_lock);
 119static int watchdog_running;
 120static atomic_t watchdog_reset_pending;
 121
 
 
 
 
 
 
 
 
 
 
 122static int clocksource_watchdog_kthread(void *data);
 123static void __clocksource_change_rating(struct clocksource *cs, int rating);
 124
 125/*
 126 * Interval: 0.5sec Threshold: 0.0625s
 127 */
 128#define WATCHDOG_INTERVAL (HZ >> 1)
 129#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
 130
 131static void clocksource_watchdog_work(struct work_struct *work)
 132{
 133	/*
 
 
 
 
 
 
 
 
 
 134	 * If kthread_run fails the next watchdog scan over the
 135	 * watchdog_list will find the unstable clock again.
 136	 */
 137	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
 138}
 139
 140static void __clocksource_unstable(struct clocksource *cs)
 141{
 142	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
 143	cs->flags |= CLOCK_SOURCE_UNSTABLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 144	if (finished_booting)
 145		schedule_work(&watchdog_work);
 146}
 147
 148/**
 149 * clocksource_mark_unstable - mark clocksource unstable via watchdog
 150 * @cs:		clocksource to be marked unstable
 151 *
 152 * This function is called instead of clocksource_change_rating from
 153 * cpu hotplug code to avoid a deadlock between the clocksource mutex
 154 * and the cpu hotplug mutex. It defers the update of the clocksource
 155 * to the watchdog thread.
 156 */
 157void clocksource_mark_unstable(struct clocksource *cs)
 158{
 159	unsigned long flags;
 160
 161	spin_lock_irqsave(&watchdog_lock, flags);
 162	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
 163		if (list_empty(&cs->wd_list))
 164			list_add(&cs->wd_list, &watchdog_list);
 165		__clocksource_unstable(cs);
 166	}
 167	spin_unlock_irqrestore(&watchdog_lock, flags);
 168}
 169
 170static void clocksource_watchdog(unsigned long data)
 171{
 172	struct clocksource *cs;
 173	u64 csnow, wdnow, cslast, wdlast, delta;
 174	int64_t wd_nsec, cs_nsec;
 175	int next_cpu, reset_pending;
 176
 177	spin_lock(&watchdog_lock);
 178	if (!watchdog_running)
 179		goto out;
 180
 181	reset_pending = atomic_read(&watchdog_reset_pending);
 182
 183	list_for_each_entry(cs, &watchdog_list, wd_list) {
 184
 185		/* Clocksource already marked unstable? */
 186		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 187			if (finished_booting)
 188				schedule_work(&watchdog_work);
 189			continue;
 190		}
 191
 192		local_irq_disable();
 193		csnow = cs->read(cs);
 194		wdnow = watchdog->read(watchdog);
 195		local_irq_enable();
 196
 197		/* Clocksource initialized ? */
 198		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
 199		    atomic_read(&watchdog_reset_pending)) {
 200			cs->flags |= CLOCK_SOURCE_WATCHDOG;
 201			cs->wd_last = wdnow;
 202			cs->cs_last = csnow;
 203			continue;
 204		}
 205
 206		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
 207		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
 208					     watchdog->shift);
 209
 210		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
 211		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
 212		wdlast = cs->wd_last; /* save these in case we print them */
 213		cslast = cs->cs_last;
 214		cs->cs_last = csnow;
 215		cs->wd_last = wdnow;
 216
 217		if (atomic_read(&watchdog_reset_pending))
 218			continue;
 219
 220		/* Check the deviation from the watchdog clocksource. */
 221		if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
 222			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
 223				smp_processor_id(), cs->name);
 224			pr_warn("                      '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
 225				watchdog->name, wdnow, wdlast, watchdog->mask);
 226			pr_warn("                      '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
 227				cs->name, csnow, cslast, cs->mask);
 228			__clocksource_unstable(cs);
 229			continue;
 230		}
 231
 
 
 
 232		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
 233		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
 234		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
 235			/* Mark it valid for high-res. */
 236			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 237
 238			/*
 239			 * clocksource_done_booting() will sort it if
 240			 * finished_booting is not set yet.
 241			 */
 242			if (!finished_booting)
 243				continue;
 244
 245			/*
 246			 * If this is not the current clocksource let
 247			 * the watchdog thread reselect it. Due to the
 248			 * change to high res this clocksource might
 249			 * be preferred now. If it is the current
 250			 * clocksource let the tick code know about
 251			 * that change.
 252			 */
 253			if (cs != curr_clocksource) {
 254				cs->flags |= CLOCK_SOURCE_RESELECT;
 255				schedule_work(&watchdog_work);
 256			} else {
 257				tick_clock_notify();
 258			}
 259		}
 260	}
 261
 262	/*
 263	 * We only clear the watchdog_reset_pending, when we did a
 264	 * full cycle through all clocksources.
 265	 */
 266	if (reset_pending)
 267		atomic_dec(&watchdog_reset_pending);
 268
 269	/*
 270	 * Cycle through CPUs to check if the CPUs stay synchronized
 271	 * to each other.
 272	 */
 273	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
 274	if (next_cpu >= nr_cpu_ids)
 275		next_cpu = cpumask_first(cpu_online_mask);
 276	watchdog_timer.expires += WATCHDOG_INTERVAL;
 277	add_timer_on(&watchdog_timer, next_cpu);
 278out:
 279	spin_unlock(&watchdog_lock);
 280}
 281
 282static inline void clocksource_start_watchdog(void)
 283{
 284	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
 285		return;
 286	init_timer(&watchdog_timer);
 287	watchdog_timer.function = clocksource_watchdog;
 288	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
 289	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
 290	watchdog_running = 1;
 291}
 292
 293static inline void clocksource_stop_watchdog(void)
 294{
 295	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
 296		return;
 297	del_timer(&watchdog_timer);
 298	watchdog_running = 0;
 299}
 300
 301static inline void clocksource_reset_watchdog(void)
 302{
 303	struct clocksource *cs;
 304
 305	list_for_each_entry(cs, &watchdog_list, wd_list)
 306		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 307}
 308
 309static void clocksource_resume_watchdog(void)
 310{
 311	atomic_inc(&watchdog_reset_pending);
 312}
 313
 314static void clocksource_enqueue_watchdog(struct clocksource *cs)
 315{
 316	unsigned long flags;
 317
 318	spin_lock_irqsave(&watchdog_lock, flags);
 319	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 320		/* cs is a clocksource to be watched. */
 321		list_add(&cs->wd_list, &watchdog_list);
 322		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 323	} else {
 324		/* cs is a watchdog. */
 325		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 326			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 327	}
 328	spin_unlock_irqrestore(&watchdog_lock, flags);
 329}
 330
 331static void clocksource_select_watchdog(bool fallback)
 332{
 333	struct clocksource *cs, *old_wd;
 334	unsigned long flags;
 335
 336	spin_lock_irqsave(&watchdog_lock, flags);
 337	/* save current watchdog */
 338	old_wd = watchdog;
 339	if (fallback)
 340		watchdog = NULL;
 341
 342	list_for_each_entry(cs, &clocksource_list, list) {
 343		/* cs is a clocksource to be watched. */
 344		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
 345			continue;
 346
 347		/* Skip current if we were requested for a fallback. */
 348		if (fallback && cs == old_wd)
 349			continue;
 350
 351		/* Pick the best watchdog. */
 352		if (!watchdog || cs->rating > watchdog->rating)
 353			watchdog = cs;
 354	}
 355	/* If we failed to find a fallback restore the old one. */
 356	if (!watchdog)
 357		watchdog = old_wd;
 358
 359	/* If we changed the watchdog we need to reset cycles. */
 360	if (watchdog != old_wd)
 361		clocksource_reset_watchdog();
 362
 363	/* Check if the watchdog timer needs to be started. */
 364	clocksource_start_watchdog();
 365	spin_unlock_irqrestore(&watchdog_lock, flags);
 366}
 367
 368static void clocksource_dequeue_watchdog(struct clocksource *cs)
 369{
 370	unsigned long flags;
 371
 372	spin_lock_irqsave(&watchdog_lock, flags);
 373	if (cs != watchdog) {
 374		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 375			/* cs is a watched clocksource. */
 376			list_del_init(&cs->wd_list);
 377			/* Check if the watchdog timer needs to be stopped. */
 378			clocksource_stop_watchdog();
 379		}
 380	}
 381	spin_unlock_irqrestore(&watchdog_lock, flags);
 382}
 383
 384static int __clocksource_watchdog_kthread(void)
 385{
 386	struct clocksource *cs, *tmp;
 387	unsigned long flags;
 388	LIST_HEAD(unstable);
 389	int select = 0;
 390
 391	spin_lock_irqsave(&watchdog_lock, flags);
 392	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
 393		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 394			list_del_init(&cs->wd_list);
 395			list_add(&cs->wd_list, &unstable);
 396			select = 1;
 397		}
 398		if (cs->flags & CLOCK_SOURCE_RESELECT) {
 399			cs->flags &= ~CLOCK_SOURCE_RESELECT;
 400			select = 1;
 401		}
 402	}
 403	/* Check if the watchdog timer needs to be stopped. */
 404	clocksource_stop_watchdog();
 405	spin_unlock_irqrestore(&watchdog_lock, flags);
 406
 407	/* Needs to be done outside of watchdog lock */
 408	list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
 409		list_del_init(&cs->wd_list);
 410		__clocksource_change_rating(cs, 0);
 411	}
 412	return select;
 413}
 414
 415static int clocksource_watchdog_kthread(void *data)
 416{
 417	mutex_lock(&clocksource_mutex);
 418	if (__clocksource_watchdog_kthread())
 419		clocksource_select();
 420	mutex_unlock(&clocksource_mutex);
 421	return 0;
 422}
 423
 424static bool clocksource_is_watchdog(struct clocksource *cs)
 425{
 426	return cs == watchdog;
 427}
 428
 429#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
 430
 431static void clocksource_enqueue_watchdog(struct clocksource *cs)
 432{
 433	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 434		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 435}
 436
 437static void clocksource_select_watchdog(bool fallback) { }
 438static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
 439static inline void clocksource_resume_watchdog(void) { }
 440static inline int __clocksource_watchdog_kthread(void) { return 0; }
 441static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
 442void clocksource_mark_unstable(struct clocksource *cs) { }
 443
 
 
 
 444#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
 445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446/**
 447 * clocksource_suspend - suspend the clocksource(s)
 448 */
 449void clocksource_suspend(void)
 450{
 451	struct clocksource *cs;
 452
 453	list_for_each_entry_reverse(cs, &clocksource_list, list)
 454		if (cs->suspend)
 455			cs->suspend(cs);
 456}
 457
 458/**
 459 * clocksource_resume - resume the clocksource(s)
 460 */
 461void clocksource_resume(void)
 462{
 463	struct clocksource *cs;
 464
 465	list_for_each_entry(cs, &clocksource_list, list)
 466		if (cs->resume)
 467			cs->resume(cs);
 468
 469	clocksource_resume_watchdog();
 470}
 471
 472/**
 473 * clocksource_touch_watchdog - Update watchdog
 474 *
 475 * Update the watchdog after exception contexts such as kgdb so as not
 476 * to incorrectly trip the watchdog. This might fail when the kernel
 477 * was stopped in code which holds watchdog_lock.
 478 */
 479void clocksource_touch_watchdog(void)
 480{
 481	clocksource_resume_watchdog();
 482}
 483
 484/**
 485 * clocksource_max_adjustment- Returns max adjustment amount
 486 * @cs:         Pointer to clocksource
 487 *
 488 */
 489static u32 clocksource_max_adjustment(struct clocksource *cs)
 490{
 491	u64 ret;
 492	/*
 493	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
 494	 */
 495	ret = (u64)cs->mult * 11;
 496	do_div(ret,100);
 497	return (u32)ret;
 498}
 499
 500/**
 501 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
 502 * @mult:	cycle to nanosecond multiplier
 503 * @shift:	cycle to nanosecond divisor (power of two)
 504 * @maxadj:	maximum adjustment value to mult (~11%)
 505 * @mask:	bitmask for two's complement subtraction of non 64 bit counters
 506 * @max_cyc:	maximum cycle value before potential overflow (does not include
 507 *		any safety margin)
 508 *
 509 * NOTE: This function includes a safety margin of 50%, in other words, we
 510 * return half the number of nanoseconds the hardware counter can technically
 511 * cover. This is done so that we can potentially detect problems caused by
 512 * delayed timers or bad hardware, which might result in time intervals that
 513 * are larger than what the math used can handle without overflows.
 514 */
 515u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
 516{
 517	u64 max_nsecs, max_cycles;
 518
 519	/*
 520	 * Calculate the maximum number of cycles that we can pass to the
 521	 * cyc2ns() function without overflowing a 64-bit result.
 522	 */
 523	max_cycles = ULLONG_MAX;
 524	do_div(max_cycles, mult+maxadj);
 525
 526	/*
 527	 * The actual maximum number of cycles we can defer the clocksource is
 528	 * determined by the minimum of max_cycles and mask.
 529	 * Note: Here we subtract the maxadj to make sure we don't sleep for
 530	 * too long if there's a large negative adjustment.
 531	 */
 532	max_cycles = min(max_cycles, mask);
 533	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
 534
 535	/* return the max_cycles value as well if requested */
 536	if (max_cyc)
 537		*max_cyc = max_cycles;
 538
 539	/* Return 50% of the actual maximum, so we can detect bad values */
 540	max_nsecs >>= 1;
 541
 542	return max_nsecs;
 543}
 544
 545/**
 546 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
 547 * @cs:         Pointer to clocksource to be updated
 548 *
 549 */
 550static inline void clocksource_update_max_deferment(struct clocksource *cs)
 551{
 552	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
 553						cs->maxadj, cs->mask,
 554						&cs->max_cycles);
 555}
 556
 557#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
 558
 559static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
 560{
 561	struct clocksource *cs;
 562
 563	if (!finished_booting || list_empty(&clocksource_list))
 564		return NULL;
 565
 566	/*
 567	 * We pick the clocksource with the highest rating. If oneshot
 568	 * mode is active, we pick the highres valid clocksource with
 569	 * the best rating.
 570	 */
 571	list_for_each_entry(cs, &clocksource_list, list) {
 572		if (skipcur && cs == curr_clocksource)
 573			continue;
 574		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
 575			continue;
 576		return cs;
 577	}
 578	return NULL;
 579}
 580
 581static void __clocksource_select(bool skipcur)
 582{
 583	bool oneshot = tick_oneshot_mode_active();
 584	struct clocksource *best, *cs;
 585
 586	/* Find the best suitable clocksource */
 587	best = clocksource_find_best(oneshot, skipcur);
 588	if (!best)
 589		return;
 590
 
 
 
 591	/* Check for the override clocksource. */
 592	list_for_each_entry(cs, &clocksource_list, list) {
 593		if (skipcur && cs == curr_clocksource)
 594			continue;
 595		if (strcmp(cs->name, override_name) != 0)
 596			continue;
 597		/*
 598		 * Check to make sure we don't switch to a non-highres
 599		 * capable clocksource if the tick code is in oneshot
 600		 * mode (highres or nohz)
 601		 */
 602		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
 603			/* Override clocksource cannot be used. */
 604			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 605				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
 606					cs->name);
 607				override_name[0] = 0;
 608			} else {
 609				/*
 610				 * The override cannot be currently verified.
 611				 * Deferring to let the watchdog check.
 612				 */
 613				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
 614					cs->name);
 615			}
 616		} else
 617			/* Override clocksource can be used. */
 618			best = cs;
 619		break;
 620	}
 621
 
 622	if (curr_clocksource != best && !timekeeping_notify(best)) {
 623		pr_info("Switched to clocksource %s\n", best->name);
 624		curr_clocksource = best;
 625	}
 626}
 627
 628/**
 629 * clocksource_select - Select the best clocksource available
 630 *
 631 * Private function. Must hold clocksource_mutex when called.
 632 *
 633 * Select the clocksource with the best rating, or the clocksource,
 634 * which is selected by userspace override.
 635 */
 636static void clocksource_select(void)
 637{
 638	__clocksource_select(false);
 639}
 640
 641static void clocksource_select_fallback(void)
 642{
 643	__clocksource_select(true);
 644}
 645
 646#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
 647static inline void clocksource_select(void) { }
 648static inline void clocksource_select_fallback(void) { }
 649
 650#endif
 651
 652/*
 653 * clocksource_done_booting - Called near the end of core bootup
 654 *
 655 * Hack to avoid lots of clocksource churn at boot time.
 656 * We use fs_initcall because we want this to start before
 657 * device_initcall but after subsys_initcall.
 658 */
 659static int __init clocksource_done_booting(void)
 660{
 661	mutex_lock(&clocksource_mutex);
 662	curr_clocksource = clocksource_default_clock();
 663	finished_booting = 1;
 664	/*
 665	 * Run the watchdog first to eliminate unstable clock sources
 666	 */
 667	__clocksource_watchdog_kthread();
 668	clocksource_select();
 669	mutex_unlock(&clocksource_mutex);
 670	return 0;
 671}
 672fs_initcall(clocksource_done_booting);
 673
 674/*
 675 * Enqueue the clocksource sorted by rating
 676 */
 677static void clocksource_enqueue(struct clocksource *cs)
 678{
 679	struct list_head *entry = &clocksource_list;
 680	struct clocksource *tmp;
 681
 682	list_for_each_entry(tmp, &clocksource_list, list) {
 683		/* Keep track of the place, where to insert */
 684		if (tmp->rating < cs->rating)
 685			break;
 686		entry = &tmp->list;
 687	}
 688	list_add(&cs->list, entry);
 689}
 690
 691/**
 692 * __clocksource_update_freq_scale - Used update clocksource with new freq
 693 * @cs:		clocksource to be registered
 694 * @scale:	Scale factor multiplied against freq to get clocksource hz
 695 * @freq:	clocksource frequency (cycles per second) divided by scale
 696 *
 697 * This should only be called from the clocksource->enable() method.
 698 *
 699 * This *SHOULD NOT* be called directly! Please use the
 700 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
 701 * functions.
 702 */
 703void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
 704{
 705	u64 sec;
 706
 707	/*
 708	 * Default clocksources are *special* and self-define their mult/shift.
 709	 * But, you're not special, so you should specify a freq value.
 710	 */
 711	if (freq) {
 712		/*
 713		 * Calc the maximum number of seconds which we can run before
 714		 * wrapping around. For clocksources which have a mask > 32-bit
 715		 * we need to limit the max sleep time to have a good
 716		 * conversion precision. 10 minutes is still a reasonable
 717		 * amount. That results in a shift value of 24 for a
 718		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
 719		 * ~ 0.06ppm granularity for NTP.
 720		 */
 721		sec = cs->mask;
 722		do_div(sec, freq);
 723		do_div(sec, scale);
 724		if (!sec)
 725			sec = 1;
 726		else if (sec > 600 && cs->mask > UINT_MAX)
 727			sec = 600;
 728
 729		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
 730				       NSEC_PER_SEC / scale, sec * scale);
 731	}
 732	/*
 733	 * Ensure clocksources that have large 'mult' values don't overflow
 734	 * when adjusted.
 735	 */
 736	cs->maxadj = clocksource_max_adjustment(cs);
 737	while (freq && ((cs->mult + cs->maxadj < cs->mult)
 738		|| (cs->mult - cs->maxadj > cs->mult))) {
 739		cs->mult >>= 1;
 740		cs->shift--;
 741		cs->maxadj = clocksource_max_adjustment(cs);
 742	}
 743
 744	/*
 745	 * Only warn for *special* clocksources that self-define
 746	 * their mult/shift values and don't specify a freq.
 747	 */
 748	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
 749		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
 750		cs->name);
 751
 752	clocksource_update_max_deferment(cs);
 753
 754	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
 755		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
 756}
 757EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
 758
 759/**
 760 * __clocksource_register_scale - Used to install new clocksources
 761 * @cs:		clocksource to be registered
 762 * @scale:	Scale factor multiplied against freq to get clocksource hz
 763 * @freq:	clocksource frequency (cycles per second) divided by scale
 764 *
 765 * Returns -EBUSY if registration fails, zero otherwise.
 766 *
 767 * This *SHOULD NOT* be called directly! Please use the
 768 * clocksource_register_hz() or clocksource_register_khz helper functions.
 769 */
 770int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
 771{
 
 
 
 772
 773	/* Initialize mult/shift and max_idle_ns */
 774	__clocksource_update_freq_scale(cs, scale, freq);
 775
 776	/* Add clocksource to the clocksource list */
 777	mutex_lock(&clocksource_mutex);
 
 
 778	clocksource_enqueue(cs);
 779	clocksource_enqueue_watchdog(cs);
 
 
 780	clocksource_select();
 781	clocksource_select_watchdog(false);
 
 782	mutex_unlock(&clocksource_mutex);
 783	return 0;
 784}
 785EXPORT_SYMBOL_GPL(__clocksource_register_scale);
 786
 787static void __clocksource_change_rating(struct clocksource *cs, int rating)
 788{
 789	list_del(&cs->list);
 790	cs->rating = rating;
 791	clocksource_enqueue(cs);
 792}
 793
 794/**
 795 * clocksource_change_rating - Change the rating of a registered clocksource
 796 * @cs:		clocksource to be changed
 797 * @rating:	new rating
 798 */
 799void clocksource_change_rating(struct clocksource *cs, int rating)
 800{
 
 
 801	mutex_lock(&clocksource_mutex);
 
 802	__clocksource_change_rating(cs, rating);
 
 
 803	clocksource_select();
 804	clocksource_select_watchdog(false);
 
 805	mutex_unlock(&clocksource_mutex);
 806}
 807EXPORT_SYMBOL(clocksource_change_rating);
 808
 809/*
 810 * Unbind clocksource @cs. Called with clocksource_mutex held
 811 */
 812static int clocksource_unbind(struct clocksource *cs)
 813{
 
 
 814	if (clocksource_is_watchdog(cs)) {
 815		/* Select and try to install a replacement watchdog. */
 816		clocksource_select_watchdog(true);
 817		if (clocksource_is_watchdog(cs))
 818			return -EBUSY;
 819	}
 820
 821	if (cs == curr_clocksource) {
 822		/* Select and try to install a replacement clock source */
 823		clocksource_select_fallback();
 824		if (curr_clocksource == cs)
 825			return -EBUSY;
 826	}
 
 
 
 
 
 
 
 
 
 
 
 827	clocksource_dequeue_watchdog(cs);
 828	list_del_init(&cs->list);
 
 
 829	return 0;
 830}
 831
 832/**
 833 * clocksource_unregister - remove a registered clocksource
 834 * @cs:	clocksource to be unregistered
 835 */
 836int clocksource_unregister(struct clocksource *cs)
 837{
 838	int ret = 0;
 839
 840	mutex_lock(&clocksource_mutex);
 841	if (!list_empty(&cs->list))
 842		ret = clocksource_unbind(cs);
 843	mutex_unlock(&clocksource_mutex);
 844	return ret;
 845}
 846EXPORT_SYMBOL(clocksource_unregister);
 847
 848#ifdef CONFIG_SYSFS
 849/**
 850 * sysfs_show_current_clocksources - sysfs interface for current clocksource
 851 * @dev:	unused
 852 * @attr:	unused
 853 * @buf:	char buffer to be filled with clocksource list
 854 *
 855 * Provides sysfs interface for listing current clocksource.
 856 */
 857static ssize_t
 858sysfs_show_current_clocksources(struct device *dev,
 859				struct device_attribute *attr, char *buf)
 860{
 861	ssize_t count = 0;
 862
 863	mutex_lock(&clocksource_mutex);
 864	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
 865	mutex_unlock(&clocksource_mutex);
 866
 867	return count;
 868}
 869
 870ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
 871{
 872	size_t ret = cnt;
 873
 874	/* strings from sysfs write are not 0 terminated! */
 875	if (!cnt || cnt >= CS_NAME_LEN)
 876		return -EINVAL;
 877
 878	/* strip of \n: */
 879	if (buf[cnt-1] == '\n')
 880		cnt--;
 881	if (cnt > 0)
 882		memcpy(dst, buf, cnt);
 883	dst[cnt] = 0;
 884	return ret;
 885}
 886
 887/**
 888 * sysfs_override_clocksource - interface for manually overriding clocksource
 889 * @dev:	unused
 890 * @attr:	unused
 891 * @buf:	name of override clocksource
 892 * @count:	length of buffer
 893 *
 894 * Takes input from sysfs interface for manually overriding the default
 895 * clocksource selection.
 896 */
 897static ssize_t sysfs_override_clocksource(struct device *dev,
 898					  struct device_attribute *attr,
 899					  const char *buf, size_t count)
 900{
 901	ssize_t ret;
 902
 903	mutex_lock(&clocksource_mutex);
 904
 905	ret = sysfs_get_uname(buf, override_name, count);
 906	if (ret >= 0)
 907		clocksource_select();
 908
 909	mutex_unlock(&clocksource_mutex);
 910
 911	return ret;
 912}
 
 913
 914/**
 915 * sysfs_unbind_current_clocksource - interface for manually unbinding clocksource
 916 * @dev:	unused
 917 * @attr:	unused
 918 * @buf:	unused
 919 * @count:	length of buffer
 920 *
 921 * Takes input from sysfs interface for manually unbinding a clocksource.
 922 */
 923static ssize_t sysfs_unbind_clocksource(struct device *dev,
 924					struct device_attribute *attr,
 925					const char *buf, size_t count)
 926{
 927	struct clocksource *cs;
 928	char name[CS_NAME_LEN];
 929	ssize_t ret;
 930
 931	ret = sysfs_get_uname(buf, name, count);
 932	if (ret < 0)
 933		return ret;
 934
 935	ret = -ENODEV;
 936	mutex_lock(&clocksource_mutex);
 937	list_for_each_entry(cs, &clocksource_list, list) {
 938		if (strcmp(cs->name, name))
 939			continue;
 940		ret = clocksource_unbind(cs);
 941		break;
 942	}
 943	mutex_unlock(&clocksource_mutex);
 944
 945	return ret ? ret : count;
 946}
 
 947
 948/**
 949 * sysfs_show_available_clocksources - sysfs interface for listing clocksource
 950 * @dev:	unused
 951 * @attr:	unused
 952 * @buf:	char buffer to be filled with clocksource list
 953 *
 954 * Provides sysfs interface for listing registered clocksources
 955 */
 956static ssize_t
 957sysfs_show_available_clocksources(struct device *dev,
 958				  struct device_attribute *attr,
 959				  char *buf)
 960{
 961	struct clocksource *src;
 962	ssize_t count = 0;
 963
 964	mutex_lock(&clocksource_mutex);
 965	list_for_each_entry(src, &clocksource_list, list) {
 966		/*
 967		 * Don't show non-HRES clocksource if the tick code is
 968		 * in one shot mode (highres=on or nohz=on)
 969		 */
 970		if (!tick_oneshot_mode_active() ||
 971		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
 972			count += snprintf(buf + count,
 973				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
 974				  "%s ", src->name);
 975	}
 976	mutex_unlock(&clocksource_mutex);
 977
 978	count += snprintf(buf + count,
 979			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
 980
 981	return count;
 982}
 
 983
 984/*
 985 * Sysfs setup bits:
 986 */
 987static DEVICE_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
 988		   sysfs_override_clocksource);
 989
 990static DEVICE_ATTR(unbind_clocksource, 0200, NULL, sysfs_unbind_clocksource);
 991
 992static DEVICE_ATTR(available_clocksource, 0444,
 993		   sysfs_show_available_clocksources, NULL);
 994
 995static struct bus_type clocksource_subsys = {
 996	.name = "clocksource",
 997	.dev_name = "clocksource",
 998};
 999
1000static struct device device_clocksource = {
1001	.id	= 0,
1002	.bus	= &clocksource_subsys,
 
1003};
1004
1005static int __init init_clocksource_sysfs(void)
1006{
1007	int error = subsys_system_register(&clocksource_subsys, NULL);
1008
1009	if (!error)
1010		error = device_register(&device_clocksource);
1011	if (!error)
1012		error = device_create_file(
1013				&device_clocksource,
1014				&dev_attr_current_clocksource);
1015	if (!error)
1016		error = device_create_file(&device_clocksource,
1017					   &dev_attr_unbind_clocksource);
1018	if (!error)
1019		error = device_create_file(
1020				&device_clocksource,
1021				&dev_attr_available_clocksource);
1022	return error;
1023}
1024
1025device_initcall(init_clocksource_sysfs);
1026#endif /* CONFIG_SYSFS */
1027
1028/**
1029 * boot_override_clocksource - boot clock override
1030 * @str:	override name
1031 *
1032 * Takes a clocksource= boot argument and uses it
1033 * as the clocksource override name.
1034 */
1035static int __init boot_override_clocksource(char* str)
1036{
1037	mutex_lock(&clocksource_mutex);
1038	if (str)
1039		strlcpy(override_name, str, sizeof(override_name));
1040	mutex_unlock(&clocksource_mutex);
1041	return 1;
1042}
1043
1044__setup("clocksource=", boot_override_clocksource);
1045
1046/**
1047 * boot_override_clock - Compatibility layer for deprecated boot option
1048 * @str:	override name
1049 *
1050 * DEPRECATED! Takes a clock= boot argument and uses it
1051 * as the clocksource override name
1052 */
1053static int __init boot_override_clock(char* str)
1054{
1055	if (!strcmp(str, "pmtmr")) {
1056		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1057		return boot_override_clocksource("acpi_pm");
1058	}
1059	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1060	return boot_override_clocksource(str);
1061}
1062
1063__setup("clock=", boot_override_clock);