Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * This file contains the functions which manage clocksource drivers.
4 *
5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/device.h>
11#include <linux/clocksource.h>
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15#include <linux/tick.h>
16#include <linux/kthread.h>
17
18#include "tick-internal.h"
19#include "timekeeping_internal.h"
20
21/**
22 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
23 * @mult: pointer to mult variable
24 * @shift: pointer to shift variable
25 * @from: frequency to convert from
26 * @to: frequency to convert to
27 * @maxsec: guaranteed runtime conversion range in seconds
28 *
29 * The function evaluates the shift/mult pair for the scaled math
30 * operations of clocksources and clockevents.
31 *
32 * @to and @from are frequency values in HZ. For clock sources @to is
33 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
34 * event @to is the counter frequency and @from is NSEC_PER_SEC.
35 *
36 * The @maxsec conversion range argument controls the time frame in
37 * seconds which must be covered by the runtime conversion with the
38 * calculated mult and shift factors. This guarantees that no 64bit
39 * overflow happens when the input value of the conversion is
40 * multiplied with the calculated mult factor. Larger ranges may
41 * reduce the conversion accuracy by chosing smaller mult and shift
42 * factors.
43 */
44void
45clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
46{
47 u64 tmp;
48 u32 sft, sftacc= 32;
49
50 /*
51 * Calculate the shift factor which is limiting the conversion
52 * range:
53 */
54 tmp = ((u64)maxsec * from) >> 32;
55 while (tmp) {
56 tmp >>=1;
57 sftacc--;
58 }
59
60 /*
61 * Find the conversion shift/mult pair which has the best
62 * accuracy and fits the maxsec conversion range:
63 */
64 for (sft = 32; sft > 0; sft--) {
65 tmp = (u64) to << sft;
66 tmp += from / 2;
67 do_div(tmp, from);
68 if ((tmp >> sftacc) == 0)
69 break;
70 }
71 *mult = tmp;
72 *shift = sft;
73}
74EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
75
76/*[Clocksource internal variables]---------
77 * curr_clocksource:
78 * currently selected clocksource.
79 * suspend_clocksource:
80 * used to calculate the suspend time.
81 * clocksource_list:
82 * linked list with the registered clocksources
83 * clocksource_mutex:
84 * protects manipulations to curr_clocksource and the clocksource_list
85 * override_name:
86 * Name of the user-specified clocksource.
87 */
88static struct clocksource *curr_clocksource;
89static struct clocksource *suspend_clocksource;
90static LIST_HEAD(clocksource_list);
91static DEFINE_MUTEX(clocksource_mutex);
92static char override_name[CS_NAME_LEN];
93static int finished_booting;
94static u64 suspend_start;
95
96#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
97static void clocksource_watchdog_work(struct work_struct *work);
98static void clocksource_select(void);
99
100static LIST_HEAD(watchdog_list);
101static struct clocksource *watchdog;
102static struct timer_list watchdog_timer;
103static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
104static DEFINE_SPINLOCK(watchdog_lock);
105static int watchdog_running;
106static atomic_t watchdog_reset_pending;
107
108static inline void clocksource_watchdog_lock(unsigned long *flags)
109{
110 spin_lock_irqsave(&watchdog_lock, *flags);
111}
112
113static inline void clocksource_watchdog_unlock(unsigned long *flags)
114{
115 spin_unlock_irqrestore(&watchdog_lock, *flags);
116}
117
118static int clocksource_watchdog_kthread(void *data);
119static void __clocksource_change_rating(struct clocksource *cs, int rating);
120
121/*
122 * Interval: 0.5sec Threshold: 0.0625s
123 */
124#define WATCHDOG_INTERVAL (HZ >> 1)
125#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
126
127static void clocksource_watchdog_work(struct work_struct *work)
128{
129 /*
130 * We cannot directly run clocksource_watchdog_kthread() here, because
131 * clocksource_select() calls timekeeping_notify() which uses
132 * stop_machine(). One cannot use stop_machine() from a workqueue() due
133 * lock inversions wrt CPU hotplug.
134 *
135 * Also, we only ever run this work once or twice during the lifetime
136 * of the kernel, so there is no point in creating a more permanent
137 * kthread for this.
138 *
139 * If kthread_run fails the next watchdog scan over the
140 * watchdog_list will find the unstable clock again.
141 */
142 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
143}
144
145static void __clocksource_unstable(struct clocksource *cs)
146{
147 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
148 cs->flags |= CLOCK_SOURCE_UNSTABLE;
149
150 /*
151 * If the clocksource is registered clocksource_watchdog_kthread() will
152 * re-rate and re-select.
153 */
154 if (list_empty(&cs->list)) {
155 cs->rating = 0;
156 return;
157 }
158
159 if (cs->mark_unstable)
160 cs->mark_unstable(cs);
161
162 /* kick clocksource_watchdog_kthread() */
163 if (finished_booting)
164 schedule_work(&watchdog_work);
165}
166
167/**
168 * clocksource_mark_unstable - mark clocksource unstable via watchdog
169 * @cs: clocksource to be marked unstable
170 *
171 * This function is called by the x86 TSC code to mark clocksources as unstable;
172 * it defers demotion and re-selection to a kthread.
173 */
174void clocksource_mark_unstable(struct clocksource *cs)
175{
176 unsigned long flags;
177
178 spin_lock_irqsave(&watchdog_lock, flags);
179 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
180 if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
181 list_add(&cs->wd_list, &watchdog_list);
182 __clocksource_unstable(cs);
183 }
184 spin_unlock_irqrestore(&watchdog_lock, flags);
185}
186
187static void clocksource_watchdog(struct timer_list *unused)
188{
189 struct clocksource *cs;
190 u64 csnow, wdnow, cslast, wdlast, delta;
191 int64_t wd_nsec, cs_nsec;
192 int next_cpu, reset_pending;
193
194 spin_lock(&watchdog_lock);
195 if (!watchdog_running)
196 goto out;
197
198 reset_pending = atomic_read(&watchdog_reset_pending);
199
200 list_for_each_entry(cs, &watchdog_list, wd_list) {
201
202 /* Clocksource already marked unstable? */
203 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
204 if (finished_booting)
205 schedule_work(&watchdog_work);
206 continue;
207 }
208
209 local_irq_disable();
210 csnow = cs->read(cs);
211 wdnow = watchdog->read(watchdog);
212 local_irq_enable();
213
214 /* Clocksource initialized ? */
215 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
216 atomic_read(&watchdog_reset_pending)) {
217 cs->flags |= CLOCK_SOURCE_WATCHDOG;
218 cs->wd_last = wdnow;
219 cs->cs_last = csnow;
220 continue;
221 }
222
223 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
224 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
225 watchdog->shift);
226
227 delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
228 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
229 wdlast = cs->wd_last; /* save these in case we print them */
230 cslast = cs->cs_last;
231 cs->cs_last = csnow;
232 cs->wd_last = wdnow;
233
234 if (atomic_read(&watchdog_reset_pending))
235 continue;
236
237 /* Check the deviation from the watchdog clocksource. */
238 if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
239 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
240 smp_processor_id(), cs->name);
241 pr_warn(" '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
242 watchdog->name, wdnow, wdlast, watchdog->mask);
243 pr_warn(" '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
244 cs->name, csnow, cslast, cs->mask);
245 __clocksource_unstable(cs);
246 continue;
247 }
248
249 if (cs == curr_clocksource && cs->tick_stable)
250 cs->tick_stable(cs);
251
252 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
253 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
254 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
255 /* Mark it valid for high-res. */
256 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
257
258 /*
259 * clocksource_done_booting() will sort it if
260 * finished_booting is not set yet.
261 */
262 if (!finished_booting)
263 continue;
264
265 /*
266 * If this is not the current clocksource let
267 * the watchdog thread reselect it. Due to the
268 * change to high res this clocksource might
269 * be preferred now. If it is the current
270 * clocksource let the tick code know about
271 * that change.
272 */
273 if (cs != curr_clocksource) {
274 cs->flags |= CLOCK_SOURCE_RESELECT;
275 schedule_work(&watchdog_work);
276 } else {
277 tick_clock_notify();
278 }
279 }
280 }
281
282 /*
283 * We only clear the watchdog_reset_pending, when we did a
284 * full cycle through all clocksources.
285 */
286 if (reset_pending)
287 atomic_dec(&watchdog_reset_pending);
288
289 /*
290 * Cycle through CPUs to check if the CPUs stay synchronized
291 * to each other.
292 */
293 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
294 if (next_cpu >= nr_cpu_ids)
295 next_cpu = cpumask_first(cpu_online_mask);
296 watchdog_timer.expires += WATCHDOG_INTERVAL;
297 add_timer_on(&watchdog_timer, next_cpu);
298out:
299 spin_unlock(&watchdog_lock);
300}
301
302static inline void clocksource_start_watchdog(void)
303{
304 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
305 return;
306 timer_setup(&watchdog_timer, clocksource_watchdog, 0);
307 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
308 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
309 watchdog_running = 1;
310}
311
312static inline void clocksource_stop_watchdog(void)
313{
314 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
315 return;
316 del_timer(&watchdog_timer);
317 watchdog_running = 0;
318}
319
320static inline void clocksource_reset_watchdog(void)
321{
322 struct clocksource *cs;
323
324 list_for_each_entry(cs, &watchdog_list, wd_list)
325 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
326}
327
328static void clocksource_resume_watchdog(void)
329{
330 atomic_inc(&watchdog_reset_pending);
331}
332
333static void clocksource_enqueue_watchdog(struct clocksource *cs)
334{
335 INIT_LIST_HEAD(&cs->wd_list);
336
337 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
338 /* cs is a clocksource to be watched. */
339 list_add(&cs->wd_list, &watchdog_list);
340 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
341 } else {
342 /* cs is a watchdog. */
343 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
344 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
345 }
346}
347
348static void clocksource_select_watchdog(bool fallback)
349{
350 struct clocksource *cs, *old_wd;
351 unsigned long flags;
352
353 spin_lock_irqsave(&watchdog_lock, flags);
354 /* save current watchdog */
355 old_wd = watchdog;
356 if (fallback)
357 watchdog = NULL;
358
359 list_for_each_entry(cs, &clocksource_list, list) {
360 /* cs is a clocksource to be watched. */
361 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
362 continue;
363
364 /* Skip current if we were requested for a fallback. */
365 if (fallback && cs == old_wd)
366 continue;
367
368 /* Pick the best watchdog. */
369 if (!watchdog || cs->rating > watchdog->rating)
370 watchdog = cs;
371 }
372 /* If we failed to find a fallback restore the old one. */
373 if (!watchdog)
374 watchdog = old_wd;
375
376 /* If we changed the watchdog we need to reset cycles. */
377 if (watchdog != old_wd)
378 clocksource_reset_watchdog();
379
380 /* Check if the watchdog timer needs to be started. */
381 clocksource_start_watchdog();
382 spin_unlock_irqrestore(&watchdog_lock, flags);
383}
384
385static void clocksource_dequeue_watchdog(struct clocksource *cs)
386{
387 if (cs != watchdog) {
388 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
389 /* cs is a watched clocksource. */
390 list_del_init(&cs->wd_list);
391 /* Check if the watchdog timer needs to be stopped. */
392 clocksource_stop_watchdog();
393 }
394 }
395}
396
397static int __clocksource_watchdog_kthread(void)
398{
399 struct clocksource *cs, *tmp;
400 unsigned long flags;
401 int select = 0;
402
403 spin_lock_irqsave(&watchdog_lock, flags);
404 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
405 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
406 list_del_init(&cs->wd_list);
407 __clocksource_change_rating(cs, 0);
408 select = 1;
409 }
410 if (cs->flags & CLOCK_SOURCE_RESELECT) {
411 cs->flags &= ~CLOCK_SOURCE_RESELECT;
412 select = 1;
413 }
414 }
415 /* Check if the watchdog timer needs to be stopped. */
416 clocksource_stop_watchdog();
417 spin_unlock_irqrestore(&watchdog_lock, flags);
418
419 return select;
420}
421
422static int clocksource_watchdog_kthread(void *data)
423{
424 mutex_lock(&clocksource_mutex);
425 if (__clocksource_watchdog_kthread())
426 clocksource_select();
427 mutex_unlock(&clocksource_mutex);
428 return 0;
429}
430
431static bool clocksource_is_watchdog(struct clocksource *cs)
432{
433 return cs == watchdog;
434}
435
436#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
437
438static void clocksource_enqueue_watchdog(struct clocksource *cs)
439{
440 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
441 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
442}
443
444static void clocksource_select_watchdog(bool fallback) { }
445static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
446static inline void clocksource_resume_watchdog(void) { }
447static inline int __clocksource_watchdog_kthread(void) { return 0; }
448static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
449void clocksource_mark_unstable(struct clocksource *cs) { }
450
451static inline void clocksource_watchdog_lock(unsigned long *flags) { }
452static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
453
454#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
455
456static bool clocksource_is_suspend(struct clocksource *cs)
457{
458 return cs == suspend_clocksource;
459}
460
461static void __clocksource_suspend_select(struct clocksource *cs)
462{
463 /*
464 * Skip the clocksource which will be stopped in suspend state.
465 */
466 if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
467 return;
468
469 /*
470 * The nonstop clocksource can be selected as the suspend clocksource to
471 * calculate the suspend time, so it should not supply suspend/resume
472 * interfaces to suspend the nonstop clocksource when system suspends.
473 */
474 if (cs->suspend || cs->resume) {
475 pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
476 cs->name);
477 }
478
479 /* Pick the best rating. */
480 if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
481 suspend_clocksource = cs;
482}
483
484/**
485 * clocksource_suspend_select - Select the best clocksource for suspend timing
486 * @fallback: if select a fallback clocksource
487 */
488static void clocksource_suspend_select(bool fallback)
489{
490 struct clocksource *cs, *old_suspend;
491
492 old_suspend = suspend_clocksource;
493 if (fallback)
494 suspend_clocksource = NULL;
495
496 list_for_each_entry(cs, &clocksource_list, list) {
497 /* Skip current if we were requested for a fallback. */
498 if (fallback && cs == old_suspend)
499 continue;
500
501 __clocksource_suspend_select(cs);
502 }
503}
504
505/**
506 * clocksource_start_suspend_timing - Start measuring the suspend timing
507 * @cs: current clocksource from timekeeping
508 * @start_cycles: current cycles from timekeeping
509 *
510 * This function will save the start cycle values of suspend timer to calculate
511 * the suspend time when resuming system.
512 *
513 * This function is called late in the suspend process from timekeeping_suspend(),
514 * that means processes are freezed, non-boot cpus and interrupts are disabled
515 * now. It is therefore possible to start the suspend timer without taking the
516 * clocksource mutex.
517 */
518void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
519{
520 if (!suspend_clocksource)
521 return;
522
523 /*
524 * If current clocksource is the suspend timer, we should use the
525 * tkr_mono.cycle_last value as suspend_start to avoid same reading
526 * from suspend timer.
527 */
528 if (clocksource_is_suspend(cs)) {
529 suspend_start = start_cycles;
530 return;
531 }
532
533 if (suspend_clocksource->enable &&
534 suspend_clocksource->enable(suspend_clocksource)) {
535 pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
536 return;
537 }
538
539 suspend_start = suspend_clocksource->read(suspend_clocksource);
540}
541
542/**
543 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
544 * @cs: current clocksource from timekeeping
545 * @cycle_now: current cycles from timekeeping
546 *
547 * This function will calculate the suspend time from suspend timer.
548 *
549 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
550 *
551 * This function is called early in the resume process from timekeeping_resume(),
552 * that means there is only one cpu, no processes are running and the interrupts
553 * are disabled. It is therefore possible to stop the suspend timer without
554 * taking the clocksource mutex.
555 */
556u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
557{
558 u64 now, delta, nsec = 0;
559
560 if (!suspend_clocksource)
561 return 0;
562
563 /*
564 * If current clocksource is the suspend timer, we should use the
565 * tkr_mono.cycle_last value from timekeeping as current cycle to
566 * avoid same reading from suspend timer.
567 */
568 if (clocksource_is_suspend(cs))
569 now = cycle_now;
570 else
571 now = suspend_clocksource->read(suspend_clocksource);
572
573 if (now > suspend_start) {
574 delta = clocksource_delta(now, suspend_start,
575 suspend_clocksource->mask);
576 nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
577 suspend_clocksource->shift);
578 }
579
580 /*
581 * Disable the suspend timer to save power if current clocksource is
582 * not the suspend timer.
583 */
584 if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
585 suspend_clocksource->disable(suspend_clocksource);
586
587 return nsec;
588}
589
590/**
591 * clocksource_suspend - suspend the clocksource(s)
592 */
593void clocksource_suspend(void)
594{
595 struct clocksource *cs;
596
597 list_for_each_entry_reverse(cs, &clocksource_list, list)
598 if (cs->suspend)
599 cs->suspend(cs);
600}
601
602/**
603 * clocksource_resume - resume the clocksource(s)
604 */
605void clocksource_resume(void)
606{
607 struct clocksource *cs;
608
609 list_for_each_entry(cs, &clocksource_list, list)
610 if (cs->resume)
611 cs->resume(cs);
612
613 clocksource_resume_watchdog();
614}
615
616/**
617 * clocksource_touch_watchdog - Update watchdog
618 *
619 * Update the watchdog after exception contexts such as kgdb so as not
620 * to incorrectly trip the watchdog. This might fail when the kernel
621 * was stopped in code which holds watchdog_lock.
622 */
623void clocksource_touch_watchdog(void)
624{
625 clocksource_resume_watchdog();
626}
627
628/**
629 * clocksource_max_adjustment- Returns max adjustment amount
630 * @cs: Pointer to clocksource
631 *
632 */
633static u32 clocksource_max_adjustment(struct clocksource *cs)
634{
635 u64 ret;
636 /*
637 * We won't try to correct for more than 11% adjustments (110,000 ppm),
638 */
639 ret = (u64)cs->mult * 11;
640 do_div(ret,100);
641 return (u32)ret;
642}
643
644/**
645 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
646 * @mult: cycle to nanosecond multiplier
647 * @shift: cycle to nanosecond divisor (power of two)
648 * @maxadj: maximum adjustment value to mult (~11%)
649 * @mask: bitmask for two's complement subtraction of non 64 bit counters
650 * @max_cyc: maximum cycle value before potential overflow (does not include
651 * any safety margin)
652 *
653 * NOTE: This function includes a safety margin of 50%, in other words, we
654 * return half the number of nanoseconds the hardware counter can technically
655 * cover. This is done so that we can potentially detect problems caused by
656 * delayed timers or bad hardware, which might result in time intervals that
657 * are larger than what the math used can handle without overflows.
658 */
659u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
660{
661 u64 max_nsecs, max_cycles;
662
663 /*
664 * Calculate the maximum number of cycles that we can pass to the
665 * cyc2ns() function without overflowing a 64-bit result.
666 */
667 max_cycles = ULLONG_MAX;
668 do_div(max_cycles, mult+maxadj);
669
670 /*
671 * The actual maximum number of cycles we can defer the clocksource is
672 * determined by the minimum of max_cycles and mask.
673 * Note: Here we subtract the maxadj to make sure we don't sleep for
674 * too long if there's a large negative adjustment.
675 */
676 max_cycles = min(max_cycles, mask);
677 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
678
679 /* return the max_cycles value as well if requested */
680 if (max_cyc)
681 *max_cyc = max_cycles;
682
683 /* Return 50% of the actual maximum, so we can detect bad values */
684 max_nsecs >>= 1;
685
686 return max_nsecs;
687}
688
689/**
690 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
691 * @cs: Pointer to clocksource to be updated
692 *
693 */
694static inline void clocksource_update_max_deferment(struct clocksource *cs)
695{
696 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
697 cs->maxadj, cs->mask,
698 &cs->max_cycles);
699}
700
701#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
702
703static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
704{
705 struct clocksource *cs;
706
707 if (!finished_booting || list_empty(&clocksource_list))
708 return NULL;
709
710 /*
711 * We pick the clocksource with the highest rating. If oneshot
712 * mode is active, we pick the highres valid clocksource with
713 * the best rating.
714 */
715 list_for_each_entry(cs, &clocksource_list, list) {
716 if (skipcur && cs == curr_clocksource)
717 continue;
718 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
719 continue;
720 return cs;
721 }
722 return NULL;
723}
724
725static void __clocksource_select(bool skipcur)
726{
727 bool oneshot = tick_oneshot_mode_active();
728 struct clocksource *best, *cs;
729
730 /* Find the best suitable clocksource */
731 best = clocksource_find_best(oneshot, skipcur);
732 if (!best)
733 return;
734
735 if (!strlen(override_name))
736 goto found;
737
738 /* Check for the override clocksource. */
739 list_for_each_entry(cs, &clocksource_list, list) {
740 if (skipcur && cs == curr_clocksource)
741 continue;
742 if (strcmp(cs->name, override_name) != 0)
743 continue;
744 /*
745 * Check to make sure we don't switch to a non-highres
746 * capable clocksource if the tick code is in oneshot
747 * mode (highres or nohz)
748 */
749 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
750 /* Override clocksource cannot be used. */
751 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
752 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
753 cs->name);
754 override_name[0] = 0;
755 } else {
756 /*
757 * The override cannot be currently verified.
758 * Deferring to let the watchdog check.
759 */
760 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
761 cs->name);
762 }
763 } else
764 /* Override clocksource can be used. */
765 best = cs;
766 break;
767 }
768
769found:
770 if (curr_clocksource != best && !timekeeping_notify(best)) {
771 pr_info("Switched to clocksource %s\n", best->name);
772 curr_clocksource = best;
773 }
774}
775
776/**
777 * clocksource_select - Select the best clocksource available
778 *
779 * Private function. Must hold clocksource_mutex when called.
780 *
781 * Select the clocksource with the best rating, or the clocksource,
782 * which is selected by userspace override.
783 */
784static void clocksource_select(void)
785{
786 __clocksource_select(false);
787}
788
789static void clocksource_select_fallback(void)
790{
791 __clocksource_select(true);
792}
793
794#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
795static inline void clocksource_select(void) { }
796static inline void clocksource_select_fallback(void) { }
797
798#endif
799
800/*
801 * clocksource_done_booting - Called near the end of core bootup
802 *
803 * Hack to avoid lots of clocksource churn at boot time.
804 * We use fs_initcall because we want this to start before
805 * device_initcall but after subsys_initcall.
806 */
807static int __init clocksource_done_booting(void)
808{
809 mutex_lock(&clocksource_mutex);
810 curr_clocksource = clocksource_default_clock();
811 finished_booting = 1;
812 /*
813 * Run the watchdog first to eliminate unstable clock sources
814 */
815 __clocksource_watchdog_kthread();
816 clocksource_select();
817 mutex_unlock(&clocksource_mutex);
818 return 0;
819}
820fs_initcall(clocksource_done_booting);
821
822/*
823 * Enqueue the clocksource sorted by rating
824 */
825static void clocksource_enqueue(struct clocksource *cs)
826{
827 struct list_head *entry = &clocksource_list;
828 struct clocksource *tmp;
829
830 list_for_each_entry(tmp, &clocksource_list, list) {
831 /* Keep track of the place, where to insert */
832 if (tmp->rating < cs->rating)
833 break;
834 entry = &tmp->list;
835 }
836 list_add(&cs->list, entry);
837}
838
839/**
840 * __clocksource_update_freq_scale - Used update clocksource with new freq
841 * @cs: clocksource to be registered
842 * @scale: Scale factor multiplied against freq to get clocksource hz
843 * @freq: clocksource frequency (cycles per second) divided by scale
844 *
845 * This should only be called from the clocksource->enable() method.
846 *
847 * This *SHOULD NOT* be called directly! Please use the
848 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
849 * functions.
850 */
851void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
852{
853 u64 sec;
854
855 /*
856 * Default clocksources are *special* and self-define their mult/shift.
857 * But, you're not special, so you should specify a freq value.
858 */
859 if (freq) {
860 /*
861 * Calc the maximum number of seconds which we can run before
862 * wrapping around. For clocksources which have a mask > 32-bit
863 * we need to limit the max sleep time to have a good
864 * conversion precision. 10 minutes is still a reasonable
865 * amount. That results in a shift value of 24 for a
866 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
867 * ~ 0.06ppm granularity for NTP.
868 */
869 sec = cs->mask;
870 do_div(sec, freq);
871 do_div(sec, scale);
872 if (!sec)
873 sec = 1;
874 else if (sec > 600 && cs->mask > UINT_MAX)
875 sec = 600;
876
877 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
878 NSEC_PER_SEC / scale, sec * scale);
879 }
880 /*
881 * Ensure clocksources that have large 'mult' values don't overflow
882 * when adjusted.
883 */
884 cs->maxadj = clocksource_max_adjustment(cs);
885 while (freq && ((cs->mult + cs->maxadj < cs->mult)
886 || (cs->mult - cs->maxadj > cs->mult))) {
887 cs->mult >>= 1;
888 cs->shift--;
889 cs->maxadj = clocksource_max_adjustment(cs);
890 }
891
892 /*
893 * Only warn for *special* clocksources that self-define
894 * their mult/shift values and don't specify a freq.
895 */
896 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
897 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
898 cs->name);
899
900 clocksource_update_max_deferment(cs);
901
902 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
903 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
904}
905EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
906
907/**
908 * __clocksource_register_scale - Used to install new clocksources
909 * @cs: clocksource to be registered
910 * @scale: Scale factor multiplied against freq to get clocksource hz
911 * @freq: clocksource frequency (cycles per second) divided by scale
912 *
913 * Returns -EBUSY if registration fails, zero otherwise.
914 *
915 * This *SHOULD NOT* be called directly! Please use the
916 * clocksource_register_hz() or clocksource_register_khz helper functions.
917 */
918int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
919{
920 unsigned long flags;
921
922 clocksource_arch_init(cs);
923
924 /* Initialize mult/shift and max_idle_ns */
925 __clocksource_update_freq_scale(cs, scale, freq);
926
927 /* Add clocksource to the clocksource list */
928 mutex_lock(&clocksource_mutex);
929
930 clocksource_watchdog_lock(&flags);
931 clocksource_enqueue(cs);
932 clocksource_enqueue_watchdog(cs);
933 clocksource_watchdog_unlock(&flags);
934
935 clocksource_select();
936 clocksource_select_watchdog(false);
937 __clocksource_suspend_select(cs);
938 mutex_unlock(&clocksource_mutex);
939 return 0;
940}
941EXPORT_SYMBOL_GPL(__clocksource_register_scale);
942
943static void __clocksource_change_rating(struct clocksource *cs, int rating)
944{
945 list_del(&cs->list);
946 cs->rating = rating;
947 clocksource_enqueue(cs);
948}
949
950/**
951 * clocksource_change_rating - Change the rating of a registered clocksource
952 * @cs: clocksource to be changed
953 * @rating: new rating
954 */
955void clocksource_change_rating(struct clocksource *cs, int rating)
956{
957 unsigned long flags;
958
959 mutex_lock(&clocksource_mutex);
960 clocksource_watchdog_lock(&flags);
961 __clocksource_change_rating(cs, rating);
962 clocksource_watchdog_unlock(&flags);
963
964 clocksource_select();
965 clocksource_select_watchdog(false);
966 clocksource_suspend_select(false);
967 mutex_unlock(&clocksource_mutex);
968}
969EXPORT_SYMBOL(clocksource_change_rating);
970
971/*
972 * Unbind clocksource @cs. Called with clocksource_mutex held
973 */
974static int clocksource_unbind(struct clocksource *cs)
975{
976 unsigned long flags;
977
978 if (clocksource_is_watchdog(cs)) {
979 /* Select and try to install a replacement watchdog. */
980 clocksource_select_watchdog(true);
981 if (clocksource_is_watchdog(cs))
982 return -EBUSY;
983 }
984
985 if (cs == curr_clocksource) {
986 /* Select and try to install a replacement clock source */
987 clocksource_select_fallback();
988 if (curr_clocksource == cs)
989 return -EBUSY;
990 }
991
992 if (clocksource_is_suspend(cs)) {
993 /*
994 * Select and try to install a replacement suspend clocksource.
995 * If no replacement suspend clocksource, we will just let the
996 * clocksource go and have no suspend clocksource.
997 */
998 clocksource_suspend_select(true);
999 }
1000
1001 clocksource_watchdog_lock(&flags);
1002 clocksource_dequeue_watchdog(cs);
1003 list_del_init(&cs->list);
1004 clocksource_watchdog_unlock(&flags);
1005
1006 return 0;
1007}
1008
1009/**
1010 * clocksource_unregister - remove a registered clocksource
1011 * @cs: clocksource to be unregistered
1012 */
1013int clocksource_unregister(struct clocksource *cs)
1014{
1015 int ret = 0;
1016
1017 mutex_lock(&clocksource_mutex);
1018 if (!list_empty(&cs->list))
1019 ret = clocksource_unbind(cs);
1020 mutex_unlock(&clocksource_mutex);
1021 return ret;
1022}
1023EXPORT_SYMBOL(clocksource_unregister);
1024
1025#ifdef CONFIG_SYSFS
1026/**
1027 * current_clocksource_show - sysfs interface for current clocksource
1028 * @dev: unused
1029 * @attr: unused
1030 * @buf: char buffer to be filled with clocksource list
1031 *
1032 * Provides sysfs interface for listing current clocksource.
1033 */
1034static ssize_t current_clocksource_show(struct device *dev,
1035 struct device_attribute *attr,
1036 char *buf)
1037{
1038 ssize_t count = 0;
1039
1040 mutex_lock(&clocksource_mutex);
1041 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1042 mutex_unlock(&clocksource_mutex);
1043
1044 return count;
1045}
1046
1047ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1048{
1049 size_t ret = cnt;
1050
1051 /* strings from sysfs write are not 0 terminated! */
1052 if (!cnt || cnt >= CS_NAME_LEN)
1053 return -EINVAL;
1054
1055 /* strip of \n: */
1056 if (buf[cnt-1] == '\n')
1057 cnt--;
1058 if (cnt > 0)
1059 memcpy(dst, buf, cnt);
1060 dst[cnt] = 0;
1061 return ret;
1062}
1063
1064/**
1065 * current_clocksource_store - interface for manually overriding clocksource
1066 * @dev: unused
1067 * @attr: unused
1068 * @buf: name of override clocksource
1069 * @count: length of buffer
1070 *
1071 * Takes input from sysfs interface for manually overriding the default
1072 * clocksource selection.
1073 */
1074static ssize_t current_clocksource_store(struct device *dev,
1075 struct device_attribute *attr,
1076 const char *buf, size_t count)
1077{
1078 ssize_t ret;
1079
1080 mutex_lock(&clocksource_mutex);
1081
1082 ret = sysfs_get_uname(buf, override_name, count);
1083 if (ret >= 0)
1084 clocksource_select();
1085
1086 mutex_unlock(&clocksource_mutex);
1087
1088 return ret;
1089}
1090static DEVICE_ATTR_RW(current_clocksource);
1091
1092/**
1093 * unbind_clocksource_store - interface for manually unbinding clocksource
1094 * @dev: unused
1095 * @attr: unused
1096 * @buf: unused
1097 * @count: length of buffer
1098 *
1099 * Takes input from sysfs interface for manually unbinding a clocksource.
1100 */
1101static ssize_t unbind_clocksource_store(struct device *dev,
1102 struct device_attribute *attr,
1103 const char *buf, size_t count)
1104{
1105 struct clocksource *cs;
1106 char name[CS_NAME_LEN];
1107 ssize_t ret;
1108
1109 ret = sysfs_get_uname(buf, name, count);
1110 if (ret < 0)
1111 return ret;
1112
1113 ret = -ENODEV;
1114 mutex_lock(&clocksource_mutex);
1115 list_for_each_entry(cs, &clocksource_list, list) {
1116 if (strcmp(cs->name, name))
1117 continue;
1118 ret = clocksource_unbind(cs);
1119 break;
1120 }
1121 mutex_unlock(&clocksource_mutex);
1122
1123 return ret ? ret : count;
1124}
1125static DEVICE_ATTR_WO(unbind_clocksource);
1126
1127/**
1128 * available_clocksource_show - sysfs interface for listing clocksource
1129 * @dev: unused
1130 * @attr: unused
1131 * @buf: char buffer to be filled with clocksource list
1132 *
1133 * Provides sysfs interface for listing registered clocksources
1134 */
1135static ssize_t available_clocksource_show(struct device *dev,
1136 struct device_attribute *attr,
1137 char *buf)
1138{
1139 struct clocksource *src;
1140 ssize_t count = 0;
1141
1142 mutex_lock(&clocksource_mutex);
1143 list_for_each_entry(src, &clocksource_list, list) {
1144 /*
1145 * Don't show non-HRES clocksource if the tick code is
1146 * in one shot mode (highres=on or nohz=on)
1147 */
1148 if (!tick_oneshot_mode_active() ||
1149 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1150 count += snprintf(buf + count,
1151 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1152 "%s ", src->name);
1153 }
1154 mutex_unlock(&clocksource_mutex);
1155
1156 count += snprintf(buf + count,
1157 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1158
1159 return count;
1160}
1161static DEVICE_ATTR_RO(available_clocksource);
1162
1163static struct attribute *clocksource_attrs[] = {
1164 &dev_attr_current_clocksource.attr,
1165 &dev_attr_unbind_clocksource.attr,
1166 &dev_attr_available_clocksource.attr,
1167 NULL
1168};
1169ATTRIBUTE_GROUPS(clocksource);
1170
1171static struct bus_type clocksource_subsys = {
1172 .name = "clocksource",
1173 .dev_name = "clocksource",
1174};
1175
1176static struct device device_clocksource = {
1177 .id = 0,
1178 .bus = &clocksource_subsys,
1179 .groups = clocksource_groups,
1180};
1181
1182static int __init init_clocksource_sysfs(void)
1183{
1184 int error = subsys_system_register(&clocksource_subsys, NULL);
1185
1186 if (!error)
1187 error = device_register(&device_clocksource);
1188
1189 return error;
1190}
1191
1192device_initcall(init_clocksource_sysfs);
1193#endif /* CONFIG_SYSFS */
1194
1195/**
1196 * boot_override_clocksource - boot clock override
1197 * @str: override name
1198 *
1199 * Takes a clocksource= boot argument and uses it
1200 * as the clocksource override name.
1201 */
1202static int __init boot_override_clocksource(char* str)
1203{
1204 mutex_lock(&clocksource_mutex);
1205 if (str)
1206 strlcpy(override_name, str, sizeof(override_name));
1207 mutex_unlock(&clocksource_mutex);
1208 return 1;
1209}
1210
1211__setup("clocksource=", boot_override_clocksource);
1212
1213/**
1214 * boot_override_clock - Compatibility layer for deprecated boot option
1215 * @str: override name
1216 *
1217 * DEPRECATED! Takes a clock= boot argument and uses it
1218 * as the clocksource override name
1219 */
1220static int __init boot_override_clock(char* str)
1221{
1222 if (!strcmp(str, "pmtmr")) {
1223 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1224 return boot_override_clocksource("acpi_pm");
1225 }
1226 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1227 return boot_override_clocksource(str);
1228}
1229
1230__setup("clock=", boot_override_clock);
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * This file contains the functions which manage clocksource drivers.
4 *
5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/device.h>
11#include <linux/clocksource.h>
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15#include <linux/tick.h>
16#include <linux/kthread.h>
17#include <linux/prandom.h>
18#include <linux/cpu.h>
19
20#include "tick-internal.h"
21#include "timekeeping_internal.h"
22
23/**
24 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
25 * @mult: pointer to mult variable
26 * @shift: pointer to shift variable
27 * @from: frequency to convert from
28 * @to: frequency to convert to
29 * @maxsec: guaranteed runtime conversion range in seconds
30 *
31 * The function evaluates the shift/mult pair for the scaled math
32 * operations of clocksources and clockevents.
33 *
34 * @to and @from are frequency values in HZ. For clock sources @to is
35 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
36 * event @to is the counter frequency and @from is NSEC_PER_SEC.
37 *
38 * The @maxsec conversion range argument controls the time frame in
39 * seconds which must be covered by the runtime conversion with the
40 * calculated mult and shift factors. This guarantees that no 64bit
41 * overflow happens when the input value of the conversion is
42 * multiplied with the calculated mult factor. Larger ranges may
43 * reduce the conversion accuracy by choosing smaller mult and shift
44 * factors.
45 */
46void
47clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
48{
49 u64 tmp;
50 u32 sft, sftacc= 32;
51
52 /*
53 * Calculate the shift factor which is limiting the conversion
54 * range:
55 */
56 tmp = ((u64)maxsec * from) >> 32;
57 while (tmp) {
58 tmp >>=1;
59 sftacc--;
60 }
61
62 /*
63 * Find the conversion shift/mult pair which has the best
64 * accuracy and fits the maxsec conversion range:
65 */
66 for (sft = 32; sft > 0; sft--) {
67 tmp = (u64) to << sft;
68 tmp += from / 2;
69 do_div(tmp, from);
70 if ((tmp >> sftacc) == 0)
71 break;
72 }
73 *mult = tmp;
74 *shift = sft;
75}
76EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
77
78/*[Clocksource internal variables]---------
79 * curr_clocksource:
80 * currently selected clocksource.
81 * suspend_clocksource:
82 * used to calculate the suspend time.
83 * clocksource_list:
84 * linked list with the registered clocksources
85 * clocksource_mutex:
86 * protects manipulations to curr_clocksource and the clocksource_list
87 * override_name:
88 * Name of the user-specified clocksource.
89 */
90static struct clocksource *curr_clocksource;
91static struct clocksource *suspend_clocksource;
92static LIST_HEAD(clocksource_list);
93static DEFINE_MUTEX(clocksource_mutex);
94static char override_name[CS_NAME_LEN];
95static int finished_booting;
96static u64 suspend_start;
97
98/*
99 * Threshold: 0.0312s, when doubled: 0.0625s.
100 * Also a default for cs->uncertainty_margin when registering clocks.
101 */
102#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
103
104/*
105 * Maximum permissible delay between two readouts of the watchdog
106 * clocksource surrounding a read of the clocksource being validated.
107 * This delay could be due to SMIs, NMIs, or to VCPU preemptions. Used as
108 * a lower bound for cs->uncertainty_margin values when registering clocks.
109 */
110#define WATCHDOG_MAX_SKEW (50 * NSEC_PER_USEC)
111
112#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
113static void clocksource_watchdog_work(struct work_struct *work);
114static void clocksource_select(void);
115
116static LIST_HEAD(watchdog_list);
117static struct clocksource *watchdog;
118static struct timer_list watchdog_timer;
119static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
120static DEFINE_SPINLOCK(watchdog_lock);
121static int watchdog_running;
122static atomic_t watchdog_reset_pending;
123
124static inline void clocksource_watchdog_lock(unsigned long *flags)
125{
126 spin_lock_irqsave(&watchdog_lock, *flags);
127}
128
129static inline void clocksource_watchdog_unlock(unsigned long *flags)
130{
131 spin_unlock_irqrestore(&watchdog_lock, *flags);
132}
133
134static int clocksource_watchdog_kthread(void *data);
135static void __clocksource_change_rating(struct clocksource *cs, int rating);
136
137/*
138 * Interval: 0.5sec.
139 */
140#define WATCHDOG_INTERVAL (HZ >> 1)
141
142static void clocksource_watchdog_work(struct work_struct *work)
143{
144 /*
145 * We cannot directly run clocksource_watchdog_kthread() here, because
146 * clocksource_select() calls timekeeping_notify() which uses
147 * stop_machine(). One cannot use stop_machine() from a workqueue() due
148 * lock inversions wrt CPU hotplug.
149 *
150 * Also, we only ever run this work once or twice during the lifetime
151 * of the kernel, so there is no point in creating a more permanent
152 * kthread for this.
153 *
154 * If kthread_run fails the next watchdog scan over the
155 * watchdog_list will find the unstable clock again.
156 */
157 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
158}
159
160static void __clocksource_unstable(struct clocksource *cs)
161{
162 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
163 cs->flags |= CLOCK_SOURCE_UNSTABLE;
164
165 /*
166 * If the clocksource is registered clocksource_watchdog_kthread() will
167 * re-rate and re-select.
168 */
169 if (list_empty(&cs->list)) {
170 cs->rating = 0;
171 return;
172 }
173
174 if (cs->mark_unstable)
175 cs->mark_unstable(cs);
176
177 /* kick clocksource_watchdog_kthread() */
178 if (finished_booting)
179 schedule_work(&watchdog_work);
180}
181
182/**
183 * clocksource_mark_unstable - mark clocksource unstable via watchdog
184 * @cs: clocksource to be marked unstable
185 *
186 * This function is called by the x86 TSC code to mark clocksources as unstable;
187 * it defers demotion and re-selection to a kthread.
188 */
189void clocksource_mark_unstable(struct clocksource *cs)
190{
191 unsigned long flags;
192
193 spin_lock_irqsave(&watchdog_lock, flags);
194 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
195 if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
196 list_add(&cs->wd_list, &watchdog_list);
197 __clocksource_unstable(cs);
198 }
199 spin_unlock_irqrestore(&watchdog_lock, flags);
200}
201
202ulong max_cswd_read_retries = 3;
203module_param(max_cswd_read_retries, ulong, 0644);
204EXPORT_SYMBOL_GPL(max_cswd_read_retries);
205static int verify_n_cpus = 8;
206module_param(verify_n_cpus, int, 0644);
207
208static bool cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
209{
210 unsigned int nretries;
211 u64 wd_end, wd_delta;
212 int64_t wd_delay;
213
214 for (nretries = 0; nretries <= max_cswd_read_retries; nretries++) {
215 local_irq_disable();
216 *wdnow = watchdog->read(watchdog);
217 *csnow = cs->read(cs);
218 wd_end = watchdog->read(watchdog);
219 local_irq_enable();
220
221 wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask);
222 wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
223 watchdog->shift);
224 if (wd_delay <= WATCHDOG_MAX_SKEW) {
225 if (nretries > 1 || nretries >= max_cswd_read_retries) {
226 pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
227 smp_processor_id(), watchdog->name, nretries);
228 }
229 return true;
230 }
231 }
232
233 pr_warn("timekeeping watchdog on CPU%d: %s read-back delay of %lldns, attempt %d, marking unstable\n",
234 smp_processor_id(), watchdog->name, wd_delay, nretries);
235 return false;
236}
237
238static u64 csnow_mid;
239static cpumask_t cpus_ahead;
240static cpumask_t cpus_behind;
241static cpumask_t cpus_chosen;
242
243static void clocksource_verify_choose_cpus(void)
244{
245 int cpu, i, n = verify_n_cpus;
246
247 if (n < 0) {
248 /* Check all of the CPUs. */
249 cpumask_copy(&cpus_chosen, cpu_online_mask);
250 cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
251 return;
252 }
253
254 /* If no checking desired, or no other CPU to check, leave. */
255 cpumask_clear(&cpus_chosen);
256 if (n == 0 || num_online_cpus() <= 1)
257 return;
258
259 /* Make sure to select at least one CPU other than the current CPU. */
260 cpu = cpumask_next(-1, cpu_online_mask);
261 if (cpu == smp_processor_id())
262 cpu = cpumask_next(cpu, cpu_online_mask);
263 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
264 return;
265 cpumask_set_cpu(cpu, &cpus_chosen);
266
267 /* Force a sane value for the boot parameter. */
268 if (n > nr_cpu_ids)
269 n = nr_cpu_ids;
270
271 /*
272 * Randomly select the specified number of CPUs. If the same
273 * CPU is selected multiple times, that CPU is checked only once,
274 * and no replacement CPU is selected. This gracefully handles
275 * situations where verify_n_cpus is greater than the number of
276 * CPUs that are currently online.
277 */
278 for (i = 1; i < n; i++) {
279 cpu = prandom_u32() % nr_cpu_ids;
280 cpu = cpumask_next(cpu - 1, cpu_online_mask);
281 if (cpu >= nr_cpu_ids)
282 cpu = cpumask_next(-1, cpu_online_mask);
283 if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
284 cpumask_set_cpu(cpu, &cpus_chosen);
285 }
286
287 /* Don't verify ourselves. */
288 cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
289}
290
291static void clocksource_verify_one_cpu(void *csin)
292{
293 struct clocksource *cs = (struct clocksource *)csin;
294
295 csnow_mid = cs->read(cs);
296}
297
298void clocksource_verify_percpu(struct clocksource *cs)
299{
300 int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
301 u64 csnow_begin, csnow_end;
302 int cpu, testcpu;
303 s64 delta;
304
305 if (verify_n_cpus == 0)
306 return;
307 cpumask_clear(&cpus_ahead);
308 cpumask_clear(&cpus_behind);
309 get_online_cpus();
310 preempt_disable();
311 clocksource_verify_choose_cpus();
312 if (cpumask_weight(&cpus_chosen) == 0) {
313 preempt_enable();
314 put_online_cpus();
315 pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
316 return;
317 }
318 testcpu = smp_processor_id();
319 pr_warn("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n", cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
320 for_each_cpu(cpu, &cpus_chosen) {
321 if (cpu == testcpu)
322 continue;
323 csnow_begin = cs->read(cs);
324 smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
325 csnow_end = cs->read(cs);
326 delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
327 if (delta < 0)
328 cpumask_set_cpu(cpu, &cpus_behind);
329 delta = (csnow_end - csnow_mid) & cs->mask;
330 if (delta < 0)
331 cpumask_set_cpu(cpu, &cpus_ahead);
332 delta = clocksource_delta(csnow_end, csnow_begin, cs->mask);
333 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
334 if (cs_nsec > cs_nsec_max)
335 cs_nsec_max = cs_nsec;
336 if (cs_nsec < cs_nsec_min)
337 cs_nsec_min = cs_nsec;
338 }
339 preempt_enable();
340 put_online_cpus();
341 if (!cpumask_empty(&cpus_ahead))
342 pr_warn(" CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
343 cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
344 if (!cpumask_empty(&cpus_behind))
345 pr_warn(" CPUs %*pbl behind CPU %d for clocksource %s.\n",
346 cpumask_pr_args(&cpus_behind), testcpu, cs->name);
347 if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
348 pr_warn(" CPU %d check durations %lldns - %lldns for clocksource %s.\n",
349 testcpu, cs_nsec_min, cs_nsec_max, cs->name);
350}
351EXPORT_SYMBOL_GPL(clocksource_verify_percpu);
352
353static void clocksource_watchdog(struct timer_list *unused)
354{
355 u64 csnow, wdnow, cslast, wdlast, delta;
356 int next_cpu, reset_pending;
357 int64_t wd_nsec, cs_nsec;
358 struct clocksource *cs;
359 u32 md;
360
361 spin_lock(&watchdog_lock);
362 if (!watchdog_running)
363 goto out;
364
365 reset_pending = atomic_read(&watchdog_reset_pending);
366
367 list_for_each_entry(cs, &watchdog_list, wd_list) {
368
369 /* Clocksource already marked unstable? */
370 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
371 if (finished_booting)
372 schedule_work(&watchdog_work);
373 continue;
374 }
375
376 if (!cs_watchdog_read(cs, &csnow, &wdnow)) {
377 /* Clock readout unreliable, so give it up. */
378 __clocksource_unstable(cs);
379 continue;
380 }
381
382 /* Clocksource initialized ? */
383 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
384 atomic_read(&watchdog_reset_pending)) {
385 cs->flags |= CLOCK_SOURCE_WATCHDOG;
386 cs->wd_last = wdnow;
387 cs->cs_last = csnow;
388 continue;
389 }
390
391 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
392 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
393 watchdog->shift);
394
395 delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
396 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
397 wdlast = cs->wd_last; /* save these in case we print them */
398 cslast = cs->cs_last;
399 cs->cs_last = csnow;
400 cs->wd_last = wdnow;
401
402 if (atomic_read(&watchdog_reset_pending))
403 continue;
404
405 /* Check the deviation from the watchdog clocksource. */
406 md = cs->uncertainty_margin + watchdog->uncertainty_margin;
407 if (abs(cs_nsec - wd_nsec) > md) {
408 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
409 smp_processor_id(), cs->name);
410 pr_warn(" '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
411 watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask);
412 pr_warn(" '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
413 cs->name, cs_nsec, csnow, cslast, cs->mask);
414 if (curr_clocksource == cs)
415 pr_warn(" '%s' is current clocksource.\n", cs->name);
416 else if (curr_clocksource)
417 pr_warn(" '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
418 else
419 pr_warn(" No current clocksource.\n");
420 __clocksource_unstable(cs);
421 continue;
422 }
423
424 if (cs == curr_clocksource && cs->tick_stable)
425 cs->tick_stable(cs);
426
427 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
428 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
429 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
430 /* Mark it valid for high-res. */
431 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
432
433 /*
434 * clocksource_done_booting() will sort it if
435 * finished_booting is not set yet.
436 */
437 if (!finished_booting)
438 continue;
439
440 /*
441 * If this is not the current clocksource let
442 * the watchdog thread reselect it. Due to the
443 * change to high res this clocksource might
444 * be preferred now. If it is the current
445 * clocksource let the tick code know about
446 * that change.
447 */
448 if (cs != curr_clocksource) {
449 cs->flags |= CLOCK_SOURCE_RESELECT;
450 schedule_work(&watchdog_work);
451 } else {
452 tick_clock_notify();
453 }
454 }
455 }
456
457 /*
458 * We only clear the watchdog_reset_pending, when we did a
459 * full cycle through all clocksources.
460 */
461 if (reset_pending)
462 atomic_dec(&watchdog_reset_pending);
463
464 /*
465 * Cycle through CPUs to check if the CPUs stay synchronized
466 * to each other.
467 */
468 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
469 if (next_cpu >= nr_cpu_ids)
470 next_cpu = cpumask_first(cpu_online_mask);
471
472 /*
473 * Arm timer if not already pending: could race with concurrent
474 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
475 */
476 if (!timer_pending(&watchdog_timer)) {
477 watchdog_timer.expires += WATCHDOG_INTERVAL;
478 add_timer_on(&watchdog_timer, next_cpu);
479 }
480out:
481 spin_unlock(&watchdog_lock);
482}
483
484static inline void clocksource_start_watchdog(void)
485{
486 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
487 return;
488 timer_setup(&watchdog_timer, clocksource_watchdog, 0);
489 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
490 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
491 watchdog_running = 1;
492}
493
494static inline void clocksource_stop_watchdog(void)
495{
496 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
497 return;
498 del_timer(&watchdog_timer);
499 watchdog_running = 0;
500}
501
502static inline void clocksource_reset_watchdog(void)
503{
504 struct clocksource *cs;
505
506 list_for_each_entry(cs, &watchdog_list, wd_list)
507 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
508}
509
510static void clocksource_resume_watchdog(void)
511{
512 atomic_inc(&watchdog_reset_pending);
513}
514
515static void clocksource_enqueue_watchdog(struct clocksource *cs)
516{
517 INIT_LIST_HEAD(&cs->wd_list);
518
519 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
520 /* cs is a clocksource to be watched. */
521 list_add(&cs->wd_list, &watchdog_list);
522 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
523 } else {
524 /* cs is a watchdog. */
525 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
526 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
527 }
528}
529
530static void clocksource_select_watchdog(bool fallback)
531{
532 struct clocksource *cs, *old_wd;
533 unsigned long flags;
534
535 spin_lock_irqsave(&watchdog_lock, flags);
536 /* save current watchdog */
537 old_wd = watchdog;
538 if (fallback)
539 watchdog = NULL;
540
541 list_for_each_entry(cs, &clocksource_list, list) {
542 /* cs is a clocksource to be watched. */
543 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
544 continue;
545
546 /* Skip current if we were requested for a fallback. */
547 if (fallback && cs == old_wd)
548 continue;
549
550 /* Pick the best watchdog. */
551 if (!watchdog || cs->rating > watchdog->rating)
552 watchdog = cs;
553 }
554 /* If we failed to find a fallback restore the old one. */
555 if (!watchdog)
556 watchdog = old_wd;
557
558 /* If we changed the watchdog we need to reset cycles. */
559 if (watchdog != old_wd)
560 clocksource_reset_watchdog();
561
562 /* Check if the watchdog timer needs to be started. */
563 clocksource_start_watchdog();
564 spin_unlock_irqrestore(&watchdog_lock, flags);
565}
566
567static void clocksource_dequeue_watchdog(struct clocksource *cs)
568{
569 if (cs != watchdog) {
570 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
571 /* cs is a watched clocksource. */
572 list_del_init(&cs->wd_list);
573 /* Check if the watchdog timer needs to be stopped. */
574 clocksource_stop_watchdog();
575 }
576 }
577}
578
579static int __clocksource_watchdog_kthread(void)
580{
581 struct clocksource *cs, *tmp;
582 unsigned long flags;
583 int select = 0;
584
585 /* Do any required per-CPU skew verification. */
586 if (curr_clocksource &&
587 curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
588 curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
589 clocksource_verify_percpu(curr_clocksource);
590
591 spin_lock_irqsave(&watchdog_lock, flags);
592 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
593 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
594 list_del_init(&cs->wd_list);
595 __clocksource_change_rating(cs, 0);
596 select = 1;
597 }
598 if (cs->flags & CLOCK_SOURCE_RESELECT) {
599 cs->flags &= ~CLOCK_SOURCE_RESELECT;
600 select = 1;
601 }
602 }
603 /* Check if the watchdog timer needs to be stopped. */
604 clocksource_stop_watchdog();
605 spin_unlock_irqrestore(&watchdog_lock, flags);
606
607 return select;
608}
609
610static int clocksource_watchdog_kthread(void *data)
611{
612 mutex_lock(&clocksource_mutex);
613 if (__clocksource_watchdog_kthread())
614 clocksource_select();
615 mutex_unlock(&clocksource_mutex);
616 return 0;
617}
618
619static bool clocksource_is_watchdog(struct clocksource *cs)
620{
621 return cs == watchdog;
622}
623
624#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
625
626static void clocksource_enqueue_watchdog(struct clocksource *cs)
627{
628 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
629 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
630}
631
632static void clocksource_select_watchdog(bool fallback) { }
633static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
634static inline void clocksource_resume_watchdog(void) { }
635static inline int __clocksource_watchdog_kthread(void) { return 0; }
636static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
637void clocksource_mark_unstable(struct clocksource *cs) { }
638
639static inline void clocksource_watchdog_lock(unsigned long *flags) { }
640static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
641
642#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
643
644static bool clocksource_is_suspend(struct clocksource *cs)
645{
646 return cs == suspend_clocksource;
647}
648
649static void __clocksource_suspend_select(struct clocksource *cs)
650{
651 /*
652 * Skip the clocksource which will be stopped in suspend state.
653 */
654 if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
655 return;
656
657 /*
658 * The nonstop clocksource can be selected as the suspend clocksource to
659 * calculate the suspend time, so it should not supply suspend/resume
660 * interfaces to suspend the nonstop clocksource when system suspends.
661 */
662 if (cs->suspend || cs->resume) {
663 pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
664 cs->name);
665 }
666
667 /* Pick the best rating. */
668 if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
669 suspend_clocksource = cs;
670}
671
672/**
673 * clocksource_suspend_select - Select the best clocksource for suspend timing
674 * @fallback: if select a fallback clocksource
675 */
676static void clocksource_suspend_select(bool fallback)
677{
678 struct clocksource *cs, *old_suspend;
679
680 old_suspend = suspend_clocksource;
681 if (fallback)
682 suspend_clocksource = NULL;
683
684 list_for_each_entry(cs, &clocksource_list, list) {
685 /* Skip current if we were requested for a fallback. */
686 if (fallback && cs == old_suspend)
687 continue;
688
689 __clocksource_suspend_select(cs);
690 }
691}
692
693/**
694 * clocksource_start_suspend_timing - Start measuring the suspend timing
695 * @cs: current clocksource from timekeeping
696 * @start_cycles: current cycles from timekeeping
697 *
698 * This function will save the start cycle values of suspend timer to calculate
699 * the suspend time when resuming system.
700 *
701 * This function is called late in the suspend process from timekeeping_suspend(),
702 * that means processes are frozen, non-boot cpus and interrupts are disabled
703 * now. It is therefore possible to start the suspend timer without taking the
704 * clocksource mutex.
705 */
706void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
707{
708 if (!suspend_clocksource)
709 return;
710
711 /*
712 * If current clocksource is the suspend timer, we should use the
713 * tkr_mono.cycle_last value as suspend_start to avoid same reading
714 * from suspend timer.
715 */
716 if (clocksource_is_suspend(cs)) {
717 suspend_start = start_cycles;
718 return;
719 }
720
721 if (suspend_clocksource->enable &&
722 suspend_clocksource->enable(suspend_clocksource)) {
723 pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
724 return;
725 }
726
727 suspend_start = suspend_clocksource->read(suspend_clocksource);
728}
729
730/**
731 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
732 * @cs: current clocksource from timekeeping
733 * @cycle_now: current cycles from timekeeping
734 *
735 * This function will calculate the suspend time from suspend timer.
736 *
737 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
738 *
739 * This function is called early in the resume process from timekeeping_resume(),
740 * that means there is only one cpu, no processes are running and the interrupts
741 * are disabled. It is therefore possible to stop the suspend timer without
742 * taking the clocksource mutex.
743 */
744u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
745{
746 u64 now, delta, nsec = 0;
747
748 if (!suspend_clocksource)
749 return 0;
750
751 /*
752 * If current clocksource is the suspend timer, we should use the
753 * tkr_mono.cycle_last value from timekeeping as current cycle to
754 * avoid same reading from suspend timer.
755 */
756 if (clocksource_is_suspend(cs))
757 now = cycle_now;
758 else
759 now = suspend_clocksource->read(suspend_clocksource);
760
761 if (now > suspend_start) {
762 delta = clocksource_delta(now, suspend_start,
763 suspend_clocksource->mask);
764 nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
765 suspend_clocksource->shift);
766 }
767
768 /*
769 * Disable the suspend timer to save power if current clocksource is
770 * not the suspend timer.
771 */
772 if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
773 suspend_clocksource->disable(suspend_clocksource);
774
775 return nsec;
776}
777
778/**
779 * clocksource_suspend - suspend the clocksource(s)
780 */
781void clocksource_suspend(void)
782{
783 struct clocksource *cs;
784
785 list_for_each_entry_reverse(cs, &clocksource_list, list)
786 if (cs->suspend)
787 cs->suspend(cs);
788}
789
790/**
791 * clocksource_resume - resume the clocksource(s)
792 */
793void clocksource_resume(void)
794{
795 struct clocksource *cs;
796
797 list_for_each_entry(cs, &clocksource_list, list)
798 if (cs->resume)
799 cs->resume(cs);
800
801 clocksource_resume_watchdog();
802}
803
804/**
805 * clocksource_touch_watchdog - Update watchdog
806 *
807 * Update the watchdog after exception contexts such as kgdb so as not
808 * to incorrectly trip the watchdog. This might fail when the kernel
809 * was stopped in code which holds watchdog_lock.
810 */
811void clocksource_touch_watchdog(void)
812{
813 clocksource_resume_watchdog();
814}
815
816/**
817 * clocksource_max_adjustment- Returns max adjustment amount
818 * @cs: Pointer to clocksource
819 *
820 */
821static u32 clocksource_max_adjustment(struct clocksource *cs)
822{
823 u64 ret;
824 /*
825 * We won't try to correct for more than 11% adjustments (110,000 ppm),
826 */
827 ret = (u64)cs->mult * 11;
828 do_div(ret,100);
829 return (u32)ret;
830}
831
832/**
833 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
834 * @mult: cycle to nanosecond multiplier
835 * @shift: cycle to nanosecond divisor (power of two)
836 * @maxadj: maximum adjustment value to mult (~11%)
837 * @mask: bitmask for two's complement subtraction of non 64 bit counters
838 * @max_cyc: maximum cycle value before potential overflow (does not include
839 * any safety margin)
840 *
841 * NOTE: This function includes a safety margin of 50%, in other words, we
842 * return half the number of nanoseconds the hardware counter can technically
843 * cover. This is done so that we can potentially detect problems caused by
844 * delayed timers or bad hardware, which might result in time intervals that
845 * are larger than what the math used can handle without overflows.
846 */
847u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
848{
849 u64 max_nsecs, max_cycles;
850
851 /*
852 * Calculate the maximum number of cycles that we can pass to the
853 * cyc2ns() function without overflowing a 64-bit result.
854 */
855 max_cycles = ULLONG_MAX;
856 do_div(max_cycles, mult+maxadj);
857
858 /*
859 * The actual maximum number of cycles we can defer the clocksource is
860 * determined by the minimum of max_cycles and mask.
861 * Note: Here we subtract the maxadj to make sure we don't sleep for
862 * too long if there's a large negative adjustment.
863 */
864 max_cycles = min(max_cycles, mask);
865 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
866
867 /* return the max_cycles value as well if requested */
868 if (max_cyc)
869 *max_cyc = max_cycles;
870
871 /* Return 50% of the actual maximum, so we can detect bad values */
872 max_nsecs >>= 1;
873
874 return max_nsecs;
875}
876
877/**
878 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
879 * @cs: Pointer to clocksource to be updated
880 *
881 */
882static inline void clocksource_update_max_deferment(struct clocksource *cs)
883{
884 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
885 cs->maxadj, cs->mask,
886 &cs->max_cycles);
887}
888
889static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
890{
891 struct clocksource *cs;
892
893 if (!finished_booting || list_empty(&clocksource_list))
894 return NULL;
895
896 /*
897 * We pick the clocksource with the highest rating. If oneshot
898 * mode is active, we pick the highres valid clocksource with
899 * the best rating.
900 */
901 list_for_each_entry(cs, &clocksource_list, list) {
902 if (skipcur && cs == curr_clocksource)
903 continue;
904 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
905 continue;
906 return cs;
907 }
908 return NULL;
909}
910
911static void __clocksource_select(bool skipcur)
912{
913 bool oneshot = tick_oneshot_mode_active();
914 struct clocksource *best, *cs;
915
916 /* Find the best suitable clocksource */
917 best = clocksource_find_best(oneshot, skipcur);
918 if (!best)
919 return;
920
921 if (!strlen(override_name))
922 goto found;
923
924 /* Check for the override clocksource. */
925 list_for_each_entry(cs, &clocksource_list, list) {
926 if (skipcur && cs == curr_clocksource)
927 continue;
928 if (strcmp(cs->name, override_name) != 0)
929 continue;
930 /*
931 * Check to make sure we don't switch to a non-highres
932 * capable clocksource if the tick code is in oneshot
933 * mode (highres or nohz)
934 */
935 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
936 /* Override clocksource cannot be used. */
937 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
938 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
939 cs->name);
940 override_name[0] = 0;
941 } else {
942 /*
943 * The override cannot be currently verified.
944 * Deferring to let the watchdog check.
945 */
946 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
947 cs->name);
948 }
949 } else
950 /* Override clocksource can be used. */
951 best = cs;
952 break;
953 }
954
955found:
956 if (curr_clocksource != best && !timekeeping_notify(best)) {
957 pr_info("Switched to clocksource %s\n", best->name);
958 curr_clocksource = best;
959 }
960}
961
962/**
963 * clocksource_select - Select the best clocksource available
964 *
965 * Private function. Must hold clocksource_mutex when called.
966 *
967 * Select the clocksource with the best rating, or the clocksource,
968 * which is selected by userspace override.
969 */
970static void clocksource_select(void)
971{
972 __clocksource_select(false);
973}
974
975static void clocksource_select_fallback(void)
976{
977 __clocksource_select(true);
978}
979
980/*
981 * clocksource_done_booting - Called near the end of core bootup
982 *
983 * Hack to avoid lots of clocksource churn at boot time.
984 * We use fs_initcall because we want this to start before
985 * device_initcall but after subsys_initcall.
986 */
987static int __init clocksource_done_booting(void)
988{
989 mutex_lock(&clocksource_mutex);
990 curr_clocksource = clocksource_default_clock();
991 finished_booting = 1;
992 /*
993 * Run the watchdog first to eliminate unstable clock sources
994 */
995 __clocksource_watchdog_kthread();
996 clocksource_select();
997 mutex_unlock(&clocksource_mutex);
998 return 0;
999}
1000fs_initcall(clocksource_done_booting);
1001
1002/*
1003 * Enqueue the clocksource sorted by rating
1004 */
1005static void clocksource_enqueue(struct clocksource *cs)
1006{
1007 struct list_head *entry = &clocksource_list;
1008 struct clocksource *tmp;
1009
1010 list_for_each_entry(tmp, &clocksource_list, list) {
1011 /* Keep track of the place, where to insert */
1012 if (tmp->rating < cs->rating)
1013 break;
1014 entry = &tmp->list;
1015 }
1016 list_add(&cs->list, entry);
1017}
1018
1019/**
1020 * __clocksource_update_freq_scale - Used update clocksource with new freq
1021 * @cs: clocksource to be registered
1022 * @scale: Scale factor multiplied against freq to get clocksource hz
1023 * @freq: clocksource frequency (cycles per second) divided by scale
1024 *
1025 * This should only be called from the clocksource->enable() method.
1026 *
1027 * This *SHOULD NOT* be called directly! Please use the
1028 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1029 * functions.
1030 */
1031void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1032{
1033 u64 sec;
1034
1035 /*
1036 * Default clocksources are *special* and self-define their mult/shift.
1037 * But, you're not special, so you should specify a freq value.
1038 */
1039 if (freq) {
1040 /*
1041 * Calc the maximum number of seconds which we can run before
1042 * wrapping around. For clocksources which have a mask > 32-bit
1043 * we need to limit the max sleep time to have a good
1044 * conversion precision. 10 minutes is still a reasonable
1045 * amount. That results in a shift value of 24 for a
1046 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1047 * ~ 0.06ppm granularity for NTP.
1048 */
1049 sec = cs->mask;
1050 do_div(sec, freq);
1051 do_div(sec, scale);
1052 if (!sec)
1053 sec = 1;
1054 else if (sec > 600 && cs->mask > UINT_MAX)
1055 sec = 600;
1056
1057 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1058 NSEC_PER_SEC / scale, sec * scale);
1059 }
1060
1061 /*
1062 * If the uncertainty margin is not specified, calculate it.
1063 * If both scale and freq are non-zero, calculate the clock
1064 * period, but bound below at 2*WATCHDOG_MAX_SKEW. However,
1065 * if either of scale or freq is zero, be very conservative and
1066 * take the tens-of-milliseconds WATCHDOG_THRESHOLD value for the
1067 * uncertainty margin. Allow stupidly small uncertainty margins
1068 * to be specified by the caller for testing purposes, but warn
1069 * to discourage production use of this capability.
1070 */
1071 if (scale && freq && !cs->uncertainty_margin) {
1072 cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1073 if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1074 cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1075 } else if (!cs->uncertainty_margin) {
1076 cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1077 }
1078 WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1079
1080 /*
1081 * Ensure clocksources that have large 'mult' values don't overflow
1082 * when adjusted.
1083 */
1084 cs->maxadj = clocksource_max_adjustment(cs);
1085 while (freq && ((cs->mult + cs->maxadj < cs->mult)
1086 || (cs->mult - cs->maxadj > cs->mult))) {
1087 cs->mult >>= 1;
1088 cs->shift--;
1089 cs->maxadj = clocksource_max_adjustment(cs);
1090 }
1091
1092 /*
1093 * Only warn for *special* clocksources that self-define
1094 * their mult/shift values and don't specify a freq.
1095 */
1096 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1097 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1098 cs->name);
1099
1100 clocksource_update_max_deferment(cs);
1101
1102 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1103 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1104}
1105EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1106
1107/**
1108 * __clocksource_register_scale - Used to install new clocksources
1109 * @cs: clocksource to be registered
1110 * @scale: Scale factor multiplied against freq to get clocksource hz
1111 * @freq: clocksource frequency (cycles per second) divided by scale
1112 *
1113 * Returns -EBUSY if registration fails, zero otherwise.
1114 *
1115 * This *SHOULD NOT* be called directly! Please use the
1116 * clocksource_register_hz() or clocksource_register_khz helper functions.
1117 */
1118int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1119{
1120 unsigned long flags;
1121
1122 clocksource_arch_init(cs);
1123
1124 if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
1125 cs->id = CSID_GENERIC;
1126 if (cs->vdso_clock_mode < 0 ||
1127 cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1128 pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1129 cs->name, cs->vdso_clock_mode);
1130 cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1131 }
1132
1133 /* Initialize mult/shift and max_idle_ns */
1134 __clocksource_update_freq_scale(cs, scale, freq);
1135
1136 /* Add clocksource to the clocksource list */
1137 mutex_lock(&clocksource_mutex);
1138
1139 clocksource_watchdog_lock(&flags);
1140 clocksource_enqueue(cs);
1141 clocksource_enqueue_watchdog(cs);
1142 clocksource_watchdog_unlock(&flags);
1143
1144 clocksource_select();
1145 clocksource_select_watchdog(false);
1146 __clocksource_suspend_select(cs);
1147 mutex_unlock(&clocksource_mutex);
1148 return 0;
1149}
1150EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1151
1152static void __clocksource_change_rating(struct clocksource *cs, int rating)
1153{
1154 list_del(&cs->list);
1155 cs->rating = rating;
1156 clocksource_enqueue(cs);
1157}
1158
1159/**
1160 * clocksource_change_rating - Change the rating of a registered clocksource
1161 * @cs: clocksource to be changed
1162 * @rating: new rating
1163 */
1164void clocksource_change_rating(struct clocksource *cs, int rating)
1165{
1166 unsigned long flags;
1167
1168 mutex_lock(&clocksource_mutex);
1169 clocksource_watchdog_lock(&flags);
1170 __clocksource_change_rating(cs, rating);
1171 clocksource_watchdog_unlock(&flags);
1172
1173 clocksource_select();
1174 clocksource_select_watchdog(false);
1175 clocksource_suspend_select(false);
1176 mutex_unlock(&clocksource_mutex);
1177}
1178EXPORT_SYMBOL(clocksource_change_rating);
1179
1180/*
1181 * Unbind clocksource @cs. Called with clocksource_mutex held
1182 */
1183static int clocksource_unbind(struct clocksource *cs)
1184{
1185 unsigned long flags;
1186
1187 if (clocksource_is_watchdog(cs)) {
1188 /* Select and try to install a replacement watchdog. */
1189 clocksource_select_watchdog(true);
1190 if (clocksource_is_watchdog(cs))
1191 return -EBUSY;
1192 }
1193
1194 if (cs == curr_clocksource) {
1195 /* Select and try to install a replacement clock source */
1196 clocksource_select_fallback();
1197 if (curr_clocksource == cs)
1198 return -EBUSY;
1199 }
1200
1201 if (clocksource_is_suspend(cs)) {
1202 /*
1203 * Select and try to install a replacement suspend clocksource.
1204 * If no replacement suspend clocksource, we will just let the
1205 * clocksource go and have no suspend clocksource.
1206 */
1207 clocksource_suspend_select(true);
1208 }
1209
1210 clocksource_watchdog_lock(&flags);
1211 clocksource_dequeue_watchdog(cs);
1212 list_del_init(&cs->list);
1213 clocksource_watchdog_unlock(&flags);
1214
1215 return 0;
1216}
1217
1218/**
1219 * clocksource_unregister - remove a registered clocksource
1220 * @cs: clocksource to be unregistered
1221 */
1222int clocksource_unregister(struct clocksource *cs)
1223{
1224 int ret = 0;
1225
1226 mutex_lock(&clocksource_mutex);
1227 if (!list_empty(&cs->list))
1228 ret = clocksource_unbind(cs);
1229 mutex_unlock(&clocksource_mutex);
1230 return ret;
1231}
1232EXPORT_SYMBOL(clocksource_unregister);
1233
1234#ifdef CONFIG_SYSFS
1235/**
1236 * current_clocksource_show - sysfs interface for current clocksource
1237 * @dev: unused
1238 * @attr: unused
1239 * @buf: char buffer to be filled with clocksource list
1240 *
1241 * Provides sysfs interface for listing current clocksource.
1242 */
1243static ssize_t current_clocksource_show(struct device *dev,
1244 struct device_attribute *attr,
1245 char *buf)
1246{
1247 ssize_t count = 0;
1248
1249 mutex_lock(&clocksource_mutex);
1250 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1251 mutex_unlock(&clocksource_mutex);
1252
1253 return count;
1254}
1255
1256ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1257{
1258 size_t ret = cnt;
1259
1260 /* strings from sysfs write are not 0 terminated! */
1261 if (!cnt || cnt >= CS_NAME_LEN)
1262 return -EINVAL;
1263
1264 /* strip of \n: */
1265 if (buf[cnt-1] == '\n')
1266 cnt--;
1267 if (cnt > 0)
1268 memcpy(dst, buf, cnt);
1269 dst[cnt] = 0;
1270 return ret;
1271}
1272
1273/**
1274 * current_clocksource_store - interface for manually overriding clocksource
1275 * @dev: unused
1276 * @attr: unused
1277 * @buf: name of override clocksource
1278 * @count: length of buffer
1279 *
1280 * Takes input from sysfs interface for manually overriding the default
1281 * clocksource selection.
1282 */
1283static ssize_t current_clocksource_store(struct device *dev,
1284 struct device_attribute *attr,
1285 const char *buf, size_t count)
1286{
1287 ssize_t ret;
1288
1289 mutex_lock(&clocksource_mutex);
1290
1291 ret = sysfs_get_uname(buf, override_name, count);
1292 if (ret >= 0)
1293 clocksource_select();
1294
1295 mutex_unlock(&clocksource_mutex);
1296
1297 return ret;
1298}
1299static DEVICE_ATTR_RW(current_clocksource);
1300
1301/**
1302 * unbind_clocksource_store - interface for manually unbinding clocksource
1303 * @dev: unused
1304 * @attr: unused
1305 * @buf: unused
1306 * @count: length of buffer
1307 *
1308 * Takes input from sysfs interface for manually unbinding a clocksource.
1309 */
1310static ssize_t unbind_clocksource_store(struct device *dev,
1311 struct device_attribute *attr,
1312 const char *buf, size_t count)
1313{
1314 struct clocksource *cs;
1315 char name[CS_NAME_LEN];
1316 ssize_t ret;
1317
1318 ret = sysfs_get_uname(buf, name, count);
1319 if (ret < 0)
1320 return ret;
1321
1322 ret = -ENODEV;
1323 mutex_lock(&clocksource_mutex);
1324 list_for_each_entry(cs, &clocksource_list, list) {
1325 if (strcmp(cs->name, name))
1326 continue;
1327 ret = clocksource_unbind(cs);
1328 break;
1329 }
1330 mutex_unlock(&clocksource_mutex);
1331
1332 return ret ? ret : count;
1333}
1334static DEVICE_ATTR_WO(unbind_clocksource);
1335
1336/**
1337 * available_clocksource_show - sysfs interface for listing clocksource
1338 * @dev: unused
1339 * @attr: unused
1340 * @buf: char buffer to be filled with clocksource list
1341 *
1342 * Provides sysfs interface for listing registered clocksources
1343 */
1344static ssize_t available_clocksource_show(struct device *dev,
1345 struct device_attribute *attr,
1346 char *buf)
1347{
1348 struct clocksource *src;
1349 ssize_t count = 0;
1350
1351 mutex_lock(&clocksource_mutex);
1352 list_for_each_entry(src, &clocksource_list, list) {
1353 /*
1354 * Don't show non-HRES clocksource if the tick code is
1355 * in one shot mode (highres=on or nohz=on)
1356 */
1357 if (!tick_oneshot_mode_active() ||
1358 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1359 count += snprintf(buf + count,
1360 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1361 "%s ", src->name);
1362 }
1363 mutex_unlock(&clocksource_mutex);
1364
1365 count += snprintf(buf + count,
1366 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1367
1368 return count;
1369}
1370static DEVICE_ATTR_RO(available_clocksource);
1371
1372static struct attribute *clocksource_attrs[] = {
1373 &dev_attr_current_clocksource.attr,
1374 &dev_attr_unbind_clocksource.attr,
1375 &dev_attr_available_clocksource.attr,
1376 NULL
1377};
1378ATTRIBUTE_GROUPS(clocksource);
1379
1380static struct bus_type clocksource_subsys = {
1381 .name = "clocksource",
1382 .dev_name = "clocksource",
1383};
1384
1385static struct device device_clocksource = {
1386 .id = 0,
1387 .bus = &clocksource_subsys,
1388 .groups = clocksource_groups,
1389};
1390
1391static int __init init_clocksource_sysfs(void)
1392{
1393 int error = subsys_system_register(&clocksource_subsys, NULL);
1394
1395 if (!error)
1396 error = device_register(&device_clocksource);
1397
1398 return error;
1399}
1400
1401device_initcall(init_clocksource_sysfs);
1402#endif /* CONFIG_SYSFS */
1403
1404/**
1405 * boot_override_clocksource - boot clock override
1406 * @str: override name
1407 *
1408 * Takes a clocksource= boot argument and uses it
1409 * as the clocksource override name.
1410 */
1411static int __init boot_override_clocksource(char* str)
1412{
1413 mutex_lock(&clocksource_mutex);
1414 if (str)
1415 strlcpy(override_name, str, sizeof(override_name));
1416 mutex_unlock(&clocksource_mutex);
1417 return 1;
1418}
1419
1420__setup("clocksource=", boot_override_clocksource);
1421
1422/**
1423 * boot_override_clock - Compatibility layer for deprecated boot option
1424 * @str: override name
1425 *
1426 * DEPRECATED! Takes a clock= boot argument and uses it
1427 * as the clocksource override name
1428 */
1429static int __init boot_override_clock(char* str)
1430{
1431 if (!strcmp(str, "pmtmr")) {
1432 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1433 return boot_override_clocksource("acpi_pm");
1434 }
1435 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1436 return boot_override_clocksource(str);
1437}
1438
1439__setup("clock=", boot_override_clock);