Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * This file contains the functions which manage clocksource drivers.
4 *
5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/device.h>
11#include <linux/clocksource.h>
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15#include <linux/tick.h>
16#include <linux/kthread.h>
17
18#include "tick-internal.h"
19#include "timekeeping_internal.h"
20
21/**
22 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
23 * @mult: pointer to mult variable
24 * @shift: pointer to shift variable
25 * @from: frequency to convert from
26 * @to: frequency to convert to
27 * @maxsec: guaranteed runtime conversion range in seconds
28 *
29 * The function evaluates the shift/mult pair for the scaled math
30 * operations of clocksources and clockevents.
31 *
32 * @to and @from are frequency values in HZ. For clock sources @to is
33 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
34 * event @to is the counter frequency and @from is NSEC_PER_SEC.
35 *
36 * The @maxsec conversion range argument controls the time frame in
37 * seconds which must be covered by the runtime conversion with the
38 * calculated mult and shift factors. This guarantees that no 64bit
39 * overflow happens when the input value of the conversion is
40 * multiplied with the calculated mult factor. Larger ranges may
41 * reduce the conversion accuracy by chosing smaller mult and shift
42 * factors.
43 */
44void
45clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
46{
47 u64 tmp;
48 u32 sft, sftacc= 32;
49
50 /*
51 * Calculate the shift factor which is limiting the conversion
52 * range:
53 */
54 tmp = ((u64)maxsec * from) >> 32;
55 while (tmp) {
56 tmp >>=1;
57 sftacc--;
58 }
59
60 /*
61 * Find the conversion shift/mult pair which has the best
62 * accuracy and fits the maxsec conversion range:
63 */
64 for (sft = 32; sft > 0; sft--) {
65 tmp = (u64) to << sft;
66 tmp += from / 2;
67 do_div(tmp, from);
68 if ((tmp >> sftacc) == 0)
69 break;
70 }
71 *mult = tmp;
72 *shift = sft;
73}
74EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
75
76/*[Clocksource internal variables]---------
77 * curr_clocksource:
78 * currently selected clocksource.
79 * suspend_clocksource:
80 * used to calculate the suspend time.
81 * clocksource_list:
82 * linked list with the registered clocksources
83 * clocksource_mutex:
84 * protects manipulations to curr_clocksource and the clocksource_list
85 * override_name:
86 * Name of the user-specified clocksource.
87 */
88static struct clocksource *curr_clocksource;
89static struct clocksource *suspend_clocksource;
90static LIST_HEAD(clocksource_list);
91static DEFINE_MUTEX(clocksource_mutex);
92static char override_name[CS_NAME_LEN];
93static int finished_booting;
94static u64 suspend_start;
95
96#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
97static void clocksource_watchdog_work(struct work_struct *work);
98static void clocksource_select(void);
99
100static LIST_HEAD(watchdog_list);
101static struct clocksource *watchdog;
102static struct timer_list watchdog_timer;
103static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
104static DEFINE_SPINLOCK(watchdog_lock);
105static int watchdog_running;
106static atomic_t watchdog_reset_pending;
107
108static inline void clocksource_watchdog_lock(unsigned long *flags)
109{
110 spin_lock_irqsave(&watchdog_lock, *flags);
111}
112
113static inline void clocksource_watchdog_unlock(unsigned long *flags)
114{
115 spin_unlock_irqrestore(&watchdog_lock, *flags);
116}
117
118static int clocksource_watchdog_kthread(void *data);
119static void __clocksource_change_rating(struct clocksource *cs, int rating);
120
121/*
122 * Interval: 0.5sec Threshold: 0.0625s
123 */
124#define WATCHDOG_INTERVAL (HZ >> 1)
125#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
126
127static void clocksource_watchdog_work(struct work_struct *work)
128{
129 /*
130 * We cannot directly run clocksource_watchdog_kthread() here, because
131 * clocksource_select() calls timekeeping_notify() which uses
132 * stop_machine(). One cannot use stop_machine() from a workqueue() due
133 * lock inversions wrt CPU hotplug.
134 *
135 * Also, we only ever run this work once or twice during the lifetime
136 * of the kernel, so there is no point in creating a more permanent
137 * kthread for this.
138 *
139 * If kthread_run fails the next watchdog scan over the
140 * watchdog_list will find the unstable clock again.
141 */
142 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
143}
144
145static void __clocksource_unstable(struct clocksource *cs)
146{
147 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
148 cs->flags |= CLOCK_SOURCE_UNSTABLE;
149
150 /*
151 * If the clocksource is registered clocksource_watchdog_kthread() will
152 * re-rate and re-select.
153 */
154 if (list_empty(&cs->list)) {
155 cs->rating = 0;
156 return;
157 }
158
159 if (cs->mark_unstable)
160 cs->mark_unstable(cs);
161
162 /* kick clocksource_watchdog_kthread() */
163 if (finished_booting)
164 schedule_work(&watchdog_work);
165}
166
167/**
168 * clocksource_mark_unstable - mark clocksource unstable via watchdog
169 * @cs: clocksource to be marked unstable
170 *
171 * This function is called by the x86 TSC code to mark clocksources as unstable;
172 * it defers demotion and re-selection to a kthread.
173 */
174void clocksource_mark_unstable(struct clocksource *cs)
175{
176 unsigned long flags;
177
178 spin_lock_irqsave(&watchdog_lock, flags);
179 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
180 if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
181 list_add(&cs->wd_list, &watchdog_list);
182 __clocksource_unstable(cs);
183 }
184 spin_unlock_irqrestore(&watchdog_lock, flags);
185}
186
187static void clocksource_watchdog(struct timer_list *unused)
188{
189 struct clocksource *cs;
190 u64 csnow, wdnow, cslast, wdlast, delta;
191 int64_t wd_nsec, cs_nsec;
192 int next_cpu, reset_pending;
193
194 spin_lock(&watchdog_lock);
195 if (!watchdog_running)
196 goto out;
197
198 reset_pending = atomic_read(&watchdog_reset_pending);
199
200 list_for_each_entry(cs, &watchdog_list, wd_list) {
201
202 /* Clocksource already marked unstable? */
203 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
204 if (finished_booting)
205 schedule_work(&watchdog_work);
206 continue;
207 }
208
209 local_irq_disable();
210 csnow = cs->read(cs);
211 wdnow = watchdog->read(watchdog);
212 local_irq_enable();
213
214 /* Clocksource initialized ? */
215 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
216 atomic_read(&watchdog_reset_pending)) {
217 cs->flags |= CLOCK_SOURCE_WATCHDOG;
218 cs->wd_last = wdnow;
219 cs->cs_last = csnow;
220 continue;
221 }
222
223 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
224 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
225 watchdog->shift);
226
227 delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
228 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
229 wdlast = cs->wd_last; /* save these in case we print them */
230 cslast = cs->cs_last;
231 cs->cs_last = csnow;
232 cs->wd_last = wdnow;
233
234 if (atomic_read(&watchdog_reset_pending))
235 continue;
236
237 /* Check the deviation from the watchdog clocksource. */
238 if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
239 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
240 smp_processor_id(), cs->name);
241 pr_warn(" '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
242 watchdog->name, wdnow, wdlast, watchdog->mask);
243 pr_warn(" '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
244 cs->name, csnow, cslast, cs->mask);
245 __clocksource_unstable(cs);
246 continue;
247 }
248
249 if (cs == curr_clocksource && cs->tick_stable)
250 cs->tick_stable(cs);
251
252 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
253 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
254 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
255 /* Mark it valid for high-res. */
256 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
257
258 /*
259 * clocksource_done_booting() will sort it if
260 * finished_booting is not set yet.
261 */
262 if (!finished_booting)
263 continue;
264
265 /*
266 * If this is not the current clocksource let
267 * the watchdog thread reselect it. Due to the
268 * change to high res this clocksource might
269 * be preferred now. If it is the current
270 * clocksource let the tick code know about
271 * that change.
272 */
273 if (cs != curr_clocksource) {
274 cs->flags |= CLOCK_SOURCE_RESELECT;
275 schedule_work(&watchdog_work);
276 } else {
277 tick_clock_notify();
278 }
279 }
280 }
281
282 /*
283 * We only clear the watchdog_reset_pending, when we did a
284 * full cycle through all clocksources.
285 */
286 if (reset_pending)
287 atomic_dec(&watchdog_reset_pending);
288
289 /*
290 * Cycle through CPUs to check if the CPUs stay synchronized
291 * to each other.
292 */
293 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
294 if (next_cpu >= nr_cpu_ids)
295 next_cpu = cpumask_first(cpu_online_mask);
296 watchdog_timer.expires += WATCHDOG_INTERVAL;
297 add_timer_on(&watchdog_timer, next_cpu);
298out:
299 spin_unlock(&watchdog_lock);
300}
301
302static inline void clocksource_start_watchdog(void)
303{
304 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
305 return;
306 timer_setup(&watchdog_timer, clocksource_watchdog, 0);
307 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
308 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
309 watchdog_running = 1;
310}
311
312static inline void clocksource_stop_watchdog(void)
313{
314 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
315 return;
316 del_timer(&watchdog_timer);
317 watchdog_running = 0;
318}
319
320static inline void clocksource_reset_watchdog(void)
321{
322 struct clocksource *cs;
323
324 list_for_each_entry(cs, &watchdog_list, wd_list)
325 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
326}
327
328static void clocksource_resume_watchdog(void)
329{
330 atomic_inc(&watchdog_reset_pending);
331}
332
333static void clocksource_enqueue_watchdog(struct clocksource *cs)
334{
335 INIT_LIST_HEAD(&cs->wd_list);
336
337 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
338 /* cs is a clocksource to be watched. */
339 list_add(&cs->wd_list, &watchdog_list);
340 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
341 } else {
342 /* cs is a watchdog. */
343 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
344 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
345 }
346}
347
348static void clocksource_select_watchdog(bool fallback)
349{
350 struct clocksource *cs, *old_wd;
351 unsigned long flags;
352
353 spin_lock_irqsave(&watchdog_lock, flags);
354 /* save current watchdog */
355 old_wd = watchdog;
356 if (fallback)
357 watchdog = NULL;
358
359 list_for_each_entry(cs, &clocksource_list, list) {
360 /* cs is a clocksource to be watched. */
361 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
362 continue;
363
364 /* Skip current if we were requested for a fallback. */
365 if (fallback && cs == old_wd)
366 continue;
367
368 /* Pick the best watchdog. */
369 if (!watchdog || cs->rating > watchdog->rating)
370 watchdog = cs;
371 }
372 /* If we failed to find a fallback restore the old one. */
373 if (!watchdog)
374 watchdog = old_wd;
375
376 /* If we changed the watchdog we need to reset cycles. */
377 if (watchdog != old_wd)
378 clocksource_reset_watchdog();
379
380 /* Check if the watchdog timer needs to be started. */
381 clocksource_start_watchdog();
382 spin_unlock_irqrestore(&watchdog_lock, flags);
383}
384
385static void clocksource_dequeue_watchdog(struct clocksource *cs)
386{
387 if (cs != watchdog) {
388 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
389 /* cs is a watched clocksource. */
390 list_del_init(&cs->wd_list);
391 /* Check if the watchdog timer needs to be stopped. */
392 clocksource_stop_watchdog();
393 }
394 }
395}
396
397static int __clocksource_watchdog_kthread(void)
398{
399 struct clocksource *cs, *tmp;
400 unsigned long flags;
401 int select = 0;
402
403 spin_lock_irqsave(&watchdog_lock, flags);
404 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
405 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
406 list_del_init(&cs->wd_list);
407 __clocksource_change_rating(cs, 0);
408 select = 1;
409 }
410 if (cs->flags & CLOCK_SOURCE_RESELECT) {
411 cs->flags &= ~CLOCK_SOURCE_RESELECT;
412 select = 1;
413 }
414 }
415 /* Check if the watchdog timer needs to be stopped. */
416 clocksource_stop_watchdog();
417 spin_unlock_irqrestore(&watchdog_lock, flags);
418
419 return select;
420}
421
422static int clocksource_watchdog_kthread(void *data)
423{
424 mutex_lock(&clocksource_mutex);
425 if (__clocksource_watchdog_kthread())
426 clocksource_select();
427 mutex_unlock(&clocksource_mutex);
428 return 0;
429}
430
431static bool clocksource_is_watchdog(struct clocksource *cs)
432{
433 return cs == watchdog;
434}
435
436#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
437
438static void clocksource_enqueue_watchdog(struct clocksource *cs)
439{
440 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
441 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
442}
443
444static void clocksource_select_watchdog(bool fallback) { }
445static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
446static inline void clocksource_resume_watchdog(void) { }
447static inline int __clocksource_watchdog_kthread(void) { return 0; }
448static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
449void clocksource_mark_unstable(struct clocksource *cs) { }
450
451static inline void clocksource_watchdog_lock(unsigned long *flags) { }
452static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
453
454#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
455
456static bool clocksource_is_suspend(struct clocksource *cs)
457{
458 return cs == suspend_clocksource;
459}
460
461static void __clocksource_suspend_select(struct clocksource *cs)
462{
463 /*
464 * Skip the clocksource which will be stopped in suspend state.
465 */
466 if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
467 return;
468
469 /*
470 * The nonstop clocksource can be selected as the suspend clocksource to
471 * calculate the suspend time, so it should not supply suspend/resume
472 * interfaces to suspend the nonstop clocksource when system suspends.
473 */
474 if (cs->suspend || cs->resume) {
475 pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
476 cs->name);
477 }
478
479 /* Pick the best rating. */
480 if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
481 suspend_clocksource = cs;
482}
483
484/**
485 * clocksource_suspend_select - Select the best clocksource for suspend timing
486 * @fallback: if select a fallback clocksource
487 */
488static void clocksource_suspend_select(bool fallback)
489{
490 struct clocksource *cs, *old_suspend;
491
492 old_suspend = suspend_clocksource;
493 if (fallback)
494 suspend_clocksource = NULL;
495
496 list_for_each_entry(cs, &clocksource_list, list) {
497 /* Skip current if we were requested for a fallback. */
498 if (fallback && cs == old_suspend)
499 continue;
500
501 __clocksource_suspend_select(cs);
502 }
503}
504
505/**
506 * clocksource_start_suspend_timing - Start measuring the suspend timing
507 * @cs: current clocksource from timekeeping
508 * @start_cycles: current cycles from timekeeping
509 *
510 * This function will save the start cycle values of suspend timer to calculate
511 * the suspend time when resuming system.
512 *
513 * This function is called late in the suspend process from timekeeping_suspend(),
514 * that means processes are freezed, non-boot cpus and interrupts are disabled
515 * now. It is therefore possible to start the suspend timer without taking the
516 * clocksource mutex.
517 */
518void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
519{
520 if (!suspend_clocksource)
521 return;
522
523 /*
524 * If current clocksource is the suspend timer, we should use the
525 * tkr_mono.cycle_last value as suspend_start to avoid same reading
526 * from suspend timer.
527 */
528 if (clocksource_is_suspend(cs)) {
529 suspend_start = start_cycles;
530 return;
531 }
532
533 if (suspend_clocksource->enable &&
534 suspend_clocksource->enable(suspend_clocksource)) {
535 pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
536 return;
537 }
538
539 suspend_start = suspend_clocksource->read(suspend_clocksource);
540}
541
542/**
543 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
544 * @cs: current clocksource from timekeeping
545 * @cycle_now: current cycles from timekeeping
546 *
547 * This function will calculate the suspend time from suspend timer.
548 *
549 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
550 *
551 * This function is called early in the resume process from timekeeping_resume(),
552 * that means there is only one cpu, no processes are running and the interrupts
553 * are disabled. It is therefore possible to stop the suspend timer without
554 * taking the clocksource mutex.
555 */
556u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
557{
558 u64 now, delta, nsec = 0;
559
560 if (!suspend_clocksource)
561 return 0;
562
563 /*
564 * If current clocksource is the suspend timer, we should use the
565 * tkr_mono.cycle_last value from timekeeping as current cycle to
566 * avoid same reading from suspend timer.
567 */
568 if (clocksource_is_suspend(cs))
569 now = cycle_now;
570 else
571 now = suspend_clocksource->read(suspend_clocksource);
572
573 if (now > suspend_start) {
574 delta = clocksource_delta(now, suspend_start,
575 suspend_clocksource->mask);
576 nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
577 suspend_clocksource->shift);
578 }
579
580 /*
581 * Disable the suspend timer to save power if current clocksource is
582 * not the suspend timer.
583 */
584 if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
585 suspend_clocksource->disable(suspend_clocksource);
586
587 return nsec;
588}
589
590/**
591 * clocksource_suspend - suspend the clocksource(s)
592 */
593void clocksource_suspend(void)
594{
595 struct clocksource *cs;
596
597 list_for_each_entry_reverse(cs, &clocksource_list, list)
598 if (cs->suspend)
599 cs->suspend(cs);
600}
601
602/**
603 * clocksource_resume - resume the clocksource(s)
604 */
605void clocksource_resume(void)
606{
607 struct clocksource *cs;
608
609 list_for_each_entry(cs, &clocksource_list, list)
610 if (cs->resume)
611 cs->resume(cs);
612
613 clocksource_resume_watchdog();
614}
615
616/**
617 * clocksource_touch_watchdog - Update watchdog
618 *
619 * Update the watchdog after exception contexts such as kgdb so as not
620 * to incorrectly trip the watchdog. This might fail when the kernel
621 * was stopped in code which holds watchdog_lock.
622 */
623void clocksource_touch_watchdog(void)
624{
625 clocksource_resume_watchdog();
626}
627
628/**
629 * clocksource_max_adjustment- Returns max adjustment amount
630 * @cs: Pointer to clocksource
631 *
632 */
633static u32 clocksource_max_adjustment(struct clocksource *cs)
634{
635 u64 ret;
636 /*
637 * We won't try to correct for more than 11% adjustments (110,000 ppm),
638 */
639 ret = (u64)cs->mult * 11;
640 do_div(ret,100);
641 return (u32)ret;
642}
643
644/**
645 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
646 * @mult: cycle to nanosecond multiplier
647 * @shift: cycle to nanosecond divisor (power of two)
648 * @maxadj: maximum adjustment value to mult (~11%)
649 * @mask: bitmask for two's complement subtraction of non 64 bit counters
650 * @max_cyc: maximum cycle value before potential overflow (does not include
651 * any safety margin)
652 *
653 * NOTE: This function includes a safety margin of 50%, in other words, we
654 * return half the number of nanoseconds the hardware counter can technically
655 * cover. This is done so that we can potentially detect problems caused by
656 * delayed timers or bad hardware, which might result in time intervals that
657 * are larger than what the math used can handle without overflows.
658 */
659u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
660{
661 u64 max_nsecs, max_cycles;
662
663 /*
664 * Calculate the maximum number of cycles that we can pass to the
665 * cyc2ns() function without overflowing a 64-bit result.
666 */
667 max_cycles = ULLONG_MAX;
668 do_div(max_cycles, mult+maxadj);
669
670 /*
671 * The actual maximum number of cycles we can defer the clocksource is
672 * determined by the minimum of max_cycles and mask.
673 * Note: Here we subtract the maxadj to make sure we don't sleep for
674 * too long if there's a large negative adjustment.
675 */
676 max_cycles = min(max_cycles, mask);
677 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
678
679 /* return the max_cycles value as well if requested */
680 if (max_cyc)
681 *max_cyc = max_cycles;
682
683 /* Return 50% of the actual maximum, so we can detect bad values */
684 max_nsecs >>= 1;
685
686 return max_nsecs;
687}
688
689/**
690 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
691 * @cs: Pointer to clocksource to be updated
692 *
693 */
694static inline void clocksource_update_max_deferment(struct clocksource *cs)
695{
696 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
697 cs->maxadj, cs->mask,
698 &cs->max_cycles);
699}
700
701#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
702
703static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
704{
705 struct clocksource *cs;
706
707 if (!finished_booting || list_empty(&clocksource_list))
708 return NULL;
709
710 /*
711 * We pick the clocksource with the highest rating. If oneshot
712 * mode is active, we pick the highres valid clocksource with
713 * the best rating.
714 */
715 list_for_each_entry(cs, &clocksource_list, list) {
716 if (skipcur && cs == curr_clocksource)
717 continue;
718 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
719 continue;
720 return cs;
721 }
722 return NULL;
723}
724
725static void __clocksource_select(bool skipcur)
726{
727 bool oneshot = tick_oneshot_mode_active();
728 struct clocksource *best, *cs;
729
730 /* Find the best suitable clocksource */
731 best = clocksource_find_best(oneshot, skipcur);
732 if (!best)
733 return;
734
735 if (!strlen(override_name))
736 goto found;
737
738 /* Check for the override clocksource. */
739 list_for_each_entry(cs, &clocksource_list, list) {
740 if (skipcur && cs == curr_clocksource)
741 continue;
742 if (strcmp(cs->name, override_name) != 0)
743 continue;
744 /*
745 * Check to make sure we don't switch to a non-highres
746 * capable clocksource if the tick code is in oneshot
747 * mode (highres or nohz)
748 */
749 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
750 /* Override clocksource cannot be used. */
751 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
752 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
753 cs->name);
754 override_name[0] = 0;
755 } else {
756 /*
757 * The override cannot be currently verified.
758 * Deferring to let the watchdog check.
759 */
760 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
761 cs->name);
762 }
763 } else
764 /* Override clocksource can be used. */
765 best = cs;
766 break;
767 }
768
769found:
770 if (curr_clocksource != best && !timekeeping_notify(best)) {
771 pr_info("Switched to clocksource %s\n", best->name);
772 curr_clocksource = best;
773 }
774}
775
776/**
777 * clocksource_select - Select the best clocksource available
778 *
779 * Private function. Must hold clocksource_mutex when called.
780 *
781 * Select the clocksource with the best rating, or the clocksource,
782 * which is selected by userspace override.
783 */
784static void clocksource_select(void)
785{
786 __clocksource_select(false);
787}
788
789static void clocksource_select_fallback(void)
790{
791 __clocksource_select(true);
792}
793
794#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
795static inline void clocksource_select(void) { }
796static inline void clocksource_select_fallback(void) { }
797
798#endif
799
800/*
801 * clocksource_done_booting - Called near the end of core bootup
802 *
803 * Hack to avoid lots of clocksource churn at boot time.
804 * We use fs_initcall because we want this to start before
805 * device_initcall but after subsys_initcall.
806 */
807static int __init clocksource_done_booting(void)
808{
809 mutex_lock(&clocksource_mutex);
810 curr_clocksource = clocksource_default_clock();
811 finished_booting = 1;
812 /*
813 * Run the watchdog first to eliminate unstable clock sources
814 */
815 __clocksource_watchdog_kthread();
816 clocksource_select();
817 mutex_unlock(&clocksource_mutex);
818 return 0;
819}
820fs_initcall(clocksource_done_booting);
821
822/*
823 * Enqueue the clocksource sorted by rating
824 */
825static void clocksource_enqueue(struct clocksource *cs)
826{
827 struct list_head *entry = &clocksource_list;
828 struct clocksource *tmp;
829
830 list_for_each_entry(tmp, &clocksource_list, list) {
831 /* Keep track of the place, where to insert */
832 if (tmp->rating < cs->rating)
833 break;
834 entry = &tmp->list;
835 }
836 list_add(&cs->list, entry);
837}
838
839/**
840 * __clocksource_update_freq_scale - Used update clocksource with new freq
841 * @cs: clocksource to be registered
842 * @scale: Scale factor multiplied against freq to get clocksource hz
843 * @freq: clocksource frequency (cycles per second) divided by scale
844 *
845 * This should only be called from the clocksource->enable() method.
846 *
847 * This *SHOULD NOT* be called directly! Please use the
848 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
849 * functions.
850 */
851void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
852{
853 u64 sec;
854
855 /*
856 * Default clocksources are *special* and self-define their mult/shift.
857 * But, you're not special, so you should specify a freq value.
858 */
859 if (freq) {
860 /*
861 * Calc the maximum number of seconds which we can run before
862 * wrapping around. For clocksources which have a mask > 32-bit
863 * we need to limit the max sleep time to have a good
864 * conversion precision. 10 minutes is still a reasonable
865 * amount. That results in a shift value of 24 for a
866 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
867 * ~ 0.06ppm granularity for NTP.
868 */
869 sec = cs->mask;
870 do_div(sec, freq);
871 do_div(sec, scale);
872 if (!sec)
873 sec = 1;
874 else if (sec > 600 && cs->mask > UINT_MAX)
875 sec = 600;
876
877 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
878 NSEC_PER_SEC / scale, sec * scale);
879 }
880 /*
881 * Ensure clocksources that have large 'mult' values don't overflow
882 * when adjusted.
883 */
884 cs->maxadj = clocksource_max_adjustment(cs);
885 while (freq && ((cs->mult + cs->maxadj < cs->mult)
886 || (cs->mult - cs->maxadj > cs->mult))) {
887 cs->mult >>= 1;
888 cs->shift--;
889 cs->maxadj = clocksource_max_adjustment(cs);
890 }
891
892 /*
893 * Only warn for *special* clocksources that self-define
894 * their mult/shift values and don't specify a freq.
895 */
896 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
897 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
898 cs->name);
899
900 clocksource_update_max_deferment(cs);
901
902 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
903 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
904}
905EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
906
907/**
908 * __clocksource_register_scale - Used to install new clocksources
909 * @cs: clocksource to be registered
910 * @scale: Scale factor multiplied against freq to get clocksource hz
911 * @freq: clocksource frequency (cycles per second) divided by scale
912 *
913 * Returns -EBUSY if registration fails, zero otherwise.
914 *
915 * This *SHOULD NOT* be called directly! Please use the
916 * clocksource_register_hz() or clocksource_register_khz helper functions.
917 */
918int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
919{
920 unsigned long flags;
921
922 clocksource_arch_init(cs);
923
924 /* Initialize mult/shift and max_idle_ns */
925 __clocksource_update_freq_scale(cs, scale, freq);
926
927 /* Add clocksource to the clocksource list */
928 mutex_lock(&clocksource_mutex);
929
930 clocksource_watchdog_lock(&flags);
931 clocksource_enqueue(cs);
932 clocksource_enqueue_watchdog(cs);
933 clocksource_watchdog_unlock(&flags);
934
935 clocksource_select();
936 clocksource_select_watchdog(false);
937 __clocksource_suspend_select(cs);
938 mutex_unlock(&clocksource_mutex);
939 return 0;
940}
941EXPORT_SYMBOL_GPL(__clocksource_register_scale);
942
943static void __clocksource_change_rating(struct clocksource *cs, int rating)
944{
945 list_del(&cs->list);
946 cs->rating = rating;
947 clocksource_enqueue(cs);
948}
949
950/**
951 * clocksource_change_rating - Change the rating of a registered clocksource
952 * @cs: clocksource to be changed
953 * @rating: new rating
954 */
955void clocksource_change_rating(struct clocksource *cs, int rating)
956{
957 unsigned long flags;
958
959 mutex_lock(&clocksource_mutex);
960 clocksource_watchdog_lock(&flags);
961 __clocksource_change_rating(cs, rating);
962 clocksource_watchdog_unlock(&flags);
963
964 clocksource_select();
965 clocksource_select_watchdog(false);
966 clocksource_suspend_select(false);
967 mutex_unlock(&clocksource_mutex);
968}
969EXPORT_SYMBOL(clocksource_change_rating);
970
971/*
972 * Unbind clocksource @cs. Called with clocksource_mutex held
973 */
974static int clocksource_unbind(struct clocksource *cs)
975{
976 unsigned long flags;
977
978 if (clocksource_is_watchdog(cs)) {
979 /* Select and try to install a replacement watchdog. */
980 clocksource_select_watchdog(true);
981 if (clocksource_is_watchdog(cs))
982 return -EBUSY;
983 }
984
985 if (cs == curr_clocksource) {
986 /* Select and try to install a replacement clock source */
987 clocksource_select_fallback();
988 if (curr_clocksource == cs)
989 return -EBUSY;
990 }
991
992 if (clocksource_is_suspend(cs)) {
993 /*
994 * Select and try to install a replacement suspend clocksource.
995 * If no replacement suspend clocksource, we will just let the
996 * clocksource go and have no suspend clocksource.
997 */
998 clocksource_suspend_select(true);
999 }
1000
1001 clocksource_watchdog_lock(&flags);
1002 clocksource_dequeue_watchdog(cs);
1003 list_del_init(&cs->list);
1004 clocksource_watchdog_unlock(&flags);
1005
1006 return 0;
1007}
1008
1009/**
1010 * clocksource_unregister - remove a registered clocksource
1011 * @cs: clocksource to be unregistered
1012 */
1013int clocksource_unregister(struct clocksource *cs)
1014{
1015 int ret = 0;
1016
1017 mutex_lock(&clocksource_mutex);
1018 if (!list_empty(&cs->list))
1019 ret = clocksource_unbind(cs);
1020 mutex_unlock(&clocksource_mutex);
1021 return ret;
1022}
1023EXPORT_SYMBOL(clocksource_unregister);
1024
1025#ifdef CONFIG_SYSFS
1026/**
1027 * current_clocksource_show - sysfs interface for current clocksource
1028 * @dev: unused
1029 * @attr: unused
1030 * @buf: char buffer to be filled with clocksource list
1031 *
1032 * Provides sysfs interface for listing current clocksource.
1033 */
1034static ssize_t current_clocksource_show(struct device *dev,
1035 struct device_attribute *attr,
1036 char *buf)
1037{
1038 ssize_t count = 0;
1039
1040 mutex_lock(&clocksource_mutex);
1041 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1042 mutex_unlock(&clocksource_mutex);
1043
1044 return count;
1045}
1046
1047ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1048{
1049 size_t ret = cnt;
1050
1051 /* strings from sysfs write are not 0 terminated! */
1052 if (!cnt || cnt >= CS_NAME_LEN)
1053 return -EINVAL;
1054
1055 /* strip of \n: */
1056 if (buf[cnt-1] == '\n')
1057 cnt--;
1058 if (cnt > 0)
1059 memcpy(dst, buf, cnt);
1060 dst[cnt] = 0;
1061 return ret;
1062}
1063
1064/**
1065 * current_clocksource_store - interface for manually overriding clocksource
1066 * @dev: unused
1067 * @attr: unused
1068 * @buf: name of override clocksource
1069 * @count: length of buffer
1070 *
1071 * Takes input from sysfs interface for manually overriding the default
1072 * clocksource selection.
1073 */
1074static ssize_t current_clocksource_store(struct device *dev,
1075 struct device_attribute *attr,
1076 const char *buf, size_t count)
1077{
1078 ssize_t ret;
1079
1080 mutex_lock(&clocksource_mutex);
1081
1082 ret = sysfs_get_uname(buf, override_name, count);
1083 if (ret >= 0)
1084 clocksource_select();
1085
1086 mutex_unlock(&clocksource_mutex);
1087
1088 return ret;
1089}
1090static DEVICE_ATTR_RW(current_clocksource);
1091
1092/**
1093 * unbind_clocksource_store - interface for manually unbinding clocksource
1094 * @dev: unused
1095 * @attr: unused
1096 * @buf: unused
1097 * @count: length of buffer
1098 *
1099 * Takes input from sysfs interface for manually unbinding a clocksource.
1100 */
1101static ssize_t unbind_clocksource_store(struct device *dev,
1102 struct device_attribute *attr,
1103 const char *buf, size_t count)
1104{
1105 struct clocksource *cs;
1106 char name[CS_NAME_LEN];
1107 ssize_t ret;
1108
1109 ret = sysfs_get_uname(buf, name, count);
1110 if (ret < 0)
1111 return ret;
1112
1113 ret = -ENODEV;
1114 mutex_lock(&clocksource_mutex);
1115 list_for_each_entry(cs, &clocksource_list, list) {
1116 if (strcmp(cs->name, name))
1117 continue;
1118 ret = clocksource_unbind(cs);
1119 break;
1120 }
1121 mutex_unlock(&clocksource_mutex);
1122
1123 return ret ? ret : count;
1124}
1125static DEVICE_ATTR_WO(unbind_clocksource);
1126
1127/**
1128 * available_clocksource_show - sysfs interface for listing clocksource
1129 * @dev: unused
1130 * @attr: unused
1131 * @buf: char buffer to be filled with clocksource list
1132 *
1133 * Provides sysfs interface for listing registered clocksources
1134 */
1135static ssize_t available_clocksource_show(struct device *dev,
1136 struct device_attribute *attr,
1137 char *buf)
1138{
1139 struct clocksource *src;
1140 ssize_t count = 0;
1141
1142 mutex_lock(&clocksource_mutex);
1143 list_for_each_entry(src, &clocksource_list, list) {
1144 /*
1145 * Don't show non-HRES clocksource if the tick code is
1146 * in one shot mode (highres=on or nohz=on)
1147 */
1148 if (!tick_oneshot_mode_active() ||
1149 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1150 count += snprintf(buf + count,
1151 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1152 "%s ", src->name);
1153 }
1154 mutex_unlock(&clocksource_mutex);
1155
1156 count += snprintf(buf + count,
1157 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1158
1159 return count;
1160}
1161static DEVICE_ATTR_RO(available_clocksource);
1162
1163static struct attribute *clocksource_attrs[] = {
1164 &dev_attr_current_clocksource.attr,
1165 &dev_attr_unbind_clocksource.attr,
1166 &dev_attr_available_clocksource.attr,
1167 NULL
1168};
1169ATTRIBUTE_GROUPS(clocksource);
1170
1171static struct bus_type clocksource_subsys = {
1172 .name = "clocksource",
1173 .dev_name = "clocksource",
1174};
1175
1176static struct device device_clocksource = {
1177 .id = 0,
1178 .bus = &clocksource_subsys,
1179 .groups = clocksource_groups,
1180};
1181
1182static int __init init_clocksource_sysfs(void)
1183{
1184 int error = subsys_system_register(&clocksource_subsys, NULL);
1185
1186 if (!error)
1187 error = device_register(&device_clocksource);
1188
1189 return error;
1190}
1191
1192device_initcall(init_clocksource_sysfs);
1193#endif /* CONFIG_SYSFS */
1194
1195/**
1196 * boot_override_clocksource - boot clock override
1197 * @str: override name
1198 *
1199 * Takes a clocksource= boot argument and uses it
1200 * as the clocksource override name.
1201 */
1202static int __init boot_override_clocksource(char* str)
1203{
1204 mutex_lock(&clocksource_mutex);
1205 if (str)
1206 strlcpy(override_name, str, sizeof(override_name));
1207 mutex_unlock(&clocksource_mutex);
1208 return 1;
1209}
1210
1211__setup("clocksource=", boot_override_clocksource);
1212
1213/**
1214 * boot_override_clock - Compatibility layer for deprecated boot option
1215 * @str: override name
1216 *
1217 * DEPRECATED! Takes a clock= boot argument and uses it
1218 * as the clocksource override name
1219 */
1220static int __init boot_override_clock(char* str)
1221{
1222 if (!strcmp(str, "pmtmr")) {
1223 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1224 return boot_override_clocksource("acpi_pm");
1225 }
1226 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1227 return boot_override_clocksource(str);
1228}
1229
1230__setup("clock=", boot_override_clock);
1/*
2 * linux/kernel/time/clocksource.c
3 *
4 * This file contains the functions which manage clocksource drivers.
5 *
6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 *
22 * TODO WishList:
23 * o Allow clocksource drivers to be unregistered
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/device.h>
29#include <linux/clocksource.h>
30#include <linux/init.h>
31#include <linux/module.h>
32#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
33#include <linux/tick.h>
34#include <linux/kthread.h>
35
36#include "tick-internal.h"
37#include "timekeeping_internal.h"
38
39/**
40 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
41 * @mult: pointer to mult variable
42 * @shift: pointer to shift variable
43 * @from: frequency to convert from
44 * @to: frequency to convert to
45 * @maxsec: guaranteed runtime conversion range in seconds
46 *
47 * The function evaluates the shift/mult pair for the scaled math
48 * operations of clocksources and clockevents.
49 *
50 * @to and @from are frequency values in HZ. For clock sources @to is
51 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
52 * event @to is the counter frequency and @from is NSEC_PER_SEC.
53 *
54 * The @maxsec conversion range argument controls the time frame in
55 * seconds which must be covered by the runtime conversion with the
56 * calculated mult and shift factors. This guarantees that no 64bit
57 * overflow happens when the input value of the conversion is
58 * multiplied with the calculated mult factor. Larger ranges may
59 * reduce the conversion accuracy by chosing smaller mult and shift
60 * factors.
61 */
62void
63clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
64{
65 u64 tmp;
66 u32 sft, sftacc= 32;
67
68 /*
69 * Calculate the shift factor which is limiting the conversion
70 * range:
71 */
72 tmp = ((u64)maxsec * from) >> 32;
73 while (tmp) {
74 tmp >>=1;
75 sftacc--;
76 }
77
78 /*
79 * Find the conversion shift/mult pair which has the best
80 * accuracy and fits the maxsec conversion range:
81 */
82 for (sft = 32; sft > 0; sft--) {
83 tmp = (u64) to << sft;
84 tmp += from / 2;
85 do_div(tmp, from);
86 if ((tmp >> sftacc) == 0)
87 break;
88 }
89 *mult = tmp;
90 *shift = sft;
91}
92EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
93
94/*[Clocksource internal variables]---------
95 * curr_clocksource:
96 * currently selected clocksource.
97 * clocksource_list:
98 * linked list with the registered clocksources
99 * clocksource_mutex:
100 * protects manipulations to curr_clocksource and the clocksource_list
101 * override_name:
102 * Name of the user-specified clocksource.
103 */
104static struct clocksource *curr_clocksource;
105static LIST_HEAD(clocksource_list);
106static DEFINE_MUTEX(clocksource_mutex);
107static char override_name[CS_NAME_LEN];
108static int finished_booting;
109
110#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
111static void clocksource_watchdog_work(struct work_struct *work);
112static void clocksource_select(void);
113
114static LIST_HEAD(watchdog_list);
115static struct clocksource *watchdog;
116static struct timer_list watchdog_timer;
117static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
118static DEFINE_SPINLOCK(watchdog_lock);
119static int watchdog_running;
120static atomic_t watchdog_reset_pending;
121
122static void inline clocksource_watchdog_lock(unsigned long *flags)
123{
124 spin_lock_irqsave(&watchdog_lock, *flags);
125}
126
127static void inline clocksource_watchdog_unlock(unsigned long *flags)
128{
129 spin_unlock_irqrestore(&watchdog_lock, *flags);
130}
131
132static int clocksource_watchdog_kthread(void *data);
133static void __clocksource_change_rating(struct clocksource *cs, int rating);
134
135/*
136 * Interval: 0.5sec Threshold: 0.0625s
137 */
138#define WATCHDOG_INTERVAL (HZ >> 1)
139#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
140
141static void clocksource_watchdog_work(struct work_struct *work)
142{
143 /*
144 * If kthread_run fails the next watchdog scan over the
145 * watchdog_list will find the unstable clock again.
146 */
147 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
148}
149
150static void __clocksource_unstable(struct clocksource *cs)
151{
152 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
153 cs->flags |= CLOCK_SOURCE_UNSTABLE;
154
155 /*
156 * If the clocksource is registered clocksource_watchdog_kthread() will
157 * re-rate and re-select.
158 */
159 if (list_empty(&cs->list)) {
160 cs->rating = 0;
161 return;
162 }
163
164 if (cs->mark_unstable)
165 cs->mark_unstable(cs);
166
167 /* kick clocksource_watchdog_kthread() */
168 if (finished_booting)
169 schedule_work(&watchdog_work);
170}
171
172/**
173 * clocksource_mark_unstable - mark clocksource unstable via watchdog
174 * @cs: clocksource to be marked unstable
175 *
176 * This function is called by the x86 TSC code to mark clocksources as unstable;
177 * it defers demotion and re-selection to a kthread.
178 */
179void clocksource_mark_unstable(struct clocksource *cs)
180{
181 unsigned long flags;
182
183 spin_lock_irqsave(&watchdog_lock, flags);
184 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
185 if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
186 list_add(&cs->wd_list, &watchdog_list);
187 __clocksource_unstable(cs);
188 }
189 spin_unlock_irqrestore(&watchdog_lock, flags);
190}
191
192static void clocksource_watchdog(struct timer_list *unused)
193{
194 struct clocksource *cs;
195 u64 csnow, wdnow, cslast, wdlast, delta;
196 int64_t wd_nsec, cs_nsec;
197 int next_cpu, reset_pending;
198
199 spin_lock(&watchdog_lock);
200 if (!watchdog_running)
201 goto out;
202
203 reset_pending = atomic_read(&watchdog_reset_pending);
204
205 list_for_each_entry(cs, &watchdog_list, wd_list) {
206
207 /* Clocksource already marked unstable? */
208 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
209 if (finished_booting)
210 schedule_work(&watchdog_work);
211 continue;
212 }
213
214 local_irq_disable();
215 csnow = cs->read(cs);
216 wdnow = watchdog->read(watchdog);
217 local_irq_enable();
218
219 /* Clocksource initialized ? */
220 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
221 atomic_read(&watchdog_reset_pending)) {
222 cs->flags |= CLOCK_SOURCE_WATCHDOG;
223 cs->wd_last = wdnow;
224 cs->cs_last = csnow;
225 continue;
226 }
227
228 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
229 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
230 watchdog->shift);
231
232 delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
233 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
234 wdlast = cs->wd_last; /* save these in case we print them */
235 cslast = cs->cs_last;
236 cs->cs_last = csnow;
237 cs->wd_last = wdnow;
238
239 if (atomic_read(&watchdog_reset_pending))
240 continue;
241
242 /* Check the deviation from the watchdog clocksource. */
243 if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
244 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
245 smp_processor_id(), cs->name);
246 pr_warn(" '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
247 watchdog->name, wdnow, wdlast, watchdog->mask);
248 pr_warn(" '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
249 cs->name, csnow, cslast, cs->mask);
250 __clocksource_unstable(cs);
251 continue;
252 }
253
254 if (cs == curr_clocksource && cs->tick_stable)
255 cs->tick_stable(cs);
256
257 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
258 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
259 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
260 /* Mark it valid for high-res. */
261 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
262
263 /*
264 * clocksource_done_booting() will sort it if
265 * finished_booting is not set yet.
266 */
267 if (!finished_booting)
268 continue;
269
270 /*
271 * If this is not the current clocksource let
272 * the watchdog thread reselect it. Due to the
273 * change to high res this clocksource might
274 * be preferred now. If it is the current
275 * clocksource let the tick code know about
276 * that change.
277 */
278 if (cs != curr_clocksource) {
279 cs->flags |= CLOCK_SOURCE_RESELECT;
280 schedule_work(&watchdog_work);
281 } else {
282 tick_clock_notify();
283 }
284 }
285 }
286
287 /*
288 * We only clear the watchdog_reset_pending, when we did a
289 * full cycle through all clocksources.
290 */
291 if (reset_pending)
292 atomic_dec(&watchdog_reset_pending);
293
294 /*
295 * Cycle through CPUs to check if the CPUs stay synchronized
296 * to each other.
297 */
298 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
299 if (next_cpu >= nr_cpu_ids)
300 next_cpu = cpumask_first(cpu_online_mask);
301 watchdog_timer.expires += WATCHDOG_INTERVAL;
302 add_timer_on(&watchdog_timer, next_cpu);
303out:
304 spin_unlock(&watchdog_lock);
305}
306
307static inline void clocksource_start_watchdog(void)
308{
309 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
310 return;
311 timer_setup(&watchdog_timer, clocksource_watchdog, 0);
312 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
313 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
314 watchdog_running = 1;
315}
316
317static inline void clocksource_stop_watchdog(void)
318{
319 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
320 return;
321 del_timer(&watchdog_timer);
322 watchdog_running = 0;
323}
324
325static inline void clocksource_reset_watchdog(void)
326{
327 struct clocksource *cs;
328
329 list_for_each_entry(cs, &watchdog_list, wd_list)
330 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
331}
332
333static void clocksource_resume_watchdog(void)
334{
335 atomic_inc(&watchdog_reset_pending);
336}
337
338static void clocksource_enqueue_watchdog(struct clocksource *cs)
339{
340 INIT_LIST_HEAD(&cs->wd_list);
341
342 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
343 /* cs is a clocksource to be watched. */
344 list_add(&cs->wd_list, &watchdog_list);
345 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
346 } else {
347 /* cs is a watchdog. */
348 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
349 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
350 }
351}
352
353static void clocksource_select_watchdog(bool fallback)
354{
355 struct clocksource *cs, *old_wd;
356 unsigned long flags;
357
358 spin_lock_irqsave(&watchdog_lock, flags);
359 /* save current watchdog */
360 old_wd = watchdog;
361 if (fallback)
362 watchdog = NULL;
363
364 list_for_each_entry(cs, &clocksource_list, list) {
365 /* cs is a clocksource to be watched. */
366 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
367 continue;
368
369 /* Skip current if we were requested for a fallback. */
370 if (fallback && cs == old_wd)
371 continue;
372
373 /* Pick the best watchdog. */
374 if (!watchdog || cs->rating > watchdog->rating)
375 watchdog = cs;
376 }
377 /* If we failed to find a fallback restore the old one. */
378 if (!watchdog)
379 watchdog = old_wd;
380
381 /* If we changed the watchdog we need to reset cycles. */
382 if (watchdog != old_wd)
383 clocksource_reset_watchdog();
384
385 /* Check if the watchdog timer needs to be started. */
386 clocksource_start_watchdog();
387 spin_unlock_irqrestore(&watchdog_lock, flags);
388}
389
390static void clocksource_dequeue_watchdog(struct clocksource *cs)
391{
392 if (cs != watchdog) {
393 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
394 /* cs is a watched clocksource. */
395 list_del_init(&cs->wd_list);
396 /* Check if the watchdog timer needs to be stopped. */
397 clocksource_stop_watchdog();
398 }
399 }
400}
401
402static int __clocksource_watchdog_kthread(void)
403{
404 struct clocksource *cs, *tmp;
405 unsigned long flags;
406 int select = 0;
407
408 spin_lock_irqsave(&watchdog_lock, flags);
409 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
410 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
411 list_del_init(&cs->wd_list);
412 __clocksource_change_rating(cs, 0);
413 select = 1;
414 }
415 if (cs->flags & CLOCK_SOURCE_RESELECT) {
416 cs->flags &= ~CLOCK_SOURCE_RESELECT;
417 select = 1;
418 }
419 }
420 /* Check if the watchdog timer needs to be stopped. */
421 clocksource_stop_watchdog();
422 spin_unlock_irqrestore(&watchdog_lock, flags);
423
424 return select;
425}
426
427static int clocksource_watchdog_kthread(void *data)
428{
429 mutex_lock(&clocksource_mutex);
430 if (__clocksource_watchdog_kthread())
431 clocksource_select();
432 mutex_unlock(&clocksource_mutex);
433 return 0;
434}
435
436static bool clocksource_is_watchdog(struct clocksource *cs)
437{
438 return cs == watchdog;
439}
440
441#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
442
443static void clocksource_enqueue_watchdog(struct clocksource *cs)
444{
445 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
446 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
447}
448
449static void clocksource_select_watchdog(bool fallback) { }
450static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
451static inline void clocksource_resume_watchdog(void) { }
452static inline int __clocksource_watchdog_kthread(void) { return 0; }
453static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
454void clocksource_mark_unstable(struct clocksource *cs) { }
455
456static void inline clocksource_watchdog_lock(unsigned long *flags) { }
457static void inline clocksource_watchdog_unlock(unsigned long *flags) { }
458
459#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
460
461/**
462 * clocksource_suspend - suspend the clocksource(s)
463 */
464void clocksource_suspend(void)
465{
466 struct clocksource *cs;
467
468 list_for_each_entry_reverse(cs, &clocksource_list, list)
469 if (cs->suspend)
470 cs->suspend(cs);
471}
472
473/**
474 * clocksource_resume - resume the clocksource(s)
475 */
476void clocksource_resume(void)
477{
478 struct clocksource *cs;
479
480 list_for_each_entry(cs, &clocksource_list, list)
481 if (cs->resume)
482 cs->resume(cs);
483
484 clocksource_resume_watchdog();
485}
486
487/**
488 * clocksource_touch_watchdog - Update watchdog
489 *
490 * Update the watchdog after exception contexts such as kgdb so as not
491 * to incorrectly trip the watchdog. This might fail when the kernel
492 * was stopped in code which holds watchdog_lock.
493 */
494void clocksource_touch_watchdog(void)
495{
496 clocksource_resume_watchdog();
497}
498
499/**
500 * clocksource_max_adjustment- Returns max adjustment amount
501 * @cs: Pointer to clocksource
502 *
503 */
504static u32 clocksource_max_adjustment(struct clocksource *cs)
505{
506 u64 ret;
507 /*
508 * We won't try to correct for more than 11% adjustments (110,000 ppm),
509 */
510 ret = (u64)cs->mult * 11;
511 do_div(ret,100);
512 return (u32)ret;
513}
514
515/**
516 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
517 * @mult: cycle to nanosecond multiplier
518 * @shift: cycle to nanosecond divisor (power of two)
519 * @maxadj: maximum adjustment value to mult (~11%)
520 * @mask: bitmask for two's complement subtraction of non 64 bit counters
521 * @max_cyc: maximum cycle value before potential overflow (does not include
522 * any safety margin)
523 *
524 * NOTE: This function includes a safety margin of 50%, in other words, we
525 * return half the number of nanoseconds the hardware counter can technically
526 * cover. This is done so that we can potentially detect problems caused by
527 * delayed timers or bad hardware, which might result in time intervals that
528 * are larger than what the math used can handle without overflows.
529 */
530u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
531{
532 u64 max_nsecs, max_cycles;
533
534 /*
535 * Calculate the maximum number of cycles that we can pass to the
536 * cyc2ns() function without overflowing a 64-bit result.
537 */
538 max_cycles = ULLONG_MAX;
539 do_div(max_cycles, mult+maxadj);
540
541 /*
542 * The actual maximum number of cycles we can defer the clocksource is
543 * determined by the minimum of max_cycles and mask.
544 * Note: Here we subtract the maxadj to make sure we don't sleep for
545 * too long if there's a large negative adjustment.
546 */
547 max_cycles = min(max_cycles, mask);
548 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
549
550 /* return the max_cycles value as well if requested */
551 if (max_cyc)
552 *max_cyc = max_cycles;
553
554 /* Return 50% of the actual maximum, so we can detect bad values */
555 max_nsecs >>= 1;
556
557 return max_nsecs;
558}
559
560/**
561 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
562 * @cs: Pointer to clocksource to be updated
563 *
564 */
565static inline void clocksource_update_max_deferment(struct clocksource *cs)
566{
567 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
568 cs->maxadj, cs->mask,
569 &cs->max_cycles);
570}
571
572#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
573
574static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
575{
576 struct clocksource *cs;
577
578 if (!finished_booting || list_empty(&clocksource_list))
579 return NULL;
580
581 /*
582 * We pick the clocksource with the highest rating. If oneshot
583 * mode is active, we pick the highres valid clocksource with
584 * the best rating.
585 */
586 list_for_each_entry(cs, &clocksource_list, list) {
587 if (skipcur && cs == curr_clocksource)
588 continue;
589 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
590 continue;
591 return cs;
592 }
593 return NULL;
594}
595
596static void __clocksource_select(bool skipcur)
597{
598 bool oneshot = tick_oneshot_mode_active();
599 struct clocksource *best, *cs;
600
601 /* Find the best suitable clocksource */
602 best = clocksource_find_best(oneshot, skipcur);
603 if (!best)
604 return;
605
606 if (!strlen(override_name))
607 goto found;
608
609 /* Check for the override clocksource. */
610 list_for_each_entry(cs, &clocksource_list, list) {
611 if (skipcur && cs == curr_clocksource)
612 continue;
613 if (strcmp(cs->name, override_name) != 0)
614 continue;
615 /*
616 * Check to make sure we don't switch to a non-highres
617 * capable clocksource if the tick code is in oneshot
618 * mode (highres or nohz)
619 */
620 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
621 /* Override clocksource cannot be used. */
622 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
623 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
624 cs->name);
625 override_name[0] = 0;
626 } else {
627 /*
628 * The override cannot be currently verified.
629 * Deferring to let the watchdog check.
630 */
631 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
632 cs->name);
633 }
634 } else
635 /* Override clocksource can be used. */
636 best = cs;
637 break;
638 }
639
640found:
641 if (curr_clocksource != best && !timekeeping_notify(best)) {
642 pr_info("Switched to clocksource %s\n", best->name);
643 curr_clocksource = best;
644 }
645}
646
647/**
648 * clocksource_select - Select the best clocksource available
649 *
650 * Private function. Must hold clocksource_mutex when called.
651 *
652 * Select the clocksource with the best rating, or the clocksource,
653 * which is selected by userspace override.
654 */
655static void clocksource_select(void)
656{
657 __clocksource_select(false);
658}
659
660static void clocksource_select_fallback(void)
661{
662 __clocksource_select(true);
663}
664
665#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
666static inline void clocksource_select(void) { }
667static inline void clocksource_select_fallback(void) { }
668
669#endif
670
671/*
672 * clocksource_done_booting - Called near the end of core bootup
673 *
674 * Hack to avoid lots of clocksource churn at boot time.
675 * We use fs_initcall because we want this to start before
676 * device_initcall but after subsys_initcall.
677 */
678static int __init clocksource_done_booting(void)
679{
680 mutex_lock(&clocksource_mutex);
681 curr_clocksource = clocksource_default_clock();
682 finished_booting = 1;
683 /*
684 * Run the watchdog first to eliminate unstable clock sources
685 */
686 __clocksource_watchdog_kthread();
687 clocksource_select();
688 mutex_unlock(&clocksource_mutex);
689 return 0;
690}
691fs_initcall(clocksource_done_booting);
692
693/*
694 * Enqueue the clocksource sorted by rating
695 */
696static void clocksource_enqueue(struct clocksource *cs)
697{
698 struct list_head *entry = &clocksource_list;
699 struct clocksource *tmp;
700
701 list_for_each_entry(tmp, &clocksource_list, list) {
702 /* Keep track of the place, where to insert */
703 if (tmp->rating < cs->rating)
704 break;
705 entry = &tmp->list;
706 }
707 list_add(&cs->list, entry);
708}
709
710/**
711 * __clocksource_update_freq_scale - Used update clocksource with new freq
712 * @cs: clocksource to be registered
713 * @scale: Scale factor multiplied against freq to get clocksource hz
714 * @freq: clocksource frequency (cycles per second) divided by scale
715 *
716 * This should only be called from the clocksource->enable() method.
717 *
718 * This *SHOULD NOT* be called directly! Please use the
719 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
720 * functions.
721 */
722void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
723{
724 u64 sec;
725
726 /*
727 * Default clocksources are *special* and self-define their mult/shift.
728 * But, you're not special, so you should specify a freq value.
729 */
730 if (freq) {
731 /*
732 * Calc the maximum number of seconds which we can run before
733 * wrapping around. For clocksources which have a mask > 32-bit
734 * we need to limit the max sleep time to have a good
735 * conversion precision. 10 minutes is still a reasonable
736 * amount. That results in a shift value of 24 for a
737 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
738 * ~ 0.06ppm granularity for NTP.
739 */
740 sec = cs->mask;
741 do_div(sec, freq);
742 do_div(sec, scale);
743 if (!sec)
744 sec = 1;
745 else if (sec > 600 && cs->mask > UINT_MAX)
746 sec = 600;
747
748 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
749 NSEC_PER_SEC / scale, sec * scale);
750 }
751 /*
752 * Ensure clocksources that have large 'mult' values don't overflow
753 * when adjusted.
754 */
755 cs->maxadj = clocksource_max_adjustment(cs);
756 while (freq && ((cs->mult + cs->maxadj < cs->mult)
757 || (cs->mult - cs->maxadj > cs->mult))) {
758 cs->mult >>= 1;
759 cs->shift--;
760 cs->maxadj = clocksource_max_adjustment(cs);
761 }
762
763 /*
764 * Only warn for *special* clocksources that self-define
765 * their mult/shift values and don't specify a freq.
766 */
767 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
768 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
769 cs->name);
770
771 clocksource_update_max_deferment(cs);
772
773 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
774 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
775}
776EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
777
778/**
779 * __clocksource_register_scale - Used to install new clocksources
780 * @cs: clocksource to be registered
781 * @scale: Scale factor multiplied against freq to get clocksource hz
782 * @freq: clocksource frequency (cycles per second) divided by scale
783 *
784 * Returns -EBUSY if registration fails, zero otherwise.
785 *
786 * This *SHOULD NOT* be called directly! Please use the
787 * clocksource_register_hz() or clocksource_register_khz helper functions.
788 */
789int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
790{
791 unsigned long flags;
792
793 /* Initialize mult/shift and max_idle_ns */
794 __clocksource_update_freq_scale(cs, scale, freq);
795
796 /* Add clocksource to the clocksource list */
797 mutex_lock(&clocksource_mutex);
798
799 clocksource_watchdog_lock(&flags);
800 clocksource_enqueue(cs);
801 clocksource_enqueue_watchdog(cs);
802 clocksource_watchdog_unlock(&flags);
803
804 clocksource_select();
805 clocksource_select_watchdog(false);
806 mutex_unlock(&clocksource_mutex);
807 return 0;
808}
809EXPORT_SYMBOL_GPL(__clocksource_register_scale);
810
811static void __clocksource_change_rating(struct clocksource *cs, int rating)
812{
813 list_del(&cs->list);
814 cs->rating = rating;
815 clocksource_enqueue(cs);
816}
817
818/**
819 * clocksource_change_rating - Change the rating of a registered clocksource
820 * @cs: clocksource to be changed
821 * @rating: new rating
822 */
823void clocksource_change_rating(struct clocksource *cs, int rating)
824{
825 unsigned long flags;
826
827 mutex_lock(&clocksource_mutex);
828 clocksource_watchdog_lock(&flags);
829 __clocksource_change_rating(cs, rating);
830 clocksource_watchdog_unlock(&flags);
831
832 clocksource_select();
833 clocksource_select_watchdog(false);
834 mutex_unlock(&clocksource_mutex);
835}
836EXPORT_SYMBOL(clocksource_change_rating);
837
838/*
839 * Unbind clocksource @cs. Called with clocksource_mutex held
840 */
841static int clocksource_unbind(struct clocksource *cs)
842{
843 unsigned long flags;
844
845 if (clocksource_is_watchdog(cs)) {
846 /* Select and try to install a replacement watchdog. */
847 clocksource_select_watchdog(true);
848 if (clocksource_is_watchdog(cs))
849 return -EBUSY;
850 }
851
852 if (cs == curr_clocksource) {
853 /* Select and try to install a replacement clock source */
854 clocksource_select_fallback();
855 if (curr_clocksource == cs)
856 return -EBUSY;
857 }
858
859 clocksource_watchdog_lock(&flags);
860 clocksource_dequeue_watchdog(cs);
861 list_del_init(&cs->list);
862 clocksource_watchdog_unlock(&flags);
863
864 return 0;
865}
866
867/**
868 * clocksource_unregister - remove a registered clocksource
869 * @cs: clocksource to be unregistered
870 */
871int clocksource_unregister(struct clocksource *cs)
872{
873 int ret = 0;
874
875 mutex_lock(&clocksource_mutex);
876 if (!list_empty(&cs->list))
877 ret = clocksource_unbind(cs);
878 mutex_unlock(&clocksource_mutex);
879 return ret;
880}
881EXPORT_SYMBOL(clocksource_unregister);
882
883#ifdef CONFIG_SYSFS
884/**
885 * current_clocksource_show - sysfs interface for current clocksource
886 * @dev: unused
887 * @attr: unused
888 * @buf: char buffer to be filled with clocksource list
889 *
890 * Provides sysfs interface for listing current clocksource.
891 */
892static ssize_t current_clocksource_show(struct device *dev,
893 struct device_attribute *attr,
894 char *buf)
895{
896 ssize_t count = 0;
897
898 mutex_lock(&clocksource_mutex);
899 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
900 mutex_unlock(&clocksource_mutex);
901
902 return count;
903}
904
905ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
906{
907 size_t ret = cnt;
908
909 /* strings from sysfs write are not 0 terminated! */
910 if (!cnt || cnt >= CS_NAME_LEN)
911 return -EINVAL;
912
913 /* strip of \n: */
914 if (buf[cnt-1] == '\n')
915 cnt--;
916 if (cnt > 0)
917 memcpy(dst, buf, cnt);
918 dst[cnt] = 0;
919 return ret;
920}
921
922/**
923 * current_clocksource_store - interface for manually overriding clocksource
924 * @dev: unused
925 * @attr: unused
926 * @buf: name of override clocksource
927 * @count: length of buffer
928 *
929 * Takes input from sysfs interface for manually overriding the default
930 * clocksource selection.
931 */
932static ssize_t current_clocksource_store(struct device *dev,
933 struct device_attribute *attr,
934 const char *buf, size_t count)
935{
936 ssize_t ret;
937
938 mutex_lock(&clocksource_mutex);
939
940 ret = sysfs_get_uname(buf, override_name, count);
941 if (ret >= 0)
942 clocksource_select();
943
944 mutex_unlock(&clocksource_mutex);
945
946 return ret;
947}
948static DEVICE_ATTR_RW(current_clocksource);
949
950/**
951 * unbind_clocksource_store - interface for manually unbinding clocksource
952 * @dev: unused
953 * @attr: unused
954 * @buf: unused
955 * @count: length of buffer
956 *
957 * Takes input from sysfs interface for manually unbinding a clocksource.
958 */
959static ssize_t unbind_clocksource_store(struct device *dev,
960 struct device_attribute *attr,
961 const char *buf, size_t count)
962{
963 struct clocksource *cs;
964 char name[CS_NAME_LEN];
965 ssize_t ret;
966
967 ret = sysfs_get_uname(buf, name, count);
968 if (ret < 0)
969 return ret;
970
971 ret = -ENODEV;
972 mutex_lock(&clocksource_mutex);
973 list_for_each_entry(cs, &clocksource_list, list) {
974 if (strcmp(cs->name, name))
975 continue;
976 ret = clocksource_unbind(cs);
977 break;
978 }
979 mutex_unlock(&clocksource_mutex);
980
981 return ret ? ret : count;
982}
983static DEVICE_ATTR_WO(unbind_clocksource);
984
985/**
986 * available_clocksource_show - sysfs interface for listing clocksource
987 * @dev: unused
988 * @attr: unused
989 * @buf: char buffer to be filled with clocksource list
990 *
991 * Provides sysfs interface for listing registered clocksources
992 */
993static ssize_t available_clocksource_show(struct device *dev,
994 struct device_attribute *attr,
995 char *buf)
996{
997 struct clocksource *src;
998 ssize_t count = 0;
999
1000 mutex_lock(&clocksource_mutex);
1001 list_for_each_entry(src, &clocksource_list, list) {
1002 /*
1003 * Don't show non-HRES clocksource if the tick code is
1004 * in one shot mode (highres=on or nohz=on)
1005 */
1006 if (!tick_oneshot_mode_active() ||
1007 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1008 count += snprintf(buf + count,
1009 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1010 "%s ", src->name);
1011 }
1012 mutex_unlock(&clocksource_mutex);
1013
1014 count += snprintf(buf + count,
1015 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1016
1017 return count;
1018}
1019static DEVICE_ATTR_RO(available_clocksource);
1020
1021static struct attribute *clocksource_attrs[] = {
1022 &dev_attr_current_clocksource.attr,
1023 &dev_attr_unbind_clocksource.attr,
1024 &dev_attr_available_clocksource.attr,
1025 NULL
1026};
1027ATTRIBUTE_GROUPS(clocksource);
1028
1029static struct bus_type clocksource_subsys = {
1030 .name = "clocksource",
1031 .dev_name = "clocksource",
1032};
1033
1034static struct device device_clocksource = {
1035 .id = 0,
1036 .bus = &clocksource_subsys,
1037 .groups = clocksource_groups,
1038};
1039
1040static int __init init_clocksource_sysfs(void)
1041{
1042 int error = subsys_system_register(&clocksource_subsys, NULL);
1043
1044 if (!error)
1045 error = device_register(&device_clocksource);
1046
1047 return error;
1048}
1049
1050device_initcall(init_clocksource_sysfs);
1051#endif /* CONFIG_SYSFS */
1052
1053/**
1054 * boot_override_clocksource - boot clock override
1055 * @str: override name
1056 *
1057 * Takes a clocksource= boot argument and uses it
1058 * as the clocksource override name.
1059 */
1060static int __init boot_override_clocksource(char* str)
1061{
1062 mutex_lock(&clocksource_mutex);
1063 if (str)
1064 strlcpy(override_name, str, sizeof(override_name));
1065 mutex_unlock(&clocksource_mutex);
1066 return 1;
1067}
1068
1069__setup("clocksource=", boot_override_clocksource);
1070
1071/**
1072 * boot_override_clock - Compatibility layer for deprecated boot option
1073 * @str: override name
1074 *
1075 * DEPRECATED! Takes a clock= boot argument and uses it
1076 * as the clocksource override name
1077 */
1078static int __init boot_override_clock(char* str)
1079{
1080 if (!strcmp(str, "pmtmr")) {
1081 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1082 return boot_override_clocksource("acpi_pm");
1083 }
1084 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1085 return boot_override_clocksource(str);
1086}
1087
1088__setup("clock=", boot_override_clock);