Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 *
7 * Memory region support
8 * David Parsons <orc@pell.chi.il.us>, July-August 1999
9 *
10 * Added E820 sanitization routine (removes overlapping memory regions);
11 * Brian Moyle <bmoyle@mvista.com>, February 2001
12 *
13 * Moved CPU detection code to cpu/${cpu}.c
14 * Patrick Mochel <mochel@osdl.org>, March 2002
15 *
16 * Provisions for empty E820 memory regions (reported by certain BIOSes).
17 * Alex Achenbach <xela@slit.de>, December 2002.
18 *
19 */
20
21/*
22 * This file handles the architecture-dependent parts of initialization
23 */
24
25#include <linux/sched.h>
26#include <linux/mm.h>
27#include <linux/mmzone.h>
28#include <linux/screen_info.h>
29#include <linux/ioport.h>
30#include <linux/acpi.h>
31#include <linux/sfi.h>
32#include <linux/apm_bios.h>
33#include <linux/initrd.h>
34#include <linux/memblock.h>
35#include <linux/seq_file.h>
36#include <linux/console.h>
37#include <linux/root_dev.h>
38#include <linux/highmem.h>
39#include <linux/export.h>
40#include <linux/efi.h>
41#include <linux/init.h>
42#include <linux/edd.h>
43#include <linux/iscsi_ibft.h>
44#include <linux/nodemask.h>
45#include <linux/kexec.h>
46#include <linux/dmi.h>
47#include <linux/pfn.h>
48#include <linux/pci.h>
49#include <asm/pci-direct.h>
50#include <linux/init_ohci1394_dma.h>
51#include <linux/kvm_para.h>
52#include <linux/dma-contiguous.h>
53#include <xen/xen.h>
54#include <uapi/linux/mount.h>
55
56#include <linux/errno.h>
57#include <linux/kernel.h>
58#include <linux/stddef.h>
59#include <linux/unistd.h>
60#include <linux/ptrace.h>
61#include <linux/user.h>
62#include <linux/delay.h>
63
64#include <linux/kallsyms.h>
65#include <linux/cpufreq.h>
66#include <linux/dma-mapping.h>
67#include <linux/ctype.h>
68#include <linux/uaccess.h>
69
70#include <linux/percpu.h>
71#include <linux/crash_dump.h>
72#include <linux/tboot.h>
73#include <linux/jiffies.h>
74#include <linux/mem_encrypt.h>
75#include <linux/sizes.h>
76
77#include <linux/usb/xhci-dbgp.h>
78#include <video/edid.h>
79
80#include <asm/mtrr.h>
81#include <asm/apic.h>
82#include <asm/realmode.h>
83#include <asm/e820/api.h>
84#include <asm/mpspec.h>
85#include <asm/setup.h>
86#include <asm/efi.h>
87#include <asm/timer.h>
88#include <asm/i8259.h>
89#include <asm/sections.h>
90#include <asm/io_apic.h>
91#include <asm/ist.h>
92#include <asm/setup_arch.h>
93#include <asm/bios_ebda.h>
94#include <asm/cacheflush.h>
95#include <asm/processor.h>
96#include <asm/bugs.h>
97#include <asm/kasan.h>
98
99#include <asm/vsyscall.h>
100#include <asm/cpu.h>
101#include <asm/desc.h>
102#include <asm/dma.h>
103#include <asm/iommu.h>
104#include <asm/gart.h>
105#include <asm/mmu_context.h>
106#include <asm/proto.h>
107
108#include <asm/paravirt.h>
109#include <asm/hypervisor.h>
110#include <asm/olpc_ofw.h>
111
112#include <asm/percpu.h>
113#include <asm/topology.h>
114#include <asm/apicdef.h>
115#include <asm/amd_nb.h>
116#include <asm/mce.h>
117#include <asm/alternative.h>
118#include <asm/prom.h>
119#include <asm/microcode.h>
120#include <asm/kaslr.h>
121#include <asm/unwind.h>
122
123/*
124 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
125 * max_pfn_mapped: highest direct mapped pfn over 4GB
126 *
127 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
128 * represented by pfn_mapped
129 */
130unsigned long max_low_pfn_mapped;
131unsigned long max_pfn_mapped;
132
133#ifdef CONFIG_DMI
134RESERVE_BRK(dmi_alloc, 65536);
135#endif
136
137
138static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
139unsigned long _brk_end = (unsigned long)__brk_base;
140
141struct boot_params boot_params;
142
143/*
144 * Machine setup..
145 */
146static struct resource data_resource = {
147 .name = "Kernel data",
148 .start = 0,
149 .end = 0,
150 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
151};
152
153static struct resource code_resource = {
154 .name = "Kernel code",
155 .start = 0,
156 .end = 0,
157 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
158};
159
160static struct resource bss_resource = {
161 .name = "Kernel bss",
162 .start = 0,
163 .end = 0,
164 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
165};
166
167
168#ifdef CONFIG_X86_32
169/* cpu data as detected by the assembly code in head_32.S */
170struct cpuinfo_x86 new_cpu_data;
171
172/* common cpu data for all cpus */
173struct cpuinfo_x86 boot_cpu_data __read_mostly;
174EXPORT_SYMBOL(boot_cpu_data);
175
176unsigned int def_to_bigsmp;
177
178/* for MCA, but anyone else can use it if they want */
179unsigned int machine_id;
180unsigned int machine_submodel_id;
181unsigned int BIOS_revision;
182
183struct apm_info apm_info;
184EXPORT_SYMBOL(apm_info);
185
186#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
187 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
188struct ist_info ist_info;
189EXPORT_SYMBOL(ist_info);
190#else
191struct ist_info ist_info;
192#endif
193
194#else
195struct cpuinfo_x86 boot_cpu_data __read_mostly;
196EXPORT_SYMBOL(boot_cpu_data);
197#endif
198
199
200#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
201__visible unsigned long mmu_cr4_features __ro_after_init;
202#else
203__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
204#endif
205
206/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
207int bootloader_type, bootloader_version;
208
209/*
210 * Setup options
211 */
212struct screen_info screen_info;
213EXPORT_SYMBOL(screen_info);
214struct edid_info edid_info;
215EXPORT_SYMBOL_GPL(edid_info);
216
217extern int root_mountflags;
218
219unsigned long saved_video_mode;
220
221#define RAMDISK_IMAGE_START_MASK 0x07FF
222#define RAMDISK_PROMPT_FLAG 0x8000
223#define RAMDISK_LOAD_FLAG 0x4000
224
225static char __initdata command_line[COMMAND_LINE_SIZE];
226#ifdef CONFIG_CMDLINE_BOOL
227static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
228#endif
229
230#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
231struct edd edd;
232#ifdef CONFIG_EDD_MODULE
233EXPORT_SYMBOL(edd);
234#endif
235/**
236 * copy_edd() - Copy the BIOS EDD information
237 * from boot_params into a safe place.
238 *
239 */
240static inline void __init copy_edd(void)
241{
242 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
243 sizeof(edd.mbr_signature));
244 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
245 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
246 edd.edd_info_nr = boot_params.eddbuf_entries;
247}
248#else
249static inline void __init copy_edd(void)
250{
251}
252#endif
253
254void * __init extend_brk(size_t size, size_t align)
255{
256 size_t mask = align - 1;
257 void *ret;
258
259 BUG_ON(_brk_start == 0);
260 BUG_ON(align & mask);
261
262 _brk_end = (_brk_end + mask) & ~mask;
263 BUG_ON((char *)(_brk_end + size) > __brk_limit);
264
265 ret = (void *)_brk_end;
266 _brk_end += size;
267
268 memset(ret, 0, size);
269
270 return ret;
271}
272
273#ifdef CONFIG_X86_32
274static void __init cleanup_highmap(void)
275{
276}
277#endif
278
279static void __init reserve_brk(void)
280{
281 if (_brk_end > _brk_start)
282 memblock_reserve(__pa_symbol(_brk_start),
283 _brk_end - _brk_start);
284
285 /* Mark brk area as locked down and no longer taking any
286 new allocations */
287 _brk_start = 0;
288}
289
290u64 relocated_ramdisk;
291
292#ifdef CONFIG_BLK_DEV_INITRD
293
294static u64 __init get_ramdisk_image(void)
295{
296 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
297
298 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
299
300 return ramdisk_image;
301}
302static u64 __init get_ramdisk_size(void)
303{
304 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
305
306 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
307
308 return ramdisk_size;
309}
310
311static void __init relocate_initrd(void)
312{
313 /* Assume only end is not page aligned */
314 u64 ramdisk_image = get_ramdisk_image();
315 u64 ramdisk_size = get_ramdisk_size();
316 u64 area_size = PAGE_ALIGN(ramdisk_size);
317
318 /* We need to move the initrd down into directly mapped mem */
319 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
320 area_size, PAGE_SIZE);
321
322 if (!relocated_ramdisk)
323 panic("Cannot find place for new RAMDISK of size %lld\n",
324 ramdisk_size);
325
326 /* Note: this includes all the mem currently occupied by
327 the initrd, we rely on that fact to keep the data intact. */
328 memblock_reserve(relocated_ramdisk, area_size);
329 initrd_start = relocated_ramdisk + PAGE_OFFSET;
330 initrd_end = initrd_start + ramdisk_size;
331 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
332 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
333
334 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
335
336 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
337 " [mem %#010llx-%#010llx]\n",
338 ramdisk_image, ramdisk_image + ramdisk_size - 1,
339 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
340}
341
342static void __init early_reserve_initrd(void)
343{
344 /* Assume only end is not page aligned */
345 u64 ramdisk_image = get_ramdisk_image();
346 u64 ramdisk_size = get_ramdisk_size();
347 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
348
349 if (!boot_params.hdr.type_of_loader ||
350 !ramdisk_image || !ramdisk_size)
351 return; /* No initrd provided by bootloader */
352
353 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
354}
355static void __init reserve_initrd(void)
356{
357 /* Assume only end is not page aligned */
358 u64 ramdisk_image = get_ramdisk_image();
359 u64 ramdisk_size = get_ramdisk_size();
360 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
361 u64 mapped_size;
362
363 if (!boot_params.hdr.type_of_loader ||
364 !ramdisk_image || !ramdisk_size)
365 return; /* No initrd provided by bootloader */
366
367 initrd_start = 0;
368
369 mapped_size = memblock_mem_size(max_pfn_mapped);
370 if (ramdisk_size >= (mapped_size>>1))
371 panic("initrd too large to handle, "
372 "disabling initrd (%lld needed, %lld available)\n",
373 ramdisk_size, mapped_size>>1);
374
375 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
376 ramdisk_end - 1);
377
378 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
379 PFN_DOWN(ramdisk_end))) {
380 /* All are mapped, easy case */
381 initrd_start = ramdisk_image + PAGE_OFFSET;
382 initrd_end = initrd_start + ramdisk_size;
383 return;
384 }
385
386 relocate_initrd();
387
388 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
389}
390
391#else
392static void __init early_reserve_initrd(void)
393{
394}
395static void __init reserve_initrd(void)
396{
397}
398#endif /* CONFIG_BLK_DEV_INITRD */
399
400static void __init parse_setup_data(void)
401{
402 struct setup_data *data;
403 u64 pa_data, pa_next;
404
405 pa_data = boot_params.hdr.setup_data;
406 while (pa_data) {
407 u32 data_len, data_type;
408
409 data = early_memremap(pa_data, sizeof(*data));
410 data_len = data->len + sizeof(struct setup_data);
411 data_type = data->type;
412 pa_next = data->next;
413 early_memunmap(data, sizeof(*data));
414
415 switch (data_type) {
416 case SETUP_E820_EXT:
417 e820__memory_setup_extended(pa_data, data_len);
418 break;
419 case SETUP_DTB:
420 add_dtb(pa_data);
421 break;
422 case SETUP_EFI:
423 parse_efi_setup(pa_data, data_len);
424 break;
425 default:
426 break;
427 }
428 pa_data = pa_next;
429 }
430}
431
432static void __init memblock_x86_reserve_range_setup_data(void)
433{
434 struct setup_data *data;
435 u64 pa_data;
436
437 pa_data = boot_params.hdr.setup_data;
438 while (pa_data) {
439 data = early_memremap(pa_data, sizeof(*data));
440 memblock_reserve(pa_data, sizeof(*data) + data->len);
441 pa_data = data->next;
442 early_memunmap(data, sizeof(*data));
443 }
444}
445
446/*
447 * --------- Crashkernel reservation ------------------------------
448 */
449
450#ifdef CONFIG_KEXEC_CORE
451
452/* 16M alignment for crash kernel regions */
453#define CRASH_ALIGN SZ_16M
454
455/*
456 * Keep the crash kernel below this limit.
457 *
458 * On 32 bits earlier kernels would limit the kernel to the low 512 MiB
459 * due to mapping restrictions.
460 *
461 * On 64bit, kdump kernel need be restricted to be under 64TB, which is
462 * the upper limit of system RAM in 4-level paing mode. Since the kdump
463 * jumping could be from 5-level to 4-level, the jumping will fail if
464 * kernel is put above 64TB, and there's no way to detect the paging mode
465 * of the kernel which will be loaded for dumping during the 1st kernel
466 * bootup.
467 */
468#ifdef CONFIG_X86_32
469# define CRASH_ADDR_LOW_MAX SZ_512M
470# define CRASH_ADDR_HIGH_MAX SZ_512M
471#else
472# define CRASH_ADDR_LOW_MAX SZ_4G
473# define CRASH_ADDR_HIGH_MAX SZ_64T
474#endif
475
476static int __init reserve_crashkernel_low(void)
477{
478#ifdef CONFIG_X86_64
479 unsigned long long base, low_base = 0, low_size = 0;
480 unsigned long total_low_mem;
481 int ret;
482
483 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
484
485 /* crashkernel=Y,low */
486 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
487 if (ret) {
488 /*
489 * two parts from kernel/dma/swiotlb.c:
490 * -swiotlb size: user-specified with swiotlb= or default.
491 *
492 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
493 * to 8M for other buffers that may need to stay low too. Also
494 * make sure we allocate enough extra low memory so that we
495 * don't run out of DMA buffers for 32-bit devices.
496 */
497 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
498 } else {
499 /* passed with crashkernel=0,low ? */
500 if (!low_size)
501 return 0;
502 }
503
504 low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
505 if (!low_base) {
506 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
507 (unsigned long)(low_size >> 20));
508 return -ENOMEM;
509 }
510
511 ret = memblock_reserve(low_base, low_size);
512 if (ret) {
513 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
514 return ret;
515 }
516
517 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
518 (unsigned long)(low_size >> 20),
519 (unsigned long)(low_base >> 20),
520 (unsigned long)(total_low_mem >> 20));
521
522 crashk_low_res.start = low_base;
523 crashk_low_res.end = low_base + low_size - 1;
524 insert_resource(&iomem_resource, &crashk_low_res);
525#endif
526 return 0;
527}
528
529static void __init reserve_crashkernel(void)
530{
531 unsigned long long crash_size, crash_base, total_mem;
532 bool high = false;
533 int ret;
534
535 total_mem = memblock_phys_mem_size();
536
537 /* crashkernel=XM */
538 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
539 if (ret != 0 || crash_size <= 0) {
540 /* crashkernel=X,high */
541 ret = parse_crashkernel_high(boot_command_line, total_mem,
542 &crash_size, &crash_base);
543 if (ret != 0 || crash_size <= 0)
544 return;
545 high = true;
546 }
547
548 if (xen_pv_domain()) {
549 pr_info("Ignoring crashkernel for a Xen PV domain\n");
550 return;
551 }
552
553 /* 0 means: find the address automatically */
554 if (!crash_base) {
555 /*
556 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
557 * crashkernel=x,high reserves memory over 4G, also allocates
558 * 256M extra low memory for DMA buffers and swiotlb.
559 * But the extra memory is not required for all machines.
560 * So try low memory first and fall back to high memory
561 * unless "crashkernel=size[KMG],high" is specified.
562 */
563 if (!high)
564 crash_base = memblock_find_in_range(CRASH_ALIGN,
565 CRASH_ADDR_LOW_MAX,
566 crash_size, CRASH_ALIGN);
567 if (!crash_base)
568 crash_base = memblock_find_in_range(CRASH_ALIGN,
569 CRASH_ADDR_HIGH_MAX,
570 crash_size, CRASH_ALIGN);
571 if (!crash_base) {
572 pr_info("crashkernel reservation failed - No suitable area found.\n");
573 return;
574 }
575 } else {
576 unsigned long long start;
577
578 start = memblock_find_in_range(crash_base,
579 crash_base + crash_size,
580 crash_size, 1 << 20);
581 if (start != crash_base) {
582 pr_info("crashkernel reservation failed - memory is in use.\n");
583 return;
584 }
585 }
586 ret = memblock_reserve(crash_base, crash_size);
587 if (ret) {
588 pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
589 return;
590 }
591
592 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
593 memblock_free(crash_base, crash_size);
594 return;
595 }
596
597 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
598 (unsigned long)(crash_size >> 20),
599 (unsigned long)(crash_base >> 20),
600 (unsigned long)(total_mem >> 20));
601
602 crashk_res.start = crash_base;
603 crashk_res.end = crash_base + crash_size - 1;
604 insert_resource(&iomem_resource, &crashk_res);
605}
606#else
607static void __init reserve_crashkernel(void)
608{
609}
610#endif
611
612static struct resource standard_io_resources[] = {
613 { .name = "dma1", .start = 0x00, .end = 0x1f,
614 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
615 { .name = "pic1", .start = 0x20, .end = 0x21,
616 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
617 { .name = "timer0", .start = 0x40, .end = 0x43,
618 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
619 { .name = "timer1", .start = 0x50, .end = 0x53,
620 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
621 { .name = "keyboard", .start = 0x60, .end = 0x60,
622 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
623 { .name = "keyboard", .start = 0x64, .end = 0x64,
624 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
625 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
626 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
627 { .name = "pic2", .start = 0xa0, .end = 0xa1,
628 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
629 { .name = "dma2", .start = 0xc0, .end = 0xdf,
630 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
631 { .name = "fpu", .start = 0xf0, .end = 0xff,
632 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
633};
634
635void __init reserve_standard_io_resources(void)
636{
637 int i;
638
639 /* request I/O space for devices used on all i[345]86 PCs */
640 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
641 request_resource(&ioport_resource, &standard_io_resources[i]);
642
643}
644
645static __init void reserve_ibft_region(void)
646{
647 unsigned long addr, size = 0;
648
649 addr = find_ibft_region(&size);
650
651 if (size)
652 memblock_reserve(addr, size);
653}
654
655static bool __init snb_gfx_workaround_needed(void)
656{
657#ifdef CONFIG_PCI
658 int i;
659 u16 vendor, devid;
660 static const __initconst u16 snb_ids[] = {
661 0x0102,
662 0x0112,
663 0x0122,
664 0x0106,
665 0x0116,
666 0x0126,
667 0x010a,
668 };
669
670 /* Assume no if something weird is going on with PCI */
671 if (!early_pci_allowed())
672 return false;
673
674 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
675 if (vendor != 0x8086)
676 return false;
677
678 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
679 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
680 if (devid == snb_ids[i])
681 return true;
682#endif
683
684 return false;
685}
686
687/*
688 * Sandy Bridge graphics has trouble with certain ranges, exclude
689 * them from allocation.
690 */
691static void __init trim_snb_memory(void)
692{
693 static const __initconst unsigned long bad_pages[] = {
694 0x20050000,
695 0x20110000,
696 0x20130000,
697 0x20138000,
698 0x40004000,
699 };
700 int i;
701
702 if (!snb_gfx_workaround_needed())
703 return;
704
705 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
706
707 /*
708 * Reserve all memory below the 1 MB mark that has not
709 * already been reserved.
710 */
711 memblock_reserve(0, 1<<20);
712
713 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
714 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
715 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
716 bad_pages[i]);
717 }
718}
719
720/*
721 * Here we put platform-specific memory range workarounds, i.e.
722 * memory known to be corrupt or otherwise in need to be reserved on
723 * specific platforms.
724 *
725 * If this gets used more widely it could use a real dispatch mechanism.
726 */
727static void __init trim_platform_memory_ranges(void)
728{
729 trim_snb_memory();
730}
731
732static void __init trim_bios_range(void)
733{
734 /*
735 * A special case is the first 4Kb of memory;
736 * This is a BIOS owned area, not kernel ram, but generally
737 * not listed as such in the E820 table.
738 *
739 * This typically reserves additional memory (64KiB by default)
740 * since some BIOSes are known to corrupt low memory. See the
741 * Kconfig help text for X86_RESERVE_LOW.
742 */
743 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
744
745 /*
746 * special case: Some BIOSen report the PC BIOS
747 * area (640->1Mb) as ram even though it is not.
748 * take them out.
749 */
750 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
751
752 e820__update_table(e820_table);
753}
754
755/* called before trim_bios_range() to spare extra sanitize */
756static void __init e820_add_kernel_range(void)
757{
758 u64 start = __pa_symbol(_text);
759 u64 size = __pa_symbol(_end) - start;
760
761 /*
762 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
763 * attempt to fix it by adding the range. We may have a confused BIOS,
764 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
765 * exclude kernel range. If we really are running on top non-RAM,
766 * we will crash later anyways.
767 */
768 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
769 return;
770
771 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
772 e820__range_remove(start, size, E820_TYPE_RAM, 0);
773 e820__range_add(start, size, E820_TYPE_RAM);
774}
775
776static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
777
778static int __init parse_reservelow(char *p)
779{
780 unsigned long long size;
781
782 if (!p)
783 return -EINVAL;
784
785 size = memparse(p, &p);
786
787 if (size < 4096)
788 size = 4096;
789
790 if (size > 640*1024)
791 size = 640*1024;
792
793 reserve_low = size;
794
795 return 0;
796}
797
798early_param("reservelow", parse_reservelow);
799
800static void __init trim_low_memory_range(void)
801{
802 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
803}
804
805/*
806 * Dump out kernel offset information on panic.
807 */
808static int
809dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
810{
811 if (kaslr_enabled()) {
812 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
813 kaslr_offset(),
814 __START_KERNEL,
815 __START_KERNEL_map,
816 MODULES_VADDR-1);
817 } else {
818 pr_emerg("Kernel Offset: disabled\n");
819 }
820
821 return 0;
822}
823
824/*
825 * Determine if we were loaded by an EFI loader. If so, then we have also been
826 * passed the efi memmap, systab, etc., so we should use these data structures
827 * for initialization. Note, the efi init code path is determined by the
828 * global efi_enabled. This allows the same kernel image to be used on existing
829 * systems (with a traditional BIOS) as well as on EFI systems.
830 */
831/*
832 * setup_arch - architecture-specific boot-time initializations
833 *
834 * Note: On x86_64, fixmaps are ready for use even before this is called.
835 */
836
837void __init setup_arch(char **cmdline_p)
838{
839 /*
840 * Reserve the memory occupied by the kernel between _text and
841 * __end_of_kernel_reserve symbols. Any kernel sections after the
842 * __end_of_kernel_reserve symbol must be explicitly reserved with a
843 * separate memblock_reserve() or they will be discarded.
844 */
845 memblock_reserve(__pa_symbol(_text),
846 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
847
848 /*
849 * Make sure page 0 is always reserved because on systems with
850 * L1TF its contents can be leaked to user processes.
851 */
852 memblock_reserve(0, PAGE_SIZE);
853
854 early_reserve_initrd();
855
856 /*
857 * At this point everything still needed from the boot loader
858 * or BIOS or kernel text should be early reserved or marked not
859 * RAM in e820. All other memory is free game.
860 */
861
862#ifdef CONFIG_X86_32
863 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
864
865 /*
866 * copy kernel address range established so far and switch
867 * to the proper swapper page table
868 */
869 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
870 initial_page_table + KERNEL_PGD_BOUNDARY,
871 KERNEL_PGD_PTRS);
872
873 load_cr3(swapper_pg_dir);
874 /*
875 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
876 * a cr3 based tlb flush, so the following __flush_tlb_all()
877 * will not flush anything because the cpu quirk which clears
878 * X86_FEATURE_PGE has not been invoked yet. Though due to the
879 * load_cr3() above the TLB has been flushed already. The
880 * quirk is invoked before subsequent calls to __flush_tlb_all()
881 * so proper operation is guaranteed.
882 */
883 __flush_tlb_all();
884#else
885 printk(KERN_INFO "Command line: %s\n", boot_command_line);
886 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
887#endif
888
889 /*
890 * If we have OLPC OFW, we might end up relocating the fixmap due to
891 * reserve_top(), so do this before touching the ioremap area.
892 */
893 olpc_ofw_detect();
894
895 idt_setup_early_traps();
896 early_cpu_init();
897 arch_init_ideal_nops();
898 jump_label_init();
899 early_ioremap_init();
900
901 setup_olpc_ofw_pgd();
902
903 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
904 screen_info = boot_params.screen_info;
905 edid_info = boot_params.edid_info;
906#ifdef CONFIG_X86_32
907 apm_info.bios = boot_params.apm_bios_info;
908 ist_info = boot_params.ist_info;
909#endif
910 saved_video_mode = boot_params.hdr.vid_mode;
911 bootloader_type = boot_params.hdr.type_of_loader;
912 if ((bootloader_type >> 4) == 0xe) {
913 bootloader_type &= 0xf;
914 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
915 }
916 bootloader_version = bootloader_type & 0xf;
917 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
918
919#ifdef CONFIG_BLK_DEV_RAM
920 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
921 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
922 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
923#endif
924#ifdef CONFIG_EFI
925 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
926 EFI32_LOADER_SIGNATURE, 4)) {
927 set_bit(EFI_BOOT, &efi.flags);
928 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
929 EFI64_LOADER_SIGNATURE, 4)) {
930 set_bit(EFI_BOOT, &efi.flags);
931 set_bit(EFI_64BIT, &efi.flags);
932 }
933#endif
934
935 x86_init.oem.arch_setup();
936
937 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
938 e820__memory_setup();
939 parse_setup_data();
940
941 copy_edd();
942
943 if (!boot_params.hdr.root_flags)
944 root_mountflags &= ~MS_RDONLY;
945 init_mm.start_code = (unsigned long) _text;
946 init_mm.end_code = (unsigned long) _etext;
947 init_mm.end_data = (unsigned long) _edata;
948 init_mm.brk = _brk_end;
949
950 mpx_mm_init(&init_mm);
951
952 code_resource.start = __pa_symbol(_text);
953 code_resource.end = __pa_symbol(_etext)-1;
954 data_resource.start = __pa_symbol(_etext);
955 data_resource.end = __pa_symbol(_edata)-1;
956 bss_resource.start = __pa_symbol(__bss_start);
957 bss_resource.end = __pa_symbol(__bss_stop)-1;
958
959#ifdef CONFIG_CMDLINE_BOOL
960#ifdef CONFIG_CMDLINE_OVERRIDE
961 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
962#else
963 if (builtin_cmdline[0]) {
964 /* append boot loader cmdline to builtin */
965 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
966 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
967 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
968 }
969#endif
970#endif
971
972 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
973 *cmdline_p = command_line;
974
975 /*
976 * x86_configure_nx() is called before parse_early_param() to detect
977 * whether hardware doesn't support NX (so that the early EHCI debug
978 * console setup can safely call set_fixmap()). It may then be called
979 * again from within noexec_setup() during parsing early parameters
980 * to honor the respective command line option.
981 */
982 x86_configure_nx();
983
984 parse_early_param();
985
986 if (efi_enabled(EFI_BOOT))
987 efi_memblock_x86_reserve_range();
988#ifdef CONFIG_MEMORY_HOTPLUG
989 /*
990 * Memory used by the kernel cannot be hot-removed because Linux
991 * cannot migrate the kernel pages. When memory hotplug is
992 * enabled, we should prevent memblock from allocating memory
993 * for the kernel.
994 *
995 * ACPI SRAT records all hotpluggable memory ranges. But before
996 * SRAT is parsed, we don't know about it.
997 *
998 * The kernel image is loaded into memory at very early time. We
999 * cannot prevent this anyway. So on NUMA system, we set any
1000 * node the kernel resides in as un-hotpluggable.
1001 *
1002 * Since on modern servers, one node could have double-digit
1003 * gigabytes memory, we can assume the memory around the kernel
1004 * image is also un-hotpluggable. So before SRAT is parsed, just
1005 * allocate memory near the kernel image to try the best to keep
1006 * the kernel away from hotpluggable memory.
1007 */
1008 if (movable_node_is_enabled())
1009 memblock_set_bottom_up(true);
1010#endif
1011
1012 x86_report_nx();
1013
1014 /* after early param, so could get panic from serial */
1015 memblock_x86_reserve_range_setup_data();
1016
1017 if (acpi_mps_check()) {
1018#ifdef CONFIG_X86_LOCAL_APIC
1019 disable_apic = 1;
1020#endif
1021 setup_clear_cpu_cap(X86_FEATURE_APIC);
1022 }
1023
1024 e820__reserve_setup_data();
1025 e820__finish_early_params();
1026
1027 if (efi_enabled(EFI_BOOT))
1028 efi_init();
1029
1030 dmi_setup();
1031
1032 /*
1033 * VMware detection requires dmi to be available, so this
1034 * needs to be done after dmi_setup(), for the boot CPU.
1035 */
1036 init_hypervisor_platform();
1037
1038 tsc_early_init();
1039 x86_init.resources.probe_roms();
1040
1041 /* after parse_early_param, so could debug it */
1042 insert_resource(&iomem_resource, &code_resource);
1043 insert_resource(&iomem_resource, &data_resource);
1044 insert_resource(&iomem_resource, &bss_resource);
1045
1046 e820_add_kernel_range();
1047 trim_bios_range();
1048#ifdef CONFIG_X86_32
1049 if (ppro_with_ram_bug()) {
1050 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1051 E820_TYPE_RESERVED);
1052 e820__update_table(e820_table);
1053 printk(KERN_INFO "fixed physical RAM map:\n");
1054 e820__print_table("bad_ppro");
1055 }
1056#else
1057 early_gart_iommu_check();
1058#endif
1059
1060 /*
1061 * partially used pages are not usable - thus
1062 * we are rounding upwards:
1063 */
1064 max_pfn = e820__end_of_ram_pfn();
1065
1066 /* update e820 for memory not covered by WB MTRRs */
1067 mtrr_bp_init();
1068 if (mtrr_trim_uncached_memory(max_pfn))
1069 max_pfn = e820__end_of_ram_pfn();
1070
1071 max_possible_pfn = max_pfn;
1072
1073 /*
1074 * This call is required when the CPU does not support PAT. If
1075 * mtrr_bp_init() invoked it already via pat_init() the call has no
1076 * effect.
1077 */
1078 init_cache_modes();
1079
1080 /*
1081 * Define random base addresses for memory sections after max_pfn is
1082 * defined and before each memory section base is used.
1083 */
1084 kernel_randomize_memory();
1085
1086#ifdef CONFIG_X86_32
1087 /* max_low_pfn get updated here */
1088 find_low_pfn_range();
1089#else
1090 check_x2apic();
1091
1092 /* How many end-of-memory variables you have, grandma! */
1093 /* need this before calling reserve_initrd */
1094 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1095 max_low_pfn = e820__end_of_low_ram_pfn();
1096 else
1097 max_low_pfn = max_pfn;
1098
1099 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1100#endif
1101
1102 /*
1103 * Find and reserve possible boot-time SMP configuration:
1104 */
1105 find_smp_config();
1106
1107 reserve_ibft_region();
1108
1109 early_alloc_pgt_buf();
1110
1111 /*
1112 * Need to conclude brk, before e820__memblock_setup()
1113 * it could use memblock_find_in_range, could overlap with
1114 * brk area.
1115 */
1116 reserve_brk();
1117
1118 cleanup_highmap();
1119
1120 memblock_set_current_limit(ISA_END_ADDRESS);
1121 e820__memblock_setup();
1122
1123 reserve_bios_regions();
1124
1125 if (efi_enabled(EFI_MEMMAP)) {
1126 efi_fake_memmap();
1127 efi_find_mirror();
1128 efi_esrt_init();
1129
1130 /*
1131 * The EFI specification says that boot service code won't be
1132 * called after ExitBootServices(). This is, in fact, a lie.
1133 */
1134 efi_reserve_boot_services();
1135 }
1136
1137 /* preallocate 4k for mptable mpc */
1138 e820__memblock_alloc_reserved_mpc_new();
1139
1140#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1141 setup_bios_corruption_check();
1142#endif
1143
1144#ifdef CONFIG_X86_32
1145 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1146 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1147#endif
1148
1149 reserve_real_mode();
1150
1151 trim_platform_memory_ranges();
1152 trim_low_memory_range();
1153
1154 init_mem_mapping();
1155
1156 idt_setup_early_pf();
1157
1158 /*
1159 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1160 * with the current CR4 value. This may not be necessary, but
1161 * auditing all the early-boot CR4 manipulation would be needed to
1162 * rule it out.
1163 *
1164 * Mask off features that don't work outside long mode (just
1165 * PCIDE for now).
1166 */
1167 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1168
1169 memblock_set_current_limit(get_max_mapped());
1170
1171 /*
1172 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1173 */
1174
1175#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1176 if (init_ohci1394_dma_early)
1177 init_ohci1394_dma_on_all_controllers();
1178#endif
1179 /* Allocate bigger log buffer */
1180 setup_log_buf(1);
1181
1182 if (efi_enabled(EFI_BOOT)) {
1183 switch (boot_params.secure_boot) {
1184 case efi_secureboot_mode_disabled:
1185 pr_info("Secure boot disabled\n");
1186 break;
1187 case efi_secureboot_mode_enabled:
1188 pr_info("Secure boot enabled\n");
1189 break;
1190 default:
1191 pr_info("Secure boot could not be determined\n");
1192 break;
1193 }
1194 }
1195
1196 reserve_initrd();
1197
1198 acpi_table_upgrade();
1199
1200 vsmp_init();
1201
1202 io_delay_init();
1203
1204 early_platform_quirks();
1205
1206 /*
1207 * Parse the ACPI tables for possible boot-time SMP configuration.
1208 */
1209 acpi_boot_table_init();
1210
1211 early_acpi_boot_init();
1212
1213 initmem_init();
1214 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1215
1216 /*
1217 * Reserve memory for crash kernel after SRAT is parsed so that it
1218 * won't consume hotpluggable memory.
1219 */
1220 reserve_crashkernel();
1221
1222 memblock_find_dma_reserve();
1223
1224 if (!early_xdbc_setup_hardware())
1225 early_xdbc_register_console();
1226
1227 x86_init.paging.pagetable_init();
1228
1229 kasan_init();
1230
1231 /*
1232 * Sync back kernel address range.
1233 *
1234 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1235 * this call?
1236 */
1237 sync_initial_page_table();
1238
1239 tboot_probe();
1240
1241 map_vsyscall();
1242
1243 generic_apic_probe();
1244
1245 early_quirks();
1246
1247 /*
1248 * Read APIC and some other early information from ACPI tables.
1249 */
1250 acpi_boot_init();
1251 sfi_init();
1252 x86_dtb_init();
1253
1254 /*
1255 * get boot-time SMP configuration:
1256 */
1257 get_smp_config();
1258
1259 /*
1260 * Systems w/o ACPI and mptables might not have it mapped the local
1261 * APIC yet, but prefill_possible_map() might need to access it.
1262 */
1263 init_apic_mappings();
1264
1265 prefill_possible_map();
1266
1267 init_cpu_to_node();
1268
1269 io_apic_init_mappings();
1270
1271 x86_init.hyper.guest_late_init();
1272
1273 e820__reserve_resources();
1274 e820__register_nosave_regions(max_pfn);
1275
1276 x86_init.resources.reserve_resources();
1277
1278 e820__setup_pci_gap();
1279
1280#ifdef CONFIG_VT
1281#if defined(CONFIG_VGA_CONSOLE)
1282 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1283 conswitchp = &vga_con;
1284#elif defined(CONFIG_DUMMY_CONSOLE)
1285 conswitchp = &dummy_con;
1286#endif
1287#endif
1288 x86_init.oem.banner();
1289
1290 x86_init.timers.wallclock_init();
1291
1292 mcheck_init();
1293
1294 register_refined_jiffies(CLOCK_TICK_RATE);
1295
1296#ifdef CONFIG_EFI
1297 if (efi_enabled(EFI_BOOT))
1298 efi_apply_memmap_quirks();
1299#endif
1300
1301 unwind_init();
1302}
1303
1304#ifdef CONFIG_X86_32
1305
1306static struct resource video_ram_resource = {
1307 .name = "Video RAM area",
1308 .start = 0xa0000,
1309 .end = 0xbffff,
1310 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1311};
1312
1313void __init i386_reserve_resources(void)
1314{
1315 request_resource(&iomem_resource, &video_ram_resource);
1316 reserve_standard_io_resources();
1317}
1318
1319#endif /* CONFIG_X86_32 */
1320
1321static struct notifier_block kernel_offset_notifier = {
1322 .notifier_call = dump_kernel_offset
1323};
1324
1325static int __init register_kernel_offset_dumper(void)
1326{
1327 atomic_notifier_chain_register(&panic_notifier_list,
1328 &kernel_offset_notifier);
1329 return 0;
1330}
1331__initcall(register_kernel_offset_dumper);
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 *
6 * Memory region support
7 * David Parsons <orc@pell.chi.il.us>, July-August 1999
8 *
9 * Added E820 sanitization routine (removes overlapping memory regions);
10 * Brian Moyle <bmoyle@mvista.com>, February 2001
11 *
12 * Moved CPU detection code to cpu/${cpu}.c
13 * Patrick Mochel <mochel@osdl.org>, March 2002
14 *
15 * Provisions for empty E820 memory regions (reported by certain BIOSes).
16 * Alex Achenbach <xela@slit.de>, December 2002.
17 *
18 */
19
20/*
21 * This file handles the architecture-dependent parts of initialization
22 */
23
24#include <linux/sched.h>
25#include <linux/mm.h>
26#include <linux/mmzone.h>
27#include <linux/screen_info.h>
28#include <linux/ioport.h>
29#include <linux/acpi.h>
30#include <linux/sfi.h>
31#include <linux/apm_bios.h>
32#include <linux/initrd.h>
33#include <linux/bootmem.h>
34#include <linux/memblock.h>
35#include <linux/seq_file.h>
36#include <linux/console.h>
37#include <linux/root_dev.h>
38#include <linux/highmem.h>
39#include <linux/export.h>
40#include <linux/efi.h>
41#include <linux/init.h>
42#include <linux/edd.h>
43#include <linux/iscsi_ibft.h>
44#include <linux/nodemask.h>
45#include <linux/kexec.h>
46#include <linux/dmi.h>
47#include <linux/pfn.h>
48#include <linux/pci.h>
49#include <asm/pci-direct.h>
50#include <linux/init_ohci1394_dma.h>
51#include <linux/kvm_para.h>
52#include <linux/dma-contiguous.h>
53
54#include <linux/errno.h>
55#include <linux/kernel.h>
56#include <linux/stddef.h>
57#include <linux/unistd.h>
58#include <linux/ptrace.h>
59#include <linux/user.h>
60#include <linux/delay.h>
61
62#include <linux/kallsyms.h>
63#include <linux/cpufreq.h>
64#include <linux/dma-mapping.h>
65#include <linux/ctype.h>
66#include <linux/uaccess.h>
67
68#include <linux/percpu.h>
69#include <linux/crash_dump.h>
70#include <linux/tboot.h>
71#include <linux/jiffies.h>
72
73#include <video/edid.h>
74
75#include <asm/mtrr.h>
76#include <asm/apic.h>
77#include <asm/realmode.h>
78#include <asm/e820.h>
79#include <asm/mpspec.h>
80#include <asm/setup.h>
81#include <asm/efi.h>
82#include <asm/timer.h>
83#include <asm/i8259.h>
84#include <asm/sections.h>
85#include <asm/io_apic.h>
86#include <asm/ist.h>
87#include <asm/setup_arch.h>
88#include <asm/bios_ebda.h>
89#include <asm/cacheflush.h>
90#include <asm/processor.h>
91#include <asm/bugs.h>
92#include <asm/kasan.h>
93
94#include <asm/vsyscall.h>
95#include <asm/cpu.h>
96#include <asm/desc.h>
97#include <asm/dma.h>
98#include <asm/iommu.h>
99#include <asm/gart.h>
100#include <asm/mmu_context.h>
101#include <asm/proto.h>
102
103#include <asm/paravirt.h>
104#include <asm/hypervisor.h>
105#include <asm/olpc_ofw.h>
106
107#include <asm/percpu.h>
108#include <asm/topology.h>
109#include <asm/apicdef.h>
110#include <asm/amd_nb.h>
111#include <asm/mce.h>
112#include <asm/alternative.h>
113#include <asm/prom.h>
114#include <asm/microcode.h>
115#include <asm/mmu_context.h>
116#include <asm/kaslr.h>
117
118/*
119 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
120 * max_pfn_mapped: highest direct mapped pfn over 4GB
121 *
122 * The direct mapping only covers E820_RAM regions, so the ranges and gaps are
123 * represented by pfn_mapped
124 */
125unsigned long max_low_pfn_mapped;
126unsigned long max_pfn_mapped;
127
128#ifdef CONFIG_DMI
129RESERVE_BRK(dmi_alloc, 65536);
130#endif
131
132
133static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
134unsigned long _brk_end = (unsigned long)__brk_base;
135
136#ifdef CONFIG_X86_64
137int default_cpu_present_to_apicid(int mps_cpu)
138{
139 return __default_cpu_present_to_apicid(mps_cpu);
140}
141
142int default_check_phys_apicid_present(int phys_apicid)
143{
144 return __default_check_phys_apicid_present(phys_apicid);
145}
146#endif
147
148struct boot_params boot_params;
149
150/*
151 * Machine setup..
152 */
153static struct resource data_resource = {
154 .name = "Kernel data",
155 .start = 0,
156 .end = 0,
157 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
158};
159
160static struct resource code_resource = {
161 .name = "Kernel code",
162 .start = 0,
163 .end = 0,
164 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
165};
166
167static struct resource bss_resource = {
168 .name = "Kernel bss",
169 .start = 0,
170 .end = 0,
171 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
172};
173
174
175#ifdef CONFIG_X86_32
176/* cpu data as detected by the assembly code in head.S */
177struct cpuinfo_x86 new_cpu_data = {
178 .wp_works_ok = -1,
179};
180/* common cpu data for all cpus */
181struct cpuinfo_x86 boot_cpu_data __read_mostly = {
182 .wp_works_ok = -1,
183};
184EXPORT_SYMBOL(boot_cpu_data);
185
186unsigned int def_to_bigsmp;
187
188/* for MCA, but anyone else can use it if they want */
189unsigned int machine_id;
190unsigned int machine_submodel_id;
191unsigned int BIOS_revision;
192
193struct apm_info apm_info;
194EXPORT_SYMBOL(apm_info);
195
196#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
197 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
198struct ist_info ist_info;
199EXPORT_SYMBOL(ist_info);
200#else
201struct ist_info ist_info;
202#endif
203
204#else
205struct cpuinfo_x86 boot_cpu_data __read_mostly = {
206 .x86_phys_bits = MAX_PHYSMEM_BITS,
207};
208EXPORT_SYMBOL(boot_cpu_data);
209#endif
210
211
212#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
213__visible unsigned long mmu_cr4_features __ro_after_init;
214#else
215__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
216#endif
217
218/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
219int bootloader_type, bootloader_version;
220
221/*
222 * Setup options
223 */
224struct screen_info screen_info;
225EXPORT_SYMBOL(screen_info);
226struct edid_info edid_info;
227EXPORT_SYMBOL_GPL(edid_info);
228
229extern int root_mountflags;
230
231unsigned long saved_video_mode;
232
233#define RAMDISK_IMAGE_START_MASK 0x07FF
234#define RAMDISK_PROMPT_FLAG 0x8000
235#define RAMDISK_LOAD_FLAG 0x4000
236
237static char __initdata command_line[COMMAND_LINE_SIZE];
238#ifdef CONFIG_CMDLINE_BOOL
239static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
240#endif
241
242#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
243struct edd edd;
244#ifdef CONFIG_EDD_MODULE
245EXPORT_SYMBOL(edd);
246#endif
247/**
248 * copy_edd() - Copy the BIOS EDD information
249 * from boot_params into a safe place.
250 *
251 */
252static inline void __init copy_edd(void)
253{
254 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
255 sizeof(edd.mbr_signature));
256 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
257 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
258 edd.edd_info_nr = boot_params.eddbuf_entries;
259}
260#else
261static inline void __init copy_edd(void)
262{
263}
264#endif
265
266void * __init extend_brk(size_t size, size_t align)
267{
268 size_t mask = align - 1;
269 void *ret;
270
271 BUG_ON(_brk_start == 0);
272 BUG_ON(align & mask);
273
274 _brk_end = (_brk_end + mask) & ~mask;
275 BUG_ON((char *)(_brk_end + size) > __brk_limit);
276
277 ret = (void *)_brk_end;
278 _brk_end += size;
279
280 memset(ret, 0, size);
281
282 return ret;
283}
284
285#ifdef CONFIG_X86_32
286static void __init cleanup_highmap(void)
287{
288}
289#endif
290
291static void __init reserve_brk(void)
292{
293 if (_brk_end > _brk_start)
294 memblock_reserve(__pa_symbol(_brk_start),
295 _brk_end - _brk_start);
296
297 /* Mark brk area as locked down and no longer taking any
298 new allocations */
299 _brk_start = 0;
300}
301
302u64 relocated_ramdisk;
303
304#ifdef CONFIG_BLK_DEV_INITRD
305
306static u64 __init get_ramdisk_image(void)
307{
308 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
309
310 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
311
312 return ramdisk_image;
313}
314static u64 __init get_ramdisk_size(void)
315{
316 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
317
318 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
319
320 return ramdisk_size;
321}
322
323static void __init relocate_initrd(void)
324{
325 /* Assume only end is not page aligned */
326 u64 ramdisk_image = get_ramdisk_image();
327 u64 ramdisk_size = get_ramdisk_size();
328 u64 area_size = PAGE_ALIGN(ramdisk_size);
329
330 /* We need to move the initrd down into directly mapped mem */
331 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
332 area_size, PAGE_SIZE);
333
334 if (!relocated_ramdisk)
335 panic("Cannot find place for new RAMDISK of size %lld\n",
336 ramdisk_size);
337
338 /* Note: this includes all the mem currently occupied by
339 the initrd, we rely on that fact to keep the data intact. */
340 memblock_reserve(relocated_ramdisk, area_size);
341 initrd_start = relocated_ramdisk + PAGE_OFFSET;
342 initrd_end = initrd_start + ramdisk_size;
343 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
344 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
345
346 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
347
348 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
349 " [mem %#010llx-%#010llx]\n",
350 ramdisk_image, ramdisk_image + ramdisk_size - 1,
351 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
352}
353
354static void __init early_reserve_initrd(void)
355{
356 /* Assume only end is not page aligned */
357 u64 ramdisk_image = get_ramdisk_image();
358 u64 ramdisk_size = get_ramdisk_size();
359 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
360
361 if (!boot_params.hdr.type_of_loader ||
362 !ramdisk_image || !ramdisk_size)
363 return; /* No initrd provided by bootloader */
364
365 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
366}
367static void __init reserve_initrd(void)
368{
369 /* Assume only end is not page aligned */
370 u64 ramdisk_image = get_ramdisk_image();
371 u64 ramdisk_size = get_ramdisk_size();
372 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
373 u64 mapped_size;
374
375 if (!boot_params.hdr.type_of_loader ||
376 !ramdisk_image || !ramdisk_size)
377 return; /* No initrd provided by bootloader */
378
379 initrd_start = 0;
380
381 mapped_size = memblock_mem_size(max_pfn_mapped);
382 if (ramdisk_size >= (mapped_size>>1))
383 panic("initrd too large to handle, "
384 "disabling initrd (%lld needed, %lld available)\n",
385 ramdisk_size, mapped_size>>1);
386
387 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
388 ramdisk_end - 1);
389
390 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
391 PFN_DOWN(ramdisk_end))) {
392 /* All are mapped, easy case */
393 initrd_start = ramdisk_image + PAGE_OFFSET;
394 initrd_end = initrd_start + ramdisk_size;
395 return;
396 }
397
398 relocate_initrd();
399
400 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
401}
402
403#else
404static void __init early_reserve_initrd(void)
405{
406}
407static void __init reserve_initrd(void)
408{
409}
410#endif /* CONFIG_BLK_DEV_INITRD */
411
412static void __init parse_setup_data(void)
413{
414 struct setup_data *data;
415 u64 pa_data, pa_next;
416
417 pa_data = boot_params.hdr.setup_data;
418 while (pa_data) {
419 u32 data_len, data_type;
420
421 data = early_memremap(pa_data, sizeof(*data));
422 data_len = data->len + sizeof(struct setup_data);
423 data_type = data->type;
424 pa_next = data->next;
425 early_memunmap(data, sizeof(*data));
426
427 switch (data_type) {
428 case SETUP_E820_EXT:
429 parse_e820_ext(pa_data, data_len);
430 break;
431 case SETUP_DTB:
432 add_dtb(pa_data);
433 break;
434 case SETUP_EFI:
435 parse_efi_setup(pa_data, data_len);
436 break;
437 default:
438 break;
439 }
440 pa_data = pa_next;
441 }
442}
443
444static void __init e820_reserve_setup_data(void)
445{
446 struct setup_data *data;
447 u64 pa_data;
448
449 pa_data = boot_params.hdr.setup_data;
450 if (!pa_data)
451 return;
452
453 while (pa_data) {
454 data = early_memremap(pa_data, sizeof(*data));
455 e820_update_range(pa_data, sizeof(*data)+data->len,
456 E820_RAM, E820_RESERVED_KERN);
457 pa_data = data->next;
458 early_memunmap(data, sizeof(*data));
459 }
460
461 sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map);
462 memcpy(e820_saved, e820, sizeof(struct e820map));
463 printk(KERN_INFO "extended physical RAM map:\n");
464 e820_print_map("reserve setup_data");
465}
466
467static void __init memblock_x86_reserve_range_setup_data(void)
468{
469 struct setup_data *data;
470 u64 pa_data;
471
472 pa_data = boot_params.hdr.setup_data;
473 while (pa_data) {
474 data = early_memremap(pa_data, sizeof(*data));
475 memblock_reserve(pa_data, sizeof(*data) + data->len);
476 pa_data = data->next;
477 early_memunmap(data, sizeof(*data));
478 }
479}
480
481/*
482 * --------- Crashkernel reservation ------------------------------
483 */
484
485#ifdef CONFIG_KEXEC_CORE
486
487/* 16M alignment for crash kernel regions */
488#define CRASH_ALIGN (16 << 20)
489
490/*
491 * Keep the crash kernel below this limit. On 32 bits earlier kernels
492 * would limit the kernel to the low 512 MiB due to mapping restrictions.
493 * On 64bit, old kexec-tools need to under 896MiB.
494 */
495#ifdef CONFIG_X86_32
496# define CRASH_ADDR_LOW_MAX (512 << 20)
497# define CRASH_ADDR_HIGH_MAX (512 << 20)
498#else
499# define CRASH_ADDR_LOW_MAX (896UL << 20)
500# define CRASH_ADDR_HIGH_MAX MAXMEM
501#endif
502
503static int __init reserve_crashkernel_low(void)
504{
505#ifdef CONFIG_X86_64
506 unsigned long long base, low_base = 0, low_size = 0;
507 unsigned long total_low_mem;
508 int ret;
509
510 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
511
512 /* crashkernel=Y,low */
513 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
514 if (ret) {
515 /*
516 * two parts from lib/swiotlb.c:
517 * -swiotlb size: user-specified with swiotlb= or default.
518 *
519 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
520 * to 8M for other buffers that may need to stay low too. Also
521 * make sure we allocate enough extra low memory so that we
522 * don't run out of DMA buffers for 32-bit devices.
523 */
524 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
525 } else {
526 /* passed with crashkernel=0,low ? */
527 if (!low_size)
528 return 0;
529 }
530
531 low_base = memblock_find_in_range(low_size, 1ULL << 32, low_size, CRASH_ALIGN);
532 if (!low_base) {
533 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
534 (unsigned long)(low_size >> 20));
535 return -ENOMEM;
536 }
537
538 ret = memblock_reserve(low_base, low_size);
539 if (ret) {
540 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
541 return ret;
542 }
543
544 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
545 (unsigned long)(low_size >> 20),
546 (unsigned long)(low_base >> 20),
547 (unsigned long)(total_low_mem >> 20));
548
549 crashk_low_res.start = low_base;
550 crashk_low_res.end = low_base + low_size - 1;
551 insert_resource(&iomem_resource, &crashk_low_res);
552#endif
553 return 0;
554}
555
556static void __init reserve_crashkernel(void)
557{
558 unsigned long long crash_size, crash_base, total_mem;
559 bool high = false;
560 int ret;
561
562 total_mem = memblock_phys_mem_size();
563
564 /* crashkernel=XM */
565 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
566 if (ret != 0 || crash_size <= 0) {
567 /* crashkernel=X,high */
568 ret = parse_crashkernel_high(boot_command_line, total_mem,
569 &crash_size, &crash_base);
570 if (ret != 0 || crash_size <= 0)
571 return;
572 high = true;
573 }
574
575 /* 0 means: find the address automatically */
576 if (crash_base <= 0) {
577 /*
578 * kexec want bzImage is below CRASH_KERNEL_ADDR_MAX
579 */
580 crash_base = memblock_find_in_range(CRASH_ALIGN,
581 high ? CRASH_ADDR_HIGH_MAX
582 : CRASH_ADDR_LOW_MAX,
583 crash_size, CRASH_ALIGN);
584 if (!crash_base) {
585 pr_info("crashkernel reservation failed - No suitable area found.\n");
586 return;
587 }
588
589 } else {
590 unsigned long long start;
591
592 start = memblock_find_in_range(crash_base,
593 crash_base + crash_size,
594 crash_size, 1 << 20);
595 if (start != crash_base) {
596 pr_info("crashkernel reservation failed - memory is in use.\n");
597 return;
598 }
599 }
600 ret = memblock_reserve(crash_base, crash_size);
601 if (ret) {
602 pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
603 return;
604 }
605
606 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
607 memblock_free(crash_base, crash_size);
608 return;
609 }
610
611 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
612 (unsigned long)(crash_size >> 20),
613 (unsigned long)(crash_base >> 20),
614 (unsigned long)(total_mem >> 20));
615
616 crashk_res.start = crash_base;
617 crashk_res.end = crash_base + crash_size - 1;
618 insert_resource(&iomem_resource, &crashk_res);
619}
620#else
621static void __init reserve_crashkernel(void)
622{
623}
624#endif
625
626static struct resource standard_io_resources[] = {
627 { .name = "dma1", .start = 0x00, .end = 0x1f,
628 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
629 { .name = "pic1", .start = 0x20, .end = 0x21,
630 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
631 { .name = "timer0", .start = 0x40, .end = 0x43,
632 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
633 { .name = "timer1", .start = 0x50, .end = 0x53,
634 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
635 { .name = "keyboard", .start = 0x60, .end = 0x60,
636 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
637 { .name = "keyboard", .start = 0x64, .end = 0x64,
638 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
639 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
640 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
641 { .name = "pic2", .start = 0xa0, .end = 0xa1,
642 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
643 { .name = "dma2", .start = 0xc0, .end = 0xdf,
644 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
645 { .name = "fpu", .start = 0xf0, .end = 0xff,
646 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
647};
648
649void __init reserve_standard_io_resources(void)
650{
651 int i;
652
653 /* request I/O space for devices used on all i[345]86 PCs */
654 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
655 request_resource(&ioport_resource, &standard_io_resources[i]);
656
657}
658
659static __init void reserve_ibft_region(void)
660{
661 unsigned long addr, size = 0;
662
663 addr = find_ibft_region(&size);
664
665 if (size)
666 memblock_reserve(addr, size);
667}
668
669static bool __init snb_gfx_workaround_needed(void)
670{
671#ifdef CONFIG_PCI
672 int i;
673 u16 vendor, devid;
674 static const __initconst u16 snb_ids[] = {
675 0x0102,
676 0x0112,
677 0x0122,
678 0x0106,
679 0x0116,
680 0x0126,
681 0x010a,
682 };
683
684 /* Assume no if something weird is going on with PCI */
685 if (!early_pci_allowed())
686 return false;
687
688 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
689 if (vendor != 0x8086)
690 return false;
691
692 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
693 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
694 if (devid == snb_ids[i])
695 return true;
696#endif
697
698 return false;
699}
700
701/*
702 * Sandy Bridge graphics has trouble with certain ranges, exclude
703 * them from allocation.
704 */
705static void __init trim_snb_memory(void)
706{
707 static const __initconst unsigned long bad_pages[] = {
708 0x20050000,
709 0x20110000,
710 0x20130000,
711 0x20138000,
712 0x40004000,
713 };
714 int i;
715
716 if (!snb_gfx_workaround_needed())
717 return;
718
719 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
720
721 /*
722 * Reserve all memory below the 1 MB mark that has not
723 * already been reserved.
724 */
725 memblock_reserve(0, 1<<20);
726
727 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
728 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
729 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
730 bad_pages[i]);
731 }
732}
733
734/*
735 * Here we put platform-specific memory range workarounds, i.e.
736 * memory known to be corrupt or otherwise in need to be reserved on
737 * specific platforms.
738 *
739 * If this gets used more widely it could use a real dispatch mechanism.
740 */
741static void __init trim_platform_memory_ranges(void)
742{
743 trim_snb_memory();
744}
745
746static void __init trim_bios_range(void)
747{
748 /*
749 * A special case is the first 4Kb of memory;
750 * This is a BIOS owned area, not kernel ram, but generally
751 * not listed as such in the E820 table.
752 *
753 * This typically reserves additional memory (64KiB by default)
754 * since some BIOSes are known to corrupt low memory. See the
755 * Kconfig help text for X86_RESERVE_LOW.
756 */
757 e820_update_range(0, PAGE_SIZE, E820_RAM, E820_RESERVED);
758
759 /*
760 * special case: Some BIOSen report the PC BIOS
761 * area (640->1Mb) as ram even though it is not.
762 * take them out.
763 */
764 e820_remove_range(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_RAM, 1);
765
766 sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map);
767}
768
769/* called before trim_bios_range() to spare extra sanitize */
770static void __init e820_add_kernel_range(void)
771{
772 u64 start = __pa_symbol(_text);
773 u64 size = __pa_symbol(_end) - start;
774
775 /*
776 * Complain if .text .data and .bss are not marked as E820_RAM and
777 * attempt to fix it by adding the range. We may have a confused BIOS,
778 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
779 * exclude kernel range. If we really are running on top non-RAM,
780 * we will crash later anyways.
781 */
782 if (e820_all_mapped(start, start + size, E820_RAM))
783 return;
784
785 pr_warn(".text .data .bss are not marked as E820_RAM!\n");
786 e820_remove_range(start, size, E820_RAM, 0);
787 e820_add_region(start, size, E820_RAM);
788}
789
790static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
791
792static int __init parse_reservelow(char *p)
793{
794 unsigned long long size;
795
796 if (!p)
797 return -EINVAL;
798
799 size = memparse(p, &p);
800
801 if (size < 4096)
802 size = 4096;
803
804 if (size > 640*1024)
805 size = 640*1024;
806
807 reserve_low = size;
808
809 return 0;
810}
811
812early_param("reservelow", parse_reservelow);
813
814static void __init trim_low_memory_range(void)
815{
816 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
817}
818
819/*
820 * Dump out kernel offset information on panic.
821 */
822static int
823dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
824{
825 if (kaslr_enabled()) {
826 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
827 kaslr_offset(),
828 __START_KERNEL,
829 __START_KERNEL_map,
830 MODULES_VADDR-1);
831 } else {
832 pr_emerg("Kernel Offset: disabled\n");
833 }
834
835 return 0;
836}
837
838/*
839 * Determine if we were loaded by an EFI loader. If so, then we have also been
840 * passed the efi memmap, systab, etc., so we should use these data structures
841 * for initialization. Note, the efi init code path is determined by the
842 * global efi_enabled. This allows the same kernel image to be used on existing
843 * systems (with a traditional BIOS) as well as on EFI systems.
844 */
845/*
846 * setup_arch - architecture-specific boot-time initializations
847 *
848 * Note: On x86_64, fixmaps are ready for use even before this is called.
849 */
850
851void __init setup_arch(char **cmdline_p)
852{
853 memblock_reserve(__pa_symbol(_text),
854 (unsigned long)__bss_stop - (unsigned long)_text);
855
856 early_reserve_initrd();
857
858 /*
859 * At this point everything still needed from the boot loader
860 * or BIOS or kernel text should be early reserved or marked not
861 * RAM in e820. All other memory is free game.
862 */
863
864#ifdef CONFIG_X86_32
865 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
866
867 /*
868 * copy kernel address range established so far and switch
869 * to the proper swapper page table
870 */
871 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
872 initial_page_table + KERNEL_PGD_BOUNDARY,
873 KERNEL_PGD_PTRS);
874
875 load_cr3(swapper_pg_dir);
876 /*
877 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
878 * a cr3 based tlb flush, so the following __flush_tlb_all()
879 * will not flush anything because the cpu quirk which clears
880 * X86_FEATURE_PGE has not been invoked yet. Though due to the
881 * load_cr3() above the TLB has been flushed already. The
882 * quirk is invoked before subsequent calls to __flush_tlb_all()
883 * so proper operation is guaranteed.
884 */
885 __flush_tlb_all();
886#else
887 printk(KERN_INFO "Command line: %s\n", boot_command_line);
888#endif
889
890 /*
891 * If we have OLPC OFW, we might end up relocating the fixmap due to
892 * reserve_top(), so do this before touching the ioremap area.
893 */
894 olpc_ofw_detect();
895
896 early_trap_init();
897 early_cpu_init();
898 early_ioremap_init();
899
900 setup_olpc_ofw_pgd();
901
902 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
903 screen_info = boot_params.screen_info;
904 edid_info = boot_params.edid_info;
905#ifdef CONFIG_X86_32
906 apm_info.bios = boot_params.apm_bios_info;
907 ist_info = boot_params.ist_info;
908#endif
909 saved_video_mode = boot_params.hdr.vid_mode;
910 bootloader_type = boot_params.hdr.type_of_loader;
911 if ((bootloader_type >> 4) == 0xe) {
912 bootloader_type &= 0xf;
913 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
914 }
915 bootloader_version = bootloader_type & 0xf;
916 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
917
918#ifdef CONFIG_BLK_DEV_RAM
919 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
920 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
921 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
922#endif
923#ifdef CONFIG_EFI
924 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
925 EFI32_LOADER_SIGNATURE, 4)) {
926 set_bit(EFI_BOOT, &efi.flags);
927 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
928 EFI64_LOADER_SIGNATURE, 4)) {
929 set_bit(EFI_BOOT, &efi.flags);
930 set_bit(EFI_64BIT, &efi.flags);
931 }
932
933 if (efi_enabled(EFI_BOOT))
934 efi_memblock_x86_reserve_range();
935#endif
936
937 x86_init.oem.arch_setup();
938
939 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
940 setup_memory_map();
941 parse_setup_data();
942
943 copy_edd();
944
945 if (!boot_params.hdr.root_flags)
946 root_mountflags &= ~MS_RDONLY;
947 init_mm.start_code = (unsigned long) _text;
948 init_mm.end_code = (unsigned long) _etext;
949 init_mm.end_data = (unsigned long) _edata;
950 init_mm.brk = _brk_end;
951
952 mpx_mm_init(&init_mm);
953
954 code_resource.start = __pa_symbol(_text);
955 code_resource.end = __pa_symbol(_etext)-1;
956 data_resource.start = __pa_symbol(_etext);
957 data_resource.end = __pa_symbol(_edata)-1;
958 bss_resource.start = __pa_symbol(__bss_start);
959 bss_resource.end = __pa_symbol(__bss_stop)-1;
960
961#ifdef CONFIG_CMDLINE_BOOL
962#ifdef CONFIG_CMDLINE_OVERRIDE
963 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
964#else
965 if (builtin_cmdline[0]) {
966 /* append boot loader cmdline to builtin */
967 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
968 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
969 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
970 }
971#endif
972#endif
973
974 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
975 *cmdline_p = command_line;
976
977 /*
978 * x86_configure_nx() is called before parse_early_param() to detect
979 * whether hardware doesn't support NX (so that the early EHCI debug
980 * console setup can safely call set_fixmap()). It may then be called
981 * again from within noexec_setup() during parsing early parameters
982 * to honor the respective command line option.
983 */
984 x86_configure_nx();
985
986 parse_early_param();
987
988#ifdef CONFIG_MEMORY_HOTPLUG
989 /*
990 * Memory used by the kernel cannot be hot-removed because Linux
991 * cannot migrate the kernel pages. When memory hotplug is
992 * enabled, we should prevent memblock from allocating memory
993 * for the kernel.
994 *
995 * ACPI SRAT records all hotpluggable memory ranges. But before
996 * SRAT is parsed, we don't know about it.
997 *
998 * The kernel image is loaded into memory at very early time. We
999 * cannot prevent this anyway. So on NUMA system, we set any
1000 * node the kernel resides in as un-hotpluggable.
1001 *
1002 * Since on modern servers, one node could have double-digit
1003 * gigabytes memory, we can assume the memory around the kernel
1004 * image is also un-hotpluggable. So before SRAT is parsed, just
1005 * allocate memory near the kernel image to try the best to keep
1006 * the kernel away from hotpluggable memory.
1007 */
1008 if (movable_node_is_enabled())
1009 memblock_set_bottom_up(true);
1010#endif
1011
1012 x86_report_nx();
1013
1014 /* after early param, so could get panic from serial */
1015 memblock_x86_reserve_range_setup_data();
1016
1017 if (acpi_mps_check()) {
1018#ifdef CONFIG_X86_LOCAL_APIC
1019 disable_apic = 1;
1020#endif
1021 setup_clear_cpu_cap(X86_FEATURE_APIC);
1022 }
1023
1024#ifdef CONFIG_PCI
1025 if (pci_early_dump_regs)
1026 early_dump_pci_devices();
1027#endif
1028
1029 /* update the e820_saved too */
1030 e820_reserve_setup_data();
1031 finish_e820_parsing();
1032
1033 if (efi_enabled(EFI_BOOT))
1034 efi_init();
1035
1036 dmi_scan_machine();
1037 dmi_memdev_walk();
1038 dmi_set_dump_stack_arch_desc();
1039
1040 /*
1041 * VMware detection requires dmi to be available, so this
1042 * needs to be done after dmi_scan_machine, for the BP.
1043 */
1044 init_hypervisor_platform();
1045
1046 x86_init.resources.probe_roms();
1047
1048 /* after parse_early_param, so could debug it */
1049 insert_resource(&iomem_resource, &code_resource);
1050 insert_resource(&iomem_resource, &data_resource);
1051 insert_resource(&iomem_resource, &bss_resource);
1052
1053 e820_add_kernel_range();
1054 trim_bios_range();
1055#ifdef CONFIG_X86_32
1056 if (ppro_with_ram_bug()) {
1057 e820_update_range(0x70000000ULL, 0x40000ULL, E820_RAM,
1058 E820_RESERVED);
1059 sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map);
1060 printk(KERN_INFO "fixed physical RAM map:\n");
1061 e820_print_map("bad_ppro");
1062 }
1063#else
1064 early_gart_iommu_check();
1065#endif
1066
1067 /*
1068 * partially used pages are not usable - thus
1069 * we are rounding upwards:
1070 */
1071 max_pfn = e820_end_of_ram_pfn();
1072
1073 /* update e820 for memory not covered by WB MTRRs */
1074 mtrr_bp_init();
1075 if (mtrr_trim_uncached_memory(max_pfn))
1076 max_pfn = e820_end_of_ram_pfn();
1077
1078 max_possible_pfn = max_pfn;
1079
1080 /*
1081 * Define random base addresses for memory sections after max_pfn is
1082 * defined and before each memory section base is used.
1083 */
1084 kernel_randomize_memory();
1085
1086#ifdef CONFIG_X86_32
1087 /* max_low_pfn get updated here */
1088 find_low_pfn_range();
1089#else
1090 check_x2apic();
1091
1092 /* How many end-of-memory variables you have, grandma! */
1093 /* need this before calling reserve_initrd */
1094 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1095 max_low_pfn = e820_end_of_low_ram_pfn();
1096 else
1097 max_low_pfn = max_pfn;
1098
1099 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1100#endif
1101
1102 /*
1103 * Find and reserve possible boot-time SMP configuration:
1104 */
1105 find_smp_config();
1106
1107 reserve_ibft_region();
1108
1109 early_alloc_pgt_buf();
1110
1111 /*
1112 * Need to conclude brk, before memblock_x86_fill()
1113 * it could use memblock_find_in_range, could overlap with
1114 * brk area.
1115 */
1116 reserve_brk();
1117
1118 cleanup_highmap();
1119
1120 memblock_set_current_limit(ISA_END_ADDRESS);
1121 memblock_x86_fill();
1122
1123 reserve_bios_regions();
1124
1125 if (efi_enabled(EFI_MEMMAP)) {
1126 efi_fake_memmap();
1127 efi_find_mirror();
1128 efi_esrt_init();
1129
1130 /*
1131 * The EFI specification says that boot service code won't be
1132 * called after ExitBootServices(). This is, in fact, a lie.
1133 */
1134 efi_reserve_boot_services();
1135 }
1136
1137 /* preallocate 4k for mptable mpc */
1138 early_reserve_e820_mpc_new();
1139
1140#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1141 setup_bios_corruption_check();
1142#endif
1143
1144#ifdef CONFIG_X86_32
1145 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1146 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1147#endif
1148
1149 reserve_real_mode();
1150
1151 trim_platform_memory_ranges();
1152 trim_low_memory_range();
1153
1154 init_mem_mapping();
1155
1156 early_trap_pf_init();
1157
1158 /*
1159 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1160 * with the current CR4 value. This may not be necessary, but
1161 * auditing all the early-boot CR4 manipulation would be needed to
1162 * rule it out.
1163 */
1164 mmu_cr4_features = __read_cr4();
1165
1166 memblock_set_current_limit(get_max_mapped());
1167
1168 /*
1169 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1170 */
1171
1172#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1173 if (init_ohci1394_dma_early)
1174 init_ohci1394_dma_on_all_controllers();
1175#endif
1176 /* Allocate bigger log buffer */
1177 setup_log_buf(1);
1178
1179 reserve_initrd();
1180
1181 acpi_table_upgrade();
1182
1183 vsmp_init();
1184
1185 io_delay_init();
1186
1187 /*
1188 * Parse the ACPI tables for possible boot-time SMP configuration.
1189 */
1190 acpi_boot_table_init();
1191
1192 early_acpi_boot_init();
1193
1194 initmem_init();
1195 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1196
1197 /*
1198 * Reserve memory for crash kernel after SRAT is parsed so that it
1199 * won't consume hotpluggable memory.
1200 */
1201 reserve_crashkernel();
1202
1203 memblock_find_dma_reserve();
1204
1205#ifdef CONFIG_KVM_GUEST
1206 kvmclock_init();
1207#endif
1208
1209 x86_init.paging.pagetable_init();
1210
1211 kasan_init();
1212
1213#ifdef CONFIG_X86_32
1214 /* sync back kernel address range */
1215 clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
1216 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
1217 KERNEL_PGD_PTRS);
1218
1219 /*
1220 * sync back low identity map too. It is used for example
1221 * in the 32-bit EFI stub.
1222 */
1223 clone_pgd_range(initial_page_table,
1224 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
1225 min(KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
1226#endif
1227
1228 tboot_probe();
1229
1230 map_vsyscall();
1231
1232 generic_apic_probe();
1233
1234 early_quirks();
1235
1236 /*
1237 * Read APIC and some other early information from ACPI tables.
1238 */
1239 acpi_boot_init();
1240 sfi_init();
1241 x86_dtb_init();
1242
1243 /*
1244 * get boot-time SMP configuration:
1245 */
1246 get_smp_config();
1247
1248 /*
1249 * Systems w/o ACPI and mptables might not have it mapped the local
1250 * APIC yet, but prefill_possible_map() might need to access it.
1251 */
1252 init_apic_mappings();
1253
1254 prefill_possible_map();
1255
1256 init_cpu_to_node();
1257
1258 io_apic_init_mappings();
1259
1260 kvm_guest_init();
1261
1262 e820_reserve_resources();
1263 e820_mark_nosave_regions(max_low_pfn);
1264
1265 x86_init.resources.reserve_resources();
1266
1267 e820_setup_gap();
1268
1269#ifdef CONFIG_VT
1270#if defined(CONFIG_VGA_CONSOLE)
1271 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1272 conswitchp = &vga_con;
1273#elif defined(CONFIG_DUMMY_CONSOLE)
1274 conswitchp = &dummy_con;
1275#endif
1276#endif
1277 x86_init.oem.banner();
1278
1279 x86_init.timers.wallclock_init();
1280
1281 mcheck_init();
1282
1283 arch_init_ideal_nops();
1284
1285 register_refined_jiffies(CLOCK_TICK_RATE);
1286
1287#ifdef CONFIG_EFI
1288 if (efi_enabled(EFI_BOOT))
1289 efi_apply_memmap_quirks();
1290#endif
1291}
1292
1293#ifdef CONFIG_X86_32
1294
1295static struct resource video_ram_resource = {
1296 .name = "Video RAM area",
1297 .start = 0xa0000,
1298 .end = 0xbffff,
1299 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1300};
1301
1302void __init i386_reserve_resources(void)
1303{
1304 request_resource(&iomem_resource, &video_ram_resource);
1305 reserve_standard_io_resources();
1306}
1307
1308#endif /* CONFIG_X86_32 */
1309
1310static struct notifier_block kernel_offset_notifier = {
1311 .notifier_call = dump_kernel_offset
1312};
1313
1314static int __init register_kernel_offset_dumper(void)
1315{
1316 atomic_notifier_chain_register(&panic_notifier_list,
1317 &kernel_offset_notifier);
1318 return 0;
1319}
1320__initcall(register_kernel_offset_dumper);
1321
1322void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1323{
1324 if (!boot_cpu_has(X86_FEATURE_OSPKE))
1325 return;
1326
1327 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
1328}