Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *
   7 *  Memory region support
   8 *	David Parsons <orc@pell.chi.il.us>, July-August 1999
   9 *
  10 *  Added E820 sanitization routine (removes overlapping memory regions);
  11 *  Brian Moyle <bmoyle@mvista.com>, February 2001
  12 *
  13 * Moved CPU detection code to cpu/${cpu}.c
  14 *    Patrick Mochel <mochel@osdl.org>, March 2002
  15 *
  16 *  Provisions for empty E820 memory regions (reported by certain BIOSes).
  17 *  Alex Achenbach <xela@slit.de>, December 2002.
  18 *
  19 */
  20
  21/*
  22 * This file handles the architecture-dependent parts of initialization
  23 */
  24
  25#include <linux/sched.h>
  26#include <linux/mm.h>
  27#include <linux/mmzone.h>
  28#include <linux/screen_info.h>
  29#include <linux/ioport.h>
  30#include <linux/acpi.h>
  31#include <linux/sfi.h>
  32#include <linux/apm_bios.h>
  33#include <linux/initrd.h>
  34#include <linux/memblock.h>
  35#include <linux/seq_file.h>
  36#include <linux/console.h>
  37#include <linux/root_dev.h>
  38#include <linux/highmem.h>
  39#include <linux/export.h>
  40#include <linux/efi.h>
  41#include <linux/init.h>
  42#include <linux/edd.h>
  43#include <linux/iscsi_ibft.h>
  44#include <linux/nodemask.h>
  45#include <linux/kexec.h>
  46#include <linux/dmi.h>
  47#include <linux/pfn.h>
  48#include <linux/pci.h>
  49#include <asm/pci-direct.h>
  50#include <linux/init_ohci1394_dma.h>
  51#include <linux/kvm_para.h>
  52#include <linux/dma-contiguous.h>
  53#include <xen/xen.h>
  54#include <uapi/linux/mount.h>
  55
  56#include <linux/errno.h>
  57#include <linux/kernel.h>
  58#include <linux/stddef.h>
  59#include <linux/unistd.h>
  60#include <linux/ptrace.h>
  61#include <linux/user.h>
  62#include <linux/delay.h>
  63
  64#include <linux/kallsyms.h>
  65#include <linux/cpufreq.h>
  66#include <linux/dma-mapping.h>
  67#include <linux/ctype.h>
  68#include <linux/uaccess.h>
  69
  70#include <linux/percpu.h>
  71#include <linux/crash_dump.h>
  72#include <linux/tboot.h>
  73#include <linux/jiffies.h>
  74#include <linux/mem_encrypt.h>
  75#include <linux/sizes.h>
  76
  77#include <linux/usb/xhci-dbgp.h>
  78#include <video/edid.h>
  79
  80#include <asm/mtrr.h>
 
 
 
  81#include <asm/apic.h>
  82#include <asm/realmode.h>
  83#include <asm/e820/api.h>
  84#include <asm/mpspec.h>
  85#include <asm/setup.h>
  86#include <asm/efi.h>
  87#include <asm/timer.h>
  88#include <asm/i8259.h>
  89#include <asm/sections.h>
  90#include <asm/io_apic.h>
  91#include <asm/ist.h>
  92#include <asm/setup_arch.h>
  93#include <asm/bios_ebda.h>
  94#include <asm/cacheflush.h>
  95#include <asm/processor.h>
  96#include <asm/bugs.h>
  97#include <asm/kasan.h>
  98
  99#include <asm/vsyscall.h>
 100#include <asm/cpu.h>
 101#include <asm/desc.h>
 102#include <asm/dma.h>
 103#include <asm/iommu.h>
 104#include <asm/gart.h>
 105#include <asm/mmu_context.h>
 106#include <asm/proto.h>
 107
 108#include <asm/paravirt.h>
 109#include <asm/hypervisor.h>
 110#include <asm/olpc_ofw.h>
 111
 112#include <asm/percpu.h>
 113#include <asm/topology.h>
 114#include <asm/apicdef.h>
 115#include <asm/amd_nb.h>
 116#include <asm/mce.h>
 117#include <asm/alternative.h>
 
 
 
 118#include <asm/prom.h>
 119#include <asm/microcode.h>
 120#include <asm/kaslr.h>
 121#include <asm/unwind.h>
 
 
 122
 123/*
 124 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
 125 * max_pfn_mapped:     highest direct mapped pfn over 4GB
 126 *
 127 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
 128 * represented by pfn_mapped
 129 */
 130unsigned long max_low_pfn_mapped;
 131unsigned long max_pfn_mapped;
 132
 133#ifdef CONFIG_DMI
 134RESERVE_BRK(dmi_alloc, 65536);
 135#endif
 136
 137
 138static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
 139unsigned long _brk_end = (unsigned long)__brk_base;
 
 
 
 
 
 140
 141struct boot_params boot_params;
 142
 143/*
 144 * Machine setup..
 
 
 145 */
 
 
 
 
 
 
 
 
 146static struct resource data_resource = {
 147	.name	= "Kernel data",
 148	.start	= 0,
 149	.end	= 0,
 150	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 151};
 152
 153static struct resource code_resource = {
 154	.name	= "Kernel code",
 155	.start	= 0,
 156	.end	= 0,
 157	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 158};
 159
 160static struct resource bss_resource = {
 161	.name	= "Kernel bss",
 162	.start	= 0,
 163	.end	= 0,
 164	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 165};
 166
 167
 168#ifdef CONFIG_X86_32
 169/* cpu data as detected by the assembly code in head_32.S */
 170struct cpuinfo_x86 new_cpu_data;
 171
 172/* common cpu data for all cpus */
 173struct cpuinfo_x86 boot_cpu_data __read_mostly;
 174EXPORT_SYMBOL(boot_cpu_data);
 175
 176unsigned int def_to_bigsmp;
 177
 178/* for MCA, but anyone else can use it if they want */
 179unsigned int machine_id;
 180unsigned int machine_submodel_id;
 181unsigned int BIOS_revision;
 182
 183struct apm_info apm_info;
 184EXPORT_SYMBOL(apm_info);
 185
 186#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 187	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 188struct ist_info ist_info;
 189EXPORT_SYMBOL(ist_info);
 190#else
 191struct ist_info ist_info;
 192#endif
 193
 194#else
 195struct cpuinfo_x86 boot_cpu_data __read_mostly;
 196EXPORT_SYMBOL(boot_cpu_data);
 197#endif
 198
 199
 200#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 201__visible unsigned long mmu_cr4_features __ro_after_init;
 202#else
 203__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 204#endif
 205
 206/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 207int bootloader_type, bootloader_version;
 208
 209/*
 210 * Setup options
 211 */
 212struct screen_info screen_info;
 213EXPORT_SYMBOL(screen_info);
 214struct edid_info edid_info;
 215EXPORT_SYMBOL_GPL(edid_info);
 216
 217extern int root_mountflags;
 218
 219unsigned long saved_video_mode;
 220
 221#define RAMDISK_IMAGE_START_MASK	0x07FF
 222#define RAMDISK_PROMPT_FLAG		0x8000
 223#define RAMDISK_LOAD_FLAG		0x4000
 224
 225static char __initdata command_line[COMMAND_LINE_SIZE];
 226#ifdef CONFIG_CMDLINE_BOOL
 227static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 228#endif
 229
 230#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 231struct edd edd;
 232#ifdef CONFIG_EDD_MODULE
 233EXPORT_SYMBOL(edd);
 234#endif
 235/**
 236 * copy_edd() - Copy the BIOS EDD information
 237 *              from boot_params into a safe place.
 238 *
 239 */
 240static inline void __init copy_edd(void)
 241{
 242     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 243	    sizeof(edd.mbr_signature));
 244     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 245     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 246     edd.edd_info_nr = boot_params.eddbuf_entries;
 247}
 248#else
 249static inline void __init copy_edd(void)
 250{
 251}
 252#endif
 253
 254void * __init extend_brk(size_t size, size_t align)
 255{
 256	size_t mask = align - 1;
 257	void *ret;
 258
 259	BUG_ON(_brk_start == 0);
 260	BUG_ON(align & mask);
 261
 262	_brk_end = (_brk_end + mask) & ~mask;
 263	BUG_ON((char *)(_brk_end + size) > __brk_limit);
 264
 265	ret = (void *)_brk_end;
 266	_brk_end += size;
 267
 268	memset(ret, 0, size);
 269
 270	return ret;
 271}
 272
 273#ifdef CONFIG_X86_32
 274static void __init cleanup_highmap(void)
 275{
 276}
 277#endif
 278
 279static void __init reserve_brk(void)
 280{
 281	if (_brk_end > _brk_start)
 282		memblock_reserve(__pa_symbol(_brk_start),
 283				 _brk_end - _brk_start);
 284
 285	/* Mark brk area as locked down and no longer taking any
 286	   new allocations */
 287	_brk_start = 0;
 288}
 289
 290u64 relocated_ramdisk;
 291
 292#ifdef CONFIG_BLK_DEV_INITRD
 293
 294static u64 __init get_ramdisk_image(void)
 295{
 296	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 297
 298	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 299
 
 
 
 300	return ramdisk_image;
 301}
 302static u64 __init get_ramdisk_size(void)
 303{
 304	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 305
 306	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 307
 
 
 
 308	return ramdisk_size;
 309}
 310
 311static void __init relocate_initrd(void)
 312{
 313	/* Assume only end is not page aligned */
 314	u64 ramdisk_image = get_ramdisk_image();
 315	u64 ramdisk_size  = get_ramdisk_size();
 316	u64 area_size     = PAGE_ALIGN(ramdisk_size);
 317
 318	/* We need to move the initrd down into directly mapped mem */
 319	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
 320						   area_size, PAGE_SIZE);
 321
 322	if (!relocated_ramdisk)
 323		panic("Cannot find place for new RAMDISK of size %lld\n",
 324		      ramdisk_size);
 325
 326	/* Note: this includes all the mem currently occupied by
 327	   the initrd, we rely on that fact to keep the data intact. */
 328	memblock_reserve(relocated_ramdisk, area_size);
 329	initrd_start = relocated_ramdisk + PAGE_OFFSET;
 330	initrd_end   = initrd_start + ramdisk_size;
 331	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 332	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 333
 334	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 335
 336	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 337		" [mem %#010llx-%#010llx]\n",
 338		ramdisk_image, ramdisk_image + ramdisk_size - 1,
 339		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 340}
 341
 342static void __init early_reserve_initrd(void)
 343{
 344	/* Assume only end is not page aligned */
 345	u64 ramdisk_image = get_ramdisk_image();
 346	u64 ramdisk_size  = get_ramdisk_size();
 347	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 348
 349	if (!boot_params.hdr.type_of_loader ||
 350	    !ramdisk_image || !ramdisk_size)
 351		return;		/* No initrd provided by bootloader */
 352
 353	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 354}
 355static void __init reserve_initrd(void)
 356{
 357	/* Assume only end is not page aligned */
 358	u64 ramdisk_image = get_ramdisk_image();
 359	u64 ramdisk_size  = get_ramdisk_size();
 360	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 361	u64 mapped_size;
 362
 363	if (!boot_params.hdr.type_of_loader ||
 364	    !ramdisk_image || !ramdisk_size)
 365		return;		/* No initrd provided by bootloader */
 366
 367	initrd_start = 0;
 368
 369	mapped_size = memblock_mem_size(max_pfn_mapped);
 370	if (ramdisk_size >= (mapped_size>>1))
 371		panic("initrd too large to handle, "
 372		       "disabling initrd (%lld needed, %lld available)\n",
 373		       ramdisk_size, mapped_size>>1);
 374
 375	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 376			ramdisk_end - 1);
 377
 378	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 379				PFN_DOWN(ramdisk_end))) {
 380		/* All are mapped, easy case */
 381		initrd_start = ramdisk_image + PAGE_OFFSET;
 382		initrd_end = initrd_start + ramdisk_size;
 383		return;
 384	}
 385
 386	relocate_initrd();
 387
 388	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 389}
 390
 391#else
 392static void __init early_reserve_initrd(void)
 393{
 394}
 395static void __init reserve_initrd(void)
 396{
 397}
 398#endif /* CONFIG_BLK_DEV_INITRD */
 399
 400static void __init parse_setup_data(void)
 401{
 402	struct setup_data *data;
 403	u64 pa_data, pa_next;
 404
 405	pa_data = boot_params.hdr.setup_data;
 406	while (pa_data) {
 407		u32 data_len, data_type;
 408
 409		data = early_memremap(pa_data, sizeof(*data));
 410		data_len = data->len + sizeof(struct setup_data);
 411		data_type = data->type;
 412		pa_next = data->next;
 413		early_memunmap(data, sizeof(*data));
 414
 415		switch (data_type) {
 416		case SETUP_E820_EXT:
 417			e820__memory_setup_extended(pa_data, data_len);
 418			break;
 419		case SETUP_DTB:
 420			add_dtb(pa_data);
 421			break;
 422		case SETUP_EFI:
 423			parse_efi_setup(pa_data, data_len);
 424			break;
 425		default:
 426			break;
 427		}
 428		pa_data = pa_next;
 429	}
 430}
 431
 432static void __init memblock_x86_reserve_range_setup_data(void)
 433{
 434	struct setup_data *data;
 435	u64 pa_data;
 436
 437	pa_data = boot_params.hdr.setup_data;
 438	while (pa_data) {
 439		data = early_memremap(pa_data, sizeof(*data));
 440		memblock_reserve(pa_data, sizeof(*data) + data->len);
 
 
 
 
 
 
 441		pa_data = data->next;
 442		early_memunmap(data, sizeof(*data));
 443	}
 444}
 445
 446/*
 447 * --------- Crashkernel reservation ------------------------------
 448 */
 449
 450#ifdef CONFIG_KEXEC_CORE
 451
 452/* 16M alignment for crash kernel regions */
 453#define CRASH_ALIGN		SZ_16M
 454
 455/*
 456 * Keep the crash kernel below this limit.
 457 *
 458 * On 32 bits earlier kernels would limit the kernel to the low 512 MiB
 459 * due to mapping restrictions.
 460 *
 461 * On 64bit, kdump kernel need be restricted to be under 64TB, which is
 462 * the upper limit of system RAM in 4-level paing mode. Since the kdump
 463 * jumping could be from 5-level to 4-level, the jumping will fail if
 464 * kernel is put above 64TB, and there's no way to detect the paging mode
 465 * of the kernel which will be loaded for dumping during the 1st kernel
 466 * bootup.
 467 */
 468#ifdef CONFIG_X86_32
 469# define CRASH_ADDR_LOW_MAX	SZ_512M
 470# define CRASH_ADDR_HIGH_MAX	SZ_512M
 471#else
 472# define CRASH_ADDR_LOW_MAX	SZ_4G
 473# define CRASH_ADDR_HIGH_MAX	SZ_64T
 474#endif
 475
 476static int __init reserve_crashkernel_low(void)
 477{
 478#ifdef CONFIG_X86_64
 479	unsigned long long base, low_base = 0, low_size = 0;
 480	unsigned long total_low_mem;
 481	int ret;
 482
 483	total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
 484
 485	/* crashkernel=Y,low */
 486	ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
 487	if (ret) {
 488		/*
 489		 * two parts from kernel/dma/swiotlb.c:
 490		 * -swiotlb size: user-specified with swiotlb= or default.
 491		 *
 492		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 493		 * to 8M for other buffers that may need to stay low too. Also
 494		 * make sure we allocate enough extra low memory so that we
 495		 * don't run out of DMA buffers for 32-bit devices.
 496		 */
 497		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 498	} else {
 499		/* passed with crashkernel=0,low ? */
 500		if (!low_size)
 501			return 0;
 502	}
 503
 504	low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
 505	if (!low_base) {
 506		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 507		       (unsigned long)(low_size >> 20));
 508		return -ENOMEM;
 509	}
 510
 511	ret = memblock_reserve(low_base, low_size);
 512	if (ret) {
 513		pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
 514		return ret;
 515	}
 516
 517	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
 518		(unsigned long)(low_size >> 20),
 519		(unsigned long)(low_base >> 20),
 520		(unsigned long)(total_low_mem >> 20));
 521
 522	crashk_low_res.start = low_base;
 523	crashk_low_res.end   = low_base + low_size - 1;
 524	insert_resource(&iomem_resource, &crashk_low_res);
 525#endif
 526	return 0;
 527}
 528
 529static void __init reserve_crashkernel(void)
 530{
 531	unsigned long long crash_size, crash_base, total_mem;
 532	bool high = false;
 533	int ret;
 534
 535	total_mem = memblock_phys_mem_size();
 536
 537	/* crashkernel=XM */
 538	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 539	if (ret != 0 || crash_size <= 0) {
 540		/* crashkernel=X,high */
 541		ret = parse_crashkernel_high(boot_command_line, total_mem,
 542					     &crash_size, &crash_base);
 543		if (ret != 0 || crash_size <= 0)
 544			return;
 545		high = true;
 546	}
 547
 548	if (xen_pv_domain()) {
 549		pr_info("Ignoring crashkernel for a Xen PV domain\n");
 550		return;
 551	}
 552
 553	/* 0 means: find the address automatically */
 554	if (!crash_base) {
 555		/*
 556		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
 557		 * crashkernel=x,high reserves memory over 4G, also allocates
 558		 * 256M extra low memory for DMA buffers and swiotlb.
 559		 * But the extra memory is not required for all machines.
 560		 * So try low memory first and fall back to high memory
 561		 * unless "crashkernel=size[KMG],high" is specified.
 562		 */
 563		if (!high)
 564			crash_base = memblock_find_in_range(CRASH_ALIGN,
 565						CRASH_ADDR_LOW_MAX,
 566						crash_size, CRASH_ALIGN);
 567		if (!crash_base)
 568			crash_base = memblock_find_in_range(CRASH_ALIGN,
 569						CRASH_ADDR_HIGH_MAX,
 570						crash_size, CRASH_ALIGN);
 571		if (!crash_base) {
 572			pr_info("crashkernel reservation failed - No suitable area found.\n");
 573			return;
 574		}
 575	} else {
 576		unsigned long long start;
 577
 578		start = memblock_find_in_range(crash_base,
 579					       crash_base + crash_size,
 580					       crash_size, 1 << 20);
 581		if (start != crash_base) {
 582			pr_info("crashkernel reservation failed - memory is in use.\n");
 583			return;
 584		}
 585	}
 586	ret = memblock_reserve(crash_base, crash_size);
 587	if (ret) {
 588		pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
 589		return;
 590	}
 591
 592	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 593		memblock_free(crash_base, crash_size);
 594		return;
 595	}
 596
 597	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 598		(unsigned long)(crash_size >> 20),
 599		(unsigned long)(crash_base >> 20),
 600		(unsigned long)(total_mem >> 20));
 601
 602	crashk_res.start = crash_base;
 603	crashk_res.end   = crash_base + crash_size - 1;
 604	insert_resource(&iomem_resource, &crashk_res);
 605}
 606#else
 607static void __init reserve_crashkernel(void)
 608{
 609}
 610#endif
 611
 612static struct resource standard_io_resources[] = {
 613	{ .name = "dma1", .start = 0x00, .end = 0x1f,
 614		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 615	{ .name = "pic1", .start = 0x20, .end = 0x21,
 616		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 617	{ .name = "timer0", .start = 0x40, .end = 0x43,
 618		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 619	{ .name = "timer1", .start = 0x50, .end = 0x53,
 620		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 621	{ .name = "keyboard", .start = 0x60, .end = 0x60,
 622		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 623	{ .name = "keyboard", .start = 0x64, .end = 0x64,
 624		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 625	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
 626		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 627	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
 628		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 629	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
 630		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 631	{ .name = "fpu", .start = 0xf0, .end = 0xff,
 632		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
 633};
 634
 635void __init reserve_standard_io_resources(void)
 636{
 637	int i;
 638
 639	/* request I/O space for devices used on all i[345]86 PCs */
 640	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 641		request_resource(&ioport_resource, &standard_io_resources[i]);
 642
 643}
 644
 645static __init void reserve_ibft_region(void)
 646{
 647	unsigned long addr, size = 0;
 648
 649	addr = find_ibft_region(&size);
 650
 651	if (size)
 652		memblock_reserve(addr, size);
 653}
 654
 655static bool __init snb_gfx_workaround_needed(void)
 656{
 657#ifdef CONFIG_PCI
 658	int i;
 659	u16 vendor, devid;
 660	static const __initconst u16 snb_ids[] = {
 661		0x0102,
 662		0x0112,
 663		0x0122,
 664		0x0106,
 665		0x0116,
 666		0x0126,
 667		0x010a,
 668	};
 669
 670	/* Assume no if something weird is going on with PCI */
 671	if (!early_pci_allowed())
 672		return false;
 673
 674	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 675	if (vendor != 0x8086)
 676		return false;
 677
 678	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 679	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 680		if (devid == snb_ids[i])
 681			return true;
 682#endif
 683
 684	return false;
 685}
 686
 687/*
 688 * Sandy Bridge graphics has trouble with certain ranges, exclude
 689 * them from allocation.
 690 */
 691static void __init trim_snb_memory(void)
 692{
 693	static const __initconst unsigned long bad_pages[] = {
 694		0x20050000,
 695		0x20110000,
 696		0x20130000,
 697		0x20138000,
 698		0x40004000,
 699	};
 700	int i;
 701
 702	if (!snb_gfx_workaround_needed())
 703		return;
 704
 705	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 706
 707	/*
 708	 * Reserve all memory below the 1 MB mark that has not
 709	 * already been reserved.
 710	 */
 711	memblock_reserve(0, 1<<20);
 712	
 713	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 714		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 715			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 716			       bad_pages[i]);
 717	}
 718}
 719
 720/*
 721 * Here we put platform-specific memory range workarounds, i.e.
 722 * memory known to be corrupt or otherwise in need to be reserved on
 723 * specific platforms.
 724 *
 725 * If this gets used more widely it could use a real dispatch mechanism.
 726 */
 727static void __init trim_platform_memory_ranges(void)
 728{
 729	trim_snb_memory();
 730}
 731
 732static void __init trim_bios_range(void)
 733{
 734	/*
 735	 * A special case is the first 4Kb of memory;
 736	 * This is a BIOS owned area, not kernel ram, but generally
 737	 * not listed as such in the E820 table.
 738	 *
 739	 * This typically reserves additional memory (64KiB by default)
 740	 * since some BIOSes are known to corrupt low memory.  See the
 741	 * Kconfig help text for X86_RESERVE_LOW.
 742	 */
 743	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 744
 745	/*
 746	 * special case: Some BIOSen report the PC BIOS
 747	 * area (640->1Mb) as ram even though it is not.
 748	 * take them out.
 749	 */
 750	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 751
 752	e820__update_table(e820_table);
 753}
 754
 755/* called before trim_bios_range() to spare extra sanitize */
 756static void __init e820_add_kernel_range(void)
 757{
 758	u64 start = __pa_symbol(_text);
 759	u64 size = __pa_symbol(_end) - start;
 760
 761	/*
 762	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 763	 * attempt to fix it by adding the range. We may have a confused BIOS,
 764	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 765	 * exclude kernel range. If we really are running on top non-RAM,
 766	 * we will crash later anyways.
 767	 */
 768	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 769		return;
 770
 771	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 772	e820__range_remove(start, size, E820_TYPE_RAM, 0);
 773	e820__range_add(start, size, E820_TYPE_RAM);
 774}
 775
 776static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
 777
 778static int __init parse_reservelow(char *p)
 779{
 780	unsigned long long size;
 781
 782	if (!p)
 783		return -EINVAL;
 784
 785	size = memparse(p, &p);
 786
 787	if (size < 4096)
 788		size = 4096;
 789
 790	if (size > 640*1024)
 791		size = 640*1024;
 792
 793	reserve_low = size;
 794
 795	return 0;
 796}
 797
 798early_param("reservelow", parse_reservelow);
 799
 800static void __init trim_low_memory_range(void)
 801{
 802	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
 803}
 804	
 805/*
 806 * Dump out kernel offset information on panic.
 807 */
 808static int
 809dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 810{
 811	if (kaslr_enabled()) {
 812		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 813			 kaslr_offset(),
 814			 __START_KERNEL,
 815			 __START_KERNEL_map,
 816			 MODULES_VADDR-1);
 817	} else {
 818		pr_emerg("Kernel Offset: disabled\n");
 819	}
 820
 821	return 0;
 822}
 823
 824/*
 825 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 826 * passed the efi memmap, systab, etc., so we should use these data structures
 827 * for initialization.  Note, the efi init code path is determined by the
 828 * global efi_enabled. This allows the same kernel image to be used on existing
 829 * systems (with a traditional BIOS) as well as on EFI systems.
 830 */
 831/*
 832 * setup_arch - architecture-specific boot-time initializations
 833 *
 834 * Note: On x86_64, fixmaps are ready for use even before this is called.
 835 */
 836
 837void __init setup_arch(char **cmdline_p)
 838{
 839	/*
 840	 * Reserve the memory occupied by the kernel between _text and
 841	 * __end_of_kernel_reserve symbols. Any kernel sections after the
 842	 * __end_of_kernel_reserve symbol must be explicitly reserved with a
 843	 * separate memblock_reserve() or they will be discarded.
 844	 */
 845	memblock_reserve(__pa_symbol(_text),
 846			 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
 847
 848	/*
 849	 * Make sure page 0 is always reserved because on systems with
 850	 * L1TF its contents can be leaked to user processes.
 851	 */
 852	memblock_reserve(0, PAGE_SIZE);
 853
 854	early_reserve_initrd();
 855
 856	/*
 857	 * At this point everything still needed from the boot loader
 858	 * or BIOS or kernel text should be early reserved or marked not
 859	 * RAM in e820. All other memory is free game.
 860	 */
 861
 862#ifdef CONFIG_X86_32
 863	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 864
 865	/*
 866	 * copy kernel address range established so far and switch
 867	 * to the proper swapper page table
 868	 */
 869	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 870			initial_page_table + KERNEL_PGD_BOUNDARY,
 871			KERNEL_PGD_PTRS);
 872
 873	load_cr3(swapper_pg_dir);
 874	/*
 875	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 876	 * a cr3 based tlb flush, so the following __flush_tlb_all()
 877	 * will not flush anything because the cpu quirk which clears
 878	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
 879	 * load_cr3() above the TLB has been flushed already. The
 880	 * quirk is invoked before subsequent calls to __flush_tlb_all()
 881	 * so proper operation is guaranteed.
 882	 */
 883	__flush_tlb_all();
 884#else
 885	printk(KERN_INFO "Command line: %s\n", boot_command_line);
 886	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 887#endif
 888
 889	/*
 890	 * If we have OLPC OFW, we might end up relocating the fixmap due to
 891	 * reserve_top(), so do this before touching the ioremap area.
 892	 */
 893	olpc_ofw_detect();
 894
 895	idt_setup_early_traps();
 896	early_cpu_init();
 897	arch_init_ideal_nops();
 898	jump_label_init();
 899	early_ioremap_init();
 900
 901	setup_olpc_ofw_pgd();
 902
 903	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 904	screen_info = boot_params.screen_info;
 905	edid_info = boot_params.edid_info;
 906#ifdef CONFIG_X86_32
 907	apm_info.bios = boot_params.apm_bios_info;
 908	ist_info = boot_params.ist_info;
 909#endif
 910	saved_video_mode = boot_params.hdr.vid_mode;
 911	bootloader_type = boot_params.hdr.type_of_loader;
 912	if ((bootloader_type >> 4) == 0xe) {
 913		bootloader_type &= 0xf;
 914		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 915	}
 916	bootloader_version  = bootloader_type & 0xf;
 917	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 918
 919#ifdef CONFIG_BLK_DEV_RAM
 920	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 921	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
 922	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
 923#endif
 924#ifdef CONFIG_EFI
 925	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 926		     EFI32_LOADER_SIGNATURE, 4)) {
 927		set_bit(EFI_BOOT, &efi.flags);
 928	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 929		     EFI64_LOADER_SIGNATURE, 4)) {
 930		set_bit(EFI_BOOT, &efi.flags);
 931		set_bit(EFI_64BIT, &efi.flags);
 932	}
 933#endif
 934
 935	x86_init.oem.arch_setup();
 936
 937	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 938	e820__memory_setup();
 939	parse_setup_data();
 940
 941	copy_edd();
 942
 943	if (!boot_params.hdr.root_flags)
 944		root_mountflags &= ~MS_RDONLY;
 945	init_mm.start_code = (unsigned long) _text;
 946	init_mm.end_code = (unsigned long) _etext;
 947	init_mm.end_data = (unsigned long) _edata;
 948	init_mm.brk = _brk_end;
 949
 950	mpx_mm_init(&init_mm);
 951
 952	code_resource.start = __pa_symbol(_text);
 953	code_resource.end = __pa_symbol(_etext)-1;
 954	data_resource.start = __pa_symbol(_etext);
 
 
 955	data_resource.end = __pa_symbol(_edata)-1;
 956	bss_resource.start = __pa_symbol(__bss_start);
 957	bss_resource.end = __pa_symbol(__bss_stop)-1;
 958
 959#ifdef CONFIG_CMDLINE_BOOL
 960#ifdef CONFIG_CMDLINE_OVERRIDE
 961	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 962#else
 963	if (builtin_cmdline[0]) {
 964		/* append boot loader cmdline to builtin */
 965		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 966		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 967		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 968	}
 969#endif
 970#endif
 971
 972	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 973	*cmdline_p = command_line;
 974
 975	/*
 976	 * x86_configure_nx() is called before parse_early_param() to detect
 977	 * whether hardware doesn't support NX (so that the early EHCI debug
 978	 * console setup can safely call set_fixmap()). It may then be called
 979	 * again from within noexec_setup() during parsing early parameters
 980	 * to honor the respective command line option.
 981	 */
 982	x86_configure_nx();
 983
 984	parse_early_param();
 985
 986	if (efi_enabled(EFI_BOOT))
 987		efi_memblock_x86_reserve_range();
 988#ifdef CONFIG_MEMORY_HOTPLUG
 989	/*
 990	 * Memory used by the kernel cannot be hot-removed because Linux
 991	 * cannot migrate the kernel pages. When memory hotplug is
 992	 * enabled, we should prevent memblock from allocating memory
 993	 * for the kernel.
 994	 *
 995	 * ACPI SRAT records all hotpluggable memory ranges. But before
 996	 * SRAT is parsed, we don't know about it.
 997	 *
 998	 * The kernel image is loaded into memory at very early time. We
 999	 * cannot prevent this anyway. So on NUMA system, we set any
1000	 * node the kernel resides in as un-hotpluggable.
1001	 *
1002	 * Since on modern servers, one node could have double-digit
1003	 * gigabytes memory, we can assume the memory around the kernel
1004	 * image is also un-hotpluggable. So before SRAT is parsed, just
1005	 * allocate memory near the kernel image to try the best to keep
1006	 * the kernel away from hotpluggable memory.
1007	 */
1008	if (movable_node_is_enabled())
1009		memblock_set_bottom_up(true);
1010#endif
1011
1012	x86_report_nx();
1013
1014	/* after early param, so could get panic from serial */
1015	memblock_x86_reserve_range_setup_data();
1016
1017	if (acpi_mps_check()) {
1018#ifdef CONFIG_X86_LOCAL_APIC
1019		disable_apic = 1;
1020#endif
1021		setup_clear_cpu_cap(X86_FEATURE_APIC);
1022	}
1023
1024	e820__reserve_setup_data();
1025	e820__finish_early_params();
1026
1027	if (efi_enabled(EFI_BOOT))
1028		efi_init();
1029
1030	dmi_setup();
1031
1032	/*
1033	 * VMware detection requires dmi to be available, so this
1034	 * needs to be done after dmi_setup(), for the boot CPU.
1035	 */
1036	init_hypervisor_platform();
1037
1038	tsc_early_init();
1039	x86_init.resources.probe_roms();
1040
1041	/* after parse_early_param, so could debug it */
1042	insert_resource(&iomem_resource, &code_resource);
 
1043	insert_resource(&iomem_resource, &data_resource);
1044	insert_resource(&iomem_resource, &bss_resource);
1045
1046	e820_add_kernel_range();
1047	trim_bios_range();
1048#ifdef CONFIG_X86_32
1049	if (ppro_with_ram_bug()) {
1050		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1051				  E820_TYPE_RESERVED);
1052		e820__update_table(e820_table);
1053		printk(KERN_INFO "fixed physical RAM map:\n");
1054		e820__print_table("bad_ppro");
1055	}
1056#else
1057	early_gart_iommu_check();
1058#endif
1059
1060	/*
1061	 * partially used pages are not usable - thus
1062	 * we are rounding upwards:
1063	 */
1064	max_pfn = e820__end_of_ram_pfn();
1065
1066	/* update e820 for memory not covered by WB MTRRs */
1067	mtrr_bp_init();
1068	if (mtrr_trim_uncached_memory(max_pfn))
1069		max_pfn = e820__end_of_ram_pfn();
1070
1071	max_possible_pfn = max_pfn;
1072
1073	/*
1074	 * This call is required when the CPU does not support PAT. If
1075	 * mtrr_bp_init() invoked it already via pat_init() the call has no
1076	 * effect.
1077	 */
1078	init_cache_modes();
1079
1080	/*
1081	 * Define random base addresses for memory sections after max_pfn is
1082	 * defined and before each memory section base is used.
1083	 */
1084	kernel_randomize_memory();
1085
1086#ifdef CONFIG_X86_32
1087	/* max_low_pfn get updated here */
1088	find_low_pfn_range();
1089#else
1090	check_x2apic();
1091
1092	/* How many end-of-memory variables you have, grandma! */
1093	/* need this before calling reserve_initrd */
1094	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1095		max_low_pfn = e820__end_of_low_ram_pfn();
1096	else
1097		max_low_pfn = max_pfn;
1098
1099	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1100#endif
1101
1102	/*
1103	 * Find and reserve possible boot-time SMP configuration:
1104	 */
1105	find_smp_config();
1106
1107	reserve_ibft_region();
1108
1109	early_alloc_pgt_buf();
1110
1111	/*
1112	 * Need to conclude brk, before e820__memblock_setup()
1113	 *  it could use memblock_find_in_range, could overlap with
1114	 *  brk area.
1115	 */
1116	reserve_brk();
1117
1118	cleanup_highmap();
1119
1120	memblock_set_current_limit(ISA_END_ADDRESS);
1121	e820__memblock_setup();
1122
1123	reserve_bios_regions();
1124
1125	if (efi_enabled(EFI_MEMMAP)) {
1126		efi_fake_memmap();
1127		efi_find_mirror();
1128		efi_esrt_init();
1129
1130		/*
1131		 * The EFI specification says that boot service code won't be
1132		 * called after ExitBootServices(). This is, in fact, a lie.
1133		 */
1134		efi_reserve_boot_services();
1135	}
1136
1137	/* preallocate 4k for mptable mpc */
1138	e820__memblock_alloc_reserved_mpc_new();
1139
1140#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1141	setup_bios_corruption_check();
1142#endif
1143
1144#ifdef CONFIG_X86_32
1145	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1146			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1147#endif
1148
1149	reserve_real_mode();
1150
1151	trim_platform_memory_ranges();
1152	trim_low_memory_range();
1153
1154	init_mem_mapping();
1155
1156	idt_setup_early_pf();
1157
1158	/*
1159	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1160	 * with the current CR4 value.  This may not be necessary, but
1161	 * auditing all the early-boot CR4 manipulation would be needed to
1162	 * rule it out.
1163	 *
1164	 * Mask off features that don't work outside long mode (just
1165	 * PCIDE for now).
1166	 */
1167	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1168
1169	memblock_set_current_limit(get_max_mapped());
1170
1171	/*
1172	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1173	 */
1174
1175#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1176	if (init_ohci1394_dma_early)
1177		init_ohci1394_dma_on_all_controllers();
1178#endif
1179	/* Allocate bigger log buffer */
1180	setup_log_buf(1);
1181
1182	if (efi_enabled(EFI_BOOT)) {
1183		switch (boot_params.secure_boot) {
1184		case efi_secureboot_mode_disabled:
1185			pr_info("Secure boot disabled\n");
1186			break;
1187		case efi_secureboot_mode_enabled:
1188			pr_info("Secure boot enabled\n");
1189			break;
1190		default:
1191			pr_info("Secure boot could not be determined\n");
1192			break;
1193		}
1194	}
1195
1196	reserve_initrd();
1197
1198	acpi_table_upgrade();
1199
1200	vsmp_init();
1201
1202	io_delay_init();
1203
1204	early_platform_quirks();
1205
1206	/*
1207	 * Parse the ACPI tables for possible boot-time SMP configuration.
1208	 */
1209	acpi_boot_table_init();
1210
1211	early_acpi_boot_init();
1212
1213	initmem_init();
1214	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1215
 
 
 
1216	/*
1217	 * Reserve memory for crash kernel after SRAT is parsed so that it
1218	 * won't consume hotpluggable memory.
1219	 */
1220	reserve_crashkernel();
1221
1222	memblock_find_dma_reserve();
1223
1224	if (!early_xdbc_setup_hardware())
1225		early_xdbc_register_console();
1226
1227	x86_init.paging.pagetable_init();
1228
1229	kasan_init();
1230
1231	/*
1232	 * Sync back kernel address range.
1233	 *
1234	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1235	 * this call?
1236	 */
1237	sync_initial_page_table();
1238
1239	tboot_probe();
1240
1241	map_vsyscall();
1242
1243	generic_apic_probe();
1244
1245	early_quirks();
1246
1247	/*
1248	 * Read APIC and some other early information from ACPI tables.
1249	 */
1250	acpi_boot_init();
1251	sfi_init();
1252	x86_dtb_init();
1253
1254	/*
1255	 * get boot-time SMP configuration:
1256	 */
1257	get_smp_config();
1258
1259	/*
1260	 * Systems w/o ACPI and mptables might not have it mapped the local
1261	 * APIC yet, but prefill_possible_map() might need to access it.
1262	 */
1263	init_apic_mappings();
1264
1265	prefill_possible_map();
1266
1267	init_cpu_to_node();
1268
1269	io_apic_init_mappings();
1270
1271	x86_init.hyper.guest_late_init();
1272
1273	e820__reserve_resources();
1274	e820__register_nosave_regions(max_pfn);
1275
1276	x86_init.resources.reserve_resources();
1277
1278	e820__setup_pci_gap();
1279
1280#ifdef CONFIG_VT
1281#if defined(CONFIG_VGA_CONSOLE)
1282	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1283		conswitchp = &vga_con;
1284#elif defined(CONFIG_DUMMY_CONSOLE)
1285	conswitchp = &dummy_con;
1286#endif
1287#endif
1288	x86_init.oem.banner();
1289
1290	x86_init.timers.wallclock_init();
1291
1292	mcheck_init();
1293
1294	register_refined_jiffies(CLOCK_TICK_RATE);
1295
1296#ifdef CONFIG_EFI
1297	if (efi_enabled(EFI_BOOT))
1298		efi_apply_memmap_quirks();
1299#endif
1300
1301	unwind_init();
1302}
1303
1304#ifdef CONFIG_X86_32
1305
1306static struct resource video_ram_resource = {
1307	.name	= "Video RAM area",
1308	.start	= 0xa0000,
1309	.end	= 0xbffff,
1310	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1311};
1312
1313void __init i386_reserve_resources(void)
1314{
1315	request_resource(&iomem_resource, &video_ram_resource);
1316	reserve_standard_io_resources();
1317}
1318
1319#endif /* CONFIG_X86_32 */
1320
1321static struct notifier_block kernel_offset_notifier = {
1322	.notifier_call = dump_kernel_offset
1323};
1324
1325static int __init register_kernel_offset_dumper(void)
1326{
1327	atomic_notifier_chain_register(&panic_notifier_list,
1328					&kernel_offset_notifier);
1329	return 0;
1330}
1331__initcall(register_kernel_offset_dumper);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *
   5 * This file contains the setup_arch() code, which handles the architecture-dependent
   6 * parts of early kernel initialization.
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   8#include <linux/console.h>
   9#include <linux/crash_dump.h>
  10#include <linux/dmi.h>
 
  11#include <linux/efi.h>
  12#include <linux/init_ohci1394_dma.h>
  13#include <linux/initrd.h>
  14#include <linux/iscsi_ibft.h>
  15#include <linux/memblock.h>
 
 
 
  16#include <linux/pci.h>
  17#include <linux/root_dev.h>
  18#include <linux/sfi.h>
  19#include <linux/hugetlb.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  20#include <linux/tboot.h>
 
 
 
 
  21#include <linux/usb/xhci-dbgp.h>
 
  22
  23#include <uapi/linux/mount.h>
  24
  25#include <xen/xen.h>
  26
  27#include <asm/apic.h>
  28#include <asm/numa.h>
 
 
 
 
 
 
 
 
 
 
  29#include <asm/bios_ebda.h>
 
 
  30#include <asm/bugs.h>
 
 
 
  31#include <asm/cpu.h>
  32#include <asm/efi.h>
 
 
  33#include <asm/gart.h>
 
 
 
 
  34#include <asm/hypervisor.h>
  35#include <asm/io_apic.h>
  36#include <asm/kasan.h>
  37#include <asm/kaslr.h>
 
 
 
  38#include <asm/mce.h>
  39#include <asm/mtrr.h>
  40#include <asm/realmode.h>
  41#include <asm/olpc_ofw.h>
  42#include <asm/pci-direct.h>
  43#include <asm/prom.h>
  44#include <asm/proto.h>
 
  45#include <asm/unwind.h>
  46#include <asm/vsyscall.h>
  47#include <linux/vmalloc.h>
  48
  49/*
  50 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
  51 * max_pfn_mapped:     highest directly mapped pfn > 4 GB
  52 *
  53 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
  54 * represented by pfn_mapped[].
  55 */
  56unsigned long max_low_pfn_mapped;
  57unsigned long max_pfn_mapped;
  58
  59#ifdef CONFIG_DMI
  60RESERVE_BRK(dmi_alloc, 65536);
  61#endif
  62
  63
  64/*
  65 * Range of the BSS area. The size of the BSS area is determined
  66 * at link time, with RESERVE_BRK*() facility reserving additional
  67 * chunks.
  68 */
  69unsigned long _brk_start = (unsigned long)__brk_base;
  70unsigned long _brk_end   = (unsigned long)__brk_base;
  71
  72struct boot_params boot_params;
  73
  74/*
  75 * These are the four main kernel memory regions, we put them into
  76 * the resource tree so that kdump tools and other debugging tools
  77 * recover it:
  78 */
  79
  80static struct resource rodata_resource = {
  81	.name	= "Kernel rodata",
  82	.start	= 0,
  83	.end	= 0,
  84	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  85};
  86
  87static struct resource data_resource = {
  88	.name	= "Kernel data",
  89	.start	= 0,
  90	.end	= 0,
  91	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  92};
  93
  94static struct resource code_resource = {
  95	.name	= "Kernel code",
  96	.start	= 0,
  97	.end	= 0,
  98	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  99};
 100
 101static struct resource bss_resource = {
 102	.name	= "Kernel bss",
 103	.start	= 0,
 104	.end	= 0,
 105	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 106};
 107
 108
 109#ifdef CONFIG_X86_32
 110/* CPU data as detected by the assembly code in head_32.S */
 111struct cpuinfo_x86 new_cpu_data;
 112
 113/* Common CPU data for all CPUs */
 114struct cpuinfo_x86 boot_cpu_data __read_mostly;
 115EXPORT_SYMBOL(boot_cpu_data);
 116
 117unsigned int def_to_bigsmp;
 118
 119/* For MCA, but anyone else can use it if they want */
 120unsigned int machine_id;
 121unsigned int machine_submodel_id;
 122unsigned int BIOS_revision;
 123
 124struct apm_info apm_info;
 125EXPORT_SYMBOL(apm_info);
 126
 127#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 128	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 129struct ist_info ist_info;
 130EXPORT_SYMBOL(ist_info);
 131#else
 132struct ist_info ist_info;
 133#endif
 134
 135#else
 136struct cpuinfo_x86 boot_cpu_data __read_mostly;
 137EXPORT_SYMBOL(boot_cpu_data);
 138#endif
 139
 140
 141#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 142__visible unsigned long mmu_cr4_features __ro_after_init;
 143#else
 144__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 145#endif
 146
 147/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 148int bootloader_type, bootloader_version;
 149
 150/*
 151 * Setup options
 152 */
 153struct screen_info screen_info;
 154EXPORT_SYMBOL(screen_info);
 155struct edid_info edid_info;
 156EXPORT_SYMBOL_GPL(edid_info);
 157
 158extern int root_mountflags;
 159
 160unsigned long saved_video_mode;
 161
 162#define RAMDISK_IMAGE_START_MASK	0x07FF
 163#define RAMDISK_PROMPT_FLAG		0x8000
 164#define RAMDISK_LOAD_FLAG		0x4000
 165
 166static char __initdata command_line[COMMAND_LINE_SIZE];
 167#ifdef CONFIG_CMDLINE_BOOL
 168static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 169#endif
 170
 171#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 172struct edd edd;
 173#ifdef CONFIG_EDD_MODULE
 174EXPORT_SYMBOL(edd);
 175#endif
 176/**
 177 * copy_edd() - Copy the BIOS EDD information
 178 *              from boot_params into a safe place.
 179 *
 180 */
 181static inline void __init copy_edd(void)
 182{
 183     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 184	    sizeof(edd.mbr_signature));
 185     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 186     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 187     edd.edd_info_nr = boot_params.eddbuf_entries;
 188}
 189#else
 190static inline void __init copy_edd(void)
 191{
 192}
 193#endif
 194
 195void * __init extend_brk(size_t size, size_t align)
 196{
 197	size_t mask = align - 1;
 198	void *ret;
 199
 200	BUG_ON(_brk_start == 0);
 201	BUG_ON(align & mask);
 202
 203	_brk_end = (_brk_end + mask) & ~mask;
 204	BUG_ON((char *)(_brk_end + size) > __brk_limit);
 205
 206	ret = (void *)_brk_end;
 207	_brk_end += size;
 208
 209	memset(ret, 0, size);
 210
 211	return ret;
 212}
 213
 214#ifdef CONFIG_X86_32
 215static void __init cleanup_highmap(void)
 216{
 217}
 218#endif
 219
 220static void __init reserve_brk(void)
 221{
 222	if (_brk_end > _brk_start)
 223		memblock_reserve(__pa_symbol(_brk_start),
 224				 _brk_end - _brk_start);
 225
 226	/* Mark brk area as locked down and no longer taking any
 227	   new allocations */
 228	_brk_start = 0;
 229}
 230
 231u64 relocated_ramdisk;
 232
 233#ifdef CONFIG_BLK_DEV_INITRD
 234
 235static u64 __init get_ramdisk_image(void)
 236{
 237	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 238
 239	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 240
 241	if (ramdisk_image == 0)
 242		ramdisk_image = phys_initrd_start;
 243
 244	return ramdisk_image;
 245}
 246static u64 __init get_ramdisk_size(void)
 247{
 248	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 249
 250	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 251
 252	if (ramdisk_size == 0)
 253		ramdisk_size = phys_initrd_size;
 254
 255	return ramdisk_size;
 256}
 257
 258static void __init relocate_initrd(void)
 259{
 260	/* Assume only end is not page aligned */
 261	u64 ramdisk_image = get_ramdisk_image();
 262	u64 ramdisk_size  = get_ramdisk_size();
 263	u64 area_size     = PAGE_ALIGN(ramdisk_size);
 264
 265	/* We need to move the initrd down into directly mapped mem */
 266	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
 267						   area_size, PAGE_SIZE);
 268
 269	if (!relocated_ramdisk)
 270		panic("Cannot find place for new RAMDISK of size %lld\n",
 271		      ramdisk_size);
 272
 273	/* Note: this includes all the mem currently occupied by
 274	   the initrd, we rely on that fact to keep the data intact. */
 275	memblock_reserve(relocated_ramdisk, area_size);
 276	initrd_start = relocated_ramdisk + PAGE_OFFSET;
 277	initrd_end   = initrd_start + ramdisk_size;
 278	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 279	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 280
 281	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 282
 283	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 284		" [mem %#010llx-%#010llx]\n",
 285		ramdisk_image, ramdisk_image + ramdisk_size - 1,
 286		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 287}
 288
 289static void __init early_reserve_initrd(void)
 290{
 291	/* Assume only end is not page aligned */
 292	u64 ramdisk_image = get_ramdisk_image();
 293	u64 ramdisk_size  = get_ramdisk_size();
 294	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 295
 296	if (!boot_params.hdr.type_of_loader ||
 297	    !ramdisk_image || !ramdisk_size)
 298		return;		/* No initrd provided by bootloader */
 299
 300	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 301}
 302static void __init reserve_initrd(void)
 303{
 304	/* Assume only end is not page aligned */
 305	u64 ramdisk_image = get_ramdisk_image();
 306	u64 ramdisk_size  = get_ramdisk_size();
 307	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 308	u64 mapped_size;
 309
 310	if (!boot_params.hdr.type_of_loader ||
 311	    !ramdisk_image || !ramdisk_size)
 312		return;		/* No initrd provided by bootloader */
 313
 314	initrd_start = 0;
 315
 316	mapped_size = memblock_mem_size(max_pfn_mapped);
 317	if (ramdisk_size >= (mapped_size>>1))
 318		panic("initrd too large to handle, "
 319		       "disabling initrd (%lld needed, %lld available)\n",
 320		       ramdisk_size, mapped_size>>1);
 321
 322	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 323			ramdisk_end - 1);
 324
 325	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 326				PFN_DOWN(ramdisk_end))) {
 327		/* All are mapped, easy case */
 328		initrd_start = ramdisk_image + PAGE_OFFSET;
 329		initrd_end = initrd_start + ramdisk_size;
 330		return;
 331	}
 332
 333	relocate_initrd();
 334
 335	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 336}
 337
 338#else
 339static void __init early_reserve_initrd(void)
 340{
 341}
 342static void __init reserve_initrd(void)
 343{
 344}
 345#endif /* CONFIG_BLK_DEV_INITRD */
 346
 347static void __init parse_setup_data(void)
 348{
 349	struct setup_data *data;
 350	u64 pa_data, pa_next;
 351
 352	pa_data = boot_params.hdr.setup_data;
 353	while (pa_data) {
 354		u32 data_len, data_type;
 355
 356		data = early_memremap(pa_data, sizeof(*data));
 357		data_len = data->len + sizeof(struct setup_data);
 358		data_type = data->type;
 359		pa_next = data->next;
 360		early_memunmap(data, sizeof(*data));
 361
 362		switch (data_type) {
 363		case SETUP_E820_EXT:
 364			e820__memory_setup_extended(pa_data, data_len);
 365			break;
 366		case SETUP_DTB:
 367			add_dtb(pa_data);
 368			break;
 369		case SETUP_EFI:
 370			parse_efi_setup(pa_data, data_len);
 371			break;
 372		default:
 373			break;
 374		}
 375		pa_data = pa_next;
 376	}
 377}
 378
 379static void __init memblock_x86_reserve_range_setup_data(void)
 380{
 381	struct setup_data *data;
 382	u64 pa_data;
 383
 384	pa_data = boot_params.hdr.setup_data;
 385	while (pa_data) {
 386		data = early_memremap(pa_data, sizeof(*data));
 387		memblock_reserve(pa_data, sizeof(*data) + data->len);
 388
 389		if (data->type == SETUP_INDIRECT &&
 390		    ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
 391			memblock_reserve(((struct setup_indirect *)data->data)->addr,
 392					 ((struct setup_indirect *)data->data)->len);
 393
 394		pa_data = data->next;
 395		early_memunmap(data, sizeof(*data));
 396	}
 397}
 398
 399/*
 400 * --------- Crashkernel reservation ------------------------------
 401 */
 402
 403#ifdef CONFIG_KEXEC_CORE
 404
 405/* 16M alignment for crash kernel regions */
 406#define CRASH_ALIGN		SZ_16M
 407
 408/*
 409 * Keep the crash kernel below this limit.
 410 *
 411 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
 412 * due to mapping restrictions.
 413 *
 414 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
 415 * the upper limit of system RAM in 4-level paging mode. Since the kdump
 416 * jump could be from 5-level paging to 4-level paging, the jump will fail if
 417 * the kernel is put above 64 TB, and during the 1st kernel bootup there's
 418 * no good way to detect the paging mode of the target kernel which will be
 419 * loaded for dumping.
 420 */
 421#ifdef CONFIG_X86_32
 422# define CRASH_ADDR_LOW_MAX	SZ_512M
 423# define CRASH_ADDR_HIGH_MAX	SZ_512M
 424#else
 425# define CRASH_ADDR_LOW_MAX	SZ_4G
 426# define CRASH_ADDR_HIGH_MAX	SZ_64T
 427#endif
 428
 429static int __init reserve_crashkernel_low(void)
 430{
 431#ifdef CONFIG_X86_64
 432	unsigned long long base, low_base = 0, low_size = 0;
 433	unsigned long total_low_mem;
 434	int ret;
 435
 436	total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
 437
 438	/* crashkernel=Y,low */
 439	ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
 440	if (ret) {
 441		/*
 442		 * two parts from kernel/dma/swiotlb.c:
 443		 * -swiotlb size: user-specified with swiotlb= or default.
 444		 *
 445		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 446		 * to 8M for other buffers that may need to stay low too. Also
 447		 * make sure we allocate enough extra low memory so that we
 448		 * don't run out of DMA buffers for 32-bit devices.
 449		 */
 450		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 451	} else {
 452		/* passed with crashkernel=0,low ? */
 453		if (!low_size)
 454			return 0;
 455	}
 456
 457	low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
 458	if (!low_base) {
 459		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 460		       (unsigned long)(low_size >> 20));
 461		return -ENOMEM;
 462	}
 463
 464	ret = memblock_reserve(low_base, low_size);
 465	if (ret) {
 466		pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
 467		return ret;
 468	}
 469
 470	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
 471		(unsigned long)(low_size >> 20),
 472		(unsigned long)(low_base >> 20),
 473		(unsigned long)(total_low_mem >> 20));
 474
 475	crashk_low_res.start = low_base;
 476	crashk_low_res.end   = low_base + low_size - 1;
 477	insert_resource(&iomem_resource, &crashk_low_res);
 478#endif
 479	return 0;
 480}
 481
 482static void __init reserve_crashkernel(void)
 483{
 484	unsigned long long crash_size, crash_base, total_mem;
 485	bool high = false;
 486	int ret;
 487
 488	total_mem = memblock_phys_mem_size();
 489
 490	/* crashkernel=XM */
 491	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 492	if (ret != 0 || crash_size <= 0) {
 493		/* crashkernel=X,high */
 494		ret = parse_crashkernel_high(boot_command_line, total_mem,
 495					     &crash_size, &crash_base);
 496		if (ret != 0 || crash_size <= 0)
 497			return;
 498		high = true;
 499	}
 500
 501	if (xen_pv_domain()) {
 502		pr_info("Ignoring crashkernel for a Xen PV domain\n");
 503		return;
 504	}
 505
 506	/* 0 means: find the address automatically */
 507	if (!crash_base) {
 508		/*
 509		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
 510		 * crashkernel=x,high reserves memory over 4G, also allocates
 511		 * 256M extra low memory for DMA buffers and swiotlb.
 512		 * But the extra memory is not required for all machines.
 513		 * So try low memory first and fall back to high memory
 514		 * unless "crashkernel=size[KMG],high" is specified.
 515		 */
 516		if (!high)
 517			crash_base = memblock_find_in_range(CRASH_ALIGN,
 518						CRASH_ADDR_LOW_MAX,
 519						crash_size, CRASH_ALIGN);
 520		if (!crash_base)
 521			crash_base = memblock_find_in_range(CRASH_ALIGN,
 522						CRASH_ADDR_HIGH_MAX,
 523						crash_size, CRASH_ALIGN);
 524		if (!crash_base) {
 525			pr_info("crashkernel reservation failed - No suitable area found.\n");
 526			return;
 527		}
 528	} else {
 529		unsigned long long start;
 530
 531		start = memblock_find_in_range(crash_base,
 532					       crash_base + crash_size,
 533					       crash_size, 1 << 20);
 534		if (start != crash_base) {
 535			pr_info("crashkernel reservation failed - memory is in use.\n");
 536			return;
 537		}
 538	}
 539	ret = memblock_reserve(crash_base, crash_size);
 540	if (ret) {
 541		pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
 542		return;
 543	}
 544
 545	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 546		memblock_free(crash_base, crash_size);
 547		return;
 548	}
 549
 550	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 551		(unsigned long)(crash_size >> 20),
 552		(unsigned long)(crash_base >> 20),
 553		(unsigned long)(total_mem >> 20));
 554
 555	crashk_res.start = crash_base;
 556	crashk_res.end   = crash_base + crash_size - 1;
 557	insert_resource(&iomem_resource, &crashk_res);
 558}
 559#else
 560static void __init reserve_crashkernel(void)
 561{
 562}
 563#endif
 564
 565static struct resource standard_io_resources[] = {
 566	{ .name = "dma1", .start = 0x00, .end = 0x1f,
 567		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 568	{ .name = "pic1", .start = 0x20, .end = 0x21,
 569		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 570	{ .name = "timer0", .start = 0x40, .end = 0x43,
 571		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 572	{ .name = "timer1", .start = 0x50, .end = 0x53,
 573		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 574	{ .name = "keyboard", .start = 0x60, .end = 0x60,
 575		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 576	{ .name = "keyboard", .start = 0x64, .end = 0x64,
 577		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 578	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
 579		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 580	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
 581		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 582	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
 583		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 584	{ .name = "fpu", .start = 0xf0, .end = 0xff,
 585		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
 586};
 587
 588void __init reserve_standard_io_resources(void)
 589{
 590	int i;
 591
 592	/* request I/O space for devices used on all i[345]86 PCs */
 593	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 594		request_resource(&ioport_resource, &standard_io_resources[i]);
 595
 596}
 597
 598static __init void reserve_ibft_region(void)
 599{
 600	unsigned long addr, size = 0;
 601
 602	addr = find_ibft_region(&size);
 603
 604	if (size)
 605		memblock_reserve(addr, size);
 606}
 607
 608static bool __init snb_gfx_workaround_needed(void)
 609{
 610#ifdef CONFIG_PCI
 611	int i;
 612	u16 vendor, devid;
 613	static const __initconst u16 snb_ids[] = {
 614		0x0102,
 615		0x0112,
 616		0x0122,
 617		0x0106,
 618		0x0116,
 619		0x0126,
 620		0x010a,
 621	};
 622
 623	/* Assume no if something weird is going on with PCI */
 624	if (!early_pci_allowed())
 625		return false;
 626
 627	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 628	if (vendor != 0x8086)
 629		return false;
 630
 631	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 632	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 633		if (devid == snb_ids[i])
 634			return true;
 635#endif
 636
 637	return false;
 638}
 639
 640/*
 641 * Sandy Bridge graphics has trouble with certain ranges, exclude
 642 * them from allocation.
 643 */
 644static void __init trim_snb_memory(void)
 645{
 646	static const __initconst unsigned long bad_pages[] = {
 647		0x20050000,
 648		0x20110000,
 649		0x20130000,
 650		0x20138000,
 651		0x40004000,
 652	};
 653	int i;
 654
 655	if (!snb_gfx_workaround_needed())
 656		return;
 657
 658	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 659
 660	/*
 661	 * Reserve all memory below the 1 MB mark that has not
 662	 * already been reserved.
 663	 */
 664	memblock_reserve(0, 1<<20);
 665	
 666	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 667		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 668			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 669			       bad_pages[i]);
 670	}
 671}
 672
 673/*
 674 * Here we put platform-specific memory range workarounds, i.e.
 675 * memory known to be corrupt or otherwise in need to be reserved on
 676 * specific platforms.
 677 *
 678 * If this gets used more widely it could use a real dispatch mechanism.
 679 */
 680static void __init trim_platform_memory_ranges(void)
 681{
 682	trim_snb_memory();
 683}
 684
 685static void __init trim_bios_range(void)
 686{
 687	/*
 688	 * A special case is the first 4Kb of memory;
 689	 * This is a BIOS owned area, not kernel ram, but generally
 690	 * not listed as such in the E820 table.
 691	 *
 692	 * This typically reserves additional memory (64KiB by default)
 693	 * since some BIOSes are known to corrupt low memory.  See the
 694	 * Kconfig help text for X86_RESERVE_LOW.
 695	 */
 696	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 697
 698	/*
 699	 * special case: Some BIOSes report the PC BIOS
 700	 * area (640Kb -> 1Mb) as RAM even though it is not.
 701	 * take them out.
 702	 */
 703	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 704
 705	e820__update_table(e820_table);
 706}
 707
 708/* called before trim_bios_range() to spare extra sanitize */
 709static void __init e820_add_kernel_range(void)
 710{
 711	u64 start = __pa_symbol(_text);
 712	u64 size = __pa_symbol(_end) - start;
 713
 714	/*
 715	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 716	 * attempt to fix it by adding the range. We may have a confused BIOS,
 717	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 718	 * exclude kernel range. If we really are running on top non-RAM,
 719	 * we will crash later anyways.
 720	 */
 721	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 722		return;
 723
 724	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 725	e820__range_remove(start, size, E820_TYPE_RAM, 0);
 726	e820__range_add(start, size, E820_TYPE_RAM);
 727}
 728
 729static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
 730
 731static int __init parse_reservelow(char *p)
 732{
 733	unsigned long long size;
 734
 735	if (!p)
 736		return -EINVAL;
 737
 738	size = memparse(p, &p);
 739
 740	if (size < 4096)
 741		size = 4096;
 742
 743	if (size > 640*1024)
 744		size = 640*1024;
 745
 746	reserve_low = size;
 747
 748	return 0;
 749}
 750
 751early_param("reservelow", parse_reservelow);
 752
 753static void __init trim_low_memory_range(void)
 754{
 755	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
 756}
 757	
 758/*
 759 * Dump out kernel offset information on panic.
 760 */
 761static int
 762dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 763{
 764	if (kaslr_enabled()) {
 765		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 766			 kaslr_offset(),
 767			 __START_KERNEL,
 768			 __START_KERNEL_map,
 769			 MODULES_VADDR-1);
 770	} else {
 771		pr_emerg("Kernel Offset: disabled\n");
 772	}
 773
 774	return 0;
 775}
 776
 777/*
 778 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 779 * passed the efi memmap, systab, etc., so we should use these data structures
 780 * for initialization.  Note, the efi init code path is determined by the
 781 * global efi_enabled. This allows the same kernel image to be used on existing
 782 * systems (with a traditional BIOS) as well as on EFI systems.
 783 */
 784/*
 785 * setup_arch - architecture-specific boot-time initializations
 786 *
 787 * Note: On x86_64, fixmaps are ready for use even before this is called.
 788 */
 789
 790void __init setup_arch(char **cmdline_p)
 791{
 792	/*
 793	 * Reserve the memory occupied by the kernel between _text and
 794	 * __end_of_kernel_reserve symbols. Any kernel sections after the
 795	 * __end_of_kernel_reserve symbol must be explicitly reserved with a
 796	 * separate memblock_reserve() or they will be discarded.
 797	 */
 798	memblock_reserve(__pa_symbol(_text),
 799			 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
 800
 801	/*
 802	 * Make sure page 0 is always reserved because on systems with
 803	 * L1TF its contents can be leaked to user processes.
 804	 */
 805	memblock_reserve(0, PAGE_SIZE);
 806
 807	early_reserve_initrd();
 808
 809	/*
 810	 * At this point everything still needed from the boot loader
 811	 * or BIOS or kernel text should be early reserved or marked not
 812	 * RAM in e820. All other memory is free game.
 813	 */
 814
 815#ifdef CONFIG_X86_32
 816	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 817
 818	/*
 819	 * copy kernel address range established so far and switch
 820	 * to the proper swapper page table
 821	 */
 822	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 823			initial_page_table + KERNEL_PGD_BOUNDARY,
 824			KERNEL_PGD_PTRS);
 825
 826	load_cr3(swapper_pg_dir);
 827	/*
 828	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 829	 * a cr3 based tlb flush, so the following __flush_tlb_all()
 830	 * will not flush anything because the CPU quirk which clears
 831	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
 832	 * load_cr3() above the TLB has been flushed already. The
 833	 * quirk is invoked before subsequent calls to __flush_tlb_all()
 834	 * so proper operation is guaranteed.
 835	 */
 836	__flush_tlb_all();
 837#else
 838	printk(KERN_INFO "Command line: %s\n", boot_command_line);
 839	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 840#endif
 841
 842	/*
 843	 * If we have OLPC OFW, we might end up relocating the fixmap due to
 844	 * reserve_top(), so do this before touching the ioremap area.
 845	 */
 846	olpc_ofw_detect();
 847
 848	idt_setup_early_traps();
 849	early_cpu_init();
 850	arch_init_ideal_nops();
 851	jump_label_init();
 852	early_ioremap_init();
 853
 854	setup_olpc_ofw_pgd();
 855
 856	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 857	screen_info = boot_params.screen_info;
 858	edid_info = boot_params.edid_info;
 859#ifdef CONFIG_X86_32
 860	apm_info.bios = boot_params.apm_bios_info;
 861	ist_info = boot_params.ist_info;
 862#endif
 863	saved_video_mode = boot_params.hdr.vid_mode;
 864	bootloader_type = boot_params.hdr.type_of_loader;
 865	if ((bootloader_type >> 4) == 0xe) {
 866		bootloader_type &= 0xf;
 867		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 868	}
 869	bootloader_version  = bootloader_type & 0xf;
 870	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 871
 872#ifdef CONFIG_BLK_DEV_RAM
 873	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 
 
 874#endif
 875#ifdef CONFIG_EFI
 876	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 877		     EFI32_LOADER_SIGNATURE, 4)) {
 878		set_bit(EFI_BOOT, &efi.flags);
 879	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 880		     EFI64_LOADER_SIGNATURE, 4)) {
 881		set_bit(EFI_BOOT, &efi.flags);
 882		set_bit(EFI_64BIT, &efi.flags);
 883	}
 884#endif
 885
 886	x86_init.oem.arch_setup();
 887
 888	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 889	e820__memory_setup();
 890	parse_setup_data();
 891
 892	copy_edd();
 893
 894	if (!boot_params.hdr.root_flags)
 895		root_mountflags &= ~MS_RDONLY;
 896	init_mm.start_code = (unsigned long) _text;
 897	init_mm.end_code = (unsigned long) _etext;
 898	init_mm.end_data = (unsigned long) _edata;
 899	init_mm.brk = _brk_end;
 900
 
 
 901	code_resource.start = __pa_symbol(_text);
 902	code_resource.end = __pa_symbol(_etext)-1;
 903	rodata_resource.start = __pa_symbol(__start_rodata);
 904	rodata_resource.end = __pa_symbol(__end_rodata)-1;
 905	data_resource.start = __pa_symbol(_sdata);
 906	data_resource.end = __pa_symbol(_edata)-1;
 907	bss_resource.start = __pa_symbol(__bss_start);
 908	bss_resource.end = __pa_symbol(__bss_stop)-1;
 909
 910#ifdef CONFIG_CMDLINE_BOOL
 911#ifdef CONFIG_CMDLINE_OVERRIDE
 912	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 913#else
 914	if (builtin_cmdline[0]) {
 915		/* append boot loader cmdline to builtin */
 916		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 917		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 918		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 919	}
 920#endif
 921#endif
 922
 923	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 924	*cmdline_p = command_line;
 925
 926	/*
 927	 * x86_configure_nx() is called before parse_early_param() to detect
 928	 * whether hardware doesn't support NX (so that the early EHCI debug
 929	 * console setup can safely call set_fixmap()). It may then be called
 930	 * again from within noexec_setup() during parsing early parameters
 931	 * to honor the respective command line option.
 932	 */
 933	x86_configure_nx();
 934
 935	parse_early_param();
 936
 937	if (efi_enabled(EFI_BOOT))
 938		efi_memblock_x86_reserve_range();
 939#ifdef CONFIG_MEMORY_HOTPLUG
 940	/*
 941	 * Memory used by the kernel cannot be hot-removed because Linux
 942	 * cannot migrate the kernel pages. When memory hotplug is
 943	 * enabled, we should prevent memblock from allocating memory
 944	 * for the kernel.
 945	 *
 946	 * ACPI SRAT records all hotpluggable memory ranges. But before
 947	 * SRAT is parsed, we don't know about it.
 948	 *
 949	 * The kernel image is loaded into memory at very early time. We
 950	 * cannot prevent this anyway. So on NUMA system, we set any
 951	 * node the kernel resides in as un-hotpluggable.
 952	 *
 953	 * Since on modern servers, one node could have double-digit
 954	 * gigabytes memory, we can assume the memory around the kernel
 955	 * image is also un-hotpluggable. So before SRAT is parsed, just
 956	 * allocate memory near the kernel image to try the best to keep
 957	 * the kernel away from hotpluggable memory.
 958	 */
 959	if (movable_node_is_enabled())
 960		memblock_set_bottom_up(true);
 961#endif
 962
 963	x86_report_nx();
 964
 965	/* after early param, so could get panic from serial */
 966	memblock_x86_reserve_range_setup_data();
 967
 968	if (acpi_mps_check()) {
 969#ifdef CONFIG_X86_LOCAL_APIC
 970		disable_apic = 1;
 971#endif
 972		setup_clear_cpu_cap(X86_FEATURE_APIC);
 973	}
 974
 975	e820__reserve_setup_data();
 976	e820__finish_early_params();
 977
 978	if (efi_enabled(EFI_BOOT))
 979		efi_init();
 980
 981	dmi_setup();
 982
 983	/*
 984	 * VMware detection requires dmi to be available, so this
 985	 * needs to be done after dmi_setup(), for the boot CPU.
 986	 */
 987	init_hypervisor_platform();
 988
 989	tsc_early_init();
 990	x86_init.resources.probe_roms();
 991
 992	/* after parse_early_param, so could debug it */
 993	insert_resource(&iomem_resource, &code_resource);
 994	insert_resource(&iomem_resource, &rodata_resource);
 995	insert_resource(&iomem_resource, &data_resource);
 996	insert_resource(&iomem_resource, &bss_resource);
 997
 998	e820_add_kernel_range();
 999	trim_bios_range();
1000#ifdef CONFIG_X86_32
1001	if (ppro_with_ram_bug()) {
1002		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1003				  E820_TYPE_RESERVED);
1004		e820__update_table(e820_table);
1005		printk(KERN_INFO "fixed physical RAM map:\n");
1006		e820__print_table("bad_ppro");
1007	}
1008#else
1009	early_gart_iommu_check();
1010#endif
1011
1012	/*
1013	 * partially used pages are not usable - thus
1014	 * we are rounding upwards:
1015	 */
1016	max_pfn = e820__end_of_ram_pfn();
1017
1018	/* update e820 for memory not covered by WB MTRRs */
1019	mtrr_bp_init();
1020	if (mtrr_trim_uncached_memory(max_pfn))
1021		max_pfn = e820__end_of_ram_pfn();
1022
1023	max_possible_pfn = max_pfn;
1024
1025	/*
1026	 * This call is required when the CPU does not support PAT. If
1027	 * mtrr_bp_init() invoked it already via pat_init() the call has no
1028	 * effect.
1029	 */
1030	init_cache_modes();
1031
1032	/*
1033	 * Define random base addresses for memory sections after max_pfn is
1034	 * defined and before each memory section base is used.
1035	 */
1036	kernel_randomize_memory();
1037
1038#ifdef CONFIG_X86_32
1039	/* max_low_pfn get updated here */
1040	find_low_pfn_range();
1041#else
1042	check_x2apic();
1043
1044	/* How many end-of-memory variables you have, grandma! */
1045	/* need this before calling reserve_initrd */
1046	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1047		max_low_pfn = e820__end_of_low_ram_pfn();
1048	else
1049		max_low_pfn = max_pfn;
1050
1051	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1052#endif
1053
1054	/*
1055	 * Find and reserve possible boot-time SMP configuration:
1056	 */
1057	find_smp_config();
1058
1059	reserve_ibft_region();
1060
1061	early_alloc_pgt_buf();
1062
1063	/*
1064	 * Need to conclude brk, before e820__memblock_setup()
1065	 *  it could use memblock_find_in_range, could overlap with
1066	 *  brk area.
1067	 */
1068	reserve_brk();
1069
1070	cleanup_highmap();
1071
1072	memblock_set_current_limit(ISA_END_ADDRESS);
1073	e820__memblock_setup();
1074
1075	reserve_bios_regions();
1076
1077	efi_fake_memmap();
1078	efi_find_mirror();
1079	efi_esrt_init();
 
1080
1081	/*
1082	 * The EFI specification says that boot service code won't be
1083	 * called after ExitBootServices(). This is, in fact, a lie.
1084	 */
1085	efi_reserve_boot_services();
 
1086
1087	/* preallocate 4k for mptable mpc */
1088	e820__memblock_alloc_reserved_mpc_new();
1089
1090#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1091	setup_bios_corruption_check();
1092#endif
1093
1094#ifdef CONFIG_X86_32
1095	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1096			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1097#endif
1098
1099	reserve_real_mode();
1100
1101	trim_platform_memory_ranges();
1102	trim_low_memory_range();
1103
1104	init_mem_mapping();
1105
1106	idt_setup_early_pf();
1107
1108	/*
1109	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1110	 * with the current CR4 value.  This may not be necessary, but
1111	 * auditing all the early-boot CR4 manipulation would be needed to
1112	 * rule it out.
1113	 *
1114	 * Mask off features that don't work outside long mode (just
1115	 * PCIDE for now).
1116	 */
1117	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1118
1119	memblock_set_current_limit(get_max_mapped());
1120
1121	/*
1122	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1123	 */
1124
1125#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1126	if (init_ohci1394_dma_early)
1127		init_ohci1394_dma_on_all_controllers();
1128#endif
1129	/* Allocate bigger log buffer */
1130	setup_log_buf(1);
1131
1132	if (efi_enabled(EFI_BOOT)) {
1133		switch (boot_params.secure_boot) {
1134		case efi_secureboot_mode_disabled:
1135			pr_info("Secure boot disabled\n");
1136			break;
1137		case efi_secureboot_mode_enabled:
1138			pr_info("Secure boot enabled\n");
1139			break;
1140		default:
1141			pr_info("Secure boot could not be determined\n");
1142			break;
1143		}
1144	}
1145
1146	reserve_initrd();
1147
1148	acpi_table_upgrade();
1149
1150	vsmp_init();
1151
1152	io_delay_init();
1153
1154	early_platform_quirks();
1155
1156	/*
1157	 * Parse the ACPI tables for possible boot-time SMP configuration.
1158	 */
1159	acpi_boot_table_init();
1160
1161	early_acpi_boot_init();
1162
1163	initmem_init();
1164	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1165
1166	if (boot_cpu_has(X86_FEATURE_GBPAGES))
1167		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1168
1169	/*
1170	 * Reserve memory for crash kernel after SRAT is parsed so that it
1171	 * won't consume hotpluggable memory.
1172	 */
1173	reserve_crashkernel();
1174
1175	memblock_find_dma_reserve();
1176
1177	if (!early_xdbc_setup_hardware())
1178		early_xdbc_register_console();
1179
1180	x86_init.paging.pagetable_init();
1181
1182	kasan_init();
1183
1184	/*
1185	 * Sync back kernel address range.
1186	 *
1187	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1188	 * this call?
1189	 */
1190	sync_initial_page_table();
1191
1192	tboot_probe();
1193
1194	map_vsyscall();
1195
1196	generic_apic_probe();
1197
1198	early_quirks();
1199
1200	/*
1201	 * Read APIC and some other early information from ACPI tables.
1202	 */
1203	acpi_boot_init();
1204	sfi_init();
1205	x86_dtb_init();
1206
1207	/*
1208	 * get boot-time SMP configuration:
1209	 */
1210	get_smp_config();
1211
1212	/*
1213	 * Systems w/o ACPI and mptables might not have it mapped the local
1214	 * APIC yet, but prefill_possible_map() might need to access it.
1215	 */
1216	init_apic_mappings();
1217
1218	prefill_possible_map();
1219
1220	init_cpu_to_node();
1221
1222	io_apic_init_mappings();
1223
1224	x86_init.hyper.guest_late_init();
1225
1226	e820__reserve_resources();
1227	e820__register_nosave_regions(max_pfn);
1228
1229	x86_init.resources.reserve_resources();
1230
1231	e820__setup_pci_gap();
1232
1233#ifdef CONFIG_VT
1234#if defined(CONFIG_VGA_CONSOLE)
1235	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1236		conswitchp = &vga_con;
 
 
1237#endif
1238#endif
1239	x86_init.oem.banner();
1240
1241	x86_init.timers.wallclock_init();
1242
1243	mcheck_init();
1244
1245	register_refined_jiffies(CLOCK_TICK_RATE);
1246
1247#ifdef CONFIG_EFI
1248	if (efi_enabled(EFI_BOOT))
1249		efi_apply_memmap_quirks();
1250#endif
1251
1252	unwind_init();
1253}
1254
1255#ifdef CONFIG_X86_32
1256
1257static struct resource video_ram_resource = {
1258	.name	= "Video RAM area",
1259	.start	= 0xa0000,
1260	.end	= 0xbffff,
1261	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1262};
1263
1264void __init i386_reserve_resources(void)
1265{
1266	request_resource(&iomem_resource, &video_ram_resource);
1267	reserve_standard_io_resources();
1268}
1269
1270#endif /* CONFIG_X86_32 */
1271
1272static struct notifier_block kernel_offset_notifier = {
1273	.notifier_call = dump_kernel_offset
1274};
1275
1276static int __init register_kernel_offset_dumper(void)
1277{
1278	atomic_notifier_chain_register(&panic_notifier_list,
1279					&kernel_offset_notifier);
1280	return 0;
1281}
1282__initcall(register_kernel_offset_dumper);