Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 *
7 * Memory region support
8 * David Parsons <orc@pell.chi.il.us>, July-August 1999
9 *
10 * Added E820 sanitization routine (removes overlapping memory regions);
11 * Brian Moyle <bmoyle@mvista.com>, February 2001
12 *
13 * Moved CPU detection code to cpu/${cpu}.c
14 * Patrick Mochel <mochel@osdl.org>, March 2002
15 *
16 * Provisions for empty E820 memory regions (reported by certain BIOSes).
17 * Alex Achenbach <xela@slit.de>, December 2002.
18 *
19 */
20
21/*
22 * This file handles the architecture-dependent parts of initialization
23 */
24
25#include <linux/sched.h>
26#include <linux/mm.h>
27#include <linux/mmzone.h>
28#include <linux/screen_info.h>
29#include <linux/ioport.h>
30#include <linux/acpi.h>
31#include <linux/sfi.h>
32#include <linux/apm_bios.h>
33#include <linux/initrd.h>
34#include <linux/memblock.h>
35#include <linux/seq_file.h>
36#include <linux/console.h>
37#include <linux/root_dev.h>
38#include <linux/highmem.h>
39#include <linux/export.h>
40#include <linux/efi.h>
41#include <linux/init.h>
42#include <linux/edd.h>
43#include <linux/iscsi_ibft.h>
44#include <linux/nodemask.h>
45#include <linux/kexec.h>
46#include <linux/dmi.h>
47#include <linux/pfn.h>
48#include <linux/pci.h>
49#include <asm/pci-direct.h>
50#include <linux/init_ohci1394_dma.h>
51#include <linux/kvm_para.h>
52#include <linux/dma-contiguous.h>
53#include <xen/xen.h>
54#include <uapi/linux/mount.h>
55
56#include <linux/errno.h>
57#include <linux/kernel.h>
58#include <linux/stddef.h>
59#include <linux/unistd.h>
60#include <linux/ptrace.h>
61#include <linux/user.h>
62#include <linux/delay.h>
63
64#include <linux/kallsyms.h>
65#include <linux/cpufreq.h>
66#include <linux/dma-mapping.h>
67#include <linux/ctype.h>
68#include <linux/uaccess.h>
69
70#include <linux/percpu.h>
71#include <linux/crash_dump.h>
72#include <linux/tboot.h>
73#include <linux/jiffies.h>
74#include <linux/mem_encrypt.h>
75#include <linux/sizes.h>
76
77#include <linux/usb/xhci-dbgp.h>
78#include <video/edid.h>
79
80#include <asm/mtrr.h>
81#include <asm/apic.h>
82#include <asm/realmode.h>
83#include <asm/e820/api.h>
84#include <asm/mpspec.h>
85#include <asm/setup.h>
86#include <asm/efi.h>
87#include <asm/timer.h>
88#include <asm/i8259.h>
89#include <asm/sections.h>
90#include <asm/io_apic.h>
91#include <asm/ist.h>
92#include <asm/setup_arch.h>
93#include <asm/bios_ebda.h>
94#include <asm/cacheflush.h>
95#include <asm/processor.h>
96#include <asm/bugs.h>
97#include <asm/kasan.h>
98
99#include <asm/vsyscall.h>
100#include <asm/cpu.h>
101#include <asm/desc.h>
102#include <asm/dma.h>
103#include <asm/iommu.h>
104#include <asm/gart.h>
105#include <asm/mmu_context.h>
106#include <asm/proto.h>
107
108#include <asm/paravirt.h>
109#include <asm/hypervisor.h>
110#include <asm/olpc_ofw.h>
111
112#include <asm/percpu.h>
113#include <asm/topology.h>
114#include <asm/apicdef.h>
115#include <asm/amd_nb.h>
116#include <asm/mce.h>
117#include <asm/alternative.h>
118#include <asm/prom.h>
119#include <asm/microcode.h>
120#include <asm/kaslr.h>
121#include <asm/unwind.h>
122
123/*
124 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
125 * max_pfn_mapped: highest direct mapped pfn over 4GB
126 *
127 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
128 * represented by pfn_mapped
129 */
130unsigned long max_low_pfn_mapped;
131unsigned long max_pfn_mapped;
132
133#ifdef CONFIG_DMI
134RESERVE_BRK(dmi_alloc, 65536);
135#endif
136
137
138static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
139unsigned long _brk_end = (unsigned long)__brk_base;
140
141struct boot_params boot_params;
142
143/*
144 * Machine setup..
145 */
146static struct resource data_resource = {
147 .name = "Kernel data",
148 .start = 0,
149 .end = 0,
150 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
151};
152
153static struct resource code_resource = {
154 .name = "Kernel code",
155 .start = 0,
156 .end = 0,
157 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
158};
159
160static struct resource bss_resource = {
161 .name = "Kernel bss",
162 .start = 0,
163 .end = 0,
164 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
165};
166
167
168#ifdef CONFIG_X86_32
169/* cpu data as detected by the assembly code in head_32.S */
170struct cpuinfo_x86 new_cpu_data;
171
172/* common cpu data for all cpus */
173struct cpuinfo_x86 boot_cpu_data __read_mostly;
174EXPORT_SYMBOL(boot_cpu_data);
175
176unsigned int def_to_bigsmp;
177
178/* for MCA, but anyone else can use it if they want */
179unsigned int machine_id;
180unsigned int machine_submodel_id;
181unsigned int BIOS_revision;
182
183struct apm_info apm_info;
184EXPORT_SYMBOL(apm_info);
185
186#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
187 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
188struct ist_info ist_info;
189EXPORT_SYMBOL(ist_info);
190#else
191struct ist_info ist_info;
192#endif
193
194#else
195struct cpuinfo_x86 boot_cpu_data __read_mostly;
196EXPORT_SYMBOL(boot_cpu_data);
197#endif
198
199
200#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
201__visible unsigned long mmu_cr4_features __ro_after_init;
202#else
203__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
204#endif
205
206/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
207int bootloader_type, bootloader_version;
208
209/*
210 * Setup options
211 */
212struct screen_info screen_info;
213EXPORT_SYMBOL(screen_info);
214struct edid_info edid_info;
215EXPORT_SYMBOL_GPL(edid_info);
216
217extern int root_mountflags;
218
219unsigned long saved_video_mode;
220
221#define RAMDISK_IMAGE_START_MASK 0x07FF
222#define RAMDISK_PROMPT_FLAG 0x8000
223#define RAMDISK_LOAD_FLAG 0x4000
224
225static char __initdata command_line[COMMAND_LINE_SIZE];
226#ifdef CONFIG_CMDLINE_BOOL
227static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
228#endif
229
230#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
231struct edd edd;
232#ifdef CONFIG_EDD_MODULE
233EXPORT_SYMBOL(edd);
234#endif
235/**
236 * copy_edd() - Copy the BIOS EDD information
237 * from boot_params into a safe place.
238 *
239 */
240static inline void __init copy_edd(void)
241{
242 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
243 sizeof(edd.mbr_signature));
244 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
245 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
246 edd.edd_info_nr = boot_params.eddbuf_entries;
247}
248#else
249static inline void __init copy_edd(void)
250{
251}
252#endif
253
254void * __init extend_brk(size_t size, size_t align)
255{
256 size_t mask = align - 1;
257 void *ret;
258
259 BUG_ON(_brk_start == 0);
260 BUG_ON(align & mask);
261
262 _brk_end = (_brk_end + mask) & ~mask;
263 BUG_ON((char *)(_brk_end + size) > __brk_limit);
264
265 ret = (void *)_brk_end;
266 _brk_end += size;
267
268 memset(ret, 0, size);
269
270 return ret;
271}
272
273#ifdef CONFIG_X86_32
274static void __init cleanup_highmap(void)
275{
276}
277#endif
278
279static void __init reserve_brk(void)
280{
281 if (_brk_end > _brk_start)
282 memblock_reserve(__pa_symbol(_brk_start),
283 _brk_end - _brk_start);
284
285 /* Mark brk area as locked down and no longer taking any
286 new allocations */
287 _brk_start = 0;
288}
289
290u64 relocated_ramdisk;
291
292#ifdef CONFIG_BLK_DEV_INITRD
293
294static u64 __init get_ramdisk_image(void)
295{
296 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
297
298 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
299
300 return ramdisk_image;
301}
302static u64 __init get_ramdisk_size(void)
303{
304 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
305
306 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
307
308 return ramdisk_size;
309}
310
311static void __init relocate_initrd(void)
312{
313 /* Assume only end is not page aligned */
314 u64 ramdisk_image = get_ramdisk_image();
315 u64 ramdisk_size = get_ramdisk_size();
316 u64 area_size = PAGE_ALIGN(ramdisk_size);
317
318 /* We need to move the initrd down into directly mapped mem */
319 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
320 area_size, PAGE_SIZE);
321
322 if (!relocated_ramdisk)
323 panic("Cannot find place for new RAMDISK of size %lld\n",
324 ramdisk_size);
325
326 /* Note: this includes all the mem currently occupied by
327 the initrd, we rely on that fact to keep the data intact. */
328 memblock_reserve(relocated_ramdisk, area_size);
329 initrd_start = relocated_ramdisk + PAGE_OFFSET;
330 initrd_end = initrd_start + ramdisk_size;
331 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
332 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
333
334 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
335
336 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
337 " [mem %#010llx-%#010llx]\n",
338 ramdisk_image, ramdisk_image + ramdisk_size - 1,
339 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
340}
341
342static void __init early_reserve_initrd(void)
343{
344 /* Assume only end is not page aligned */
345 u64 ramdisk_image = get_ramdisk_image();
346 u64 ramdisk_size = get_ramdisk_size();
347 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
348
349 if (!boot_params.hdr.type_of_loader ||
350 !ramdisk_image || !ramdisk_size)
351 return; /* No initrd provided by bootloader */
352
353 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
354}
355static void __init reserve_initrd(void)
356{
357 /* Assume only end is not page aligned */
358 u64 ramdisk_image = get_ramdisk_image();
359 u64 ramdisk_size = get_ramdisk_size();
360 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
361 u64 mapped_size;
362
363 if (!boot_params.hdr.type_of_loader ||
364 !ramdisk_image || !ramdisk_size)
365 return; /* No initrd provided by bootloader */
366
367 initrd_start = 0;
368
369 mapped_size = memblock_mem_size(max_pfn_mapped);
370 if (ramdisk_size >= (mapped_size>>1))
371 panic("initrd too large to handle, "
372 "disabling initrd (%lld needed, %lld available)\n",
373 ramdisk_size, mapped_size>>1);
374
375 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
376 ramdisk_end - 1);
377
378 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
379 PFN_DOWN(ramdisk_end))) {
380 /* All are mapped, easy case */
381 initrd_start = ramdisk_image + PAGE_OFFSET;
382 initrd_end = initrd_start + ramdisk_size;
383 return;
384 }
385
386 relocate_initrd();
387
388 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
389}
390
391#else
392static void __init early_reserve_initrd(void)
393{
394}
395static void __init reserve_initrd(void)
396{
397}
398#endif /* CONFIG_BLK_DEV_INITRD */
399
400static void __init parse_setup_data(void)
401{
402 struct setup_data *data;
403 u64 pa_data, pa_next;
404
405 pa_data = boot_params.hdr.setup_data;
406 while (pa_data) {
407 u32 data_len, data_type;
408
409 data = early_memremap(pa_data, sizeof(*data));
410 data_len = data->len + sizeof(struct setup_data);
411 data_type = data->type;
412 pa_next = data->next;
413 early_memunmap(data, sizeof(*data));
414
415 switch (data_type) {
416 case SETUP_E820_EXT:
417 e820__memory_setup_extended(pa_data, data_len);
418 break;
419 case SETUP_DTB:
420 add_dtb(pa_data);
421 break;
422 case SETUP_EFI:
423 parse_efi_setup(pa_data, data_len);
424 break;
425 default:
426 break;
427 }
428 pa_data = pa_next;
429 }
430}
431
432static void __init memblock_x86_reserve_range_setup_data(void)
433{
434 struct setup_data *data;
435 u64 pa_data;
436
437 pa_data = boot_params.hdr.setup_data;
438 while (pa_data) {
439 data = early_memremap(pa_data, sizeof(*data));
440 memblock_reserve(pa_data, sizeof(*data) + data->len);
441 pa_data = data->next;
442 early_memunmap(data, sizeof(*data));
443 }
444}
445
446/*
447 * --------- Crashkernel reservation ------------------------------
448 */
449
450#ifdef CONFIG_KEXEC_CORE
451
452/* 16M alignment for crash kernel regions */
453#define CRASH_ALIGN SZ_16M
454
455/*
456 * Keep the crash kernel below this limit.
457 *
458 * On 32 bits earlier kernels would limit the kernel to the low 512 MiB
459 * due to mapping restrictions.
460 *
461 * On 64bit, kdump kernel need be restricted to be under 64TB, which is
462 * the upper limit of system RAM in 4-level paing mode. Since the kdump
463 * jumping could be from 5-level to 4-level, the jumping will fail if
464 * kernel is put above 64TB, and there's no way to detect the paging mode
465 * of the kernel which will be loaded for dumping during the 1st kernel
466 * bootup.
467 */
468#ifdef CONFIG_X86_32
469# define CRASH_ADDR_LOW_MAX SZ_512M
470# define CRASH_ADDR_HIGH_MAX SZ_512M
471#else
472# define CRASH_ADDR_LOW_MAX SZ_4G
473# define CRASH_ADDR_HIGH_MAX SZ_64T
474#endif
475
476static int __init reserve_crashkernel_low(void)
477{
478#ifdef CONFIG_X86_64
479 unsigned long long base, low_base = 0, low_size = 0;
480 unsigned long total_low_mem;
481 int ret;
482
483 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
484
485 /* crashkernel=Y,low */
486 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
487 if (ret) {
488 /*
489 * two parts from kernel/dma/swiotlb.c:
490 * -swiotlb size: user-specified with swiotlb= or default.
491 *
492 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
493 * to 8M for other buffers that may need to stay low too. Also
494 * make sure we allocate enough extra low memory so that we
495 * don't run out of DMA buffers for 32-bit devices.
496 */
497 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
498 } else {
499 /* passed with crashkernel=0,low ? */
500 if (!low_size)
501 return 0;
502 }
503
504 low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
505 if (!low_base) {
506 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
507 (unsigned long)(low_size >> 20));
508 return -ENOMEM;
509 }
510
511 ret = memblock_reserve(low_base, low_size);
512 if (ret) {
513 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
514 return ret;
515 }
516
517 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
518 (unsigned long)(low_size >> 20),
519 (unsigned long)(low_base >> 20),
520 (unsigned long)(total_low_mem >> 20));
521
522 crashk_low_res.start = low_base;
523 crashk_low_res.end = low_base + low_size - 1;
524 insert_resource(&iomem_resource, &crashk_low_res);
525#endif
526 return 0;
527}
528
529static void __init reserve_crashkernel(void)
530{
531 unsigned long long crash_size, crash_base, total_mem;
532 bool high = false;
533 int ret;
534
535 total_mem = memblock_phys_mem_size();
536
537 /* crashkernel=XM */
538 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
539 if (ret != 0 || crash_size <= 0) {
540 /* crashkernel=X,high */
541 ret = parse_crashkernel_high(boot_command_line, total_mem,
542 &crash_size, &crash_base);
543 if (ret != 0 || crash_size <= 0)
544 return;
545 high = true;
546 }
547
548 if (xen_pv_domain()) {
549 pr_info("Ignoring crashkernel for a Xen PV domain\n");
550 return;
551 }
552
553 /* 0 means: find the address automatically */
554 if (!crash_base) {
555 /*
556 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
557 * crashkernel=x,high reserves memory over 4G, also allocates
558 * 256M extra low memory for DMA buffers and swiotlb.
559 * But the extra memory is not required for all machines.
560 * So try low memory first and fall back to high memory
561 * unless "crashkernel=size[KMG],high" is specified.
562 */
563 if (!high)
564 crash_base = memblock_find_in_range(CRASH_ALIGN,
565 CRASH_ADDR_LOW_MAX,
566 crash_size, CRASH_ALIGN);
567 if (!crash_base)
568 crash_base = memblock_find_in_range(CRASH_ALIGN,
569 CRASH_ADDR_HIGH_MAX,
570 crash_size, CRASH_ALIGN);
571 if (!crash_base) {
572 pr_info("crashkernel reservation failed - No suitable area found.\n");
573 return;
574 }
575 } else {
576 unsigned long long start;
577
578 start = memblock_find_in_range(crash_base,
579 crash_base + crash_size,
580 crash_size, 1 << 20);
581 if (start != crash_base) {
582 pr_info("crashkernel reservation failed - memory is in use.\n");
583 return;
584 }
585 }
586 ret = memblock_reserve(crash_base, crash_size);
587 if (ret) {
588 pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
589 return;
590 }
591
592 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
593 memblock_free(crash_base, crash_size);
594 return;
595 }
596
597 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
598 (unsigned long)(crash_size >> 20),
599 (unsigned long)(crash_base >> 20),
600 (unsigned long)(total_mem >> 20));
601
602 crashk_res.start = crash_base;
603 crashk_res.end = crash_base + crash_size - 1;
604 insert_resource(&iomem_resource, &crashk_res);
605}
606#else
607static void __init reserve_crashkernel(void)
608{
609}
610#endif
611
612static struct resource standard_io_resources[] = {
613 { .name = "dma1", .start = 0x00, .end = 0x1f,
614 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
615 { .name = "pic1", .start = 0x20, .end = 0x21,
616 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
617 { .name = "timer0", .start = 0x40, .end = 0x43,
618 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
619 { .name = "timer1", .start = 0x50, .end = 0x53,
620 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
621 { .name = "keyboard", .start = 0x60, .end = 0x60,
622 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
623 { .name = "keyboard", .start = 0x64, .end = 0x64,
624 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
625 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
626 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
627 { .name = "pic2", .start = 0xa0, .end = 0xa1,
628 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
629 { .name = "dma2", .start = 0xc0, .end = 0xdf,
630 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
631 { .name = "fpu", .start = 0xf0, .end = 0xff,
632 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
633};
634
635void __init reserve_standard_io_resources(void)
636{
637 int i;
638
639 /* request I/O space for devices used on all i[345]86 PCs */
640 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
641 request_resource(&ioport_resource, &standard_io_resources[i]);
642
643}
644
645static __init void reserve_ibft_region(void)
646{
647 unsigned long addr, size = 0;
648
649 addr = find_ibft_region(&size);
650
651 if (size)
652 memblock_reserve(addr, size);
653}
654
655static bool __init snb_gfx_workaround_needed(void)
656{
657#ifdef CONFIG_PCI
658 int i;
659 u16 vendor, devid;
660 static const __initconst u16 snb_ids[] = {
661 0x0102,
662 0x0112,
663 0x0122,
664 0x0106,
665 0x0116,
666 0x0126,
667 0x010a,
668 };
669
670 /* Assume no if something weird is going on with PCI */
671 if (!early_pci_allowed())
672 return false;
673
674 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
675 if (vendor != 0x8086)
676 return false;
677
678 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
679 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
680 if (devid == snb_ids[i])
681 return true;
682#endif
683
684 return false;
685}
686
687/*
688 * Sandy Bridge graphics has trouble with certain ranges, exclude
689 * them from allocation.
690 */
691static void __init trim_snb_memory(void)
692{
693 static const __initconst unsigned long bad_pages[] = {
694 0x20050000,
695 0x20110000,
696 0x20130000,
697 0x20138000,
698 0x40004000,
699 };
700 int i;
701
702 if (!snb_gfx_workaround_needed())
703 return;
704
705 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
706
707 /*
708 * Reserve all memory below the 1 MB mark that has not
709 * already been reserved.
710 */
711 memblock_reserve(0, 1<<20);
712
713 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
714 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
715 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
716 bad_pages[i]);
717 }
718}
719
720/*
721 * Here we put platform-specific memory range workarounds, i.e.
722 * memory known to be corrupt or otherwise in need to be reserved on
723 * specific platforms.
724 *
725 * If this gets used more widely it could use a real dispatch mechanism.
726 */
727static void __init trim_platform_memory_ranges(void)
728{
729 trim_snb_memory();
730}
731
732static void __init trim_bios_range(void)
733{
734 /*
735 * A special case is the first 4Kb of memory;
736 * This is a BIOS owned area, not kernel ram, but generally
737 * not listed as such in the E820 table.
738 *
739 * This typically reserves additional memory (64KiB by default)
740 * since some BIOSes are known to corrupt low memory. See the
741 * Kconfig help text for X86_RESERVE_LOW.
742 */
743 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
744
745 /*
746 * special case: Some BIOSen report the PC BIOS
747 * area (640->1Mb) as ram even though it is not.
748 * take them out.
749 */
750 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
751
752 e820__update_table(e820_table);
753}
754
755/* called before trim_bios_range() to spare extra sanitize */
756static void __init e820_add_kernel_range(void)
757{
758 u64 start = __pa_symbol(_text);
759 u64 size = __pa_symbol(_end) - start;
760
761 /*
762 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
763 * attempt to fix it by adding the range. We may have a confused BIOS,
764 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
765 * exclude kernel range. If we really are running on top non-RAM,
766 * we will crash later anyways.
767 */
768 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
769 return;
770
771 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
772 e820__range_remove(start, size, E820_TYPE_RAM, 0);
773 e820__range_add(start, size, E820_TYPE_RAM);
774}
775
776static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
777
778static int __init parse_reservelow(char *p)
779{
780 unsigned long long size;
781
782 if (!p)
783 return -EINVAL;
784
785 size = memparse(p, &p);
786
787 if (size < 4096)
788 size = 4096;
789
790 if (size > 640*1024)
791 size = 640*1024;
792
793 reserve_low = size;
794
795 return 0;
796}
797
798early_param("reservelow", parse_reservelow);
799
800static void __init trim_low_memory_range(void)
801{
802 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
803}
804
805/*
806 * Dump out kernel offset information on panic.
807 */
808static int
809dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
810{
811 if (kaslr_enabled()) {
812 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
813 kaslr_offset(),
814 __START_KERNEL,
815 __START_KERNEL_map,
816 MODULES_VADDR-1);
817 } else {
818 pr_emerg("Kernel Offset: disabled\n");
819 }
820
821 return 0;
822}
823
824/*
825 * Determine if we were loaded by an EFI loader. If so, then we have also been
826 * passed the efi memmap, systab, etc., so we should use these data structures
827 * for initialization. Note, the efi init code path is determined by the
828 * global efi_enabled. This allows the same kernel image to be used on existing
829 * systems (with a traditional BIOS) as well as on EFI systems.
830 */
831/*
832 * setup_arch - architecture-specific boot-time initializations
833 *
834 * Note: On x86_64, fixmaps are ready for use even before this is called.
835 */
836
837void __init setup_arch(char **cmdline_p)
838{
839 /*
840 * Reserve the memory occupied by the kernel between _text and
841 * __end_of_kernel_reserve symbols. Any kernel sections after the
842 * __end_of_kernel_reserve symbol must be explicitly reserved with a
843 * separate memblock_reserve() or they will be discarded.
844 */
845 memblock_reserve(__pa_symbol(_text),
846 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
847
848 /*
849 * Make sure page 0 is always reserved because on systems with
850 * L1TF its contents can be leaked to user processes.
851 */
852 memblock_reserve(0, PAGE_SIZE);
853
854 early_reserve_initrd();
855
856 /*
857 * At this point everything still needed from the boot loader
858 * or BIOS or kernel text should be early reserved or marked not
859 * RAM in e820. All other memory is free game.
860 */
861
862#ifdef CONFIG_X86_32
863 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
864
865 /*
866 * copy kernel address range established so far and switch
867 * to the proper swapper page table
868 */
869 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
870 initial_page_table + KERNEL_PGD_BOUNDARY,
871 KERNEL_PGD_PTRS);
872
873 load_cr3(swapper_pg_dir);
874 /*
875 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
876 * a cr3 based tlb flush, so the following __flush_tlb_all()
877 * will not flush anything because the cpu quirk which clears
878 * X86_FEATURE_PGE has not been invoked yet. Though due to the
879 * load_cr3() above the TLB has been flushed already. The
880 * quirk is invoked before subsequent calls to __flush_tlb_all()
881 * so proper operation is guaranteed.
882 */
883 __flush_tlb_all();
884#else
885 printk(KERN_INFO "Command line: %s\n", boot_command_line);
886 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
887#endif
888
889 /*
890 * If we have OLPC OFW, we might end up relocating the fixmap due to
891 * reserve_top(), so do this before touching the ioremap area.
892 */
893 olpc_ofw_detect();
894
895 idt_setup_early_traps();
896 early_cpu_init();
897 arch_init_ideal_nops();
898 jump_label_init();
899 early_ioremap_init();
900
901 setup_olpc_ofw_pgd();
902
903 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
904 screen_info = boot_params.screen_info;
905 edid_info = boot_params.edid_info;
906#ifdef CONFIG_X86_32
907 apm_info.bios = boot_params.apm_bios_info;
908 ist_info = boot_params.ist_info;
909#endif
910 saved_video_mode = boot_params.hdr.vid_mode;
911 bootloader_type = boot_params.hdr.type_of_loader;
912 if ((bootloader_type >> 4) == 0xe) {
913 bootloader_type &= 0xf;
914 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
915 }
916 bootloader_version = bootloader_type & 0xf;
917 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
918
919#ifdef CONFIG_BLK_DEV_RAM
920 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
921 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
922 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
923#endif
924#ifdef CONFIG_EFI
925 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
926 EFI32_LOADER_SIGNATURE, 4)) {
927 set_bit(EFI_BOOT, &efi.flags);
928 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
929 EFI64_LOADER_SIGNATURE, 4)) {
930 set_bit(EFI_BOOT, &efi.flags);
931 set_bit(EFI_64BIT, &efi.flags);
932 }
933#endif
934
935 x86_init.oem.arch_setup();
936
937 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
938 e820__memory_setup();
939 parse_setup_data();
940
941 copy_edd();
942
943 if (!boot_params.hdr.root_flags)
944 root_mountflags &= ~MS_RDONLY;
945 init_mm.start_code = (unsigned long) _text;
946 init_mm.end_code = (unsigned long) _etext;
947 init_mm.end_data = (unsigned long) _edata;
948 init_mm.brk = _brk_end;
949
950 mpx_mm_init(&init_mm);
951
952 code_resource.start = __pa_symbol(_text);
953 code_resource.end = __pa_symbol(_etext)-1;
954 data_resource.start = __pa_symbol(_etext);
955 data_resource.end = __pa_symbol(_edata)-1;
956 bss_resource.start = __pa_symbol(__bss_start);
957 bss_resource.end = __pa_symbol(__bss_stop)-1;
958
959#ifdef CONFIG_CMDLINE_BOOL
960#ifdef CONFIG_CMDLINE_OVERRIDE
961 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
962#else
963 if (builtin_cmdline[0]) {
964 /* append boot loader cmdline to builtin */
965 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
966 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
967 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
968 }
969#endif
970#endif
971
972 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
973 *cmdline_p = command_line;
974
975 /*
976 * x86_configure_nx() is called before parse_early_param() to detect
977 * whether hardware doesn't support NX (so that the early EHCI debug
978 * console setup can safely call set_fixmap()). It may then be called
979 * again from within noexec_setup() during parsing early parameters
980 * to honor the respective command line option.
981 */
982 x86_configure_nx();
983
984 parse_early_param();
985
986 if (efi_enabled(EFI_BOOT))
987 efi_memblock_x86_reserve_range();
988#ifdef CONFIG_MEMORY_HOTPLUG
989 /*
990 * Memory used by the kernel cannot be hot-removed because Linux
991 * cannot migrate the kernel pages. When memory hotplug is
992 * enabled, we should prevent memblock from allocating memory
993 * for the kernel.
994 *
995 * ACPI SRAT records all hotpluggable memory ranges. But before
996 * SRAT is parsed, we don't know about it.
997 *
998 * The kernel image is loaded into memory at very early time. We
999 * cannot prevent this anyway. So on NUMA system, we set any
1000 * node the kernel resides in as un-hotpluggable.
1001 *
1002 * Since on modern servers, one node could have double-digit
1003 * gigabytes memory, we can assume the memory around the kernel
1004 * image is also un-hotpluggable. So before SRAT is parsed, just
1005 * allocate memory near the kernel image to try the best to keep
1006 * the kernel away from hotpluggable memory.
1007 */
1008 if (movable_node_is_enabled())
1009 memblock_set_bottom_up(true);
1010#endif
1011
1012 x86_report_nx();
1013
1014 /* after early param, so could get panic from serial */
1015 memblock_x86_reserve_range_setup_data();
1016
1017 if (acpi_mps_check()) {
1018#ifdef CONFIG_X86_LOCAL_APIC
1019 disable_apic = 1;
1020#endif
1021 setup_clear_cpu_cap(X86_FEATURE_APIC);
1022 }
1023
1024 e820__reserve_setup_data();
1025 e820__finish_early_params();
1026
1027 if (efi_enabled(EFI_BOOT))
1028 efi_init();
1029
1030 dmi_setup();
1031
1032 /*
1033 * VMware detection requires dmi to be available, so this
1034 * needs to be done after dmi_setup(), for the boot CPU.
1035 */
1036 init_hypervisor_platform();
1037
1038 tsc_early_init();
1039 x86_init.resources.probe_roms();
1040
1041 /* after parse_early_param, so could debug it */
1042 insert_resource(&iomem_resource, &code_resource);
1043 insert_resource(&iomem_resource, &data_resource);
1044 insert_resource(&iomem_resource, &bss_resource);
1045
1046 e820_add_kernel_range();
1047 trim_bios_range();
1048#ifdef CONFIG_X86_32
1049 if (ppro_with_ram_bug()) {
1050 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1051 E820_TYPE_RESERVED);
1052 e820__update_table(e820_table);
1053 printk(KERN_INFO "fixed physical RAM map:\n");
1054 e820__print_table("bad_ppro");
1055 }
1056#else
1057 early_gart_iommu_check();
1058#endif
1059
1060 /*
1061 * partially used pages are not usable - thus
1062 * we are rounding upwards:
1063 */
1064 max_pfn = e820__end_of_ram_pfn();
1065
1066 /* update e820 for memory not covered by WB MTRRs */
1067 mtrr_bp_init();
1068 if (mtrr_trim_uncached_memory(max_pfn))
1069 max_pfn = e820__end_of_ram_pfn();
1070
1071 max_possible_pfn = max_pfn;
1072
1073 /*
1074 * This call is required when the CPU does not support PAT. If
1075 * mtrr_bp_init() invoked it already via pat_init() the call has no
1076 * effect.
1077 */
1078 init_cache_modes();
1079
1080 /*
1081 * Define random base addresses for memory sections after max_pfn is
1082 * defined and before each memory section base is used.
1083 */
1084 kernel_randomize_memory();
1085
1086#ifdef CONFIG_X86_32
1087 /* max_low_pfn get updated here */
1088 find_low_pfn_range();
1089#else
1090 check_x2apic();
1091
1092 /* How many end-of-memory variables you have, grandma! */
1093 /* need this before calling reserve_initrd */
1094 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1095 max_low_pfn = e820__end_of_low_ram_pfn();
1096 else
1097 max_low_pfn = max_pfn;
1098
1099 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1100#endif
1101
1102 /*
1103 * Find and reserve possible boot-time SMP configuration:
1104 */
1105 find_smp_config();
1106
1107 reserve_ibft_region();
1108
1109 early_alloc_pgt_buf();
1110
1111 /*
1112 * Need to conclude brk, before e820__memblock_setup()
1113 * it could use memblock_find_in_range, could overlap with
1114 * brk area.
1115 */
1116 reserve_brk();
1117
1118 cleanup_highmap();
1119
1120 memblock_set_current_limit(ISA_END_ADDRESS);
1121 e820__memblock_setup();
1122
1123 reserve_bios_regions();
1124
1125 if (efi_enabled(EFI_MEMMAP)) {
1126 efi_fake_memmap();
1127 efi_find_mirror();
1128 efi_esrt_init();
1129
1130 /*
1131 * The EFI specification says that boot service code won't be
1132 * called after ExitBootServices(). This is, in fact, a lie.
1133 */
1134 efi_reserve_boot_services();
1135 }
1136
1137 /* preallocate 4k for mptable mpc */
1138 e820__memblock_alloc_reserved_mpc_new();
1139
1140#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1141 setup_bios_corruption_check();
1142#endif
1143
1144#ifdef CONFIG_X86_32
1145 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1146 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1147#endif
1148
1149 reserve_real_mode();
1150
1151 trim_platform_memory_ranges();
1152 trim_low_memory_range();
1153
1154 init_mem_mapping();
1155
1156 idt_setup_early_pf();
1157
1158 /*
1159 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1160 * with the current CR4 value. This may not be necessary, but
1161 * auditing all the early-boot CR4 manipulation would be needed to
1162 * rule it out.
1163 *
1164 * Mask off features that don't work outside long mode (just
1165 * PCIDE for now).
1166 */
1167 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1168
1169 memblock_set_current_limit(get_max_mapped());
1170
1171 /*
1172 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1173 */
1174
1175#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1176 if (init_ohci1394_dma_early)
1177 init_ohci1394_dma_on_all_controllers();
1178#endif
1179 /* Allocate bigger log buffer */
1180 setup_log_buf(1);
1181
1182 if (efi_enabled(EFI_BOOT)) {
1183 switch (boot_params.secure_boot) {
1184 case efi_secureboot_mode_disabled:
1185 pr_info("Secure boot disabled\n");
1186 break;
1187 case efi_secureboot_mode_enabled:
1188 pr_info("Secure boot enabled\n");
1189 break;
1190 default:
1191 pr_info("Secure boot could not be determined\n");
1192 break;
1193 }
1194 }
1195
1196 reserve_initrd();
1197
1198 acpi_table_upgrade();
1199
1200 vsmp_init();
1201
1202 io_delay_init();
1203
1204 early_platform_quirks();
1205
1206 /*
1207 * Parse the ACPI tables for possible boot-time SMP configuration.
1208 */
1209 acpi_boot_table_init();
1210
1211 early_acpi_boot_init();
1212
1213 initmem_init();
1214 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1215
1216 /*
1217 * Reserve memory for crash kernel after SRAT is parsed so that it
1218 * won't consume hotpluggable memory.
1219 */
1220 reserve_crashkernel();
1221
1222 memblock_find_dma_reserve();
1223
1224 if (!early_xdbc_setup_hardware())
1225 early_xdbc_register_console();
1226
1227 x86_init.paging.pagetable_init();
1228
1229 kasan_init();
1230
1231 /*
1232 * Sync back kernel address range.
1233 *
1234 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1235 * this call?
1236 */
1237 sync_initial_page_table();
1238
1239 tboot_probe();
1240
1241 map_vsyscall();
1242
1243 generic_apic_probe();
1244
1245 early_quirks();
1246
1247 /*
1248 * Read APIC and some other early information from ACPI tables.
1249 */
1250 acpi_boot_init();
1251 sfi_init();
1252 x86_dtb_init();
1253
1254 /*
1255 * get boot-time SMP configuration:
1256 */
1257 get_smp_config();
1258
1259 /*
1260 * Systems w/o ACPI and mptables might not have it mapped the local
1261 * APIC yet, but prefill_possible_map() might need to access it.
1262 */
1263 init_apic_mappings();
1264
1265 prefill_possible_map();
1266
1267 init_cpu_to_node();
1268
1269 io_apic_init_mappings();
1270
1271 x86_init.hyper.guest_late_init();
1272
1273 e820__reserve_resources();
1274 e820__register_nosave_regions(max_pfn);
1275
1276 x86_init.resources.reserve_resources();
1277
1278 e820__setup_pci_gap();
1279
1280#ifdef CONFIG_VT
1281#if defined(CONFIG_VGA_CONSOLE)
1282 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1283 conswitchp = &vga_con;
1284#elif defined(CONFIG_DUMMY_CONSOLE)
1285 conswitchp = &dummy_con;
1286#endif
1287#endif
1288 x86_init.oem.banner();
1289
1290 x86_init.timers.wallclock_init();
1291
1292 mcheck_init();
1293
1294 register_refined_jiffies(CLOCK_TICK_RATE);
1295
1296#ifdef CONFIG_EFI
1297 if (efi_enabled(EFI_BOOT))
1298 efi_apply_memmap_quirks();
1299#endif
1300
1301 unwind_init();
1302}
1303
1304#ifdef CONFIG_X86_32
1305
1306static struct resource video_ram_resource = {
1307 .name = "Video RAM area",
1308 .start = 0xa0000,
1309 .end = 0xbffff,
1310 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1311};
1312
1313void __init i386_reserve_resources(void)
1314{
1315 request_resource(&iomem_resource, &video_ram_resource);
1316 reserve_standard_io_resources();
1317}
1318
1319#endif /* CONFIG_X86_32 */
1320
1321static struct notifier_block kernel_offset_notifier = {
1322 .notifier_call = dump_kernel_offset
1323};
1324
1325static int __init register_kernel_offset_dumper(void)
1326{
1327 atomic_notifier_chain_register(&panic_notifier_list,
1328 &kernel_offset_notifier);
1329 return 0;
1330}
1331__initcall(register_kernel_offset_dumper);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * This file contains the setup_arch() code, which handles the architecture-dependent
6 * parts of early kernel initialization.
7 */
8#include <linux/console.h>
9#include <linux/crash_dump.h>
10#include <linux/dma-map-ops.h>
11#include <linux/dmi.h>
12#include <linux/efi.h>
13#include <linux/init_ohci1394_dma.h>
14#include <linux/initrd.h>
15#include <linux/iscsi_ibft.h>
16#include <linux/memblock.h>
17#include <linux/panic_notifier.h>
18#include <linux/pci.h>
19#include <linux/root_dev.h>
20#include <linux/hugetlb.h>
21#include <linux/tboot.h>
22#include <linux/usb/xhci-dbgp.h>
23#include <linux/static_call.h>
24#include <linux/swiotlb.h>
25
26#include <uapi/linux/mount.h>
27
28#include <xen/xen.h>
29
30#include <asm/apic.h>
31#include <asm/numa.h>
32#include <asm/bios_ebda.h>
33#include <asm/bugs.h>
34#include <asm/cpu.h>
35#include <asm/efi.h>
36#include <asm/gart.h>
37#include <asm/hypervisor.h>
38#include <asm/io_apic.h>
39#include <asm/kasan.h>
40#include <asm/kaslr.h>
41#include <asm/mce.h>
42#include <asm/mtrr.h>
43#include <asm/realmode.h>
44#include <asm/olpc_ofw.h>
45#include <asm/pci-direct.h>
46#include <asm/prom.h>
47#include <asm/proto.h>
48#include <asm/thermal.h>
49#include <asm/unwind.h>
50#include <asm/vsyscall.h>
51#include <linux/vmalloc.h>
52
53/*
54 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
55 * max_pfn_mapped: highest directly mapped pfn > 4 GB
56 *
57 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
58 * represented by pfn_mapped[].
59 */
60unsigned long max_low_pfn_mapped;
61unsigned long max_pfn_mapped;
62
63#ifdef CONFIG_DMI
64RESERVE_BRK(dmi_alloc, 65536);
65#endif
66
67
68/*
69 * Range of the BSS area. The size of the BSS area is determined
70 * at link time, with RESERVE_BRK() facility reserving additional
71 * chunks.
72 */
73unsigned long _brk_start = (unsigned long)__brk_base;
74unsigned long _brk_end = (unsigned long)__brk_base;
75
76struct boot_params boot_params;
77
78/*
79 * These are the four main kernel memory regions, we put them into
80 * the resource tree so that kdump tools and other debugging tools
81 * recover it:
82 */
83
84static struct resource rodata_resource = {
85 .name = "Kernel rodata",
86 .start = 0,
87 .end = 0,
88 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
89};
90
91static struct resource data_resource = {
92 .name = "Kernel data",
93 .start = 0,
94 .end = 0,
95 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
96};
97
98static struct resource code_resource = {
99 .name = "Kernel code",
100 .start = 0,
101 .end = 0,
102 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
103};
104
105static struct resource bss_resource = {
106 .name = "Kernel bss",
107 .start = 0,
108 .end = 0,
109 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
110};
111
112
113#ifdef CONFIG_X86_32
114/* CPU data as detected by the assembly code in head_32.S */
115struct cpuinfo_x86 new_cpu_data;
116
117/* Common CPU data for all CPUs */
118struct cpuinfo_x86 boot_cpu_data __read_mostly;
119EXPORT_SYMBOL(boot_cpu_data);
120
121unsigned int def_to_bigsmp;
122
123struct apm_info apm_info;
124EXPORT_SYMBOL(apm_info);
125
126#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
127 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
128struct ist_info ist_info;
129EXPORT_SYMBOL(ist_info);
130#else
131struct ist_info ist_info;
132#endif
133
134#else
135struct cpuinfo_x86 boot_cpu_data __read_mostly;
136EXPORT_SYMBOL(boot_cpu_data);
137#endif
138
139
140#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
141__visible unsigned long mmu_cr4_features __ro_after_init;
142#else
143__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
144#endif
145
146/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
147int bootloader_type, bootloader_version;
148
149/*
150 * Setup options
151 */
152struct screen_info screen_info;
153EXPORT_SYMBOL(screen_info);
154struct edid_info edid_info;
155EXPORT_SYMBOL_GPL(edid_info);
156
157extern int root_mountflags;
158
159unsigned long saved_video_mode;
160
161#define RAMDISK_IMAGE_START_MASK 0x07FF
162#define RAMDISK_PROMPT_FLAG 0x8000
163#define RAMDISK_LOAD_FLAG 0x4000
164
165static char __initdata command_line[COMMAND_LINE_SIZE];
166#ifdef CONFIG_CMDLINE_BOOL
167static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
168#endif
169
170#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
171struct edd edd;
172#ifdef CONFIG_EDD_MODULE
173EXPORT_SYMBOL(edd);
174#endif
175/**
176 * copy_edd() - Copy the BIOS EDD information
177 * from boot_params into a safe place.
178 *
179 */
180static inline void __init copy_edd(void)
181{
182 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
183 sizeof(edd.mbr_signature));
184 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
185 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
186 edd.edd_info_nr = boot_params.eddbuf_entries;
187}
188#else
189static inline void __init copy_edd(void)
190{
191}
192#endif
193
194void * __init extend_brk(size_t size, size_t align)
195{
196 size_t mask = align - 1;
197 void *ret;
198
199 BUG_ON(_brk_start == 0);
200 BUG_ON(align & mask);
201
202 _brk_end = (_brk_end + mask) & ~mask;
203 BUG_ON((char *)(_brk_end + size) > __brk_limit);
204
205 ret = (void *)_brk_end;
206 _brk_end += size;
207
208 memset(ret, 0, size);
209
210 return ret;
211}
212
213#ifdef CONFIG_X86_32
214static void __init cleanup_highmap(void)
215{
216}
217#endif
218
219static void __init reserve_brk(void)
220{
221 if (_brk_end > _brk_start)
222 memblock_reserve(__pa_symbol(_brk_start),
223 _brk_end - _brk_start);
224
225 /* Mark brk area as locked down and no longer taking any
226 new allocations */
227 _brk_start = 0;
228}
229
230u64 relocated_ramdisk;
231
232#ifdef CONFIG_BLK_DEV_INITRD
233
234static u64 __init get_ramdisk_image(void)
235{
236 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
237
238 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
239
240 if (ramdisk_image == 0)
241 ramdisk_image = phys_initrd_start;
242
243 return ramdisk_image;
244}
245static u64 __init get_ramdisk_size(void)
246{
247 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
248
249 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
250
251 if (ramdisk_size == 0)
252 ramdisk_size = phys_initrd_size;
253
254 return ramdisk_size;
255}
256
257static void __init relocate_initrd(void)
258{
259 /* Assume only end is not page aligned */
260 u64 ramdisk_image = get_ramdisk_image();
261 u64 ramdisk_size = get_ramdisk_size();
262 u64 area_size = PAGE_ALIGN(ramdisk_size);
263
264 /* We need to move the initrd down into directly mapped mem */
265 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
266 PFN_PHYS(max_pfn_mapped));
267 if (!relocated_ramdisk)
268 panic("Cannot find place for new RAMDISK of size %lld\n",
269 ramdisk_size);
270
271 initrd_start = relocated_ramdisk + PAGE_OFFSET;
272 initrd_end = initrd_start + ramdisk_size;
273 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
274 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
275
276 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
277
278 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
279 " [mem %#010llx-%#010llx]\n",
280 ramdisk_image, ramdisk_image + ramdisk_size - 1,
281 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
282}
283
284static void __init early_reserve_initrd(void)
285{
286 /* Assume only end is not page aligned */
287 u64 ramdisk_image = get_ramdisk_image();
288 u64 ramdisk_size = get_ramdisk_size();
289 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
290
291 if (!boot_params.hdr.type_of_loader ||
292 !ramdisk_image || !ramdisk_size)
293 return; /* No initrd provided by bootloader */
294
295 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
296}
297
298static void __init reserve_initrd(void)
299{
300 /* Assume only end is not page aligned */
301 u64 ramdisk_image = get_ramdisk_image();
302 u64 ramdisk_size = get_ramdisk_size();
303 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
304
305 if (!boot_params.hdr.type_of_loader ||
306 !ramdisk_image || !ramdisk_size)
307 return; /* No initrd provided by bootloader */
308
309 initrd_start = 0;
310
311 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
312 ramdisk_end - 1);
313
314 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
315 PFN_DOWN(ramdisk_end))) {
316 /* All are mapped, easy case */
317 initrd_start = ramdisk_image + PAGE_OFFSET;
318 initrd_end = initrd_start + ramdisk_size;
319 return;
320 }
321
322 relocate_initrd();
323
324 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
325}
326
327#else
328static void __init early_reserve_initrd(void)
329{
330}
331static void __init reserve_initrd(void)
332{
333}
334#endif /* CONFIG_BLK_DEV_INITRD */
335
336static void __init parse_setup_data(void)
337{
338 struct setup_data *data;
339 u64 pa_data, pa_next;
340
341 pa_data = boot_params.hdr.setup_data;
342 while (pa_data) {
343 u32 data_len, data_type;
344
345 data = early_memremap(pa_data, sizeof(*data));
346 data_len = data->len + sizeof(struct setup_data);
347 data_type = data->type;
348 pa_next = data->next;
349 early_memunmap(data, sizeof(*data));
350
351 switch (data_type) {
352 case SETUP_E820_EXT:
353 e820__memory_setup_extended(pa_data, data_len);
354 break;
355 case SETUP_DTB:
356 add_dtb(pa_data);
357 break;
358 case SETUP_EFI:
359 parse_efi_setup(pa_data, data_len);
360 break;
361 default:
362 break;
363 }
364 pa_data = pa_next;
365 }
366}
367
368static void __init memblock_x86_reserve_range_setup_data(void)
369{
370 struct setup_data *data;
371 u64 pa_data;
372
373 pa_data = boot_params.hdr.setup_data;
374 while (pa_data) {
375 data = early_memremap(pa_data, sizeof(*data));
376 memblock_reserve(pa_data, sizeof(*data) + data->len);
377
378 if (data->type == SETUP_INDIRECT &&
379 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
380 memblock_reserve(((struct setup_indirect *)data->data)->addr,
381 ((struct setup_indirect *)data->data)->len);
382
383 pa_data = data->next;
384 early_memunmap(data, sizeof(*data));
385 }
386}
387
388/*
389 * --------- Crashkernel reservation ------------------------------
390 */
391
392#ifdef CONFIG_KEXEC_CORE
393
394/* 16M alignment for crash kernel regions */
395#define CRASH_ALIGN SZ_16M
396
397/*
398 * Keep the crash kernel below this limit.
399 *
400 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
401 * due to mapping restrictions.
402 *
403 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
404 * the upper limit of system RAM in 4-level paging mode. Since the kdump
405 * jump could be from 5-level paging to 4-level paging, the jump will fail if
406 * the kernel is put above 64 TB, and during the 1st kernel bootup there's
407 * no good way to detect the paging mode of the target kernel which will be
408 * loaded for dumping.
409 */
410#ifdef CONFIG_X86_32
411# define CRASH_ADDR_LOW_MAX SZ_512M
412# define CRASH_ADDR_HIGH_MAX SZ_512M
413#else
414# define CRASH_ADDR_LOW_MAX SZ_4G
415# define CRASH_ADDR_HIGH_MAX SZ_64T
416#endif
417
418static int __init reserve_crashkernel_low(void)
419{
420#ifdef CONFIG_X86_64
421 unsigned long long base, low_base = 0, low_size = 0;
422 unsigned long low_mem_limit;
423 int ret;
424
425 low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
426
427 /* crashkernel=Y,low */
428 ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
429 if (ret) {
430 /*
431 * two parts from kernel/dma/swiotlb.c:
432 * -swiotlb size: user-specified with swiotlb= or default.
433 *
434 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
435 * to 8M for other buffers that may need to stay low too. Also
436 * make sure we allocate enough extra low memory so that we
437 * don't run out of DMA buffers for 32-bit devices.
438 */
439 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
440 } else {
441 /* passed with crashkernel=0,low ? */
442 if (!low_size)
443 return 0;
444 }
445
446 low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
447 if (!low_base) {
448 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
449 (unsigned long)(low_size >> 20));
450 return -ENOMEM;
451 }
452
453 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
454 (unsigned long)(low_size >> 20),
455 (unsigned long)(low_base >> 20),
456 (unsigned long)(low_mem_limit >> 20));
457
458 crashk_low_res.start = low_base;
459 crashk_low_res.end = low_base + low_size - 1;
460 insert_resource(&iomem_resource, &crashk_low_res);
461#endif
462 return 0;
463}
464
465static void __init reserve_crashkernel(void)
466{
467 unsigned long long crash_size, crash_base, total_mem;
468 bool high = false;
469 int ret;
470
471 total_mem = memblock_phys_mem_size();
472
473 /* crashkernel=XM */
474 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
475 if (ret != 0 || crash_size <= 0) {
476 /* crashkernel=X,high */
477 ret = parse_crashkernel_high(boot_command_line, total_mem,
478 &crash_size, &crash_base);
479 if (ret != 0 || crash_size <= 0)
480 return;
481 high = true;
482 }
483
484 if (xen_pv_domain()) {
485 pr_info("Ignoring crashkernel for a Xen PV domain\n");
486 return;
487 }
488
489 /* 0 means: find the address automatically */
490 if (!crash_base) {
491 /*
492 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
493 * crashkernel=x,high reserves memory over 4G, also allocates
494 * 256M extra low memory for DMA buffers and swiotlb.
495 * But the extra memory is not required for all machines.
496 * So try low memory first and fall back to high memory
497 * unless "crashkernel=size[KMG],high" is specified.
498 */
499 if (!high)
500 crash_base = memblock_phys_alloc_range(crash_size,
501 CRASH_ALIGN, CRASH_ALIGN,
502 CRASH_ADDR_LOW_MAX);
503 if (!crash_base)
504 crash_base = memblock_phys_alloc_range(crash_size,
505 CRASH_ALIGN, CRASH_ALIGN,
506 CRASH_ADDR_HIGH_MAX);
507 if (!crash_base) {
508 pr_info("crashkernel reservation failed - No suitable area found.\n");
509 return;
510 }
511 } else {
512 unsigned long long start;
513
514 start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
515 crash_base + crash_size);
516 if (start != crash_base) {
517 pr_info("crashkernel reservation failed - memory is in use.\n");
518 return;
519 }
520 }
521
522 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
523 memblock_free(crash_base, crash_size);
524 return;
525 }
526
527 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
528 (unsigned long)(crash_size >> 20),
529 (unsigned long)(crash_base >> 20),
530 (unsigned long)(total_mem >> 20));
531
532 crashk_res.start = crash_base;
533 crashk_res.end = crash_base + crash_size - 1;
534 insert_resource(&iomem_resource, &crashk_res);
535}
536#else
537static void __init reserve_crashkernel(void)
538{
539}
540#endif
541
542static struct resource standard_io_resources[] = {
543 { .name = "dma1", .start = 0x00, .end = 0x1f,
544 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
545 { .name = "pic1", .start = 0x20, .end = 0x21,
546 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
547 { .name = "timer0", .start = 0x40, .end = 0x43,
548 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
549 { .name = "timer1", .start = 0x50, .end = 0x53,
550 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
551 { .name = "keyboard", .start = 0x60, .end = 0x60,
552 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
553 { .name = "keyboard", .start = 0x64, .end = 0x64,
554 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
555 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
556 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
557 { .name = "pic2", .start = 0xa0, .end = 0xa1,
558 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
559 { .name = "dma2", .start = 0xc0, .end = 0xdf,
560 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
561 { .name = "fpu", .start = 0xf0, .end = 0xff,
562 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
563};
564
565void __init reserve_standard_io_resources(void)
566{
567 int i;
568
569 /* request I/O space for devices used on all i[345]86 PCs */
570 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
571 request_resource(&ioport_resource, &standard_io_resources[i]);
572
573}
574
575static __init void reserve_ibft_region(void)
576{
577 unsigned long addr, size = 0;
578
579 addr = find_ibft_region(&size);
580
581 if (size)
582 memblock_reserve(addr, size);
583}
584
585static bool __init snb_gfx_workaround_needed(void)
586{
587#ifdef CONFIG_PCI
588 int i;
589 u16 vendor, devid;
590 static const __initconst u16 snb_ids[] = {
591 0x0102,
592 0x0112,
593 0x0122,
594 0x0106,
595 0x0116,
596 0x0126,
597 0x010a,
598 };
599
600 /* Assume no if something weird is going on with PCI */
601 if (!early_pci_allowed())
602 return false;
603
604 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
605 if (vendor != 0x8086)
606 return false;
607
608 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
609 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
610 if (devid == snb_ids[i])
611 return true;
612#endif
613
614 return false;
615}
616
617/*
618 * Sandy Bridge graphics has trouble with certain ranges, exclude
619 * them from allocation.
620 */
621static void __init trim_snb_memory(void)
622{
623 static const __initconst unsigned long bad_pages[] = {
624 0x20050000,
625 0x20110000,
626 0x20130000,
627 0x20138000,
628 0x40004000,
629 };
630 int i;
631
632 if (!snb_gfx_workaround_needed())
633 return;
634
635 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
636
637 /*
638 * SandyBridge integrated graphics devices have a bug that prevents
639 * them from accessing certain memory ranges, namely anything below
640 * 1M and in the pages listed in bad_pages[] above.
641 *
642 * To avoid these pages being ever accessed by SNB gfx devices reserve
643 * bad_pages that have not already been reserved at boot time.
644 * All memory below the 1 MB mark is anyway reserved later during
645 * setup_arch(), so there is no need to reserve it here.
646 */
647
648 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
649 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
650 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
651 bad_pages[i]);
652 }
653}
654
655static void __init trim_bios_range(void)
656{
657 /*
658 * A special case is the first 4Kb of memory;
659 * This is a BIOS owned area, not kernel ram, but generally
660 * not listed as such in the E820 table.
661 *
662 * This typically reserves additional memory (64KiB by default)
663 * since some BIOSes are known to corrupt low memory. See the
664 * Kconfig help text for X86_RESERVE_LOW.
665 */
666 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
667
668 /*
669 * special case: Some BIOSes report the PC BIOS
670 * area (640Kb -> 1Mb) as RAM even though it is not.
671 * take them out.
672 */
673 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
674
675 e820__update_table(e820_table);
676}
677
678/* called before trim_bios_range() to spare extra sanitize */
679static void __init e820_add_kernel_range(void)
680{
681 u64 start = __pa_symbol(_text);
682 u64 size = __pa_symbol(_end) - start;
683
684 /*
685 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
686 * attempt to fix it by adding the range. We may have a confused BIOS,
687 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
688 * exclude kernel range. If we really are running on top non-RAM,
689 * we will crash later anyways.
690 */
691 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
692 return;
693
694 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
695 e820__range_remove(start, size, E820_TYPE_RAM, 0);
696 e820__range_add(start, size, E820_TYPE_RAM);
697}
698
699static void __init early_reserve_memory(void)
700{
701 /*
702 * Reserve the memory occupied by the kernel between _text and
703 * __end_of_kernel_reserve symbols. Any kernel sections after the
704 * __end_of_kernel_reserve symbol must be explicitly reserved with a
705 * separate memblock_reserve() or they will be discarded.
706 */
707 memblock_reserve(__pa_symbol(_text),
708 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
709
710 /*
711 * The first 4Kb of memory is a BIOS owned area, but generally it is
712 * not listed as such in the E820 table.
713 *
714 * Reserve the first 64K of memory since some BIOSes are known to
715 * corrupt low memory. After the real mode trampoline is allocated the
716 * rest of the memory below 640k is reserved.
717 *
718 * In addition, make sure page 0 is always reserved because on
719 * systems with L1TF its contents can be leaked to user processes.
720 */
721 memblock_reserve(0, SZ_64K);
722
723 early_reserve_initrd();
724
725 if (efi_enabled(EFI_BOOT))
726 efi_memblock_x86_reserve_range();
727
728 memblock_x86_reserve_range_setup_data();
729
730 reserve_ibft_region();
731 reserve_bios_regions();
732 trim_snb_memory();
733}
734
735/*
736 * Dump out kernel offset information on panic.
737 */
738static int
739dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
740{
741 if (kaslr_enabled()) {
742 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
743 kaslr_offset(),
744 __START_KERNEL,
745 __START_KERNEL_map,
746 MODULES_VADDR-1);
747 } else {
748 pr_emerg("Kernel Offset: disabled\n");
749 }
750
751 return 0;
752}
753
754/*
755 * Determine if we were loaded by an EFI loader. If so, then we have also been
756 * passed the efi memmap, systab, etc., so we should use these data structures
757 * for initialization. Note, the efi init code path is determined by the
758 * global efi_enabled. This allows the same kernel image to be used on existing
759 * systems (with a traditional BIOS) as well as on EFI systems.
760 */
761/*
762 * setup_arch - architecture-specific boot-time initializations
763 *
764 * Note: On x86_64, fixmaps are ready for use even before this is called.
765 */
766
767void __init setup_arch(char **cmdline_p)
768{
769#ifdef CONFIG_X86_32
770 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
771
772 /*
773 * copy kernel address range established so far and switch
774 * to the proper swapper page table
775 */
776 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
777 initial_page_table + KERNEL_PGD_BOUNDARY,
778 KERNEL_PGD_PTRS);
779
780 load_cr3(swapper_pg_dir);
781 /*
782 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
783 * a cr3 based tlb flush, so the following __flush_tlb_all()
784 * will not flush anything because the CPU quirk which clears
785 * X86_FEATURE_PGE has not been invoked yet. Though due to the
786 * load_cr3() above the TLB has been flushed already. The
787 * quirk is invoked before subsequent calls to __flush_tlb_all()
788 * so proper operation is guaranteed.
789 */
790 __flush_tlb_all();
791#else
792 printk(KERN_INFO "Command line: %s\n", boot_command_line);
793 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
794#endif
795
796 /*
797 * If we have OLPC OFW, we might end up relocating the fixmap due to
798 * reserve_top(), so do this before touching the ioremap area.
799 */
800 olpc_ofw_detect();
801
802 idt_setup_early_traps();
803 early_cpu_init();
804 jump_label_init();
805 static_call_init();
806 early_ioremap_init();
807
808 setup_olpc_ofw_pgd();
809
810 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
811 screen_info = boot_params.screen_info;
812 edid_info = boot_params.edid_info;
813#ifdef CONFIG_X86_32
814 apm_info.bios = boot_params.apm_bios_info;
815 ist_info = boot_params.ist_info;
816#endif
817 saved_video_mode = boot_params.hdr.vid_mode;
818 bootloader_type = boot_params.hdr.type_of_loader;
819 if ((bootloader_type >> 4) == 0xe) {
820 bootloader_type &= 0xf;
821 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
822 }
823 bootloader_version = bootloader_type & 0xf;
824 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
825
826#ifdef CONFIG_BLK_DEV_RAM
827 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
828#endif
829#ifdef CONFIG_EFI
830 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
831 EFI32_LOADER_SIGNATURE, 4)) {
832 set_bit(EFI_BOOT, &efi.flags);
833 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
834 EFI64_LOADER_SIGNATURE, 4)) {
835 set_bit(EFI_BOOT, &efi.flags);
836 set_bit(EFI_64BIT, &efi.flags);
837 }
838#endif
839
840 x86_init.oem.arch_setup();
841
842 /*
843 * Do some memory reservations *before* memory is added to memblock, so
844 * memblock allocations won't overwrite it.
845 *
846 * After this point, everything still needed from the boot loader or
847 * firmware or kernel text should be early reserved or marked not RAM in
848 * e820. All other memory is free game.
849 *
850 * This call needs to happen before e820__memory_setup() which calls the
851 * xen_memory_setup() on Xen dom0 which relies on the fact that those
852 * early reservations have happened already.
853 */
854 early_reserve_memory();
855
856 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
857 e820__memory_setup();
858 parse_setup_data();
859
860 copy_edd();
861
862 if (!boot_params.hdr.root_flags)
863 root_mountflags &= ~MS_RDONLY;
864 setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
865
866 code_resource.start = __pa_symbol(_text);
867 code_resource.end = __pa_symbol(_etext)-1;
868 rodata_resource.start = __pa_symbol(__start_rodata);
869 rodata_resource.end = __pa_symbol(__end_rodata)-1;
870 data_resource.start = __pa_symbol(_sdata);
871 data_resource.end = __pa_symbol(_edata)-1;
872 bss_resource.start = __pa_symbol(__bss_start);
873 bss_resource.end = __pa_symbol(__bss_stop)-1;
874
875#ifdef CONFIG_CMDLINE_BOOL
876#ifdef CONFIG_CMDLINE_OVERRIDE
877 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
878#else
879 if (builtin_cmdline[0]) {
880 /* append boot loader cmdline to builtin */
881 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
882 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
883 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
884 }
885#endif
886#endif
887
888 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
889 *cmdline_p = command_line;
890
891 /*
892 * x86_configure_nx() is called before parse_early_param() to detect
893 * whether hardware doesn't support NX (so that the early EHCI debug
894 * console setup can safely call set_fixmap()). It may then be called
895 * again from within noexec_setup() during parsing early parameters
896 * to honor the respective command line option.
897 */
898 x86_configure_nx();
899
900 parse_early_param();
901
902#ifdef CONFIG_MEMORY_HOTPLUG
903 /*
904 * Memory used by the kernel cannot be hot-removed because Linux
905 * cannot migrate the kernel pages. When memory hotplug is
906 * enabled, we should prevent memblock from allocating memory
907 * for the kernel.
908 *
909 * ACPI SRAT records all hotpluggable memory ranges. But before
910 * SRAT is parsed, we don't know about it.
911 *
912 * The kernel image is loaded into memory at very early time. We
913 * cannot prevent this anyway. So on NUMA system, we set any
914 * node the kernel resides in as un-hotpluggable.
915 *
916 * Since on modern servers, one node could have double-digit
917 * gigabytes memory, we can assume the memory around the kernel
918 * image is also un-hotpluggable. So before SRAT is parsed, just
919 * allocate memory near the kernel image to try the best to keep
920 * the kernel away from hotpluggable memory.
921 */
922 if (movable_node_is_enabled())
923 memblock_set_bottom_up(true);
924#endif
925
926 x86_report_nx();
927
928 if (acpi_mps_check()) {
929#ifdef CONFIG_X86_LOCAL_APIC
930 disable_apic = 1;
931#endif
932 setup_clear_cpu_cap(X86_FEATURE_APIC);
933 }
934
935 e820__reserve_setup_data();
936 e820__finish_early_params();
937
938 if (efi_enabled(EFI_BOOT))
939 efi_init();
940
941 dmi_setup();
942
943 /*
944 * VMware detection requires dmi to be available, so this
945 * needs to be done after dmi_setup(), for the boot CPU.
946 */
947 init_hypervisor_platform();
948
949 tsc_early_init();
950 x86_init.resources.probe_roms();
951
952 /* after parse_early_param, so could debug it */
953 insert_resource(&iomem_resource, &code_resource);
954 insert_resource(&iomem_resource, &rodata_resource);
955 insert_resource(&iomem_resource, &data_resource);
956 insert_resource(&iomem_resource, &bss_resource);
957
958 e820_add_kernel_range();
959 trim_bios_range();
960#ifdef CONFIG_X86_32
961 if (ppro_with_ram_bug()) {
962 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
963 E820_TYPE_RESERVED);
964 e820__update_table(e820_table);
965 printk(KERN_INFO "fixed physical RAM map:\n");
966 e820__print_table("bad_ppro");
967 }
968#else
969 early_gart_iommu_check();
970#endif
971
972 /*
973 * partially used pages are not usable - thus
974 * we are rounding upwards:
975 */
976 max_pfn = e820__end_of_ram_pfn();
977
978 /* update e820 for memory not covered by WB MTRRs */
979 mtrr_bp_init();
980 if (mtrr_trim_uncached_memory(max_pfn))
981 max_pfn = e820__end_of_ram_pfn();
982
983 max_possible_pfn = max_pfn;
984
985 /*
986 * This call is required when the CPU does not support PAT. If
987 * mtrr_bp_init() invoked it already via pat_init() the call has no
988 * effect.
989 */
990 init_cache_modes();
991
992 /*
993 * Define random base addresses for memory sections after max_pfn is
994 * defined and before each memory section base is used.
995 */
996 kernel_randomize_memory();
997
998#ifdef CONFIG_X86_32
999 /* max_low_pfn get updated here */
1000 find_low_pfn_range();
1001#else
1002 check_x2apic();
1003
1004 /* How many end-of-memory variables you have, grandma! */
1005 /* need this before calling reserve_initrd */
1006 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1007 max_low_pfn = e820__end_of_low_ram_pfn();
1008 else
1009 max_low_pfn = max_pfn;
1010
1011 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1012#endif
1013
1014 /*
1015 * Find and reserve possible boot-time SMP configuration:
1016 */
1017 find_smp_config();
1018
1019 early_alloc_pgt_buf();
1020
1021 /*
1022 * Need to conclude brk, before e820__memblock_setup()
1023 * it could use memblock_find_in_range, could overlap with
1024 * brk area.
1025 */
1026 reserve_brk();
1027
1028 cleanup_highmap();
1029
1030 memblock_set_current_limit(ISA_END_ADDRESS);
1031 e820__memblock_setup();
1032
1033 /*
1034 * Needs to run after memblock setup because it needs the physical
1035 * memory size.
1036 */
1037 sev_setup_arch();
1038
1039 efi_fake_memmap();
1040 efi_find_mirror();
1041 efi_esrt_init();
1042 efi_mokvar_table_init();
1043
1044 /*
1045 * The EFI specification says that boot service code won't be
1046 * called after ExitBootServices(). This is, in fact, a lie.
1047 */
1048 efi_reserve_boot_services();
1049
1050 /* preallocate 4k for mptable mpc */
1051 e820__memblock_alloc_reserved_mpc_new();
1052
1053#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1054 setup_bios_corruption_check();
1055#endif
1056
1057#ifdef CONFIG_X86_32
1058 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1059 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1060#endif
1061
1062 /*
1063 * Find free memory for the real mode trampoline and place it there. If
1064 * there is not enough free memory under 1M, on EFI-enabled systems
1065 * there will be additional attempt to reclaim the memory for the real
1066 * mode trampoline at efi_free_boot_services().
1067 *
1068 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1069 * are known to corrupt low memory and several hundred kilobytes are not
1070 * worth complex detection what memory gets clobbered. Windows does the
1071 * same thing for very similar reasons.
1072 *
1073 * Moreover, on machines with SandyBridge graphics or in setups that use
1074 * crashkernel the entire 1M is reserved anyway.
1075 */
1076 reserve_real_mode();
1077
1078 init_mem_mapping();
1079
1080 idt_setup_early_pf();
1081
1082 /*
1083 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1084 * with the current CR4 value. This may not be necessary, but
1085 * auditing all the early-boot CR4 manipulation would be needed to
1086 * rule it out.
1087 *
1088 * Mask off features that don't work outside long mode (just
1089 * PCIDE for now).
1090 */
1091 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1092
1093 memblock_set_current_limit(get_max_mapped());
1094
1095 /*
1096 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1097 */
1098
1099#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1100 if (init_ohci1394_dma_early)
1101 init_ohci1394_dma_on_all_controllers();
1102#endif
1103 /* Allocate bigger log buffer */
1104 setup_log_buf(1);
1105
1106 if (efi_enabled(EFI_BOOT)) {
1107 switch (boot_params.secure_boot) {
1108 case efi_secureboot_mode_disabled:
1109 pr_info("Secure boot disabled\n");
1110 break;
1111 case efi_secureboot_mode_enabled:
1112 pr_info("Secure boot enabled\n");
1113 break;
1114 default:
1115 pr_info("Secure boot could not be determined\n");
1116 break;
1117 }
1118 }
1119
1120 reserve_initrd();
1121
1122 acpi_table_upgrade();
1123 /* Look for ACPI tables and reserve memory occupied by them. */
1124 acpi_boot_table_init();
1125
1126 vsmp_init();
1127
1128 io_delay_init();
1129
1130 early_platform_quirks();
1131
1132 early_acpi_boot_init();
1133
1134 initmem_init();
1135 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1136
1137 if (boot_cpu_has(X86_FEATURE_GBPAGES))
1138 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1139
1140 /*
1141 * Reserve memory for crash kernel after SRAT is parsed so that it
1142 * won't consume hotpluggable memory.
1143 */
1144 reserve_crashkernel();
1145
1146 memblock_find_dma_reserve();
1147
1148 if (!early_xdbc_setup_hardware())
1149 early_xdbc_register_console();
1150
1151 x86_init.paging.pagetable_init();
1152
1153 kasan_init();
1154
1155 /*
1156 * Sync back kernel address range.
1157 *
1158 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1159 * this call?
1160 */
1161 sync_initial_page_table();
1162
1163 tboot_probe();
1164
1165 map_vsyscall();
1166
1167 generic_apic_probe();
1168
1169 early_quirks();
1170
1171 /*
1172 * Read APIC and some other early information from ACPI tables.
1173 */
1174 acpi_boot_init();
1175 x86_dtb_init();
1176
1177 /*
1178 * get boot-time SMP configuration:
1179 */
1180 get_smp_config();
1181
1182 /*
1183 * Systems w/o ACPI and mptables might not have it mapped the local
1184 * APIC yet, but prefill_possible_map() might need to access it.
1185 */
1186 init_apic_mappings();
1187
1188 prefill_possible_map();
1189
1190 init_cpu_to_node();
1191 init_gi_nodes();
1192
1193 io_apic_init_mappings();
1194
1195 x86_init.hyper.guest_late_init();
1196
1197 e820__reserve_resources();
1198 e820__register_nosave_regions(max_pfn);
1199
1200 x86_init.resources.reserve_resources();
1201
1202 e820__setup_pci_gap();
1203
1204#ifdef CONFIG_VT
1205#if defined(CONFIG_VGA_CONSOLE)
1206 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1207 conswitchp = &vga_con;
1208#endif
1209#endif
1210 x86_init.oem.banner();
1211
1212 x86_init.timers.wallclock_init();
1213
1214 /*
1215 * This needs to run before setup_local_APIC() which soft-disables the
1216 * local APIC temporarily and that masks the thermal LVT interrupt,
1217 * leading to softlockups on machines which have configured SMI
1218 * interrupt delivery.
1219 */
1220 therm_lvt_init();
1221
1222 mcheck_init();
1223
1224 register_refined_jiffies(CLOCK_TICK_RATE);
1225
1226#ifdef CONFIG_EFI
1227 if (efi_enabled(EFI_BOOT))
1228 efi_apply_memmap_quirks();
1229#endif
1230
1231 unwind_init();
1232}
1233
1234#ifdef CONFIG_X86_32
1235
1236static struct resource video_ram_resource = {
1237 .name = "Video RAM area",
1238 .start = 0xa0000,
1239 .end = 0xbffff,
1240 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1241};
1242
1243void __init i386_reserve_resources(void)
1244{
1245 request_resource(&iomem_resource, &video_ram_resource);
1246 reserve_standard_io_resources();
1247}
1248
1249#endif /* CONFIG_X86_32 */
1250
1251static struct notifier_block kernel_offset_notifier = {
1252 .notifier_call = dump_kernel_offset
1253};
1254
1255static int __init register_kernel_offset_dumper(void)
1256{
1257 atomic_notifier_chain_register(&panic_notifier_list,
1258 &kernel_offset_notifier);
1259 return 0;
1260}
1261__initcall(register_kernel_offset_dumper);