Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 *
7 * Memory region support
8 * David Parsons <orc@pell.chi.il.us>, July-August 1999
9 *
10 * Added E820 sanitization routine (removes overlapping memory regions);
11 * Brian Moyle <bmoyle@mvista.com>, February 2001
12 *
13 * Moved CPU detection code to cpu/${cpu}.c
14 * Patrick Mochel <mochel@osdl.org>, March 2002
15 *
16 * Provisions for empty E820 memory regions (reported by certain BIOSes).
17 * Alex Achenbach <xela@slit.de>, December 2002.
18 *
19 */
20
21/*
22 * This file handles the architecture-dependent parts of initialization
23 */
24
25#include <linux/sched.h>
26#include <linux/mm.h>
27#include <linux/mmzone.h>
28#include <linux/screen_info.h>
29#include <linux/ioport.h>
30#include <linux/acpi.h>
31#include <linux/sfi.h>
32#include <linux/apm_bios.h>
33#include <linux/initrd.h>
34#include <linux/memblock.h>
35#include <linux/seq_file.h>
36#include <linux/console.h>
37#include <linux/root_dev.h>
38#include <linux/highmem.h>
39#include <linux/export.h>
40#include <linux/efi.h>
41#include <linux/init.h>
42#include <linux/edd.h>
43#include <linux/iscsi_ibft.h>
44#include <linux/nodemask.h>
45#include <linux/kexec.h>
46#include <linux/dmi.h>
47#include <linux/pfn.h>
48#include <linux/pci.h>
49#include <asm/pci-direct.h>
50#include <linux/init_ohci1394_dma.h>
51#include <linux/kvm_para.h>
52#include <linux/dma-contiguous.h>
53#include <xen/xen.h>
54#include <uapi/linux/mount.h>
55
56#include <linux/errno.h>
57#include <linux/kernel.h>
58#include <linux/stddef.h>
59#include <linux/unistd.h>
60#include <linux/ptrace.h>
61#include <linux/user.h>
62#include <linux/delay.h>
63
64#include <linux/kallsyms.h>
65#include <linux/cpufreq.h>
66#include <linux/dma-mapping.h>
67#include <linux/ctype.h>
68#include <linux/uaccess.h>
69
70#include <linux/percpu.h>
71#include <linux/crash_dump.h>
72#include <linux/tboot.h>
73#include <linux/jiffies.h>
74#include <linux/mem_encrypt.h>
75#include <linux/sizes.h>
76
77#include <linux/usb/xhci-dbgp.h>
78#include <video/edid.h>
79
80#include <asm/mtrr.h>
81#include <asm/apic.h>
82#include <asm/realmode.h>
83#include <asm/e820/api.h>
84#include <asm/mpspec.h>
85#include <asm/setup.h>
86#include <asm/efi.h>
87#include <asm/timer.h>
88#include <asm/i8259.h>
89#include <asm/sections.h>
90#include <asm/io_apic.h>
91#include <asm/ist.h>
92#include <asm/setup_arch.h>
93#include <asm/bios_ebda.h>
94#include <asm/cacheflush.h>
95#include <asm/processor.h>
96#include <asm/bugs.h>
97#include <asm/kasan.h>
98
99#include <asm/vsyscall.h>
100#include <asm/cpu.h>
101#include <asm/desc.h>
102#include <asm/dma.h>
103#include <asm/iommu.h>
104#include <asm/gart.h>
105#include <asm/mmu_context.h>
106#include <asm/proto.h>
107
108#include <asm/paravirt.h>
109#include <asm/hypervisor.h>
110#include <asm/olpc_ofw.h>
111
112#include <asm/percpu.h>
113#include <asm/topology.h>
114#include <asm/apicdef.h>
115#include <asm/amd_nb.h>
116#include <asm/mce.h>
117#include <asm/alternative.h>
118#include <asm/prom.h>
119#include <asm/microcode.h>
120#include <asm/kaslr.h>
121#include <asm/unwind.h>
122
123/*
124 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
125 * max_pfn_mapped: highest direct mapped pfn over 4GB
126 *
127 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
128 * represented by pfn_mapped
129 */
130unsigned long max_low_pfn_mapped;
131unsigned long max_pfn_mapped;
132
133#ifdef CONFIG_DMI
134RESERVE_BRK(dmi_alloc, 65536);
135#endif
136
137
138static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
139unsigned long _brk_end = (unsigned long)__brk_base;
140
141struct boot_params boot_params;
142
143/*
144 * Machine setup..
145 */
146static struct resource data_resource = {
147 .name = "Kernel data",
148 .start = 0,
149 .end = 0,
150 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
151};
152
153static struct resource code_resource = {
154 .name = "Kernel code",
155 .start = 0,
156 .end = 0,
157 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
158};
159
160static struct resource bss_resource = {
161 .name = "Kernel bss",
162 .start = 0,
163 .end = 0,
164 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
165};
166
167
168#ifdef CONFIG_X86_32
169/* cpu data as detected by the assembly code in head_32.S */
170struct cpuinfo_x86 new_cpu_data;
171
172/* common cpu data for all cpus */
173struct cpuinfo_x86 boot_cpu_data __read_mostly;
174EXPORT_SYMBOL(boot_cpu_data);
175
176unsigned int def_to_bigsmp;
177
178/* for MCA, but anyone else can use it if they want */
179unsigned int machine_id;
180unsigned int machine_submodel_id;
181unsigned int BIOS_revision;
182
183struct apm_info apm_info;
184EXPORT_SYMBOL(apm_info);
185
186#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
187 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
188struct ist_info ist_info;
189EXPORT_SYMBOL(ist_info);
190#else
191struct ist_info ist_info;
192#endif
193
194#else
195struct cpuinfo_x86 boot_cpu_data __read_mostly;
196EXPORT_SYMBOL(boot_cpu_data);
197#endif
198
199
200#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
201__visible unsigned long mmu_cr4_features __ro_after_init;
202#else
203__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
204#endif
205
206/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
207int bootloader_type, bootloader_version;
208
209/*
210 * Setup options
211 */
212struct screen_info screen_info;
213EXPORT_SYMBOL(screen_info);
214struct edid_info edid_info;
215EXPORT_SYMBOL_GPL(edid_info);
216
217extern int root_mountflags;
218
219unsigned long saved_video_mode;
220
221#define RAMDISK_IMAGE_START_MASK 0x07FF
222#define RAMDISK_PROMPT_FLAG 0x8000
223#define RAMDISK_LOAD_FLAG 0x4000
224
225static char __initdata command_line[COMMAND_LINE_SIZE];
226#ifdef CONFIG_CMDLINE_BOOL
227static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
228#endif
229
230#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
231struct edd edd;
232#ifdef CONFIG_EDD_MODULE
233EXPORT_SYMBOL(edd);
234#endif
235/**
236 * copy_edd() - Copy the BIOS EDD information
237 * from boot_params into a safe place.
238 *
239 */
240static inline void __init copy_edd(void)
241{
242 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
243 sizeof(edd.mbr_signature));
244 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
245 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
246 edd.edd_info_nr = boot_params.eddbuf_entries;
247}
248#else
249static inline void __init copy_edd(void)
250{
251}
252#endif
253
254void * __init extend_brk(size_t size, size_t align)
255{
256 size_t mask = align - 1;
257 void *ret;
258
259 BUG_ON(_brk_start == 0);
260 BUG_ON(align & mask);
261
262 _brk_end = (_brk_end + mask) & ~mask;
263 BUG_ON((char *)(_brk_end + size) > __brk_limit);
264
265 ret = (void *)_brk_end;
266 _brk_end += size;
267
268 memset(ret, 0, size);
269
270 return ret;
271}
272
273#ifdef CONFIG_X86_32
274static void __init cleanup_highmap(void)
275{
276}
277#endif
278
279static void __init reserve_brk(void)
280{
281 if (_brk_end > _brk_start)
282 memblock_reserve(__pa_symbol(_brk_start),
283 _brk_end - _brk_start);
284
285 /* Mark brk area as locked down and no longer taking any
286 new allocations */
287 _brk_start = 0;
288}
289
290u64 relocated_ramdisk;
291
292#ifdef CONFIG_BLK_DEV_INITRD
293
294static u64 __init get_ramdisk_image(void)
295{
296 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
297
298 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
299
300 return ramdisk_image;
301}
302static u64 __init get_ramdisk_size(void)
303{
304 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
305
306 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
307
308 return ramdisk_size;
309}
310
311static void __init relocate_initrd(void)
312{
313 /* Assume only end is not page aligned */
314 u64 ramdisk_image = get_ramdisk_image();
315 u64 ramdisk_size = get_ramdisk_size();
316 u64 area_size = PAGE_ALIGN(ramdisk_size);
317
318 /* We need to move the initrd down into directly mapped mem */
319 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
320 area_size, PAGE_SIZE);
321
322 if (!relocated_ramdisk)
323 panic("Cannot find place for new RAMDISK of size %lld\n",
324 ramdisk_size);
325
326 /* Note: this includes all the mem currently occupied by
327 the initrd, we rely on that fact to keep the data intact. */
328 memblock_reserve(relocated_ramdisk, area_size);
329 initrd_start = relocated_ramdisk + PAGE_OFFSET;
330 initrd_end = initrd_start + ramdisk_size;
331 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
332 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
333
334 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
335
336 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
337 " [mem %#010llx-%#010llx]\n",
338 ramdisk_image, ramdisk_image + ramdisk_size - 1,
339 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
340}
341
342static void __init early_reserve_initrd(void)
343{
344 /* Assume only end is not page aligned */
345 u64 ramdisk_image = get_ramdisk_image();
346 u64 ramdisk_size = get_ramdisk_size();
347 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
348
349 if (!boot_params.hdr.type_of_loader ||
350 !ramdisk_image || !ramdisk_size)
351 return; /* No initrd provided by bootloader */
352
353 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
354}
355static void __init reserve_initrd(void)
356{
357 /* Assume only end is not page aligned */
358 u64 ramdisk_image = get_ramdisk_image();
359 u64 ramdisk_size = get_ramdisk_size();
360 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
361 u64 mapped_size;
362
363 if (!boot_params.hdr.type_of_loader ||
364 !ramdisk_image || !ramdisk_size)
365 return; /* No initrd provided by bootloader */
366
367 initrd_start = 0;
368
369 mapped_size = memblock_mem_size(max_pfn_mapped);
370 if (ramdisk_size >= (mapped_size>>1))
371 panic("initrd too large to handle, "
372 "disabling initrd (%lld needed, %lld available)\n",
373 ramdisk_size, mapped_size>>1);
374
375 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
376 ramdisk_end - 1);
377
378 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
379 PFN_DOWN(ramdisk_end))) {
380 /* All are mapped, easy case */
381 initrd_start = ramdisk_image + PAGE_OFFSET;
382 initrd_end = initrd_start + ramdisk_size;
383 return;
384 }
385
386 relocate_initrd();
387
388 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
389}
390
391#else
392static void __init early_reserve_initrd(void)
393{
394}
395static void __init reserve_initrd(void)
396{
397}
398#endif /* CONFIG_BLK_DEV_INITRD */
399
400static void __init parse_setup_data(void)
401{
402 struct setup_data *data;
403 u64 pa_data, pa_next;
404
405 pa_data = boot_params.hdr.setup_data;
406 while (pa_data) {
407 u32 data_len, data_type;
408
409 data = early_memremap(pa_data, sizeof(*data));
410 data_len = data->len + sizeof(struct setup_data);
411 data_type = data->type;
412 pa_next = data->next;
413 early_memunmap(data, sizeof(*data));
414
415 switch (data_type) {
416 case SETUP_E820_EXT:
417 e820__memory_setup_extended(pa_data, data_len);
418 break;
419 case SETUP_DTB:
420 add_dtb(pa_data);
421 break;
422 case SETUP_EFI:
423 parse_efi_setup(pa_data, data_len);
424 break;
425 default:
426 break;
427 }
428 pa_data = pa_next;
429 }
430}
431
432static void __init memblock_x86_reserve_range_setup_data(void)
433{
434 struct setup_data *data;
435 u64 pa_data;
436
437 pa_data = boot_params.hdr.setup_data;
438 while (pa_data) {
439 data = early_memremap(pa_data, sizeof(*data));
440 memblock_reserve(pa_data, sizeof(*data) + data->len);
441 pa_data = data->next;
442 early_memunmap(data, sizeof(*data));
443 }
444}
445
446/*
447 * --------- Crashkernel reservation ------------------------------
448 */
449
450#ifdef CONFIG_KEXEC_CORE
451
452/* 16M alignment for crash kernel regions */
453#define CRASH_ALIGN SZ_16M
454
455/*
456 * Keep the crash kernel below this limit.
457 *
458 * On 32 bits earlier kernels would limit the kernel to the low 512 MiB
459 * due to mapping restrictions.
460 *
461 * On 64bit, kdump kernel need be restricted to be under 64TB, which is
462 * the upper limit of system RAM in 4-level paing mode. Since the kdump
463 * jumping could be from 5-level to 4-level, the jumping will fail if
464 * kernel is put above 64TB, and there's no way to detect the paging mode
465 * of the kernel which will be loaded for dumping during the 1st kernel
466 * bootup.
467 */
468#ifdef CONFIG_X86_32
469# define CRASH_ADDR_LOW_MAX SZ_512M
470# define CRASH_ADDR_HIGH_MAX SZ_512M
471#else
472# define CRASH_ADDR_LOW_MAX SZ_4G
473# define CRASH_ADDR_HIGH_MAX SZ_64T
474#endif
475
476static int __init reserve_crashkernel_low(void)
477{
478#ifdef CONFIG_X86_64
479 unsigned long long base, low_base = 0, low_size = 0;
480 unsigned long total_low_mem;
481 int ret;
482
483 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
484
485 /* crashkernel=Y,low */
486 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
487 if (ret) {
488 /*
489 * two parts from kernel/dma/swiotlb.c:
490 * -swiotlb size: user-specified with swiotlb= or default.
491 *
492 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
493 * to 8M for other buffers that may need to stay low too. Also
494 * make sure we allocate enough extra low memory so that we
495 * don't run out of DMA buffers for 32-bit devices.
496 */
497 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
498 } else {
499 /* passed with crashkernel=0,low ? */
500 if (!low_size)
501 return 0;
502 }
503
504 low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
505 if (!low_base) {
506 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
507 (unsigned long)(low_size >> 20));
508 return -ENOMEM;
509 }
510
511 ret = memblock_reserve(low_base, low_size);
512 if (ret) {
513 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
514 return ret;
515 }
516
517 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
518 (unsigned long)(low_size >> 20),
519 (unsigned long)(low_base >> 20),
520 (unsigned long)(total_low_mem >> 20));
521
522 crashk_low_res.start = low_base;
523 crashk_low_res.end = low_base + low_size - 1;
524 insert_resource(&iomem_resource, &crashk_low_res);
525#endif
526 return 0;
527}
528
529static void __init reserve_crashkernel(void)
530{
531 unsigned long long crash_size, crash_base, total_mem;
532 bool high = false;
533 int ret;
534
535 total_mem = memblock_phys_mem_size();
536
537 /* crashkernel=XM */
538 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
539 if (ret != 0 || crash_size <= 0) {
540 /* crashkernel=X,high */
541 ret = parse_crashkernel_high(boot_command_line, total_mem,
542 &crash_size, &crash_base);
543 if (ret != 0 || crash_size <= 0)
544 return;
545 high = true;
546 }
547
548 if (xen_pv_domain()) {
549 pr_info("Ignoring crashkernel for a Xen PV domain\n");
550 return;
551 }
552
553 /* 0 means: find the address automatically */
554 if (!crash_base) {
555 /*
556 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
557 * crashkernel=x,high reserves memory over 4G, also allocates
558 * 256M extra low memory for DMA buffers and swiotlb.
559 * But the extra memory is not required for all machines.
560 * So try low memory first and fall back to high memory
561 * unless "crashkernel=size[KMG],high" is specified.
562 */
563 if (!high)
564 crash_base = memblock_find_in_range(CRASH_ALIGN,
565 CRASH_ADDR_LOW_MAX,
566 crash_size, CRASH_ALIGN);
567 if (!crash_base)
568 crash_base = memblock_find_in_range(CRASH_ALIGN,
569 CRASH_ADDR_HIGH_MAX,
570 crash_size, CRASH_ALIGN);
571 if (!crash_base) {
572 pr_info("crashkernel reservation failed - No suitable area found.\n");
573 return;
574 }
575 } else {
576 unsigned long long start;
577
578 start = memblock_find_in_range(crash_base,
579 crash_base + crash_size,
580 crash_size, 1 << 20);
581 if (start != crash_base) {
582 pr_info("crashkernel reservation failed - memory is in use.\n");
583 return;
584 }
585 }
586 ret = memblock_reserve(crash_base, crash_size);
587 if (ret) {
588 pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
589 return;
590 }
591
592 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
593 memblock_free(crash_base, crash_size);
594 return;
595 }
596
597 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
598 (unsigned long)(crash_size >> 20),
599 (unsigned long)(crash_base >> 20),
600 (unsigned long)(total_mem >> 20));
601
602 crashk_res.start = crash_base;
603 crashk_res.end = crash_base + crash_size - 1;
604 insert_resource(&iomem_resource, &crashk_res);
605}
606#else
607static void __init reserve_crashkernel(void)
608{
609}
610#endif
611
612static struct resource standard_io_resources[] = {
613 { .name = "dma1", .start = 0x00, .end = 0x1f,
614 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
615 { .name = "pic1", .start = 0x20, .end = 0x21,
616 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
617 { .name = "timer0", .start = 0x40, .end = 0x43,
618 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
619 { .name = "timer1", .start = 0x50, .end = 0x53,
620 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
621 { .name = "keyboard", .start = 0x60, .end = 0x60,
622 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
623 { .name = "keyboard", .start = 0x64, .end = 0x64,
624 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
625 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
626 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
627 { .name = "pic2", .start = 0xa0, .end = 0xa1,
628 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
629 { .name = "dma2", .start = 0xc0, .end = 0xdf,
630 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
631 { .name = "fpu", .start = 0xf0, .end = 0xff,
632 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
633};
634
635void __init reserve_standard_io_resources(void)
636{
637 int i;
638
639 /* request I/O space for devices used on all i[345]86 PCs */
640 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
641 request_resource(&ioport_resource, &standard_io_resources[i]);
642
643}
644
645static __init void reserve_ibft_region(void)
646{
647 unsigned long addr, size = 0;
648
649 addr = find_ibft_region(&size);
650
651 if (size)
652 memblock_reserve(addr, size);
653}
654
655static bool __init snb_gfx_workaround_needed(void)
656{
657#ifdef CONFIG_PCI
658 int i;
659 u16 vendor, devid;
660 static const __initconst u16 snb_ids[] = {
661 0x0102,
662 0x0112,
663 0x0122,
664 0x0106,
665 0x0116,
666 0x0126,
667 0x010a,
668 };
669
670 /* Assume no if something weird is going on with PCI */
671 if (!early_pci_allowed())
672 return false;
673
674 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
675 if (vendor != 0x8086)
676 return false;
677
678 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
679 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
680 if (devid == snb_ids[i])
681 return true;
682#endif
683
684 return false;
685}
686
687/*
688 * Sandy Bridge graphics has trouble with certain ranges, exclude
689 * them from allocation.
690 */
691static void __init trim_snb_memory(void)
692{
693 static const __initconst unsigned long bad_pages[] = {
694 0x20050000,
695 0x20110000,
696 0x20130000,
697 0x20138000,
698 0x40004000,
699 };
700 int i;
701
702 if (!snb_gfx_workaround_needed())
703 return;
704
705 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
706
707 /*
708 * Reserve all memory below the 1 MB mark that has not
709 * already been reserved.
710 */
711 memblock_reserve(0, 1<<20);
712
713 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
714 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
715 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
716 bad_pages[i]);
717 }
718}
719
720/*
721 * Here we put platform-specific memory range workarounds, i.e.
722 * memory known to be corrupt or otherwise in need to be reserved on
723 * specific platforms.
724 *
725 * If this gets used more widely it could use a real dispatch mechanism.
726 */
727static void __init trim_platform_memory_ranges(void)
728{
729 trim_snb_memory();
730}
731
732static void __init trim_bios_range(void)
733{
734 /*
735 * A special case is the first 4Kb of memory;
736 * This is a BIOS owned area, not kernel ram, but generally
737 * not listed as such in the E820 table.
738 *
739 * This typically reserves additional memory (64KiB by default)
740 * since some BIOSes are known to corrupt low memory. See the
741 * Kconfig help text for X86_RESERVE_LOW.
742 */
743 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
744
745 /*
746 * special case: Some BIOSen report the PC BIOS
747 * area (640->1Mb) as ram even though it is not.
748 * take them out.
749 */
750 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
751
752 e820__update_table(e820_table);
753}
754
755/* called before trim_bios_range() to spare extra sanitize */
756static void __init e820_add_kernel_range(void)
757{
758 u64 start = __pa_symbol(_text);
759 u64 size = __pa_symbol(_end) - start;
760
761 /*
762 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
763 * attempt to fix it by adding the range. We may have a confused BIOS,
764 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
765 * exclude kernel range. If we really are running on top non-RAM,
766 * we will crash later anyways.
767 */
768 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
769 return;
770
771 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
772 e820__range_remove(start, size, E820_TYPE_RAM, 0);
773 e820__range_add(start, size, E820_TYPE_RAM);
774}
775
776static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
777
778static int __init parse_reservelow(char *p)
779{
780 unsigned long long size;
781
782 if (!p)
783 return -EINVAL;
784
785 size = memparse(p, &p);
786
787 if (size < 4096)
788 size = 4096;
789
790 if (size > 640*1024)
791 size = 640*1024;
792
793 reserve_low = size;
794
795 return 0;
796}
797
798early_param("reservelow", parse_reservelow);
799
800static void __init trim_low_memory_range(void)
801{
802 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
803}
804
805/*
806 * Dump out kernel offset information on panic.
807 */
808static int
809dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
810{
811 if (kaslr_enabled()) {
812 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
813 kaslr_offset(),
814 __START_KERNEL,
815 __START_KERNEL_map,
816 MODULES_VADDR-1);
817 } else {
818 pr_emerg("Kernel Offset: disabled\n");
819 }
820
821 return 0;
822}
823
824/*
825 * Determine if we were loaded by an EFI loader. If so, then we have also been
826 * passed the efi memmap, systab, etc., so we should use these data structures
827 * for initialization. Note, the efi init code path is determined by the
828 * global efi_enabled. This allows the same kernel image to be used on existing
829 * systems (with a traditional BIOS) as well as on EFI systems.
830 */
831/*
832 * setup_arch - architecture-specific boot-time initializations
833 *
834 * Note: On x86_64, fixmaps are ready for use even before this is called.
835 */
836
837void __init setup_arch(char **cmdline_p)
838{
839 /*
840 * Reserve the memory occupied by the kernel between _text and
841 * __end_of_kernel_reserve symbols. Any kernel sections after the
842 * __end_of_kernel_reserve symbol must be explicitly reserved with a
843 * separate memblock_reserve() or they will be discarded.
844 */
845 memblock_reserve(__pa_symbol(_text),
846 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
847
848 /*
849 * Make sure page 0 is always reserved because on systems with
850 * L1TF its contents can be leaked to user processes.
851 */
852 memblock_reserve(0, PAGE_SIZE);
853
854 early_reserve_initrd();
855
856 /*
857 * At this point everything still needed from the boot loader
858 * or BIOS or kernel text should be early reserved or marked not
859 * RAM in e820. All other memory is free game.
860 */
861
862#ifdef CONFIG_X86_32
863 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
864
865 /*
866 * copy kernel address range established so far and switch
867 * to the proper swapper page table
868 */
869 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
870 initial_page_table + KERNEL_PGD_BOUNDARY,
871 KERNEL_PGD_PTRS);
872
873 load_cr3(swapper_pg_dir);
874 /*
875 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
876 * a cr3 based tlb flush, so the following __flush_tlb_all()
877 * will not flush anything because the cpu quirk which clears
878 * X86_FEATURE_PGE has not been invoked yet. Though due to the
879 * load_cr3() above the TLB has been flushed already. The
880 * quirk is invoked before subsequent calls to __flush_tlb_all()
881 * so proper operation is guaranteed.
882 */
883 __flush_tlb_all();
884#else
885 printk(KERN_INFO "Command line: %s\n", boot_command_line);
886 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
887#endif
888
889 /*
890 * If we have OLPC OFW, we might end up relocating the fixmap due to
891 * reserve_top(), so do this before touching the ioremap area.
892 */
893 olpc_ofw_detect();
894
895 idt_setup_early_traps();
896 early_cpu_init();
897 arch_init_ideal_nops();
898 jump_label_init();
899 early_ioremap_init();
900
901 setup_olpc_ofw_pgd();
902
903 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
904 screen_info = boot_params.screen_info;
905 edid_info = boot_params.edid_info;
906#ifdef CONFIG_X86_32
907 apm_info.bios = boot_params.apm_bios_info;
908 ist_info = boot_params.ist_info;
909#endif
910 saved_video_mode = boot_params.hdr.vid_mode;
911 bootloader_type = boot_params.hdr.type_of_loader;
912 if ((bootloader_type >> 4) == 0xe) {
913 bootloader_type &= 0xf;
914 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
915 }
916 bootloader_version = bootloader_type & 0xf;
917 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
918
919#ifdef CONFIG_BLK_DEV_RAM
920 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
921 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
922 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
923#endif
924#ifdef CONFIG_EFI
925 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
926 EFI32_LOADER_SIGNATURE, 4)) {
927 set_bit(EFI_BOOT, &efi.flags);
928 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
929 EFI64_LOADER_SIGNATURE, 4)) {
930 set_bit(EFI_BOOT, &efi.flags);
931 set_bit(EFI_64BIT, &efi.flags);
932 }
933#endif
934
935 x86_init.oem.arch_setup();
936
937 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
938 e820__memory_setup();
939 parse_setup_data();
940
941 copy_edd();
942
943 if (!boot_params.hdr.root_flags)
944 root_mountflags &= ~MS_RDONLY;
945 init_mm.start_code = (unsigned long) _text;
946 init_mm.end_code = (unsigned long) _etext;
947 init_mm.end_data = (unsigned long) _edata;
948 init_mm.brk = _brk_end;
949
950 mpx_mm_init(&init_mm);
951
952 code_resource.start = __pa_symbol(_text);
953 code_resource.end = __pa_symbol(_etext)-1;
954 data_resource.start = __pa_symbol(_etext);
955 data_resource.end = __pa_symbol(_edata)-1;
956 bss_resource.start = __pa_symbol(__bss_start);
957 bss_resource.end = __pa_symbol(__bss_stop)-1;
958
959#ifdef CONFIG_CMDLINE_BOOL
960#ifdef CONFIG_CMDLINE_OVERRIDE
961 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
962#else
963 if (builtin_cmdline[0]) {
964 /* append boot loader cmdline to builtin */
965 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
966 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
967 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
968 }
969#endif
970#endif
971
972 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
973 *cmdline_p = command_line;
974
975 /*
976 * x86_configure_nx() is called before parse_early_param() to detect
977 * whether hardware doesn't support NX (so that the early EHCI debug
978 * console setup can safely call set_fixmap()). It may then be called
979 * again from within noexec_setup() during parsing early parameters
980 * to honor the respective command line option.
981 */
982 x86_configure_nx();
983
984 parse_early_param();
985
986 if (efi_enabled(EFI_BOOT))
987 efi_memblock_x86_reserve_range();
988#ifdef CONFIG_MEMORY_HOTPLUG
989 /*
990 * Memory used by the kernel cannot be hot-removed because Linux
991 * cannot migrate the kernel pages. When memory hotplug is
992 * enabled, we should prevent memblock from allocating memory
993 * for the kernel.
994 *
995 * ACPI SRAT records all hotpluggable memory ranges. But before
996 * SRAT is parsed, we don't know about it.
997 *
998 * The kernel image is loaded into memory at very early time. We
999 * cannot prevent this anyway. So on NUMA system, we set any
1000 * node the kernel resides in as un-hotpluggable.
1001 *
1002 * Since on modern servers, one node could have double-digit
1003 * gigabytes memory, we can assume the memory around the kernel
1004 * image is also un-hotpluggable. So before SRAT is parsed, just
1005 * allocate memory near the kernel image to try the best to keep
1006 * the kernel away from hotpluggable memory.
1007 */
1008 if (movable_node_is_enabled())
1009 memblock_set_bottom_up(true);
1010#endif
1011
1012 x86_report_nx();
1013
1014 /* after early param, so could get panic from serial */
1015 memblock_x86_reserve_range_setup_data();
1016
1017 if (acpi_mps_check()) {
1018#ifdef CONFIG_X86_LOCAL_APIC
1019 disable_apic = 1;
1020#endif
1021 setup_clear_cpu_cap(X86_FEATURE_APIC);
1022 }
1023
1024 e820__reserve_setup_data();
1025 e820__finish_early_params();
1026
1027 if (efi_enabled(EFI_BOOT))
1028 efi_init();
1029
1030 dmi_setup();
1031
1032 /*
1033 * VMware detection requires dmi to be available, so this
1034 * needs to be done after dmi_setup(), for the boot CPU.
1035 */
1036 init_hypervisor_platform();
1037
1038 tsc_early_init();
1039 x86_init.resources.probe_roms();
1040
1041 /* after parse_early_param, so could debug it */
1042 insert_resource(&iomem_resource, &code_resource);
1043 insert_resource(&iomem_resource, &data_resource);
1044 insert_resource(&iomem_resource, &bss_resource);
1045
1046 e820_add_kernel_range();
1047 trim_bios_range();
1048#ifdef CONFIG_X86_32
1049 if (ppro_with_ram_bug()) {
1050 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1051 E820_TYPE_RESERVED);
1052 e820__update_table(e820_table);
1053 printk(KERN_INFO "fixed physical RAM map:\n");
1054 e820__print_table("bad_ppro");
1055 }
1056#else
1057 early_gart_iommu_check();
1058#endif
1059
1060 /*
1061 * partially used pages are not usable - thus
1062 * we are rounding upwards:
1063 */
1064 max_pfn = e820__end_of_ram_pfn();
1065
1066 /* update e820 for memory not covered by WB MTRRs */
1067 mtrr_bp_init();
1068 if (mtrr_trim_uncached_memory(max_pfn))
1069 max_pfn = e820__end_of_ram_pfn();
1070
1071 max_possible_pfn = max_pfn;
1072
1073 /*
1074 * This call is required when the CPU does not support PAT. If
1075 * mtrr_bp_init() invoked it already via pat_init() the call has no
1076 * effect.
1077 */
1078 init_cache_modes();
1079
1080 /*
1081 * Define random base addresses for memory sections after max_pfn is
1082 * defined and before each memory section base is used.
1083 */
1084 kernel_randomize_memory();
1085
1086#ifdef CONFIG_X86_32
1087 /* max_low_pfn get updated here */
1088 find_low_pfn_range();
1089#else
1090 check_x2apic();
1091
1092 /* How many end-of-memory variables you have, grandma! */
1093 /* need this before calling reserve_initrd */
1094 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1095 max_low_pfn = e820__end_of_low_ram_pfn();
1096 else
1097 max_low_pfn = max_pfn;
1098
1099 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1100#endif
1101
1102 /*
1103 * Find and reserve possible boot-time SMP configuration:
1104 */
1105 find_smp_config();
1106
1107 reserve_ibft_region();
1108
1109 early_alloc_pgt_buf();
1110
1111 /*
1112 * Need to conclude brk, before e820__memblock_setup()
1113 * it could use memblock_find_in_range, could overlap with
1114 * brk area.
1115 */
1116 reserve_brk();
1117
1118 cleanup_highmap();
1119
1120 memblock_set_current_limit(ISA_END_ADDRESS);
1121 e820__memblock_setup();
1122
1123 reserve_bios_regions();
1124
1125 if (efi_enabled(EFI_MEMMAP)) {
1126 efi_fake_memmap();
1127 efi_find_mirror();
1128 efi_esrt_init();
1129
1130 /*
1131 * The EFI specification says that boot service code won't be
1132 * called after ExitBootServices(). This is, in fact, a lie.
1133 */
1134 efi_reserve_boot_services();
1135 }
1136
1137 /* preallocate 4k for mptable mpc */
1138 e820__memblock_alloc_reserved_mpc_new();
1139
1140#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1141 setup_bios_corruption_check();
1142#endif
1143
1144#ifdef CONFIG_X86_32
1145 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1146 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1147#endif
1148
1149 reserve_real_mode();
1150
1151 trim_platform_memory_ranges();
1152 trim_low_memory_range();
1153
1154 init_mem_mapping();
1155
1156 idt_setup_early_pf();
1157
1158 /*
1159 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1160 * with the current CR4 value. This may not be necessary, but
1161 * auditing all the early-boot CR4 manipulation would be needed to
1162 * rule it out.
1163 *
1164 * Mask off features that don't work outside long mode (just
1165 * PCIDE for now).
1166 */
1167 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1168
1169 memblock_set_current_limit(get_max_mapped());
1170
1171 /*
1172 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1173 */
1174
1175#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1176 if (init_ohci1394_dma_early)
1177 init_ohci1394_dma_on_all_controllers();
1178#endif
1179 /* Allocate bigger log buffer */
1180 setup_log_buf(1);
1181
1182 if (efi_enabled(EFI_BOOT)) {
1183 switch (boot_params.secure_boot) {
1184 case efi_secureboot_mode_disabled:
1185 pr_info("Secure boot disabled\n");
1186 break;
1187 case efi_secureboot_mode_enabled:
1188 pr_info("Secure boot enabled\n");
1189 break;
1190 default:
1191 pr_info("Secure boot could not be determined\n");
1192 break;
1193 }
1194 }
1195
1196 reserve_initrd();
1197
1198 acpi_table_upgrade();
1199
1200 vsmp_init();
1201
1202 io_delay_init();
1203
1204 early_platform_quirks();
1205
1206 /*
1207 * Parse the ACPI tables for possible boot-time SMP configuration.
1208 */
1209 acpi_boot_table_init();
1210
1211 early_acpi_boot_init();
1212
1213 initmem_init();
1214 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1215
1216 /*
1217 * Reserve memory for crash kernel after SRAT is parsed so that it
1218 * won't consume hotpluggable memory.
1219 */
1220 reserve_crashkernel();
1221
1222 memblock_find_dma_reserve();
1223
1224 if (!early_xdbc_setup_hardware())
1225 early_xdbc_register_console();
1226
1227 x86_init.paging.pagetable_init();
1228
1229 kasan_init();
1230
1231 /*
1232 * Sync back kernel address range.
1233 *
1234 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1235 * this call?
1236 */
1237 sync_initial_page_table();
1238
1239 tboot_probe();
1240
1241 map_vsyscall();
1242
1243 generic_apic_probe();
1244
1245 early_quirks();
1246
1247 /*
1248 * Read APIC and some other early information from ACPI tables.
1249 */
1250 acpi_boot_init();
1251 sfi_init();
1252 x86_dtb_init();
1253
1254 /*
1255 * get boot-time SMP configuration:
1256 */
1257 get_smp_config();
1258
1259 /*
1260 * Systems w/o ACPI and mptables might not have it mapped the local
1261 * APIC yet, but prefill_possible_map() might need to access it.
1262 */
1263 init_apic_mappings();
1264
1265 prefill_possible_map();
1266
1267 init_cpu_to_node();
1268
1269 io_apic_init_mappings();
1270
1271 x86_init.hyper.guest_late_init();
1272
1273 e820__reserve_resources();
1274 e820__register_nosave_regions(max_pfn);
1275
1276 x86_init.resources.reserve_resources();
1277
1278 e820__setup_pci_gap();
1279
1280#ifdef CONFIG_VT
1281#if defined(CONFIG_VGA_CONSOLE)
1282 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1283 conswitchp = &vga_con;
1284#elif defined(CONFIG_DUMMY_CONSOLE)
1285 conswitchp = &dummy_con;
1286#endif
1287#endif
1288 x86_init.oem.banner();
1289
1290 x86_init.timers.wallclock_init();
1291
1292 mcheck_init();
1293
1294 register_refined_jiffies(CLOCK_TICK_RATE);
1295
1296#ifdef CONFIG_EFI
1297 if (efi_enabled(EFI_BOOT))
1298 efi_apply_memmap_quirks();
1299#endif
1300
1301 unwind_init();
1302}
1303
1304#ifdef CONFIG_X86_32
1305
1306static struct resource video_ram_resource = {
1307 .name = "Video RAM area",
1308 .start = 0xa0000,
1309 .end = 0xbffff,
1310 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1311};
1312
1313void __init i386_reserve_resources(void)
1314{
1315 request_resource(&iomem_resource, &video_ram_resource);
1316 reserve_standard_io_resources();
1317}
1318
1319#endif /* CONFIG_X86_32 */
1320
1321static struct notifier_block kernel_offset_notifier = {
1322 .notifier_call = dump_kernel_offset
1323};
1324
1325static int __init register_kernel_offset_dumper(void)
1326{
1327 atomic_notifier_chain_register(&panic_notifier_list,
1328 &kernel_offset_notifier);
1329 return 0;
1330}
1331__initcall(register_kernel_offset_dumper);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * This file contains the setup_arch() code, which handles the architecture-dependent
6 * parts of early kernel initialization.
7 */
8#include <linux/acpi.h>
9#include <linux/console.h>
10#include <linux/crash_dump.h>
11#include <linux/dma-map-ops.h>
12#include <linux/efi.h>
13#include <linux/ima.h>
14#include <linux/init_ohci1394_dma.h>
15#include <linux/initrd.h>
16#include <linux/iscsi_ibft.h>
17#include <linux/memblock.h>
18#include <linux/panic_notifier.h>
19#include <linux/pci.h>
20#include <linux/root_dev.h>
21#include <linux/hugetlb.h>
22#include <linux/tboot.h>
23#include <linux/usb/xhci-dbgp.h>
24#include <linux/static_call.h>
25#include <linux/swiotlb.h>
26#include <linux/random.h>
27
28#include <uapi/linux/mount.h>
29
30#include <xen/xen.h>
31
32#include <asm/apic.h>
33#include <asm/efi.h>
34#include <asm/numa.h>
35#include <asm/bios_ebda.h>
36#include <asm/bugs.h>
37#include <asm/cacheinfo.h>
38#include <asm/coco.h>
39#include <asm/cpu.h>
40#include <asm/efi.h>
41#include <asm/gart.h>
42#include <asm/hypervisor.h>
43#include <asm/io_apic.h>
44#include <asm/kasan.h>
45#include <asm/kaslr.h>
46#include <asm/mce.h>
47#include <asm/memtype.h>
48#include <asm/mtrr.h>
49#include <asm/realmode.h>
50#include <asm/olpc_ofw.h>
51#include <asm/pci-direct.h>
52#include <asm/prom.h>
53#include <asm/proto.h>
54#include <asm/thermal.h>
55#include <asm/unwind.h>
56#include <asm/vsyscall.h>
57#include <linux/vmalloc.h>
58
59/*
60 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
61 * max_pfn_mapped: highest directly mapped pfn > 4 GB
62 *
63 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
64 * represented by pfn_mapped[].
65 */
66unsigned long max_low_pfn_mapped;
67unsigned long max_pfn_mapped;
68
69#ifdef CONFIG_DMI
70RESERVE_BRK(dmi_alloc, 65536);
71#endif
72
73
74unsigned long _brk_start = (unsigned long)__brk_base;
75unsigned long _brk_end = (unsigned long)__brk_base;
76
77struct boot_params boot_params;
78
79/*
80 * These are the four main kernel memory regions, we put them into
81 * the resource tree so that kdump tools and other debugging tools
82 * recover it:
83 */
84
85static struct resource rodata_resource = {
86 .name = "Kernel rodata",
87 .start = 0,
88 .end = 0,
89 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
90};
91
92static struct resource data_resource = {
93 .name = "Kernel data",
94 .start = 0,
95 .end = 0,
96 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
97};
98
99static struct resource code_resource = {
100 .name = "Kernel code",
101 .start = 0,
102 .end = 0,
103 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
104};
105
106static struct resource bss_resource = {
107 .name = "Kernel bss",
108 .start = 0,
109 .end = 0,
110 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
111};
112
113
114#ifdef CONFIG_X86_32
115/* CPU data as detected by the assembly code in head_32.S */
116struct cpuinfo_x86 new_cpu_data;
117
118struct apm_info apm_info;
119EXPORT_SYMBOL(apm_info);
120
121#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
122 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
123struct ist_info ist_info;
124EXPORT_SYMBOL(ist_info);
125#else
126struct ist_info ist_info;
127#endif
128
129#endif
130
131struct cpuinfo_x86 boot_cpu_data __read_mostly;
132EXPORT_SYMBOL(boot_cpu_data);
133
134#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
135__visible unsigned long mmu_cr4_features __ro_after_init;
136#else
137__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
138#endif
139
140#ifdef CONFIG_IMA
141static phys_addr_t ima_kexec_buffer_phys;
142static size_t ima_kexec_buffer_size;
143#endif
144
145/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
146int bootloader_type, bootloader_version;
147
148/*
149 * Setup options
150 */
151struct screen_info screen_info;
152EXPORT_SYMBOL(screen_info);
153struct edid_info edid_info;
154EXPORT_SYMBOL_GPL(edid_info);
155
156extern int root_mountflags;
157
158unsigned long saved_video_mode;
159
160#define RAMDISK_IMAGE_START_MASK 0x07FF
161#define RAMDISK_PROMPT_FLAG 0x8000
162#define RAMDISK_LOAD_FLAG 0x4000
163
164static char __initdata command_line[COMMAND_LINE_SIZE];
165#ifdef CONFIG_CMDLINE_BOOL
166static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
167#endif
168
169#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
170struct edd edd;
171#ifdef CONFIG_EDD_MODULE
172EXPORT_SYMBOL(edd);
173#endif
174/**
175 * copy_edd() - Copy the BIOS EDD information
176 * from boot_params into a safe place.
177 *
178 */
179static inline void __init copy_edd(void)
180{
181 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
182 sizeof(edd.mbr_signature));
183 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
184 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
185 edd.edd_info_nr = boot_params.eddbuf_entries;
186}
187#else
188static inline void __init copy_edd(void)
189{
190}
191#endif
192
193void * __init extend_brk(size_t size, size_t align)
194{
195 size_t mask = align - 1;
196 void *ret;
197
198 BUG_ON(_brk_start == 0);
199 BUG_ON(align & mask);
200
201 _brk_end = (_brk_end + mask) & ~mask;
202 BUG_ON((char *)(_brk_end + size) > __brk_limit);
203
204 ret = (void *)_brk_end;
205 _brk_end += size;
206
207 memset(ret, 0, size);
208
209 return ret;
210}
211
212#ifdef CONFIG_X86_32
213static void __init cleanup_highmap(void)
214{
215}
216#endif
217
218static void __init reserve_brk(void)
219{
220 if (_brk_end > _brk_start)
221 memblock_reserve(__pa_symbol(_brk_start),
222 _brk_end - _brk_start);
223
224 /* Mark brk area as locked down and no longer taking any
225 new allocations */
226 _brk_start = 0;
227}
228
229#ifdef CONFIG_BLK_DEV_INITRD
230
231static u64 __init get_ramdisk_image(void)
232{
233 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
234
235 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
236
237 if (ramdisk_image == 0)
238 ramdisk_image = phys_initrd_start;
239
240 return ramdisk_image;
241}
242static u64 __init get_ramdisk_size(void)
243{
244 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
245
246 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
247
248 if (ramdisk_size == 0)
249 ramdisk_size = phys_initrd_size;
250
251 return ramdisk_size;
252}
253
254static void __init relocate_initrd(void)
255{
256 /* Assume only end is not page aligned */
257 u64 ramdisk_image = get_ramdisk_image();
258 u64 ramdisk_size = get_ramdisk_size();
259 u64 area_size = PAGE_ALIGN(ramdisk_size);
260
261 /* We need to move the initrd down into directly mapped mem */
262 u64 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
263 PFN_PHYS(max_pfn_mapped));
264 if (!relocated_ramdisk)
265 panic("Cannot find place for new RAMDISK of size %lld\n",
266 ramdisk_size);
267
268 initrd_start = relocated_ramdisk + PAGE_OFFSET;
269 initrd_end = initrd_start + ramdisk_size;
270 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
271 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
272
273 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
274
275 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
276 " [mem %#010llx-%#010llx]\n",
277 ramdisk_image, ramdisk_image + ramdisk_size - 1,
278 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
279}
280
281static void __init early_reserve_initrd(void)
282{
283 /* Assume only end is not page aligned */
284 u64 ramdisk_image = get_ramdisk_image();
285 u64 ramdisk_size = get_ramdisk_size();
286 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
287
288 if (!boot_params.hdr.type_of_loader ||
289 !ramdisk_image || !ramdisk_size)
290 return; /* No initrd provided by bootloader */
291
292 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
293}
294
295static void __init reserve_initrd(void)
296{
297 /* Assume only end is not page aligned */
298 u64 ramdisk_image = get_ramdisk_image();
299 u64 ramdisk_size = get_ramdisk_size();
300 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
301
302 if (!boot_params.hdr.type_of_loader ||
303 !ramdisk_image || !ramdisk_size)
304 return; /* No initrd provided by bootloader */
305
306 initrd_start = 0;
307
308 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
309 ramdisk_end - 1);
310
311 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
312 PFN_DOWN(ramdisk_end))) {
313 /* All are mapped, easy case */
314 initrd_start = ramdisk_image + PAGE_OFFSET;
315 initrd_end = initrd_start + ramdisk_size;
316 return;
317 }
318
319 relocate_initrd();
320
321 memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image);
322}
323
324#else
325static void __init early_reserve_initrd(void)
326{
327}
328static void __init reserve_initrd(void)
329{
330}
331#endif /* CONFIG_BLK_DEV_INITRD */
332
333static void __init add_early_ima_buffer(u64 phys_addr)
334{
335#ifdef CONFIG_IMA
336 struct ima_setup_data *data;
337
338 data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data));
339 if (!data) {
340 pr_warn("setup: failed to memremap ima_setup_data entry\n");
341 return;
342 }
343
344 if (data->size) {
345 memblock_reserve(data->addr, data->size);
346 ima_kexec_buffer_phys = data->addr;
347 ima_kexec_buffer_size = data->size;
348 }
349
350 early_memunmap(data, sizeof(*data));
351#else
352 pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n");
353#endif
354}
355
356#if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE)
357int __init ima_free_kexec_buffer(void)
358{
359 if (!ima_kexec_buffer_size)
360 return -ENOENT;
361
362 memblock_free_late(ima_kexec_buffer_phys,
363 ima_kexec_buffer_size);
364
365 ima_kexec_buffer_phys = 0;
366 ima_kexec_buffer_size = 0;
367
368 return 0;
369}
370
371int __init ima_get_kexec_buffer(void **addr, size_t *size)
372{
373 if (!ima_kexec_buffer_size)
374 return -ENOENT;
375
376 *addr = __va(ima_kexec_buffer_phys);
377 *size = ima_kexec_buffer_size;
378
379 return 0;
380}
381#endif
382
383static void __init parse_setup_data(void)
384{
385 struct setup_data *data;
386 u64 pa_data, pa_next;
387
388 pa_data = boot_params.hdr.setup_data;
389 while (pa_data) {
390 u32 data_len, data_type;
391
392 data = early_memremap(pa_data, sizeof(*data));
393 data_len = data->len + sizeof(struct setup_data);
394 data_type = data->type;
395 pa_next = data->next;
396 early_memunmap(data, sizeof(*data));
397
398 switch (data_type) {
399 case SETUP_E820_EXT:
400 e820__memory_setup_extended(pa_data, data_len);
401 break;
402 case SETUP_DTB:
403 add_dtb(pa_data);
404 break;
405 case SETUP_EFI:
406 parse_efi_setup(pa_data, data_len);
407 break;
408 case SETUP_IMA:
409 add_early_ima_buffer(pa_data);
410 break;
411 case SETUP_RNG_SEED:
412 data = early_memremap(pa_data, data_len);
413 add_bootloader_randomness(data->data, data->len);
414 /* Zero seed for forward secrecy. */
415 memzero_explicit(data->data, data->len);
416 /* Zero length in case we find ourselves back here by accident. */
417 memzero_explicit(&data->len, sizeof(data->len));
418 early_memunmap(data, data_len);
419 break;
420 default:
421 break;
422 }
423 pa_data = pa_next;
424 }
425}
426
427static void __init memblock_x86_reserve_range_setup_data(void)
428{
429 struct setup_indirect *indirect;
430 struct setup_data *data;
431 u64 pa_data, pa_next;
432 u32 len;
433
434 pa_data = boot_params.hdr.setup_data;
435 while (pa_data) {
436 data = early_memremap(pa_data, sizeof(*data));
437 if (!data) {
438 pr_warn("setup: failed to memremap setup_data entry\n");
439 return;
440 }
441
442 len = sizeof(*data);
443 pa_next = data->next;
444
445 memblock_reserve(pa_data, sizeof(*data) + data->len);
446
447 if (data->type == SETUP_INDIRECT) {
448 len += data->len;
449 early_memunmap(data, sizeof(*data));
450 data = early_memremap(pa_data, len);
451 if (!data) {
452 pr_warn("setup: failed to memremap indirect setup_data\n");
453 return;
454 }
455
456 indirect = (struct setup_indirect *)data->data;
457
458 if (indirect->type != SETUP_INDIRECT)
459 memblock_reserve(indirect->addr, indirect->len);
460 }
461
462 pa_data = pa_next;
463 early_memunmap(data, len);
464 }
465}
466
467static void __init arch_reserve_crashkernel(void)
468{
469 unsigned long long crash_base, crash_size, low_size = 0;
470 char *cmdline = boot_command_line;
471 bool high = false;
472 int ret;
473
474 if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
475 return;
476
477 ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
478 &crash_size, &crash_base,
479 &low_size, &high);
480 if (ret)
481 return;
482
483 if (xen_pv_domain()) {
484 pr_info("Ignoring crashkernel for a Xen PV domain\n");
485 return;
486 }
487
488 reserve_crashkernel_generic(cmdline, crash_size, crash_base,
489 low_size, high);
490}
491
492static struct resource standard_io_resources[] = {
493 { .name = "dma1", .start = 0x00, .end = 0x1f,
494 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
495 { .name = "pic1", .start = 0x20, .end = 0x21,
496 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
497 { .name = "timer0", .start = 0x40, .end = 0x43,
498 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
499 { .name = "timer1", .start = 0x50, .end = 0x53,
500 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
501 { .name = "keyboard", .start = 0x60, .end = 0x60,
502 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
503 { .name = "keyboard", .start = 0x64, .end = 0x64,
504 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
505 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
506 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
507 { .name = "pic2", .start = 0xa0, .end = 0xa1,
508 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
509 { .name = "dma2", .start = 0xc0, .end = 0xdf,
510 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
511 { .name = "fpu", .start = 0xf0, .end = 0xff,
512 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
513};
514
515void __init reserve_standard_io_resources(void)
516{
517 int i;
518
519 /* request I/O space for devices used on all i[345]86 PCs */
520 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
521 request_resource(&ioport_resource, &standard_io_resources[i]);
522
523}
524
525static bool __init snb_gfx_workaround_needed(void)
526{
527#ifdef CONFIG_PCI
528 int i;
529 u16 vendor, devid;
530 static const __initconst u16 snb_ids[] = {
531 0x0102,
532 0x0112,
533 0x0122,
534 0x0106,
535 0x0116,
536 0x0126,
537 0x010a,
538 };
539
540 /* Assume no if something weird is going on with PCI */
541 if (!early_pci_allowed())
542 return false;
543
544 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
545 if (vendor != 0x8086)
546 return false;
547
548 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
549 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
550 if (devid == snb_ids[i])
551 return true;
552#endif
553
554 return false;
555}
556
557/*
558 * Sandy Bridge graphics has trouble with certain ranges, exclude
559 * them from allocation.
560 */
561static void __init trim_snb_memory(void)
562{
563 static const __initconst unsigned long bad_pages[] = {
564 0x20050000,
565 0x20110000,
566 0x20130000,
567 0x20138000,
568 0x40004000,
569 };
570 int i;
571
572 if (!snb_gfx_workaround_needed())
573 return;
574
575 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
576
577 /*
578 * SandyBridge integrated graphics devices have a bug that prevents
579 * them from accessing certain memory ranges, namely anything below
580 * 1M and in the pages listed in bad_pages[] above.
581 *
582 * To avoid these pages being ever accessed by SNB gfx devices reserve
583 * bad_pages that have not already been reserved at boot time.
584 * All memory below the 1 MB mark is anyway reserved later during
585 * setup_arch(), so there is no need to reserve it here.
586 */
587
588 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
589 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
590 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
591 bad_pages[i]);
592 }
593}
594
595static void __init trim_bios_range(void)
596{
597 /*
598 * A special case is the first 4Kb of memory;
599 * This is a BIOS owned area, not kernel ram, but generally
600 * not listed as such in the E820 table.
601 *
602 * This typically reserves additional memory (64KiB by default)
603 * since some BIOSes are known to corrupt low memory. See the
604 * Kconfig help text for X86_RESERVE_LOW.
605 */
606 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
607
608 /*
609 * special case: Some BIOSes report the PC BIOS
610 * area (640Kb -> 1Mb) as RAM even though it is not.
611 * take them out.
612 */
613 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
614
615 e820__update_table(e820_table);
616}
617
618/* called before trim_bios_range() to spare extra sanitize */
619static void __init e820_add_kernel_range(void)
620{
621 u64 start = __pa_symbol(_text);
622 u64 size = __pa_symbol(_end) - start;
623
624 /*
625 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
626 * attempt to fix it by adding the range. We may have a confused BIOS,
627 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
628 * exclude kernel range. If we really are running on top non-RAM,
629 * we will crash later anyways.
630 */
631 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
632 return;
633
634 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
635 e820__range_remove(start, size, E820_TYPE_RAM, 0);
636 e820__range_add(start, size, E820_TYPE_RAM);
637}
638
639static void __init early_reserve_memory(void)
640{
641 /*
642 * Reserve the memory occupied by the kernel between _text and
643 * __end_of_kernel_reserve symbols. Any kernel sections after the
644 * __end_of_kernel_reserve symbol must be explicitly reserved with a
645 * separate memblock_reserve() or they will be discarded.
646 */
647 memblock_reserve(__pa_symbol(_text),
648 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
649
650 /*
651 * The first 4Kb of memory is a BIOS owned area, but generally it is
652 * not listed as such in the E820 table.
653 *
654 * Reserve the first 64K of memory since some BIOSes are known to
655 * corrupt low memory. After the real mode trampoline is allocated the
656 * rest of the memory below 640k is reserved.
657 *
658 * In addition, make sure page 0 is always reserved because on
659 * systems with L1TF its contents can be leaked to user processes.
660 */
661 memblock_reserve(0, SZ_64K);
662
663 early_reserve_initrd();
664
665 memblock_x86_reserve_range_setup_data();
666
667 reserve_bios_regions();
668 trim_snb_memory();
669}
670
671/*
672 * Dump out kernel offset information on panic.
673 */
674static int
675dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
676{
677 if (kaslr_enabled()) {
678 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
679 kaslr_offset(),
680 __START_KERNEL,
681 __START_KERNEL_map,
682 MODULES_VADDR-1);
683 } else {
684 pr_emerg("Kernel Offset: disabled\n");
685 }
686
687 return 0;
688}
689
690void x86_configure_nx(void)
691{
692 if (boot_cpu_has(X86_FEATURE_NX))
693 __supported_pte_mask |= _PAGE_NX;
694 else
695 __supported_pte_mask &= ~_PAGE_NX;
696}
697
698static void __init x86_report_nx(void)
699{
700 if (!boot_cpu_has(X86_FEATURE_NX)) {
701 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
702 "missing in CPU!\n");
703 } else {
704#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
705 printk(KERN_INFO "NX (Execute Disable) protection: active\n");
706#else
707 /* 32bit non-PAE kernel, NX cannot be used */
708 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
709 "cannot be enabled: non-PAE kernel!\n");
710#endif
711 }
712}
713
714/*
715 * Determine if we were loaded by an EFI loader. If so, then we have also been
716 * passed the efi memmap, systab, etc., so we should use these data structures
717 * for initialization. Note, the efi init code path is determined by the
718 * global efi_enabled. This allows the same kernel image to be used on existing
719 * systems (with a traditional BIOS) as well as on EFI systems.
720 */
721/*
722 * setup_arch - architecture-specific boot-time initializations
723 *
724 * Note: On x86_64, fixmaps are ready for use even before this is called.
725 */
726
727void __init setup_arch(char **cmdline_p)
728{
729#ifdef CONFIG_X86_32
730 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
731
732 /*
733 * copy kernel address range established so far and switch
734 * to the proper swapper page table
735 */
736 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
737 initial_page_table + KERNEL_PGD_BOUNDARY,
738 KERNEL_PGD_PTRS);
739
740 load_cr3(swapper_pg_dir);
741 /*
742 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
743 * a cr3 based tlb flush, so the following __flush_tlb_all()
744 * will not flush anything because the CPU quirk which clears
745 * X86_FEATURE_PGE has not been invoked yet. Though due to the
746 * load_cr3() above the TLB has been flushed already. The
747 * quirk is invoked before subsequent calls to __flush_tlb_all()
748 * so proper operation is guaranteed.
749 */
750 __flush_tlb_all();
751#else
752 printk(KERN_INFO "Command line: %s\n", boot_command_line);
753 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
754#endif
755
756 /*
757 * If we have OLPC OFW, we might end up relocating the fixmap due to
758 * reserve_top(), so do this before touching the ioremap area.
759 */
760 olpc_ofw_detect();
761
762 idt_setup_early_traps();
763 early_cpu_init();
764 jump_label_init();
765 static_call_init();
766 early_ioremap_init();
767
768 setup_olpc_ofw_pgd();
769
770 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
771 screen_info = boot_params.screen_info;
772 edid_info = boot_params.edid_info;
773#ifdef CONFIG_X86_32
774 apm_info.bios = boot_params.apm_bios_info;
775 ist_info = boot_params.ist_info;
776#endif
777 saved_video_mode = boot_params.hdr.vid_mode;
778 bootloader_type = boot_params.hdr.type_of_loader;
779 if ((bootloader_type >> 4) == 0xe) {
780 bootloader_type &= 0xf;
781 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
782 }
783 bootloader_version = bootloader_type & 0xf;
784 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
785
786#ifdef CONFIG_BLK_DEV_RAM
787 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
788#endif
789#ifdef CONFIG_EFI
790 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
791 EFI32_LOADER_SIGNATURE, 4)) {
792 set_bit(EFI_BOOT, &efi.flags);
793 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
794 EFI64_LOADER_SIGNATURE, 4)) {
795 set_bit(EFI_BOOT, &efi.flags);
796 set_bit(EFI_64BIT, &efi.flags);
797 }
798#endif
799
800 x86_init.oem.arch_setup();
801
802 /*
803 * Do some memory reservations *before* memory is added to memblock, so
804 * memblock allocations won't overwrite it.
805 *
806 * After this point, everything still needed from the boot loader or
807 * firmware or kernel text should be early reserved or marked not RAM in
808 * e820. All other memory is free game.
809 *
810 * This call needs to happen before e820__memory_setup() which calls the
811 * xen_memory_setup() on Xen dom0 which relies on the fact that those
812 * early reservations have happened already.
813 */
814 early_reserve_memory();
815
816 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
817 e820__memory_setup();
818 parse_setup_data();
819
820 copy_edd();
821
822 if (!boot_params.hdr.root_flags)
823 root_mountflags &= ~MS_RDONLY;
824 setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
825
826 code_resource.start = __pa_symbol(_text);
827 code_resource.end = __pa_symbol(_etext)-1;
828 rodata_resource.start = __pa_symbol(__start_rodata);
829 rodata_resource.end = __pa_symbol(__end_rodata)-1;
830 data_resource.start = __pa_symbol(_sdata);
831 data_resource.end = __pa_symbol(_edata)-1;
832 bss_resource.start = __pa_symbol(__bss_start);
833 bss_resource.end = __pa_symbol(__bss_stop)-1;
834
835#ifdef CONFIG_CMDLINE_BOOL
836#ifdef CONFIG_CMDLINE_OVERRIDE
837 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
838#else
839 if (builtin_cmdline[0]) {
840 /* append boot loader cmdline to builtin */
841 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
842 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
843 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
844 }
845#endif
846#endif
847
848 strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
849 *cmdline_p = command_line;
850
851 /*
852 * x86_configure_nx() is called before parse_early_param() to detect
853 * whether hardware doesn't support NX (so that the early EHCI debug
854 * console setup can safely call set_fixmap()).
855 */
856 x86_configure_nx();
857
858 parse_early_param();
859
860 if (efi_enabled(EFI_BOOT))
861 efi_memblock_x86_reserve_range();
862
863#ifdef CONFIG_MEMORY_HOTPLUG
864 /*
865 * Memory used by the kernel cannot be hot-removed because Linux
866 * cannot migrate the kernel pages. When memory hotplug is
867 * enabled, we should prevent memblock from allocating memory
868 * for the kernel.
869 *
870 * ACPI SRAT records all hotpluggable memory ranges. But before
871 * SRAT is parsed, we don't know about it.
872 *
873 * The kernel image is loaded into memory at very early time. We
874 * cannot prevent this anyway. So on NUMA system, we set any
875 * node the kernel resides in as un-hotpluggable.
876 *
877 * Since on modern servers, one node could have double-digit
878 * gigabytes memory, we can assume the memory around the kernel
879 * image is also un-hotpluggable. So before SRAT is parsed, just
880 * allocate memory near the kernel image to try the best to keep
881 * the kernel away from hotpluggable memory.
882 */
883 if (movable_node_is_enabled())
884 memblock_set_bottom_up(true);
885#endif
886
887 x86_report_nx();
888
889 apic_setup_apic_calls();
890
891 if (acpi_mps_check()) {
892#ifdef CONFIG_X86_LOCAL_APIC
893 apic_is_disabled = true;
894#endif
895 setup_clear_cpu_cap(X86_FEATURE_APIC);
896 }
897
898 e820__reserve_setup_data();
899 e820__finish_early_params();
900
901 if (efi_enabled(EFI_BOOT))
902 efi_init();
903
904 reserve_ibft_region();
905 x86_init.resources.dmi_setup();
906
907 /*
908 * VMware detection requires dmi to be available, so this
909 * needs to be done after dmi_setup(), for the boot CPU.
910 * For some guest types (Xen PV, SEV-SNP, TDX) it is required to be
911 * called before cache_bp_init() for setting up MTRR state.
912 */
913 init_hypervisor_platform();
914
915 tsc_early_init();
916 x86_init.resources.probe_roms();
917
918 /* after parse_early_param, so could debug it */
919 insert_resource(&iomem_resource, &code_resource);
920 insert_resource(&iomem_resource, &rodata_resource);
921 insert_resource(&iomem_resource, &data_resource);
922 insert_resource(&iomem_resource, &bss_resource);
923
924 e820_add_kernel_range();
925 trim_bios_range();
926#ifdef CONFIG_X86_32
927 if (ppro_with_ram_bug()) {
928 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
929 E820_TYPE_RESERVED);
930 e820__update_table(e820_table);
931 printk(KERN_INFO "fixed physical RAM map:\n");
932 e820__print_table("bad_ppro");
933 }
934#else
935 early_gart_iommu_check();
936#endif
937
938 /*
939 * partially used pages are not usable - thus
940 * we are rounding upwards:
941 */
942 max_pfn = e820__end_of_ram_pfn();
943
944 /* update e820 for memory not covered by WB MTRRs */
945 cache_bp_init();
946 if (mtrr_trim_uncached_memory(max_pfn))
947 max_pfn = e820__end_of_ram_pfn();
948
949 max_possible_pfn = max_pfn;
950
951 /*
952 * Define random base addresses for memory sections after max_pfn is
953 * defined and before each memory section base is used.
954 */
955 kernel_randomize_memory();
956
957#ifdef CONFIG_X86_32
958 /* max_low_pfn get updated here */
959 find_low_pfn_range();
960#else
961 check_x2apic();
962
963 /* How many end-of-memory variables you have, grandma! */
964 /* need this before calling reserve_initrd */
965 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
966 max_low_pfn = e820__end_of_low_ram_pfn();
967 else
968 max_low_pfn = max_pfn;
969
970 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
971#endif
972
973 /* Find and reserve MPTABLE area */
974 x86_init.mpparse.find_mptable();
975
976 early_alloc_pgt_buf();
977
978 /*
979 * Need to conclude brk, before e820__memblock_setup()
980 * it could use memblock_find_in_range, could overlap with
981 * brk area.
982 */
983 reserve_brk();
984
985 cleanup_highmap();
986
987 memblock_set_current_limit(ISA_END_ADDRESS);
988 e820__memblock_setup();
989
990 /*
991 * Needs to run after memblock setup because it needs the physical
992 * memory size.
993 */
994 mem_encrypt_setup_arch();
995 cc_random_init();
996
997 efi_fake_memmap();
998 efi_find_mirror();
999 efi_esrt_init();
1000 efi_mokvar_table_init();
1001
1002 /*
1003 * The EFI specification says that boot service code won't be
1004 * called after ExitBootServices(). This is, in fact, a lie.
1005 */
1006 efi_reserve_boot_services();
1007
1008 /* preallocate 4k for mptable mpc */
1009 e820__memblock_alloc_reserved_mpc_new();
1010
1011#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1012 setup_bios_corruption_check();
1013#endif
1014
1015#ifdef CONFIG_X86_32
1016 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1017 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1018#endif
1019
1020 /*
1021 * Find free memory for the real mode trampoline and place it there. If
1022 * there is not enough free memory under 1M, on EFI-enabled systems
1023 * there will be additional attempt to reclaim the memory for the real
1024 * mode trampoline at efi_free_boot_services().
1025 *
1026 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1027 * are known to corrupt low memory and several hundred kilobytes are not
1028 * worth complex detection what memory gets clobbered. Windows does the
1029 * same thing for very similar reasons.
1030 *
1031 * Moreover, on machines with SandyBridge graphics or in setups that use
1032 * crashkernel the entire 1M is reserved anyway.
1033 *
1034 * Note the host kernel TDX also requires the first 1MB being reserved.
1035 */
1036 x86_platform.realmode_reserve();
1037
1038 init_mem_mapping();
1039
1040 idt_setup_early_pf();
1041
1042 /*
1043 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1044 * with the current CR4 value. This may not be necessary, but
1045 * auditing all the early-boot CR4 manipulation would be needed to
1046 * rule it out.
1047 *
1048 * Mask off features that don't work outside long mode (just
1049 * PCIDE for now).
1050 */
1051 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1052
1053 memblock_set_current_limit(get_max_mapped());
1054
1055 /*
1056 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1057 */
1058
1059#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1060 if (init_ohci1394_dma_early)
1061 init_ohci1394_dma_on_all_controllers();
1062#endif
1063 /* Allocate bigger log buffer */
1064 setup_log_buf(1);
1065
1066 if (efi_enabled(EFI_BOOT)) {
1067 switch (boot_params.secure_boot) {
1068 case efi_secureboot_mode_disabled:
1069 pr_info("Secure boot disabled\n");
1070 break;
1071 case efi_secureboot_mode_enabled:
1072 pr_info("Secure boot enabled\n");
1073 break;
1074 default:
1075 pr_info("Secure boot could not be determined\n");
1076 break;
1077 }
1078 }
1079
1080 reserve_initrd();
1081
1082 acpi_table_upgrade();
1083 /* Look for ACPI tables and reserve memory occupied by them. */
1084 acpi_boot_table_init();
1085
1086 vsmp_init();
1087
1088 io_delay_init();
1089
1090 early_platform_quirks();
1091
1092 /* Some platforms need the APIC registered for NUMA configuration */
1093 early_acpi_boot_init();
1094 x86_init.mpparse.early_parse_smp_cfg();
1095
1096 x86_flattree_get_config();
1097
1098 initmem_init();
1099 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1100
1101 if (boot_cpu_has(X86_FEATURE_GBPAGES))
1102 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1103
1104 /*
1105 * Reserve memory for crash kernel after SRAT is parsed so that it
1106 * won't consume hotpluggable memory.
1107 */
1108 arch_reserve_crashkernel();
1109
1110 memblock_find_dma_reserve();
1111
1112 if (!early_xdbc_setup_hardware())
1113 early_xdbc_register_console();
1114
1115 x86_init.paging.pagetable_init();
1116
1117 kasan_init();
1118
1119 /*
1120 * Sync back kernel address range.
1121 *
1122 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1123 * this call?
1124 */
1125 sync_initial_page_table();
1126
1127 tboot_probe();
1128
1129 map_vsyscall();
1130
1131 x86_32_probe_apic();
1132
1133 early_quirks();
1134
1135 topology_apply_cmdline_limits_early();
1136
1137 /*
1138 * Parse SMP configuration. Try ACPI first and then the platform
1139 * specific parser.
1140 */
1141 acpi_boot_init();
1142 x86_init.mpparse.parse_smp_cfg();
1143
1144 /* Last opportunity to detect and map the local APIC */
1145 init_apic_mappings();
1146
1147 topology_init_possible_cpus();
1148
1149 init_cpu_to_node();
1150 init_gi_nodes();
1151
1152 io_apic_init_mappings();
1153
1154 x86_init.hyper.guest_late_init();
1155
1156 e820__reserve_resources();
1157 e820__register_nosave_regions(max_pfn);
1158
1159 x86_init.resources.reserve_resources();
1160
1161 e820__setup_pci_gap();
1162
1163#ifdef CONFIG_VT
1164#if defined(CONFIG_VGA_CONSOLE)
1165 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1166 vgacon_register_screen(&screen_info);
1167#endif
1168#endif
1169 x86_init.oem.banner();
1170
1171 x86_init.timers.wallclock_init();
1172
1173 /*
1174 * This needs to run before setup_local_APIC() which soft-disables the
1175 * local APIC temporarily and that masks the thermal LVT interrupt,
1176 * leading to softlockups on machines which have configured SMI
1177 * interrupt delivery.
1178 */
1179 therm_lvt_init();
1180
1181 mcheck_init();
1182
1183 register_refined_jiffies(CLOCK_TICK_RATE);
1184
1185#ifdef CONFIG_EFI
1186 if (efi_enabled(EFI_BOOT))
1187 efi_apply_memmap_quirks();
1188#endif
1189
1190 unwind_init();
1191}
1192
1193#ifdef CONFIG_X86_32
1194
1195static struct resource video_ram_resource = {
1196 .name = "Video RAM area",
1197 .start = 0xa0000,
1198 .end = 0xbffff,
1199 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1200};
1201
1202void __init i386_reserve_resources(void)
1203{
1204 request_resource(&iomem_resource, &video_ram_resource);
1205 reserve_standard_io_resources();
1206}
1207
1208#endif /* CONFIG_X86_32 */
1209
1210static struct notifier_block kernel_offset_notifier = {
1211 .notifier_call = dump_kernel_offset
1212};
1213
1214static int __init register_kernel_offset_dumper(void)
1215{
1216 atomic_notifier_chain_register(&panic_notifier_list,
1217 &kernel_offset_notifier);
1218 return 0;
1219}
1220__initcall(register_kernel_offset_dumper);