Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * pSeries NUMA support
4 *
5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 */
7#define pr_fmt(fmt) "numa: " fmt
8
9#include <linux/threads.h>
10#include <linux/memblock.h>
11#include <linux/init.h>
12#include <linux/mm.h>
13#include <linux/mmzone.h>
14#include <linux/export.h>
15#include <linux/nodemask.h>
16#include <linux/cpu.h>
17#include <linux/notifier.h>
18#include <linux/of.h>
19#include <linux/pfn.h>
20#include <linux/cpuset.h>
21#include <linux/node.h>
22#include <linux/stop_machine.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25#include <linux/uaccess.h>
26#include <linux/slab.h>
27#include <asm/cputhreads.h>
28#include <asm/sparsemem.h>
29#include <asm/prom.h>
30#include <asm/smp.h>
31#include <asm/topology.h>
32#include <asm/firmware.h>
33#include <asm/paca.h>
34#include <asm/hvcall.h>
35#include <asm/setup.h>
36#include <asm/vdso.h>
37#include <asm/drmem.h>
38
39static int numa_enabled = 1;
40
41static char *cmdline __initdata;
42
43static int numa_debug;
44#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
45
46int numa_cpu_lookup_table[NR_CPUS];
47cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
48struct pglist_data *node_data[MAX_NUMNODES];
49
50EXPORT_SYMBOL(numa_cpu_lookup_table);
51EXPORT_SYMBOL(node_to_cpumask_map);
52EXPORT_SYMBOL(node_data);
53
54static int min_common_depth;
55static int n_mem_addr_cells, n_mem_size_cells;
56static int form1_affinity;
57
58#define MAX_DISTANCE_REF_POINTS 4
59static int distance_ref_points_depth;
60static const __be32 *distance_ref_points;
61static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
62
63/*
64 * Allocate node_to_cpumask_map based on number of available nodes
65 * Requires node_possible_map to be valid.
66 *
67 * Note: cpumask_of_node() is not valid until after this is done.
68 */
69static void __init setup_node_to_cpumask_map(void)
70{
71 unsigned int node;
72
73 /* setup nr_node_ids if not done yet */
74 if (nr_node_ids == MAX_NUMNODES)
75 setup_nr_node_ids();
76
77 /* allocate the map */
78 for_each_node(node)
79 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
80
81 /* cpumask_of_node() will now work */
82 dbg("Node to cpumask map for %u nodes\n", nr_node_ids);
83}
84
85static int __init fake_numa_create_new_node(unsigned long end_pfn,
86 unsigned int *nid)
87{
88 unsigned long long mem;
89 char *p = cmdline;
90 static unsigned int fake_nid;
91 static unsigned long long curr_boundary;
92
93 /*
94 * Modify node id, iff we started creating NUMA nodes
95 * We want to continue from where we left of the last time
96 */
97 if (fake_nid)
98 *nid = fake_nid;
99 /*
100 * In case there are no more arguments to parse, the
101 * node_id should be the same as the last fake node id
102 * (we've handled this above).
103 */
104 if (!p)
105 return 0;
106
107 mem = memparse(p, &p);
108 if (!mem)
109 return 0;
110
111 if (mem < curr_boundary)
112 return 0;
113
114 curr_boundary = mem;
115
116 if ((end_pfn << PAGE_SHIFT) > mem) {
117 /*
118 * Skip commas and spaces
119 */
120 while (*p == ',' || *p == ' ' || *p == '\t')
121 p++;
122
123 cmdline = p;
124 fake_nid++;
125 *nid = fake_nid;
126 dbg("created new fake_node with id %d\n", fake_nid);
127 return 1;
128 }
129 return 0;
130}
131
132static void reset_numa_cpu_lookup_table(void)
133{
134 unsigned int cpu;
135
136 for_each_possible_cpu(cpu)
137 numa_cpu_lookup_table[cpu] = -1;
138}
139
140static void map_cpu_to_node(int cpu, int node)
141{
142 update_numa_cpu_lookup_table(cpu, node);
143
144 dbg("adding cpu %d to node %d\n", cpu, node);
145
146 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
147 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
148}
149
150#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
151static void unmap_cpu_from_node(unsigned long cpu)
152{
153 int node = numa_cpu_lookup_table[cpu];
154
155 dbg("removing cpu %lu from node %d\n", cpu, node);
156
157 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
158 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
159 } else {
160 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
161 cpu, node);
162 }
163}
164#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
165
166int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
167{
168 int dist = 0;
169
170 int i, index;
171
172 for (i = 0; i < distance_ref_points_depth; i++) {
173 index = be32_to_cpu(distance_ref_points[i]);
174 if (cpu1_assoc[index] == cpu2_assoc[index])
175 break;
176 dist++;
177 }
178
179 return dist;
180}
181
182/* must hold reference to node during call */
183static const __be32 *of_get_associativity(struct device_node *dev)
184{
185 return of_get_property(dev, "ibm,associativity", NULL);
186}
187
188int __node_distance(int a, int b)
189{
190 int i;
191 int distance = LOCAL_DISTANCE;
192
193 if (!form1_affinity)
194 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
195
196 for (i = 0; i < distance_ref_points_depth; i++) {
197 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
198 break;
199
200 /* Double the distance for each NUMA level */
201 distance *= 2;
202 }
203
204 return distance;
205}
206EXPORT_SYMBOL(__node_distance);
207
208static void initialize_distance_lookup_table(int nid,
209 const __be32 *associativity)
210{
211 int i;
212
213 if (!form1_affinity)
214 return;
215
216 for (i = 0; i < distance_ref_points_depth; i++) {
217 const __be32 *entry;
218
219 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
220 distance_lookup_table[nid][i] = of_read_number(entry, 1);
221 }
222}
223
224/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
225 * info is found.
226 */
227static int associativity_to_nid(const __be32 *associativity)
228{
229 int nid = NUMA_NO_NODE;
230
231 if (!numa_enabled)
232 goto out;
233
234 if (of_read_number(associativity, 1) >= min_common_depth)
235 nid = of_read_number(&associativity[min_common_depth], 1);
236
237 /* POWER4 LPAR uses 0xffff as invalid node */
238 if (nid == 0xffff || nid >= MAX_NUMNODES)
239 nid = NUMA_NO_NODE;
240
241 if (nid > 0 &&
242 of_read_number(associativity, 1) >= distance_ref_points_depth) {
243 /*
244 * Skip the length field and send start of associativity array
245 */
246 initialize_distance_lookup_table(nid, associativity + 1);
247 }
248
249out:
250 return nid;
251}
252
253/* Returns the nid associated with the given device tree node,
254 * or -1 if not found.
255 */
256static int of_node_to_nid_single(struct device_node *device)
257{
258 int nid = NUMA_NO_NODE;
259 const __be32 *tmp;
260
261 tmp = of_get_associativity(device);
262 if (tmp)
263 nid = associativity_to_nid(tmp);
264 return nid;
265}
266
267/* Walk the device tree upwards, looking for an associativity id */
268int of_node_to_nid(struct device_node *device)
269{
270 int nid = NUMA_NO_NODE;
271
272 of_node_get(device);
273 while (device) {
274 nid = of_node_to_nid_single(device);
275 if (nid != -1)
276 break;
277
278 device = of_get_next_parent(device);
279 }
280 of_node_put(device);
281
282 return nid;
283}
284EXPORT_SYMBOL(of_node_to_nid);
285
286static int __init find_min_common_depth(void)
287{
288 int depth;
289 struct device_node *root;
290
291 if (firmware_has_feature(FW_FEATURE_OPAL))
292 root = of_find_node_by_path("/ibm,opal");
293 else
294 root = of_find_node_by_path("/rtas");
295 if (!root)
296 root = of_find_node_by_path("/");
297
298 /*
299 * This property is a set of 32-bit integers, each representing
300 * an index into the ibm,associativity nodes.
301 *
302 * With form 0 affinity the first integer is for an SMP configuration
303 * (should be all 0's) and the second is for a normal NUMA
304 * configuration. We have only one level of NUMA.
305 *
306 * With form 1 affinity the first integer is the most significant
307 * NUMA boundary and the following are progressively less significant
308 * boundaries. There can be more than one level of NUMA.
309 */
310 distance_ref_points = of_get_property(root,
311 "ibm,associativity-reference-points",
312 &distance_ref_points_depth);
313
314 if (!distance_ref_points) {
315 dbg("NUMA: ibm,associativity-reference-points not found.\n");
316 goto err;
317 }
318
319 distance_ref_points_depth /= sizeof(int);
320
321 if (firmware_has_feature(FW_FEATURE_OPAL) ||
322 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
323 dbg("Using form 1 affinity\n");
324 form1_affinity = 1;
325 }
326
327 if (form1_affinity) {
328 depth = of_read_number(distance_ref_points, 1);
329 } else {
330 if (distance_ref_points_depth < 2) {
331 printk(KERN_WARNING "NUMA: "
332 "short ibm,associativity-reference-points\n");
333 goto err;
334 }
335
336 depth = of_read_number(&distance_ref_points[1], 1);
337 }
338
339 /*
340 * Warn and cap if the hardware supports more than
341 * MAX_DISTANCE_REF_POINTS domains.
342 */
343 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
344 printk(KERN_WARNING "NUMA: distance array capped at "
345 "%d entries\n", MAX_DISTANCE_REF_POINTS);
346 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
347 }
348
349 of_node_put(root);
350 return depth;
351
352err:
353 of_node_put(root);
354 return -1;
355}
356
357static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
358{
359 struct device_node *memory = NULL;
360
361 memory = of_find_node_by_type(memory, "memory");
362 if (!memory)
363 panic("numa.c: No memory nodes found!");
364
365 *n_addr_cells = of_n_addr_cells(memory);
366 *n_size_cells = of_n_size_cells(memory);
367 of_node_put(memory);
368}
369
370static unsigned long read_n_cells(int n, const __be32 **buf)
371{
372 unsigned long result = 0;
373
374 while (n--) {
375 result = (result << 32) | of_read_number(*buf, 1);
376 (*buf)++;
377 }
378 return result;
379}
380
381struct assoc_arrays {
382 u32 n_arrays;
383 u32 array_sz;
384 const __be32 *arrays;
385};
386
387/*
388 * Retrieve and validate the list of associativity arrays for drconf
389 * memory from the ibm,associativity-lookup-arrays property of the
390 * device tree..
391 *
392 * The layout of the ibm,associativity-lookup-arrays property is a number N
393 * indicating the number of associativity arrays, followed by a number M
394 * indicating the size of each associativity array, followed by a list
395 * of N associativity arrays.
396 */
397static int of_get_assoc_arrays(struct assoc_arrays *aa)
398{
399 struct device_node *memory;
400 const __be32 *prop;
401 u32 len;
402
403 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
404 if (!memory)
405 return -1;
406
407 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
408 if (!prop || len < 2 * sizeof(unsigned int)) {
409 of_node_put(memory);
410 return -1;
411 }
412
413 aa->n_arrays = of_read_number(prop++, 1);
414 aa->array_sz = of_read_number(prop++, 1);
415
416 of_node_put(memory);
417
418 /* Now that we know the number of arrays and size of each array,
419 * revalidate the size of the property read in.
420 */
421 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
422 return -1;
423
424 aa->arrays = prop;
425 return 0;
426}
427
428/*
429 * This is like of_node_to_nid_single() for memory represented in the
430 * ibm,dynamic-reconfiguration-memory node.
431 */
432static int of_drconf_to_nid_single(struct drmem_lmb *lmb)
433{
434 struct assoc_arrays aa = { .arrays = NULL };
435 int default_nid = NUMA_NO_NODE;
436 int nid = default_nid;
437 int rc, index;
438
439 if ((min_common_depth < 0) || !numa_enabled)
440 return default_nid;
441
442 rc = of_get_assoc_arrays(&aa);
443 if (rc)
444 return default_nid;
445
446 if (min_common_depth <= aa.array_sz &&
447 !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
448 index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
449 nid = of_read_number(&aa.arrays[index], 1);
450
451 if (nid == 0xffff || nid >= MAX_NUMNODES)
452 nid = default_nid;
453
454 if (nid > 0) {
455 index = lmb->aa_index * aa.array_sz;
456 initialize_distance_lookup_table(nid,
457 &aa.arrays[index]);
458 }
459 }
460
461 return nid;
462}
463
464/*
465 * Figure out to which domain a cpu belongs and stick it there.
466 * Return the id of the domain used.
467 */
468static int numa_setup_cpu(unsigned long lcpu)
469{
470 int nid = NUMA_NO_NODE;
471 struct device_node *cpu;
472
473 /*
474 * If a valid cpu-to-node mapping is already available, use it
475 * directly instead of querying the firmware, since it represents
476 * the most recent mapping notified to us by the platform (eg: VPHN).
477 */
478 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
479 map_cpu_to_node(lcpu, nid);
480 return nid;
481 }
482
483 cpu = of_get_cpu_node(lcpu, NULL);
484
485 if (!cpu) {
486 WARN_ON(1);
487 if (cpu_present(lcpu))
488 goto out_present;
489 else
490 goto out;
491 }
492
493 nid = of_node_to_nid_single(cpu);
494
495out_present:
496 if (nid < 0 || !node_possible(nid))
497 nid = first_online_node;
498
499 map_cpu_to_node(lcpu, nid);
500 of_node_put(cpu);
501out:
502 return nid;
503}
504
505static void verify_cpu_node_mapping(int cpu, int node)
506{
507 int base, sibling, i;
508
509 /* Verify that all the threads in the core belong to the same node */
510 base = cpu_first_thread_sibling(cpu);
511
512 for (i = 0; i < threads_per_core; i++) {
513 sibling = base + i;
514
515 if (sibling == cpu || cpu_is_offline(sibling))
516 continue;
517
518 if (cpu_to_node(sibling) != node) {
519 WARN(1, "CPU thread siblings %d and %d don't belong"
520 " to the same node!\n", cpu, sibling);
521 break;
522 }
523 }
524}
525
526/* Must run before sched domains notifier. */
527static int ppc_numa_cpu_prepare(unsigned int cpu)
528{
529 int nid;
530
531 nid = numa_setup_cpu(cpu);
532 verify_cpu_node_mapping(cpu, nid);
533 return 0;
534}
535
536static int ppc_numa_cpu_dead(unsigned int cpu)
537{
538#ifdef CONFIG_HOTPLUG_CPU
539 unmap_cpu_from_node(cpu);
540#endif
541 return 0;
542}
543
544/*
545 * Check and possibly modify a memory region to enforce the memory limit.
546 *
547 * Returns the size the region should have to enforce the memory limit.
548 * This will either be the original value of size, a truncated value,
549 * or zero. If the returned value of size is 0 the region should be
550 * discarded as it lies wholly above the memory limit.
551 */
552static unsigned long __init numa_enforce_memory_limit(unsigned long start,
553 unsigned long size)
554{
555 /*
556 * We use memblock_end_of_DRAM() in here instead of memory_limit because
557 * we've already adjusted it for the limit and it takes care of
558 * having memory holes below the limit. Also, in the case of
559 * iommu_is_off, memory_limit is not set but is implicitly enforced.
560 */
561
562 if (start + size <= memblock_end_of_DRAM())
563 return size;
564
565 if (start >= memblock_end_of_DRAM())
566 return 0;
567
568 return memblock_end_of_DRAM() - start;
569}
570
571/*
572 * Reads the counter for a given entry in
573 * linux,drconf-usable-memory property
574 */
575static inline int __init read_usm_ranges(const __be32 **usm)
576{
577 /*
578 * For each lmb in ibm,dynamic-memory a corresponding
579 * entry in linux,drconf-usable-memory property contains
580 * a counter followed by that many (base, size) duple.
581 * read the counter from linux,drconf-usable-memory
582 */
583 return read_n_cells(n_mem_size_cells, usm);
584}
585
586/*
587 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
588 * node. This assumes n_mem_{addr,size}_cells have been set.
589 */
590static void __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
591 const __be32 **usm)
592{
593 unsigned int ranges, is_kexec_kdump = 0;
594 unsigned long base, size, sz;
595 int nid;
596
597 /*
598 * Skip this block if the reserved bit is set in flags (0x80)
599 * or if the block is not assigned to this partition (0x8)
600 */
601 if ((lmb->flags & DRCONF_MEM_RESERVED)
602 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
603 return;
604
605 if (*usm)
606 is_kexec_kdump = 1;
607
608 base = lmb->base_addr;
609 size = drmem_lmb_size();
610 ranges = 1;
611
612 if (is_kexec_kdump) {
613 ranges = read_usm_ranges(usm);
614 if (!ranges) /* there are no (base, size) duple */
615 return;
616 }
617
618 do {
619 if (is_kexec_kdump) {
620 base = read_n_cells(n_mem_addr_cells, usm);
621 size = read_n_cells(n_mem_size_cells, usm);
622 }
623
624 nid = of_drconf_to_nid_single(lmb);
625 fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
626 &nid);
627 node_set_online(nid);
628 sz = numa_enforce_memory_limit(base, size);
629 if (sz)
630 memblock_set_node(base, sz, &memblock.memory, nid);
631 } while (--ranges);
632}
633
634static int __init parse_numa_properties(void)
635{
636 struct device_node *memory;
637 int default_nid = 0;
638 unsigned long i;
639
640 if (numa_enabled == 0) {
641 printk(KERN_WARNING "NUMA disabled by user\n");
642 return -1;
643 }
644
645 min_common_depth = find_min_common_depth();
646
647 if (min_common_depth < 0) {
648 /*
649 * if we fail to parse min_common_depth from device tree
650 * mark the numa disabled, boot with numa disabled.
651 */
652 numa_enabled = false;
653 return min_common_depth;
654 }
655
656 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
657
658 /*
659 * Even though we connect cpus to numa domains later in SMP
660 * init, we need to know the node ids now. This is because
661 * each node to be onlined must have NODE_DATA etc backing it.
662 */
663 for_each_present_cpu(i) {
664 struct device_node *cpu;
665 int nid;
666
667 cpu = of_get_cpu_node(i, NULL);
668 BUG_ON(!cpu);
669 nid = of_node_to_nid_single(cpu);
670 of_node_put(cpu);
671
672 /*
673 * Don't fall back to default_nid yet -- we will plug
674 * cpus into nodes once the memory scan has discovered
675 * the topology.
676 */
677 if (nid < 0)
678 continue;
679 node_set_online(nid);
680 }
681
682 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
683
684 for_each_node_by_type(memory, "memory") {
685 unsigned long start;
686 unsigned long size;
687 int nid;
688 int ranges;
689 const __be32 *memcell_buf;
690 unsigned int len;
691
692 memcell_buf = of_get_property(memory,
693 "linux,usable-memory", &len);
694 if (!memcell_buf || len <= 0)
695 memcell_buf = of_get_property(memory, "reg", &len);
696 if (!memcell_buf || len <= 0)
697 continue;
698
699 /* ranges in cell */
700 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
701new_range:
702 /* these are order-sensitive, and modify the buffer pointer */
703 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
704 size = read_n_cells(n_mem_size_cells, &memcell_buf);
705
706 /*
707 * Assumption: either all memory nodes or none will
708 * have associativity properties. If none, then
709 * everything goes to default_nid.
710 */
711 nid = of_node_to_nid_single(memory);
712 if (nid < 0)
713 nid = default_nid;
714
715 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
716 node_set_online(nid);
717
718 size = numa_enforce_memory_limit(start, size);
719 if (size)
720 memblock_set_node(start, size, &memblock.memory, nid);
721
722 if (--ranges)
723 goto new_range;
724 }
725
726 /*
727 * Now do the same thing for each MEMBLOCK listed in the
728 * ibm,dynamic-memory property in the
729 * ibm,dynamic-reconfiguration-memory node.
730 */
731 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
732 if (memory) {
733 walk_drmem_lmbs(memory, numa_setup_drmem_lmb);
734 of_node_put(memory);
735 }
736
737 return 0;
738}
739
740static void __init setup_nonnuma(void)
741{
742 unsigned long top_of_ram = memblock_end_of_DRAM();
743 unsigned long total_ram = memblock_phys_mem_size();
744 unsigned long start_pfn, end_pfn;
745 unsigned int nid = 0;
746 struct memblock_region *reg;
747
748 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
749 top_of_ram, total_ram);
750 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
751 (top_of_ram - total_ram) >> 20);
752
753 for_each_memblock(memory, reg) {
754 start_pfn = memblock_region_memory_base_pfn(reg);
755 end_pfn = memblock_region_memory_end_pfn(reg);
756
757 fake_numa_create_new_node(end_pfn, &nid);
758 memblock_set_node(PFN_PHYS(start_pfn),
759 PFN_PHYS(end_pfn - start_pfn),
760 &memblock.memory, nid);
761 node_set_online(nid);
762 }
763}
764
765void __init dump_numa_cpu_topology(void)
766{
767 unsigned int node;
768 unsigned int cpu, count;
769
770 if (!numa_enabled)
771 return;
772
773 for_each_online_node(node) {
774 pr_info("Node %d CPUs:", node);
775
776 count = 0;
777 /*
778 * If we used a CPU iterator here we would miss printing
779 * the holes in the cpumap.
780 */
781 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
782 if (cpumask_test_cpu(cpu,
783 node_to_cpumask_map[node])) {
784 if (count == 0)
785 pr_cont(" %u", cpu);
786 ++count;
787 } else {
788 if (count > 1)
789 pr_cont("-%u", cpu - 1);
790 count = 0;
791 }
792 }
793
794 if (count > 1)
795 pr_cont("-%u", nr_cpu_ids - 1);
796 pr_cont("\n");
797 }
798}
799
800/* Initialize NODE_DATA for a node on the local memory */
801static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
802{
803 u64 spanned_pages = end_pfn - start_pfn;
804 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
805 u64 nd_pa;
806 void *nd;
807 int tnid;
808
809 nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
810 if (!nd_pa)
811 panic("Cannot allocate %zu bytes for node %d data\n",
812 nd_size, nid);
813
814 nd = __va(nd_pa);
815
816 /* report and initialize */
817 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
818 nd_pa, nd_pa + nd_size - 1);
819 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
820 if (tnid != nid)
821 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
822
823 node_data[nid] = nd;
824 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
825 NODE_DATA(nid)->node_id = nid;
826 NODE_DATA(nid)->node_start_pfn = start_pfn;
827 NODE_DATA(nid)->node_spanned_pages = spanned_pages;
828}
829
830static void __init find_possible_nodes(void)
831{
832 struct device_node *rtas;
833 u32 numnodes, i;
834
835 if (!numa_enabled)
836 return;
837
838 rtas = of_find_node_by_path("/rtas");
839 if (!rtas)
840 return;
841
842 if (of_property_read_u32_index(rtas,
843 "ibm,max-associativity-domains",
844 min_common_depth, &numnodes))
845 goto out;
846
847 for (i = 0; i < numnodes; i++) {
848 if (!node_possible(i))
849 node_set(i, node_possible_map);
850 }
851
852out:
853 of_node_put(rtas);
854}
855
856void __init mem_topology_setup(void)
857{
858 int cpu;
859
860 if (parse_numa_properties())
861 setup_nonnuma();
862
863 /*
864 * Modify the set of possible NUMA nodes to reflect information
865 * available about the set of online nodes, and the set of nodes
866 * that we expect to make use of for this platform's affinity
867 * calculations.
868 */
869 nodes_and(node_possible_map, node_possible_map, node_online_map);
870
871 find_possible_nodes();
872
873 setup_node_to_cpumask_map();
874
875 reset_numa_cpu_lookup_table();
876
877 for_each_present_cpu(cpu)
878 numa_setup_cpu(cpu);
879}
880
881void __init initmem_init(void)
882{
883 int nid;
884
885 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
886 max_pfn = max_low_pfn;
887
888 memblock_dump_all();
889
890 for_each_online_node(nid) {
891 unsigned long start_pfn, end_pfn;
892
893 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
894 setup_node_data(nid, start_pfn, end_pfn);
895 sparse_memory_present_with_active_regions(nid);
896 }
897
898 sparse_init();
899
900 /*
901 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
902 * even before we online them, so that we can use cpu_to_{node,mem}
903 * early in boot, cf. smp_prepare_cpus().
904 * _nocalls() + manual invocation is used because cpuhp is not yet
905 * initialized for the boot CPU.
906 */
907 cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
908 ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
909}
910
911static int __init early_numa(char *p)
912{
913 if (!p)
914 return 0;
915
916 if (strstr(p, "off"))
917 numa_enabled = 0;
918
919 if (strstr(p, "debug"))
920 numa_debug = 1;
921
922 p = strstr(p, "fake=");
923 if (p)
924 cmdline = p + strlen("fake=");
925
926 return 0;
927}
928early_param("numa", early_numa);
929
930/*
931 * The platform can inform us through one of several mechanisms
932 * (post-migration device tree updates, PRRN or VPHN) that the NUMA
933 * assignment of a resource has changed. This controls whether we act
934 * on that. Disabled by default.
935 */
936static bool topology_updates_enabled;
937
938static int __init early_topology_updates(char *p)
939{
940 if (!p)
941 return 0;
942
943 if (!strcmp(p, "on")) {
944 pr_warn("Caution: enabling topology updates\n");
945 topology_updates_enabled = true;
946 }
947
948 return 0;
949}
950early_param("topology_updates", early_topology_updates);
951
952#ifdef CONFIG_MEMORY_HOTPLUG
953/*
954 * Find the node associated with a hot added memory section for
955 * memory represented in the device tree by the property
956 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
957 */
958static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
959{
960 struct drmem_lmb *lmb;
961 unsigned long lmb_size;
962 int nid = NUMA_NO_NODE;
963
964 lmb_size = drmem_lmb_size();
965
966 for_each_drmem_lmb(lmb) {
967 /* skip this block if it is reserved or not assigned to
968 * this partition */
969 if ((lmb->flags & DRCONF_MEM_RESERVED)
970 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
971 continue;
972
973 if ((scn_addr < lmb->base_addr)
974 || (scn_addr >= (lmb->base_addr + lmb_size)))
975 continue;
976
977 nid = of_drconf_to_nid_single(lmb);
978 break;
979 }
980
981 return nid;
982}
983
984/*
985 * Find the node associated with a hot added memory section for memory
986 * represented in the device tree as a node (i.e. memory@XXXX) for
987 * each memblock.
988 */
989static int hot_add_node_scn_to_nid(unsigned long scn_addr)
990{
991 struct device_node *memory;
992 int nid = NUMA_NO_NODE;
993
994 for_each_node_by_type(memory, "memory") {
995 unsigned long start, size;
996 int ranges;
997 const __be32 *memcell_buf;
998 unsigned int len;
999
1000 memcell_buf = of_get_property(memory, "reg", &len);
1001 if (!memcell_buf || len <= 0)
1002 continue;
1003
1004 /* ranges in cell */
1005 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1006
1007 while (ranges--) {
1008 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1009 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1010
1011 if ((scn_addr < start) || (scn_addr >= (start + size)))
1012 continue;
1013
1014 nid = of_node_to_nid_single(memory);
1015 break;
1016 }
1017
1018 if (nid >= 0)
1019 break;
1020 }
1021
1022 of_node_put(memory);
1023
1024 return nid;
1025}
1026
1027/*
1028 * Find the node associated with a hot added memory section. Section
1029 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1030 * sections are fully contained within a single MEMBLOCK.
1031 */
1032int hot_add_scn_to_nid(unsigned long scn_addr)
1033{
1034 struct device_node *memory = NULL;
1035 int nid;
1036
1037 if (!numa_enabled)
1038 return first_online_node;
1039
1040 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1041 if (memory) {
1042 nid = hot_add_drconf_scn_to_nid(scn_addr);
1043 of_node_put(memory);
1044 } else {
1045 nid = hot_add_node_scn_to_nid(scn_addr);
1046 }
1047
1048 if (nid < 0 || !node_possible(nid))
1049 nid = first_online_node;
1050
1051 return nid;
1052}
1053
1054static u64 hot_add_drconf_memory_max(void)
1055{
1056 struct device_node *memory = NULL;
1057 struct device_node *dn = NULL;
1058 const __be64 *lrdr = NULL;
1059
1060 dn = of_find_node_by_path("/rtas");
1061 if (dn) {
1062 lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1063 of_node_put(dn);
1064 if (lrdr)
1065 return be64_to_cpup(lrdr);
1066 }
1067
1068 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1069 if (memory) {
1070 of_node_put(memory);
1071 return drmem_lmb_memory_max();
1072 }
1073 return 0;
1074}
1075
1076/*
1077 * memory_hotplug_max - return max address of memory that may be added
1078 *
1079 * This is currently only used on systems that support drconfig memory
1080 * hotplug.
1081 */
1082u64 memory_hotplug_max(void)
1083{
1084 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1085}
1086#endif /* CONFIG_MEMORY_HOTPLUG */
1087
1088/* Virtual Processor Home Node (VPHN) support */
1089#ifdef CONFIG_PPC_SPLPAR
1090struct topology_update_data {
1091 struct topology_update_data *next;
1092 unsigned int cpu;
1093 int old_nid;
1094 int new_nid;
1095};
1096
1097#define TOPOLOGY_DEF_TIMER_SECS 60
1098
1099static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1100static cpumask_t cpu_associativity_changes_mask;
1101static int vphn_enabled;
1102static int prrn_enabled;
1103static void reset_topology_timer(void);
1104static int topology_timer_secs = 1;
1105static int topology_inited;
1106
1107/*
1108 * Change polling interval for associativity changes.
1109 */
1110int timed_topology_update(int nsecs)
1111{
1112 if (vphn_enabled) {
1113 if (nsecs > 0)
1114 topology_timer_secs = nsecs;
1115 else
1116 topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS;
1117
1118 reset_topology_timer();
1119 }
1120
1121 return 0;
1122}
1123
1124/*
1125 * Store the current values of the associativity change counters in the
1126 * hypervisor.
1127 */
1128static void setup_cpu_associativity_change_counters(void)
1129{
1130 int cpu;
1131
1132 /* The VPHN feature supports a maximum of 8 reference points */
1133 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1134
1135 for_each_possible_cpu(cpu) {
1136 int i;
1137 u8 *counts = vphn_cpu_change_counts[cpu];
1138 volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1139
1140 for (i = 0; i < distance_ref_points_depth; i++)
1141 counts[i] = hypervisor_counts[i];
1142 }
1143}
1144
1145/*
1146 * The hypervisor maintains a set of 8 associativity change counters in
1147 * the VPA of each cpu that correspond to the associativity levels in the
1148 * ibm,associativity-reference-points property. When an associativity
1149 * level changes, the corresponding counter is incremented.
1150 *
1151 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1152 * node associativity levels have changed.
1153 *
1154 * Returns the number of cpus with unhandled associativity changes.
1155 */
1156static int update_cpu_associativity_changes_mask(void)
1157{
1158 int cpu;
1159 cpumask_t *changes = &cpu_associativity_changes_mask;
1160
1161 for_each_possible_cpu(cpu) {
1162 int i, changed = 0;
1163 u8 *counts = vphn_cpu_change_counts[cpu];
1164 volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1165
1166 for (i = 0; i < distance_ref_points_depth; i++) {
1167 if (hypervisor_counts[i] != counts[i]) {
1168 counts[i] = hypervisor_counts[i];
1169 changed = 1;
1170 }
1171 }
1172 if (changed) {
1173 cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1174 cpu = cpu_last_thread_sibling(cpu);
1175 }
1176 }
1177
1178 return cpumask_weight(changes);
1179}
1180
1181/*
1182 * Retrieve the new associativity information for a virtual processor's
1183 * home node.
1184 */
1185static long vphn_get_associativity(unsigned long cpu,
1186 __be32 *associativity)
1187{
1188 long rc;
1189
1190 rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1191 VPHN_FLAG_VCPU, associativity);
1192
1193 switch (rc) {
1194 case H_FUNCTION:
1195 printk_once(KERN_INFO
1196 "VPHN is not supported. Disabling polling...\n");
1197 stop_topology_update();
1198 break;
1199 case H_HARDWARE:
1200 printk(KERN_ERR
1201 "hcall_vphn() experienced a hardware fault "
1202 "preventing VPHN. Disabling polling...\n");
1203 stop_topology_update();
1204 break;
1205 case H_SUCCESS:
1206 dbg("VPHN hcall succeeded. Reset polling...\n");
1207 timed_topology_update(0);
1208 break;
1209 }
1210
1211 return rc;
1212}
1213
1214int find_and_online_cpu_nid(int cpu)
1215{
1216 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1217 int new_nid;
1218
1219 /* Use associativity from first thread for all siblings */
1220 if (vphn_get_associativity(cpu, associativity))
1221 return cpu_to_node(cpu);
1222
1223 new_nid = associativity_to_nid(associativity);
1224 if (new_nid < 0 || !node_possible(new_nid))
1225 new_nid = first_online_node;
1226
1227 if (NODE_DATA(new_nid) == NULL) {
1228#ifdef CONFIG_MEMORY_HOTPLUG
1229 /*
1230 * Need to ensure that NODE_DATA is initialized for a node from
1231 * available memory (see memblock_alloc_try_nid). If unable to
1232 * init the node, then default to nearest node that has memory
1233 * installed. Skip onlining a node if the subsystems are not
1234 * yet initialized.
1235 */
1236 if (!topology_inited || try_online_node(new_nid))
1237 new_nid = first_online_node;
1238#else
1239 /*
1240 * Default to using the nearest node that has memory installed.
1241 * Otherwise, it would be necessary to patch the kernel MM code
1242 * to deal with more memoryless-node error conditions.
1243 */
1244 new_nid = first_online_node;
1245#endif
1246 }
1247
1248 pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1249 cpu, new_nid);
1250 return new_nid;
1251}
1252
1253/*
1254 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1255 * characteristics change. This function doesn't perform any locking and is
1256 * only safe to call from stop_machine().
1257 */
1258static int update_cpu_topology(void *data)
1259{
1260 struct topology_update_data *update;
1261 unsigned long cpu;
1262
1263 if (!data)
1264 return -EINVAL;
1265
1266 cpu = smp_processor_id();
1267
1268 for (update = data; update; update = update->next) {
1269 int new_nid = update->new_nid;
1270 if (cpu != update->cpu)
1271 continue;
1272
1273 unmap_cpu_from_node(cpu);
1274 map_cpu_to_node(cpu, new_nid);
1275 set_cpu_numa_node(cpu, new_nid);
1276 set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1277 vdso_getcpu_init();
1278 }
1279
1280 return 0;
1281}
1282
1283static int update_lookup_table(void *data)
1284{
1285 struct topology_update_data *update;
1286
1287 if (!data)
1288 return -EINVAL;
1289
1290 /*
1291 * Upon topology update, the numa-cpu lookup table needs to be updated
1292 * for all threads in the core, including offline CPUs, to ensure that
1293 * future hotplug operations respect the cpu-to-node associativity
1294 * properly.
1295 */
1296 for (update = data; update; update = update->next) {
1297 int nid, base, j;
1298
1299 nid = update->new_nid;
1300 base = cpu_first_thread_sibling(update->cpu);
1301
1302 for (j = 0; j < threads_per_core; j++) {
1303 update_numa_cpu_lookup_table(base + j, nid);
1304 }
1305 }
1306
1307 return 0;
1308}
1309
1310/*
1311 * Update the node maps and sysfs entries for each cpu whose home node
1312 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1313 *
1314 * cpus_locked says whether we already hold cpu_hotplug_lock.
1315 */
1316int numa_update_cpu_topology(bool cpus_locked)
1317{
1318 unsigned int cpu, sibling, changed = 0;
1319 struct topology_update_data *updates, *ud;
1320 cpumask_t updated_cpus;
1321 struct device *dev;
1322 int weight, new_nid, i = 0;
1323
1324 if (!prrn_enabled && !vphn_enabled && topology_inited)
1325 return 0;
1326
1327 weight = cpumask_weight(&cpu_associativity_changes_mask);
1328 if (!weight)
1329 return 0;
1330
1331 updates = kcalloc(weight, sizeof(*updates), GFP_KERNEL);
1332 if (!updates)
1333 return 0;
1334
1335 cpumask_clear(&updated_cpus);
1336
1337 for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1338 /*
1339 * If siblings aren't flagged for changes, updates list
1340 * will be too short. Skip on this update and set for next
1341 * update.
1342 */
1343 if (!cpumask_subset(cpu_sibling_mask(cpu),
1344 &cpu_associativity_changes_mask)) {
1345 pr_info("Sibling bits not set for associativity "
1346 "change, cpu%d\n", cpu);
1347 cpumask_or(&cpu_associativity_changes_mask,
1348 &cpu_associativity_changes_mask,
1349 cpu_sibling_mask(cpu));
1350 cpu = cpu_last_thread_sibling(cpu);
1351 continue;
1352 }
1353
1354 new_nid = find_and_online_cpu_nid(cpu);
1355
1356 if (new_nid == numa_cpu_lookup_table[cpu]) {
1357 cpumask_andnot(&cpu_associativity_changes_mask,
1358 &cpu_associativity_changes_mask,
1359 cpu_sibling_mask(cpu));
1360 dbg("Assoc chg gives same node %d for cpu%d\n",
1361 new_nid, cpu);
1362 cpu = cpu_last_thread_sibling(cpu);
1363 continue;
1364 }
1365
1366 for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1367 ud = &updates[i++];
1368 ud->next = &updates[i];
1369 ud->cpu = sibling;
1370 ud->new_nid = new_nid;
1371 ud->old_nid = numa_cpu_lookup_table[sibling];
1372 cpumask_set_cpu(sibling, &updated_cpus);
1373 }
1374 cpu = cpu_last_thread_sibling(cpu);
1375 }
1376
1377 /*
1378 * Prevent processing of 'updates' from overflowing array
1379 * where last entry filled in a 'next' pointer.
1380 */
1381 if (i)
1382 updates[i-1].next = NULL;
1383
1384 pr_debug("Topology update for the following CPUs:\n");
1385 if (cpumask_weight(&updated_cpus)) {
1386 for (ud = &updates[0]; ud; ud = ud->next) {
1387 pr_debug("cpu %d moving from node %d "
1388 "to %d\n", ud->cpu,
1389 ud->old_nid, ud->new_nid);
1390 }
1391 }
1392
1393 /*
1394 * In cases where we have nothing to update (because the updates list
1395 * is too short or because the new topology is same as the old one),
1396 * skip invoking update_cpu_topology() via stop-machine(). This is
1397 * necessary (and not just a fast-path optimization) since stop-machine
1398 * can end up electing a random CPU to run update_cpu_topology(), and
1399 * thus trick us into setting up incorrect cpu-node mappings (since
1400 * 'updates' is kzalloc()'ed).
1401 *
1402 * And for the similar reason, we will skip all the following updating.
1403 */
1404 if (!cpumask_weight(&updated_cpus))
1405 goto out;
1406
1407 if (cpus_locked)
1408 stop_machine_cpuslocked(update_cpu_topology, &updates[0],
1409 &updated_cpus);
1410 else
1411 stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1412
1413 /*
1414 * Update the numa-cpu lookup table with the new mappings, even for
1415 * offline CPUs. It is best to perform this update from the stop-
1416 * machine context.
1417 */
1418 if (cpus_locked)
1419 stop_machine_cpuslocked(update_lookup_table, &updates[0],
1420 cpumask_of(raw_smp_processor_id()));
1421 else
1422 stop_machine(update_lookup_table, &updates[0],
1423 cpumask_of(raw_smp_processor_id()));
1424
1425 for (ud = &updates[0]; ud; ud = ud->next) {
1426 unregister_cpu_under_node(ud->cpu, ud->old_nid);
1427 register_cpu_under_node(ud->cpu, ud->new_nid);
1428
1429 dev = get_cpu_device(ud->cpu);
1430 if (dev)
1431 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1432 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1433 changed = 1;
1434 }
1435
1436out:
1437 kfree(updates);
1438 return changed;
1439}
1440
1441int arch_update_cpu_topology(void)
1442{
1443 return numa_update_cpu_topology(true);
1444}
1445
1446static void topology_work_fn(struct work_struct *work)
1447{
1448 rebuild_sched_domains();
1449}
1450static DECLARE_WORK(topology_work, topology_work_fn);
1451
1452static void topology_schedule_update(void)
1453{
1454 schedule_work(&topology_work);
1455}
1456
1457static void topology_timer_fn(struct timer_list *unused)
1458{
1459 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1460 topology_schedule_update();
1461 else if (vphn_enabled) {
1462 if (update_cpu_associativity_changes_mask() > 0)
1463 topology_schedule_update();
1464 reset_topology_timer();
1465 }
1466}
1467static struct timer_list topology_timer;
1468
1469static void reset_topology_timer(void)
1470{
1471 if (vphn_enabled)
1472 mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ);
1473}
1474
1475#ifdef CONFIG_SMP
1476
1477static int dt_update_callback(struct notifier_block *nb,
1478 unsigned long action, void *data)
1479{
1480 struct of_reconfig_data *update = data;
1481 int rc = NOTIFY_DONE;
1482
1483 switch (action) {
1484 case OF_RECONFIG_UPDATE_PROPERTY:
1485 if (of_node_is_type(update->dn, "cpu") &&
1486 !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1487 u32 core_id;
1488 of_property_read_u32(update->dn, "reg", &core_id);
1489 rc = dlpar_cpu_readd(core_id);
1490 rc = NOTIFY_OK;
1491 }
1492 break;
1493 }
1494
1495 return rc;
1496}
1497
1498static struct notifier_block dt_update_nb = {
1499 .notifier_call = dt_update_callback,
1500};
1501
1502#endif
1503
1504/*
1505 * Start polling for associativity changes.
1506 */
1507int start_topology_update(void)
1508{
1509 int rc = 0;
1510
1511 if (!topology_updates_enabled)
1512 return 0;
1513
1514 if (firmware_has_feature(FW_FEATURE_PRRN)) {
1515 if (!prrn_enabled) {
1516 prrn_enabled = 1;
1517#ifdef CONFIG_SMP
1518 rc = of_reconfig_notifier_register(&dt_update_nb);
1519#endif
1520 }
1521 }
1522 if (firmware_has_feature(FW_FEATURE_VPHN) &&
1523 lppaca_shared_proc(get_lppaca())) {
1524 if (!vphn_enabled) {
1525 vphn_enabled = 1;
1526 setup_cpu_associativity_change_counters();
1527 timer_setup(&topology_timer, topology_timer_fn,
1528 TIMER_DEFERRABLE);
1529 reset_topology_timer();
1530 }
1531 }
1532
1533 pr_info("Starting topology update%s%s\n",
1534 (prrn_enabled ? " prrn_enabled" : ""),
1535 (vphn_enabled ? " vphn_enabled" : ""));
1536
1537 return rc;
1538}
1539
1540/*
1541 * Disable polling for VPHN associativity changes.
1542 */
1543int stop_topology_update(void)
1544{
1545 int rc = 0;
1546
1547 if (!topology_updates_enabled)
1548 return 0;
1549
1550 if (prrn_enabled) {
1551 prrn_enabled = 0;
1552#ifdef CONFIG_SMP
1553 rc = of_reconfig_notifier_unregister(&dt_update_nb);
1554#endif
1555 }
1556 if (vphn_enabled) {
1557 vphn_enabled = 0;
1558 rc = del_timer_sync(&topology_timer);
1559 }
1560
1561 pr_info("Stopping topology update\n");
1562
1563 return rc;
1564}
1565
1566int prrn_is_enabled(void)
1567{
1568 return prrn_enabled;
1569}
1570
1571void __init shared_proc_topology_init(void)
1572{
1573 if (lppaca_shared_proc(get_lppaca())) {
1574 bitmap_fill(cpumask_bits(&cpu_associativity_changes_mask),
1575 nr_cpumask_bits);
1576 numa_update_cpu_topology(false);
1577 }
1578}
1579
1580static int topology_read(struct seq_file *file, void *v)
1581{
1582 if (vphn_enabled || prrn_enabled)
1583 seq_puts(file, "on\n");
1584 else
1585 seq_puts(file, "off\n");
1586
1587 return 0;
1588}
1589
1590static int topology_open(struct inode *inode, struct file *file)
1591{
1592 return single_open(file, topology_read, NULL);
1593}
1594
1595static ssize_t topology_write(struct file *file, const char __user *buf,
1596 size_t count, loff_t *off)
1597{
1598 char kbuf[4]; /* "on" or "off" plus null. */
1599 int read_len;
1600
1601 read_len = count < 3 ? count : 3;
1602 if (copy_from_user(kbuf, buf, read_len))
1603 return -EINVAL;
1604
1605 kbuf[read_len] = '\0';
1606
1607 if (!strncmp(kbuf, "on", 2)) {
1608 topology_updates_enabled = true;
1609 start_topology_update();
1610 } else if (!strncmp(kbuf, "off", 3)) {
1611 stop_topology_update();
1612 topology_updates_enabled = false;
1613 } else
1614 return -EINVAL;
1615
1616 return count;
1617}
1618
1619static const struct file_operations topology_ops = {
1620 .read = seq_read,
1621 .write = topology_write,
1622 .open = topology_open,
1623 .release = single_release
1624};
1625
1626static int topology_update_init(void)
1627{
1628 start_topology_update();
1629
1630 if (vphn_enabled)
1631 topology_schedule_update();
1632
1633 if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1634 return -ENOMEM;
1635
1636 topology_inited = 1;
1637 return 0;
1638}
1639device_initcall(topology_update_init);
1640#endif /* CONFIG_PPC_SPLPAR */
1/*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#define pr_fmt(fmt) "numa: " fmt
12
13#include <linux/threads.h>
14#include <linux/bootmem.h>
15#include <linux/init.h>
16#include <linux/mm.h>
17#include <linux/mmzone.h>
18#include <linux/export.h>
19#include <linux/nodemask.h>
20#include <linux/cpu.h>
21#include <linux/notifier.h>
22#include <linux/memblock.h>
23#include <linux/of.h>
24#include <linux/pfn.h>
25#include <linux/cpuset.h>
26#include <linux/node.h>
27#include <linux/stop_machine.h>
28#include <linux/proc_fs.h>
29#include <linux/seq_file.h>
30#include <linux/uaccess.h>
31#include <linux/slab.h>
32#include <asm/cputhreads.h>
33#include <asm/sparsemem.h>
34#include <asm/prom.h>
35#include <asm/smp.h>
36#include <asm/cputhreads.h>
37#include <asm/topology.h>
38#include <asm/firmware.h>
39#include <asm/paca.h>
40#include <asm/hvcall.h>
41#include <asm/setup.h>
42#include <asm/vdso.h>
43
44static int numa_enabled = 1;
45
46static char *cmdline __initdata;
47
48static int numa_debug;
49#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
50
51int numa_cpu_lookup_table[NR_CPUS];
52cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
53struct pglist_data *node_data[MAX_NUMNODES];
54
55EXPORT_SYMBOL(numa_cpu_lookup_table);
56EXPORT_SYMBOL(node_to_cpumask_map);
57EXPORT_SYMBOL(node_data);
58
59static int min_common_depth;
60static int n_mem_addr_cells, n_mem_size_cells;
61static int form1_affinity;
62
63#define MAX_DISTANCE_REF_POINTS 4
64static int distance_ref_points_depth;
65static const __be32 *distance_ref_points;
66static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
67
68/*
69 * Allocate node_to_cpumask_map based on number of available nodes
70 * Requires node_possible_map to be valid.
71 *
72 * Note: cpumask_of_node() is not valid until after this is done.
73 */
74static void __init setup_node_to_cpumask_map(void)
75{
76 unsigned int node;
77
78 /* setup nr_node_ids if not done yet */
79 if (nr_node_ids == MAX_NUMNODES)
80 setup_nr_node_ids();
81
82 /* allocate the map */
83 for_each_node(node)
84 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
85
86 /* cpumask_of_node() will now work */
87 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
88}
89
90static int __init fake_numa_create_new_node(unsigned long end_pfn,
91 unsigned int *nid)
92{
93 unsigned long long mem;
94 char *p = cmdline;
95 static unsigned int fake_nid;
96 static unsigned long long curr_boundary;
97
98 /*
99 * Modify node id, iff we started creating NUMA nodes
100 * We want to continue from where we left of the last time
101 */
102 if (fake_nid)
103 *nid = fake_nid;
104 /*
105 * In case there are no more arguments to parse, the
106 * node_id should be the same as the last fake node id
107 * (we've handled this above).
108 */
109 if (!p)
110 return 0;
111
112 mem = memparse(p, &p);
113 if (!mem)
114 return 0;
115
116 if (mem < curr_boundary)
117 return 0;
118
119 curr_boundary = mem;
120
121 if ((end_pfn << PAGE_SHIFT) > mem) {
122 /*
123 * Skip commas and spaces
124 */
125 while (*p == ',' || *p == ' ' || *p == '\t')
126 p++;
127
128 cmdline = p;
129 fake_nid++;
130 *nid = fake_nid;
131 dbg("created new fake_node with id %d\n", fake_nid);
132 return 1;
133 }
134 return 0;
135}
136
137static void reset_numa_cpu_lookup_table(void)
138{
139 unsigned int cpu;
140
141 for_each_possible_cpu(cpu)
142 numa_cpu_lookup_table[cpu] = -1;
143}
144
145static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
146{
147 numa_cpu_lookup_table[cpu] = node;
148}
149
150static void map_cpu_to_node(int cpu, int node)
151{
152 update_numa_cpu_lookup_table(cpu, node);
153
154 dbg("adding cpu %d to node %d\n", cpu, node);
155
156 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
157 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
158}
159
160#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
161static void unmap_cpu_from_node(unsigned long cpu)
162{
163 int node = numa_cpu_lookup_table[cpu];
164
165 dbg("removing cpu %lu from node %d\n", cpu, node);
166
167 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
168 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
169 } else {
170 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
171 cpu, node);
172 }
173}
174#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
175
176/* must hold reference to node during call */
177static const __be32 *of_get_associativity(struct device_node *dev)
178{
179 return of_get_property(dev, "ibm,associativity", NULL);
180}
181
182/*
183 * Returns the property linux,drconf-usable-memory if
184 * it exists (the property exists only in kexec/kdump kernels,
185 * added by kexec-tools)
186 */
187static const __be32 *of_get_usable_memory(struct device_node *memory)
188{
189 const __be32 *prop;
190 u32 len;
191 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
192 if (!prop || len < sizeof(unsigned int))
193 return NULL;
194 return prop;
195}
196
197int __node_distance(int a, int b)
198{
199 int i;
200 int distance = LOCAL_DISTANCE;
201
202 if (!form1_affinity)
203 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
204
205 for (i = 0; i < distance_ref_points_depth; i++) {
206 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
207 break;
208
209 /* Double the distance for each NUMA level */
210 distance *= 2;
211 }
212
213 return distance;
214}
215EXPORT_SYMBOL(__node_distance);
216
217static void initialize_distance_lookup_table(int nid,
218 const __be32 *associativity)
219{
220 int i;
221
222 if (!form1_affinity)
223 return;
224
225 for (i = 0; i < distance_ref_points_depth; i++) {
226 const __be32 *entry;
227
228 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
229 distance_lookup_table[nid][i] = of_read_number(entry, 1);
230 }
231}
232
233/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
234 * info is found.
235 */
236static int associativity_to_nid(const __be32 *associativity)
237{
238 int nid = -1;
239
240 if (min_common_depth == -1)
241 goto out;
242
243 if (of_read_number(associativity, 1) >= min_common_depth)
244 nid = of_read_number(&associativity[min_common_depth], 1);
245
246 /* POWER4 LPAR uses 0xffff as invalid node */
247 if (nid == 0xffff || nid >= MAX_NUMNODES)
248 nid = -1;
249
250 if (nid > 0 &&
251 of_read_number(associativity, 1) >= distance_ref_points_depth) {
252 /*
253 * Skip the length field and send start of associativity array
254 */
255 initialize_distance_lookup_table(nid, associativity + 1);
256 }
257
258out:
259 return nid;
260}
261
262/* Returns the nid associated with the given device tree node,
263 * or -1 if not found.
264 */
265static int of_node_to_nid_single(struct device_node *device)
266{
267 int nid = -1;
268 const __be32 *tmp;
269
270 tmp = of_get_associativity(device);
271 if (tmp)
272 nid = associativity_to_nid(tmp);
273 return nid;
274}
275
276/* Walk the device tree upwards, looking for an associativity id */
277int of_node_to_nid(struct device_node *device)
278{
279 int nid = -1;
280
281 of_node_get(device);
282 while (device) {
283 nid = of_node_to_nid_single(device);
284 if (nid != -1)
285 break;
286
287 device = of_get_next_parent(device);
288 }
289 of_node_put(device);
290
291 return nid;
292}
293EXPORT_SYMBOL_GPL(of_node_to_nid);
294
295static int __init find_min_common_depth(void)
296{
297 int depth;
298 struct device_node *root;
299
300 if (firmware_has_feature(FW_FEATURE_OPAL))
301 root = of_find_node_by_path("/ibm,opal");
302 else
303 root = of_find_node_by_path("/rtas");
304 if (!root)
305 root = of_find_node_by_path("/");
306
307 /*
308 * This property is a set of 32-bit integers, each representing
309 * an index into the ibm,associativity nodes.
310 *
311 * With form 0 affinity the first integer is for an SMP configuration
312 * (should be all 0's) and the second is for a normal NUMA
313 * configuration. We have only one level of NUMA.
314 *
315 * With form 1 affinity the first integer is the most significant
316 * NUMA boundary and the following are progressively less significant
317 * boundaries. There can be more than one level of NUMA.
318 */
319 distance_ref_points = of_get_property(root,
320 "ibm,associativity-reference-points",
321 &distance_ref_points_depth);
322
323 if (!distance_ref_points) {
324 dbg("NUMA: ibm,associativity-reference-points not found.\n");
325 goto err;
326 }
327
328 distance_ref_points_depth /= sizeof(int);
329
330 if (firmware_has_feature(FW_FEATURE_OPAL) ||
331 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
332 dbg("Using form 1 affinity\n");
333 form1_affinity = 1;
334 }
335
336 if (form1_affinity) {
337 depth = of_read_number(distance_ref_points, 1);
338 } else {
339 if (distance_ref_points_depth < 2) {
340 printk(KERN_WARNING "NUMA: "
341 "short ibm,associativity-reference-points\n");
342 goto err;
343 }
344
345 depth = of_read_number(&distance_ref_points[1], 1);
346 }
347
348 /*
349 * Warn and cap if the hardware supports more than
350 * MAX_DISTANCE_REF_POINTS domains.
351 */
352 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
353 printk(KERN_WARNING "NUMA: distance array capped at "
354 "%d entries\n", MAX_DISTANCE_REF_POINTS);
355 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
356 }
357
358 of_node_put(root);
359 return depth;
360
361err:
362 of_node_put(root);
363 return -1;
364}
365
366static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
367{
368 struct device_node *memory = NULL;
369
370 memory = of_find_node_by_type(memory, "memory");
371 if (!memory)
372 panic("numa.c: No memory nodes found!");
373
374 *n_addr_cells = of_n_addr_cells(memory);
375 *n_size_cells = of_n_size_cells(memory);
376 of_node_put(memory);
377}
378
379static unsigned long read_n_cells(int n, const __be32 **buf)
380{
381 unsigned long result = 0;
382
383 while (n--) {
384 result = (result << 32) | of_read_number(*buf, 1);
385 (*buf)++;
386 }
387 return result;
388}
389
390/*
391 * Read the next memblock list entry from the ibm,dynamic-memory property
392 * and return the information in the provided of_drconf_cell structure.
393 */
394static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
395{
396 const __be32 *cp;
397
398 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
399
400 cp = *cellp;
401 drmem->drc_index = of_read_number(cp, 1);
402 drmem->reserved = of_read_number(&cp[1], 1);
403 drmem->aa_index = of_read_number(&cp[2], 1);
404 drmem->flags = of_read_number(&cp[3], 1);
405
406 *cellp = cp + 4;
407}
408
409/*
410 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
411 *
412 * The layout of the ibm,dynamic-memory property is a number N of memblock
413 * list entries followed by N memblock list entries. Each memblock list entry
414 * contains information as laid out in the of_drconf_cell struct above.
415 */
416static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
417{
418 const __be32 *prop;
419 u32 len, entries;
420
421 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
422 if (!prop || len < sizeof(unsigned int))
423 return 0;
424
425 entries = of_read_number(prop++, 1);
426
427 /* Now that we know the number of entries, revalidate the size
428 * of the property read in to ensure we have everything
429 */
430 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
431 return 0;
432
433 *dm = prop;
434 return entries;
435}
436
437/*
438 * Retrieve and validate the ibm,lmb-size property for drconf memory
439 * from the device tree.
440 */
441static u64 of_get_lmb_size(struct device_node *memory)
442{
443 const __be32 *prop;
444 u32 len;
445
446 prop = of_get_property(memory, "ibm,lmb-size", &len);
447 if (!prop || len < sizeof(unsigned int))
448 return 0;
449
450 return read_n_cells(n_mem_size_cells, &prop);
451}
452
453struct assoc_arrays {
454 u32 n_arrays;
455 u32 array_sz;
456 const __be32 *arrays;
457};
458
459/*
460 * Retrieve and validate the list of associativity arrays for drconf
461 * memory from the ibm,associativity-lookup-arrays property of the
462 * device tree..
463 *
464 * The layout of the ibm,associativity-lookup-arrays property is a number N
465 * indicating the number of associativity arrays, followed by a number M
466 * indicating the size of each associativity array, followed by a list
467 * of N associativity arrays.
468 */
469static int of_get_assoc_arrays(struct device_node *memory,
470 struct assoc_arrays *aa)
471{
472 const __be32 *prop;
473 u32 len;
474
475 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
476 if (!prop || len < 2 * sizeof(unsigned int))
477 return -1;
478
479 aa->n_arrays = of_read_number(prop++, 1);
480 aa->array_sz = of_read_number(prop++, 1);
481
482 /* Now that we know the number of arrays and size of each array,
483 * revalidate the size of the property read in.
484 */
485 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
486 return -1;
487
488 aa->arrays = prop;
489 return 0;
490}
491
492/*
493 * This is like of_node_to_nid_single() for memory represented in the
494 * ibm,dynamic-reconfiguration-memory node.
495 */
496static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
497 struct assoc_arrays *aa)
498{
499 int default_nid = 0;
500 int nid = default_nid;
501 int index;
502
503 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
504 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
505 drmem->aa_index < aa->n_arrays) {
506 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
507 nid = of_read_number(&aa->arrays[index], 1);
508
509 if (nid == 0xffff || nid >= MAX_NUMNODES)
510 nid = default_nid;
511
512 if (nid > 0) {
513 index = drmem->aa_index * aa->array_sz;
514 initialize_distance_lookup_table(nid,
515 &aa->arrays[index]);
516 }
517 }
518
519 return nid;
520}
521
522/*
523 * Figure out to which domain a cpu belongs and stick it there.
524 * Return the id of the domain used.
525 */
526static int numa_setup_cpu(unsigned long lcpu)
527{
528 int nid = -1;
529 struct device_node *cpu;
530
531 /*
532 * If a valid cpu-to-node mapping is already available, use it
533 * directly instead of querying the firmware, since it represents
534 * the most recent mapping notified to us by the platform (eg: VPHN).
535 */
536 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
537 map_cpu_to_node(lcpu, nid);
538 return nid;
539 }
540
541 cpu = of_get_cpu_node(lcpu, NULL);
542
543 if (!cpu) {
544 WARN_ON(1);
545 if (cpu_present(lcpu))
546 goto out_present;
547 else
548 goto out;
549 }
550
551 nid = of_node_to_nid_single(cpu);
552
553out_present:
554 if (nid < 0 || !node_online(nid))
555 nid = first_online_node;
556
557 map_cpu_to_node(lcpu, nid);
558 of_node_put(cpu);
559out:
560 return nid;
561}
562
563static void verify_cpu_node_mapping(int cpu, int node)
564{
565 int base, sibling, i;
566
567 /* Verify that all the threads in the core belong to the same node */
568 base = cpu_first_thread_sibling(cpu);
569
570 for (i = 0; i < threads_per_core; i++) {
571 sibling = base + i;
572
573 if (sibling == cpu || cpu_is_offline(sibling))
574 continue;
575
576 if (cpu_to_node(sibling) != node) {
577 WARN(1, "CPU thread siblings %d and %d don't belong"
578 " to the same node!\n", cpu, sibling);
579 break;
580 }
581 }
582}
583
584/* Must run before sched domains notifier. */
585static int ppc_numa_cpu_prepare(unsigned int cpu)
586{
587 int nid;
588
589 nid = numa_setup_cpu(cpu);
590 verify_cpu_node_mapping(cpu, nid);
591 return 0;
592}
593
594static int ppc_numa_cpu_dead(unsigned int cpu)
595{
596#ifdef CONFIG_HOTPLUG_CPU
597 unmap_cpu_from_node(cpu);
598#endif
599 return 0;
600}
601
602/*
603 * Check and possibly modify a memory region to enforce the memory limit.
604 *
605 * Returns the size the region should have to enforce the memory limit.
606 * This will either be the original value of size, a truncated value,
607 * or zero. If the returned value of size is 0 the region should be
608 * discarded as it lies wholly above the memory limit.
609 */
610static unsigned long __init numa_enforce_memory_limit(unsigned long start,
611 unsigned long size)
612{
613 /*
614 * We use memblock_end_of_DRAM() in here instead of memory_limit because
615 * we've already adjusted it for the limit and it takes care of
616 * having memory holes below the limit. Also, in the case of
617 * iommu_is_off, memory_limit is not set but is implicitly enforced.
618 */
619
620 if (start + size <= memblock_end_of_DRAM())
621 return size;
622
623 if (start >= memblock_end_of_DRAM())
624 return 0;
625
626 return memblock_end_of_DRAM() - start;
627}
628
629/*
630 * Reads the counter for a given entry in
631 * linux,drconf-usable-memory property
632 */
633static inline int __init read_usm_ranges(const __be32 **usm)
634{
635 /*
636 * For each lmb in ibm,dynamic-memory a corresponding
637 * entry in linux,drconf-usable-memory property contains
638 * a counter followed by that many (base, size) duple.
639 * read the counter from linux,drconf-usable-memory
640 */
641 return read_n_cells(n_mem_size_cells, usm);
642}
643
644/*
645 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
646 * node. This assumes n_mem_{addr,size}_cells have been set.
647 */
648static void __init parse_drconf_memory(struct device_node *memory)
649{
650 const __be32 *uninitialized_var(dm), *usm;
651 unsigned int n, rc, ranges, is_kexec_kdump = 0;
652 unsigned long lmb_size, base, size, sz;
653 int nid;
654 struct assoc_arrays aa = { .arrays = NULL };
655
656 n = of_get_drconf_memory(memory, &dm);
657 if (!n)
658 return;
659
660 lmb_size = of_get_lmb_size(memory);
661 if (!lmb_size)
662 return;
663
664 rc = of_get_assoc_arrays(memory, &aa);
665 if (rc)
666 return;
667
668 /* check if this is a kexec/kdump kernel */
669 usm = of_get_usable_memory(memory);
670 if (usm != NULL)
671 is_kexec_kdump = 1;
672
673 for (; n != 0; --n) {
674 struct of_drconf_cell drmem;
675
676 read_drconf_cell(&drmem, &dm);
677
678 /* skip this block if the reserved bit is set in flags (0x80)
679 or if the block is not assigned to this partition (0x8) */
680 if ((drmem.flags & DRCONF_MEM_RESERVED)
681 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
682 continue;
683
684 base = drmem.base_addr;
685 size = lmb_size;
686 ranges = 1;
687
688 if (is_kexec_kdump) {
689 ranges = read_usm_ranges(&usm);
690 if (!ranges) /* there are no (base, size) duple */
691 continue;
692 }
693 do {
694 if (is_kexec_kdump) {
695 base = read_n_cells(n_mem_addr_cells, &usm);
696 size = read_n_cells(n_mem_size_cells, &usm);
697 }
698 nid = of_drconf_to_nid_single(&drmem, &aa);
699 fake_numa_create_new_node(
700 ((base + size) >> PAGE_SHIFT),
701 &nid);
702 node_set_online(nid);
703 sz = numa_enforce_memory_limit(base, size);
704 if (sz)
705 memblock_set_node(base, sz,
706 &memblock.memory, nid);
707 } while (--ranges);
708 }
709}
710
711static int __init parse_numa_properties(void)
712{
713 struct device_node *memory;
714 int default_nid = 0;
715 unsigned long i;
716
717 if (numa_enabled == 0) {
718 printk(KERN_WARNING "NUMA disabled by user\n");
719 return -1;
720 }
721
722 min_common_depth = find_min_common_depth();
723
724 if (min_common_depth < 0)
725 return min_common_depth;
726
727 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
728
729 /*
730 * Even though we connect cpus to numa domains later in SMP
731 * init, we need to know the node ids now. This is because
732 * each node to be onlined must have NODE_DATA etc backing it.
733 */
734 for_each_present_cpu(i) {
735 struct device_node *cpu;
736 int nid;
737
738 cpu = of_get_cpu_node(i, NULL);
739 BUG_ON(!cpu);
740 nid = of_node_to_nid_single(cpu);
741 of_node_put(cpu);
742
743 /*
744 * Don't fall back to default_nid yet -- we will plug
745 * cpus into nodes once the memory scan has discovered
746 * the topology.
747 */
748 if (nid < 0)
749 continue;
750 node_set_online(nid);
751 }
752
753 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
754
755 for_each_node_by_type(memory, "memory") {
756 unsigned long start;
757 unsigned long size;
758 int nid;
759 int ranges;
760 const __be32 *memcell_buf;
761 unsigned int len;
762
763 memcell_buf = of_get_property(memory,
764 "linux,usable-memory", &len);
765 if (!memcell_buf || len <= 0)
766 memcell_buf = of_get_property(memory, "reg", &len);
767 if (!memcell_buf || len <= 0)
768 continue;
769
770 /* ranges in cell */
771 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
772new_range:
773 /* these are order-sensitive, and modify the buffer pointer */
774 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
775 size = read_n_cells(n_mem_size_cells, &memcell_buf);
776
777 /*
778 * Assumption: either all memory nodes or none will
779 * have associativity properties. If none, then
780 * everything goes to default_nid.
781 */
782 nid = of_node_to_nid_single(memory);
783 if (nid < 0)
784 nid = default_nid;
785
786 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
787 node_set_online(nid);
788
789 if (!(size = numa_enforce_memory_limit(start, size))) {
790 if (--ranges)
791 goto new_range;
792 else
793 continue;
794 }
795
796 memblock_set_node(start, size, &memblock.memory, nid);
797
798 if (--ranges)
799 goto new_range;
800 }
801
802 /*
803 * Now do the same thing for each MEMBLOCK listed in the
804 * ibm,dynamic-memory property in the
805 * ibm,dynamic-reconfiguration-memory node.
806 */
807 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
808 if (memory)
809 parse_drconf_memory(memory);
810
811 return 0;
812}
813
814static void __init setup_nonnuma(void)
815{
816 unsigned long top_of_ram = memblock_end_of_DRAM();
817 unsigned long total_ram = memblock_phys_mem_size();
818 unsigned long start_pfn, end_pfn;
819 unsigned int nid = 0;
820 struct memblock_region *reg;
821
822 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
823 top_of_ram, total_ram);
824 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
825 (top_of_ram - total_ram) >> 20);
826
827 for_each_memblock(memory, reg) {
828 start_pfn = memblock_region_memory_base_pfn(reg);
829 end_pfn = memblock_region_memory_end_pfn(reg);
830
831 fake_numa_create_new_node(end_pfn, &nid);
832 memblock_set_node(PFN_PHYS(start_pfn),
833 PFN_PHYS(end_pfn - start_pfn),
834 &memblock.memory, nid);
835 node_set_online(nid);
836 }
837}
838
839void __init dump_numa_cpu_topology(void)
840{
841 unsigned int node;
842 unsigned int cpu, count;
843
844 if (min_common_depth == -1 || !numa_enabled)
845 return;
846
847 for_each_online_node(node) {
848 pr_info("Node %d CPUs:", node);
849
850 count = 0;
851 /*
852 * If we used a CPU iterator here we would miss printing
853 * the holes in the cpumap.
854 */
855 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
856 if (cpumask_test_cpu(cpu,
857 node_to_cpumask_map[node])) {
858 if (count == 0)
859 pr_cont(" %u", cpu);
860 ++count;
861 } else {
862 if (count > 1)
863 pr_cont("-%u", cpu - 1);
864 count = 0;
865 }
866 }
867
868 if (count > 1)
869 pr_cont("-%u", nr_cpu_ids - 1);
870 pr_cont("\n");
871 }
872}
873
874/* Initialize NODE_DATA for a node on the local memory */
875static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
876{
877 u64 spanned_pages = end_pfn - start_pfn;
878 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
879 u64 nd_pa;
880 void *nd;
881 int tnid;
882
883 if (spanned_pages)
884 pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n",
885 nid, start_pfn << PAGE_SHIFT,
886 (end_pfn << PAGE_SHIFT) - 1);
887 else
888 pr_info("Initmem setup node %d\n", nid);
889
890 nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
891 nd = __va(nd_pa);
892
893 /* report and initialize */
894 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
895 nd_pa, nd_pa + nd_size - 1);
896 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
897 if (tnid != nid)
898 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
899
900 node_data[nid] = nd;
901 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
902 NODE_DATA(nid)->node_id = nid;
903 NODE_DATA(nid)->node_start_pfn = start_pfn;
904 NODE_DATA(nid)->node_spanned_pages = spanned_pages;
905}
906
907void __init initmem_init(void)
908{
909 int nid, cpu;
910
911 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
912 max_pfn = max_low_pfn;
913
914 if (parse_numa_properties())
915 setup_nonnuma();
916
917 memblock_dump_all();
918
919 /*
920 * Reduce the possible NUMA nodes to the online NUMA nodes,
921 * since we do not support node hotplug. This ensures that we
922 * lower the maximum NUMA node ID to what is actually present.
923 */
924 nodes_and(node_possible_map, node_possible_map, node_online_map);
925
926 for_each_online_node(nid) {
927 unsigned long start_pfn, end_pfn;
928
929 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
930 setup_node_data(nid, start_pfn, end_pfn);
931 sparse_memory_present_with_active_regions(nid);
932 }
933
934 sparse_init();
935
936 setup_node_to_cpumask_map();
937
938 reset_numa_cpu_lookup_table();
939
940 /*
941 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
942 * even before we online them, so that we can use cpu_to_{node,mem}
943 * early in boot, cf. smp_prepare_cpus().
944 * _nocalls() + manual invocation is used because cpuhp is not yet
945 * initialized for the boot CPU.
946 */
947 cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
948 ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
949 for_each_present_cpu(cpu)
950 numa_setup_cpu(cpu);
951}
952
953static int __init early_numa(char *p)
954{
955 if (!p)
956 return 0;
957
958 if (strstr(p, "off"))
959 numa_enabled = 0;
960
961 if (strstr(p, "debug"))
962 numa_debug = 1;
963
964 p = strstr(p, "fake=");
965 if (p)
966 cmdline = p + strlen("fake=");
967
968 return 0;
969}
970early_param("numa", early_numa);
971
972static bool topology_updates_enabled = true;
973
974static int __init early_topology_updates(char *p)
975{
976 if (!p)
977 return 0;
978
979 if (!strcmp(p, "off")) {
980 pr_info("Disabling topology updates\n");
981 topology_updates_enabled = false;
982 }
983
984 return 0;
985}
986early_param("topology_updates", early_topology_updates);
987
988#ifdef CONFIG_MEMORY_HOTPLUG
989/*
990 * Find the node associated with a hot added memory section for
991 * memory represented in the device tree by the property
992 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
993 */
994static int hot_add_drconf_scn_to_nid(struct device_node *memory,
995 unsigned long scn_addr)
996{
997 const __be32 *dm;
998 unsigned int drconf_cell_cnt, rc;
999 unsigned long lmb_size;
1000 struct assoc_arrays aa;
1001 int nid = -1;
1002
1003 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1004 if (!drconf_cell_cnt)
1005 return -1;
1006
1007 lmb_size = of_get_lmb_size(memory);
1008 if (!lmb_size)
1009 return -1;
1010
1011 rc = of_get_assoc_arrays(memory, &aa);
1012 if (rc)
1013 return -1;
1014
1015 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1016 struct of_drconf_cell drmem;
1017
1018 read_drconf_cell(&drmem, &dm);
1019
1020 /* skip this block if it is reserved or not assigned to
1021 * this partition */
1022 if ((drmem.flags & DRCONF_MEM_RESERVED)
1023 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1024 continue;
1025
1026 if ((scn_addr < drmem.base_addr)
1027 || (scn_addr >= (drmem.base_addr + lmb_size)))
1028 continue;
1029
1030 nid = of_drconf_to_nid_single(&drmem, &aa);
1031 break;
1032 }
1033
1034 return nid;
1035}
1036
1037/*
1038 * Find the node associated with a hot added memory section for memory
1039 * represented in the device tree as a node (i.e. memory@XXXX) for
1040 * each memblock.
1041 */
1042static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1043{
1044 struct device_node *memory;
1045 int nid = -1;
1046
1047 for_each_node_by_type(memory, "memory") {
1048 unsigned long start, size;
1049 int ranges;
1050 const __be32 *memcell_buf;
1051 unsigned int len;
1052
1053 memcell_buf = of_get_property(memory, "reg", &len);
1054 if (!memcell_buf || len <= 0)
1055 continue;
1056
1057 /* ranges in cell */
1058 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1059
1060 while (ranges--) {
1061 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1062 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1063
1064 if ((scn_addr < start) || (scn_addr >= (start + size)))
1065 continue;
1066
1067 nid = of_node_to_nid_single(memory);
1068 break;
1069 }
1070
1071 if (nid >= 0)
1072 break;
1073 }
1074
1075 of_node_put(memory);
1076
1077 return nid;
1078}
1079
1080/*
1081 * Find the node associated with a hot added memory section. Section
1082 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1083 * sections are fully contained within a single MEMBLOCK.
1084 */
1085int hot_add_scn_to_nid(unsigned long scn_addr)
1086{
1087 struct device_node *memory = NULL;
1088 int nid;
1089
1090 if (!numa_enabled || (min_common_depth < 0))
1091 return first_online_node;
1092
1093 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1094 if (memory) {
1095 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1096 of_node_put(memory);
1097 } else {
1098 nid = hot_add_node_scn_to_nid(scn_addr);
1099 }
1100
1101 if (nid < 0 || !node_online(nid))
1102 nid = first_online_node;
1103
1104 return nid;
1105}
1106
1107static u64 hot_add_drconf_memory_max(void)
1108{
1109 struct device_node *memory = NULL;
1110 struct device_node *dn = NULL;
1111 unsigned int drconf_cell_cnt = 0;
1112 u64 lmb_size = 0;
1113 const __be32 *dm = NULL;
1114 const __be64 *lrdr = NULL;
1115 struct of_drconf_cell drmem;
1116
1117 dn = of_find_node_by_path("/rtas");
1118 if (dn) {
1119 lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1120 of_node_put(dn);
1121 if (lrdr)
1122 return be64_to_cpup(lrdr);
1123 }
1124
1125 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1126 if (memory) {
1127 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1128 lmb_size = of_get_lmb_size(memory);
1129
1130 /* Advance to the last cell, each cell has 6 32 bit integers */
1131 dm += (drconf_cell_cnt - 1) * 6;
1132 read_drconf_cell(&drmem, &dm);
1133 of_node_put(memory);
1134 return drmem.base_addr + lmb_size;
1135 }
1136 return 0;
1137}
1138
1139/*
1140 * memory_hotplug_max - return max address of memory that may be added
1141 *
1142 * This is currently only used on systems that support drconfig memory
1143 * hotplug.
1144 */
1145u64 memory_hotplug_max(void)
1146{
1147 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1148}
1149#endif /* CONFIG_MEMORY_HOTPLUG */
1150
1151/* Virtual Processor Home Node (VPHN) support */
1152#ifdef CONFIG_PPC_SPLPAR
1153
1154#include "vphn.h"
1155
1156struct topology_update_data {
1157 struct topology_update_data *next;
1158 unsigned int cpu;
1159 int old_nid;
1160 int new_nid;
1161};
1162
1163static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1164static cpumask_t cpu_associativity_changes_mask;
1165static int vphn_enabled;
1166static int prrn_enabled;
1167static void reset_topology_timer(void);
1168
1169/*
1170 * Store the current values of the associativity change counters in the
1171 * hypervisor.
1172 */
1173static void setup_cpu_associativity_change_counters(void)
1174{
1175 int cpu;
1176
1177 /* The VPHN feature supports a maximum of 8 reference points */
1178 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1179
1180 for_each_possible_cpu(cpu) {
1181 int i;
1182 u8 *counts = vphn_cpu_change_counts[cpu];
1183 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1184
1185 for (i = 0; i < distance_ref_points_depth; i++)
1186 counts[i] = hypervisor_counts[i];
1187 }
1188}
1189
1190/*
1191 * The hypervisor maintains a set of 8 associativity change counters in
1192 * the VPA of each cpu that correspond to the associativity levels in the
1193 * ibm,associativity-reference-points property. When an associativity
1194 * level changes, the corresponding counter is incremented.
1195 *
1196 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1197 * node associativity levels have changed.
1198 *
1199 * Returns the number of cpus with unhandled associativity changes.
1200 */
1201static int update_cpu_associativity_changes_mask(void)
1202{
1203 int cpu;
1204 cpumask_t *changes = &cpu_associativity_changes_mask;
1205
1206 for_each_possible_cpu(cpu) {
1207 int i, changed = 0;
1208 u8 *counts = vphn_cpu_change_counts[cpu];
1209 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1210
1211 for (i = 0; i < distance_ref_points_depth; i++) {
1212 if (hypervisor_counts[i] != counts[i]) {
1213 counts[i] = hypervisor_counts[i];
1214 changed = 1;
1215 }
1216 }
1217 if (changed) {
1218 cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1219 cpu = cpu_last_thread_sibling(cpu);
1220 }
1221 }
1222
1223 return cpumask_weight(changes);
1224}
1225
1226/*
1227 * Retrieve the new associativity information for a virtual processor's
1228 * home node.
1229 */
1230static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1231{
1232 long rc;
1233 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1234 u64 flags = 1;
1235 int hwcpu = get_hard_smp_processor_id(cpu);
1236
1237 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1238 vphn_unpack_associativity(retbuf, associativity);
1239
1240 return rc;
1241}
1242
1243static long vphn_get_associativity(unsigned long cpu,
1244 __be32 *associativity)
1245{
1246 long rc;
1247
1248 rc = hcall_vphn(cpu, associativity);
1249
1250 switch (rc) {
1251 case H_FUNCTION:
1252 printk(KERN_INFO
1253 "VPHN is not supported. Disabling polling...\n");
1254 stop_topology_update();
1255 break;
1256 case H_HARDWARE:
1257 printk(KERN_ERR
1258 "hcall_vphn() experienced a hardware fault "
1259 "preventing VPHN. Disabling polling...\n");
1260 stop_topology_update();
1261 }
1262
1263 return rc;
1264}
1265
1266/*
1267 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1268 * characteristics change. This function doesn't perform any locking and is
1269 * only safe to call from stop_machine().
1270 */
1271static int update_cpu_topology(void *data)
1272{
1273 struct topology_update_data *update;
1274 unsigned long cpu;
1275
1276 if (!data)
1277 return -EINVAL;
1278
1279 cpu = smp_processor_id();
1280
1281 for (update = data; update; update = update->next) {
1282 int new_nid = update->new_nid;
1283 if (cpu != update->cpu)
1284 continue;
1285
1286 unmap_cpu_from_node(cpu);
1287 map_cpu_to_node(cpu, new_nid);
1288 set_cpu_numa_node(cpu, new_nid);
1289 set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1290 vdso_getcpu_init();
1291 }
1292
1293 return 0;
1294}
1295
1296static int update_lookup_table(void *data)
1297{
1298 struct topology_update_data *update;
1299
1300 if (!data)
1301 return -EINVAL;
1302
1303 /*
1304 * Upon topology update, the numa-cpu lookup table needs to be updated
1305 * for all threads in the core, including offline CPUs, to ensure that
1306 * future hotplug operations respect the cpu-to-node associativity
1307 * properly.
1308 */
1309 for (update = data; update; update = update->next) {
1310 int nid, base, j;
1311
1312 nid = update->new_nid;
1313 base = cpu_first_thread_sibling(update->cpu);
1314
1315 for (j = 0; j < threads_per_core; j++) {
1316 update_numa_cpu_lookup_table(base + j, nid);
1317 }
1318 }
1319
1320 return 0;
1321}
1322
1323/*
1324 * Update the node maps and sysfs entries for each cpu whose home node
1325 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1326 */
1327int arch_update_cpu_topology(void)
1328{
1329 unsigned int cpu, sibling, changed = 0;
1330 struct topology_update_data *updates, *ud;
1331 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1332 cpumask_t updated_cpus;
1333 struct device *dev;
1334 int weight, new_nid, i = 0;
1335
1336 if (!prrn_enabled && !vphn_enabled)
1337 return 0;
1338
1339 weight = cpumask_weight(&cpu_associativity_changes_mask);
1340 if (!weight)
1341 return 0;
1342
1343 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1344 if (!updates)
1345 return 0;
1346
1347 cpumask_clear(&updated_cpus);
1348
1349 for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1350 /*
1351 * If siblings aren't flagged for changes, updates list
1352 * will be too short. Skip on this update and set for next
1353 * update.
1354 */
1355 if (!cpumask_subset(cpu_sibling_mask(cpu),
1356 &cpu_associativity_changes_mask)) {
1357 pr_info("Sibling bits not set for associativity "
1358 "change, cpu%d\n", cpu);
1359 cpumask_or(&cpu_associativity_changes_mask,
1360 &cpu_associativity_changes_mask,
1361 cpu_sibling_mask(cpu));
1362 cpu = cpu_last_thread_sibling(cpu);
1363 continue;
1364 }
1365
1366 /* Use associativity from first thread for all siblings */
1367 vphn_get_associativity(cpu, associativity);
1368 new_nid = associativity_to_nid(associativity);
1369 if (new_nid < 0 || !node_online(new_nid))
1370 new_nid = first_online_node;
1371
1372 if (new_nid == numa_cpu_lookup_table[cpu]) {
1373 cpumask_andnot(&cpu_associativity_changes_mask,
1374 &cpu_associativity_changes_mask,
1375 cpu_sibling_mask(cpu));
1376 cpu = cpu_last_thread_sibling(cpu);
1377 continue;
1378 }
1379
1380 for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1381 ud = &updates[i++];
1382 ud->cpu = sibling;
1383 ud->new_nid = new_nid;
1384 ud->old_nid = numa_cpu_lookup_table[sibling];
1385 cpumask_set_cpu(sibling, &updated_cpus);
1386 if (i < weight)
1387 ud->next = &updates[i];
1388 }
1389 cpu = cpu_last_thread_sibling(cpu);
1390 }
1391
1392 pr_debug("Topology update for the following CPUs:\n");
1393 if (cpumask_weight(&updated_cpus)) {
1394 for (ud = &updates[0]; ud; ud = ud->next) {
1395 pr_debug("cpu %d moving from node %d "
1396 "to %d\n", ud->cpu,
1397 ud->old_nid, ud->new_nid);
1398 }
1399 }
1400
1401 /*
1402 * In cases where we have nothing to update (because the updates list
1403 * is too short or because the new topology is same as the old one),
1404 * skip invoking update_cpu_topology() via stop-machine(). This is
1405 * necessary (and not just a fast-path optimization) since stop-machine
1406 * can end up electing a random CPU to run update_cpu_topology(), and
1407 * thus trick us into setting up incorrect cpu-node mappings (since
1408 * 'updates' is kzalloc()'ed).
1409 *
1410 * And for the similar reason, we will skip all the following updating.
1411 */
1412 if (!cpumask_weight(&updated_cpus))
1413 goto out;
1414
1415 stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1416
1417 /*
1418 * Update the numa-cpu lookup table with the new mappings, even for
1419 * offline CPUs. It is best to perform this update from the stop-
1420 * machine context.
1421 */
1422 stop_machine(update_lookup_table, &updates[0],
1423 cpumask_of(raw_smp_processor_id()));
1424
1425 for (ud = &updates[0]; ud; ud = ud->next) {
1426 unregister_cpu_under_node(ud->cpu, ud->old_nid);
1427 register_cpu_under_node(ud->cpu, ud->new_nid);
1428
1429 dev = get_cpu_device(ud->cpu);
1430 if (dev)
1431 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1432 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1433 changed = 1;
1434 }
1435
1436out:
1437 kfree(updates);
1438 return changed;
1439}
1440
1441static void topology_work_fn(struct work_struct *work)
1442{
1443 rebuild_sched_domains();
1444}
1445static DECLARE_WORK(topology_work, topology_work_fn);
1446
1447static void topology_schedule_update(void)
1448{
1449 schedule_work(&topology_work);
1450}
1451
1452static void topology_timer_fn(unsigned long ignored)
1453{
1454 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1455 topology_schedule_update();
1456 else if (vphn_enabled) {
1457 if (update_cpu_associativity_changes_mask() > 0)
1458 topology_schedule_update();
1459 reset_topology_timer();
1460 }
1461}
1462static struct timer_list topology_timer =
1463 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1464
1465static void reset_topology_timer(void)
1466{
1467 topology_timer.data = 0;
1468 topology_timer.expires = jiffies + 60 * HZ;
1469 mod_timer(&topology_timer, topology_timer.expires);
1470}
1471
1472#ifdef CONFIG_SMP
1473
1474static void stage_topology_update(int core_id)
1475{
1476 cpumask_or(&cpu_associativity_changes_mask,
1477 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1478 reset_topology_timer();
1479}
1480
1481static int dt_update_callback(struct notifier_block *nb,
1482 unsigned long action, void *data)
1483{
1484 struct of_reconfig_data *update = data;
1485 int rc = NOTIFY_DONE;
1486
1487 switch (action) {
1488 case OF_RECONFIG_UPDATE_PROPERTY:
1489 if (!of_prop_cmp(update->dn->type, "cpu") &&
1490 !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1491 u32 core_id;
1492 of_property_read_u32(update->dn, "reg", &core_id);
1493 stage_topology_update(core_id);
1494 rc = NOTIFY_OK;
1495 }
1496 break;
1497 }
1498
1499 return rc;
1500}
1501
1502static struct notifier_block dt_update_nb = {
1503 .notifier_call = dt_update_callback,
1504};
1505
1506#endif
1507
1508/*
1509 * Start polling for associativity changes.
1510 */
1511int start_topology_update(void)
1512{
1513 int rc = 0;
1514
1515 if (firmware_has_feature(FW_FEATURE_PRRN)) {
1516 if (!prrn_enabled) {
1517 prrn_enabled = 1;
1518 vphn_enabled = 0;
1519#ifdef CONFIG_SMP
1520 rc = of_reconfig_notifier_register(&dt_update_nb);
1521#endif
1522 }
1523 } else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1524 lppaca_shared_proc(get_lppaca())) {
1525 if (!vphn_enabled) {
1526 prrn_enabled = 0;
1527 vphn_enabled = 1;
1528 setup_cpu_associativity_change_counters();
1529 init_timer_deferrable(&topology_timer);
1530 reset_topology_timer();
1531 }
1532 }
1533
1534 return rc;
1535}
1536
1537/*
1538 * Disable polling for VPHN associativity changes.
1539 */
1540int stop_topology_update(void)
1541{
1542 int rc = 0;
1543
1544 if (prrn_enabled) {
1545 prrn_enabled = 0;
1546#ifdef CONFIG_SMP
1547 rc = of_reconfig_notifier_unregister(&dt_update_nb);
1548#endif
1549 } else if (vphn_enabled) {
1550 vphn_enabled = 0;
1551 rc = del_timer_sync(&topology_timer);
1552 }
1553
1554 return rc;
1555}
1556
1557int prrn_is_enabled(void)
1558{
1559 return prrn_enabled;
1560}
1561
1562static int topology_read(struct seq_file *file, void *v)
1563{
1564 if (vphn_enabled || prrn_enabled)
1565 seq_puts(file, "on\n");
1566 else
1567 seq_puts(file, "off\n");
1568
1569 return 0;
1570}
1571
1572static int topology_open(struct inode *inode, struct file *file)
1573{
1574 return single_open(file, topology_read, NULL);
1575}
1576
1577static ssize_t topology_write(struct file *file, const char __user *buf,
1578 size_t count, loff_t *off)
1579{
1580 char kbuf[4]; /* "on" or "off" plus null. */
1581 int read_len;
1582
1583 read_len = count < 3 ? count : 3;
1584 if (copy_from_user(kbuf, buf, read_len))
1585 return -EINVAL;
1586
1587 kbuf[read_len] = '\0';
1588
1589 if (!strncmp(kbuf, "on", 2))
1590 start_topology_update();
1591 else if (!strncmp(kbuf, "off", 3))
1592 stop_topology_update();
1593 else
1594 return -EINVAL;
1595
1596 return count;
1597}
1598
1599static const struct file_operations topology_ops = {
1600 .read = seq_read,
1601 .write = topology_write,
1602 .open = topology_open,
1603 .release = single_release
1604};
1605
1606static int topology_update_init(void)
1607{
1608 /* Do not poll for changes if disabled at boot */
1609 if (topology_updates_enabled)
1610 start_topology_update();
1611
1612 if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1613 return -ENOMEM;
1614
1615 return 0;
1616}
1617device_initcall(topology_update_init);
1618#endif /* CONFIG_PPC_SPLPAR */