Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * pSeries NUMA support
   4 *
   5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 
 
 
 
 
   6 */
   7#define pr_fmt(fmt) "numa: " fmt
   8
   9#include <linux/threads.h>
  10#include <linux/memblock.h>
  11#include <linux/init.h>
  12#include <linux/mm.h>
  13#include <linux/mmzone.h>
  14#include <linux/export.h>
  15#include <linux/nodemask.h>
  16#include <linux/cpu.h>
  17#include <linux/notifier.h>
 
  18#include <linux/of.h>
  19#include <linux/pfn.h>
  20#include <linux/cpuset.h>
  21#include <linux/node.h>
  22#include <linux/stop_machine.h>
  23#include <linux/proc_fs.h>
  24#include <linux/seq_file.h>
  25#include <linux/uaccess.h>
  26#include <linux/slab.h>
  27#include <asm/cputhreads.h>
  28#include <asm/sparsemem.h>
  29#include <asm/prom.h>
 
  30#include <asm/smp.h>
  31#include <asm/topology.h>
  32#include <asm/firmware.h>
  33#include <asm/paca.h>
  34#include <asm/hvcall.h>
  35#include <asm/setup.h>
  36#include <asm/vdso.h>
  37#include <asm/drmem.h>
  38
  39static int numa_enabled = 1;
  40
  41static char *cmdline __initdata;
  42
  43static int numa_debug;
  44#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
  45
  46int numa_cpu_lookup_table[NR_CPUS];
  47cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  48struct pglist_data *node_data[MAX_NUMNODES];
  49
  50EXPORT_SYMBOL(numa_cpu_lookup_table);
  51EXPORT_SYMBOL(node_to_cpumask_map);
  52EXPORT_SYMBOL(node_data);
  53
  54static int min_common_depth;
  55static int n_mem_addr_cells, n_mem_size_cells;
  56static int form1_affinity;
  57
  58#define MAX_DISTANCE_REF_POINTS 4
  59static int distance_ref_points_depth;
  60static const __be32 *distance_ref_points;
  61static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
  62
  63/*
  64 * Allocate node_to_cpumask_map based on number of available nodes
  65 * Requires node_possible_map to be valid.
  66 *
  67 * Note: cpumask_of_node() is not valid until after this is done.
  68 */
  69static void __init setup_node_to_cpumask_map(void)
  70{
  71	unsigned int node;
  72
  73	/* setup nr_node_ids if not done yet */
  74	if (nr_node_ids == MAX_NUMNODES)
  75		setup_nr_node_ids();
 
 
 
  76
  77	/* allocate the map */
  78	for_each_node(node)
  79		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
  80
  81	/* cpumask_of_node() will now work */
  82	dbg("Node to cpumask map for %u nodes\n", nr_node_ids);
  83}
  84
  85static int __init fake_numa_create_new_node(unsigned long end_pfn,
  86						unsigned int *nid)
  87{
  88	unsigned long long mem;
  89	char *p = cmdline;
  90	static unsigned int fake_nid;
  91	static unsigned long long curr_boundary;
  92
  93	/*
  94	 * Modify node id, iff we started creating NUMA nodes
  95	 * We want to continue from where we left of the last time
  96	 */
  97	if (fake_nid)
  98		*nid = fake_nid;
  99	/*
 100	 * In case there are no more arguments to parse, the
 101	 * node_id should be the same as the last fake node id
 102	 * (we've handled this above).
 103	 */
 104	if (!p)
 105		return 0;
 106
 107	mem = memparse(p, &p);
 108	if (!mem)
 109		return 0;
 110
 111	if (mem < curr_boundary)
 112		return 0;
 113
 114	curr_boundary = mem;
 115
 116	if ((end_pfn << PAGE_SHIFT) > mem) {
 117		/*
 118		 * Skip commas and spaces
 119		 */
 120		while (*p == ',' || *p == ' ' || *p == '\t')
 121			p++;
 122
 123		cmdline = p;
 124		fake_nid++;
 125		*nid = fake_nid;
 126		dbg("created new fake_node with id %d\n", fake_nid);
 127		return 1;
 128	}
 129	return 0;
 130}
 131
 132static void reset_numa_cpu_lookup_table(void)
 133{
 134	unsigned int cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 135
 136	for_each_possible_cpu(cpu)
 137		numa_cpu_lookup_table[cpu] = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 138}
 139
 140static void map_cpu_to_node(int cpu, int node)
 141{
 142	update_numa_cpu_lookup_table(cpu, node);
 143
 144	dbg("adding cpu %d to node %d\n", cpu, node);
 145
 146	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
 147		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
 148}
 149
 150#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
 151static void unmap_cpu_from_node(unsigned long cpu)
 152{
 153	int node = numa_cpu_lookup_table[cpu];
 154
 155	dbg("removing cpu %lu from node %d\n", cpu, node);
 156
 157	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
 158		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
 159	} else {
 160		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
 161		       cpu, node);
 162	}
 163}
 164#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
 165
 166int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 
 167{
 168	int dist = 0;
 169
 170	int i, index;
 171
 172	for (i = 0; i < distance_ref_points_depth; i++) {
 173		index = be32_to_cpu(distance_ref_points[i]);
 174		if (cpu1_assoc[index] == cpu2_assoc[index])
 175			break;
 176		dist++;
 177	}
 178
 179	return dist;
 180}
 181
 182/* must hold reference to node during call */
 183static const __be32 *of_get_associativity(struct device_node *dev)
 
 
 
 
 184{
 185	return of_get_property(dev, "ibm,associativity", NULL);
 
 
 
 
 
 186}
 187
 188int __node_distance(int a, int b)
 189{
 190	int i;
 191	int distance = LOCAL_DISTANCE;
 192
 193	if (!form1_affinity)
 194		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
 195
 196	for (i = 0; i < distance_ref_points_depth; i++) {
 197		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
 198			break;
 199
 200		/* Double the distance for each NUMA level */
 201		distance *= 2;
 202	}
 203
 204	return distance;
 205}
 206EXPORT_SYMBOL(__node_distance);
 207
 208static void initialize_distance_lookup_table(int nid,
 209		const __be32 *associativity)
 210{
 211	int i;
 212
 213	if (!form1_affinity)
 214		return;
 215
 216	for (i = 0; i < distance_ref_points_depth; i++) {
 217		const __be32 *entry;
 218
 219		entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
 220		distance_lookup_table[nid][i] = of_read_number(entry, 1);
 221	}
 222}
 223
 224/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 225 * info is found.
 226 */
 227static int associativity_to_nid(const __be32 *associativity)
 228{
 229	int nid = NUMA_NO_NODE;
 230
 231	if (!numa_enabled)
 232		goto out;
 233
 234	if (of_read_number(associativity, 1) >= min_common_depth)
 235		nid = of_read_number(&associativity[min_common_depth], 1);
 236
 237	/* POWER4 LPAR uses 0xffff as invalid node */
 238	if (nid == 0xffff || nid >= MAX_NUMNODES)
 239		nid = NUMA_NO_NODE;
 240
 241	if (nid > 0 &&
 242		of_read_number(associativity, 1) >= distance_ref_points_depth) {
 243		/*
 244		 * Skip the length field and send start of associativity array
 245		 */
 246		initialize_distance_lookup_table(nid, associativity + 1);
 247	}
 248
 249out:
 250	return nid;
 251}
 252
 253/* Returns the nid associated with the given device tree node,
 254 * or -1 if not found.
 255 */
 256static int of_node_to_nid_single(struct device_node *device)
 257{
 258	int nid = NUMA_NO_NODE;
 259	const __be32 *tmp;
 260
 261	tmp = of_get_associativity(device);
 262	if (tmp)
 263		nid = associativity_to_nid(tmp);
 264	return nid;
 265}
 266
 267/* Walk the device tree upwards, looking for an associativity id */
 268int of_node_to_nid(struct device_node *device)
 269{
 270	int nid = NUMA_NO_NODE;
 
 271
 272	of_node_get(device);
 273	while (device) {
 274		nid = of_node_to_nid_single(device);
 275		if (nid != -1)
 276			break;
 277
 278		device = of_get_next_parent(device);
 
 
 279	}
 280	of_node_put(device);
 281
 282	return nid;
 283}
 284EXPORT_SYMBOL(of_node_to_nid);
 285
 286static int __init find_min_common_depth(void)
 287{
 288	int depth;
 
 289	struct device_node *root;
 
 290
 291	if (firmware_has_feature(FW_FEATURE_OPAL))
 292		root = of_find_node_by_path("/ibm,opal");
 293	else
 294		root = of_find_node_by_path("/rtas");
 295	if (!root)
 296		root = of_find_node_by_path("/");
 297
 298	/*
 299	 * This property is a set of 32-bit integers, each representing
 300	 * an index into the ibm,associativity nodes.
 301	 *
 302	 * With form 0 affinity the first integer is for an SMP configuration
 303	 * (should be all 0's) and the second is for a normal NUMA
 304	 * configuration. We have only one level of NUMA.
 305	 *
 306	 * With form 1 affinity the first integer is the most significant
 307	 * NUMA boundary and the following are progressively less significant
 308	 * boundaries. There can be more than one level of NUMA.
 309	 */
 310	distance_ref_points = of_get_property(root,
 311					"ibm,associativity-reference-points",
 312					&distance_ref_points_depth);
 313
 314	if (!distance_ref_points) {
 315		dbg("NUMA: ibm,associativity-reference-points not found.\n");
 316		goto err;
 317	}
 318
 319	distance_ref_points_depth /= sizeof(int);
 320
 321	if (firmware_has_feature(FW_FEATURE_OPAL) ||
 322	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
 323		dbg("Using form 1 affinity\n");
 324		form1_affinity = 1;
 
 
 
 
 
 325	}
 326
 327	if (form1_affinity) {
 328		depth = of_read_number(distance_ref_points, 1);
 329	} else {
 330		if (distance_ref_points_depth < 2) {
 331			printk(KERN_WARNING "NUMA: "
 332				"short ibm,associativity-reference-points\n");
 333			goto err;
 334		}
 335
 336		depth = of_read_number(&distance_ref_points[1], 1);
 337	}
 338
 339	/*
 340	 * Warn and cap if the hardware supports more than
 341	 * MAX_DISTANCE_REF_POINTS domains.
 342	 */
 343	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
 344		printk(KERN_WARNING "NUMA: distance array capped at "
 345			"%d entries\n", MAX_DISTANCE_REF_POINTS);
 346		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
 347	}
 348
 349	of_node_put(root);
 350	return depth;
 351
 352err:
 353	of_node_put(root);
 354	return -1;
 355}
 356
 357static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 358{
 359	struct device_node *memory = NULL;
 360
 361	memory = of_find_node_by_type(memory, "memory");
 362	if (!memory)
 363		panic("numa.c: No memory nodes found!");
 364
 365	*n_addr_cells = of_n_addr_cells(memory);
 366	*n_size_cells = of_n_size_cells(memory);
 367	of_node_put(memory);
 368}
 369
 370static unsigned long read_n_cells(int n, const __be32 **buf)
 371{
 372	unsigned long result = 0;
 373
 374	while (n--) {
 375		result = (result << 32) | of_read_number(*buf, 1);
 376		(*buf)++;
 377	}
 378	return result;
 379}
 380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 381struct assoc_arrays {
 382	u32	n_arrays;
 383	u32	array_sz;
 384	const __be32 *arrays;
 385};
 386
 387/*
 388 * Retrieve and validate the list of associativity arrays for drconf
 389 * memory from the ibm,associativity-lookup-arrays property of the
 390 * device tree..
 391 *
 392 * The layout of the ibm,associativity-lookup-arrays property is a number N
 393 * indicating the number of associativity arrays, followed by a number M
 394 * indicating the size of each associativity array, followed by a list
 395 * of N associativity arrays.
 396 */
 397static int of_get_assoc_arrays(struct assoc_arrays *aa)
 
 398{
 399	struct device_node *memory;
 400	const __be32 *prop;
 401	u32 len;
 402
 403	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 404	if (!memory)
 405		return -1;
 406
 407	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 408	if (!prop || len < 2 * sizeof(unsigned int)) {
 409		of_node_put(memory);
 410		return -1;
 411	}
 412
 413	aa->n_arrays = of_read_number(prop++, 1);
 414	aa->array_sz = of_read_number(prop++, 1);
 415
 416	of_node_put(memory);
 
 417
 418	/* Now that we know the number of arrays and size of each array,
 419	 * revalidate the size of the property read in.
 420	 */
 421	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 422		return -1;
 423
 424	aa->arrays = prop;
 425	return 0;
 426}
 427
 428/*
 429 * This is like of_node_to_nid_single() for memory represented in the
 430 * ibm,dynamic-reconfiguration-memory node.
 431 */
 432static int of_drconf_to_nid_single(struct drmem_lmb *lmb)
 
 433{
 434	struct assoc_arrays aa = { .arrays = NULL };
 435	int default_nid = NUMA_NO_NODE;
 436	int nid = default_nid;
 437	int rc, index;
 438
 439	if ((min_common_depth < 0) || !numa_enabled)
 440		return default_nid;
 441
 442	rc = of_get_assoc_arrays(&aa);
 443	if (rc)
 444		return default_nid;
 445
 446	if (min_common_depth <= aa.array_sz &&
 447	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
 448		index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
 449		nid = of_read_number(&aa.arrays[index], 1);
 
 450
 451		if (nid == 0xffff || nid >= MAX_NUMNODES)
 452			nid = default_nid;
 453
 454		if (nid > 0) {
 455			index = lmb->aa_index * aa.array_sz;
 456			initialize_distance_lookup_table(nid,
 457							&aa.arrays[index]);
 458		}
 459	}
 460
 461	return nid;
 462}
 463
 464/*
 465 * Figure out to which domain a cpu belongs and stick it there.
 466 * Return the id of the domain used.
 467 */
 468static int numa_setup_cpu(unsigned long lcpu)
 469{
 470	int nid = NUMA_NO_NODE;
 471	struct device_node *cpu;
 472
 473	/*
 474	 * If a valid cpu-to-node mapping is already available, use it
 475	 * directly instead of querying the firmware, since it represents
 476	 * the most recent mapping notified to us by the platform (eg: VPHN).
 477	 */
 478	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
 479		map_cpu_to_node(lcpu, nid);
 480		return nid;
 481	}
 482
 483	cpu = of_get_cpu_node(lcpu, NULL);
 484
 485	if (!cpu) {
 486		WARN_ON(1);
 487		if (cpu_present(lcpu))
 488			goto out_present;
 489		else
 490			goto out;
 491	}
 492
 493	nid = of_node_to_nid_single(cpu);
 494
 495out_present:
 496	if (nid < 0 || !node_possible(nid))
 497		nid = first_online_node;
 498
 499	map_cpu_to_node(lcpu, nid);
 500	of_node_put(cpu);
 501out:
 502	return nid;
 503}
 504
 505static void verify_cpu_node_mapping(int cpu, int node)
 506{
 507	int base, sibling, i;
 508
 509	/* Verify that all the threads in the core belong to the same node */
 510	base = cpu_first_thread_sibling(cpu);
 511
 512	for (i = 0; i < threads_per_core; i++) {
 513		sibling = base + i;
 514
 515		if (sibling == cpu || cpu_is_offline(sibling))
 516			continue;
 517
 518		if (cpu_to_node(sibling) != node) {
 519			WARN(1, "CPU thread siblings %d and %d don't belong"
 520				" to the same node!\n", cpu, sibling);
 521			break;
 522		}
 523	}
 524}
 525
 526/* Must run before sched domains notifier. */
 527static int ppc_numa_cpu_prepare(unsigned int cpu)
 
 528{
 529	int nid;
 530
 531	nid = numa_setup_cpu(cpu);
 532	verify_cpu_node_mapping(cpu, nid);
 533	return 0;
 534}
 535
 536static int ppc_numa_cpu_dead(unsigned int cpu)
 537{
 
 
 
 
 538#ifdef CONFIG_HOTPLUG_CPU
 539	unmap_cpu_from_node(cpu);
 
 
 
 
 
 
 540#endif
 541	return 0;
 
 542}
 543
 544/*
 545 * Check and possibly modify a memory region to enforce the memory limit.
 546 *
 547 * Returns the size the region should have to enforce the memory limit.
 548 * This will either be the original value of size, a truncated value,
 549 * or zero. If the returned value of size is 0 the region should be
 550 * discarded as it lies wholly above the memory limit.
 551 */
 552static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 553						      unsigned long size)
 554{
 555	/*
 556	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
 557	 * we've already adjusted it for the limit and it takes care of
 558	 * having memory holes below the limit.  Also, in the case of
 559	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
 560	 */
 561
 562	if (start + size <= memblock_end_of_DRAM())
 563		return size;
 564
 565	if (start >= memblock_end_of_DRAM())
 566		return 0;
 567
 568	return memblock_end_of_DRAM() - start;
 569}
 570
 571/*
 572 * Reads the counter for a given entry in
 573 * linux,drconf-usable-memory property
 574 */
 575static inline int __init read_usm_ranges(const __be32 **usm)
 576{
 577	/*
 578	 * For each lmb in ibm,dynamic-memory a corresponding
 579	 * entry in linux,drconf-usable-memory property contains
 580	 * a counter followed by that many (base, size) duple.
 581	 * read the counter from linux,drconf-usable-memory
 582	 */
 583	return read_n_cells(n_mem_size_cells, usm);
 584}
 585
 586/*
 587 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 588 * node.  This assumes n_mem_{addr,size}_cells have been set.
 589 */
 590static void __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
 591					const __be32 **usm)
 592{
 593	unsigned int ranges, is_kexec_kdump = 0;
 594	unsigned long base, size, sz;
 
 595	int nid;
 
 596
 597	/*
 598	 * Skip this block if the reserved bit is set in flags (0x80)
 599	 * or if the block is not assigned to this partition (0x8)
 600	 */
 601	if ((lmb->flags & DRCONF_MEM_RESERVED)
 602	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
 603		return;
 604
 605	if (*usm)
 
 
 
 
 
 
 606		is_kexec_kdump = 1;
 607
 608	base = lmb->base_addr;
 609	size = drmem_lmb_size();
 610	ranges = 1;
 611
 612	if (is_kexec_kdump) {
 613		ranges = read_usm_ranges(usm);
 614		if (!ranges) /* there are no (base, size) duple */
 615			return;
 616	}
 
 
 
 
 
 
 617
 618	do {
 619		if (is_kexec_kdump) {
 620			base = read_n_cells(n_mem_addr_cells, usm);
 621			size = read_n_cells(n_mem_size_cells, usm);
 
 622		}
 623
 624		nid = of_drconf_to_nid_single(lmb);
 625		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
 626					  &nid);
 627		node_set_online(nid);
 628		sz = numa_enforce_memory_limit(base, size);
 629		if (sz)
 630			memblock_set_node(base, sz, &memblock.memory, nid);
 631	} while (--ranges);
 
 
 
 
 
 
 
 
 632}
 633
 634static int __init parse_numa_properties(void)
 635{
 636	struct device_node *memory;
 
 637	int default_nid = 0;
 638	unsigned long i;
 639
 640	if (numa_enabled == 0) {
 641		printk(KERN_WARNING "NUMA disabled by user\n");
 642		return -1;
 643	}
 644
 645	min_common_depth = find_min_common_depth();
 646
 647	if (min_common_depth < 0) {
 648		/*
 649		 * if we fail to parse min_common_depth from device tree
 650		 * mark the numa disabled, boot with numa disabled.
 651		 */
 652		numa_enabled = false;
 653		return min_common_depth;
 654	}
 655
 656	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
 657
 658	/*
 659	 * Even though we connect cpus to numa domains later in SMP
 660	 * init, we need to know the node ids now. This is because
 661	 * each node to be onlined must have NODE_DATA etc backing it.
 662	 */
 663	for_each_present_cpu(i) {
 664		struct device_node *cpu;
 665		int nid;
 666
 667		cpu = of_get_cpu_node(i, NULL);
 668		BUG_ON(!cpu);
 669		nid = of_node_to_nid_single(cpu);
 670		of_node_put(cpu);
 671
 672		/*
 673		 * Don't fall back to default_nid yet -- we will plug
 674		 * cpus into nodes once the memory scan has discovered
 675		 * the topology.
 676		 */
 677		if (nid < 0)
 678			continue;
 679		node_set_online(nid);
 680	}
 681
 682	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 683
 684	for_each_node_by_type(memory, "memory") {
 685		unsigned long start;
 686		unsigned long size;
 687		int nid;
 688		int ranges;
 689		const __be32 *memcell_buf;
 690		unsigned int len;
 691
 692		memcell_buf = of_get_property(memory,
 693			"linux,usable-memory", &len);
 694		if (!memcell_buf || len <= 0)
 695			memcell_buf = of_get_property(memory, "reg", &len);
 696		if (!memcell_buf || len <= 0)
 697			continue;
 698
 699		/* ranges in cell */
 700		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 701new_range:
 702		/* these are order-sensitive, and modify the buffer pointer */
 703		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 704		size = read_n_cells(n_mem_size_cells, &memcell_buf);
 705
 706		/*
 707		 * Assumption: either all memory nodes or none will
 708		 * have associativity properties.  If none, then
 709		 * everything goes to default_nid.
 710		 */
 711		nid = of_node_to_nid_single(memory);
 712		if (nid < 0)
 713			nid = default_nid;
 714
 715		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
 716		node_set_online(nid);
 717
 718		size = numa_enforce_memory_limit(start, size);
 719		if (size)
 720			memblock_set_node(start, size, &memblock.memory, nid);
 
 
 
 
 
 
 721
 722		if (--ranges)
 723			goto new_range;
 724	}
 725
 726	/*
 727	 * Now do the same thing for each MEMBLOCK listed in the
 728	 * ibm,dynamic-memory property in the
 729	 * ibm,dynamic-reconfiguration-memory node.
 730	 */
 731	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 732	if (memory) {
 733		walk_drmem_lmbs(memory, numa_setup_drmem_lmb);
 734		of_node_put(memory);
 735	}
 736
 737	return 0;
 738}
 739
 740static void __init setup_nonnuma(void)
 741{
 742	unsigned long top_of_ram = memblock_end_of_DRAM();
 743	unsigned long total_ram = memblock_phys_mem_size();
 744	unsigned long start_pfn, end_pfn;
 745	unsigned int nid = 0;
 746	struct memblock_region *reg;
 747
 748	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
 749	       top_of_ram, total_ram);
 750	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
 751	       (top_of_ram - total_ram) >> 20);
 752
 753	for_each_memblock(memory, reg) {
 754		start_pfn = memblock_region_memory_base_pfn(reg);
 755		end_pfn = memblock_region_memory_end_pfn(reg);
 756
 757		fake_numa_create_new_node(end_pfn, &nid);
 758		memblock_set_node(PFN_PHYS(start_pfn),
 759				  PFN_PHYS(end_pfn - start_pfn),
 760				  &memblock.memory, nid);
 761		node_set_online(nid);
 762	}
 763}
 764
 765void __init dump_numa_cpu_topology(void)
 766{
 767	unsigned int node;
 768	unsigned int cpu, count;
 769
 770	if (!numa_enabled)
 771		return;
 772
 773	for_each_online_node(node) {
 774		pr_info("Node %d CPUs:", node);
 775
 776		count = 0;
 777		/*
 778		 * If we used a CPU iterator here we would miss printing
 779		 * the holes in the cpumap.
 780		 */
 781		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
 782			if (cpumask_test_cpu(cpu,
 783					node_to_cpumask_map[node])) {
 784				if (count == 0)
 785					pr_cont(" %u", cpu);
 786				++count;
 787			} else {
 788				if (count > 1)
 789					pr_cont("-%u", cpu - 1);
 790				count = 0;
 791			}
 792		}
 793
 794		if (count > 1)
 795			pr_cont("-%u", nr_cpu_ids - 1);
 796		pr_cont("\n");
 797	}
 798}
 799
 800/* Initialize NODE_DATA for a node on the local memory */
 801static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
 802{
 803	u64 spanned_pages = end_pfn - start_pfn;
 804	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
 805	u64 nd_pa;
 806	void *nd;
 807	int tnid;
 808
 809	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
 810	if (!nd_pa)
 811		panic("Cannot allocate %zu bytes for node %d data\n",
 812		      nd_size, nid);
 
 813
 814	nd = __va(nd_pa);
 815
 816	/* report and initialize */
 817	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
 818		nd_pa, nd_pa + nd_size - 1);
 819	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
 820	if (tnid != nid)
 821		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
 822
 823	node_data[nid] = nd;
 824	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
 825	NODE_DATA(nid)->node_id = nid;
 826	NODE_DATA(nid)->node_start_pfn = start_pfn;
 827	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 828}
 829
 830static void __init find_possible_nodes(void)
 
 
 
 
 
 
 
 
 
 831{
 832	struct device_node *rtas;
 833	u32 numnodes, i;
 
 834
 835	if (!numa_enabled)
 836		return;
 837
 838	rtas = of_find_node_by_path("/rtas");
 839	if (!rtas)
 840		return;
 841
 842	if (of_property_read_u32_index(rtas,
 843				"ibm,max-associativity-domains",
 844				min_common_depth, &numnodes))
 845		goto out;
 846
 847	for (i = 0; i < numnodes; i++) {
 848		if (!node_possible(i))
 849			node_set(i, node_possible_map);
 850	}
 851
 852out:
 853	of_node_put(rtas);
 854}
 
 
 
 
 
 
 
 
 
 
 
 
 
 855
 856void __init mem_topology_setup(void)
 857{
 858	int cpu;
 859
 860	if (parse_numa_properties())
 861		setup_nonnuma();
 
 862
 863	/*
 864	 * Modify the set of possible NUMA nodes to reflect information
 865	 * available about the set of online nodes, and the set of nodes
 866	 * that we expect to make use of for this platform's affinity
 867	 * calculations.
 868	 */
 869	nodes_and(node_possible_map, node_possible_map, node_online_map);
 870
 871	find_possible_nodes();
 
 
 
 872
 873	setup_node_to_cpumask_map();
 
 
 
 
 
 
 
 874
 875	reset_numa_cpu_lookup_table();
 
 
 
 
 
 
 
 
 
 876
 877	for_each_present_cpu(cpu)
 878		numa_setup_cpu(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879}
 880
 881void __init initmem_init(void)
 
 882{
 883	int nid;
 884
 
 885	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
 886	max_pfn = max_low_pfn;
 887
 888	memblock_dump_all();
 
 
 
 889
 890	for_each_online_node(nid) {
 891		unsigned long start_pfn, end_pfn;
 
 
 892
 893		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 894		setup_node_data(nid, start_pfn, end_pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 895		sparse_memory_present_with_active_regions(nid);
 896	}
 897
 898	sparse_init();
 899
 900	/*
 901	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
 902	 * even before we online them, so that we can use cpu_to_{node,mem}
 903	 * early in boot, cf. smp_prepare_cpus().
 904	 * _nocalls() + manual invocation is used because cpuhp is not yet
 905	 * initialized for the boot CPU.
 906	 */
 907	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
 908				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
 
 
 
 
 
 
 
 
 
 
 
 909}
 910
 911static int __init early_numa(char *p)
 912{
 913	if (!p)
 914		return 0;
 915
 916	if (strstr(p, "off"))
 917		numa_enabled = 0;
 918
 919	if (strstr(p, "debug"))
 920		numa_debug = 1;
 921
 922	p = strstr(p, "fake=");
 923	if (p)
 924		cmdline = p + strlen("fake=");
 925
 926	return 0;
 927}
 928early_param("numa", early_numa);
 929
 930/*
 931 * The platform can inform us through one of several mechanisms
 932 * (post-migration device tree updates, PRRN or VPHN) that the NUMA
 933 * assignment of a resource has changed. This controls whether we act
 934 * on that. Disabled by default.
 935 */
 936static bool topology_updates_enabled;
 937
 938static int __init early_topology_updates(char *p)
 939{
 940	if (!p)
 941		return 0;
 942
 943	if (!strcmp(p, "on")) {
 944		pr_warn("Caution: enabling topology updates\n");
 945		topology_updates_enabled = true;
 946	}
 947
 948	return 0;
 949}
 950early_param("topology_updates", early_topology_updates);
 951
 952#ifdef CONFIG_MEMORY_HOTPLUG
 953/*
 954 * Find the node associated with a hot added memory section for
 955 * memory represented in the device tree by the property
 956 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
 957 */
 958static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
 
 959{
 960	struct drmem_lmb *lmb;
 
 961	unsigned long lmb_size;
 962	int nid = NUMA_NO_NODE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 963
 964	lmb_size = drmem_lmb_size();
 
 
 
 965
 966	for_each_drmem_lmb(lmb) {
 967		/* skip this block if it is reserved or not assigned to
 968		 * this partition */
 969		if ((lmb->flags & DRCONF_MEM_RESERVED)
 970		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
 971			continue;
 972
 973		if ((scn_addr < lmb->base_addr)
 974		    || (scn_addr >= (lmb->base_addr + lmb_size)))
 975			continue;
 976
 977		nid = of_drconf_to_nid_single(lmb);
 978		break;
 979	}
 980
 981	return nid;
 982}
 983
 984/*
 985 * Find the node associated with a hot added memory section for memory
 986 * represented in the device tree as a node (i.e. memory@XXXX) for
 987 * each memblock.
 988 */
 989static int hot_add_node_scn_to_nid(unsigned long scn_addr)
 990{
 991	struct device_node *memory;
 992	int nid = NUMA_NO_NODE;
 993
 994	for_each_node_by_type(memory, "memory") {
 995		unsigned long start, size;
 996		int ranges;
 997		const __be32 *memcell_buf;
 998		unsigned int len;
 999
1000		memcell_buf = of_get_property(memory, "reg", &len);
1001		if (!memcell_buf || len <= 0)
1002			continue;
1003
1004		/* ranges in cell */
1005		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1006
1007		while (ranges--) {
1008			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1009			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1010
1011			if ((scn_addr < start) || (scn_addr >= (start + size)))
1012				continue;
1013
1014			nid = of_node_to_nid_single(memory);
1015			break;
1016		}
1017
 
1018		if (nid >= 0)
1019			break;
1020	}
1021
1022	of_node_put(memory);
1023
1024	return nid;
1025}
1026
1027/*
1028 * Find the node associated with a hot added memory section.  Section
1029 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1030 * sections are fully contained within a single MEMBLOCK.
1031 */
1032int hot_add_scn_to_nid(unsigned long scn_addr)
1033{
1034	struct device_node *memory = NULL;
1035	int nid;
1036
1037	if (!numa_enabled)
1038		return first_online_node;
1039
1040	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1041	if (memory) {
1042		nid = hot_add_drconf_scn_to_nid(scn_addr);
1043		of_node_put(memory);
1044	} else {
1045		nid = hot_add_node_scn_to_nid(scn_addr);
1046	}
1047
1048	if (nid < 0 || !node_possible(nid))
1049		nid = first_online_node;
1050
 
 
 
 
 
 
 
 
 
 
 
1051	return nid;
1052}
1053
1054static u64 hot_add_drconf_memory_max(void)
1055{
1056	struct device_node *memory = NULL;
1057	struct device_node *dn = NULL;
1058	const __be64 *lrdr = NULL;
1059
1060	dn = of_find_node_by_path("/rtas");
1061	if (dn) {
1062		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1063		of_node_put(dn);
1064		if (lrdr)
1065			return be64_to_cpup(lrdr);
1066	}
1067
1068	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1069	if (memory) {
1070		of_node_put(memory);
1071		return drmem_lmb_memory_max();
1072	}
1073	return 0;
1074}
1075
1076/*
1077 * memory_hotplug_max - return max address of memory that may be added
1078 *
1079 * This is currently only used on systems that support drconfig memory
1080 * hotplug.
1081 */
1082u64 memory_hotplug_max(void)
1083{
1084        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1085}
1086#endif /* CONFIG_MEMORY_HOTPLUG */
1087
1088/* Virtual Processor Home Node (VPHN) support */
1089#ifdef CONFIG_PPC_SPLPAR
1090struct topology_update_data {
1091	struct topology_update_data *next;
1092	unsigned int cpu;
1093	int old_nid;
1094	int new_nid;
1095};
1096
1097#define TOPOLOGY_DEF_TIMER_SECS	60
1098
1099static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1100static cpumask_t cpu_associativity_changes_mask;
1101static int vphn_enabled;
1102static int prrn_enabled;
1103static void reset_topology_timer(void);
1104static int topology_timer_secs = 1;
1105static int topology_inited;
1106
1107/*
1108 * Change polling interval for associativity changes.
1109 */
1110int timed_topology_update(int nsecs)
1111{
1112	if (vphn_enabled) {
1113		if (nsecs > 0)
1114			topology_timer_secs = nsecs;
1115		else
1116			topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS;
1117
1118		reset_topology_timer();
1119	}
1120
1121	return 0;
1122}
1123
1124/*
1125 * Store the current values of the associativity change counters in the
1126 * hypervisor.
1127 */
1128static void setup_cpu_associativity_change_counters(void)
1129{
1130	int cpu;
1131
1132	/* The VPHN feature supports a maximum of 8 reference points */
1133	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1134
1135	for_each_possible_cpu(cpu) {
1136		int i;
1137		u8 *counts = vphn_cpu_change_counts[cpu];
1138		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1139
1140		for (i = 0; i < distance_ref_points_depth; i++)
1141			counts[i] = hypervisor_counts[i];
1142	}
1143}
1144
1145/*
1146 * The hypervisor maintains a set of 8 associativity change counters in
1147 * the VPA of each cpu that correspond to the associativity levels in the
1148 * ibm,associativity-reference-points property. When an associativity
1149 * level changes, the corresponding counter is incremented.
1150 *
1151 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1152 * node associativity levels have changed.
1153 *
1154 * Returns the number of cpus with unhandled associativity changes.
1155 */
1156static int update_cpu_associativity_changes_mask(void)
1157{
1158	int cpu;
1159	cpumask_t *changes = &cpu_associativity_changes_mask;
1160
 
 
1161	for_each_possible_cpu(cpu) {
1162		int i, changed = 0;
1163		u8 *counts = vphn_cpu_change_counts[cpu];
1164		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1165
1166		for (i = 0; i < distance_ref_points_depth; i++) {
1167			if (hypervisor_counts[i] != counts[i]) {
1168				counts[i] = hypervisor_counts[i];
1169				changed = 1;
1170			}
1171		}
1172		if (changed) {
1173			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1174			cpu = cpu_last_thread_sibling(cpu);
1175		}
1176	}
1177
1178	return cpumask_weight(changes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1179}
1180
1181/*
1182 * Retrieve the new associativity information for a virtual processor's
1183 * home node.
1184 */
 
 
 
 
 
 
 
 
 
 
 
 
 
1185static long vphn_get_associativity(unsigned long cpu,
1186					__be32 *associativity)
1187{
1188	long rc;
1189
1190	rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1191				VPHN_FLAG_VCPU, associativity);
1192
1193	switch (rc) {
1194	case H_FUNCTION:
1195		printk_once(KERN_INFO
1196			"VPHN is not supported. Disabling polling...\n");
1197		stop_topology_update();
1198		break;
1199	case H_HARDWARE:
1200		printk(KERN_ERR
1201			"hcall_vphn() experienced a hardware fault "
1202			"preventing VPHN. Disabling polling...\n");
1203		stop_topology_update();
1204		break;
1205	case H_SUCCESS:
1206		dbg("VPHN hcall succeeded. Reset polling...\n");
1207		timed_topology_update(0);
1208		break;
1209	}
1210
1211	return rc;
1212}
1213
1214int find_and_online_cpu_nid(int cpu)
1215{
1216	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1217	int new_nid;
1218
1219	/* Use associativity from first thread for all siblings */
1220	if (vphn_get_associativity(cpu, associativity))
1221		return cpu_to_node(cpu);
1222
1223	new_nid = associativity_to_nid(associativity);
1224	if (new_nid < 0 || !node_possible(new_nid))
1225		new_nid = first_online_node;
1226
1227	if (NODE_DATA(new_nid) == NULL) {
1228#ifdef CONFIG_MEMORY_HOTPLUG
1229		/*
1230		 * Need to ensure that NODE_DATA is initialized for a node from
1231		 * available memory (see memblock_alloc_try_nid). If unable to
1232		 * init the node, then default to nearest node that has memory
1233		 * installed. Skip onlining a node if the subsystems are not
1234		 * yet initialized.
1235		 */
1236		if (!topology_inited || try_online_node(new_nid))
1237			new_nid = first_online_node;
1238#else
1239		/*
1240		 * Default to using the nearest node that has memory installed.
1241		 * Otherwise, it would be necessary to patch the kernel MM code
1242		 * to deal with more memoryless-node error conditions.
1243		 */
1244		new_nid = first_online_node;
1245#endif
1246	}
1247
1248	pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1249		cpu, new_nid);
1250	return new_nid;
1251}
1252
1253/*
1254 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1255 * characteristics change. This function doesn't perform any locking and is
1256 * only safe to call from stop_machine().
1257 */
1258static int update_cpu_topology(void *data)
1259{
1260	struct topology_update_data *update;
1261	unsigned long cpu;
1262
1263	if (!data)
1264		return -EINVAL;
1265
1266	cpu = smp_processor_id();
1267
1268	for (update = data; update; update = update->next) {
1269		int new_nid = update->new_nid;
1270		if (cpu != update->cpu)
1271			continue;
1272
1273		unmap_cpu_from_node(cpu);
1274		map_cpu_to_node(cpu, new_nid);
1275		set_cpu_numa_node(cpu, new_nid);
1276		set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1277		vdso_getcpu_init();
1278	}
1279
1280	return 0;
1281}
1282
1283static int update_lookup_table(void *data)
1284{
1285	struct topology_update_data *update;
1286
1287	if (!data)
1288		return -EINVAL;
1289
1290	/*
1291	 * Upon topology update, the numa-cpu lookup table needs to be updated
1292	 * for all threads in the core, including offline CPUs, to ensure that
1293	 * future hotplug operations respect the cpu-to-node associativity
1294	 * properly.
1295	 */
1296	for (update = data; update; update = update->next) {
1297		int nid, base, j;
1298
1299		nid = update->new_nid;
1300		base = cpu_first_thread_sibling(update->cpu);
1301
1302		for (j = 0; j < threads_per_core; j++) {
1303			update_numa_cpu_lookup_table(base + j, nid);
1304		}
1305	}
1306
1307	return 0;
1308}
1309
1310/*
1311 * Update the node maps and sysfs entries for each cpu whose home node
1312 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1313 *
1314 * cpus_locked says whether we already hold cpu_hotplug_lock.
1315 */
1316int numa_update_cpu_topology(bool cpus_locked)
1317{
1318	unsigned int cpu, sibling, changed = 0;
1319	struct topology_update_data *updates, *ud;
1320	cpumask_t updated_cpus;
1321	struct device *dev;
1322	int weight, new_nid, i = 0;
1323
1324	if (!prrn_enabled && !vphn_enabled && topology_inited)
1325		return 0;
 
1326
1327	weight = cpumask_weight(&cpu_associativity_changes_mask);
1328	if (!weight)
1329		return 0;
1330
1331	updates = kcalloc(weight, sizeof(*updates), GFP_KERNEL);
1332	if (!updates)
1333		return 0;
1334
1335	cpumask_clear(&updated_cpus);
1336
1337	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1338		/*
1339		 * If siblings aren't flagged for changes, updates list
1340		 * will be too short. Skip on this update and set for next
1341		 * update.
1342		 */
1343		if (!cpumask_subset(cpu_sibling_mask(cpu),
1344					&cpu_associativity_changes_mask)) {
1345			pr_info("Sibling bits not set for associativity "
1346					"change, cpu%d\n", cpu);
1347			cpumask_or(&cpu_associativity_changes_mask,
1348					&cpu_associativity_changes_mask,
1349					cpu_sibling_mask(cpu));
1350			cpu = cpu_last_thread_sibling(cpu);
1351			continue;
1352		}
1353
1354		new_nid = find_and_online_cpu_nid(cpu);
1355
1356		if (new_nid == numa_cpu_lookup_table[cpu]) {
1357			cpumask_andnot(&cpu_associativity_changes_mask,
1358					&cpu_associativity_changes_mask,
1359					cpu_sibling_mask(cpu));
1360			dbg("Assoc chg gives same node %d for cpu%d\n",
1361					new_nid, cpu);
1362			cpu = cpu_last_thread_sibling(cpu);
1363			continue;
1364		}
1365
1366		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1367			ud = &updates[i++];
1368			ud->next = &updates[i];
1369			ud->cpu = sibling;
1370			ud->new_nid = new_nid;
1371			ud->old_nid = numa_cpu_lookup_table[sibling];
1372			cpumask_set_cpu(sibling, &updated_cpus);
1373		}
1374		cpu = cpu_last_thread_sibling(cpu);
1375	}
1376
1377	/*
1378	 * Prevent processing of 'updates' from overflowing array
1379	 * where last entry filled in a 'next' pointer.
1380	 */
1381	if (i)
1382		updates[i-1].next = NULL;
1383
1384	pr_debug("Topology update for the following CPUs:\n");
1385	if (cpumask_weight(&updated_cpus)) {
1386		for (ud = &updates[0]; ud; ud = ud->next) {
1387			pr_debug("cpu %d moving from node %d "
1388					  "to %d\n", ud->cpu,
1389					  ud->old_nid, ud->new_nid);
1390		}
1391	}
1392
1393	/*
1394	 * In cases where we have nothing to update (because the updates list
1395	 * is too short or because the new topology is same as the old one),
1396	 * skip invoking update_cpu_topology() via stop-machine(). This is
1397	 * necessary (and not just a fast-path optimization) since stop-machine
1398	 * can end up electing a random CPU to run update_cpu_topology(), and
1399	 * thus trick us into setting up incorrect cpu-node mappings (since
1400	 * 'updates' is kzalloc()'ed).
1401	 *
1402	 * And for the similar reason, we will skip all the following updating.
1403	 */
1404	if (!cpumask_weight(&updated_cpus))
1405		goto out;
1406
1407	if (cpus_locked)
1408		stop_machine_cpuslocked(update_cpu_topology, &updates[0],
1409					&updated_cpus);
1410	else
1411		stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1412
1413	/*
1414	 * Update the numa-cpu lookup table with the new mappings, even for
1415	 * offline CPUs. It is best to perform this update from the stop-
1416	 * machine context.
1417	 */
1418	if (cpus_locked)
1419		stop_machine_cpuslocked(update_lookup_table, &updates[0],
1420					cpumask_of(raw_smp_processor_id()));
1421	else
1422		stop_machine(update_lookup_table, &updates[0],
1423			     cpumask_of(raw_smp_processor_id()));
1424
1425	for (ud = &updates[0]; ud; ud = ud->next) {
1426		unregister_cpu_under_node(ud->cpu, ud->old_nid);
1427		register_cpu_under_node(ud->cpu, ud->new_nid);
1428
1429		dev = get_cpu_device(ud->cpu);
1430		if (dev)
1431			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1432		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1433		changed = 1;
1434	}
1435
1436out:
1437	kfree(updates);
1438	return changed;
1439}
1440
1441int arch_update_cpu_topology(void)
1442{
1443	return numa_update_cpu_topology(true);
1444}
1445
1446static void topology_work_fn(struct work_struct *work)
1447{
1448	rebuild_sched_domains();
1449}
1450static DECLARE_WORK(topology_work, topology_work_fn);
1451
1452static void topology_schedule_update(void)
1453{
1454	schedule_work(&topology_work);
1455}
1456
1457static void topology_timer_fn(struct timer_list *unused)
1458{
1459	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
 
 
1460		topology_schedule_update();
1461	else if (vphn_enabled) {
1462		if (update_cpu_associativity_changes_mask() > 0)
1463			topology_schedule_update();
1464		reset_topology_timer();
1465	}
1466}
1467static struct timer_list topology_timer;
 
1468
1469static void reset_topology_timer(void)
1470{
1471	if (vphn_enabled)
1472		mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ);
 
1473}
1474
1475#ifdef CONFIG_SMP
1476
1477static int dt_update_callback(struct notifier_block *nb,
1478				unsigned long action, void *data)
1479{
1480	struct of_reconfig_data *update = data;
1481	int rc = NOTIFY_DONE;
1482
1483	switch (action) {
1484	case OF_RECONFIG_UPDATE_PROPERTY:
1485		if (of_node_is_type(update->dn, "cpu") &&
1486		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1487			u32 core_id;
1488			of_property_read_u32(update->dn, "reg", &core_id);
1489			rc = dlpar_cpu_readd(core_id);
1490			rc = NOTIFY_OK;
1491		}
1492		break;
1493	}
1494
1495	return rc;
1496}
1497
1498static struct notifier_block dt_update_nb = {
1499	.notifier_call = dt_update_callback,
1500};
1501
1502#endif
1503
1504/*
1505 * Start polling for associativity changes.
1506 */
1507int start_topology_update(void)
1508{
1509	int rc = 0;
1510
1511	if (!topology_updates_enabled)
1512		return 0;
1513
1514	if (firmware_has_feature(FW_FEATURE_PRRN)) {
1515		if (!prrn_enabled) {
1516			prrn_enabled = 1;
1517#ifdef CONFIG_SMP
1518			rc = of_reconfig_notifier_register(&dt_update_nb);
1519#endif
1520		}
1521	}
1522	if (firmware_has_feature(FW_FEATURE_VPHN) &&
1523		   lppaca_shared_proc(get_lppaca())) {
1524		if (!vphn_enabled) {
1525			vphn_enabled = 1;
1526			setup_cpu_associativity_change_counters();
1527			timer_setup(&topology_timer, topology_timer_fn,
1528				    TIMER_DEFERRABLE);
1529			reset_topology_timer();
1530		}
1531	}
1532
1533	pr_info("Starting topology update%s%s\n",
1534		(prrn_enabled ? " prrn_enabled" : ""),
1535		(vphn_enabled ? " vphn_enabled" : ""));
1536
1537	return rc;
1538}
 
1539
1540/*
1541 * Disable polling for VPHN associativity changes.
1542 */
1543int stop_topology_update(void)
1544{
1545	int rc = 0;
1546
1547	if (!topology_updates_enabled)
1548		return 0;
1549
1550	if (prrn_enabled) {
1551		prrn_enabled = 0;
1552#ifdef CONFIG_SMP
1553		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1554#endif
1555	}
1556	if (vphn_enabled) {
1557		vphn_enabled = 0;
1558		rc = del_timer_sync(&topology_timer);
1559	}
1560
1561	pr_info("Stopping topology update\n");
1562
1563	return rc;
1564}
1565
1566int prrn_is_enabled(void)
1567{
1568	return prrn_enabled;
1569}
1570
1571void __init shared_proc_topology_init(void)
1572{
1573	if (lppaca_shared_proc(get_lppaca())) {
1574		bitmap_fill(cpumask_bits(&cpu_associativity_changes_mask),
1575			    nr_cpumask_bits);
1576		numa_update_cpu_topology(false);
1577	}
1578}
1579
1580static int topology_read(struct seq_file *file, void *v)
1581{
1582	if (vphn_enabled || prrn_enabled)
1583		seq_puts(file, "on\n");
1584	else
1585		seq_puts(file, "off\n");
1586
1587	return 0;
1588}
1589
1590static int topology_open(struct inode *inode, struct file *file)
1591{
1592	return single_open(file, topology_read, NULL);
1593}
1594
1595static ssize_t topology_write(struct file *file, const char __user *buf,
1596			      size_t count, loff_t *off)
1597{
1598	char kbuf[4]; /* "on" or "off" plus null. */
1599	int read_len;
1600
1601	read_len = count < 3 ? count : 3;
1602	if (copy_from_user(kbuf, buf, read_len))
1603		return -EINVAL;
1604
1605	kbuf[read_len] = '\0';
1606
1607	if (!strncmp(kbuf, "on", 2)) {
1608		topology_updates_enabled = true;
1609		start_topology_update();
1610	} else if (!strncmp(kbuf, "off", 3)) {
1611		stop_topology_update();
1612		topology_updates_enabled = false;
1613	} else
1614		return -EINVAL;
1615
1616	return count;
1617}
1618
1619static const struct file_operations topology_ops = {
1620	.read = seq_read,
1621	.write = topology_write,
1622	.open = topology_open,
1623	.release = single_release
1624};
1625
1626static int topology_update_init(void)
1627{
1628	start_topology_update();
1629
1630	if (vphn_enabled)
1631		topology_schedule_update();
1632
1633	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1634		return -ENOMEM;
1635
1636	topology_inited = 1;
1637	return 0;
1638}
1639device_initcall(topology_update_init);
1640#endif /* CONFIG_PPC_SPLPAR */
v3.1
 
   1/*
   2 * pSeries NUMA support
   3 *
   4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
 
 
  11#include <linux/threads.h>
  12#include <linux/bootmem.h>
  13#include <linux/init.h>
  14#include <linux/mm.h>
  15#include <linux/mmzone.h>
  16#include <linux/module.h>
  17#include <linux/nodemask.h>
  18#include <linux/cpu.h>
  19#include <linux/notifier.h>
  20#include <linux/memblock.h>
  21#include <linux/of.h>
  22#include <linux/pfn.h>
  23#include <linux/cpuset.h>
  24#include <linux/node.h>
 
 
 
 
 
 
  25#include <asm/sparsemem.h>
  26#include <asm/prom.h>
  27#include <asm/system.h>
  28#include <asm/smp.h>
 
  29#include <asm/firmware.h>
  30#include <asm/paca.h>
  31#include <asm/hvcall.h>
 
 
 
  32
  33static int numa_enabled = 1;
  34
  35static char *cmdline __initdata;
  36
  37static int numa_debug;
  38#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
  39
  40int numa_cpu_lookup_table[NR_CPUS];
  41cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  42struct pglist_data *node_data[MAX_NUMNODES];
  43
  44EXPORT_SYMBOL(numa_cpu_lookup_table);
  45EXPORT_SYMBOL(node_to_cpumask_map);
  46EXPORT_SYMBOL(node_data);
  47
  48static int min_common_depth;
  49static int n_mem_addr_cells, n_mem_size_cells;
  50static int form1_affinity;
  51
  52#define MAX_DISTANCE_REF_POINTS 4
  53static int distance_ref_points_depth;
  54static const unsigned int *distance_ref_points;
  55static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
  56
  57/*
  58 * Allocate node_to_cpumask_map based on number of available nodes
  59 * Requires node_possible_map to be valid.
  60 *
  61 * Note: node_to_cpumask() is not valid until after this is done.
  62 */
  63static void __init setup_node_to_cpumask_map(void)
  64{
  65	unsigned int node, num = 0;
  66
  67	/* setup nr_node_ids if not done yet */
  68	if (nr_node_ids == MAX_NUMNODES) {
  69		for_each_node_mask(node, node_possible_map)
  70			num = node;
  71		nr_node_ids = num + 1;
  72	}
  73
  74	/* allocate the map */
  75	for (node = 0; node < nr_node_ids; node++)
  76		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
  77
  78	/* cpumask_of_node() will now work */
  79	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
  80}
  81
  82static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
  83						unsigned int *nid)
  84{
  85	unsigned long long mem;
  86	char *p = cmdline;
  87	static unsigned int fake_nid;
  88	static unsigned long long curr_boundary;
  89
  90	/*
  91	 * Modify node id, iff we started creating NUMA nodes
  92	 * We want to continue from where we left of the last time
  93	 */
  94	if (fake_nid)
  95		*nid = fake_nid;
  96	/*
  97	 * In case there are no more arguments to parse, the
  98	 * node_id should be the same as the last fake node id
  99	 * (we've handled this above).
 100	 */
 101	if (!p)
 102		return 0;
 103
 104	mem = memparse(p, &p);
 105	if (!mem)
 106		return 0;
 107
 108	if (mem < curr_boundary)
 109		return 0;
 110
 111	curr_boundary = mem;
 112
 113	if ((end_pfn << PAGE_SHIFT) > mem) {
 114		/*
 115		 * Skip commas and spaces
 116		 */
 117		while (*p == ',' || *p == ' ' || *p == '\t')
 118			p++;
 119
 120		cmdline = p;
 121		fake_nid++;
 122		*nid = fake_nid;
 123		dbg("created new fake_node with id %d\n", fake_nid);
 124		return 1;
 125	}
 126	return 0;
 127}
 128
 129/*
 130 * get_active_region_work_fn - A helper function for get_node_active_region
 131 *	Returns datax set to the start_pfn and end_pfn if they contain
 132 *	the initial value of datax->start_pfn between them
 133 * @start_pfn: start page(inclusive) of region to check
 134 * @end_pfn: end page(exclusive) of region to check
 135 * @datax: comes in with ->start_pfn set to value to search for and
 136 *	goes out with active range if it contains it
 137 * Returns 1 if search value is in range else 0
 138 */
 139static int __init get_active_region_work_fn(unsigned long start_pfn,
 140					unsigned long end_pfn, void *datax)
 141{
 142	struct node_active_region *data;
 143	data = (struct node_active_region *)datax;
 144
 145	if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) {
 146		data->start_pfn = start_pfn;
 147		data->end_pfn = end_pfn;
 148		return 1;
 149	}
 150	return 0;
 151
 152}
 153
 154/*
 155 * get_node_active_region - Return active region containing start_pfn
 156 * Active range returned is empty if none found.
 157 * @start_pfn: The page to return the region for.
 158 * @node_ar: Returned set to the active region containing start_pfn
 159 */
 160static void __init get_node_active_region(unsigned long start_pfn,
 161		       struct node_active_region *node_ar)
 162{
 163	int nid = early_pfn_to_nid(start_pfn);
 164
 165	node_ar->nid = nid;
 166	node_ar->start_pfn = start_pfn;
 167	node_ar->end_pfn = start_pfn;
 168	work_with_active_regions(nid, get_active_region_work_fn, node_ar);
 169}
 170
 171static void map_cpu_to_node(int cpu, int node)
 172{
 173	numa_cpu_lookup_table[cpu] = node;
 174
 175	dbg("adding cpu %d to node %d\n", cpu, node);
 176
 177	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
 178		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
 179}
 180
 181#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
 182static void unmap_cpu_from_node(unsigned long cpu)
 183{
 184	int node = numa_cpu_lookup_table[cpu];
 185
 186	dbg("removing cpu %lu from node %d\n", cpu, node);
 187
 188	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
 189		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
 190	} else {
 191		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
 192		       cpu, node);
 193	}
 194}
 195#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
 196
 197/* must hold reference to node during call */
 198static const int *of_get_associativity(struct device_node *dev)
 199{
 200	return of_get_property(dev, "ibm,associativity", NULL);
 
 
 
 
 
 
 
 
 
 
 
 201}
 202
 203/*
 204 * Returns the property linux,drconf-usable-memory if
 205 * it exists (the property exists only in kexec/kdump kernels,
 206 * added by kexec-tools)
 207 */
 208static const u32 *of_get_usable_memory(struct device_node *memory)
 209{
 210	const u32 *prop;
 211	u32 len;
 212	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
 213	if (!prop || len < sizeof(unsigned int))
 214		return 0;
 215	return prop;
 216}
 217
 218int __node_distance(int a, int b)
 219{
 220	int i;
 221	int distance = LOCAL_DISTANCE;
 222
 223	if (!form1_affinity)
 224		return distance;
 225
 226	for (i = 0; i < distance_ref_points_depth; i++) {
 227		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
 228			break;
 229
 230		/* Double the distance for each NUMA level */
 231		distance *= 2;
 232	}
 233
 234	return distance;
 235}
 
 236
 237static void initialize_distance_lookup_table(int nid,
 238		const unsigned int *associativity)
 239{
 240	int i;
 241
 242	if (!form1_affinity)
 243		return;
 244
 245	for (i = 0; i < distance_ref_points_depth; i++) {
 246		distance_lookup_table[nid][i] =
 247			associativity[distance_ref_points[i]];
 
 
 248	}
 249}
 250
 251/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 252 * info is found.
 253 */
 254static int associativity_to_nid(const unsigned int *associativity)
 255{
 256	int nid = -1;
 257
 258	if (min_common_depth == -1)
 259		goto out;
 260
 261	if (associativity[0] >= min_common_depth)
 262		nid = associativity[min_common_depth];
 263
 264	/* POWER4 LPAR uses 0xffff as invalid node */
 265	if (nid == 0xffff || nid >= MAX_NUMNODES)
 266		nid = -1;
 267
 268	if (nid > 0 && associativity[0] >= distance_ref_points_depth)
 269		initialize_distance_lookup_table(nid, associativity);
 
 
 
 
 
 270
 271out:
 272	return nid;
 273}
 274
 275/* Returns the nid associated with the given device tree node,
 276 * or -1 if not found.
 277 */
 278static int of_node_to_nid_single(struct device_node *device)
 279{
 280	int nid = -1;
 281	const unsigned int *tmp;
 282
 283	tmp = of_get_associativity(device);
 284	if (tmp)
 285		nid = associativity_to_nid(tmp);
 286	return nid;
 287}
 288
 289/* Walk the device tree upwards, looking for an associativity id */
 290int of_node_to_nid(struct device_node *device)
 291{
 292	struct device_node *tmp;
 293	int nid = -1;
 294
 295	of_node_get(device);
 296	while (device) {
 297		nid = of_node_to_nid_single(device);
 298		if (nid != -1)
 299			break;
 300
 301	        tmp = device;
 302		device = of_get_parent(tmp);
 303		of_node_put(tmp);
 304	}
 305	of_node_put(device);
 306
 307	return nid;
 308}
 309EXPORT_SYMBOL_GPL(of_node_to_nid);
 310
 311static int __init find_min_common_depth(void)
 312{
 313	int depth;
 314	struct device_node *chosen;
 315	struct device_node *root;
 316	const char *vec5;
 317
 318	root = of_find_node_by_path("/rtas");
 
 
 
 319	if (!root)
 320		root = of_find_node_by_path("/");
 321
 322	/*
 323	 * This property is a set of 32-bit integers, each representing
 324	 * an index into the ibm,associativity nodes.
 325	 *
 326	 * With form 0 affinity the first integer is for an SMP configuration
 327	 * (should be all 0's) and the second is for a normal NUMA
 328	 * configuration. We have only one level of NUMA.
 329	 *
 330	 * With form 1 affinity the first integer is the most significant
 331	 * NUMA boundary and the following are progressively less significant
 332	 * boundaries. There can be more than one level of NUMA.
 333	 */
 334	distance_ref_points = of_get_property(root,
 335					"ibm,associativity-reference-points",
 336					&distance_ref_points_depth);
 337
 338	if (!distance_ref_points) {
 339		dbg("NUMA: ibm,associativity-reference-points not found.\n");
 340		goto err;
 341	}
 342
 343	distance_ref_points_depth /= sizeof(int);
 344
 345#define VEC5_AFFINITY_BYTE	5
 346#define VEC5_AFFINITY		0x80
 347	chosen = of_find_node_by_path("/chosen");
 348	if (chosen) {
 349		vec5 = of_get_property(chosen, "ibm,architecture-vec-5", NULL);
 350		if (vec5 && (vec5[VEC5_AFFINITY_BYTE] & VEC5_AFFINITY)) {
 351			dbg("Using form 1 affinity\n");
 352			form1_affinity = 1;
 353		}
 354	}
 355
 356	if (form1_affinity) {
 357		depth = distance_ref_points[0];
 358	} else {
 359		if (distance_ref_points_depth < 2) {
 360			printk(KERN_WARNING "NUMA: "
 361				"short ibm,associativity-reference-points\n");
 362			goto err;
 363		}
 364
 365		depth = distance_ref_points[1];
 366	}
 367
 368	/*
 369	 * Warn and cap if the hardware supports more than
 370	 * MAX_DISTANCE_REF_POINTS domains.
 371	 */
 372	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
 373		printk(KERN_WARNING "NUMA: distance array capped at "
 374			"%d entries\n", MAX_DISTANCE_REF_POINTS);
 375		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
 376	}
 377
 378	of_node_put(root);
 379	return depth;
 380
 381err:
 382	of_node_put(root);
 383	return -1;
 384}
 385
 386static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 387{
 388	struct device_node *memory = NULL;
 389
 390	memory = of_find_node_by_type(memory, "memory");
 391	if (!memory)
 392		panic("numa.c: No memory nodes found!");
 393
 394	*n_addr_cells = of_n_addr_cells(memory);
 395	*n_size_cells = of_n_size_cells(memory);
 396	of_node_put(memory);
 397}
 398
 399static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
 400{
 401	unsigned long result = 0;
 402
 403	while (n--) {
 404		result = (result << 32) | **buf;
 405		(*buf)++;
 406	}
 407	return result;
 408}
 409
 410struct of_drconf_cell {
 411	u64	base_addr;
 412	u32	drc_index;
 413	u32	reserved;
 414	u32	aa_index;
 415	u32	flags;
 416};
 417
 418#define DRCONF_MEM_ASSIGNED	0x00000008
 419#define DRCONF_MEM_AI_INVALID	0x00000040
 420#define DRCONF_MEM_RESERVED	0x00000080
 421
 422/*
 423 * Read the next memblock list entry from the ibm,dynamic-memory property
 424 * and return the information in the provided of_drconf_cell structure.
 425 */
 426static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
 427{
 428	const u32 *cp;
 429
 430	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
 431
 432	cp = *cellp;
 433	drmem->drc_index = cp[0];
 434	drmem->reserved = cp[1];
 435	drmem->aa_index = cp[2];
 436	drmem->flags = cp[3];
 437
 438	*cellp = cp + 4;
 439}
 440
 441/*
 442 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
 443 *
 444 * The layout of the ibm,dynamic-memory property is a number N of memblock
 445 * list entries followed by N memblock list entries.  Each memblock list entry
 446 * contains information as laid out in the of_drconf_cell struct above.
 447 */
 448static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
 449{
 450	const u32 *prop;
 451	u32 len, entries;
 452
 453	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
 454	if (!prop || len < sizeof(unsigned int))
 455		return 0;
 456
 457	entries = *prop++;
 458
 459	/* Now that we know the number of entries, revalidate the size
 460	 * of the property read in to ensure we have everything
 461	 */
 462	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
 463		return 0;
 464
 465	*dm = prop;
 466	return entries;
 467}
 468
 469/*
 470 * Retrieve and validate the ibm,lmb-size property for drconf memory
 471 * from the device tree.
 472 */
 473static u64 of_get_lmb_size(struct device_node *memory)
 474{
 475	const u32 *prop;
 476	u32 len;
 477
 478	prop = of_get_property(memory, "ibm,lmb-size", &len);
 479	if (!prop || len < sizeof(unsigned int))
 480		return 0;
 481
 482	return read_n_cells(n_mem_size_cells, &prop);
 483}
 484
 485struct assoc_arrays {
 486	u32	n_arrays;
 487	u32	array_sz;
 488	const u32 *arrays;
 489};
 490
 491/*
 492 * Retrieve and validate the list of associativity arrays for drconf
 493 * memory from the ibm,associativity-lookup-arrays property of the
 494 * device tree..
 495 *
 496 * The layout of the ibm,associativity-lookup-arrays property is a number N
 497 * indicating the number of associativity arrays, followed by a number M
 498 * indicating the size of each associativity array, followed by a list
 499 * of N associativity arrays.
 500 */
 501static int of_get_assoc_arrays(struct device_node *memory,
 502			       struct assoc_arrays *aa)
 503{
 504	const u32 *prop;
 
 505	u32 len;
 506
 
 
 
 
 507	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 508	if (!prop || len < 2 * sizeof(unsigned int))
 
 509		return -1;
 
 
 
 
 510
 511	aa->n_arrays = *prop++;
 512	aa->array_sz = *prop++;
 513
 514	/* Now that we know the number of arrrays and size of each array,
 515	 * revalidate the size of the property read in.
 516	 */
 517	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 518		return -1;
 519
 520	aa->arrays = prop;
 521	return 0;
 522}
 523
 524/*
 525 * This is like of_node_to_nid_single() for memory represented in the
 526 * ibm,dynamic-reconfiguration-memory node.
 527 */
 528static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
 529				   struct assoc_arrays *aa)
 530{
 531	int default_nid = 0;
 
 532	int nid = default_nid;
 533	int index;
 
 
 
 
 
 
 
 534
 535	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
 536	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
 537	    drmem->aa_index < aa->n_arrays) {
 538		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
 539		nid = aa->arrays[index];
 540
 541		if (nid == 0xffff || nid >= MAX_NUMNODES)
 542			nid = default_nid;
 
 
 
 
 
 
 543	}
 544
 545	return nid;
 546}
 547
 548/*
 549 * Figure out to which domain a cpu belongs and stick it there.
 550 * Return the id of the domain used.
 551 */
 552static int __cpuinit numa_setup_cpu(unsigned long lcpu)
 553{
 554	int nid = 0;
 555	struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 556
 557	if (!cpu) {
 558		WARN_ON(1);
 559		goto out;
 
 
 
 560	}
 561
 562	nid = of_node_to_nid_single(cpu);
 563
 564	if (nid < 0 || !node_online(nid))
 
 565		nid = first_online_node;
 
 
 
 566out:
 567	map_cpu_to_node(lcpu, nid);
 
 
 
 
 
 
 
 
 
 
 
 568
 569	of_node_put(cpu);
 
 570
 571	return nid;
 
 
 
 
 
 572}
 573
 574static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
 575			     unsigned long action,
 576			     void *hcpu)
 577{
 578	unsigned long lcpu = (unsigned long)hcpu;
 579	int ret = NOTIFY_DONE;
 
 
 
 
 580
 581	switch (action) {
 582	case CPU_UP_PREPARE:
 583	case CPU_UP_PREPARE_FROZEN:
 584		numa_setup_cpu(lcpu);
 585		ret = NOTIFY_OK;
 586		break;
 587#ifdef CONFIG_HOTPLUG_CPU
 588	case CPU_DEAD:
 589	case CPU_DEAD_FROZEN:
 590	case CPU_UP_CANCELED:
 591	case CPU_UP_CANCELED_FROZEN:
 592		unmap_cpu_from_node(lcpu);
 593		break;
 594		ret = NOTIFY_OK;
 595#endif
 596	}
 597	return ret;
 598}
 599
 600/*
 601 * Check and possibly modify a memory region to enforce the memory limit.
 602 *
 603 * Returns the size the region should have to enforce the memory limit.
 604 * This will either be the original value of size, a truncated value,
 605 * or zero. If the returned value of size is 0 the region should be
 606 * discarded as it lies wholly above the memory limit.
 607 */
 608static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 609						      unsigned long size)
 610{
 611	/*
 612	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
 613	 * we've already adjusted it for the limit and it takes care of
 614	 * having memory holes below the limit.  Also, in the case of
 615	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
 616	 */
 617
 618	if (start + size <= memblock_end_of_DRAM())
 619		return size;
 620
 621	if (start >= memblock_end_of_DRAM())
 622		return 0;
 623
 624	return memblock_end_of_DRAM() - start;
 625}
 626
 627/*
 628 * Reads the counter for a given entry in
 629 * linux,drconf-usable-memory property
 630 */
 631static inline int __init read_usm_ranges(const u32 **usm)
 632{
 633	/*
 634	 * For each lmb in ibm,dynamic-memory a corresponding
 635	 * entry in linux,drconf-usable-memory property contains
 636	 * a counter followed by that many (base, size) duple.
 637	 * read the counter from linux,drconf-usable-memory
 638	 */
 639	return read_n_cells(n_mem_size_cells, usm);
 640}
 641
 642/*
 643 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 644 * node.  This assumes n_mem_{addr,size}_cells have been set.
 645 */
 646static void __init parse_drconf_memory(struct device_node *memory)
 
 647{
 648	const u32 *dm, *usm;
 649	unsigned int n, rc, ranges, is_kexec_kdump = 0;
 650	unsigned long lmb_size, base, size, sz;
 651	int nid;
 652	struct assoc_arrays aa;
 653
 654	n = of_get_drconf_memory(memory, &dm);
 655	if (!n)
 656		return;
 657
 658	lmb_size = of_get_lmb_size(memory);
 659	if (!lmb_size)
 660		return;
 661
 662	rc = of_get_assoc_arrays(memory, &aa);
 663	if (rc)
 664		return;
 665
 666	/* check if this is a kexec/kdump kernel */
 667	usm = of_get_usable_memory(memory);
 668	if (usm != NULL)
 669		is_kexec_kdump = 1;
 670
 671	for (; n != 0; --n) {
 672		struct of_drconf_cell drmem;
 
 673
 674		read_drconf_cell(&drmem, &dm);
 675
 676		/* skip this block if the reserved bit is set in flags (0x80)
 677		   or if the block is not assigned to this partition (0x8) */
 678		if ((drmem.flags & DRCONF_MEM_RESERVED)
 679		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
 680			continue;
 681
 682		base = drmem.base_addr;
 683		size = lmb_size;
 684		ranges = 1;
 685
 
 686		if (is_kexec_kdump) {
 687			ranges = read_usm_ranges(&usm);
 688			if (!ranges) /* there are no (base, size) duple */
 689				continue;
 690		}
 691		do {
 692			if (is_kexec_kdump) {
 693				base = read_n_cells(n_mem_addr_cells, &usm);
 694				size = read_n_cells(n_mem_size_cells, &usm);
 695			}
 696			nid = of_drconf_to_nid_single(&drmem, &aa);
 697			fake_numa_create_new_node(
 698				((base + size) >> PAGE_SHIFT),
 699					   &nid);
 700			node_set_online(nid);
 701			sz = numa_enforce_memory_limit(base, size);
 702			if (sz)
 703				add_active_range(nid, base >> PAGE_SHIFT,
 704						 (base >> PAGE_SHIFT)
 705						 + (sz >> PAGE_SHIFT));
 706		} while (--ranges);
 707	}
 708}
 709
 710static int __init parse_numa_properties(void)
 711{
 712	struct device_node *cpu = NULL;
 713	struct device_node *memory = NULL;
 714	int default_nid = 0;
 715	unsigned long i;
 716
 717	if (numa_enabled == 0) {
 718		printk(KERN_WARNING "NUMA disabled by user\n");
 719		return -1;
 720	}
 721
 722	min_common_depth = find_min_common_depth();
 723
 724	if (min_common_depth < 0)
 
 
 
 
 
 725		return min_common_depth;
 
 726
 727	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
 728
 729	/*
 730	 * Even though we connect cpus to numa domains later in SMP
 731	 * init, we need to know the node ids now. This is because
 732	 * each node to be onlined must have NODE_DATA etc backing it.
 733	 */
 734	for_each_present_cpu(i) {
 
 735		int nid;
 736
 737		cpu = of_get_cpu_node(i, NULL);
 738		BUG_ON(!cpu);
 739		nid = of_node_to_nid_single(cpu);
 740		of_node_put(cpu);
 741
 742		/*
 743		 * Don't fall back to default_nid yet -- we will plug
 744		 * cpus into nodes once the memory scan has discovered
 745		 * the topology.
 746		 */
 747		if (nid < 0)
 748			continue;
 749		node_set_online(nid);
 750	}
 751
 752	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 753	memory = NULL;
 754	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
 755		unsigned long start;
 756		unsigned long size;
 757		int nid;
 758		int ranges;
 759		const unsigned int *memcell_buf;
 760		unsigned int len;
 761
 762		memcell_buf = of_get_property(memory,
 763			"linux,usable-memory", &len);
 764		if (!memcell_buf || len <= 0)
 765			memcell_buf = of_get_property(memory, "reg", &len);
 766		if (!memcell_buf || len <= 0)
 767			continue;
 768
 769		/* ranges in cell */
 770		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 771new_range:
 772		/* these are order-sensitive, and modify the buffer pointer */
 773		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 774		size = read_n_cells(n_mem_size_cells, &memcell_buf);
 775
 776		/*
 777		 * Assumption: either all memory nodes or none will
 778		 * have associativity properties.  If none, then
 779		 * everything goes to default_nid.
 780		 */
 781		nid = of_node_to_nid_single(memory);
 782		if (nid < 0)
 783			nid = default_nid;
 784
 785		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
 786		node_set_online(nid);
 787
 788		if (!(size = numa_enforce_memory_limit(start, size))) {
 789			if (--ranges)
 790				goto new_range;
 791			else
 792				continue;
 793		}
 794
 795		add_active_range(nid, start >> PAGE_SHIFT,
 796				(start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
 797
 798		if (--ranges)
 799			goto new_range;
 800	}
 801
 802	/*
 803	 * Now do the same thing for each MEMBLOCK listed in the ibm,dynamic-memory
 804	 * property in the ibm,dynamic-reconfiguration-memory node.
 
 805	 */
 806	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 807	if (memory)
 808		parse_drconf_memory(memory);
 
 
 809
 810	return 0;
 811}
 812
 813static void __init setup_nonnuma(void)
 814{
 815	unsigned long top_of_ram = memblock_end_of_DRAM();
 816	unsigned long total_ram = memblock_phys_mem_size();
 817	unsigned long start_pfn, end_pfn;
 818	unsigned int nid = 0;
 819	struct memblock_region *reg;
 820
 821	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
 822	       top_of_ram, total_ram);
 823	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
 824	       (top_of_ram - total_ram) >> 20);
 825
 826	for_each_memblock(memory, reg) {
 827		start_pfn = memblock_region_memory_base_pfn(reg);
 828		end_pfn = memblock_region_memory_end_pfn(reg);
 829
 830		fake_numa_create_new_node(end_pfn, &nid);
 831		add_active_range(nid, start_pfn, end_pfn);
 
 
 832		node_set_online(nid);
 833	}
 834}
 835
 836void __init dump_numa_cpu_topology(void)
 837{
 838	unsigned int node;
 839	unsigned int cpu, count;
 840
 841	if (min_common_depth == -1 || !numa_enabled)
 842		return;
 843
 844	for_each_online_node(node) {
 845		printk(KERN_DEBUG "Node %d CPUs:", node);
 846
 847		count = 0;
 848		/*
 849		 * If we used a CPU iterator here we would miss printing
 850		 * the holes in the cpumap.
 851		 */
 852		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
 853			if (cpumask_test_cpu(cpu,
 854					node_to_cpumask_map[node])) {
 855				if (count == 0)
 856					printk(" %u", cpu);
 857				++count;
 858			} else {
 859				if (count > 1)
 860					printk("-%u", cpu - 1);
 861				count = 0;
 862			}
 863		}
 864
 865		if (count > 1)
 866			printk("-%u", nr_cpu_ids - 1);
 867		printk("\n");
 868	}
 869}
 870
 871static void __init dump_numa_memory_topology(void)
 
 872{
 873	unsigned int node;
 874	unsigned int count;
 
 
 
 875
 876	if (min_common_depth == -1 || !numa_enabled)
 877		return;
 878
 879	for_each_online_node(node) {
 880		unsigned long i;
 881
 882		printk(KERN_DEBUG "Node %d Memory:", node);
 883
 884		count = 0;
 
 
 
 
 
 885
 886		for (i = 0; i < memblock_end_of_DRAM();
 887		     i += (1 << SECTION_SIZE_BITS)) {
 888			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
 889				if (count == 0)
 890					printk(" 0x%lx", i);
 891				++count;
 892			} else {
 893				if (count > 0)
 894					printk("-0x%lx", i);
 895				count = 0;
 896			}
 897		}
 898
 899		if (count > 0)
 900			printk("-0x%lx", i);
 901		printk("\n");
 902	}
 903}
 904
 905/*
 906 * Allocate some memory, satisfying the memblock or bootmem allocator where
 907 * required. nid is the preferred node and end is the physical address of
 908 * the highest address in the node.
 909 *
 910 * Returns the virtual address of the memory.
 911 */
 912static void __init *careful_zallocation(int nid, unsigned long size,
 913				       unsigned long align,
 914				       unsigned long end_pfn)
 915{
 916	void *ret;
 917	int new_nid;
 918	unsigned long ret_paddr;
 919
 920	ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
 
 921
 922	/* retry over all memory */
 923	if (!ret_paddr)
 924		ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
 925
 926	if (!ret_paddr)
 927		panic("numa.c: cannot allocate %lu bytes for node %d",
 928		      size, nid);
 
 929
 930	ret = __va(ret_paddr);
 
 
 
 931
 932	/*
 933	 * We initialize the nodes in numeric order: 0, 1, 2...
 934	 * and hand over control from the MEMBLOCK allocator to the
 935	 * bootmem allocator.  If this function is called for
 936	 * node 5, then we know that all nodes <5 are using the
 937	 * bootmem allocator instead of the MEMBLOCK allocator.
 938	 *
 939	 * So, check the nid from which this allocation came
 940	 * and double check to see if we need to use bootmem
 941	 * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
 942	 * since it would be useless.
 943	 */
 944	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
 945	if (new_nid < nid) {
 946		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
 947				size, align, 0);
 948
 949		dbg("alloc_bootmem %p %lx\n", ret, size);
 950	}
 
 951
 952	memset(ret, 0, size);
 953	return ret;
 954}
 955
 956static struct notifier_block __cpuinitdata ppc64_numa_nb = {
 957	.notifier_call = cpu_numa_callback,
 958	.priority = 1 /* Must run before sched domains notifier. */
 959};
 
 
 
 960
 961static void mark_reserved_regions_for_nid(int nid)
 962{
 963	struct pglist_data *node = NODE_DATA(nid);
 964	struct memblock_region *reg;
 965
 966	for_each_memblock(reserved, reg) {
 967		unsigned long physbase = reg->base;
 968		unsigned long size = reg->size;
 969		unsigned long start_pfn = physbase >> PAGE_SHIFT;
 970		unsigned long end_pfn = PFN_UP(physbase + size);
 971		struct node_active_region node_ar;
 972		unsigned long node_end_pfn = node->node_start_pfn +
 973					     node->node_spanned_pages;
 974
 975		/*
 976		 * Check to make sure that this memblock.reserved area is
 977		 * within the bounds of the node that we care about.
 978		 * Checking the nid of the start and end points is not
 979		 * sufficient because the reserved area could span the
 980		 * entire node.
 981		 */
 982		if (end_pfn <= node->node_start_pfn ||
 983		    start_pfn >= node_end_pfn)
 984			continue;
 985
 986		get_node_active_region(start_pfn, &node_ar);
 987		while (start_pfn < end_pfn &&
 988			node_ar.start_pfn < node_ar.end_pfn) {
 989			unsigned long reserve_size = size;
 990			/*
 991			 * if reserved region extends past active region
 992			 * then trim size to active region
 993			 */
 994			if (end_pfn > node_ar.end_pfn)
 995				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
 996					- physbase;
 997			/*
 998			 * Only worry about *this* node, others may not
 999			 * yet have valid NODE_DATA().
1000			 */
1001			if (node_ar.nid == nid) {
1002				dbg("reserve_bootmem %lx %lx nid=%d\n",
1003					physbase, reserve_size, node_ar.nid);
1004				reserve_bootmem_node(NODE_DATA(node_ar.nid),
1005						physbase, reserve_size,
1006						BOOTMEM_DEFAULT);
1007			}
1008			/*
1009			 * if reserved region is contained in the active region
1010			 * then done.
1011			 */
1012			if (end_pfn <= node_ar.end_pfn)
1013				break;
1014
1015			/*
1016			 * reserved region extends past the active region
1017			 *   get next active region that contains this
1018			 *   reserved region
1019			 */
1020			start_pfn = node_ar.end_pfn;
1021			physbase = start_pfn << PAGE_SHIFT;
1022			size = size - reserve_size;
1023			get_node_active_region(start_pfn, &node_ar);
1024		}
1025	}
1026}
1027
1028
1029void __init do_init_bootmem(void)
1030{
1031	int nid;
1032
1033	min_low_pfn = 0;
1034	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1035	max_pfn = max_low_pfn;
1036
1037	if (parse_numa_properties())
1038		setup_nonnuma();
1039	else
1040		dump_numa_memory_topology();
1041
1042	for_each_online_node(nid) {
1043		unsigned long start_pfn, end_pfn;
1044		void *bootmem_vaddr;
1045		unsigned long bootmap_pages;
1046
1047		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1048
1049		/*
1050		 * Allocate the node structure node local if possible
1051		 *
1052		 * Be careful moving this around, as it relies on all
1053		 * previous nodes' bootmem to be initialized and have
1054		 * all reserved areas marked.
1055		 */
1056		NODE_DATA(nid) = careful_zallocation(nid,
1057					sizeof(struct pglist_data),
1058					SMP_CACHE_BYTES, end_pfn);
1059
1060  		dbg("node %d\n", nid);
1061		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1062
1063		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1064		NODE_DATA(nid)->node_start_pfn = start_pfn;
1065		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1066
1067		if (NODE_DATA(nid)->node_spanned_pages == 0)
1068  			continue;
1069
1070  		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1071  		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1072
1073		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1074		bootmem_vaddr = careful_zallocation(nid,
1075					bootmap_pages << PAGE_SHIFT,
1076					PAGE_SIZE, end_pfn);
1077
1078		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1079
1080		init_bootmem_node(NODE_DATA(nid),
1081				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1082				  start_pfn, end_pfn);
1083
1084		free_bootmem_with_active_regions(nid, end_pfn);
1085		/*
1086		 * Be very careful about moving this around.  Future
1087		 * calls to careful_zallocation() depend on this getting
1088		 * done correctly.
1089		 */
1090		mark_reserved_regions_for_nid(nid);
1091		sparse_memory_present_with_active_regions(nid);
1092	}
1093
1094	init_bootmem_done = 1;
1095
1096	/*
1097	 * Now bootmem is initialised we can create the node to cpumask
1098	 * lookup tables and setup the cpu callback to populate them.
 
 
 
1099	 */
1100	setup_node_to_cpumask_map();
1101
1102	register_cpu_notifier(&ppc64_numa_nb);
1103	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1104			  (void *)(unsigned long)boot_cpuid);
1105}
1106
1107void __init paging_init(void)
1108{
1109	unsigned long max_zone_pfns[MAX_NR_ZONES];
1110	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1111	max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1112	free_area_init_nodes(max_zone_pfns);
1113}
1114
1115static int __init early_numa(char *p)
1116{
1117	if (!p)
1118		return 0;
1119
1120	if (strstr(p, "off"))
1121		numa_enabled = 0;
1122
1123	if (strstr(p, "debug"))
1124		numa_debug = 1;
1125
1126	p = strstr(p, "fake=");
1127	if (p)
1128		cmdline = p + strlen("fake=");
1129
1130	return 0;
1131}
1132early_param("numa", early_numa);
1133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1134#ifdef CONFIG_MEMORY_HOTPLUG
1135/*
1136 * Find the node associated with a hot added memory section for
1137 * memory represented in the device tree by the property
1138 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1139 */
1140static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1141				     unsigned long scn_addr)
1142{
1143	const u32 *dm;
1144	unsigned int drconf_cell_cnt, rc;
1145	unsigned long lmb_size;
1146	struct assoc_arrays aa;
1147	int nid = -1;
1148
1149	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1150	if (!drconf_cell_cnt)
1151		return -1;
1152
1153	lmb_size = of_get_lmb_size(memory);
1154	if (!lmb_size)
1155		return -1;
1156
1157	rc = of_get_assoc_arrays(memory, &aa);
1158	if (rc)
1159		return -1;
1160
1161	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1162		struct of_drconf_cell drmem;
1163
1164		read_drconf_cell(&drmem, &dm);
1165
 
1166		/* skip this block if it is reserved or not assigned to
1167		 * this partition */
1168		if ((drmem.flags & DRCONF_MEM_RESERVED)
1169		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1170			continue;
1171
1172		if ((scn_addr < drmem.base_addr)
1173		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1174			continue;
1175
1176		nid = of_drconf_to_nid_single(&drmem, &aa);
1177		break;
1178	}
1179
1180	return nid;
1181}
1182
1183/*
1184 * Find the node associated with a hot added memory section for memory
1185 * represented in the device tree as a node (i.e. memory@XXXX) for
1186 * each memblock.
1187 */
1188int hot_add_node_scn_to_nid(unsigned long scn_addr)
1189{
1190	struct device_node *memory = NULL;
1191	int nid = -1;
1192
1193	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
1194		unsigned long start, size;
1195		int ranges;
1196		const unsigned int *memcell_buf;
1197		unsigned int len;
1198
1199		memcell_buf = of_get_property(memory, "reg", &len);
1200		if (!memcell_buf || len <= 0)
1201			continue;
1202
1203		/* ranges in cell */
1204		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1205
1206		while (ranges--) {
1207			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1208			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1209
1210			if ((scn_addr < start) || (scn_addr >= (start + size)))
1211				continue;
1212
1213			nid = of_node_to_nid_single(memory);
1214			break;
1215		}
1216
1217		of_node_put(memory);
1218		if (nid >= 0)
1219			break;
1220	}
1221
 
 
1222	return nid;
1223}
1224
1225/*
1226 * Find the node associated with a hot added memory section.  Section
1227 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1228 * sections are fully contained within a single MEMBLOCK.
1229 */
1230int hot_add_scn_to_nid(unsigned long scn_addr)
1231{
1232	struct device_node *memory = NULL;
1233	int nid, found = 0;
1234
1235	if (!numa_enabled || (min_common_depth < 0))
1236		return first_online_node;
1237
1238	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1239	if (memory) {
1240		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1241		of_node_put(memory);
1242	} else {
1243		nid = hot_add_node_scn_to_nid(scn_addr);
1244	}
1245
1246	if (nid < 0 || !node_online(nid))
1247		nid = first_online_node;
1248
1249	if (NODE_DATA(nid)->node_spanned_pages)
1250		return nid;
1251
1252	for_each_online_node(nid) {
1253		if (NODE_DATA(nid)->node_spanned_pages) {
1254			found = 1;
1255			break;
1256		}
1257	}
1258
1259	BUG_ON(!found);
1260	return nid;
1261}
1262
1263static u64 hot_add_drconf_memory_max(void)
1264{
1265        struct device_node *memory = NULL;
1266        unsigned int drconf_cell_cnt = 0;
1267        u64 lmb_size = 0;
1268        const u32 *dm = 0;
1269
1270        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1271        if (memory) {
1272                drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1273                lmb_size = of_get_lmb_size(memory);
1274                of_node_put(memory);
1275        }
1276        return lmb_size * drconf_cell_cnt;
 
 
 
 
 
 
1277}
1278
1279/*
1280 * memory_hotplug_max - return max address of memory that may be added
1281 *
1282 * This is currently only used on systems that support drconfig memory
1283 * hotplug.
1284 */
1285u64 memory_hotplug_max(void)
1286{
1287        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1288}
1289#endif /* CONFIG_MEMORY_HOTPLUG */
1290
1291/* Virtual Processor Home Node (VPHN) support */
1292#ifdef CONFIG_PPC_SPLPAR
 
 
 
 
 
 
 
 
 
1293static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1294static cpumask_t cpu_associativity_changes_mask;
1295static int vphn_enabled;
1296static void set_topology_timer(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1297
1298/*
1299 * Store the current values of the associativity change counters in the
1300 * hypervisor.
1301 */
1302static void setup_cpu_associativity_change_counters(void)
1303{
1304	int cpu;
1305
1306	/* The VPHN feature supports a maximum of 8 reference points */
1307	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1308
1309	for_each_possible_cpu(cpu) {
1310		int i;
1311		u8 *counts = vphn_cpu_change_counts[cpu];
1312		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1313
1314		for (i = 0; i < distance_ref_points_depth; i++)
1315			counts[i] = hypervisor_counts[i];
1316	}
1317}
1318
1319/*
1320 * The hypervisor maintains a set of 8 associativity change counters in
1321 * the VPA of each cpu that correspond to the associativity levels in the
1322 * ibm,associativity-reference-points property. When an associativity
1323 * level changes, the corresponding counter is incremented.
1324 *
1325 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1326 * node associativity levels have changed.
1327 *
1328 * Returns the number of cpus with unhandled associativity changes.
1329 */
1330static int update_cpu_associativity_changes_mask(void)
1331{
1332	int cpu, nr_cpus = 0;
1333	cpumask_t *changes = &cpu_associativity_changes_mask;
1334
1335	cpumask_clear(changes);
1336
1337	for_each_possible_cpu(cpu) {
1338		int i, changed = 0;
1339		u8 *counts = vphn_cpu_change_counts[cpu];
1340		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1341
1342		for (i = 0; i < distance_ref_points_depth; i++) {
1343			if (hypervisor_counts[i] != counts[i]) {
1344				counts[i] = hypervisor_counts[i];
1345				changed = 1;
1346			}
1347		}
1348		if (changed) {
1349			cpumask_set_cpu(cpu, changes);
1350			nr_cpus++;
1351		}
1352	}
1353
1354	return nr_cpus;
1355}
1356
1357/*
1358 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1359 * the complete property we have to add the length in the first cell.
1360 */
1361#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1362
1363/*
1364 * Convert the associativity domain numbers returned from the hypervisor
1365 * to the sequence they would appear in the ibm,associativity property.
1366 */
1367static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
1368{
1369	int i, nr_assoc_doms = 0;
1370	const u16 *field = (const u16*) packed;
1371
1372#define VPHN_FIELD_UNUSED	(0xffff)
1373#define VPHN_FIELD_MSB		(0x8000)
1374#define VPHN_FIELD_MASK		(~VPHN_FIELD_MSB)
1375
1376	for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1377		if (*field == VPHN_FIELD_UNUSED) {
1378			/* All significant fields processed, and remaining
1379			 * fields contain the reserved value of all 1's.
1380			 * Just store them.
1381			 */
1382			unpacked[i] = *((u32*)field);
1383			field += 2;
1384		} else if (*field & VPHN_FIELD_MSB) {
1385			/* Data is in the lower 15 bits of this field */
1386			unpacked[i] = *field & VPHN_FIELD_MASK;
1387			field++;
1388			nr_assoc_doms++;
1389		} else {
1390			/* Data is in the lower 15 bits of this field
1391			 * concatenated with the next 16 bit field
1392			 */
1393			unpacked[i] = *((u32*)field);
1394			field += 2;
1395			nr_assoc_doms++;
1396		}
1397	}
1398
1399	/* The first cell contains the length of the property */
1400	unpacked[0] = nr_assoc_doms;
1401
1402	return nr_assoc_doms;
1403}
1404
1405/*
1406 * Retrieve the new associativity information for a virtual processor's
1407 * home node.
1408 */
1409static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
1410{
1411	long rc;
1412	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1413	u64 flags = 1;
1414	int hwcpu = get_hard_smp_processor_id(cpu);
1415
1416	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1417	vphn_unpack_associativity(retbuf, associativity);
1418
1419	return rc;
1420}
1421
1422static long vphn_get_associativity(unsigned long cpu,
1423					unsigned int *associativity)
1424{
1425	long rc;
1426
1427	rc = hcall_vphn(cpu, associativity);
 
1428
1429	switch (rc) {
1430	case H_FUNCTION:
1431		printk(KERN_INFO
1432			"VPHN is not supported. Disabling polling...\n");
1433		stop_topology_update();
1434		break;
1435	case H_HARDWARE:
1436		printk(KERN_ERR
1437			"hcall_vphn() experienced a hardware fault "
1438			"preventing VPHN. Disabling polling...\n");
1439		stop_topology_update();
 
 
 
 
 
1440	}
1441
1442	return rc;
1443}
1444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1445/*
1446 * Update the node maps and sysfs entries for each cpu whose home node
1447 * has changed.
 
 
1448 */
1449int arch_update_cpu_topology(void)
1450{
1451	int cpu, nid, old_nid;
1452	unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
1453	struct sys_device *sysdev;
 
 
1454
1455	for_each_cpu(cpu,&cpu_associativity_changes_mask) {
1456		vphn_get_associativity(cpu, associativity);
1457		nid = associativity_to_nid(associativity);
1458
1459		if (nid < 0 || !node_online(nid))
1460			nid = first_online_node;
 
 
 
 
 
1461
1462		old_nid = numa_cpu_lookup_table[cpu];
1463
1464		/* Disable hotplug while we update the cpu
1465		 * masks and sysfs.
 
 
 
1466		 */
1467		get_online_cpus();
1468		unregister_cpu_under_node(cpu, old_nid);
1469		unmap_cpu_from_node(cpu);
1470		map_cpu_to_node(cpu, nid);
1471		register_cpu_under_node(cpu, nid);
1472		put_online_cpus();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1473
1474		sysdev = get_cpu_sysdev(cpu);
1475		if (sysdev)
1476			kobject_uevent(&sysdev->kobj, KOBJ_CHANGE);
 
 
 
 
 
 
1477	}
1478
1479	return 1;
 
 
 
 
 
 
 
1480}
1481
1482static void topology_work_fn(struct work_struct *work)
1483{
1484	rebuild_sched_domains();
1485}
1486static DECLARE_WORK(topology_work, topology_work_fn);
1487
1488void topology_schedule_update(void)
1489{
1490	schedule_work(&topology_work);
1491}
1492
1493static void topology_timer_fn(unsigned long ignored)
1494{
1495	if (!vphn_enabled)
1496		return;
1497	if (update_cpu_associativity_changes_mask() > 0)
1498		topology_schedule_update();
1499	set_topology_timer();
 
 
 
 
1500}
1501static struct timer_list topology_timer =
1502	TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1503
1504static void set_topology_timer(void)
1505{
1506	topology_timer.data = 0;
1507	topology_timer.expires = jiffies + 60 * HZ;
1508	add_timer(&topology_timer);
1509}
1510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1511/*
1512 * Start polling for VPHN associativity changes.
1513 */
1514int start_topology_update(void)
1515{
1516	int rc = 0;
1517
1518	/* Disabled until races with load balancing are fixed */
1519	if (0 && firmware_has_feature(FW_FEATURE_VPHN) &&
1520	    get_lppaca()->shared_proc) {
1521		vphn_enabled = 1;
1522		setup_cpu_associativity_change_counters();
1523		init_timer_deferrable(&topology_timer);
1524		set_topology_timer();
1525		rc = 1;
 
 
 
 
 
 
 
 
 
 
 
 
1526	}
1527
 
 
 
 
1528	return rc;
1529}
1530__initcall(start_topology_update);
1531
1532/*
1533 * Disable polling for VPHN associativity changes.
1534 */
1535int stop_topology_update(void)
1536{
1537	vphn_enabled = 0;
1538	return del_timer_sync(&topology_timer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1539}
 
1540#endif /* CONFIG_PPC_SPLPAR */