Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * pSeries NUMA support
4 *
5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 */
7#define pr_fmt(fmt) "numa: " fmt
8
9#include <linux/threads.h>
10#include <linux/memblock.h>
11#include <linux/init.h>
12#include <linux/mm.h>
13#include <linux/mmzone.h>
14#include <linux/export.h>
15#include <linux/nodemask.h>
16#include <linux/cpu.h>
17#include <linux/notifier.h>
18#include <linux/of.h>
19#include <linux/pfn.h>
20#include <linux/cpuset.h>
21#include <linux/node.h>
22#include <linux/stop_machine.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25#include <linux/uaccess.h>
26#include <linux/slab.h>
27#include <asm/cputhreads.h>
28#include <asm/sparsemem.h>
29#include <asm/prom.h>
30#include <asm/smp.h>
31#include <asm/topology.h>
32#include <asm/firmware.h>
33#include <asm/paca.h>
34#include <asm/hvcall.h>
35#include <asm/setup.h>
36#include <asm/vdso.h>
37#include <asm/drmem.h>
38
39static int numa_enabled = 1;
40
41static char *cmdline __initdata;
42
43static int numa_debug;
44#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
45
46int numa_cpu_lookup_table[NR_CPUS];
47cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
48struct pglist_data *node_data[MAX_NUMNODES];
49
50EXPORT_SYMBOL(numa_cpu_lookup_table);
51EXPORT_SYMBOL(node_to_cpumask_map);
52EXPORT_SYMBOL(node_data);
53
54static int min_common_depth;
55static int n_mem_addr_cells, n_mem_size_cells;
56static int form1_affinity;
57
58#define MAX_DISTANCE_REF_POINTS 4
59static int distance_ref_points_depth;
60static const __be32 *distance_ref_points;
61static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
62
63/*
64 * Allocate node_to_cpumask_map based on number of available nodes
65 * Requires node_possible_map to be valid.
66 *
67 * Note: cpumask_of_node() is not valid until after this is done.
68 */
69static void __init setup_node_to_cpumask_map(void)
70{
71 unsigned int node;
72
73 /* setup nr_node_ids if not done yet */
74 if (nr_node_ids == MAX_NUMNODES)
75 setup_nr_node_ids();
76
77 /* allocate the map */
78 for_each_node(node)
79 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
80
81 /* cpumask_of_node() will now work */
82 dbg("Node to cpumask map for %u nodes\n", nr_node_ids);
83}
84
85static int __init fake_numa_create_new_node(unsigned long end_pfn,
86 unsigned int *nid)
87{
88 unsigned long long mem;
89 char *p = cmdline;
90 static unsigned int fake_nid;
91 static unsigned long long curr_boundary;
92
93 /*
94 * Modify node id, iff we started creating NUMA nodes
95 * We want to continue from where we left of the last time
96 */
97 if (fake_nid)
98 *nid = fake_nid;
99 /*
100 * In case there are no more arguments to parse, the
101 * node_id should be the same as the last fake node id
102 * (we've handled this above).
103 */
104 if (!p)
105 return 0;
106
107 mem = memparse(p, &p);
108 if (!mem)
109 return 0;
110
111 if (mem < curr_boundary)
112 return 0;
113
114 curr_boundary = mem;
115
116 if ((end_pfn << PAGE_SHIFT) > mem) {
117 /*
118 * Skip commas and spaces
119 */
120 while (*p == ',' || *p == ' ' || *p == '\t')
121 p++;
122
123 cmdline = p;
124 fake_nid++;
125 *nid = fake_nid;
126 dbg("created new fake_node with id %d\n", fake_nid);
127 return 1;
128 }
129 return 0;
130}
131
132static void reset_numa_cpu_lookup_table(void)
133{
134 unsigned int cpu;
135
136 for_each_possible_cpu(cpu)
137 numa_cpu_lookup_table[cpu] = -1;
138}
139
140static void map_cpu_to_node(int cpu, int node)
141{
142 update_numa_cpu_lookup_table(cpu, node);
143
144 dbg("adding cpu %d to node %d\n", cpu, node);
145
146 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
147 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
148}
149
150#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
151static void unmap_cpu_from_node(unsigned long cpu)
152{
153 int node = numa_cpu_lookup_table[cpu];
154
155 dbg("removing cpu %lu from node %d\n", cpu, node);
156
157 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
158 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
159 } else {
160 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
161 cpu, node);
162 }
163}
164#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
165
166int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
167{
168 int dist = 0;
169
170 int i, index;
171
172 for (i = 0; i < distance_ref_points_depth; i++) {
173 index = be32_to_cpu(distance_ref_points[i]);
174 if (cpu1_assoc[index] == cpu2_assoc[index])
175 break;
176 dist++;
177 }
178
179 return dist;
180}
181
182/* must hold reference to node during call */
183static const __be32 *of_get_associativity(struct device_node *dev)
184{
185 return of_get_property(dev, "ibm,associativity", NULL);
186}
187
188int __node_distance(int a, int b)
189{
190 int i;
191 int distance = LOCAL_DISTANCE;
192
193 if (!form1_affinity)
194 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
195
196 for (i = 0; i < distance_ref_points_depth; i++) {
197 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
198 break;
199
200 /* Double the distance for each NUMA level */
201 distance *= 2;
202 }
203
204 return distance;
205}
206EXPORT_SYMBOL(__node_distance);
207
208static void initialize_distance_lookup_table(int nid,
209 const __be32 *associativity)
210{
211 int i;
212
213 if (!form1_affinity)
214 return;
215
216 for (i = 0; i < distance_ref_points_depth; i++) {
217 const __be32 *entry;
218
219 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
220 distance_lookup_table[nid][i] = of_read_number(entry, 1);
221 }
222}
223
224/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
225 * info is found.
226 */
227static int associativity_to_nid(const __be32 *associativity)
228{
229 int nid = NUMA_NO_NODE;
230
231 if (!numa_enabled)
232 goto out;
233
234 if (of_read_number(associativity, 1) >= min_common_depth)
235 nid = of_read_number(&associativity[min_common_depth], 1);
236
237 /* POWER4 LPAR uses 0xffff as invalid node */
238 if (nid == 0xffff || nid >= MAX_NUMNODES)
239 nid = NUMA_NO_NODE;
240
241 if (nid > 0 &&
242 of_read_number(associativity, 1) >= distance_ref_points_depth) {
243 /*
244 * Skip the length field and send start of associativity array
245 */
246 initialize_distance_lookup_table(nid, associativity + 1);
247 }
248
249out:
250 return nid;
251}
252
253/* Returns the nid associated with the given device tree node,
254 * or -1 if not found.
255 */
256static int of_node_to_nid_single(struct device_node *device)
257{
258 int nid = NUMA_NO_NODE;
259 const __be32 *tmp;
260
261 tmp = of_get_associativity(device);
262 if (tmp)
263 nid = associativity_to_nid(tmp);
264 return nid;
265}
266
267/* Walk the device tree upwards, looking for an associativity id */
268int of_node_to_nid(struct device_node *device)
269{
270 int nid = NUMA_NO_NODE;
271
272 of_node_get(device);
273 while (device) {
274 nid = of_node_to_nid_single(device);
275 if (nid != -1)
276 break;
277
278 device = of_get_next_parent(device);
279 }
280 of_node_put(device);
281
282 return nid;
283}
284EXPORT_SYMBOL(of_node_to_nid);
285
286static int __init find_min_common_depth(void)
287{
288 int depth;
289 struct device_node *root;
290
291 if (firmware_has_feature(FW_FEATURE_OPAL))
292 root = of_find_node_by_path("/ibm,opal");
293 else
294 root = of_find_node_by_path("/rtas");
295 if (!root)
296 root = of_find_node_by_path("/");
297
298 /*
299 * This property is a set of 32-bit integers, each representing
300 * an index into the ibm,associativity nodes.
301 *
302 * With form 0 affinity the first integer is for an SMP configuration
303 * (should be all 0's) and the second is for a normal NUMA
304 * configuration. We have only one level of NUMA.
305 *
306 * With form 1 affinity the first integer is the most significant
307 * NUMA boundary and the following are progressively less significant
308 * boundaries. There can be more than one level of NUMA.
309 */
310 distance_ref_points = of_get_property(root,
311 "ibm,associativity-reference-points",
312 &distance_ref_points_depth);
313
314 if (!distance_ref_points) {
315 dbg("NUMA: ibm,associativity-reference-points not found.\n");
316 goto err;
317 }
318
319 distance_ref_points_depth /= sizeof(int);
320
321 if (firmware_has_feature(FW_FEATURE_OPAL) ||
322 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
323 dbg("Using form 1 affinity\n");
324 form1_affinity = 1;
325 }
326
327 if (form1_affinity) {
328 depth = of_read_number(distance_ref_points, 1);
329 } else {
330 if (distance_ref_points_depth < 2) {
331 printk(KERN_WARNING "NUMA: "
332 "short ibm,associativity-reference-points\n");
333 goto err;
334 }
335
336 depth = of_read_number(&distance_ref_points[1], 1);
337 }
338
339 /*
340 * Warn and cap if the hardware supports more than
341 * MAX_DISTANCE_REF_POINTS domains.
342 */
343 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
344 printk(KERN_WARNING "NUMA: distance array capped at "
345 "%d entries\n", MAX_DISTANCE_REF_POINTS);
346 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
347 }
348
349 of_node_put(root);
350 return depth;
351
352err:
353 of_node_put(root);
354 return -1;
355}
356
357static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
358{
359 struct device_node *memory = NULL;
360
361 memory = of_find_node_by_type(memory, "memory");
362 if (!memory)
363 panic("numa.c: No memory nodes found!");
364
365 *n_addr_cells = of_n_addr_cells(memory);
366 *n_size_cells = of_n_size_cells(memory);
367 of_node_put(memory);
368}
369
370static unsigned long read_n_cells(int n, const __be32 **buf)
371{
372 unsigned long result = 0;
373
374 while (n--) {
375 result = (result << 32) | of_read_number(*buf, 1);
376 (*buf)++;
377 }
378 return result;
379}
380
381struct assoc_arrays {
382 u32 n_arrays;
383 u32 array_sz;
384 const __be32 *arrays;
385};
386
387/*
388 * Retrieve and validate the list of associativity arrays for drconf
389 * memory from the ibm,associativity-lookup-arrays property of the
390 * device tree..
391 *
392 * The layout of the ibm,associativity-lookup-arrays property is a number N
393 * indicating the number of associativity arrays, followed by a number M
394 * indicating the size of each associativity array, followed by a list
395 * of N associativity arrays.
396 */
397static int of_get_assoc_arrays(struct assoc_arrays *aa)
398{
399 struct device_node *memory;
400 const __be32 *prop;
401 u32 len;
402
403 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
404 if (!memory)
405 return -1;
406
407 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
408 if (!prop || len < 2 * sizeof(unsigned int)) {
409 of_node_put(memory);
410 return -1;
411 }
412
413 aa->n_arrays = of_read_number(prop++, 1);
414 aa->array_sz = of_read_number(prop++, 1);
415
416 of_node_put(memory);
417
418 /* Now that we know the number of arrays and size of each array,
419 * revalidate the size of the property read in.
420 */
421 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
422 return -1;
423
424 aa->arrays = prop;
425 return 0;
426}
427
428/*
429 * This is like of_node_to_nid_single() for memory represented in the
430 * ibm,dynamic-reconfiguration-memory node.
431 */
432static int of_drconf_to_nid_single(struct drmem_lmb *lmb)
433{
434 struct assoc_arrays aa = { .arrays = NULL };
435 int default_nid = NUMA_NO_NODE;
436 int nid = default_nid;
437 int rc, index;
438
439 if ((min_common_depth < 0) || !numa_enabled)
440 return default_nid;
441
442 rc = of_get_assoc_arrays(&aa);
443 if (rc)
444 return default_nid;
445
446 if (min_common_depth <= aa.array_sz &&
447 !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
448 index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
449 nid = of_read_number(&aa.arrays[index], 1);
450
451 if (nid == 0xffff || nid >= MAX_NUMNODES)
452 nid = default_nid;
453
454 if (nid > 0) {
455 index = lmb->aa_index * aa.array_sz;
456 initialize_distance_lookup_table(nid,
457 &aa.arrays[index]);
458 }
459 }
460
461 return nid;
462}
463
464/*
465 * Figure out to which domain a cpu belongs and stick it there.
466 * Return the id of the domain used.
467 */
468static int numa_setup_cpu(unsigned long lcpu)
469{
470 int nid = NUMA_NO_NODE;
471 struct device_node *cpu;
472
473 /*
474 * If a valid cpu-to-node mapping is already available, use it
475 * directly instead of querying the firmware, since it represents
476 * the most recent mapping notified to us by the platform (eg: VPHN).
477 */
478 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
479 map_cpu_to_node(lcpu, nid);
480 return nid;
481 }
482
483 cpu = of_get_cpu_node(lcpu, NULL);
484
485 if (!cpu) {
486 WARN_ON(1);
487 if (cpu_present(lcpu))
488 goto out_present;
489 else
490 goto out;
491 }
492
493 nid = of_node_to_nid_single(cpu);
494
495out_present:
496 if (nid < 0 || !node_possible(nid))
497 nid = first_online_node;
498
499 map_cpu_to_node(lcpu, nid);
500 of_node_put(cpu);
501out:
502 return nid;
503}
504
505static void verify_cpu_node_mapping(int cpu, int node)
506{
507 int base, sibling, i;
508
509 /* Verify that all the threads in the core belong to the same node */
510 base = cpu_first_thread_sibling(cpu);
511
512 for (i = 0; i < threads_per_core; i++) {
513 sibling = base + i;
514
515 if (sibling == cpu || cpu_is_offline(sibling))
516 continue;
517
518 if (cpu_to_node(sibling) != node) {
519 WARN(1, "CPU thread siblings %d and %d don't belong"
520 " to the same node!\n", cpu, sibling);
521 break;
522 }
523 }
524}
525
526/* Must run before sched domains notifier. */
527static int ppc_numa_cpu_prepare(unsigned int cpu)
528{
529 int nid;
530
531 nid = numa_setup_cpu(cpu);
532 verify_cpu_node_mapping(cpu, nid);
533 return 0;
534}
535
536static int ppc_numa_cpu_dead(unsigned int cpu)
537{
538#ifdef CONFIG_HOTPLUG_CPU
539 unmap_cpu_from_node(cpu);
540#endif
541 return 0;
542}
543
544/*
545 * Check and possibly modify a memory region to enforce the memory limit.
546 *
547 * Returns the size the region should have to enforce the memory limit.
548 * This will either be the original value of size, a truncated value,
549 * or zero. If the returned value of size is 0 the region should be
550 * discarded as it lies wholly above the memory limit.
551 */
552static unsigned long __init numa_enforce_memory_limit(unsigned long start,
553 unsigned long size)
554{
555 /*
556 * We use memblock_end_of_DRAM() in here instead of memory_limit because
557 * we've already adjusted it for the limit and it takes care of
558 * having memory holes below the limit. Also, in the case of
559 * iommu_is_off, memory_limit is not set but is implicitly enforced.
560 */
561
562 if (start + size <= memblock_end_of_DRAM())
563 return size;
564
565 if (start >= memblock_end_of_DRAM())
566 return 0;
567
568 return memblock_end_of_DRAM() - start;
569}
570
571/*
572 * Reads the counter for a given entry in
573 * linux,drconf-usable-memory property
574 */
575static inline int __init read_usm_ranges(const __be32 **usm)
576{
577 /*
578 * For each lmb in ibm,dynamic-memory a corresponding
579 * entry in linux,drconf-usable-memory property contains
580 * a counter followed by that many (base, size) duple.
581 * read the counter from linux,drconf-usable-memory
582 */
583 return read_n_cells(n_mem_size_cells, usm);
584}
585
586/*
587 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
588 * node. This assumes n_mem_{addr,size}_cells have been set.
589 */
590static void __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
591 const __be32 **usm)
592{
593 unsigned int ranges, is_kexec_kdump = 0;
594 unsigned long base, size, sz;
595 int nid;
596
597 /*
598 * Skip this block if the reserved bit is set in flags (0x80)
599 * or if the block is not assigned to this partition (0x8)
600 */
601 if ((lmb->flags & DRCONF_MEM_RESERVED)
602 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
603 return;
604
605 if (*usm)
606 is_kexec_kdump = 1;
607
608 base = lmb->base_addr;
609 size = drmem_lmb_size();
610 ranges = 1;
611
612 if (is_kexec_kdump) {
613 ranges = read_usm_ranges(usm);
614 if (!ranges) /* there are no (base, size) duple */
615 return;
616 }
617
618 do {
619 if (is_kexec_kdump) {
620 base = read_n_cells(n_mem_addr_cells, usm);
621 size = read_n_cells(n_mem_size_cells, usm);
622 }
623
624 nid = of_drconf_to_nid_single(lmb);
625 fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
626 &nid);
627 node_set_online(nid);
628 sz = numa_enforce_memory_limit(base, size);
629 if (sz)
630 memblock_set_node(base, sz, &memblock.memory, nid);
631 } while (--ranges);
632}
633
634static int __init parse_numa_properties(void)
635{
636 struct device_node *memory;
637 int default_nid = 0;
638 unsigned long i;
639
640 if (numa_enabled == 0) {
641 printk(KERN_WARNING "NUMA disabled by user\n");
642 return -1;
643 }
644
645 min_common_depth = find_min_common_depth();
646
647 if (min_common_depth < 0) {
648 /*
649 * if we fail to parse min_common_depth from device tree
650 * mark the numa disabled, boot with numa disabled.
651 */
652 numa_enabled = false;
653 return min_common_depth;
654 }
655
656 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
657
658 /*
659 * Even though we connect cpus to numa domains later in SMP
660 * init, we need to know the node ids now. This is because
661 * each node to be onlined must have NODE_DATA etc backing it.
662 */
663 for_each_present_cpu(i) {
664 struct device_node *cpu;
665 int nid;
666
667 cpu = of_get_cpu_node(i, NULL);
668 BUG_ON(!cpu);
669 nid = of_node_to_nid_single(cpu);
670 of_node_put(cpu);
671
672 /*
673 * Don't fall back to default_nid yet -- we will plug
674 * cpus into nodes once the memory scan has discovered
675 * the topology.
676 */
677 if (nid < 0)
678 continue;
679 node_set_online(nid);
680 }
681
682 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
683
684 for_each_node_by_type(memory, "memory") {
685 unsigned long start;
686 unsigned long size;
687 int nid;
688 int ranges;
689 const __be32 *memcell_buf;
690 unsigned int len;
691
692 memcell_buf = of_get_property(memory,
693 "linux,usable-memory", &len);
694 if (!memcell_buf || len <= 0)
695 memcell_buf = of_get_property(memory, "reg", &len);
696 if (!memcell_buf || len <= 0)
697 continue;
698
699 /* ranges in cell */
700 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
701new_range:
702 /* these are order-sensitive, and modify the buffer pointer */
703 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
704 size = read_n_cells(n_mem_size_cells, &memcell_buf);
705
706 /*
707 * Assumption: either all memory nodes or none will
708 * have associativity properties. If none, then
709 * everything goes to default_nid.
710 */
711 nid = of_node_to_nid_single(memory);
712 if (nid < 0)
713 nid = default_nid;
714
715 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
716 node_set_online(nid);
717
718 size = numa_enforce_memory_limit(start, size);
719 if (size)
720 memblock_set_node(start, size, &memblock.memory, nid);
721
722 if (--ranges)
723 goto new_range;
724 }
725
726 /*
727 * Now do the same thing for each MEMBLOCK listed in the
728 * ibm,dynamic-memory property in the
729 * ibm,dynamic-reconfiguration-memory node.
730 */
731 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
732 if (memory) {
733 walk_drmem_lmbs(memory, numa_setup_drmem_lmb);
734 of_node_put(memory);
735 }
736
737 return 0;
738}
739
740static void __init setup_nonnuma(void)
741{
742 unsigned long top_of_ram = memblock_end_of_DRAM();
743 unsigned long total_ram = memblock_phys_mem_size();
744 unsigned long start_pfn, end_pfn;
745 unsigned int nid = 0;
746 struct memblock_region *reg;
747
748 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
749 top_of_ram, total_ram);
750 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
751 (top_of_ram - total_ram) >> 20);
752
753 for_each_memblock(memory, reg) {
754 start_pfn = memblock_region_memory_base_pfn(reg);
755 end_pfn = memblock_region_memory_end_pfn(reg);
756
757 fake_numa_create_new_node(end_pfn, &nid);
758 memblock_set_node(PFN_PHYS(start_pfn),
759 PFN_PHYS(end_pfn - start_pfn),
760 &memblock.memory, nid);
761 node_set_online(nid);
762 }
763}
764
765void __init dump_numa_cpu_topology(void)
766{
767 unsigned int node;
768 unsigned int cpu, count;
769
770 if (!numa_enabled)
771 return;
772
773 for_each_online_node(node) {
774 pr_info("Node %d CPUs:", node);
775
776 count = 0;
777 /*
778 * If we used a CPU iterator here we would miss printing
779 * the holes in the cpumap.
780 */
781 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
782 if (cpumask_test_cpu(cpu,
783 node_to_cpumask_map[node])) {
784 if (count == 0)
785 pr_cont(" %u", cpu);
786 ++count;
787 } else {
788 if (count > 1)
789 pr_cont("-%u", cpu - 1);
790 count = 0;
791 }
792 }
793
794 if (count > 1)
795 pr_cont("-%u", nr_cpu_ids - 1);
796 pr_cont("\n");
797 }
798}
799
800/* Initialize NODE_DATA for a node on the local memory */
801static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
802{
803 u64 spanned_pages = end_pfn - start_pfn;
804 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
805 u64 nd_pa;
806 void *nd;
807 int tnid;
808
809 nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
810 if (!nd_pa)
811 panic("Cannot allocate %zu bytes for node %d data\n",
812 nd_size, nid);
813
814 nd = __va(nd_pa);
815
816 /* report and initialize */
817 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
818 nd_pa, nd_pa + nd_size - 1);
819 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
820 if (tnid != nid)
821 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
822
823 node_data[nid] = nd;
824 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
825 NODE_DATA(nid)->node_id = nid;
826 NODE_DATA(nid)->node_start_pfn = start_pfn;
827 NODE_DATA(nid)->node_spanned_pages = spanned_pages;
828}
829
830static void __init find_possible_nodes(void)
831{
832 struct device_node *rtas;
833 u32 numnodes, i;
834
835 if (!numa_enabled)
836 return;
837
838 rtas = of_find_node_by_path("/rtas");
839 if (!rtas)
840 return;
841
842 if (of_property_read_u32_index(rtas,
843 "ibm,max-associativity-domains",
844 min_common_depth, &numnodes))
845 goto out;
846
847 for (i = 0; i < numnodes; i++) {
848 if (!node_possible(i))
849 node_set(i, node_possible_map);
850 }
851
852out:
853 of_node_put(rtas);
854}
855
856void __init mem_topology_setup(void)
857{
858 int cpu;
859
860 if (parse_numa_properties())
861 setup_nonnuma();
862
863 /*
864 * Modify the set of possible NUMA nodes to reflect information
865 * available about the set of online nodes, and the set of nodes
866 * that we expect to make use of for this platform's affinity
867 * calculations.
868 */
869 nodes_and(node_possible_map, node_possible_map, node_online_map);
870
871 find_possible_nodes();
872
873 setup_node_to_cpumask_map();
874
875 reset_numa_cpu_lookup_table();
876
877 for_each_present_cpu(cpu)
878 numa_setup_cpu(cpu);
879}
880
881void __init initmem_init(void)
882{
883 int nid;
884
885 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
886 max_pfn = max_low_pfn;
887
888 memblock_dump_all();
889
890 for_each_online_node(nid) {
891 unsigned long start_pfn, end_pfn;
892
893 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
894 setup_node_data(nid, start_pfn, end_pfn);
895 sparse_memory_present_with_active_regions(nid);
896 }
897
898 sparse_init();
899
900 /*
901 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
902 * even before we online them, so that we can use cpu_to_{node,mem}
903 * early in boot, cf. smp_prepare_cpus().
904 * _nocalls() + manual invocation is used because cpuhp is not yet
905 * initialized for the boot CPU.
906 */
907 cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
908 ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
909}
910
911static int __init early_numa(char *p)
912{
913 if (!p)
914 return 0;
915
916 if (strstr(p, "off"))
917 numa_enabled = 0;
918
919 if (strstr(p, "debug"))
920 numa_debug = 1;
921
922 p = strstr(p, "fake=");
923 if (p)
924 cmdline = p + strlen("fake=");
925
926 return 0;
927}
928early_param("numa", early_numa);
929
930/*
931 * The platform can inform us through one of several mechanisms
932 * (post-migration device tree updates, PRRN or VPHN) that the NUMA
933 * assignment of a resource has changed. This controls whether we act
934 * on that. Disabled by default.
935 */
936static bool topology_updates_enabled;
937
938static int __init early_topology_updates(char *p)
939{
940 if (!p)
941 return 0;
942
943 if (!strcmp(p, "on")) {
944 pr_warn("Caution: enabling topology updates\n");
945 topology_updates_enabled = true;
946 }
947
948 return 0;
949}
950early_param("topology_updates", early_topology_updates);
951
952#ifdef CONFIG_MEMORY_HOTPLUG
953/*
954 * Find the node associated with a hot added memory section for
955 * memory represented in the device tree by the property
956 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
957 */
958static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
959{
960 struct drmem_lmb *lmb;
961 unsigned long lmb_size;
962 int nid = NUMA_NO_NODE;
963
964 lmb_size = drmem_lmb_size();
965
966 for_each_drmem_lmb(lmb) {
967 /* skip this block if it is reserved or not assigned to
968 * this partition */
969 if ((lmb->flags & DRCONF_MEM_RESERVED)
970 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
971 continue;
972
973 if ((scn_addr < lmb->base_addr)
974 || (scn_addr >= (lmb->base_addr + lmb_size)))
975 continue;
976
977 nid = of_drconf_to_nid_single(lmb);
978 break;
979 }
980
981 return nid;
982}
983
984/*
985 * Find the node associated with a hot added memory section for memory
986 * represented in the device tree as a node (i.e. memory@XXXX) for
987 * each memblock.
988 */
989static int hot_add_node_scn_to_nid(unsigned long scn_addr)
990{
991 struct device_node *memory;
992 int nid = NUMA_NO_NODE;
993
994 for_each_node_by_type(memory, "memory") {
995 unsigned long start, size;
996 int ranges;
997 const __be32 *memcell_buf;
998 unsigned int len;
999
1000 memcell_buf = of_get_property(memory, "reg", &len);
1001 if (!memcell_buf || len <= 0)
1002 continue;
1003
1004 /* ranges in cell */
1005 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1006
1007 while (ranges--) {
1008 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1009 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1010
1011 if ((scn_addr < start) || (scn_addr >= (start + size)))
1012 continue;
1013
1014 nid = of_node_to_nid_single(memory);
1015 break;
1016 }
1017
1018 if (nid >= 0)
1019 break;
1020 }
1021
1022 of_node_put(memory);
1023
1024 return nid;
1025}
1026
1027/*
1028 * Find the node associated with a hot added memory section. Section
1029 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1030 * sections are fully contained within a single MEMBLOCK.
1031 */
1032int hot_add_scn_to_nid(unsigned long scn_addr)
1033{
1034 struct device_node *memory = NULL;
1035 int nid;
1036
1037 if (!numa_enabled)
1038 return first_online_node;
1039
1040 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1041 if (memory) {
1042 nid = hot_add_drconf_scn_to_nid(scn_addr);
1043 of_node_put(memory);
1044 } else {
1045 nid = hot_add_node_scn_to_nid(scn_addr);
1046 }
1047
1048 if (nid < 0 || !node_possible(nid))
1049 nid = first_online_node;
1050
1051 return nid;
1052}
1053
1054static u64 hot_add_drconf_memory_max(void)
1055{
1056 struct device_node *memory = NULL;
1057 struct device_node *dn = NULL;
1058 const __be64 *lrdr = NULL;
1059
1060 dn = of_find_node_by_path("/rtas");
1061 if (dn) {
1062 lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1063 of_node_put(dn);
1064 if (lrdr)
1065 return be64_to_cpup(lrdr);
1066 }
1067
1068 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1069 if (memory) {
1070 of_node_put(memory);
1071 return drmem_lmb_memory_max();
1072 }
1073 return 0;
1074}
1075
1076/*
1077 * memory_hotplug_max - return max address of memory that may be added
1078 *
1079 * This is currently only used on systems that support drconfig memory
1080 * hotplug.
1081 */
1082u64 memory_hotplug_max(void)
1083{
1084 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1085}
1086#endif /* CONFIG_MEMORY_HOTPLUG */
1087
1088/* Virtual Processor Home Node (VPHN) support */
1089#ifdef CONFIG_PPC_SPLPAR
1090struct topology_update_data {
1091 struct topology_update_data *next;
1092 unsigned int cpu;
1093 int old_nid;
1094 int new_nid;
1095};
1096
1097#define TOPOLOGY_DEF_TIMER_SECS 60
1098
1099static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1100static cpumask_t cpu_associativity_changes_mask;
1101static int vphn_enabled;
1102static int prrn_enabled;
1103static void reset_topology_timer(void);
1104static int topology_timer_secs = 1;
1105static int topology_inited;
1106
1107/*
1108 * Change polling interval for associativity changes.
1109 */
1110int timed_topology_update(int nsecs)
1111{
1112 if (vphn_enabled) {
1113 if (nsecs > 0)
1114 topology_timer_secs = nsecs;
1115 else
1116 topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS;
1117
1118 reset_topology_timer();
1119 }
1120
1121 return 0;
1122}
1123
1124/*
1125 * Store the current values of the associativity change counters in the
1126 * hypervisor.
1127 */
1128static void setup_cpu_associativity_change_counters(void)
1129{
1130 int cpu;
1131
1132 /* The VPHN feature supports a maximum of 8 reference points */
1133 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1134
1135 for_each_possible_cpu(cpu) {
1136 int i;
1137 u8 *counts = vphn_cpu_change_counts[cpu];
1138 volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1139
1140 for (i = 0; i < distance_ref_points_depth; i++)
1141 counts[i] = hypervisor_counts[i];
1142 }
1143}
1144
1145/*
1146 * The hypervisor maintains a set of 8 associativity change counters in
1147 * the VPA of each cpu that correspond to the associativity levels in the
1148 * ibm,associativity-reference-points property. When an associativity
1149 * level changes, the corresponding counter is incremented.
1150 *
1151 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1152 * node associativity levels have changed.
1153 *
1154 * Returns the number of cpus with unhandled associativity changes.
1155 */
1156static int update_cpu_associativity_changes_mask(void)
1157{
1158 int cpu;
1159 cpumask_t *changes = &cpu_associativity_changes_mask;
1160
1161 for_each_possible_cpu(cpu) {
1162 int i, changed = 0;
1163 u8 *counts = vphn_cpu_change_counts[cpu];
1164 volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1165
1166 for (i = 0; i < distance_ref_points_depth; i++) {
1167 if (hypervisor_counts[i] != counts[i]) {
1168 counts[i] = hypervisor_counts[i];
1169 changed = 1;
1170 }
1171 }
1172 if (changed) {
1173 cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1174 cpu = cpu_last_thread_sibling(cpu);
1175 }
1176 }
1177
1178 return cpumask_weight(changes);
1179}
1180
1181/*
1182 * Retrieve the new associativity information for a virtual processor's
1183 * home node.
1184 */
1185static long vphn_get_associativity(unsigned long cpu,
1186 __be32 *associativity)
1187{
1188 long rc;
1189
1190 rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1191 VPHN_FLAG_VCPU, associativity);
1192
1193 switch (rc) {
1194 case H_FUNCTION:
1195 printk_once(KERN_INFO
1196 "VPHN is not supported. Disabling polling...\n");
1197 stop_topology_update();
1198 break;
1199 case H_HARDWARE:
1200 printk(KERN_ERR
1201 "hcall_vphn() experienced a hardware fault "
1202 "preventing VPHN. Disabling polling...\n");
1203 stop_topology_update();
1204 break;
1205 case H_SUCCESS:
1206 dbg("VPHN hcall succeeded. Reset polling...\n");
1207 timed_topology_update(0);
1208 break;
1209 }
1210
1211 return rc;
1212}
1213
1214int find_and_online_cpu_nid(int cpu)
1215{
1216 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1217 int new_nid;
1218
1219 /* Use associativity from first thread for all siblings */
1220 if (vphn_get_associativity(cpu, associativity))
1221 return cpu_to_node(cpu);
1222
1223 new_nid = associativity_to_nid(associativity);
1224 if (new_nid < 0 || !node_possible(new_nid))
1225 new_nid = first_online_node;
1226
1227 if (NODE_DATA(new_nid) == NULL) {
1228#ifdef CONFIG_MEMORY_HOTPLUG
1229 /*
1230 * Need to ensure that NODE_DATA is initialized for a node from
1231 * available memory (see memblock_alloc_try_nid). If unable to
1232 * init the node, then default to nearest node that has memory
1233 * installed. Skip onlining a node if the subsystems are not
1234 * yet initialized.
1235 */
1236 if (!topology_inited || try_online_node(new_nid))
1237 new_nid = first_online_node;
1238#else
1239 /*
1240 * Default to using the nearest node that has memory installed.
1241 * Otherwise, it would be necessary to patch the kernel MM code
1242 * to deal with more memoryless-node error conditions.
1243 */
1244 new_nid = first_online_node;
1245#endif
1246 }
1247
1248 pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1249 cpu, new_nid);
1250 return new_nid;
1251}
1252
1253/*
1254 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1255 * characteristics change. This function doesn't perform any locking and is
1256 * only safe to call from stop_machine().
1257 */
1258static int update_cpu_topology(void *data)
1259{
1260 struct topology_update_data *update;
1261 unsigned long cpu;
1262
1263 if (!data)
1264 return -EINVAL;
1265
1266 cpu = smp_processor_id();
1267
1268 for (update = data; update; update = update->next) {
1269 int new_nid = update->new_nid;
1270 if (cpu != update->cpu)
1271 continue;
1272
1273 unmap_cpu_from_node(cpu);
1274 map_cpu_to_node(cpu, new_nid);
1275 set_cpu_numa_node(cpu, new_nid);
1276 set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1277 vdso_getcpu_init();
1278 }
1279
1280 return 0;
1281}
1282
1283static int update_lookup_table(void *data)
1284{
1285 struct topology_update_data *update;
1286
1287 if (!data)
1288 return -EINVAL;
1289
1290 /*
1291 * Upon topology update, the numa-cpu lookup table needs to be updated
1292 * for all threads in the core, including offline CPUs, to ensure that
1293 * future hotplug operations respect the cpu-to-node associativity
1294 * properly.
1295 */
1296 for (update = data; update; update = update->next) {
1297 int nid, base, j;
1298
1299 nid = update->new_nid;
1300 base = cpu_first_thread_sibling(update->cpu);
1301
1302 for (j = 0; j < threads_per_core; j++) {
1303 update_numa_cpu_lookup_table(base + j, nid);
1304 }
1305 }
1306
1307 return 0;
1308}
1309
1310/*
1311 * Update the node maps and sysfs entries for each cpu whose home node
1312 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1313 *
1314 * cpus_locked says whether we already hold cpu_hotplug_lock.
1315 */
1316int numa_update_cpu_topology(bool cpus_locked)
1317{
1318 unsigned int cpu, sibling, changed = 0;
1319 struct topology_update_data *updates, *ud;
1320 cpumask_t updated_cpus;
1321 struct device *dev;
1322 int weight, new_nid, i = 0;
1323
1324 if (!prrn_enabled && !vphn_enabled && topology_inited)
1325 return 0;
1326
1327 weight = cpumask_weight(&cpu_associativity_changes_mask);
1328 if (!weight)
1329 return 0;
1330
1331 updates = kcalloc(weight, sizeof(*updates), GFP_KERNEL);
1332 if (!updates)
1333 return 0;
1334
1335 cpumask_clear(&updated_cpus);
1336
1337 for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1338 /*
1339 * If siblings aren't flagged for changes, updates list
1340 * will be too short. Skip on this update and set for next
1341 * update.
1342 */
1343 if (!cpumask_subset(cpu_sibling_mask(cpu),
1344 &cpu_associativity_changes_mask)) {
1345 pr_info("Sibling bits not set for associativity "
1346 "change, cpu%d\n", cpu);
1347 cpumask_or(&cpu_associativity_changes_mask,
1348 &cpu_associativity_changes_mask,
1349 cpu_sibling_mask(cpu));
1350 cpu = cpu_last_thread_sibling(cpu);
1351 continue;
1352 }
1353
1354 new_nid = find_and_online_cpu_nid(cpu);
1355
1356 if (new_nid == numa_cpu_lookup_table[cpu]) {
1357 cpumask_andnot(&cpu_associativity_changes_mask,
1358 &cpu_associativity_changes_mask,
1359 cpu_sibling_mask(cpu));
1360 dbg("Assoc chg gives same node %d for cpu%d\n",
1361 new_nid, cpu);
1362 cpu = cpu_last_thread_sibling(cpu);
1363 continue;
1364 }
1365
1366 for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1367 ud = &updates[i++];
1368 ud->next = &updates[i];
1369 ud->cpu = sibling;
1370 ud->new_nid = new_nid;
1371 ud->old_nid = numa_cpu_lookup_table[sibling];
1372 cpumask_set_cpu(sibling, &updated_cpus);
1373 }
1374 cpu = cpu_last_thread_sibling(cpu);
1375 }
1376
1377 /*
1378 * Prevent processing of 'updates' from overflowing array
1379 * where last entry filled in a 'next' pointer.
1380 */
1381 if (i)
1382 updates[i-1].next = NULL;
1383
1384 pr_debug("Topology update for the following CPUs:\n");
1385 if (cpumask_weight(&updated_cpus)) {
1386 for (ud = &updates[0]; ud; ud = ud->next) {
1387 pr_debug("cpu %d moving from node %d "
1388 "to %d\n", ud->cpu,
1389 ud->old_nid, ud->new_nid);
1390 }
1391 }
1392
1393 /*
1394 * In cases where we have nothing to update (because the updates list
1395 * is too short or because the new topology is same as the old one),
1396 * skip invoking update_cpu_topology() via stop-machine(). This is
1397 * necessary (and not just a fast-path optimization) since stop-machine
1398 * can end up electing a random CPU to run update_cpu_topology(), and
1399 * thus trick us into setting up incorrect cpu-node mappings (since
1400 * 'updates' is kzalloc()'ed).
1401 *
1402 * And for the similar reason, we will skip all the following updating.
1403 */
1404 if (!cpumask_weight(&updated_cpus))
1405 goto out;
1406
1407 if (cpus_locked)
1408 stop_machine_cpuslocked(update_cpu_topology, &updates[0],
1409 &updated_cpus);
1410 else
1411 stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1412
1413 /*
1414 * Update the numa-cpu lookup table with the new mappings, even for
1415 * offline CPUs. It is best to perform this update from the stop-
1416 * machine context.
1417 */
1418 if (cpus_locked)
1419 stop_machine_cpuslocked(update_lookup_table, &updates[0],
1420 cpumask_of(raw_smp_processor_id()));
1421 else
1422 stop_machine(update_lookup_table, &updates[0],
1423 cpumask_of(raw_smp_processor_id()));
1424
1425 for (ud = &updates[0]; ud; ud = ud->next) {
1426 unregister_cpu_under_node(ud->cpu, ud->old_nid);
1427 register_cpu_under_node(ud->cpu, ud->new_nid);
1428
1429 dev = get_cpu_device(ud->cpu);
1430 if (dev)
1431 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1432 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1433 changed = 1;
1434 }
1435
1436out:
1437 kfree(updates);
1438 return changed;
1439}
1440
1441int arch_update_cpu_topology(void)
1442{
1443 return numa_update_cpu_topology(true);
1444}
1445
1446static void topology_work_fn(struct work_struct *work)
1447{
1448 rebuild_sched_domains();
1449}
1450static DECLARE_WORK(topology_work, topology_work_fn);
1451
1452static void topology_schedule_update(void)
1453{
1454 schedule_work(&topology_work);
1455}
1456
1457static void topology_timer_fn(struct timer_list *unused)
1458{
1459 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1460 topology_schedule_update();
1461 else if (vphn_enabled) {
1462 if (update_cpu_associativity_changes_mask() > 0)
1463 topology_schedule_update();
1464 reset_topology_timer();
1465 }
1466}
1467static struct timer_list topology_timer;
1468
1469static void reset_topology_timer(void)
1470{
1471 if (vphn_enabled)
1472 mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ);
1473}
1474
1475#ifdef CONFIG_SMP
1476
1477static int dt_update_callback(struct notifier_block *nb,
1478 unsigned long action, void *data)
1479{
1480 struct of_reconfig_data *update = data;
1481 int rc = NOTIFY_DONE;
1482
1483 switch (action) {
1484 case OF_RECONFIG_UPDATE_PROPERTY:
1485 if (of_node_is_type(update->dn, "cpu") &&
1486 !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1487 u32 core_id;
1488 of_property_read_u32(update->dn, "reg", &core_id);
1489 rc = dlpar_cpu_readd(core_id);
1490 rc = NOTIFY_OK;
1491 }
1492 break;
1493 }
1494
1495 return rc;
1496}
1497
1498static struct notifier_block dt_update_nb = {
1499 .notifier_call = dt_update_callback,
1500};
1501
1502#endif
1503
1504/*
1505 * Start polling for associativity changes.
1506 */
1507int start_topology_update(void)
1508{
1509 int rc = 0;
1510
1511 if (!topology_updates_enabled)
1512 return 0;
1513
1514 if (firmware_has_feature(FW_FEATURE_PRRN)) {
1515 if (!prrn_enabled) {
1516 prrn_enabled = 1;
1517#ifdef CONFIG_SMP
1518 rc = of_reconfig_notifier_register(&dt_update_nb);
1519#endif
1520 }
1521 }
1522 if (firmware_has_feature(FW_FEATURE_VPHN) &&
1523 lppaca_shared_proc(get_lppaca())) {
1524 if (!vphn_enabled) {
1525 vphn_enabled = 1;
1526 setup_cpu_associativity_change_counters();
1527 timer_setup(&topology_timer, topology_timer_fn,
1528 TIMER_DEFERRABLE);
1529 reset_topology_timer();
1530 }
1531 }
1532
1533 pr_info("Starting topology update%s%s\n",
1534 (prrn_enabled ? " prrn_enabled" : ""),
1535 (vphn_enabled ? " vphn_enabled" : ""));
1536
1537 return rc;
1538}
1539
1540/*
1541 * Disable polling for VPHN associativity changes.
1542 */
1543int stop_topology_update(void)
1544{
1545 int rc = 0;
1546
1547 if (!topology_updates_enabled)
1548 return 0;
1549
1550 if (prrn_enabled) {
1551 prrn_enabled = 0;
1552#ifdef CONFIG_SMP
1553 rc = of_reconfig_notifier_unregister(&dt_update_nb);
1554#endif
1555 }
1556 if (vphn_enabled) {
1557 vphn_enabled = 0;
1558 rc = del_timer_sync(&topology_timer);
1559 }
1560
1561 pr_info("Stopping topology update\n");
1562
1563 return rc;
1564}
1565
1566int prrn_is_enabled(void)
1567{
1568 return prrn_enabled;
1569}
1570
1571void __init shared_proc_topology_init(void)
1572{
1573 if (lppaca_shared_proc(get_lppaca())) {
1574 bitmap_fill(cpumask_bits(&cpu_associativity_changes_mask),
1575 nr_cpumask_bits);
1576 numa_update_cpu_topology(false);
1577 }
1578}
1579
1580static int topology_read(struct seq_file *file, void *v)
1581{
1582 if (vphn_enabled || prrn_enabled)
1583 seq_puts(file, "on\n");
1584 else
1585 seq_puts(file, "off\n");
1586
1587 return 0;
1588}
1589
1590static int topology_open(struct inode *inode, struct file *file)
1591{
1592 return single_open(file, topology_read, NULL);
1593}
1594
1595static ssize_t topology_write(struct file *file, const char __user *buf,
1596 size_t count, loff_t *off)
1597{
1598 char kbuf[4]; /* "on" or "off" plus null. */
1599 int read_len;
1600
1601 read_len = count < 3 ? count : 3;
1602 if (copy_from_user(kbuf, buf, read_len))
1603 return -EINVAL;
1604
1605 kbuf[read_len] = '\0';
1606
1607 if (!strncmp(kbuf, "on", 2)) {
1608 topology_updates_enabled = true;
1609 start_topology_update();
1610 } else if (!strncmp(kbuf, "off", 3)) {
1611 stop_topology_update();
1612 topology_updates_enabled = false;
1613 } else
1614 return -EINVAL;
1615
1616 return count;
1617}
1618
1619static const struct file_operations topology_ops = {
1620 .read = seq_read,
1621 .write = topology_write,
1622 .open = topology_open,
1623 .release = single_release
1624};
1625
1626static int topology_update_init(void)
1627{
1628 start_topology_update();
1629
1630 if (vphn_enabled)
1631 topology_schedule_update();
1632
1633 if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1634 return -ENOMEM;
1635
1636 topology_inited = 1;
1637 return 0;
1638}
1639device_initcall(topology_update_init);
1640#endif /* CONFIG_PPC_SPLPAR */
1/*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/threads.h>
12#include <linux/bootmem.h>
13#include <linux/init.h>
14#include <linux/mm.h>
15#include <linux/mmzone.h>
16#include <linux/export.h>
17#include <linux/nodemask.h>
18#include <linux/cpu.h>
19#include <linux/notifier.h>
20#include <linux/memblock.h>
21#include <linux/of.h>
22#include <linux/pfn.h>
23#include <linux/cpuset.h>
24#include <linux/node.h>
25#include <linux/stop_machine.h>
26#include <linux/proc_fs.h>
27#include <linux/seq_file.h>
28#include <linux/uaccess.h>
29#include <linux/slab.h>
30#include <asm/cputhreads.h>
31#include <asm/sparsemem.h>
32#include <asm/prom.h>
33#include <asm/smp.h>
34#include <asm/cputhreads.h>
35#include <asm/topology.h>
36#include <asm/firmware.h>
37#include <asm/paca.h>
38#include <asm/hvcall.h>
39#include <asm/setup.h>
40#include <asm/vdso.h>
41
42static int numa_enabled = 1;
43
44static char *cmdline __initdata;
45
46static int numa_debug;
47#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
48
49int numa_cpu_lookup_table[NR_CPUS];
50cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
51struct pglist_data *node_data[MAX_NUMNODES];
52
53EXPORT_SYMBOL(numa_cpu_lookup_table);
54EXPORT_SYMBOL(node_to_cpumask_map);
55EXPORT_SYMBOL(node_data);
56
57static int min_common_depth;
58static int n_mem_addr_cells, n_mem_size_cells;
59static int form1_affinity;
60
61#define MAX_DISTANCE_REF_POINTS 4
62static int distance_ref_points_depth;
63static const __be32 *distance_ref_points;
64static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
65
66/*
67 * Allocate node_to_cpumask_map based on number of available nodes
68 * Requires node_possible_map to be valid.
69 *
70 * Note: cpumask_of_node() is not valid until after this is done.
71 */
72static void __init setup_node_to_cpumask_map(void)
73{
74 unsigned int node;
75
76 /* setup nr_node_ids if not done yet */
77 if (nr_node_ids == MAX_NUMNODES)
78 setup_nr_node_ids();
79
80 /* allocate the map */
81 for (node = 0; node < nr_node_ids; node++)
82 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
83
84 /* cpumask_of_node() will now work */
85 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
86}
87
88static int __init fake_numa_create_new_node(unsigned long end_pfn,
89 unsigned int *nid)
90{
91 unsigned long long mem;
92 char *p = cmdline;
93 static unsigned int fake_nid;
94 static unsigned long long curr_boundary;
95
96 /*
97 * Modify node id, iff we started creating NUMA nodes
98 * We want to continue from where we left of the last time
99 */
100 if (fake_nid)
101 *nid = fake_nid;
102 /*
103 * In case there are no more arguments to parse, the
104 * node_id should be the same as the last fake node id
105 * (we've handled this above).
106 */
107 if (!p)
108 return 0;
109
110 mem = memparse(p, &p);
111 if (!mem)
112 return 0;
113
114 if (mem < curr_boundary)
115 return 0;
116
117 curr_boundary = mem;
118
119 if ((end_pfn << PAGE_SHIFT) > mem) {
120 /*
121 * Skip commas and spaces
122 */
123 while (*p == ',' || *p == ' ' || *p == '\t')
124 p++;
125
126 cmdline = p;
127 fake_nid++;
128 *nid = fake_nid;
129 dbg("created new fake_node with id %d\n", fake_nid);
130 return 1;
131 }
132 return 0;
133}
134
135/*
136 * get_node_active_region - Return active region containing pfn
137 * Active range returned is empty if none found.
138 * @pfn: The page to return the region for
139 * @node_ar: Returned set to the active region containing @pfn
140 */
141static void __init get_node_active_region(unsigned long pfn,
142 struct node_active_region *node_ar)
143{
144 unsigned long start_pfn, end_pfn;
145 int i, nid;
146
147 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
148 if (pfn >= start_pfn && pfn < end_pfn) {
149 node_ar->nid = nid;
150 node_ar->start_pfn = start_pfn;
151 node_ar->end_pfn = end_pfn;
152 break;
153 }
154 }
155}
156
157static void reset_numa_cpu_lookup_table(void)
158{
159 unsigned int cpu;
160
161 for_each_possible_cpu(cpu)
162 numa_cpu_lookup_table[cpu] = -1;
163}
164
165static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
166{
167 numa_cpu_lookup_table[cpu] = node;
168}
169
170static void map_cpu_to_node(int cpu, int node)
171{
172 update_numa_cpu_lookup_table(cpu, node);
173
174 dbg("adding cpu %d to node %d\n", cpu, node);
175
176 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
177 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
178}
179
180#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
181static void unmap_cpu_from_node(unsigned long cpu)
182{
183 int node = numa_cpu_lookup_table[cpu];
184
185 dbg("removing cpu %lu from node %d\n", cpu, node);
186
187 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
188 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
189 } else {
190 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
191 cpu, node);
192 }
193}
194#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
195
196/* must hold reference to node during call */
197static const __be32 *of_get_associativity(struct device_node *dev)
198{
199 return of_get_property(dev, "ibm,associativity", NULL);
200}
201
202/*
203 * Returns the property linux,drconf-usable-memory if
204 * it exists (the property exists only in kexec/kdump kernels,
205 * added by kexec-tools)
206 */
207static const __be32 *of_get_usable_memory(struct device_node *memory)
208{
209 const __be32 *prop;
210 u32 len;
211 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
212 if (!prop || len < sizeof(unsigned int))
213 return NULL;
214 return prop;
215}
216
217int __node_distance(int a, int b)
218{
219 int i;
220 int distance = LOCAL_DISTANCE;
221
222 if (!form1_affinity)
223 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
224
225 for (i = 0; i < distance_ref_points_depth; i++) {
226 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
227 break;
228
229 /* Double the distance for each NUMA level */
230 distance *= 2;
231 }
232
233 return distance;
234}
235EXPORT_SYMBOL(__node_distance);
236
237static void initialize_distance_lookup_table(int nid,
238 const __be32 *associativity)
239{
240 int i;
241
242 if (!form1_affinity)
243 return;
244
245 for (i = 0; i < distance_ref_points_depth; i++) {
246 const __be32 *entry;
247
248 entry = &associativity[be32_to_cpu(distance_ref_points[i])];
249 distance_lookup_table[nid][i] = of_read_number(entry, 1);
250 }
251}
252
253/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
254 * info is found.
255 */
256static int associativity_to_nid(const __be32 *associativity)
257{
258 int nid = -1;
259
260 if (min_common_depth == -1)
261 goto out;
262
263 if (of_read_number(associativity, 1) >= min_common_depth)
264 nid = of_read_number(&associativity[min_common_depth], 1);
265
266 /* POWER4 LPAR uses 0xffff as invalid node */
267 if (nid == 0xffff || nid >= MAX_NUMNODES)
268 nid = -1;
269
270 if (nid > 0 &&
271 of_read_number(associativity, 1) >= distance_ref_points_depth)
272 initialize_distance_lookup_table(nid, associativity);
273
274out:
275 return nid;
276}
277
278/* Returns the nid associated with the given device tree node,
279 * or -1 if not found.
280 */
281static int of_node_to_nid_single(struct device_node *device)
282{
283 int nid = -1;
284 const __be32 *tmp;
285
286 tmp = of_get_associativity(device);
287 if (tmp)
288 nid = associativity_to_nid(tmp);
289 return nid;
290}
291
292/* Walk the device tree upwards, looking for an associativity id */
293int of_node_to_nid(struct device_node *device)
294{
295 struct device_node *tmp;
296 int nid = -1;
297
298 of_node_get(device);
299 while (device) {
300 nid = of_node_to_nid_single(device);
301 if (nid != -1)
302 break;
303
304 tmp = device;
305 device = of_get_parent(tmp);
306 of_node_put(tmp);
307 }
308 of_node_put(device);
309
310 return nid;
311}
312EXPORT_SYMBOL_GPL(of_node_to_nid);
313
314static int __init find_min_common_depth(void)
315{
316 int depth;
317 struct device_node *root;
318
319 if (firmware_has_feature(FW_FEATURE_OPAL))
320 root = of_find_node_by_path("/ibm,opal");
321 else
322 root = of_find_node_by_path("/rtas");
323 if (!root)
324 root = of_find_node_by_path("/");
325
326 /*
327 * This property is a set of 32-bit integers, each representing
328 * an index into the ibm,associativity nodes.
329 *
330 * With form 0 affinity the first integer is for an SMP configuration
331 * (should be all 0's) and the second is for a normal NUMA
332 * configuration. We have only one level of NUMA.
333 *
334 * With form 1 affinity the first integer is the most significant
335 * NUMA boundary and the following are progressively less significant
336 * boundaries. There can be more than one level of NUMA.
337 */
338 distance_ref_points = of_get_property(root,
339 "ibm,associativity-reference-points",
340 &distance_ref_points_depth);
341
342 if (!distance_ref_points) {
343 dbg("NUMA: ibm,associativity-reference-points not found.\n");
344 goto err;
345 }
346
347 distance_ref_points_depth /= sizeof(int);
348
349 if (firmware_has_feature(FW_FEATURE_OPAL) ||
350 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
351 dbg("Using form 1 affinity\n");
352 form1_affinity = 1;
353 }
354
355 if (form1_affinity) {
356 depth = of_read_number(distance_ref_points, 1);
357 } else {
358 if (distance_ref_points_depth < 2) {
359 printk(KERN_WARNING "NUMA: "
360 "short ibm,associativity-reference-points\n");
361 goto err;
362 }
363
364 depth = of_read_number(&distance_ref_points[1], 1);
365 }
366
367 /*
368 * Warn and cap if the hardware supports more than
369 * MAX_DISTANCE_REF_POINTS domains.
370 */
371 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
372 printk(KERN_WARNING "NUMA: distance array capped at "
373 "%d entries\n", MAX_DISTANCE_REF_POINTS);
374 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
375 }
376
377 of_node_put(root);
378 return depth;
379
380err:
381 of_node_put(root);
382 return -1;
383}
384
385static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
386{
387 struct device_node *memory = NULL;
388
389 memory = of_find_node_by_type(memory, "memory");
390 if (!memory)
391 panic("numa.c: No memory nodes found!");
392
393 *n_addr_cells = of_n_addr_cells(memory);
394 *n_size_cells = of_n_size_cells(memory);
395 of_node_put(memory);
396}
397
398static unsigned long read_n_cells(int n, const __be32 **buf)
399{
400 unsigned long result = 0;
401
402 while (n--) {
403 result = (result << 32) | of_read_number(*buf, 1);
404 (*buf)++;
405 }
406 return result;
407}
408
409/*
410 * Read the next memblock list entry from the ibm,dynamic-memory property
411 * and return the information in the provided of_drconf_cell structure.
412 */
413static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
414{
415 const __be32 *cp;
416
417 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
418
419 cp = *cellp;
420 drmem->drc_index = of_read_number(cp, 1);
421 drmem->reserved = of_read_number(&cp[1], 1);
422 drmem->aa_index = of_read_number(&cp[2], 1);
423 drmem->flags = of_read_number(&cp[3], 1);
424
425 *cellp = cp + 4;
426}
427
428/*
429 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
430 *
431 * The layout of the ibm,dynamic-memory property is a number N of memblock
432 * list entries followed by N memblock list entries. Each memblock list entry
433 * contains information as laid out in the of_drconf_cell struct above.
434 */
435static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
436{
437 const __be32 *prop;
438 u32 len, entries;
439
440 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
441 if (!prop || len < sizeof(unsigned int))
442 return 0;
443
444 entries = of_read_number(prop++, 1);
445
446 /* Now that we know the number of entries, revalidate the size
447 * of the property read in to ensure we have everything
448 */
449 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
450 return 0;
451
452 *dm = prop;
453 return entries;
454}
455
456/*
457 * Retrieve and validate the ibm,lmb-size property for drconf memory
458 * from the device tree.
459 */
460static u64 of_get_lmb_size(struct device_node *memory)
461{
462 const __be32 *prop;
463 u32 len;
464
465 prop = of_get_property(memory, "ibm,lmb-size", &len);
466 if (!prop || len < sizeof(unsigned int))
467 return 0;
468
469 return read_n_cells(n_mem_size_cells, &prop);
470}
471
472struct assoc_arrays {
473 u32 n_arrays;
474 u32 array_sz;
475 const __be32 *arrays;
476};
477
478/*
479 * Retrieve and validate the list of associativity arrays for drconf
480 * memory from the ibm,associativity-lookup-arrays property of the
481 * device tree..
482 *
483 * The layout of the ibm,associativity-lookup-arrays property is a number N
484 * indicating the number of associativity arrays, followed by a number M
485 * indicating the size of each associativity array, followed by a list
486 * of N associativity arrays.
487 */
488static int of_get_assoc_arrays(struct device_node *memory,
489 struct assoc_arrays *aa)
490{
491 const __be32 *prop;
492 u32 len;
493
494 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
495 if (!prop || len < 2 * sizeof(unsigned int))
496 return -1;
497
498 aa->n_arrays = of_read_number(prop++, 1);
499 aa->array_sz = of_read_number(prop++, 1);
500
501 /* Now that we know the number of arrays and size of each array,
502 * revalidate the size of the property read in.
503 */
504 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
505 return -1;
506
507 aa->arrays = prop;
508 return 0;
509}
510
511/*
512 * This is like of_node_to_nid_single() for memory represented in the
513 * ibm,dynamic-reconfiguration-memory node.
514 */
515static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
516 struct assoc_arrays *aa)
517{
518 int default_nid = 0;
519 int nid = default_nid;
520 int index;
521
522 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
523 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
524 drmem->aa_index < aa->n_arrays) {
525 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
526 nid = of_read_number(&aa->arrays[index], 1);
527
528 if (nid == 0xffff || nid >= MAX_NUMNODES)
529 nid = default_nid;
530 }
531
532 return nid;
533}
534
535/*
536 * Figure out to which domain a cpu belongs and stick it there.
537 * Return the id of the domain used.
538 */
539static int numa_setup_cpu(unsigned long lcpu)
540{
541 int nid;
542 struct device_node *cpu;
543
544 /*
545 * If a valid cpu-to-node mapping is already available, use it
546 * directly instead of querying the firmware, since it represents
547 * the most recent mapping notified to us by the platform (eg: VPHN).
548 */
549 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
550 map_cpu_to_node(lcpu, nid);
551 return nid;
552 }
553
554 cpu = of_get_cpu_node(lcpu, NULL);
555
556 if (!cpu) {
557 WARN_ON(1);
558 nid = 0;
559 goto out;
560 }
561
562 nid = of_node_to_nid_single(cpu);
563
564 if (nid < 0 || !node_online(nid))
565 nid = first_online_node;
566out:
567 map_cpu_to_node(lcpu, nid);
568
569 of_node_put(cpu);
570
571 return nid;
572}
573
574static void verify_cpu_node_mapping(int cpu, int node)
575{
576 int base, sibling, i;
577
578 /* Verify that all the threads in the core belong to the same node */
579 base = cpu_first_thread_sibling(cpu);
580
581 for (i = 0; i < threads_per_core; i++) {
582 sibling = base + i;
583
584 if (sibling == cpu || cpu_is_offline(sibling))
585 continue;
586
587 if (cpu_to_node(sibling) != node) {
588 WARN(1, "CPU thread siblings %d and %d don't belong"
589 " to the same node!\n", cpu, sibling);
590 break;
591 }
592 }
593}
594
595static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
596 void *hcpu)
597{
598 unsigned long lcpu = (unsigned long)hcpu;
599 int ret = NOTIFY_DONE, nid;
600
601 switch (action) {
602 case CPU_UP_PREPARE:
603 case CPU_UP_PREPARE_FROZEN:
604 nid = numa_setup_cpu(lcpu);
605 verify_cpu_node_mapping((int)lcpu, nid);
606 ret = NOTIFY_OK;
607 break;
608#ifdef CONFIG_HOTPLUG_CPU
609 case CPU_DEAD:
610 case CPU_DEAD_FROZEN:
611 case CPU_UP_CANCELED:
612 case CPU_UP_CANCELED_FROZEN:
613 unmap_cpu_from_node(lcpu);
614 break;
615 ret = NOTIFY_OK;
616#endif
617 }
618 return ret;
619}
620
621/*
622 * Check and possibly modify a memory region to enforce the memory limit.
623 *
624 * Returns the size the region should have to enforce the memory limit.
625 * This will either be the original value of size, a truncated value,
626 * or zero. If the returned value of size is 0 the region should be
627 * discarded as it lies wholly above the memory limit.
628 */
629static unsigned long __init numa_enforce_memory_limit(unsigned long start,
630 unsigned long size)
631{
632 /*
633 * We use memblock_end_of_DRAM() in here instead of memory_limit because
634 * we've already adjusted it for the limit and it takes care of
635 * having memory holes below the limit. Also, in the case of
636 * iommu_is_off, memory_limit is not set but is implicitly enforced.
637 */
638
639 if (start + size <= memblock_end_of_DRAM())
640 return size;
641
642 if (start >= memblock_end_of_DRAM())
643 return 0;
644
645 return memblock_end_of_DRAM() - start;
646}
647
648/*
649 * Reads the counter for a given entry in
650 * linux,drconf-usable-memory property
651 */
652static inline int __init read_usm_ranges(const __be32 **usm)
653{
654 /*
655 * For each lmb in ibm,dynamic-memory a corresponding
656 * entry in linux,drconf-usable-memory property contains
657 * a counter followed by that many (base, size) duple.
658 * read the counter from linux,drconf-usable-memory
659 */
660 return read_n_cells(n_mem_size_cells, usm);
661}
662
663/*
664 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
665 * node. This assumes n_mem_{addr,size}_cells have been set.
666 */
667static void __init parse_drconf_memory(struct device_node *memory)
668{
669 const __be32 *uninitialized_var(dm), *usm;
670 unsigned int n, rc, ranges, is_kexec_kdump = 0;
671 unsigned long lmb_size, base, size, sz;
672 int nid;
673 struct assoc_arrays aa = { .arrays = NULL };
674
675 n = of_get_drconf_memory(memory, &dm);
676 if (!n)
677 return;
678
679 lmb_size = of_get_lmb_size(memory);
680 if (!lmb_size)
681 return;
682
683 rc = of_get_assoc_arrays(memory, &aa);
684 if (rc)
685 return;
686
687 /* check if this is a kexec/kdump kernel */
688 usm = of_get_usable_memory(memory);
689 if (usm != NULL)
690 is_kexec_kdump = 1;
691
692 for (; n != 0; --n) {
693 struct of_drconf_cell drmem;
694
695 read_drconf_cell(&drmem, &dm);
696
697 /* skip this block if the reserved bit is set in flags (0x80)
698 or if the block is not assigned to this partition (0x8) */
699 if ((drmem.flags & DRCONF_MEM_RESERVED)
700 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
701 continue;
702
703 base = drmem.base_addr;
704 size = lmb_size;
705 ranges = 1;
706
707 if (is_kexec_kdump) {
708 ranges = read_usm_ranges(&usm);
709 if (!ranges) /* there are no (base, size) duple */
710 continue;
711 }
712 do {
713 if (is_kexec_kdump) {
714 base = read_n_cells(n_mem_addr_cells, &usm);
715 size = read_n_cells(n_mem_size_cells, &usm);
716 }
717 nid = of_drconf_to_nid_single(&drmem, &aa);
718 fake_numa_create_new_node(
719 ((base + size) >> PAGE_SHIFT),
720 &nid);
721 node_set_online(nid);
722 sz = numa_enforce_memory_limit(base, size);
723 if (sz)
724 memblock_set_node(base, sz,
725 &memblock.memory, nid);
726 } while (--ranges);
727 }
728}
729
730static int __init parse_numa_properties(void)
731{
732 struct device_node *memory;
733 int default_nid = 0;
734 unsigned long i;
735
736 if (numa_enabled == 0) {
737 printk(KERN_WARNING "NUMA disabled by user\n");
738 return -1;
739 }
740
741 min_common_depth = find_min_common_depth();
742
743 if (min_common_depth < 0)
744 return min_common_depth;
745
746 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
747
748 /*
749 * Even though we connect cpus to numa domains later in SMP
750 * init, we need to know the node ids now. This is because
751 * each node to be onlined must have NODE_DATA etc backing it.
752 */
753 for_each_present_cpu(i) {
754 struct device_node *cpu;
755 int nid;
756
757 cpu = of_get_cpu_node(i, NULL);
758 BUG_ON(!cpu);
759 nid = of_node_to_nid_single(cpu);
760 of_node_put(cpu);
761
762 /*
763 * Don't fall back to default_nid yet -- we will plug
764 * cpus into nodes once the memory scan has discovered
765 * the topology.
766 */
767 if (nid < 0)
768 continue;
769 node_set_online(nid);
770 }
771
772 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
773
774 for_each_node_by_type(memory, "memory") {
775 unsigned long start;
776 unsigned long size;
777 int nid;
778 int ranges;
779 const __be32 *memcell_buf;
780 unsigned int len;
781
782 memcell_buf = of_get_property(memory,
783 "linux,usable-memory", &len);
784 if (!memcell_buf || len <= 0)
785 memcell_buf = of_get_property(memory, "reg", &len);
786 if (!memcell_buf || len <= 0)
787 continue;
788
789 /* ranges in cell */
790 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
791new_range:
792 /* these are order-sensitive, and modify the buffer pointer */
793 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
794 size = read_n_cells(n_mem_size_cells, &memcell_buf);
795
796 /*
797 * Assumption: either all memory nodes or none will
798 * have associativity properties. If none, then
799 * everything goes to default_nid.
800 */
801 nid = of_node_to_nid_single(memory);
802 if (nid < 0)
803 nid = default_nid;
804
805 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
806 node_set_online(nid);
807
808 if (!(size = numa_enforce_memory_limit(start, size))) {
809 if (--ranges)
810 goto new_range;
811 else
812 continue;
813 }
814
815 memblock_set_node(start, size, &memblock.memory, nid);
816
817 if (--ranges)
818 goto new_range;
819 }
820
821 /*
822 * Now do the same thing for each MEMBLOCK listed in the
823 * ibm,dynamic-memory property in the
824 * ibm,dynamic-reconfiguration-memory node.
825 */
826 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
827 if (memory)
828 parse_drconf_memory(memory);
829
830 return 0;
831}
832
833static void __init setup_nonnuma(void)
834{
835 unsigned long top_of_ram = memblock_end_of_DRAM();
836 unsigned long total_ram = memblock_phys_mem_size();
837 unsigned long start_pfn, end_pfn;
838 unsigned int nid = 0;
839 struct memblock_region *reg;
840
841 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
842 top_of_ram, total_ram);
843 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
844 (top_of_ram - total_ram) >> 20);
845
846 for_each_memblock(memory, reg) {
847 start_pfn = memblock_region_memory_base_pfn(reg);
848 end_pfn = memblock_region_memory_end_pfn(reg);
849
850 fake_numa_create_new_node(end_pfn, &nid);
851 memblock_set_node(PFN_PHYS(start_pfn),
852 PFN_PHYS(end_pfn - start_pfn),
853 &memblock.memory, nid);
854 node_set_online(nid);
855 }
856}
857
858void __init dump_numa_cpu_topology(void)
859{
860 unsigned int node;
861 unsigned int cpu, count;
862
863 if (min_common_depth == -1 || !numa_enabled)
864 return;
865
866 for_each_online_node(node) {
867 printk(KERN_DEBUG "Node %d CPUs:", node);
868
869 count = 0;
870 /*
871 * If we used a CPU iterator here we would miss printing
872 * the holes in the cpumap.
873 */
874 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
875 if (cpumask_test_cpu(cpu,
876 node_to_cpumask_map[node])) {
877 if (count == 0)
878 printk(" %u", cpu);
879 ++count;
880 } else {
881 if (count > 1)
882 printk("-%u", cpu - 1);
883 count = 0;
884 }
885 }
886
887 if (count > 1)
888 printk("-%u", nr_cpu_ids - 1);
889 printk("\n");
890 }
891}
892
893static void __init dump_numa_memory_topology(void)
894{
895 unsigned int node;
896 unsigned int count;
897
898 if (min_common_depth == -1 || !numa_enabled)
899 return;
900
901 for_each_online_node(node) {
902 unsigned long i;
903
904 printk(KERN_DEBUG "Node %d Memory:", node);
905
906 count = 0;
907
908 for (i = 0; i < memblock_end_of_DRAM();
909 i += (1 << SECTION_SIZE_BITS)) {
910 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
911 if (count == 0)
912 printk(" 0x%lx", i);
913 ++count;
914 } else {
915 if (count > 0)
916 printk("-0x%lx", i);
917 count = 0;
918 }
919 }
920
921 if (count > 0)
922 printk("-0x%lx", i);
923 printk("\n");
924 }
925}
926
927/*
928 * Allocate some memory, satisfying the memblock or bootmem allocator where
929 * required. nid is the preferred node and end is the physical address of
930 * the highest address in the node.
931 *
932 * Returns the virtual address of the memory.
933 */
934static void __init *careful_zallocation(int nid, unsigned long size,
935 unsigned long align,
936 unsigned long end_pfn)
937{
938 void *ret;
939 int new_nid;
940 unsigned long ret_paddr;
941
942 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
943
944 /* retry over all memory */
945 if (!ret_paddr)
946 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
947
948 if (!ret_paddr)
949 panic("numa.c: cannot allocate %lu bytes for node %d",
950 size, nid);
951
952 ret = __va(ret_paddr);
953
954 /*
955 * We initialize the nodes in numeric order: 0, 1, 2...
956 * and hand over control from the MEMBLOCK allocator to the
957 * bootmem allocator. If this function is called for
958 * node 5, then we know that all nodes <5 are using the
959 * bootmem allocator instead of the MEMBLOCK allocator.
960 *
961 * So, check the nid from which this allocation came
962 * and double check to see if we need to use bootmem
963 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
964 * since it would be useless.
965 */
966 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
967 if (new_nid < nid) {
968 ret = __alloc_bootmem_node(NODE_DATA(new_nid),
969 size, align, 0);
970
971 dbg("alloc_bootmem %p %lx\n", ret, size);
972 }
973
974 memset(ret, 0, size);
975 return ret;
976}
977
978static struct notifier_block ppc64_numa_nb = {
979 .notifier_call = cpu_numa_callback,
980 .priority = 1 /* Must run before sched domains notifier. */
981};
982
983static void __init mark_reserved_regions_for_nid(int nid)
984{
985 struct pglist_data *node = NODE_DATA(nid);
986 struct memblock_region *reg;
987
988 for_each_memblock(reserved, reg) {
989 unsigned long physbase = reg->base;
990 unsigned long size = reg->size;
991 unsigned long start_pfn = physbase >> PAGE_SHIFT;
992 unsigned long end_pfn = PFN_UP(physbase + size);
993 struct node_active_region node_ar;
994 unsigned long node_end_pfn = pgdat_end_pfn(node);
995
996 /*
997 * Check to make sure that this memblock.reserved area is
998 * within the bounds of the node that we care about.
999 * Checking the nid of the start and end points is not
1000 * sufficient because the reserved area could span the
1001 * entire node.
1002 */
1003 if (end_pfn <= node->node_start_pfn ||
1004 start_pfn >= node_end_pfn)
1005 continue;
1006
1007 get_node_active_region(start_pfn, &node_ar);
1008 while (start_pfn < end_pfn &&
1009 node_ar.start_pfn < node_ar.end_pfn) {
1010 unsigned long reserve_size = size;
1011 /*
1012 * if reserved region extends past active region
1013 * then trim size to active region
1014 */
1015 if (end_pfn > node_ar.end_pfn)
1016 reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
1017 - physbase;
1018 /*
1019 * Only worry about *this* node, others may not
1020 * yet have valid NODE_DATA().
1021 */
1022 if (node_ar.nid == nid) {
1023 dbg("reserve_bootmem %lx %lx nid=%d\n",
1024 physbase, reserve_size, node_ar.nid);
1025 reserve_bootmem_node(NODE_DATA(node_ar.nid),
1026 physbase, reserve_size,
1027 BOOTMEM_DEFAULT);
1028 }
1029 /*
1030 * if reserved region is contained in the active region
1031 * then done.
1032 */
1033 if (end_pfn <= node_ar.end_pfn)
1034 break;
1035
1036 /*
1037 * reserved region extends past the active region
1038 * get next active region that contains this
1039 * reserved region
1040 */
1041 start_pfn = node_ar.end_pfn;
1042 physbase = start_pfn << PAGE_SHIFT;
1043 size = size - reserve_size;
1044 get_node_active_region(start_pfn, &node_ar);
1045 }
1046 }
1047}
1048
1049
1050void __init do_init_bootmem(void)
1051{
1052 int nid;
1053
1054 min_low_pfn = 0;
1055 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1056 max_pfn = max_low_pfn;
1057
1058 if (parse_numa_properties())
1059 setup_nonnuma();
1060 else
1061 dump_numa_memory_topology();
1062
1063 for_each_online_node(nid) {
1064 unsigned long start_pfn, end_pfn;
1065 void *bootmem_vaddr;
1066 unsigned long bootmap_pages;
1067
1068 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1069
1070 /*
1071 * Allocate the node structure node local if possible
1072 *
1073 * Be careful moving this around, as it relies on all
1074 * previous nodes' bootmem to be initialized and have
1075 * all reserved areas marked.
1076 */
1077 NODE_DATA(nid) = careful_zallocation(nid,
1078 sizeof(struct pglist_data),
1079 SMP_CACHE_BYTES, end_pfn);
1080
1081 dbg("node %d\n", nid);
1082 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1083
1084 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1085 NODE_DATA(nid)->node_start_pfn = start_pfn;
1086 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1087
1088 if (NODE_DATA(nid)->node_spanned_pages == 0)
1089 continue;
1090
1091 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1092 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1093
1094 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1095 bootmem_vaddr = careful_zallocation(nid,
1096 bootmap_pages << PAGE_SHIFT,
1097 PAGE_SIZE, end_pfn);
1098
1099 dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1100
1101 init_bootmem_node(NODE_DATA(nid),
1102 __pa(bootmem_vaddr) >> PAGE_SHIFT,
1103 start_pfn, end_pfn);
1104
1105 free_bootmem_with_active_regions(nid, end_pfn);
1106 /*
1107 * Be very careful about moving this around. Future
1108 * calls to careful_zallocation() depend on this getting
1109 * done correctly.
1110 */
1111 mark_reserved_regions_for_nid(nid);
1112 sparse_memory_present_with_active_regions(nid);
1113 }
1114
1115 init_bootmem_done = 1;
1116
1117 /*
1118 * Now bootmem is initialised we can create the node to cpumask
1119 * lookup tables and setup the cpu callback to populate them.
1120 */
1121 setup_node_to_cpumask_map();
1122
1123 reset_numa_cpu_lookup_table();
1124 register_cpu_notifier(&ppc64_numa_nb);
1125 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1126 (void *)(unsigned long)boot_cpuid);
1127}
1128
1129void __init paging_init(void)
1130{
1131 unsigned long max_zone_pfns[MAX_NR_ZONES];
1132 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1133 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1134 free_area_init_nodes(max_zone_pfns);
1135}
1136
1137static int __init early_numa(char *p)
1138{
1139 if (!p)
1140 return 0;
1141
1142 if (strstr(p, "off"))
1143 numa_enabled = 0;
1144
1145 if (strstr(p, "debug"))
1146 numa_debug = 1;
1147
1148 p = strstr(p, "fake=");
1149 if (p)
1150 cmdline = p + strlen("fake=");
1151
1152 return 0;
1153}
1154early_param("numa", early_numa);
1155
1156#ifdef CONFIG_MEMORY_HOTPLUG
1157/*
1158 * Find the node associated with a hot added memory section for
1159 * memory represented in the device tree by the property
1160 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1161 */
1162static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1163 unsigned long scn_addr)
1164{
1165 const __be32 *dm;
1166 unsigned int drconf_cell_cnt, rc;
1167 unsigned long lmb_size;
1168 struct assoc_arrays aa;
1169 int nid = -1;
1170
1171 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1172 if (!drconf_cell_cnt)
1173 return -1;
1174
1175 lmb_size = of_get_lmb_size(memory);
1176 if (!lmb_size)
1177 return -1;
1178
1179 rc = of_get_assoc_arrays(memory, &aa);
1180 if (rc)
1181 return -1;
1182
1183 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1184 struct of_drconf_cell drmem;
1185
1186 read_drconf_cell(&drmem, &dm);
1187
1188 /* skip this block if it is reserved or not assigned to
1189 * this partition */
1190 if ((drmem.flags & DRCONF_MEM_RESERVED)
1191 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1192 continue;
1193
1194 if ((scn_addr < drmem.base_addr)
1195 || (scn_addr >= (drmem.base_addr + lmb_size)))
1196 continue;
1197
1198 nid = of_drconf_to_nid_single(&drmem, &aa);
1199 break;
1200 }
1201
1202 return nid;
1203}
1204
1205/*
1206 * Find the node associated with a hot added memory section for memory
1207 * represented in the device tree as a node (i.e. memory@XXXX) for
1208 * each memblock.
1209 */
1210static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1211{
1212 struct device_node *memory;
1213 int nid = -1;
1214
1215 for_each_node_by_type(memory, "memory") {
1216 unsigned long start, size;
1217 int ranges;
1218 const __be32 *memcell_buf;
1219 unsigned int len;
1220
1221 memcell_buf = of_get_property(memory, "reg", &len);
1222 if (!memcell_buf || len <= 0)
1223 continue;
1224
1225 /* ranges in cell */
1226 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1227
1228 while (ranges--) {
1229 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1230 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1231
1232 if ((scn_addr < start) || (scn_addr >= (start + size)))
1233 continue;
1234
1235 nid = of_node_to_nid_single(memory);
1236 break;
1237 }
1238
1239 if (nid >= 0)
1240 break;
1241 }
1242
1243 of_node_put(memory);
1244
1245 return nid;
1246}
1247
1248/*
1249 * Find the node associated with a hot added memory section. Section
1250 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1251 * sections are fully contained within a single MEMBLOCK.
1252 */
1253int hot_add_scn_to_nid(unsigned long scn_addr)
1254{
1255 struct device_node *memory = NULL;
1256 int nid, found = 0;
1257
1258 if (!numa_enabled || (min_common_depth < 0))
1259 return first_online_node;
1260
1261 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1262 if (memory) {
1263 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1264 of_node_put(memory);
1265 } else {
1266 nid = hot_add_node_scn_to_nid(scn_addr);
1267 }
1268
1269 if (nid < 0 || !node_online(nid))
1270 nid = first_online_node;
1271
1272 if (NODE_DATA(nid)->node_spanned_pages)
1273 return nid;
1274
1275 for_each_online_node(nid) {
1276 if (NODE_DATA(nid)->node_spanned_pages) {
1277 found = 1;
1278 break;
1279 }
1280 }
1281
1282 BUG_ON(!found);
1283 return nid;
1284}
1285
1286static u64 hot_add_drconf_memory_max(void)
1287{
1288 struct device_node *memory = NULL;
1289 unsigned int drconf_cell_cnt = 0;
1290 u64 lmb_size = 0;
1291 const __be32 *dm = NULL;
1292
1293 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1294 if (memory) {
1295 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1296 lmb_size = of_get_lmb_size(memory);
1297 of_node_put(memory);
1298 }
1299 return lmb_size * drconf_cell_cnt;
1300}
1301
1302/*
1303 * memory_hotplug_max - return max address of memory that may be added
1304 *
1305 * This is currently only used on systems that support drconfig memory
1306 * hotplug.
1307 */
1308u64 memory_hotplug_max(void)
1309{
1310 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1311}
1312#endif /* CONFIG_MEMORY_HOTPLUG */
1313
1314/* Virtual Processor Home Node (VPHN) support */
1315#ifdef CONFIG_PPC_SPLPAR
1316struct topology_update_data {
1317 struct topology_update_data *next;
1318 unsigned int cpu;
1319 int old_nid;
1320 int new_nid;
1321};
1322
1323static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1324static cpumask_t cpu_associativity_changes_mask;
1325static int vphn_enabled;
1326static int prrn_enabled;
1327static void reset_topology_timer(void);
1328
1329/*
1330 * Store the current values of the associativity change counters in the
1331 * hypervisor.
1332 */
1333static void setup_cpu_associativity_change_counters(void)
1334{
1335 int cpu;
1336
1337 /* The VPHN feature supports a maximum of 8 reference points */
1338 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1339
1340 for_each_possible_cpu(cpu) {
1341 int i;
1342 u8 *counts = vphn_cpu_change_counts[cpu];
1343 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1344
1345 for (i = 0; i < distance_ref_points_depth; i++)
1346 counts[i] = hypervisor_counts[i];
1347 }
1348}
1349
1350/*
1351 * The hypervisor maintains a set of 8 associativity change counters in
1352 * the VPA of each cpu that correspond to the associativity levels in the
1353 * ibm,associativity-reference-points property. When an associativity
1354 * level changes, the corresponding counter is incremented.
1355 *
1356 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1357 * node associativity levels have changed.
1358 *
1359 * Returns the number of cpus with unhandled associativity changes.
1360 */
1361static int update_cpu_associativity_changes_mask(void)
1362{
1363 int cpu;
1364 cpumask_t *changes = &cpu_associativity_changes_mask;
1365
1366 for_each_possible_cpu(cpu) {
1367 int i, changed = 0;
1368 u8 *counts = vphn_cpu_change_counts[cpu];
1369 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1370
1371 for (i = 0; i < distance_ref_points_depth; i++) {
1372 if (hypervisor_counts[i] != counts[i]) {
1373 counts[i] = hypervisor_counts[i];
1374 changed = 1;
1375 }
1376 }
1377 if (changed) {
1378 cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1379 cpu = cpu_last_thread_sibling(cpu);
1380 }
1381 }
1382
1383 return cpumask_weight(changes);
1384}
1385
1386/*
1387 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1388 * the complete property we have to add the length in the first cell.
1389 */
1390#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1391
1392/*
1393 * Convert the associativity domain numbers returned from the hypervisor
1394 * to the sequence they would appear in the ibm,associativity property.
1395 */
1396static int vphn_unpack_associativity(const long *packed, __be32 *unpacked)
1397{
1398 int i, nr_assoc_doms = 0;
1399 const __be16 *field = (const __be16 *) packed;
1400
1401#define VPHN_FIELD_UNUSED (0xffff)
1402#define VPHN_FIELD_MSB (0x8000)
1403#define VPHN_FIELD_MASK (~VPHN_FIELD_MSB)
1404
1405 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1406 if (be16_to_cpup(field) == VPHN_FIELD_UNUSED) {
1407 /* All significant fields processed, and remaining
1408 * fields contain the reserved value of all 1's.
1409 * Just store them.
1410 */
1411 unpacked[i] = *((__be32 *)field);
1412 field += 2;
1413 } else if (be16_to_cpup(field) & VPHN_FIELD_MSB) {
1414 /* Data is in the lower 15 bits of this field */
1415 unpacked[i] = cpu_to_be32(
1416 be16_to_cpup(field) & VPHN_FIELD_MASK);
1417 field++;
1418 nr_assoc_doms++;
1419 } else {
1420 /* Data is in the lower 15 bits of this field
1421 * concatenated with the next 16 bit field
1422 */
1423 unpacked[i] = *((__be32 *)field);
1424 field += 2;
1425 nr_assoc_doms++;
1426 }
1427 }
1428
1429 /* The first cell contains the length of the property */
1430 unpacked[0] = cpu_to_be32(nr_assoc_doms);
1431
1432 return nr_assoc_doms;
1433}
1434
1435/*
1436 * Retrieve the new associativity information for a virtual processor's
1437 * home node.
1438 */
1439static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1440{
1441 long rc;
1442 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1443 u64 flags = 1;
1444 int hwcpu = get_hard_smp_processor_id(cpu);
1445
1446 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1447 vphn_unpack_associativity(retbuf, associativity);
1448
1449 return rc;
1450}
1451
1452static long vphn_get_associativity(unsigned long cpu,
1453 __be32 *associativity)
1454{
1455 long rc;
1456
1457 rc = hcall_vphn(cpu, associativity);
1458
1459 switch (rc) {
1460 case H_FUNCTION:
1461 printk(KERN_INFO
1462 "VPHN is not supported. Disabling polling...\n");
1463 stop_topology_update();
1464 break;
1465 case H_HARDWARE:
1466 printk(KERN_ERR
1467 "hcall_vphn() experienced a hardware fault "
1468 "preventing VPHN. Disabling polling...\n");
1469 stop_topology_update();
1470 }
1471
1472 return rc;
1473}
1474
1475/*
1476 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1477 * characteristics change. This function doesn't perform any locking and is
1478 * only safe to call from stop_machine().
1479 */
1480static int update_cpu_topology(void *data)
1481{
1482 struct topology_update_data *update;
1483 unsigned long cpu;
1484
1485 if (!data)
1486 return -EINVAL;
1487
1488 cpu = smp_processor_id();
1489
1490 for (update = data; update; update = update->next) {
1491 if (cpu != update->cpu)
1492 continue;
1493
1494 unmap_cpu_from_node(update->cpu);
1495 map_cpu_to_node(update->cpu, update->new_nid);
1496 vdso_getcpu_init();
1497 }
1498
1499 return 0;
1500}
1501
1502static int update_lookup_table(void *data)
1503{
1504 struct topology_update_data *update;
1505
1506 if (!data)
1507 return -EINVAL;
1508
1509 /*
1510 * Upon topology update, the numa-cpu lookup table needs to be updated
1511 * for all threads in the core, including offline CPUs, to ensure that
1512 * future hotplug operations respect the cpu-to-node associativity
1513 * properly.
1514 */
1515 for (update = data; update; update = update->next) {
1516 int nid, base, j;
1517
1518 nid = update->new_nid;
1519 base = cpu_first_thread_sibling(update->cpu);
1520
1521 for (j = 0; j < threads_per_core; j++) {
1522 update_numa_cpu_lookup_table(base + j, nid);
1523 }
1524 }
1525
1526 return 0;
1527}
1528
1529/*
1530 * Update the node maps and sysfs entries for each cpu whose home node
1531 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1532 */
1533int arch_update_cpu_topology(void)
1534{
1535 unsigned int cpu, sibling, changed = 0;
1536 struct topology_update_data *updates, *ud;
1537 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1538 cpumask_t updated_cpus;
1539 struct device *dev;
1540 int weight, new_nid, i = 0;
1541
1542 weight = cpumask_weight(&cpu_associativity_changes_mask);
1543 if (!weight)
1544 return 0;
1545
1546 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1547 if (!updates)
1548 return 0;
1549
1550 cpumask_clear(&updated_cpus);
1551
1552 for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1553 /*
1554 * If siblings aren't flagged for changes, updates list
1555 * will be too short. Skip on this update and set for next
1556 * update.
1557 */
1558 if (!cpumask_subset(cpu_sibling_mask(cpu),
1559 &cpu_associativity_changes_mask)) {
1560 pr_info("Sibling bits not set for associativity "
1561 "change, cpu%d\n", cpu);
1562 cpumask_or(&cpu_associativity_changes_mask,
1563 &cpu_associativity_changes_mask,
1564 cpu_sibling_mask(cpu));
1565 cpu = cpu_last_thread_sibling(cpu);
1566 continue;
1567 }
1568
1569 /* Use associativity from first thread for all siblings */
1570 vphn_get_associativity(cpu, associativity);
1571 new_nid = associativity_to_nid(associativity);
1572 if (new_nid < 0 || !node_online(new_nid))
1573 new_nid = first_online_node;
1574
1575 if (new_nid == numa_cpu_lookup_table[cpu]) {
1576 cpumask_andnot(&cpu_associativity_changes_mask,
1577 &cpu_associativity_changes_mask,
1578 cpu_sibling_mask(cpu));
1579 cpu = cpu_last_thread_sibling(cpu);
1580 continue;
1581 }
1582
1583 for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1584 ud = &updates[i++];
1585 ud->cpu = sibling;
1586 ud->new_nid = new_nid;
1587 ud->old_nid = numa_cpu_lookup_table[sibling];
1588 cpumask_set_cpu(sibling, &updated_cpus);
1589 if (i < weight)
1590 ud->next = &updates[i];
1591 }
1592 cpu = cpu_last_thread_sibling(cpu);
1593 }
1594
1595 /*
1596 * In cases where we have nothing to update (because the updates list
1597 * is too short or because the new topology is same as the old one),
1598 * skip invoking update_cpu_topology() via stop-machine(). This is
1599 * necessary (and not just a fast-path optimization) since stop-machine
1600 * can end up electing a random CPU to run update_cpu_topology(), and
1601 * thus trick us into setting up incorrect cpu-node mappings (since
1602 * 'updates' is kzalloc()'ed).
1603 *
1604 * And for the similar reason, we will skip all the following updating.
1605 */
1606 if (!cpumask_weight(&updated_cpus))
1607 goto out;
1608
1609 stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1610
1611 /*
1612 * Update the numa-cpu lookup table with the new mappings, even for
1613 * offline CPUs. It is best to perform this update from the stop-
1614 * machine context.
1615 */
1616 stop_machine(update_lookup_table, &updates[0],
1617 cpumask_of(raw_smp_processor_id()));
1618
1619 for (ud = &updates[0]; ud; ud = ud->next) {
1620 unregister_cpu_under_node(ud->cpu, ud->old_nid);
1621 register_cpu_under_node(ud->cpu, ud->new_nid);
1622
1623 dev = get_cpu_device(ud->cpu);
1624 if (dev)
1625 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1626 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1627 changed = 1;
1628 }
1629
1630out:
1631 kfree(updates);
1632 return changed;
1633}
1634
1635static void topology_work_fn(struct work_struct *work)
1636{
1637 rebuild_sched_domains();
1638}
1639static DECLARE_WORK(topology_work, topology_work_fn);
1640
1641static void topology_schedule_update(void)
1642{
1643 schedule_work(&topology_work);
1644}
1645
1646static void topology_timer_fn(unsigned long ignored)
1647{
1648 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1649 topology_schedule_update();
1650 else if (vphn_enabled) {
1651 if (update_cpu_associativity_changes_mask() > 0)
1652 topology_schedule_update();
1653 reset_topology_timer();
1654 }
1655}
1656static struct timer_list topology_timer =
1657 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1658
1659static void reset_topology_timer(void)
1660{
1661 topology_timer.data = 0;
1662 topology_timer.expires = jiffies + 60 * HZ;
1663 mod_timer(&topology_timer, topology_timer.expires);
1664}
1665
1666#ifdef CONFIG_SMP
1667
1668static void stage_topology_update(int core_id)
1669{
1670 cpumask_or(&cpu_associativity_changes_mask,
1671 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1672 reset_topology_timer();
1673}
1674
1675static int dt_update_callback(struct notifier_block *nb,
1676 unsigned long action, void *data)
1677{
1678 struct of_prop_reconfig *update;
1679 int rc = NOTIFY_DONE;
1680
1681 switch (action) {
1682 case OF_RECONFIG_UPDATE_PROPERTY:
1683 update = (struct of_prop_reconfig *)data;
1684 if (!of_prop_cmp(update->dn->type, "cpu") &&
1685 !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1686 u32 core_id;
1687 of_property_read_u32(update->dn, "reg", &core_id);
1688 stage_topology_update(core_id);
1689 rc = NOTIFY_OK;
1690 }
1691 break;
1692 }
1693
1694 return rc;
1695}
1696
1697static struct notifier_block dt_update_nb = {
1698 .notifier_call = dt_update_callback,
1699};
1700
1701#endif
1702
1703/*
1704 * Start polling for associativity changes.
1705 */
1706int start_topology_update(void)
1707{
1708 int rc = 0;
1709
1710 if (firmware_has_feature(FW_FEATURE_PRRN)) {
1711 if (!prrn_enabled) {
1712 prrn_enabled = 1;
1713 vphn_enabled = 0;
1714#ifdef CONFIG_SMP
1715 rc = of_reconfig_notifier_register(&dt_update_nb);
1716#endif
1717 }
1718 } else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1719 lppaca_shared_proc(get_lppaca())) {
1720 if (!vphn_enabled) {
1721 prrn_enabled = 0;
1722 vphn_enabled = 1;
1723 setup_cpu_associativity_change_counters();
1724 init_timer_deferrable(&topology_timer);
1725 reset_topology_timer();
1726 }
1727 }
1728
1729 return rc;
1730}
1731
1732/*
1733 * Disable polling for VPHN associativity changes.
1734 */
1735int stop_topology_update(void)
1736{
1737 int rc = 0;
1738
1739 if (prrn_enabled) {
1740 prrn_enabled = 0;
1741#ifdef CONFIG_SMP
1742 rc = of_reconfig_notifier_unregister(&dt_update_nb);
1743#endif
1744 } else if (vphn_enabled) {
1745 vphn_enabled = 0;
1746 rc = del_timer_sync(&topology_timer);
1747 }
1748
1749 return rc;
1750}
1751
1752int prrn_is_enabled(void)
1753{
1754 return prrn_enabled;
1755}
1756
1757static int topology_read(struct seq_file *file, void *v)
1758{
1759 if (vphn_enabled || prrn_enabled)
1760 seq_puts(file, "on\n");
1761 else
1762 seq_puts(file, "off\n");
1763
1764 return 0;
1765}
1766
1767static int topology_open(struct inode *inode, struct file *file)
1768{
1769 return single_open(file, topology_read, NULL);
1770}
1771
1772static ssize_t topology_write(struct file *file, const char __user *buf,
1773 size_t count, loff_t *off)
1774{
1775 char kbuf[4]; /* "on" or "off" plus null. */
1776 int read_len;
1777
1778 read_len = count < 3 ? count : 3;
1779 if (copy_from_user(kbuf, buf, read_len))
1780 return -EINVAL;
1781
1782 kbuf[read_len] = '\0';
1783
1784 if (!strncmp(kbuf, "on", 2))
1785 start_topology_update();
1786 else if (!strncmp(kbuf, "off", 3))
1787 stop_topology_update();
1788 else
1789 return -EINVAL;
1790
1791 return count;
1792}
1793
1794static const struct file_operations topology_ops = {
1795 .read = seq_read,
1796 .write = topology_write,
1797 .open = topology_open,
1798 .release = single_release
1799};
1800
1801static int topology_update_init(void)
1802{
1803 start_topology_update();
1804 proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops);
1805
1806 return 0;
1807}
1808device_initcall(topology_update_init);
1809#endif /* CONFIG_PPC_SPLPAR */