Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * pSeries NUMA support
   4 *
   5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 
 
 
 
 
   6 */
   7#define pr_fmt(fmt) "numa: " fmt
   8
   9#include <linux/threads.h>
  10#include <linux/memblock.h>
  11#include <linux/init.h>
  12#include <linux/mm.h>
  13#include <linux/mmzone.h>
  14#include <linux/export.h>
  15#include <linux/nodemask.h>
  16#include <linux/cpu.h>
  17#include <linux/notifier.h>
 
  18#include <linux/of.h>
  19#include <linux/pfn.h>
  20#include <linux/cpuset.h>
  21#include <linux/node.h>
  22#include <linux/stop_machine.h>
  23#include <linux/proc_fs.h>
  24#include <linux/seq_file.h>
  25#include <linux/uaccess.h>
  26#include <linux/slab.h>
  27#include <asm/cputhreads.h>
  28#include <asm/sparsemem.h>
  29#include <asm/prom.h>
  30#include <asm/smp.h>
 
  31#include <asm/topology.h>
  32#include <asm/firmware.h>
  33#include <asm/paca.h>
  34#include <asm/hvcall.h>
  35#include <asm/setup.h>
  36#include <asm/vdso.h>
  37#include <asm/drmem.h>
  38
  39static int numa_enabled = 1;
  40
  41static char *cmdline __initdata;
  42
  43static int numa_debug;
  44#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
  45
  46int numa_cpu_lookup_table[NR_CPUS];
  47cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  48struct pglist_data *node_data[MAX_NUMNODES];
  49
  50EXPORT_SYMBOL(numa_cpu_lookup_table);
  51EXPORT_SYMBOL(node_to_cpumask_map);
  52EXPORT_SYMBOL(node_data);
  53
  54static int min_common_depth;
  55static int n_mem_addr_cells, n_mem_size_cells;
  56static int form1_affinity;
  57
  58#define MAX_DISTANCE_REF_POINTS 4
  59static int distance_ref_points_depth;
  60static const __be32 *distance_ref_points;
  61static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
  62
  63/*
  64 * Allocate node_to_cpumask_map based on number of available nodes
  65 * Requires node_possible_map to be valid.
  66 *
  67 * Note: cpumask_of_node() is not valid until after this is done.
  68 */
  69static void __init setup_node_to_cpumask_map(void)
  70{
  71	unsigned int node;
  72
  73	/* setup nr_node_ids if not done yet */
  74	if (nr_node_ids == MAX_NUMNODES)
  75		setup_nr_node_ids();
  76
  77	/* allocate the map */
  78	for_each_node(node)
  79		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
  80
  81	/* cpumask_of_node() will now work */
  82	dbg("Node to cpumask map for %u nodes\n", nr_node_ids);
  83}
  84
  85static int __init fake_numa_create_new_node(unsigned long end_pfn,
  86						unsigned int *nid)
  87{
  88	unsigned long long mem;
  89	char *p = cmdline;
  90	static unsigned int fake_nid;
  91	static unsigned long long curr_boundary;
  92
  93	/*
  94	 * Modify node id, iff we started creating NUMA nodes
  95	 * We want to continue from where we left of the last time
  96	 */
  97	if (fake_nid)
  98		*nid = fake_nid;
  99	/*
 100	 * In case there are no more arguments to parse, the
 101	 * node_id should be the same as the last fake node id
 102	 * (we've handled this above).
 103	 */
 104	if (!p)
 105		return 0;
 106
 107	mem = memparse(p, &p);
 108	if (!mem)
 109		return 0;
 110
 111	if (mem < curr_boundary)
 112		return 0;
 113
 114	curr_boundary = mem;
 115
 116	if ((end_pfn << PAGE_SHIFT) > mem) {
 117		/*
 118		 * Skip commas and spaces
 119		 */
 120		while (*p == ',' || *p == ' ' || *p == '\t')
 121			p++;
 122
 123		cmdline = p;
 124		fake_nid++;
 125		*nid = fake_nid;
 126		dbg("created new fake_node with id %d\n", fake_nid);
 127		return 1;
 128	}
 129	return 0;
 130}
 131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132static void reset_numa_cpu_lookup_table(void)
 133{
 134	unsigned int cpu;
 135
 136	for_each_possible_cpu(cpu)
 137		numa_cpu_lookup_table[cpu] = -1;
 138}
 139
 
 
 
 
 
 140static void map_cpu_to_node(int cpu, int node)
 141{
 142	update_numa_cpu_lookup_table(cpu, node);
 143
 144	dbg("adding cpu %d to node %d\n", cpu, node);
 145
 146	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
 147		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
 148}
 149
 150#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
 151static void unmap_cpu_from_node(unsigned long cpu)
 152{
 153	int node = numa_cpu_lookup_table[cpu];
 154
 155	dbg("removing cpu %lu from node %d\n", cpu, node);
 156
 157	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
 158		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
 159	} else {
 160		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
 161		       cpu, node);
 162	}
 163}
 164#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
 165
 166int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 167{
 168	int dist = 0;
 169
 170	int i, index;
 171
 172	for (i = 0; i < distance_ref_points_depth; i++) {
 173		index = be32_to_cpu(distance_ref_points[i]);
 174		if (cpu1_assoc[index] == cpu2_assoc[index])
 175			break;
 176		dist++;
 177	}
 178
 179	return dist;
 180}
 181
 182/* must hold reference to node during call */
 183static const __be32 *of_get_associativity(struct device_node *dev)
 184{
 185	return of_get_property(dev, "ibm,associativity", NULL);
 186}
 187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188int __node_distance(int a, int b)
 189{
 190	int i;
 191	int distance = LOCAL_DISTANCE;
 192
 193	if (!form1_affinity)
 194		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
 195
 196	for (i = 0; i < distance_ref_points_depth; i++) {
 197		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
 198			break;
 199
 200		/* Double the distance for each NUMA level */
 201		distance *= 2;
 202	}
 203
 204	return distance;
 205}
 206EXPORT_SYMBOL(__node_distance);
 207
 208static void initialize_distance_lookup_table(int nid,
 209		const __be32 *associativity)
 210{
 211	int i;
 212
 213	if (!form1_affinity)
 214		return;
 215
 216	for (i = 0; i < distance_ref_points_depth; i++) {
 217		const __be32 *entry;
 218
 219		entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
 220		distance_lookup_table[nid][i] = of_read_number(entry, 1);
 221	}
 222}
 223
 224/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 225 * info is found.
 226 */
 227static int associativity_to_nid(const __be32 *associativity)
 228{
 229	int nid = NUMA_NO_NODE;
 230
 231	if (!numa_enabled)
 232		goto out;
 233
 234	if (of_read_number(associativity, 1) >= min_common_depth)
 235		nid = of_read_number(&associativity[min_common_depth], 1);
 236
 237	/* POWER4 LPAR uses 0xffff as invalid node */
 238	if (nid == 0xffff || nid >= MAX_NUMNODES)
 239		nid = NUMA_NO_NODE;
 240
 241	if (nid > 0 &&
 242		of_read_number(associativity, 1) >= distance_ref_points_depth) {
 243		/*
 244		 * Skip the length field and send start of associativity array
 245		 */
 246		initialize_distance_lookup_table(nid, associativity + 1);
 247	}
 248
 249out:
 250	return nid;
 251}
 252
 253/* Returns the nid associated with the given device tree node,
 254 * or -1 if not found.
 255 */
 256static int of_node_to_nid_single(struct device_node *device)
 257{
 258	int nid = NUMA_NO_NODE;
 259	const __be32 *tmp;
 260
 261	tmp = of_get_associativity(device);
 262	if (tmp)
 263		nid = associativity_to_nid(tmp);
 264	return nid;
 265}
 266
 267/* Walk the device tree upwards, looking for an associativity id */
 268int of_node_to_nid(struct device_node *device)
 269{
 270	int nid = NUMA_NO_NODE;
 
 271
 272	of_node_get(device);
 273	while (device) {
 274		nid = of_node_to_nid_single(device);
 275		if (nid != -1)
 276			break;
 277
 278		device = of_get_next_parent(device);
 
 
 279	}
 280	of_node_put(device);
 281
 282	return nid;
 283}
 284EXPORT_SYMBOL(of_node_to_nid);
 285
 286static int __init find_min_common_depth(void)
 287{
 288	int depth;
 289	struct device_node *root;
 290
 291	if (firmware_has_feature(FW_FEATURE_OPAL))
 292		root = of_find_node_by_path("/ibm,opal");
 293	else
 294		root = of_find_node_by_path("/rtas");
 295	if (!root)
 296		root = of_find_node_by_path("/");
 297
 298	/*
 299	 * This property is a set of 32-bit integers, each representing
 300	 * an index into the ibm,associativity nodes.
 301	 *
 302	 * With form 0 affinity the first integer is for an SMP configuration
 303	 * (should be all 0's) and the second is for a normal NUMA
 304	 * configuration. We have only one level of NUMA.
 305	 *
 306	 * With form 1 affinity the first integer is the most significant
 307	 * NUMA boundary and the following are progressively less significant
 308	 * boundaries. There can be more than one level of NUMA.
 309	 */
 310	distance_ref_points = of_get_property(root,
 311					"ibm,associativity-reference-points",
 312					&distance_ref_points_depth);
 313
 314	if (!distance_ref_points) {
 315		dbg("NUMA: ibm,associativity-reference-points not found.\n");
 316		goto err;
 317	}
 318
 319	distance_ref_points_depth /= sizeof(int);
 320
 321	if (firmware_has_feature(FW_FEATURE_OPAL) ||
 322	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
 323		dbg("Using form 1 affinity\n");
 324		form1_affinity = 1;
 325	}
 326
 327	if (form1_affinity) {
 328		depth = of_read_number(distance_ref_points, 1);
 329	} else {
 330		if (distance_ref_points_depth < 2) {
 331			printk(KERN_WARNING "NUMA: "
 332				"short ibm,associativity-reference-points\n");
 333			goto err;
 334		}
 335
 336		depth = of_read_number(&distance_ref_points[1], 1);
 337	}
 338
 339	/*
 340	 * Warn and cap if the hardware supports more than
 341	 * MAX_DISTANCE_REF_POINTS domains.
 342	 */
 343	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
 344		printk(KERN_WARNING "NUMA: distance array capped at "
 345			"%d entries\n", MAX_DISTANCE_REF_POINTS);
 346		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
 347	}
 348
 349	of_node_put(root);
 350	return depth;
 351
 352err:
 353	of_node_put(root);
 354	return -1;
 355}
 356
 357static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 358{
 359	struct device_node *memory = NULL;
 360
 361	memory = of_find_node_by_type(memory, "memory");
 362	if (!memory)
 363		panic("numa.c: No memory nodes found!");
 364
 365	*n_addr_cells = of_n_addr_cells(memory);
 366	*n_size_cells = of_n_size_cells(memory);
 367	of_node_put(memory);
 368}
 369
 370static unsigned long read_n_cells(int n, const __be32 **buf)
 371{
 372	unsigned long result = 0;
 373
 374	while (n--) {
 375		result = (result << 32) | of_read_number(*buf, 1);
 376		(*buf)++;
 377	}
 378	return result;
 379}
 380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 381struct assoc_arrays {
 382	u32	n_arrays;
 383	u32	array_sz;
 384	const __be32 *arrays;
 385};
 386
 387/*
 388 * Retrieve and validate the list of associativity arrays for drconf
 389 * memory from the ibm,associativity-lookup-arrays property of the
 390 * device tree..
 391 *
 392 * The layout of the ibm,associativity-lookup-arrays property is a number N
 393 * indicating the number of associativity arrays, followed by a number M
 394 * indicating the size of each associativity array, followed by a list
 395 * of N associativity arrays.
 396 */
 397static int of_get_assoc_arrays(struct assoc_arrays *aa)
 
 398{
 399	struct device_node *memory;
 400	const __be32 *prop;
 401	u32 len;
 402
 403	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 404	if (!memory)
 405		return -1;
 406
 407	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 408	if (!prop || len < 2 * sizeof(unsigned int)) {
 409		of_node_put(memory);
 410		return -1;
 411	}
 412
 413	aa->n_arrays = of_read_number(prop++, 1);
 414	aa->array_sz = of_read_number(prop++, 1);
 415
 416	of_node_put(memory);
 417
 418	/* Now that we know the number of arrays and size of each array,
 419	 * revalidate the size of the property read in.
 420	 */
 421	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 422		return -1;
 423
 424	aa->arrays = prop;
 425	return 0;
 426}
 427
 428/*
 429 * This is like of_node_to_nid_single() for memory represented in the
 430 * ibm,dynamic-reconfiguration-memory node.
 431 */
 432static int of_drconf_to_nid_single(struct drmem_lmb *lmb)
 
 433{
 434	struct assoc_arrays aa = { .arrays = NULL };
 435	int default_nid = NUMA_NO_NODE;
 436	int nid = default_nid;
 437	int rc, index;
 438
 439	if ((min_common_depth < 0) || !numa_enabled)
 440		return default_nid;
 441
 442	rc = of_get_assoc_arrays(&aa);
 443	if (rc)
 444		return default_nid;
 445
 446	if (min_common_depth <= aa.array_sz &&
 447	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
 448		index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
 449		nid = of_read_number(&aa.arrays[index], 1);
 450
 451		if (nid == 0xffff || nid >= MAX_NUMNODES)
 452			nid = default_nid;
 453
 454		if (nid > 0) {
 455			index = lmb->aa_index * aa.array_sz;
 456			initialize_distance_lookup_table(nid,
 457							&aa.arrays[index]);
 458		}
 459	}
 460
 461	return nid;
 462}
 463
 464/*
 465 * Figure out to which domain a cpu belongs and stick it there.
 466 * Return the id of the domain used.
 467 */
 468static int numa_setup_cpu(unsigned long lcpu)
 469{
 470	int nid = NUMA_NO_NODE;
 471	struct device_node *cpu;
 472
 473	/*
 474	 * If a valid cpu-to-node mapping is already available, use it
 475	 * directly instead of querying the firmware, since it represents
 476	 * the most recent mapping notified to us by the platform (eg: VPHN).
 477	 */
 478	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
 479		map_cpu_to_node(lcpu, nid);
 480		return nid;
 481	}
 482
 483	cpu = of_get_cpu_node(lcpu, NULL);
 484
 485	if (!cpu) {
 486		WARN_ON(1);
 487		if (cpu_present(lcpu))
 488			goto out_present;
 489		else
 490			goto out;
 491	}
 492
 493	nid = of_node_to_nid_single(cpu);
 494
 495out_present:
 496	if (nid < 0 || !node_possible(nid))
 497		nid = first_online_node;
 498
 499	map_cpu_to_node(lcpu, nid);
 
 500	of_node_put(cpu);
 501out:
 502	return nid;
 503}
 504
 505static void verify_cpu_node_mapping(int cpu, int node)
 506{
 507	int base, sibling, i;
 508
 509	/* Verify that all the threads in the core belong to the same node */
 510	base = cpu_first_thread_sibling(cpu);
 511
 512	for (i = 0; i < threads_per_core; i++) {
 513		sibling = base + i;
 514
 515		if (sibling == cpu || cpu_is_offline(sibling))
 516			continue;
 517
 518		if (cpu_to_node(sibling) != node) {
 519			WARN(1, "CPU thread siblings %d and %d don't belong"
 520				" to the same node!\n", cpu, sibling);
 521			break;
 522		}
 523	}
 524}
 525
 526/* Must run before sched domains notifier. */
 527static int ppc_numa_cpu_prepare(unsigned int cpu)
 528{
 529	int nid;
 530
 531	nid = numa_setup_cpu(cpu);
 532	verify_cpu_node_mapping(cpu, nid);
 533	return 0;
 534}
 535
 536static int ppc_numa_cpu_dead(unsigned int cpu)
 537{
 
 
 
 
 
 538#ifdef CONFIG_HOTPLUG_CPU
 539	unmap_cpu_from_node(cpu);
 
 
 
 
 
 
 540#endif
 541	return 0;
 
 542}
 543
 544/*
 545 * Check and possibly modify a memory region to enforce the memory limit.
 546 *
 547 * Returns the size the region should have to enforce the memory limit.
 548 * This will either be the original value of size, a truncated value,
 549 * or zero. If the returned value of size is 0 the region should be
 550 * discarded as it lies wholly above the memory limit.
 551 */
 552static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 553						      unsigned long size)
 554{
 555	/*
 556	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
 557	 * we've already adjusted it for the limit and it takes care of
 558	 * having memory holes below the limit.  Also, in the case of
 559	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
 560	 */
 561
 562	if (start + size <= memblock_end_of_DRAM())
 563		return size;
 564
 565	if (start >= memblock_end_of_DRAM())
 566		return 0;
 567
 568	return memblock_end_of_DRAM() - start;
 569}
 570
 571/*
 572 * Reads the counter for a given entry in
 573 * linux,drconf-usable-memory property
 574 */
 575static inline int __init read_usm_ranges(const __be32 **usm)
 576{
 577	/*
 578	 * For each lmb in ibm,dynamic-memory a corresponding
 579	 * entry in linux,drconf-usable-memory property contains
 580	 * a counter followed by that many (base, size) duple.
 581	 * read the counter from linux,drconf-usable-memory
 582	 */
 583	return read_n_cells(n_mem_size_cells, usm);
 584}
 585
 586/*
 587 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 588 * node.  This assumes n_mem_{addr,size}_cells have been set.
 589 */
 590static void __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
 591					const __be32 **usm)
 592{
 593	unsigned int ranges, is_kexec_kdump = 0;
 594	unsigned long base, size, sz;
 
 595	int nid;
 
 596
 597	/*
 598	 * Skip this block if the reserved bit is set in flags (0x80)
 599	 * or if the block is not assigned to this partition (0x8)
 600	 */
 601	if ((lmb->flags & DRCONF_MEM_RESERVED)
 602	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
 
 
 
 
 603		return;
 604
 605	if (*usm)
 
 
 606		is_kexec_kdump = 1;
 607
 608	base = lmb->base_addr;
 609	size = drmem_lmb_size();
 610	ranges = 1;
 611
 612	if (is_kexec_kdump) {
 613		ranges = read_usm_ranges(usm);
 614		if (!ranges) /* there are no (base, size) duple */
 615			return;
 616	}
 
 
 
 
 
 
 617
 618	do {
 619		if (is_kexec_kdump) {
 620			base = read_n_cells(n_mem_addr_cells, usm);
 621			size = read_n_cells(n_mem_size_cells, usm);
 
 622		}
 623
 624		nid = of_drconf_to_nid_single(lmb);
 625		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
 626					  &nid);
 627		node_set_online(nid);
 628		sz = numa_enforce_memory_limit(base, size);
 629		if (sz)
 630			memblock_set_node(base, sz, &memblock.memory, nid);
 631	} while (--ranges);
 
 
 
 
 
 
 
 632}
 633
 634static int __init parse_numa_properties(void)
 635{
 636	struct device_node *memory;
 637	int default_nid = 0;
 638	unsigned long i;
 639
 640	if (numa_enabled == 0) {
 641		printk(KERN_WARNING "NUMA disabled by user\n");
 642		return -1;
 643	}
 644
 645	min_common_depth = find_min_common_depth();
 646
 647	if (min_common_depth < 0) {
 648		/*
 649		 * if we fail to parse min_common_depth from device tree
 650		 * mark the numa disabled, boot with numa disabled.
 651		 */
 652		numa_enabled = false;
 653		return min_common_depth;
 654	}
 655
 656	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
 657
 658	/*
 659	 * Even though we connect cpus to numa domains later in SMP
 660	 * init, we need to know the node ids now. This is because
 661	 * each node to be onlined must have NODE_DATA etc backing it.
 662	 */
 663	for_each_present_cpu(i) {
 664		struct device_node *cpu;
 665		int nid;
 666
 667		cpu = of_get_cpu_node(i, NULL);
 668		BUG_ON(!cpu);
 669		nid = of_node_to_nid_single(cpu);
 670		of_node_put(cpu);
 671
 672		/*
 673		 * Don't fall back to default_nid yet -- we will plug
 674		 * cpus into nodes once the memory scan has discovered
 675		 * the topology.
 676		 */
 677		if (nid < 0)
 678			continue;
 679		node_set_online(nid);
 680	}
 681
 682	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 683
 684	for_each_node_by_type(memory, "memory") {
 685		unsigned long start;
 686		unsigned long size;
 687		int nid;
 688		int ranges;
 689		const __be32 *memcell_buf;
 690		unsigned int len;
 691
 692		memcell_buf = of_get_property(memory,
 693			"linux,usable-memory", &len);
 694		if (!memcell_buf || len <= 0)
 695			memcell_buf = of_get_property(memory, "reg", &len);
 696		if (!memcell_buf || len <= 0)
 697			continue;
 698
 699		/* ranges in cell */
 700		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 701new_range:
 702		/* these are order-sensitive, and modify the buffer pointer */
 703		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 704		size = read_n_cells(n_mem_size_cells, &memcell_buf);
 705
 706		/*
 707		 * Assumption: either all memory nodes or none will
 708		 * have associativity properties.  If none, then
 709		 * everything goes to default_nid.
 710		 */
 711		nid = of_node_to_nid_single(memory);
 712		if (nid < 0)
 713			nid = default_nid;
 714
 715		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
 716		node_set_online(nid);
 717
 718		size = numa_enforce_memory_limit(start, size);
 719		if (size)
 720			memblock_set_node(start, size, &memblock.memory, nid);
 
 
 
 
 
 721
 722		if (--ranges)
 723			goto new_range;
 724	}
 725
 726	/*
 727	 * Now do the same thing for each MEMBLOCK listed in the
 728	 * ibm,dynamic-memory property in the
 729	 * ibm,dynamic-reconfiguration-memory node.
 730	 */
 731	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 732	if (memory) {
 733		walk_drmem_lmbs(memory, numa_setup_drmem_lmb);
 734		of_node_put(memory);
 735	}
 736
 737	return 0;
 738}
 739
 740static void __init setup_nonnuma(void)
 741{
 742	unsigned long top_of_ram = memblock_end_of_DRAM();
 743	unsigned long total_ram = memblock_phys_mem_size();
 744	unsigned long start_pfn, end_pfn;
 745	unsigned int nid = 0;
 746	struct memblock_region *reg;
 747
 748	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
 749	       top_of_ram, total_ram);
 750	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
 751	       (top_of_ram - total_ram) >> 20);
 752
 753	for_each_memblock(memory, reg) {
 754		start_pfn = memblock_region_memory_base_pfn(reg);
 755		end_pfn = memblock_region_memory_end_pfn(reg);
 756
 757		fake_numa_create_new_node(end_pfn, &nid);
 758		memblock_set_node(PFN_PHYS(start_pfn),
 759				  PFN_PHYS(end_pfn - start_pfn),
 760				  &memblock.memory, nid);
 761		node_set_online(nid);
 762	}
 763}
 764
 765void __init dump_numa_cpu_topology(void)
 766{
 767	unsigned int node;
 768	unsigned int cpu, count;
 769
 770	if (!numa_enabled)
 771		return;
 772
 773	for_each_online_node(node) {
 774		pr_info("Node %d CPUs:", node);
 775
 776		count = 0;
 777		/*
 778		 * If we used a CPU iterator here we would miss printing
 779		 * the holes in the cpumap.
 780		 */
 781		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
 782			if (cpumask_test_cpu(cpu,
 783					node_to_cpumask_map[node])) {
 784				if (count == 0)
 785					pr_cont(" %u", cpu);
 786				++count;
 787			} else {
 788				if (count > 1)
 789					pr_cont("-%u", cpu - 1);
 790				count = 0;
 791			}
 792		}
 793
 794		if (count > 1)
 795			pr_cont("-%u", nr_cpu_ids - 1);
 796		pr_cont("\n");
 797	}
 798}
 799
 800/* Initialize NODE_DATA for a node on the local memory */
 801static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
 802{
 803	u64 spanned_pages = end_pfn - start_pfn;
 804	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
 805	u64 nd_pa;
 806	void *nd;
 807	int tnid;
 808
 809	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
 810	if (!nd_pa)
 811		panic("Cannot allocate %zu bytes for node %d data\n",
 812		      nd_size, nid);
 813
 814	nd = __va(nd_pa);
 815
 816	/* report and initialize */
 817	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
 818		nd_pa, nd_pa + nd_size - 1);
 819	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
 820	if (tnid != nid)
 821		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
 
 
 
 
 
 
 
 
 822
 823	node_data[nid] = nd;
 824	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
 825	NODE_DATA(nid)->node_id = nid;
 826	NODE_DATA(nid)->node_start_pfn = start_pfn;
 827	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
 828}
 829
 830static void __init find_possible_nodes(void)
 
 
 
 
 
 
 
 
 
 831{
 832	struct device_node *rtas;
 833	u32 numnodes, i;
 
 834
 835	if (!numa_enabled)
 836		return;
 837
 838	rtas = of_find_node_by_path("/rtas");
 839	if (!rtas)
 840		return;
 841
 842	if (of_property_read_u32_index(rtas,
 843				"ibm,max-associativity-domains",
 844				min_common_depth, &numnodes))
 845		goto out;
 846
 847	for (i = 0; i < numnodes; i++) {
 848		if (!node_possible(i))
 849			node_set(i, node_possible_map);
 850	}
 851
 852out:
 853	of_node_put(rtas);
 854}
 
 
 
 
 
 
 
 
 
 
 
 
 
 855
 856void __init mem_topology_setup(void)
 857{
 858	int cpu;
 859
 860	if (parse_numa_properties())
 861		setup_nonnuma();
 
 862
 863	/*
 864	 * Modify the set of possible NUMA nodes to reflect information
 865	 * available about the set of online nodes, and the set of nodes
 866	 * that we expect to make use of for this platform's affinity
 867	 * calculations.
 868	 */
 869	nodes_and(node_possible_map, node_possible_map, node_online_map);
 870
 871	find_possible_nodes();
 
 
 
 872
 873	setup_node_to_cpumask_map();
 
 
 
 
 
 
 874
 875	reset_numa_cpu_lookup_table();
 
 
 
 
 
 
 
 
 
 876
 877	for_each_present_cpu(cpu)
 878		numa_setup_cpu(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879}
 880
 881void __init initmem_init(void)
 
 882{
 883	int nid;
 884
 
 885	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
 886	max_pfn = max_low_pfn;
 887
 888	memblock_dump_all();
 
 
 
 889
 890	for_each_online_node(nid) {
 891		unsigned long start_pfn, end_pfn;
 
 
 892
 893		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 894		setup_node_data(nid, start_pfn, end_pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 895		sparse_memory_present_with_active_regions(nid);
 896	}
 897
 898	sparse_init();
 899
 900	/*
 901	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
 902	 * even before we online them, so that we can use cpu_to_{node,mem}
 903	 * early in boot, cf. smp_prepare_cpus().
 904	 * _nocalls() + manual invocation is used because cpuhp is not yet
 905	 * initialized for the boot CPU.
 906	 */
 907	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
 908				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
 
 
 
 
 
 
 
 
 
 
 
 
 909}
 910
 911static int __init early_numa(char *p)
 912{
 913	if (!p)
 914		return 0;
 915
 916	if (strstr(p, "off"))
 917		numa_enabled = 0;
 918
 919	if (strstr(p, "debug"))
 920		numa_debug = 1;
 921
 922	p = strstr(p, "fake=");
 923	if (p)
 924		cmdline = p + strlen("fake=");
 925
 926	return 0;
 927}
 928early_param("numa", early_numa);
 929
 930/*
 931 * The platform can inform us through one of several mechanisms
 932 * (post-migration device tree updates, PRRN or VPHN) that the NUMA
 933 * assignment of a resource has changed. This controls whether we act
 934 * on that. Disabled by default.
 935 */
 936static bool topology_updates_enabled;
 937
 938static int __init early_topology_updates(char *p)
 939{
 940	if (!p)
 941		return 0;
 942
 943	if (!strcmp(p, "on")) {
 944		pr_warn("Caution: enabling topology updates\n");
 945		topology_updates_enabled = true;
 946	}
 947
 948	return 0;
 949}
 950early_param("topology_updates", early_topology_updates);
 951
 952#ifdef CONFIG_MEMORY_HOTPLUG
 953/*
 954 * Find the node associated with a hot added memory section for
 955 * memory represented in the device tree by the property
 956 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
 957 */
 958static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
 
 959{
 960	struct drmem_lmb *lmb;
 
 961	unsigned long lmb_size;
 962	int nid = NUMA_NO_NODE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 963
 964	lmb_size = drmem_lmb_size();
 965
 966	for_each_drmem_lmb(lmb) {
 967		/* skip this block if it is reserved or not assigned to
 968		 * this partition */
 969		if ((lmb->flags & DRCONF_MEM_RESERVED)
 970		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
 971			continue;
 972
 973		if ((scn_addr < lmb->base_addr)
 974		    || (scn_addr >= (lmb->base_addr + lmb_size)))
 975			continue;
 976
 977		nid = of_drconf_to_nid_single(lmb);
 978		break;
 979	}
 980
 981	return nid;
 982}
 983
 984/*
 985 * Find the node associated with a hot added memory section for memory
 986 * represented in the device tree as a node (i.e. memory@XXXX) for
 987 * each memblock.
 988 */
 989static int hot_add_node_scn_to_nid(unsigned long scn_addr)
 990{
 991	struct device_node *memory;
 992	int nid = NUMA_NO_NODE;
 993
 994	for_each_node_by_type(memory, "memory") {
 995		unsigned long start, size;
 996		int ranges;
 997		const __be32 *memcell_buf;
 998		unsigned int len;
 999
1000		memcell_buf = of_get_property(memory, "reg", &len);
1001		if (!memcell_buf || len <= 0)
1002			continue;
1003
1004		/* ranges in cell */
1005		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1006
1007		while (ranges--) {
1008			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1009			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1010
1011			if ((scn_addr < start) || (scn_addr >= (start + size)))
1012				continue;
1013
1014			nid = of_node_to_nid_single(memory);
1015			break;
1016		}
1017
1018		if (nid >= 0)
1019			break;
1020	}
1021
1022	of_node_put(memory);
1023
1024	return nid;
1025}
1026
1027/*
1028 * Find the node associated with a hot added memory section.  Section
1029 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1030 * sections are fully contained within a single MEMBLOCK.
1031 */
1032int hot_add_scn_to_nid(unsigned long scn_addr)
1033{
1034	struct device_node *memory = NULL;
1035	int nid;
1036
1037	if (!numa_enabled)
1038		return first_online_node;
1039
1040	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1041	if (memory) {
1042		nid = hot_add_drconf_scn_to_nid(scn_addr);
1043		of_node_put(memory);
1044	} else {
1045		nid = hot_add_node_scn_to_nid(scn_addr);
1046	}
1047
1048	if (nid < 0 || !node_possible(nid))
1049		nid = first_online_node;
1050
 
 
 
 
 
 
 
 
 
 
 
1051	return nid;
1052}
1053
1054static u64 hot_add_drconf_memory_max(void)
1055{
1056	struct device_node *memory = NULL;
1057	struct device_node *dn = NULL;
1058	const __be64 *lrdr = NULL;
1059
1060	dn = of_find_node_by_path("/rtas");
1061	if (dn) {
1062		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1063		of_node_put(dn);
1064		if (lrdr)
1065			return be64_to_cpup(lrdr);
1066	}
1067
1068	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1069	if (memory) {
1070		of_node_put(memory);
1071		return drmem_lmb_memory_max();
1072	}
1073	return 0;
1074}
1075
1076/*
1077 * memory_hotplug_max - return max address of memory that may be added
1078 *
1079 * This is currently only used on systems that support drconfig memory
1080 * hotplug.
1081 */
1082u64 memory_hotplug_max(void)
1083{
1084        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1085}
1086#endif /* CONFIG_MEMORY_HOTPLUG */
1087
1088/* Virtual Processor Home Node (VPHN) support */
1089#ifdef CONFIG_PPC_SPLPAR
1090struct topology_update_data {
1091	struct topology_update_data *next;
1092	unsigned int cpu;
1093	int old_nid;
1094	int new_nid;
1095};
1096
1097#define TOPOLOGY_DEF_TIMER_SECS	60
1098
1099static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1100static cpumask_t cpu_associativity_changes_mask;
1101static int vphn_enabled;
1102static int prrn_enabled;
1103static void reset_topology_timer(void);
1104static int topology_timer_secs = 1;
1105static int topology_inited;
1106
1107/*
1108 * Change polling interval for associativity changes.
1109 */
1110int timed_topology_update(int nsecs)
1111{
1112	if (vphn_enabled) {
1113		if (nsecs > 0)
1114			topology_timer_secs = nsecs;
1115		else
1116			topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS;
1117
1118		reset_topology_timer();
1119	}
1120
1121	return 0;
1122}
1123
1124/*
1125 * Store the current values of the associativity change counters in the
1126 * hypervisor.
1127 */
1128static void setup_cpu_associativity_change_counters(void)
1129{
1130	int cpu;
1131
1132	/* The VPHN feature supports a maximum of 8 reference points */
1133	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1134
1135	for_each_possible_cpu(cpu) {
1136		int i;
1137		u8 *counts = vphn_cpu_change_counts[cpu];
1138		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1139
1140		for (i = 0; i < distance_ref_points_depth; i++)
1141			counts[i] = hypervisor_counts[i];
1142	}
1143}
1144
1145/*
1146 * The hypervisor maintains a set of 8 associativity change counters in
1147 * the VPA of each cpu that correspond to the associativity levels in the
1148 * ibm,associativity-reference-points property. When an associativity
1149 * level changes, the corresponding counter is incremented.
1150 *
1151 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1152 * node associativity levels have changed.
1153 *
1154 * Returns the number of cpus with unhandled associativity changes.
1155 */
1156static int update_cpu_associativity_changes_mask(void)
1157{
1158	int cpu;
1159	cpumask_t *changes = &cpu_associativity_changes_mask;
1160
1161	for_each_possible_cpu(cpu) {
1162		int i, changed = 0;
1163		u8 *counts = vphn_cpu_change_counts[cpu];
1164		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1165
1166		for (i = 0; i < distance_ref_points_depth; i++) {
1167			if (hypervisor_counts[i] != counts[i]) {
1168				counts[i] = hypervisor_counts[i];
1169				changed = 1;
1170			}
1171		}
1172		if (changed) {
1173			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1174			cpu = cpu_last_thread_sibling(cpu);
1175		}
1176	}
1177
1178	return cpumask_weight(changes);
1179}
1180
1181/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182 * Retrieve the new associativity information for a virtual processor's
1183 * home node.
1184 */
 
 
 
 
 
 
 
 
 
 
 
 
 
1185static long vphn_get_associativity(unsigned long cpu,
1186					__be32 *associativity)
1187{
1188	long rc;
1189
1190	rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1191				VPHN_FLAG_VCPU, associativity);
1192
1193	switch (rc) {
1194	case H_FUNCTION:
1195		printk_once(KERN_INFO
1196			"VPHN is not supported. Disabling polling...\n");
1197		stop_topology_update();
1198		break;
1199	case H_HARDWARE:
1200		printk(KERN_ERR
1201			"hcall_vphn() experienced a hardware fault "
1202			"preventing VPHN. Disabling polling...\n");
1203		stop_topology_update();
1204		break;
1205	case H_SUCCESS:
1206		dbg("VPHN hcall succeeded. Reset polling...\n");
1207		timed_topology_update(0);
1208		break;
1209	}
1210
1211	return rc;
1212}
1213
1214int find_and_online_cpu_nid(int cpu)
1215{
1216	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1217	int new_nid;
1218
1219	/* Use associativity from first thread for all siblings */
1220	if (vphn_get_associativity(cpu, associativity))
1221		return cpu_to_node(cpu);
1222
1223	new_nid = associativity_to_nid(associativity);
1224	if (new_nid < 0 || !node_possible(new_nid))
1225		new_nid = first_online_node;
1226
1227	if (NODE_DATA(new_nid) == NULL) {
1228#ifdef CONFIG_MEMORY_HOTPLUG
1229		/*
1230		 * Need to ensure that NODE_DATA is initialized for a node from
1231		 * available memory (see memblock_alloc_try_nid). If unable to
1232		 * init the node, then default to nearest node that has memory
1233		 * installed. Skip onlining a node if the subsystems are not
1234		 * yet initialized.
1235		 */
1236		if (!topology_inited || try_online_node(new_nid))
1237			new_nid = first_online_node;
1238#else
1239		/*
1240		 * Default to using the nearest node that has memory installed.
1241		 * Otherwise, it would be necessary to patch the kernel MM code
1242		 * to deal with more memoryless-node error conditions.
1243		 */
1244		new_nid = first_online_node;
1245#endif
1246	}
1247
1248	pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1249		cpu, new_nid);
1250	return new_nid;
1251}
1252
1253/*
1254 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1255 * characteristics change. This function doesn't perform any locking and is
1256 * only safe to call from stop_machine().
1257 */
1258static int update_cpu_topology(void *data)
1259{
1260	struct topology_update_data *update;
1261	unsigned long cpu;
1262
1263	if (!data)
1264		return -EINVAL;
1265
1266	cpu = smp_processor_id();
1267
1268	for (update = data; update; update = update->next) {
1269		int new_nid = update->new_nid;
1270		if (cpu != update->cpu)
1271			continue;
1272
1273		unmap_cpu_from_node(cpu);
1274		map_cpu_to_node(cpu, new_nid);
1275		set_cpu_numa_node(cpu, new_nid);
1276		set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1277		vdso_getcpu_init();
1278	}
1279
1280	return 0;
1281}
1282
1283static int update_lookup_table(void *data)
1284{
1285	struct topology_update_data *update;
1286
1287	if (!data)
1288		return -EINVAL;
1289
1290	/*
1291	 * Upon topology update, the numa-cpu lookup table needs to be updated
1292	 * for all threads in the core, including offline CPUs, to ensure that
1293	 * future hotplug operations respect the cpu-to-node associativity
1294	 * properly.
1295	 */
1296	for (update = data; update; update = update->next) {
1297		int nid, base, j;
1298
1299		nid = update->new_nid;
1300		base = cpu_first_thread_sibling(update->cpu);
1301
1302		for (j = 0; j < threads_per_core; j++) {
1303			update_numa_cpu_lookup_table(base + j, nid);
1304		}
1305	}
1306
1307	return 0;
1308}
1309
1310/*
1311 * Update the node maps and sysfs entries for each cpu whose home node
1312 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1313 *
1314 * cpus_locked says whether we already hold cpu_hotplug_lock.
1315 */
1316int numa_update_cpu_topology(bool cpus_locked)
1317{
1318	unsigned int cpu, sibling, changed = 0;
1319	struct topology_update_data *updates, *ud;
 
1320	cpumask_t updated_cpus;
1321	struct device *dev;
1322	int weight, new_nid, i = 0;
1323
1324	if (!prrn_enabled && !vphn_enabled && topology_inited)
1325		return 0;
1326
1327	weight = cpumask_weight(&cpu_associativity_changes_mask);
1328	if (!weight)
1329		return 0;
1330
1331	updates = kcalloc(weight, sizeof(*updates), GFP_KERNEL);
1332	if (!updates)
1333		return 0;
1334
1335	cpumask_clear(&updated_cpus);
1336
1337	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1338		/*
1339		 * If siblings aren't flagged for changes, updates list
1340		 * will be too short. Skip on this update and set for next
1341		 * update.
1342		 */
1343		if (!cpumask_subset(cpu_sibling_mask(cpu),
1344					&cpu_associativity_changes_mask)) {
1345			pr_info("Sibling bits not set for associativity "
1346					"change, cpu%d\n", cpu);
1347			cpumask_or(&cpu_associativity_changes_mask,
1348					&cpu_associativity_changes_mask,
1349					cpu_sibling_mask(cpu));
1350			cpu = cpu_last_thread_sibling(cpu);
1351			continue;
1352		}
1353
1354		new_nid = find_and_online_cpu_nid(cpu);
 
 
 
 
1355
1356		if (new_nid == numa_cpu_lookup_table[cpu]) {
1357			cpumask_andnot(&cpu_associativity_changes_mask,
1358					&cpu_associativity_changes_mask,
1359					cpu_sibling_mask(cpu));
1360			dbg("Assoc chg gives same node %d for cpu%d\n",
1361					new_nid, cpu);
1362			cpu = cpu_last_thread_sibling(cpu);
1363			continue;
1364		}
1365
1366		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1367			ud = &updates[i++];
1368			ud->next = &updates[i];
1369			ud->cpu = sibling;
1370			ud->new_nid = new_nid;
1371			ud->old_nid = numa_cpu_lookup_table[sibling];
1372			cpumask_set_cpu(sibling, &updated_cpus);
 
 
1373		}
1374		cpu = cpu_last_thread_sibling(cpu);
1375	}
1376
1377	/*
1378	 * Prevent processing of 'updates' from overflowing array
1379	 * where last entry filled in a 'next' pointer.
1380	 */
1381	if (i)
1382		updates[i-1].next = NULL;
1383
1384	pr_debug("Topology update for the following CPUs:\n");
1385	if (cpumask_weight(&updated_cpus)) {
1386		for (ud = &updates[0]; ud; ud = ud->next) {
1387			pr_debug("cpu %d moving from node %d "
1388					  "to %d\n", ud->cpu,
1389					  ud->old_nid, ud->new_nid);
1390		}
1391	}
1392
1393	/*
1394	 * In cases where we have nothing to update (because the updates list
1395	 * is too short or because the new topology is same as the old one),
1396	 * skip invoking update_cpu_topology() via stop-machine(). This is
1397	 * necessary (and not just a fast-path optimization) since stop-machine
1398	 * can end up electing a random CPU to run update_cpu_topology(), and
1399	 * thus trick us into setting up incorrect cpu-node mappings (since
1400	 * 'updates' is kzalloc()'ed).
1401	 *
1402	 * And for the similar reason, we will skip all the following updating.
1403	 */
1404	if (!cpumask_weight(&updated_cpus))
1405		goto out;
1406
1407	if (cpus_locked)
1408		stop_machine_cpuslocked(update_cpu_topology, &updates[0],
1409					&updated_cpus);
1410	else
1411		stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1412
1413	/*
1414	 * Update the numa-cpu lookup table with the new mappings, even for
1415	 * offline CPUs. It is best to perform this update from the stop-
1416	 * machine context.
1417	 */
1418	if (cpus_locked)
1419		stop_machine_cpuslocked(update_lookup_table, &updates[0],
1420					cpumask_of(raw_smp_processor_id()));
1421	else
1422		stop_machine(update_lookup_table, &updates[0],
1423			     cpumask_of(raw_smp_processor_id()));
1424
1425	for (ud = &updates[0]; ud; ud = ud->next) {
1426		unregister_cpu_under_node(ud->cpu, ud->old_nid);
1427		register_cpu_under_node(ud->cpu, ud->new_nid);
1428
1429		dev = get_cpu_device(ud->cpu);
1430		if (dev)
1431			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1432		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1433		changed = 1;
1434	}
1435
1436out:
1437	kfree(updates);
1438	return changed;
1439}
1440
1441int arch_update_cpu_topology(void)
1442{
1443	return numa_update_cpu_topology(true);
1444}
1445
1446static void topology_work_fn(struct work_struct *work)
1447{
1448	rebuild_sched_domains();
1449}
1450static DECLARE_WORK(topology_work, topology_work_fn);
1451
1452static void topology_schedule_update(void)
1453{
1454	schedule_work(&topology_work);
1455}
1456
1457static void topology_timer_fn(struct timer_list *unused)
1458{
1459	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1460		topology_schedule_update();
1461	else if (vphn_enabled) {
1462		if (update_cpu_associativity_changes_mask() > 0)
1463			topology_schedule_update();
1464		reset_topology_timer();
1465	}
1466}
1467static struct timer_list topology_timer;
 
1468
1469static void reset_topology_timer(void)
1470{
1471	if (vphn_enabled)
1472		mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ);
 
1473}
1474
1475#ifdef CONFIG_SMP
1476
 
 
 
 
 
 
 
1477static int dt_update_callback(struct notifier_block *nb,
1478				unsigned long action, void *data)
1479{
1480	struct of_reconfig_data *update = data;
1481	int rc = NOTIFY_DONE;
1482
1483	switch (action) {
1484	case OF_RECONFIG_UPDATE_PROPERTY:
1485		if (of_node_is_type(update->dn, "cpu") &&
 
1486		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1487			u32 core_id;
1488			of_property_read_u32(update->dn, "reg", &core_id);
1489			rc = dlpar_cpu_readd(core_id);
1490			rc = NOTIFY_OK;
1491		}
1492		break;
1493	}
1494
1495	return rc;
1496}
1497
1498static struct notifier_block dt_update_nb = {
1499	.notifier_call = dt_update_callback,
1500};
1501
1502#endif
1503
1504/*
1505 * Start polling for associativity changes.
1506 */
1507int start_topology_update(void)
1508{
1509	int rc = 0;
1510
1511	if (!topology_updates_enabled)
1512		return 0;
1513
1514	if (firmware_has_feature(FW_FEATURE_PRRN)) {
1515		if (!prrn_enabled) {
1516			prrn_enabled = 1;
 
1517#ifdef CONFIG_SMP
1518			rc = of_reconfig_notifier_register(&dt_update_nb);
1519#endif
1520		}
1521	}
1522	if (firmware_has_feature(FW_FEATURE_VPHN) &&
1523		   lppaca_shared_proc(get_lppaca())) {
1524		if (!vphn_enabled) {
 
1525			vphn_enabled = 1;
1526			setup_cpu_associativity_change_counters();
1527			timer_setup(&topology_timer, topology_timer_fn,
1528				    TIMER_DEFERRABLE);
1529			reset_topology_timer();
1530		}
1531	}
1532
1533	pr_info("Starting topology update%s%s\n",
1534		(prrn_enabled ? " prrn_enabled" : ""),
1535		(vphn_enabled ? " vphn_enabled" : ""));
1536
1537	return rc;
1538}
1539
1540/*
1541 * Disable polling for VPHN associativity changes.
1542 */
1543int stop_topology_update(void)
1544{
1545	int rc = 0;
1546
1547	if (!topology_updates_enabled)
1548		return 0;
1549
1550	if (prrn_enabled) {
1551		prrn_enabled = 0;
1552#ifdef CONFIG_SMP
1553		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1554#endif
1555	}
1556	if (vphn_enabled) {
1557		vphn_enabled = 0;
1558		rc = del_timer_sync(&topology_timer);
1559	}
1560
1561	pr_info("Stopping topology update\n");
1562
1563	return rc;
1564}
1565
1566int prrn_is_enabled(void)
1567{
1568	return prrn_enabled;
1569}
1570
1571void __init shared_proc_topology_init(void)
1572{
1573	if (lppaca_shared_proc(get_lppaca())) {
1574		bitmap_fill(cpumask_bits(&cpu_associativity_changes_mask),
1575			    nr_cpumask_bits);
1576		numa_update_cpu_topology(false);
1577	}
1578}
1579
1580static int topology_read(struct seq_file *file, void *v)
1581{
1582	if (vphn_enabled || prrn_enabled)
1583		seq_puts(file, "on\n");
1584	else
1585		seq_puts(file, "off\n");
1586
1587	return 0;
1588}
1589
1590static int topology_open(struct inode *inode, struct file *file)
1591{
1592	return single_open(file, topology_read, NULL);
1593}
1594
1595static ssize_t topology_write(struct file *file, const char __user *buf,
1596			      size_t count, loff_t *off)
1597{
1598	char kbuf[4]; /* "on" or "off" plus null. */
1599	int read_len;
1600
1601	read_len = count < 3 ? count : 3;
1602	if (copy_from_user(kbuf, buf, read_len))
1603		return -EINVAL;
1604
1605	kbuf[read_len] = '\0';
1606
1607	if (!strncmp(kbuf, "on", 2)) {
1608		topology_updates_enabled = true;
1609		start_topology_update();
1610	} else if (!strncmp(kbuf, "off", 3)) {
1611		stop_topology_update();
1612		topology_updates_enabled = false;
1613	} else
1614		return -EINVAL;
1615
1616	return count;
1617}
1618
1619static const struct file_operations topology_ops = {
1620	.read = seq_read,
1621	.write = topology_write,
1622	.open = topology_open,
1623	.release = single_release
1624};
1625
1626static int topology_update_init(void)
1627{
1628	start_topology_update();
 
1629
1630	if (vphn_enabled)
1631		topology_schedule_update();
1632
1633	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1634		return -ENOMEM;
1635
1636	topology_inited = 1;
1637	return 0;
1638}
1639device_initcall(topology_update_init);
1640#endif /* CONFIG_PPC_SPLPAR */
v3.15
 
   1/*
   2 * pSeries NUMA support
   3 *
   4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
 
 
  11#include <linux/threads.h>
  12#include <linux/bootmem.h>
  13#include <linux/init.h>
  14#include <linux/mm.h>
  15#include <linux/mmzone.h>
  16#include <linux/export.h>
  17#include <linux/nodemask.h>
  18#include <linux/cpu.h>
  19#include <linux/notifier.h>
  20#include <linux/memblock.h>
  21#include <linux/of.h>
  22#include <linux/pfn.h>
  23#include <linux/cpuset.h>
  24#include <linux/node.h>
  25#include <linux/stop_machine.h>
  26#include <linux/proc_fs.h>
  27#include <linux/seq_file.h>
  28#include <linux/uaccess.h>
  29#include <linux/slab.h>
  30#include <asm/cputhreads.h>
  31#include <asm/sparsemem.h>
  32#include <asm/prom.h>
  33#include <asm/smp.h>
  34#include <asm/cputhreads.h>
  35#include <asm/topology.h>
  36#include <asm/firmware.h>
  37#include <asm/paca.h>
  38#include <asm/hvcall.h>
  39#include <asm/setup.h>
  40#include <asm/vdso.h>
 
  41
  42static int numa_enabled = 1;
  43
  44static char *cmdline __initdata;
  45
  46static int numa_debug;
  47#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
  48
  49int numa_cpu_lookup_table[NR_CPUS];
  50cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  51struct pglist_data *node_data[MAX_NUMNODES];
  52
  53EXPORT_SYMBOL(numa_cpu_lookup_table);
  54EXPORT_SYMBOL(node_to_cpumask_map);
  55EXPORT_SYMBOL(node_data);
  56
  57static int min_common_depth;
  58static int n_mem_addr_cells, n_mem_size_cells;
  59static int form1_affinity;
  60
  61#define MAX_DISTANCE_REF_POINTS 4
  62static int distance_ref_points_depth;
  63static const __be32 *distance_ref_points;
  64static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
  65
  66/*
  67 * Allocate node_to_cpumask_map based on number of available nodes
  68 * Requires node_possible_map to be valid.
  69 *
  70 * Note: cpumask_of_node() is not valid until after this is done.
  71 */
  72static void __init setup_node_to_cpumask_map(void)
  73{
  74	unsigned int node;
  75
  76	/* setup nr_node_ids if not done yet */
  77	if (nr_node_ids == MAX_NUMNODES)
  78		setup_nr_node_ids();
  79
  80	/* allocate the map */
  81	for (node = 0; node < nr_node_ids; node++)
  82		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
  83
  84	/* cpumask_of_node() will now work */
  85	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
  86}
  87
  88static int __init fake_numa_create_new_node(unsigned long end_pfn,
  89						unsigned int *nid)
  90{
  91	unsigned long long mem;
  92	char *p = cmdline;
  93	static unsigned int fake_nid;
  94	static unsigned long long curr_boundary;
  95
  96	/*
  97	 * Modify node id, iff we started creating NUMA nodes
  98	 * We want to continue from where we left of the last time
  99	 */
 100	if (fake_nid)
 101		*nid = fake_nid;
 102	/*
 103	 * In case there are no more arguments to parse, the
 104	 * node_id should be the same as the last fake node id
 105	 * (we've handled this above).
 106	 */
 107	if (!p)
 108		return 0;
 109
 110	mem = memparse(p, &p);
 111	if (!mem)
 112		return 0;
 113
 114	if (mem < curr_boundary)
 115		return 0;
 116
 117	curr_boundary = mem;
 118
 119	if ((end_pfn << PAGE_SHIFT) > mem) {
 120		/*
 121		 * Skip commas and spaces
 122		 */
 123		while (*p == ',' || *p == ' ' || *p == '\t')
 124			p++;
 125
 126		cmdline = p;
 127		fake_nid++;
 128		*nid = fake_nid;
 129		dbg("created new fake_node with id %d\n", fake_nid);
 130		return 1;
 131	}
 132	return 0;
 133}
 134
 135/*
 136 * get_node_active_region - Return active region containing pfn
 137 * Active range returned is empty if none found.
 138 * @pfn: The page to return the region for
 139 * @node_ar: Returned set to the active region containing @pfn
 140 */
 141static void __init get_node_active_region(unsigned long pfn,
 142					  struct node_active_region *node_ar)
 143{
 144	unsigned long start_pfn, end_pfn;
 145	int i, nid;
 146
 147	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
 148		if (pfn >= start_pfn && pfn < end_pfn) {
 149			node_ar->nid = nid;
 150			node_ar->start_pfn = start_pfn;
 151			node_ar->end_pfn = end_pfn;
 152			break;
 153		}
 154	}
 155}
 156
 157static void reset_numa_cpu_lookup_table(void)
 158{
 159	unsigned int cpu;
 160
 161	for_each_possible_cpu(cpu)
 162		numa_cpu_lookup_table[cpu] = -1;
 163}
 164
 165static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
 166{
 167	numa_cpu_lookup_table[cpu] = node;
 168}
 169
 170static void map_cpu_to_node(int cpu, int node)
 171{
 172	update_numa_cpu_lookup_table(cpu, node);
 173
 174	dbg("adding cpu %d to node %d\n", cpu, node);
 175
 176	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
 177		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
 178}
 179
 180#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
 181static void unmap_cpu_from_node(unsigned long cpu)
 182{
 183	int node = numa_cpu_lookup_table[cpu];
 184
 185	dbg("removing cpu %lu from node %d\n", cpu, node);
 186
 187	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
 188		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
 189	} else {
 190		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
 191		       cpu, node);
 192	}
 193}
 194#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
 195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 196/* must hold reference to node during call */
 197static const __be32 *of_get_associativity(struct device_node *dev)
 198{
 199	return of_get_property(dev, "ibm,associativity", NULL);
 200}
 201
 202/*
 203 * Returns the property linux,drconf-usable-memory if
 204 * it exists (the property exists only in kexec/kdump kernels,
 205 * added by kexec-tools)
 206 */
 207static const __be32 *of_get_usable_memory(struct device_node *memory)
 208{
 209	const __be32 *prop;
 210	u32 len;
 211	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
 212	if (!prop || len < sizeof(unsigned int))
 213		return NULL;
 214	return prop;
 215}
 216
 217int __node_distance(int a, int b)
 218{
 219	int i;
 220	int distance = LOCAL_DISTANCE;
 221
 222	if (!form1_affinity)
 223		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
 224
 225	for (i = 0; i < distance_ref_points_depth; i++) {
 226		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
 227			break;
 228
 229		/* Double the distance for each NUMA level */
 230		distance *= 2;
 231	}
 232
 233	return distance;
 234}
 235EXPORT_SYMBOL(__node_distance);
 236
 237static void initialize_distance_lookup_table(int nid,
 238		const __be32 *associativity)
 239{
 240	int i;
 241
 242	if (!form1_affinity)
 243		return;
 244
 245	for (i = 0; i < distance_ref_points_depth; i++) {
 246		const __be32 *entry;
 247
 248		entry = &associativity[be32_to_cpu(distance_ref_points[i])];
 249		distance_lookup_table[nid][i] = of_read_number(entry, 1);
 250	}
 251}
 252
 253/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 254 * info is found.
 255 */
 256static int associativity_to_nid(const __be32 *associativity)
 257{
 258	int nid = -1;
 259
 260	if (min_common_depth == -1)
 261		goto out;
 262
 263	if (of_read_number(associativity, 1) >= min_common_depth)
 264		nid = of_read_number(&associativity[min_common_depth], 1);
 265
 266	/* POWER4 LPAR uses 0xffff as invalid node */
 267	if (nid == 0xffff || nid >= MAX_NUMNODES)
 268		nid = -1;
 269
 270	if (nid > 0 &&
 271	    of_read_number(associativity, 1) >= distance_ref_points_depth)
 272		initialize_distance_lookup_table(nid, associativity);
 
 
 
 
 273
 274out:
 275	return nid;
 276}
 277
 278/* Returns the nid associated with the given device tree node,
 279 * or -1 if not found.
 280 */
 281static int of_node_to_nid_single(struct device_node *device)
 282{
 283	int nid = -1;
 284	const __be32 *tmp;
 285
 286	tmp = of_get_associativity(device);
 287	if (tmp)
 288		nid = associativity_to_nid(tmp);
 289	return nid;
 290}
 291
 292/* Walk the device tree upwards, looking for an associativity id */
 293int of_node_to_nid(struct device_node *device)
 294{
 295	struct device_node *tmp;
 296	int nid = -1;
 297
 298	of_node_get(device);
 299	while (device) {
 300		nid = of_node_to_nid_single(device);
 301		if (nid != -1)
 302			break;
 303
 304	        tmp = device;
 305		device = of_get_parent(tmp);
 306		of_node_put(tmp);
 307	}
 308	of_node_put(device);
 309
 310	return nid;
 311}
 312EXPORT_SYMBOL_GPL(of_node_to_nid);
 313
 314static int __init find_min_common_depth(void)
 315{
 316	int depth;
 317	struct device_node *root;
 318
 319	if (firmware_has_feature(FW_FEATURE_OPAL))
 320		root = of_find_node_by_path("/ibm,opal");
 321	else
 322		root = of_find_node_by_path("/rtas");
 323	if (!root)
 324		root = of_find_node_by_path("/");
 325
 326	/*
 327	 * This property is a set of 32-bit integers, each representing
 328	 * an index into the ibm,associativity nodes.
 329	 *
 330	 * With form 0 affinity the first integer is for an SMP configuration
 331	 * (should be all 0's) and the second is for a normal NUMA
 332	 * configuration. We have only one level of NUMA.
 333	 *
 334	 * With form 1 affinity the first integer is the most significant
 335	 * NUMA boundary and the following are progressively less significant
 336	 * boundaries. There can be more than one level of NUMA.
 337	 */
 338	distance_ref_points = of_get_property(root,
 339					"ibm,associativity-reference-points",
 340					&distance_ref_points_depth);
 341
 342	if (!distance_ref_points) {
 343		dbg("NUMA: ibm,associativity-reference-points not found.\n");
 344		goto err;
 345	}
 346
 347	distance_ref_points_depth /= sizeof(int);
 348
 349	if (firmware_has_feature(FW_FEATURE_OPAL) ||
 350	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
 351		dbg("Using form 1 affinity\n");
 352		form1_affinity = 1;
 353	}
 354
 355	if (form1_affinity) {
 356		depth = of_read_number(distance_ref_points, 1);
 357	} else {
 358		if (distance_ref_points_depth < 2) {
 359			printk(KERN_WARNING "NUMA: "
 360				"short ibm,associativity-reference-points\n");
 361			goto err;
 362		}
 363
 364		depth = of_read_number(&distance_ref_points[1], 1);
 365	}
 366
 367	/*
 368	 * Warn and cap if the hardware supports more than
 369	 * MAX_DISTANCE_REF_POINTS domains.
 370	 */
 371	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
 372		printk(KERN_WARNING "NUMA: distance array capped at "
 373			"%d entries\n", MAX_DISTANCE_REF_POINTS);
 374		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
 375	}
 376
 377	of_node_put(root);
 378	return depth;
 379
 380err:
 381	of_node_put(root);
 382	return -1;
 383}
 384
 385static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 386{
 387	struct device_node *memory = NULL;
 388
 389	memory = of_find_node_by_type(memory, "memory");
 390	if (!memory)
 391		panic("numa.c: No memory nodes found!");
 392
 393	*n_addr_cells = of_n_addr_cells(memory);
 394	*n_size_cells = of_n_size_cells(memory);
 395	of_node_put(memory);
 396}
 397
 398static unsigned long read_n_cells(int n, const __be32 **buf)
 399{
 400	unsigned long result = 0;
 401
 402	while (n--) {
 403		result = (result << 32) | of_read_number(*buf, 1);
 404		(*buf)++;
 405	}
 406	return result;
 407}
 408
 409/*
 410 * Read the next memblock list entry from the ibm,dynamic-memory property
 411 * and return the information in the provided of_drconf_cell structure.
 412 */
 413static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
 414{
 415	const __be32 *cp;
 416
 417	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
 418
 419	cp = *cellp;
 420	drmem->drc_index = of_read_number(cp, 1);
 421	drmem->reserved = of_read_number(&cp[1], 1);
 422	drmem->aa_index = of_read_number(&cp[2], 1);
 423	drmem->flags = of_read_number(&cp[3], 1);
 424
 425	*cellp = cp + 4;
 426}
 427
 428/*
 429 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
 430 *
 431 * The layout of the ibm,dynamic-memory property is a number N of memblock
 432 * list entries followed by N memblock list entries.  Each memblock list entry
 433 * contains information as laid out in the of_drconf_cell struct above.
 434 */
 435static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
 436{
 437	const __be32 *prop;
 438	u32 len, entries;
 439
 440	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
 441	if (!prop || len < sizeof(unsigned int))
 442		return 0;
 443
 444	entries = of_read_number(prop++, 1);
 445
 446	/* Now that we know the number of entries, revalidate the size
 447	 * of the property read in to ensure we have everything
 448	 */
 449	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
 450		return 0;
 451
 452	*dm = prop;
 453	return entries;
 454}
 455
 456/*
 457 * Retrieve and validate the ibm,lmb-size property for drconf memory
 458 * from the device tree.
 459 */
 460static u64 of_get_lmb_size(struct device_node *memory)
 461{
 462	const __be32 *prop;
 463	u32 len;
 464
 465	prop = of_get_property(memory, "ibm,lmb-size", &len);
 466	if (!prop || len < sizeof(unsigned int))
 467		return 0;
 468
 469	return read_n_cells(n_mem_size_cells, &prop);
 470}
 471
 472struct assoc_arrays {
 473	u32	n_arrays;
 474	u32	array_sz;
 475	const __be32 *arrays;
 476};
 477
 478/*
 479 * Retrieve and validate the list of associativity arrays for drconf
 480 * memory from the ibm,associativity-lookup-arrays property of the
 481 * device tree..
 482 *
 483 * The layout of the ibm,associativity-lookup-arrays property is a number N
 484 * indicating the number of associativity arrays, followed by a number M
 485 * indicating the size of each associativity array, followed by a list
 486 * of N associativity arrays.
 487 */
 488static int of_get_assoc_arrays(struct device_node *memory,
 489			       struct assoc_arrays *aa)
 490{
 
 491	const __be32 *prop;
 492	u32 len;
 493
 
 
 
 
 494	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 495	if (!prop || len < 2 * sizeof(unsigned int))
 
 496		return -1;
 
 497
 498	aa->n_arrays = of_read_number(prop++, 1);
 499	aa->array_sz = of_read_number(prop++, 1);
 500
 
 
 501	/* Now that we know the number of arrays and size of each array,
 502	 * revalidate the size of the property read in.
 503	 */
 504	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 505		return -1;
 506
 507	aa->arrays = prop;
 508	return 0;
 509}
 510
 511/*
 512 * This is like of_node_to_nid_single() for memory represented in the
 513 * ibm,dynamic-reconfiguration-memory node.
 514 */
 515static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
 516				   struct assoc_arrays *aa)
 517{
 518	int default_nid = 0;
 
 519	int nid = default_nid;
 520	int index;
 521
 522	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
 523	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
 524	    drmem->aa_index < aa->n_arrays) {
 525		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
 526		nid = of_read_number(&aa->arrays[index], 1);
 
 
 
 
 
 
 527
 528		if (nid == 0xffff || nid >= MAX_NUMNODES)
 529			nid = default_nid;
 
 
 
 
 
 
 530	}
 531
 532	return nid;
 533}
 534
 535/*
 536 * Figure out to which domain a cpu belongs and stick it there.
 537 * Return the id of the domain used.
 538 */
 539static int numa_setup_cpu(unsigned long lcpu)
 540{
 541	int nid;
 542	struct device_node *cpu;
 543
 544	/*
 545	 * If a valid cpu-to-node mapping is already available, use it
 546	 * directly instead of querying the firmware, since it represents
 547	 * the most recent mapping notified to us by the platform (eg: VPHN).
 548	 */
 549	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
 550		map_cpu_to_node(lcpu, nid);
 551		return nid;
 552	}
 553
 554	cpu = of_get_cpu_node(lcpu, NULL);
 555
 556	if (!cpu) {
 557		WARN_ON(1);
 558		nid = 0;
 559		goto out;
 
 
 560	}
 561
 562	nid = of_node_to_nid_single(cpu);
 563
 564	if (nid < 0 || !node_online(nid))
 
 565		nid = first_online_node;
 566out:
 567	map_cpu_to_node(lcpu, nid);
 568
 569	of_node_put(cpu);
 570
 571	return nid;
 572}
 573
 574static void verify_cpu_node_mapping(int cpu, int node)
 575{
 576	int base, sibling, i;
 577
 578	/* Verify that all the threads in the core belong to the same node */
 579	base = cpu_first_thread_sibling(cpu);
 580
 581	for (i = 0; i < threads_per_core; i++) {
 582		sibling = base + i;
 583
 584		if (sibling == cpu || cpu_is_offline(sibling))
 585			continue;
 586
 587		if (cpu_to_node(sibling) != node) {
 588			WARN(1, "CPU thread siblings %d and %d don't belong"
 589				" to the same node!\n", cpu, sibling);
 590			break;
 591		}
 592	}
 593}
 594
 595static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
 596			     void *hcpu)
 597{
 598	unsigned long lcpu = (unsigned long)hcpu;
 599	int ret = NOTIFY_DONE, nid;
 
 
 
 
 600
 601	switch (action) {
 602	case CPU_UP_PREPARE:
 603	case CPU_UP_PREPARE_FROZEN:
 604		nid = numa_setup_cpu(lcpu);
 605		verify_cpu_node_mapping((int)lcpu, nid);
 606		ret = NOTIFY_OK;
 607		break;
 608#ifdef CONFIG_HOTPLUG_CPU
 609	case CPU_DEAD:
 610	case CPU_DEAD_FROZEN:
 611	case CPU_UP_CANCELED:
 612	case CPU_UP_CANCELED_FROZEN:
 613		unmap_cpu_from_node(lcpu);
 614		break;
 615		ret = NOTIFY_OK;
 616#endif
 617	}
 618	return ret;
 619}
 620
 621/*
 622 * Check and possibly modify a memory region to enforce the memory limit.
 623 *
 624 * Returns the size the region should have to enforce the memory limit.
 625 * This will either be the original value of size, a truncated value,
 626 * or zero. If the returned value of size is 0 the region should be
 627 * discarded as it lies wholly above the memory limit.
 628 */
 629static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 630						      unsigned long size)
 631{
 632	/*
 633	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
 634	 * we've already adjusted it for the limit and it takes care of
 635	 * having memory holes below the limit.  Also, in the case of
 636	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
 637	 */
 638
 639	if (start + size <= memblock_end_of_DRAM())
 640		return size;
 641
 642	if (start >= memblock_end_of_DRAM())
 643		return 0;
 644
 645	return memblock_end_of_DRAM() - start;
 646}
 647
 648/*
 649 * Reads the counter for a given entry in
 650 * linux,drconf-usable-memory property
 651 */
 652static inline int __init read_usm_ranges(const __be32 **usm)
 653{
 654	/*
 655	 * For each lmb in ibm,dynamic-memory a corresponding
 656	 * entry in linux,drconf-usable-memory property contains
 657	 * a counter followed by that many (base, size) duple.
 658	 * read the counter from linux,drconf-usable-memory
 659	 */
 660	return read_n_cells(n_mem_size_cells, usm);
 661}
 662
 663/*
 664 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 665 * node.  This assumes n_mem_{addr,size}_cells have been set.
 666 */
 667static void __init parse_drconf_memory(struct device_node *memory)
 
 668{
 669	const __be32 *uninitialized_var(dm), *usm;
 670	unsigned int n, rc, ranges, is_kexec_kdump = 0;
 671	unsigned long lmb_size, base, size, sz;
 672	int nid;
 673	struct assoc_arrays aa = { .arrays = NULL };
 674
 675	n = of_get_drconf_memory(memory, &dm);
 676	if (!n)
 677		return;
 678
 679	lmb_size = of_get_lmb_size(memory);
 680	if (!lmb_size)
 681		return;
 682
 683	rc = of_get_assoc_arrays(memory, &aa);
 684	if (rc)
 685		return;
 686
 687	/* check if this is a kexec/kdump kernel */
 688	usm = of_get_usable_memory(memory);
 689	if (usm != NULL)
 690		is_kexec_kdump = 1;
 691
 692	for (; n != 0; --n) {
 693		struct of_drconf_cell drmem;
 
 694
 695		read_drconf_cell(&drmem, &dm);
 696
 697		/* skip this block if the reserved bit is set in flags (0x80)
 698		   or if the block is not assigned to this partition (0x8) */
 699		if ((drmem.flags & DRCONF_MEM_RESERVED)
 700		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
 701			continue;
 702
 703		base = drmem.base_addr;
 704		size = lmb_size;
 705		ranges = 1;
 706
 
 707		if (is_kexec_kdump) {
 708			ranges = read_usm_ranges(&usm);
 709			if (!ranges) /* there are no (base, size) duple */
 710				continue;
 711		}
 712		do {
 713			if (is_kexec_kdump) {
 714				base = read_n_cells(n_mem_addr_cells, &usm);
 715				size = read_n_cells(n_mem_size_cells, &usm);
 716			}
 717			nid = of_drconf_to_nid_single(&drmem, &aa);
 718			fake_numa_create_new_node(
 719				((base + size) >> PAGE_SHIFT),
 720					   &nid);
 721			node_set_online(nid);
 722			sz = numa_enforce_memory_limit(base, size);
 723			if (sz)
 724				memblock_set_node(base, sz,
 725						  &memblock.memory, nid);
 726		} while (--ranges);
 727	}
 728}
 729
 730static int __init parse_numa_properties(void)
 731{
 732	struct device_node *memory;
 733	int default_nid = 0;
 734	unsigned long i;
 735
 736	if (numa_enabled == 0) {
 737		printk(KERN_WARNING "NUMA disabled by user\n");
 738		return -1;
 739	}
 740
 741	min_common_depth = find_min_common_depth();
 742
 743	if (min_common_depth < 0)
 
 
 
 
 
 744		return min_common_depth;
 
 745
 746	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
 747
 748	/*
 749	 * Even though we connect cpus to numa domains later in SMP
 750	 * init, we need to know the node ids now. This is because
 751	 * each node to be onlined must have NODE_DATA etc backing it.
 752	 */
 753	for_each_present_cpu(i) {
 754		struct device_node *cpu;
 755		int nid;
 756
 757		cpu = of_get_cpu_node(i, NULL);
 758		BUG_ON(!cpu);
 759		nid = of_node_to_nid_single(cpu);
 760		of_node_put(cpu);
 761
 762		/*
 763		 * Don't fall back to default_nid yet -- we will plug
 764		 * cpus into nodes once the memory scan has discovered
 765		 * the topology.
 766		 */
 767		if (nid < 0)
 768			continue;
 769		node_set_online(nid);
 770	}
 771
 772	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 773
 774	for_each_node_by_type(memory, "memory") {
 775		unsigned long start;
 776		unsigned long size;
 777		int nid;
 778		int ranges;
 779		const __be32 *memcell_buf;
 780		unsigned int len;
 781
 782		memcell_buf = of_get_property(memory,
 783			"linux,usable-memory", &len);
 784		if (!memcell_buf || len <= 0)
 785			memcell_buf = of_get_property(memory, "reg", &len);
 786		if (!memcell_buf || len <= 0)
 787			continue;
 788
 789		/* ranges in cell */
 790		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 791new_range:
 792		/* these are order-sensitive, and modify the buffer pointer */
 793		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 794		size = read_n_cells(n_mem_size_cells, &memcell_buf);
 795
 796		/*
 797		 * Assumption: either all memory nodes or none will
 798		 * have associativity properties.  If none, then
 799		 * everything goes to default_nid.
 800		 */
 801		nid = of_node_to_nid_single(memory);
 802		if (nid < 0)
 803			nid = default_nid;
 804
 805		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
 806		node_set_online(nid);
 807
 808		if (!(size = numa_enforce_memory_limit(start, size))) {
 809			if (--ranges)
 810				goto new_range;
 811			else
 812				continue;
 813		}
 814
 815		memblock_set_node(start, size, &memblock.memory, nid);
 816
 817		if (--ranges)
 818			goto new_range;
 819	}
 820
 821	/*
 822	 * Now do the same thing for each MEMBLOCK listed in the
 823	 * ibm,dynamic-memory property in the
 824	 * ibm,dynamic-reconfiguration-memory node.
 825	 */
 826	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 827	if (memory)
 828		parse_drconf_memory(memory);
 
 
 829
 830	return 0;
 831}
 832
 833static void __init setup_nonnuma(void)
 834{
 835	unsigned long top_of_ram = memblock_end_of_DRAM();
 836	unsigned long total_ram = memblock_phys_mem_size();
 837	unsigned long start_pfn, end_pfn;
 838	unsigned int nid = 0;
 839	struct memblock_region *reg;
 840
 841	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
 842	       top_of_ram, total_ram);
 843	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
 844	       (top_of_ram - total_ram) >> 20);
 845
 846	for_each_memblock(memory, reg) {
 847		start_pfn = memblock_region_memory_base_pfn(reg);
 848		end_pfn = memblock_region_memory_end_pfn(reg);
 849
 850		fake_numa_create_new_node(end_pfn, &nid);
 851		memblock_set_node(PFN_PHYS(start_pfn),
 852				  PFN_PHYS(end_pfn - start_pfn),
 853				  &memblock.memory, nid);
 854		node_set_online(nid);
 855	}
 856}
 857
 858void __init dump_numa_cpu_topology(void)
 859{
 860	unsigned int node;
 861	unsigned int cpu, count;
 862
 863	if (min_common_depth == -1 || !numa_enabled)
 864		return;
 865
 866	for_each_online_node(node) {
 867		printk(KERN_DEBUG "Node %d CPUs:", node);
 868
 869		count = 0;
 870		/*
 871		 * If we used a CPU iterator here we would miss printing
 872		 * the holes in the cpumap.
 873		 */
 874		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
 875			if (cpumask_test_cpu(cpu,
 876					node_to_cpumask_map[node])) {
 877				if (count == 0)
 878					printk(" %u", cpu);
 879				++count;
 880			} else {
 881				if (count > 1)
 882					printk("-%u", cpu - 1);
 883				count = 0;
 884			}
 885		}
 886
 887		if (count > 1)
 888			printk("-%u", nr_cpu_ids - 1);
 889		printk("\n");
 890	}
 891}
 892
 893static void __init dump_numa_memory_topology(void)
 
 894{
 895	unsigned int node;
 896	unsigned int count;
 897
 898	if (min_common_depth == -1 || !numa_enabled)
 899		return;
 900
 901	for_each_online_node(node) {
 902		unsigned long i;
 
 
 903
 904		printk(KERN_DEBUG "Node %d Memory:", node);
 905
 906		count = 0;
 907
 908		for (i = 0; i < memblock_end_of_DRAM();
 909		     i += (1 << SECTION_SIZE_BITS)) {
 910			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
 911				if (count == 0)
 912					printk(" 0x%lx", i);
 913				++count;
 914			} else {
 915				if (count > 0)
 916					printk("-0x%lx", i);
 917				count = 0;
 918			}
 919		}
 920
 921		if (count > 0)
 922			printk("-0x%lx", i);
 923		printk("\n");
 924	}
 
 925}
 926
 927/*
 928 * Allocate some memory, satisfying the memblock or bootmem allocator where
 929 * required. nid is the preferred node and end is the physical address of
 930 * the highest address in the node.
 931 *
 932 * Returns the virtual address of the memory.
 933 */
 934static void __init *careful_zallocation(int nid, unsigned long size,
 935				       unsigned long align,
 936				       unsigned long end_pfn)
 937{
 938	void *ret;
 939	int new_nid;
 940	unsigned long ret_paddr;
 941
 942	ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
 
 943
 944	/* retry over all memory */
 945	if (!ret_paddr)
 946		ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
 947
 948	if (!ret_paddr)
 949		panic("numa.c: cannot allocate %lu bytes for node %d",
 950		      size, nid);
 
 951
 952	ret = __va(ret_paddr);
 
 
 
 953
 954	/*
 955	 * We initialize the nodes in numeric order: 0, 1, 2...
 956	 * and hand over control from the MEMBLOCK allocator to the
 957	 * bootmem allocator.  If this function is called for
 958	 * node 5, then we know that all nodes <5 are using the
 959	 * bootmem allocator instead of the MEMBLOCK allocator.
 960	 *
 961	 * So, check the nid from which this allocation came
 962	 * and double check to see if we need to use bootmem
 963	 * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
 964	 * since it would be useless.
 965	 */
 966	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
 967	if (new_nid < nid) {
 968		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
 969				size, align, 0);
 970
 971		dbg("alloc_bootmem %p %lx\n", ret, size);
 972	}
 
 973
 974	memset(ret, 0, size);
 975	return ret;
 976}
 977
 978static struct notifier_block ppc64_numa_nb = {
 979	.notifier_call = cpu_numa_callback,
 980	.priority = 1 /* Must run before sched domains notifier. */
 981};
 
 
 
 982
 983static void __init mark_reserved_regions_for_nid(int nid)
 984{
 985	struct pglist_data *node = NODE_DATA(nid);
 986	struct memblock_region *reg;
 987
 988	for_each_memblock(reserved, reg) {
 989		unsigned long physbase = reg->base;
 990		unsigned long size = reg->size;
 991		unsigned long start_pfn = physbase >> PAGE_SHIFT;
 992		unsigned long end_pfn = PFN_UP(physbase + size);
 993		struct node_active_region node_ar;
 994		unsigned long node_end_pfn = pgdat_end_pfn(node);
 995
 996		/*
 997		 * Check to make sure that this memblock.reserved area is
 998		 * within the bounds of the node that we care about.
 999		 * Checking the nid of the start and end points is not
1000		 * sufficient because the reserved area could span the
1001		 * entire node.
1002		 */
1003		if (end_pfn <= node->node_start_pfn ||
1004		    start_pfn >= node_end_pfn)
1005			continue;
1006
1007		get_node_active_region(start_pfn, &node_ar);
1008		while (start_pfn < end_pfn &&
1009			node_ar.start_pfn < node_ar.end_pfn) {
1010			unsigned long reserve_size = size;
1011			/*
1012			 * if reserved region extends past active region
1013			 * then trim size to active region
1014			 */
1015			if (end_pfn > node_ar.end_pfn)
1016				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
1017					- physbase;
1018			/*
1019			 * Only worry about *this* node, others may not
1020			 * yet have valid NODE_DATA().
1021			 */
1022			if (node_ar.nid == nid) {
1023				dbg("reserve_bootmem %lx %lx nid=%d\n",
1024					physbase, reserve_size, node_ar.nid);
1025				reserve_bootmem_node(NODE_DATA(node_ar.nid),
1026						physbase, reserve_size,
1027						BOOTMEM_DEFAULT);
1028			}
1029			/*
1030			 * if reserved region is contained in the active region
1031			 * then done.
1032			 */
1033			if (end_pfn <= node_ar.end_pfn)
1034				break;
1035
1036			/*
1037			 * reserved region extends past the active region
1038			 *   get next active region that contains this
1039			 *   reserved region
1040			 */
1041			start_pfn = node_ar.end_pfn;
1042			physbase = start_pfn << PAGE_SHIFT;
1043			size = size - reserve_size;
1044			get_node_active_region(start_pfn, &node_ar);
1045		}
1046	}
1047}
1048
1049
1050void __init do_init_bootmem(void)
1051{
1052	int nid;
1053
1054	min_low_pfn = 0;
1055	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1056	max_pfn = max_low_pfn;
1057
1058	if (parse_numa_properties())
1059		setup_nonnuma();
1060	else
1061		dump_numa_memory_topology();
1062
1063	for_each_online_node(nid) {
1064		unsigned long start_pfn, end_pfn;
1065		void *bootmem_vaddr;
1066		unsigned long bootmap_pages;
1067
1068		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1069
1070		/*
1071		 * Allocate the node structure node local if possible
1072		 *
1073		 * Be careful moving this around, as it relies on all
1074		 * previous nodes' bootmem to be initialized and have
1075		 * all reserved areas marked.
1076		 */
1077		NODE_DATA(nid) = careful_zallocation(nid,
1078					sizeof(struct pglist_data),
1079					SMP_CACHE_BYTES, end_pfn);
1080
1081  		dbg("node %d\n", nid);
1082		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1083
1084		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1085		NODE_DATA(nid)->node_start_pfn = start_pfn;
1086		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1087
1088		if (NODE_DATA(nid)->node_spanned_pages == 0)
1089  			continue;
1090
1091  		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1092  		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1093
1094		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1095		bootmem_vaddr = careful_zallocation(nid,
1096					bootmap_pages << PAGE_SHIFT,
1097					PAGE_SIZE, end_pfn);
1098
1099		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1100
1101		init_bootmem_node(NODE_DATA(nid),
1102				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1103				  start_pfn, end_pfn);
1104
1105		free_bootmem_with_active_regions(nid, end_pfn);
1106		/*
1107		 * Be very careful about moving this around.  Future
1108		 * calls to careful_zallocation() depend on this getting
1109		 * done correctly.
1110		 */
1111		mark_reserved_regions_for_nid(nid);
1112		sparse_memory_present_with_active_regions(nid);
1113	}
1114
1115	init_bootmem_done = 1;
1116
1117	/*
1118	 * Now bootmem is initialised we can create the node to cpumask
1119	 * lookup tables and setup the cpu callback to populate them.
 
 
 
1120	 */
1121	setup_node_to_cpumask_map();
1122
1123	reset_numa_cpu_lookup_table();
1124	register_cpu_notifier(&ppc64_numa_nb);
1125	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1126			  (void *)(unsigned long)boot_cpuid);
1127}
1128
1129void __init paging_init(void)
1130{
1131	unsigned long max_zone_pfns[MAX_NR_ZONES];
1132	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1133	max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1134	free_area_init_nodes(max_zone_pfns);
1135}
1136
1137static int __init early_numa(char *p)
1138{
1139	if (!p)
1140		return 0;
1141
1142	if (strstr(p, "off"))
1143		numa_enabled = 0;
1144
1145	if (strstr(p, "debug"))
1146		numa_debug = 1;
1147
1148	p = strstr(p, "fake=");
1149	if (p)
1150		cmdline = p + strlen("fake=");
1151
1152	return 0;
1153}
1154early_param("numa", early_numa);
1155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1156#ifdef CONFIG_MEMORY_HOTPLUG
1157/*
1158 * Find the node associated with a hot added memory section for
1159 * memory represented in the device tree by the property
1160 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1161 */
1162static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1163				     unsigned long scn_addr)
1164{
1165	const __be32 *dm;
1166	unsigned int drconf_cell_cnt, rc;
1167	unsigned long lmb_size;
1168	struct assoc_arrays aa;
1169	int nid = -1;
1170
1171	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1172	if (!drconf_cell_cnt)
1173		return -1;
1174
1175	lmb_size = of_get_lmb_size(memory);
1176	if (!lmb_size)
1177		return -1;
1178
1179	rc = of_get_assoc_arrays(memory, &aa);
1180	if (rc)
1181		return -1;
1182
1183	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1184		struct of_drconf_cell drmem;
1185
1186		read_drconf_cell(&drmem, &dm);
1187
 
1188		/* skip this block if it is reserved or not assigned to
1189		 * this partition */
1190		if ((drmem.flags & DRCONF_MEM_RESERVED)
1191		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1192			continue;
1193
1194		if ((scn_addr < drmem.base_addr)
1195		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1196			continue;
1197
1198		nid = of_drconf_to_nid_single(&drmem, &aa);
1199		break;
1200	}
1201
1202	return nid;
1203}
1204
1205/*
1206 * Find the node associated with a hot added memory section for memory
1207 * represented in the device tree as a node (i.e. memory@XXXX) for
1208 * each memblock.
1209 */
1210static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1211{
1212	struct device_node *memory;
1213	int nid = -1;
1214
1215	for_each_node_by_type(memory, "memory") {
1216		unsigned long start, size;
1217		int ranges;
1218		const __be32 *memcell_buf;
1219		unsigned int len;
1220
1221		memcell_buf = of_get_property(memory, "reg", &len);
1222		if (!memcell_buf || len <= 0)
1223			continue;
1224
1225		/* ranges in cell */
1226		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1227
1228		while (ranges--) {
1229			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1230			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1231
1232			if ((scn_addr < start) || (scn_addr >= (start + size)))
1233				continue;
1234
1235			nid = of_node_to_nid_single(memory);
1236			break;
1237		}
1238
1239		if (nid >= 0)
1240			break;
1241	}
1242
1243	of_node_put(memory);
1244
1245	return nid;
1246}
1247
1248/*
1249 * Find the node associated with a hot added memory section.  Section
1250 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1251 * sections are fully contained within a single MEMBLOCK.
1252 */
1253int hot_add_scn_to_nid(unsigned long scn_addr)
1254{
1255	struct device_node *memory = NULL;
1256	int nid, found = 0;
1257
1258	if (!numa_enabled || (min_common_depth < 0))
1259		return first_online_node;
1260
1261	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1262	if (memory) {
1263		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1264		of_node_put(memory);
1265	} else {
1266		nid = hot_add_node_scn_to_nid(scn_addr);
1267	}
1268
1269	if (nid < 0 || !node_online(nid))
1270		nid = first_online_node;
1271
1272	if (NODE_DATA(nid)->node_spanned_pages)
1273		return nid;
1274
1275	for_each_online_node(nid) {
1276		if (NODE_DATA(nid)->node_spanned_pages) {
1277			found = 1;
1278			break;
1279		}
1280	}
1281
1282	BUG_ON(!found);
1283	return nid;
1284}
1285
1286static u64 hot_add_drconf_memory_max(void)
1287{
1288        struct device_node *memory = NULL;
1289        unsigned int drconf_cell_cnt = 0;
1290        u64 lmb_size = 0;
1291	const __be32 *dm = NULL;
1292
1293        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1294        if (memory) {
1295                drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1296                lmb_size = of_get_lmb_size(memory);
1297                of_node_put(memory);
1298        }
1299        return lmb_size * drconf_cell_cnt;
 
 
 
 
 
 
1300}
1301
1302/*
1303 * memory_hotplug_max - return max address of memory that may be added
1304 *
1305 * This is currently only used on systems that support drconfig memory
1306 * hotplug.
1307 */
1308u64 memory_hotplug_max(void)
1309{
1310        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1311}
1312#endif /* CONFIG_MEMORY_HOTPLUG */
1313
1314/* Virtual Processor Home Node (VPHN) support */
1315#ifdef CONFIG_PPC_SPLPAR
1316struct topology_update_data {
1317	struct topology_update_data *next;
1318	unsigned int cpu;
1319	int old_nid;
1320	int new_nid;
1321};
1322
 
 
1323static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1324static cpumask_t cpu_associativity_changes_mask;
1325static int vphn_enabled;
1326static int prrn_enabled;
1327static void reset_topology_timer(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1328
1329/*
1330 * Store the current values of the associativity change counters in the
1331 * hypervisor.
1332 */
1333static void setup_cpu_associativity_change_counters(void)
1334{
1335	int cpu;
1336
1337	/* The VPHN feature supports a maximum of 8 reference points */
1338	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1339
1340	for_each_possible_cpu(cpu) {
1341		int i;
1342		u8 *counts = vphn_cpu_change_counts[cpu];
1343		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1344
1345		for (i = 0; i < distance_ref_points_depth; i++)
1346			counts[i] = hypervisor_counts[i];
1347	}
1348}
1349
1350/*
1351 * The hypervisor maintains a set of 8 associativity change counters in
1352 * the VPA of each cpu that correspond to the associativity levels in the
1353 * ibm,associativity-reference-points property. When an associativity
1354 * level changes, the corresponding counter is incremented.
1355 *
1356 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1357 * node associativity levels have changed.
1358 *
1359 * Returns the number of cpus with unhandled associativity changes.
1360 */
1361static int update_cpu_associativity_changes_mask(void)
1362{
1363	int cpu;
1364	cpumask_t *changes = &cpu_associativity_changes_mask;
1365
1366	for_each_possible_cpu(cpu) {
1367		int i, changed = 0;
1368		u8 *counts = vphn_cpu_change_counts[cpu];
1369		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1370
1371		for (i = 0; i < distance_ref_points_depth; i++) {
1372			if (hypervisor_counts[i] != counts[i]) {
1373				counts[i] = hypervisor_counts[i];
1374				changed = 1;
1375			}
1376		}
1377		if (changed) {
1378			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1379			cpu = cpu_last_thread_sibling(cpu);
1380		}
1381	}
1382
1383	return cpumask_weight(changes);
1384}
1385
1386/*
1387 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1388 * the complete property we have to add the length in the first cell.
1389 */
1390#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1391
1392/*
1393 * Convert the associativity domain numbers returned from the hypervisor
1394 * to the sequence they would appear in the ibm,associativity property.
1395 */
1396static int vphn_unpack_associativity(const long *packed, __be32 *unpacked)
1397{
1398	int i, nr_assoc_doms = 0;
1399	const __be16 *field = (const __be16 *) packed;
1400
1401#define VPHN_FIELD_UNUSED	(0xffff)
1402#define VPHN_FIELD_MSB		(0x8000)
1403#define VPHN_FIELD_MASK		(~VPHN_FIELD_MSB)
1404
1405	for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1406		if (be16_to_cpup(field) == VPHN_FIELD_UNUSED) {
1407			/* All significant fields processed, and remaining
1408			 * fields contain the reserved value of all 1's.
1409			 * Just store them.
1410			 */
1411			unpacked[i] = *((__be32 *)field);
1412			field += 2;
1413		} else if (be16_to_cpup(field) & VPHN_FIELD_MSB) {
1414			/* Data is in the lower 15 bits of this field */
1415			unpacked[i] = cpu_to_be32(
1416				be16_to_cpup(field) & VPHN_FIELD_MASK);
1417			field++;
1418			nr_assoc_doms++;
1419		} else {
1420			/* Data is in the lower 15 bits of this field
1421			 * concatenated with the next 16 bit field
1422			 */
1423			unpacked[i] = *((__be32 *)field);
1424			field += 2;
1425			nr_assoc_doms++;
1426		}
1427	}
1428
1429	/* The first cell contains the length of the property */
1430	unpacked[0] = cpu_to_be32(nr_assoc_doms);
1431
1432	return nr_assoc_doms;
1433}
1434
1435/*
1436 * Retrieve the new associativity information for a virtual processor's
1437 * home node.
1438 */
1439static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1440{
1441	long rc;
1442	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1443	u64 flags = 1;
1444	int hwcpu = get_hard_smp_processor_id(cpu);
1445
1446	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1447	vphn_unpack_associativity(retbuf, associativity);
1448
1449	return rc;
1450}
1451
1452static long vphn_get_associativity(unsigned long cpu,
1453					__be32 *associativity)
1454{
1455	long rc;
1456
1457	rc = hcall_vphn(cpu, associativity);
 
1458
1459	switch (rc) {
1460	case H_FUNCTION:
1461		printk(KERN_INFO
1462			"VPHN is not supported. Disabling polling...\n");
1463		stop_topology_update();
1464		break;
1465	case H_HARDWARE:
1466		printk(KERN_ERR
1467			"hcall_vphn() experienced a hardware fault "
1468			"preventing VPHN. Disabling polling...\n");
1469		stop_topology_update();
 
 
 
 
 
1470	}
1471
1472	return rc;
1473}
1474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1475/*
1476 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1477 * characteristics change. This function doesn't perform any locking and is
1478 * only safe to call from stop_machine().
1479 */
1480static int update_cpu_topology(void *data)
1481{
1482	struct topology_update_data *update;
1483	unsigned long cpu;
1484
1485	if (!data)
1486		return -EINVAL;
1487
1488	cpu = smp_processor_id();
1489
1490	for (update = data; update; update = update->next) {
 
1491		if (cpu != update->cpu)
1492			continue;
1493
1494		unmap_cpu_from_node(update->cpu);
1495		map_cpu_to_node(update->cpu, update->new_nid);
 
 
1496		vdso_getcpu_init();
1497	}
1498
1499	return 0;
1500}
1501
1502static int update_lookup_table(void *data)
1503{
1504	struct topology_update_data *update;
1505
1506	if (!data)
1507		return -EINVAL;
1508
1509	/*
1510	 * Upon topology update, the numa-cpu lookup table needs to be updated
1511	 * for all threads in the core, including offline CPUs, to ensure that
1512	 * future hotplug operations respect the cpu-to-node associativity
1513	 * properly.
1514	 */
1515	for (update = data; update; update = update->next) {
1516		int nid, base, j;
1517
1518		nid = update->new_nid;
1519		base = cpu_first_thread_sibling(update->cpu);
1520
1521		for (j = 0; j < threads_per_core; j++) {
1522			update_numa_cpu_lookup_table(base + j, nid);
1523		}
1524	}
1525
1526	return 0;
1527}
1528
1529/*
1530 * Update the node maps and sysfs entries for each cpu whose home node
1531 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
 
 
1532 */
1533int arch_update_cpu_topology(void)
1534{
1535	unsigned int cpu, sibling, changed = 0;
1536	struct topology_update_data *updates, *ud;
1537	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1538	cpumask_t updated_cpus;
1539	struct device *dev;
1540	int weight, new_nid, i = 0;
1541
 
 
 
1542	weight = cpumask_weight(&cpu_associativity_changes_mask);
1543	if (!weight)
1544		return 0;
1545
1546	updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1547	if (!updates)
1548		return 0;
1549
1550	cpumask_clear(&updated_cpus);
1551
1552	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1553		/*
1554		 * If siblings aren't flagged for changes, updates list
1555		 * will be too short. Skip on this update and set for next
1556		 * update.
1557		 */
1558		if (!cpumask_subset(cpu_sibling_mask(cpu),
1559					&cpu_associativity_changes_mask)) {
1560			pr_info("Sibling bits not set for associativity "
1561					"change, cpu%d\n", cpu);
1562			cpumask_or(&cpu_associativity_changes_mask,
1563					&cpu_associativity_changes_mask,
1564					cpu_sibling_mask(cpu));
1565			cpu = cpu_last_thread_sibling(cpu);
1566			continue;
1567		}
1568
1569		/* Use associativity from first thread for all siblings */
1570		vphn_get_associativity(cpu, associativity);
1571		new_nid = associativity_to_nid(associativity);
1572		if (new_nid < 0 || !node_online(new_nid))
1573			new_nid = first_online_node;
1574
1575		if (new_nid == numa_cpu_lookup_table[cpu]) {
1576			cpumask_andnot(&cpu_associativity_changes_mask,
1577					&cpu_associativity_changes_mask,
1578					cpu_sibling_mask(cpu));
 
 
1579			cpu = cpu_last_thread_sibling(cpu);
1580			continue;
1581		}
1582
1583		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1584			ud = &updates[i++];
 
1585			ud->cpu = sibling;
1586			ud->new_nid = new_nid;
1587			ud->old_nid = numa_cpu_lookup_table[sibling];
1588			cpumask_set_cpu(sibling, &updated_cpus);
1589			if (i < weight)
1590				ud->next = &updates[i];
1591		}
1592		cpu = cpu_last_thread_sibling(cpu);
1593	}
1594
1595	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1596	 * In cases where we have nothing to update (because the updates list
1597	 * is too short or because the new topology is same as the old one),
1598	 * skip invoking update_cpu_topology() via stop-machine(). This is
1599	 * necessary (and not just a fast-path optimization) since stop-machine
1600	 * can end up electing a random CPU to run update_cpu_topology(), and
1601	 * thus trick us into setting up incorrect cpu-node mappings (since
1602	 * 'updates' is kzalloc()'ed).
1603	 *
1604	 * And for the similar reason, we will skip all the following updating.
1605	 */
1606	if (!cpumask_weight(&updated_cpus))
1607		goto out;
1608
1609	stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
 
 
 
 
1610
1611	/*
1612	 * Update the numa-cpu lookup table with the new mappings, even for
1613	 * offline CPUs. It is best to perform this update from the stop-
1614	 * machine context.
1615	 */
1616	stop_machine(update_lookup_table, &updates[0],
 
1617					cpumask_of(raw_smp_processor_id()));
 
 
 
1618
1619	for (ud = &updates[0]; ud; ud = ud->next) {
1620		unregister_cpu_under_node(ud->cpu, ud->old_nid);
1621		register_cpu_under_node(ud->cpu, ud->new_nid);
1622
1623		dev = get_cpu_device(ud->cpu);
1624		if (dev)
1625			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1626		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1627		changed = 1;
1628	}
1629
1630out:
1631	kfree(updates);
1632	return changed;
1633}
1634
 
 
 
 
 
1635static void topology_work_fn(struct work_struct *work)
1636{
1637	rebuild_sched_domains();
1638}
1639static DECLARE_WORK(topology_work, topology_work_fn);
1640
1641static void topology_schedule_update(void)
1642{
1643	schedule_work(&topology_work);
1644}
1645
1646static void topology_timer_fn(unsigned long ignored)
1647{
1648	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1649		topology_schedule_update();
1650	else if (vphn_enabled) {
1651		if (update_cpu_associativity_changes_mask() > 0)
1652			topology_schedule_update();
1653		reset_topology_timer();
1654	}
1655}
1656static struct timer_list topology_timer =
1657	TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1658
1659static void reset_topology_timer(void)
1660{
1661	topology_timer.data = 0;
1662	topology_timer.expires = jiffies + 60 * HZ;
1663	mod_timer(&topology_timer, topology_timer.expires);
1664}
1665
1666#ifdef CONFIG_SMP
1667
1668static void stage_topology_update(int core_id)
1669{
1670	cpumask_or(&cpu_associativity_changes_mask,
1671		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1672	reset_topology_timer();
1673}
1674
1675static int dt_update_callback(struct notifier_block *nb,
1676				unsigned long action, void *data)
1677{
1678	struct of_prop_reconfig *update;
1679	int rc = NOTIFY_DONE;
1680
1681	switch (action) {
1682	case OF_RECONFIG_UPDATE_PROPERTY:
1683		update = (struct of_prop_reconfig *)data;
1684		if (!of_prop_cmp(update->dn->type, "cpu") &&
1685		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1686			u32 core_id;
1687			of_property_read_u32(update->dn, "reg", &core_id);
1688			stage_topology_update(core_id);
1689			rc = NOTIFY_OK;
1690		}
1691		break;
1692	}
1693
1694	return rc;
1695}
1696
1697static struct notifier_block dt_update_nb = {
1698	.notifier_call = dt_update_callback,
1699};
1700
1701#endif
1702
1703/*
1704 * Start polling for associativity changes.
1705 */
1706int start_topology_update(void)
1707{
1708	int rc = 0;
1709
 
 
 
1710	if (firmware_has_feature(FW_FEATURE_PRRN)) {
1711		if (!prrn_enabled) {
1712			prrn_enabled = 1;
1713			vphn_enabled = 0;
1714#ifdef CONFIG_SMP
1715			rc = of_reconfig_notifier_register(&dt_update_nb);
1716#endif
1717		}
1718	} else if (firmware_has_feature(FW_FEATURE_VPHN) &&
 
1719		   lppaca_shared_proc(get_lppaca())) {
1720		if (!vphn_enabled) {
1721			prrn_enabled = 0;
1722			vphn_enabled = 1;
1723			setup_cpu_associativity_change_counters();
1724			init_timer_deferrable(&topology_timer);
 
1725			reset_topology_timer();
1726		}
1727	}
1728
 
 
 
 
1729	return rc;
1730}
1731
1732/*
1733 * Disable polling for VPHN associativity changes.
1734 */
1735int stop_topology_update(void)
1736{
1737	int rc = 0;
1738
 
 
 
1739	if (prrn_enabled) {
1740		prrn_enabled = 0;
1741#ifdef CONFIG_SMP
1742		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1743#endif
1744	} else if (vphn_enabled) {
 
1745		vphn_enabled = 0;
1746		rc = del_timer_sync(&topology_timer);
1747	}
1748
 
 
1749	return rc;
1750}
1751
1752int prrn_is_enabled(void)
1753{
1754	return prrn_enabled;
1755}
1756
 
 
 
 
 
 
 
 
 
1757static int topology_read(struct seq_file *file, void *v)
1758{
1759	if (vphn_enabled || prrn_enabled)
1760		seq_puts(file, "on\n");
1761	else
1762		seq_puts(file, "off\n");
1763
1764	return 0;
1765}
1766
1767static int topology_open(struct inode *inode, struct file *file)
1768{
1769	return single_open(file, topology_read, NULL);
1770}
1771
1772static ssize_t topology_write(struct file *file, const char __user *buf,
1773			      size_t count, loff_t *off)
1774{
1775	char kbuf[4]; /* "on" or "off" plus null. */
1776	int read_len;
1777
1778	read_len = count < 3 ? count : 3;
1779	if (copy_from_user(kbuf, buf, read_len))
1780		return -EINVAL;
1781
1782	kbuf[read_len] = '\0';
1783
1784	if (!strncmp(kbuf, "on", 2))
 
1785		start_topology_update();
1786	else if (!strncmp(kbuf, "off", 3))
1787		stop_topology_update();
1788	else
 
1789		return -EINVAL;
1790
1791	return count;
1792}
1793
1794static const struct file_operations topology_ops = {
1795	.read = seq_read,
1796	.write = topology_write,
1797	.open = topology_open,
1798	.release = single_release
1799};
1800
1801static int topology_update_init(void)
1802{
1803	start_topology_update();
1804	proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops);
1805
 
 
 
 
 
 
 
1806	return 0;
1807}
1808device_initcall(topology_update_init);
1809#endif /* CONFIG_PPC_SPLPAR */