Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 * Copyright IBM Corp. 2002, 2006
  6 *
  7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  8 */
  9
 10#include <linux/kprobes.h>
 11#include <linux/ptrace.h>
 12#include <linux/preempt.h>
 13#include <linux/stop_machine.h>
 14#include <linux/kdebug.h>
 15#include <linux/uaccess.h>
 16#include <linux/extable.h>
 17#include <linux/module.h>
 18#include <linux/slab.h>
 19#include <linux/hardirq.h>
 20#include <linux/ftrace.h>
 21#include <asm/set_memory.h>
 22#include <asm/sections.h>
 23#include <asm/dis.h>
 24
 25DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 26DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 27
 28struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 29
 30DEFINE_INSN_CACHE_OPS(s390_insn);
 31
 32static int insn_page_in_use;
 33static char insn_page[PAGE_SIZE] __aligned(PAGE_SIZE);
 34
 35static void *alloc_s390_insn_page(void)
 36{
 37	if (xchg(&insn_page_in_use, 1) == 1)
 38		return NULL;
 39	set_memory_x((unsigned long) &insn_page, 1);
 40	return &insn_page;
 41}
 42
 43static void free_s390_insn_page(void *page)
 44{
 45	set_memory_nx((unsigned long) page, 1);
 46	xchg(&insn_page_in_use, 0);
 47}
 48
 49struct kprobe_insn_cache kprobe_s390_insn_slots = {
 50	.mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
 51	.alloc = alloc_s390_insn_page,
 52	.free = free_s390_insn_page,
 53	.pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
 54	.insn_size = MAX_INSN_SIZE,
 55};
 56
 57static void copy_instruction(struct kprobe *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58{
 59	unsigned long ip = (unsigned long) p->addr;
 60	s64 disp, new_disp;
 61	u64 addr, new_addr;
 62
 63	if (ftrace_location(ip) == ip) {
 64		/*
 65		 * If kprobes patches the instruction that is morphed by
 66		 * ftrace make sure that kprobes always sees the branch
 67		 * "jg .+24" that skips the mcount block or the "brcl 0,0"
 68		 * in case of hotpatch.
 69		 */
 70		ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
 71		p->ainsn.is_ftrace_insn = 1;
 72	} else
 73		memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
 74	p->opcode = p->ainsn.insn[0];
 75	if (!probe_is_insn_relative_long(p->ainsn.insn))
 76		return;
 77	/*
 78	 * For pc-relative instructions in RIL-b or RIL-c format patch the
 79	 * RI2 displacement field. We have already made sure that the insn
 80	 * slot for the patched instruction is within the same 2GB area
 81	 * as the original instruction (either kernel image or module area).
 82	 * Therefore the new displacement will always fit.
 83	 */
 84	disp = *(s32 *)&p->ainsn.insn[1];
 85	addr = (u64)(unsigned long)p->addr;
 86	new_addr = (u64)(unsigned long)p->ainsn.insn;
 87	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 88	*(s32 *)&p->ainsn.insn[1] = new_disp;
 89}
 90NOKPROBE_SYMBOL(copy_instruction);
 91
 92static inline int is_kernel_addr(void *addr)
 93{
 94	return addr < (void *)_end;
 95}
 96
 97static int s390_get_insn_slot(struct kprobe *p)
 
 
 
 
 
 
 
 
 
 
 
 
 98{
 99	/*
100	 * Get an insn slot that is within the same 2GB area like the original
101	 * instruction. That way instructions with a 32bit signed displacement
102	 * field can be patched and executed within the insn slot.
103	 */
104	p->ainsn.insn = NULL;
105	if (is_kernel_addr(p->addr))
106		p->ainsn.insn = get_s390_insn_slot();
107	else if (is_module_addr(p->addr))
108		p->ainsn.insn = get_insn_slot();
109	return p->ainsn.insn ? 0 : -ENOMEM;
110}
111NOKPROBE_SYMBOL(s390_get_insn_slot);
112
113static void s390_free_insn_slot(struct kprobe *p)
114{
115	if (!p->ainsn.insn)
116		return;
117	if (is_kernel_addr(p->addr))
118		free_s390_insn_slot(p->ainsn.insn, 0);
119	else
120		free_insn_slot(p->ainsn.insn, 0);
121	p->ainsn.insn = NULL;
122}
123NOKPROBE_SYMBOL(s390_free_insn_slot);
124
125int arch_prepare_kprobe(struct kprobe *p)
126{
127	if ((unsigned long) p->addr & 0x01)
128		return -EINVAL;
129	/* Make sure the probe isn't going on a difficult instruction */
130	if (probe_is_prohibited_opcode(p->addr))
131		return -EINVAL;
132	if (s390_get_insn_slot(p))
133		return -ENOMEM;
 
134	copy_instruction(p);
135	return 0;
136}
137NOKPROBE_SYMBOL(arch_prepare_kprobe);
138
139int arch_check_ftrace_location(struct kprobe *p)
140{
141	return 0;
142}
143
144struct swap_insn_args {
145	struct kprobe *p;
146	unsigned int arm_kprobe : 1;
147};
148
149static int swap_instruction(void *data)
150{
151	struct swap_insn_args *args = data;
152	struct ftrace_insn new_insn, *insn;
153	struct kprobe *p = args->p;
154	size_t len;
155
156	new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
157	len = sizeof(new_insn.opc);
158	if (!p->ainsn.is_ftrace_insn)
159		goto skip_ftrace;
160	len = sizeof(new_insn);
161	insn = (struct ftrace_insn *) p->addr;
162	if (args->arm_kprobe) {
163		if (is_ftrace_nop(insn))
164			new_insn.disp = KPROBE_ON_FTRACE_NOP;
165		else
166			new_insn.disp = KPROBE_ON_FTRACE_CALL;
167	} else {
168		ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
169		if (insn->disp == KPROBE_ON_FTRACE_NOP)
170			ftrace_generate_nop_insn(&new_insn);
171	}
172skip_ftrace:
173	s390_kernel_write(p->addr, &new_insn, len);
174	return 0;
175}
176NOKPROBE_SYMBOL(swap_instruction);
177
178void arch_arm_kprobe(struct kprobe *p)
179{
180	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
181
182	stop_machine_cpuslocked(swap_instruction, &args, NULL);
 
 
183}
184NOKPROBE_SYMBOL(arch_arm_kprobe);
185
186void arch_disarm_kprobe(struct kprobe *p)
187{
188	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
189
190	stop_machine_cpuslocked(swap_instruction, &args, NULL);
 
 
191}
192NOKPROBE_SYMBOL(arch_disarm_kprobe);
193
194void arch_remove_kprobe(struct kprobe *p)
195{
196	s390_free_insn_slot(p);
197}
198NOKPROBE_SYMBOL(arch_remove_kprobe);
199
200static void enable_singlestep(struct kprobe_ctlblk *kcb,
201			      struct pt_regs *regs,
202			      unsigned long ip)
203{
204	struct per_regs per_kprobe;
205
206	/* Set up the PER control registers %cr9-%cr11 */
207	per_kprobe.control = PER_EVENT_IFETCH;
208	per_kprobe.start = ip;
209	per_kprobe.end = ip;
210
211	/* Save control regs and psw mask */
212	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
213	kcb->kprobe_saved_imask = regs->psw.mask &
214		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
215
216	/* Set PER control regs, turns on single step for the given address */
217	__ctl_load(per_kprobe, 9, 11);
218	regs->psw.mask |= PSW_MASK_PER;
219	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
220	regs->psw.addr = ip;
221}
222NOKPROBE_SYMBOL(enable_singlestep);
223
224static void disable_singlestep(struct kprobe_ctlblk *kcb,
225			       struct pt_regs *regs,
226			       unsigned long ip)
227{
228	/* Restore control regs and psw mask, set new psw address */
229	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
230	regs->psw.mask &= ~PSW_MASK_PER;
231	regs->psw.mask |= kcb->kprobe_saved_imask;
232	regs->psw.addr = ip;
233}
234NOKPROBE_SYMBOL(disable_singlestep);
235
236/*
237 * Activate a kprobe by storing its pointer to current_kprobe. The
238 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
239 * two kprobes can be active, see KPROBE_REENTER.
240 */
241static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
242{
243	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
244	kcb->prev_kprobe.status = kcb->kprobe_status;
245	__this_cpu_write(current_kprobe, p);
246}
247NOKPROBE_SYMBOL(push_kprobe);
248
249/*
250 * Deactivate a kprobe by backing up to the previous state. If the
251 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
252 * for any other state prev_kprobe.kp will be NULL.
253 */
254static void pop_kprobe(struct kprobe_ctlblk *kcb)
255{
256	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
257	kcb->kprobe_status = kcb->prev_kprobe.status;
258}
259NOKPROBE_SYMBOL(pop_kprobe);
260
261void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
 
262{
263	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
264
265	/* Replace the return addr with trampoline addr */
266	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
267}
268NOKPROBE_SYMBOL(arch_prepare_kretprobe);
269
270static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
 
271{
272	switch (kcb->kprobe_status) {
273	case KPROBE_HIT_SSDONE:
274	case KPROBE_HIT_ACTIVE:
275		kprobes_inc_nmissed_count(p);
276		break;
277	case KPROBE_HIT_SS:
278	case KPROBE_REENTER:
279	default:
280		/*
281		 * A kprobe on the code path to single step an instruction
282		 * is a BUG. The code path resides in the .kprobes.text
283		 * section and is executed with interrupts disabled.
284		 */
285		pr_err("Invalid kprobe detected.\n");
286		dump_kprobe(p);
287		BUG();
288	}
289}
290NOKPROBE_SYMBOL(kprobe_reenter_check);
291
292static int kprobe_handler(struct pt_regs *regs)
293{
294	struct kprobe_ctlblk *kcb;
295	struct kprobe *p;
296
297	/*
298	 * We want to disable preemption for the entire duration of kprobe
299	 * processing. That includes the calls to the pre/post handlers
300	 * and single stepping the kprobe instruction.
301	 */
302	preempt_disable();
303	kcb = get_kprobe_ctlblk();
304	p = get_kprobe((void *)(regs->psw.addr - 2));
305
306	if (p) {
307		if (kprobe_running()) {
308			/*
309			 * We have hit a kprobe while another is still
310			 * active. This can happen in the pre and post
311			 * handler. Single step the instruction of the
312			 * new probe but do not call any handler function
313			 * of this secondary kprobe.
314			 * push_kprobe and pop_kprobe saves and restores
315			 * the currently active kprobe.
316			 */
317			kprobe_reenter_check(kcb, p);
318			push_kprobe(kcb, p);
319			kcb->kprobe_status = KPROBE_REENTER;
320		} else {
321			/*
322			 * If we have no pre-handler or it returned 0, we
323			 * continue with single stepping. If we have a
324			 * pre-handler and it returned non-zero, it prepped
325			 * for changing execution path, so get out doing
326			 * nothing more here.
 
327			 */
328			push_kprobe(kcb, p);
329			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
330			if (p->pre_handler && p->pre_handler(p, regs)) {
331				pop_kprobe(kcb);
332				preempt_enable_no_resched();
333				return 1;
334			}
335			kcb->kprobe_status = KPROBE_HIT_SS;
336		}
337		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
338		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339	} /* else:
340	   * No kprobe at this address and no active kprobe. The trap has
341	   * not been caused by a kprobe breakpoint. The race of breakpoint
342	   * vs. kprobe remove does not exist because on s390 as we use
343	   * stop_machine to arm/disarm the breakpoints.
344	   */
345	preempt_enable_no_resched();
346	return 0;
347}
348NOKPROBE_SYMBOL(kprobe_handler);
349
350/*
351 * Function return probe trampoline:
352 *	- init_kprobes() establishes a probepoint here
353 *	- When the probed function returns, this probe
354 *		causes the handlers to fire
355 */
356static void __used kretprobe_trampoline_holder(void)
357{
358	asm volatile(".global kretprobe_trampoline\n"
359		     "kretprobe_trampoline: bcr 0,0\n");
360}
361
362/*
363 * Called when the probe at kretprobe trampoline is hit
364 */
365static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
 
366{
367	struct kretprobe_instance *ri;
368	struct hlist_head *head, empty_rp;
369	struct hlist_node *tmp;
370	unsigned long flags, orig_ret_address;
371	unsigned long trampoline_address;
372	kprobe_opcode_t *correct_ret_addr;
373
374	INIT_HLIST_HEAD(&empty_rp);
375	kretprobe_hash_lock(current, &head, &flags);
376
377	/*
378	 * It is possible to have multiple instances associated with a given
379	 * task either because an multiple functions in the call path
380	 * have a return probe installed on them, and/or more than one return
381	 * return probe was registered for a target function.
382	 *
383	 * We can handle this because:
384	 *     - instances are always inserted at the head of the list
385	 *     - when multiple return probes are registered for the same
386	 *	 function, the first instance's ret_addr will point to the
387	 *	 real return address, and all the rest will point to
388	 *	 kretprobe_trampoline
389	 */
390	ri = NULL;
391	orig_ret_address = 0;
392	correct_ret_addr = NULL;
393	trampoline_address = (unsigned long) &kretprobe_trampoline;
394	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
395		if (ri->task != current)
396			/* another task is sharing our hash bucket */
397			continue;
398
399		orig_ret_address = (unsigned long) ri->ret_addr;
400
401		if (orig_ret_address != trampoline_address)
402			/*
403			 * This is the real return address. Any other
404			 * instances associated with this task are for
405			 * other calls deeper on the call stack
406			 */
407			break;
408	}
409
410	kretprobe_assert(ri, orig_ret_address, trampoline_address);
411
412	correct_ret_addr = ri->ret_addr;
413	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
414		if (ri->task != current)
415			/* another task is sharing our hash bucket */
416			continue;
417
418		orig_ret_address = (unsigned long) ri->ret_addr;
419
420		if (ri->rp && ri->rp->handler) {
421			ri->ret_addr = correct_ret_addr;
422			ri->rp->handler(ri, regs);
423		}
424
425		recycle_rp_inst(ri, &empty_rp);
426
427		if (orig_ret_address != trampoline_address)
428			/*
429			 * This is the real return address. Any other
430			 * instances associated with this task are for
431			 * other calls deeper on the call stack
432			 */
433			break;
434	}
435
436	regs->psw.addr = orig_ret_address;
437
 
438	kretprobe_hash_unlock(current, &flags);
 
439
440	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
441		hlist_del(&ri->hlist);
442		kfree(ri);
443	}
444	/*
445	 * By returning a non-zero value, we are telling
446	 * kprobe_handler() that we don't want the post_handler
447	 * to run (and have re-enabled preemption)
448	 */
449	return 1;
450}
451NOKPROBE_SYMBOL(trampoline_probe_handler);
452
453/*
454 * Called after single-stepping.  p->addr is the address of the
455 * instruction whose first byte has been replaced by the "breakpoint"
456 * instruction.  To avoid the SMP problems that can occur when we
457 * temporarily put back the original opcode to single-step, we
458 * single-stepped a copy of the instruction.  The address of this
459 * copy is p->ainsn.insn.
460 */
461static void resume_execution(struct kprobe *p, struct pt_regs *regs)
462{
463	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
464	unsigned long ip = regs->psw.addr;
465	int fixup = probe_get_fixup_type(p->ainsn.insn);
466
467	/* Check if the kprobes location is an enabled ftrace caller */
468	if (p->ainsn.is_ftrace_insn) {
469		struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
470		struct ftrace_insn call_insn;
471
472		ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
473		/*
474		 * A kprobe on an enabled ftrace call site actually single
475		 * stepped an unconditional branch (ftrace nop equivalent).
476		 * Now we need to fixup things and pretend that a brasl r0,...
477		 * was executed instead.
478		 */
479		if (insn->disp == KPROBE_ON_FTRACE_CALL) {
480			ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
481			regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
482		}
483	}
484
485	if (fixup & FIXUP_PSW_NORMAL)
486		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
487
488	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
489		int ilen = insn_length(p->ainsn.insn[0] >> 8);
490		if (ip - (unsigned long) p->ainsn.insn == ilen)
491			ip = (unsigned long) p->addr + ilen;
492	}
493
494	if (fixup & FIXUP_RETURN_REGISTER) {
495		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
496		regs->gprs[reg] += (unsigned long) p->addr -
497				   (unsigned long) p->ainsn.insn;
498	}
499
500	disable_singlestep(kcb, regs, ip);
501}
502NOKPROBE_SYMBOL(resume_execution);
503
504static int post_kprobe_handler(struct pt_regs *regs)
505{
506	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
507	struct kprobe *p = kprobe_running();
508
509	if (!p)
510		return 0;
511
512	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
513		kcb->kprobe_status = KPROBE_HIT_SSDONE;
514		p->post_handler(p, regs, 0);
515	}
516
517	resume_execution(p, regs);
518	pop_kprobe(kcb);
519	preempt_enable_no_resched();
520
521	/*
522	 * if somebody else is singlestepping across a probe point, psw mask
523	 * will have PER set, in which case, continue the remaining processing
524	 * of do_single_step, as if this is not a probe hit.
525	 */
526	if (regs->psw.mask & PSW_MASK_PER)
527		return 0;
528
529	return 1;
530}
531NOKPROBE_SYMBOL(post_kprobe_handler);
532
533static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
534{
535	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
536	struct kprobe *p = kprobe_running();
537	const struct exception_table_entry *entry;
538
539	switch(kcb->kprobe_status) {
 
 
 
540	case KPROBE_HIT_SS:
541	case KPROBE_REENTER:
542		/*
543		 * We are here because the instruction being single
544		 * stepped caused a page fault. We reset the current
545		 * kprobe and the nip points back to the probe address
546		 * and allow the page fault handler to continue as a
547		 * normal page fault.
548		 */
549		disable_singlestep(kcb, regs, (unsigned long) p->addr);
550		pop_kprobe(kcb);
551		preempt_enable_no_resched();
552		break;
553	case KPROBE_HIT_ACTIVE:
554	case KPROBE_HIT_SSDONE:
555		/*
556		 * We increment the nmissed count for accounting,
557		 * we can also use npre/npostfault count for accounting
558		 * these specific fault cases.
559		 */
560		kprobes_inc_nmissed_count(p);
561
562		/*
563		 * We come here because instructions in the pre/post
564		 * handler caused the page_fault, this could happen
565		 * if handler tries to access user space by
566		 * copy_from_user(), get_user() etc. Let the
567		 * user-specified handler try to fix it first.
568		 */
569		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
570			return 1;
571
572		/*
573		 * In case the user-specified fault handler returned
574		 * zero, try to fix up.
575		 */
576		entry = s390_search_extables(regs->psw.addr);
577		if (entry) {
578			regs->psw.addr = extable_fixup(entry);
579			return 1;
580		}
581
582		/*
583		 * fixup_exception() could not handle it,
584		 * Let do_page_fault() fix it.
585		 */
586		break;
587	default:
588		break;
589	}
590	return 0;
591}
592NOKPROBE_SYMBOL(kprobe_trap_handler);
593
594int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
595{
596	int ret;
597
598	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
599		local_irq_disable();
600	ret = kprobe_trap_handler(regs, trapnr);
601	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
602		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
603	return ret;
604}
605NOKPROBE_SYMBOL(kprobe_fault_handler);
606
607/*
608 * Wrapper routine to for handling exceptions.
609 */
610int kprobe_exceptions_notify(struct notifier_block *self,
611			     unsigned long val, void *data)
612{
613	struct die_args *args = (struct die_args *) data;
614	struct pt_regs *regs = args->regs;
615	int ret = NOTIFY_DONE;
616
617	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
618		local_irq_disable();
619
620	switch (val) {
621	case DIE_BPT:
622		if (kprobe_handler(regs))
623			ret = NOTIFY_STOP;
624		break;
625	case DIE_SSTEP:
626		if (post_kprobe_handler(regs))
627			ret = NOTIFY_STOP;
628		break;
629	case DIE_TRAP:
630		if (!preemptible() && kprobe_running() &&
631		    kprobe_trap_handler(regs, args->trapnr))
632			ret = NOTIFY_STOP;
633		break;
634	default:
635		break;
636	}
637
638	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
639		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
640
641	return ret;
642}
643NOKPROBE_SYMBOL(kprobe_exceptions_notify);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
644
645static struct kprobe trampoline = {
646	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
647	.pre_handler = trampoline_probe_handler
648};
649
650int __init arch_init_kprobes(void)
651{
652	return register_kprobe(&trampoline);
653}
654
655int arch_trampoline_kprobe(struct kprobe *p)
656{
657	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
658}
659NOKPROBE_SYMBOL(arch_trampoline_kprobe);
v3.15
 
  1/*
  2 *  Kernel Probes (KProbes)
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright IBM Corp. 2002, 2006
 19 *
 20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
 21 */
 22
 23#include <linux/kprobes.h>
 24#include <linux/ptrace.h>
 25#include <linux/preempt.h>
 26#include <linux/stop_machine.h>
 27#include <linux/kdebug.h>
 28#include <linux/uaccess.h>
 
 29#include <linux/module.h>
 30#include <linux/slab.h>
 31#include <linux/hardirq.h>
 32#include <asm/cacheflush.h>
 
 33#include <asm/sections.h>
 34#include <asm/dis.h>
 35
 36DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 37DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 38
 39struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 40
 41DEFINE_INSN_CACHE_OPS(dmainsn);
 42
 43static void *alloc_dmainsn_page(void)
 
 
 
 44{
 45	return (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
 
 
 
 46}
 47
 48static void free_dmainsn_page(void *page)
 49{
 50	free_page((unsigned long)page);
 
 51}
 52
 53struct kprobe_insn_cache kprobe_dmainsn_slots = {
 54	.mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
 55	.alloc = alloc_dmainsn_page,
 56	.free = free_dmainsn_page,
 57	.pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
 58	.insn_size = MAX_INSN_SIZE,
 59};
 60
 61static int __kprobes is_prohibited_opcode(kprobe_opcode_t *insn)
 62{
 63	if (!is_known_insn((unsigned char *)insn))
 64		return -EINVAL;
 65	switch (insn[0] >> 8) {
 66	case 0x0c:	/* bassm */
 67	case 0x0b:	/* bsm	 */
 68	case 0x83:	/* diag  */
 69	case 0x44:	/* ex	 */
 70	case 0xac:	/* stnsm */
 71	case 0xad:	/* stosm */
 72		return -EINVAL;
 73	case 0xc6:
 74		switch (insn[0] & 0x0f) {
 75		case 0x00: /* exrl   */
 76			return -EINVAL;
 77		}
 78	}
 79	switch (insn[0]) {
 80	case 0x0101:	/* pr	 */
 81	case 0xb25a:	/* bsa	 */
 82	case 0xb240:	/* bakr  */
 83	case 0xb258:	/* bsg	 */
 84	case 0xb218:	/* pc	 */
 85	case 0xb228:	/* pt	 */
 86	case 0xb98d:	/* epsw	 */
 87		return -EINVAL;
 88	}
 89	return 0;
 90}
 91
 92static int __kprobes get_fixup_type(kprobe_opcode_t *insn)
 93{
 94	/* default fixup method */
 95	int fixup = FIXUP_PSW_NORMAL;
 96
 97	switch (insn[0] >> 8) {
 98	case 0x05:	/* balr	*/
 99	case 0x0d:	/* basr */
100		fixup = FIXUP_RETURN_REGISTER;
101		/* if r2 = 0, no branch will be taken */
102		if ((insn[0] & 0x0f) == 0)
103			fixup |= FIXUP_BRANCH_NOT_TAKEN;
104		break;
105	case 0x06:	/* bctr	*/
106	case 0x07:	/* bcr	*/
107		fixup = FIXUP_BRANCH_NOT_TAKEN;
108		break;
109	case 0x45:	/* bal	*/
110	case 0x4d:	/* bas	*/
111		fixup = FIXUP_RETURN_REGISTER;
112		break;
113	case 0x47:	/* bc	*/
114	case 0x46:	/* bct	*/
115	case 0x86:	/* bxh	*/
116	case 0x87:	/* bxle	*/
117		fixup = FIXUP_BRANCH_NOT_TAKEN;
118		break;
119	case 0x82:	/* lpsw	*/
120		fixup = FIXUP_NOT_REQUIRED;
121		break;
122	case 0xb2:	/* lpswe */
123		if ((insn[0] & 0xff) == 0xb2)
124			fixup = FIXUP_NOT_REQUIRED;
125		break;
126	case 0xa7:	/* bras	*/
127		if ((insn[0] & 0x0f) == 0x05)
128			fixup |= FIXUP_RETURN_REGISTER;
129		break;
130	case 0xc0:
131		if ((insn[0] & 0x0f) == 0x05)	/* brasl */
132			fixup |= FIXUP_RETURN_REGISTER;
133		break;
134	case 0xeb:
135		switch (insn[2] & 0xff) {
136		case 0x44: /* bxhg  */
137		case 0x45: /* bxleg */
138			fixup = FIXUP_BRANCH_NOT_TAKEN;
139			break;
140		}
141		break;
142	case 0xe3:	/* bctg	*/
143		if ((insn[2] & 0xff) == 0x46)
144			fixup = FIXUP_BRANCH_NOT_TAKEN;
145		break;
146	case 0xec:
147		switch (insn[2] & 0xff) {
148		case 0xe5: /* clgrb */
149		case 0xe6: /* cgrb  */
150		case 0xf6: /* crb   */
151		case 0xf7: /* clrb  */
152		case 0xfc: /* cgib  */
153		case 0xfd: /* cglib */
154		case 0xfe: /* cib   */
155		case 0xff: /* clib  */
156			fixup = FIXUP_BRANCH_NOT_TAKEN;
157			break;
158		}
159		break;
160	}
161	return fixup;
162}
163
164static int __kprobes is_insn_relative_long(kprobe_opcode_t *insn)
165{
166	/* Check if we have a RIL-b or RIL-c format instruction which
167	 * we need to modify in order to avoid instruction emulation. */
168	switch (insn[0] >> 8) {
169	case 0xc0:
170		if ((insn[0] & 0x0f) == 0x00) /* larl */
171			return true;
172		break;
173	case 0xc4:
174		switch (insn[0] & 0x0f) {
175		case 0x02: /* llhrl  */
176		case 0x04: /* lghrl  */
177		case 0x05: /* lhrl   */
178		case 0x06: /* llghrl */
179		case 0x07: /* sthrl  */
180		case 0x08: /* lgrl   */
181		case 0x0b: /* stgrl  */
182		case 0x0c: /* lgfrl  */
183		case 0x0d: /* lrl    */
184		case 0x0e: /* llgfrl */
185		case 0x0f: /* strl   */
186			return true;
187		}
188		break;
189	case 0xc6:
190		switch (insn[0] & 0x0f) {
191		case 0x02: /* pfdrl  */
192		case 0x04: /* cghrl  */
193		case 0x05: /* chrl   */
194		case 0x06: /* clghrl */
195		case 0x07: /* clhrl  */
196		case 0x08: /* cgrl   */
197		case 0x0a: /* clgrl  */
198		case 0x0c: /* cgfrl  */
199		case 0x0d: /* crl    */
200		case 0x0e: /* clgfrl */
201		case 0x0f: /* clrl   */
202			return true;
203		}
204		break;
205	}
206	return false;
207}
208
209static void __kprobes copy_instruction(struct kprobe *p)
210{
 
211	s64 disp, new_disp;
212	u64 addr, new_addr;
213
214	memcpy(p->ainsn.insn, p->addr, insn_length(p->opcode >> 8));
215	if (!is_insn_relative_long(p->ainsn.insn))
 
 
 
 
 
 
 
 
 
 
 
216		return;
217	/*
218	 * For pc-relative instructions in RIL-b or RIL-c format patch the
219	 * RI2 displacement field. We have already made sure that the insn
220	 * slot for the patched instruction is within the same 2GB area
221	 * as the original instruction (either kernel image or module area).
222	 * Therefore the new displacement will always fit.
223	 */
224	disp = *(s32 *)&p->ainsn.insn[1];
225	addr = (u64)(unsigned long)p->addr;
226	new_addr = (u64)(unsigned long)p->ainsn.insn;
227	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
228	*(s32 *)&p->ainsn.insn[1] = new_disp;
229}
 
230
231static inline int is_kernel_addr(void *addr)
232{
233	return addr < (void *)_end;
234}
235
236static inline int is_module_addr(void *addr)
237{
238#ifdef CONFIG_64BIT
239	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
240	if (addr < (void *)MODULES_VADDR)
241		return 0;
242	if (addr > (void *)MODULES_END)
243		return 0;
244#endif
245	return 1;
246}
247
248static int __kprobes s390_get_insn_slot(struct kprobe *p)
249{
250	/*
251	 * Get an insn slot that is within the same 2GB area like the original
252	 * instruction. That way instructions with a 32bit signed displacement
253	 * field can be patched and executed within the insn slot.
254	 */
255	p->ainsn.insn = NULL;
256	if (is_kernel_addr(p->addr))
257		p->ainsn.insn = get_dmainsn_slot();
258	else if (is_module_addr(p->addr))
259		p->ainsn.insn = get_insn_slot();
260	return p->ainsn.insn ? 0 : -ENOMEM;
261}
 
262
263static void __kprobes s390_free_insn_slot(struct kprobe *p)
264{
265	if (!p->ainsn.insn)
266		return;
267	if (is_kernel_addr(p->addr))
268		free_dmainsn_slot(p->ainsn.insn, 0);
269	else
270		free_insn_slot(p->ainsn.insn, 0);
271	p->ainsn.insn = NULL;
272}
 
273
274int __kprobes arch_prepare_kprobe(struct kprobe *p)
275{
276	if ((unsigned long) p->addr & 0x01)
277		return -EINVAL;
278	/* Make sure the probe isn't going on a difficult instruction */
279	if (is_prohibited_opcode(p->addr))
280		return -EINVAL;
281	if (s390_get_insn_slot(p))
282		return -ENOMEM;
283	p->opcode = *p->addr;
284	copy_instruction(p);
285	return 0;
286}
 
 
 
 
 
 
287
288struct ins_replace_args {
289	kprobe_opcode_t *ptr;
290	kprobe_opcode_t opcode;
291};
292
293static int __kprobes swap_instruction(void *aref)
294{
295	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
296	unsigned long status = kcb->kprobe_status;
297	struct ins_replace_args *args = aref;
298
299	kcb->kprobe_status = KPROBE_SWAP_INST;
300	probe_kernel_write(args->ptr, &args->opcode, sizeof(args->opcode));
301	kcb->kprobe_status = status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302	return 0;
303}
 
304
305void __kprobes arch_arm_kprobe(struct kprobe *p)
306{
307	struct ins_replace_args args;
308
309	args.ptr = p->addr;
310	args.opcode = BREAKPOINT_INSTRUCTION;
311	stop_machine(swap_instruction, &args, NULL);
312}
 
313
314void __kprobes arch_disarm_kprobe(struct kprobe *p)
315{
316	struct ins_replace_args args;
317
318	args.ptr = p->addr;
319	args.opcode = p->opcode;
320	stop_machine(swap_instruction, &args, NULL);
321}
 
322
323void __kprobes arch_remove_kprobe(struct kprobe *p)
324{
325	s390_free_insn_slot(p);
326}
 
327
328static void __kprobes enable_singlestep(struct kprobe_ctlblk *kcb,
329					struct pt_regs *regs,
330					unsigned long ip)
331{
332	struct per_regs per_kprobe;
333
334	/* Set up the PER control registers %cr9-%cr11 */
335	per_kprobe.control = PER_EVENT_IFETCH;
336	per_kprobe.start = ip;
337	per_kprobe.end = ip;
338
339	/* Save control regs and psw mask */
340	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
341	kcb->kprobe_saved_imask = regs->psw.mask &
342		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
343
344	/* Set PER control regs, turns on single step for the given address */
345	__ctl_load(per_kprobe, 9, 11);
346	regs->psw.mask |= PSW_MASK_PER;
347	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
348	regs->psw.addr = ip | PSW_ADDR_AMODE;
349}
 
350
351static void __kprobes disable_singlestep(struct kprobe_ctlblk *kcb,
352					 struct pt_regs *regs,
353					 unsigned long ip)
354{
355	/* Restore control regs and psw mask, set new psw address */
356	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
357	regs->psw.mask &= ~PSW_MASK_PER;
358	regs->psw.mask |= kcb->kprobe_saved_imask;
359	regs->psw.addr = ip | PSW_ADDR_AMODE;
360}
 
361
362/*
363 * Activate a kprobe by storing its pointer to current_kprobe. The
364 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
365 * two kprobes can be active, see KPROBE_REENTER.
366 */
367static void __kprobes push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
368{
369	kcb->prev_kprobe.kp = __get_cpu_var(current_kprobe);
370	kcb->prev_kprobe.status = kcb->kprobe_status;
371	__get_cpu_var(current_kprobe) = p;
372}
 
373
374/*
375 * Deactivate a kprobe by backing up to the previous state. If the
376 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
377 * for any other state prev_kprobe.kp will be NULL.
378 */
379static void __kprobes pop_kprobe(struct kprobe_ctlblk *kcb)
380{
381	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
382	kcb->kprobe_status = kcb->prev_kprobe.status;
383}
 
384
385void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
386					struct pt_regs *regs)
387{
388	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
389
390	/* Replace the return addr with trampoline addr */
391	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
392}
 
393
394static void __kprobes kprobe_reenter_check(struct kprobe_ctlblk *kcb,
395					   struct kprobe *p)
396{
397	switch (kcb->kprobe_status) {
398	case KPROBE_HIT_SSDONE:
399	case KPROBE_HIT_ACTIVE:
400		kprobes_inc_nmissed_count(p);
401		break;
402	case KPROBE_HIT_SS:
403	case KPROBE_REENTER:
404	default:
405		/*
406		 * A kprobe on the code path to single step an instruction
407		 * is a BUG. The code path resides in the .kprobes.text
408		 * section and is executed with interrupts disabled.
409		 */
410		printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
411		dump_kprobe(p);
412		BUG();
413	}
414}
 
415
416static int __kprobes kprobe_handler(struct pt_regs *regs)
417{
418	struct kprobe_ctlblk *kcb;
419	struct kprobe *p;
420
421	/*
422	 * We want to disable preemption for the entire duration of kprobe
423	 * processing. That includes the calls to the pre/post handlers
424	 * and single stepping the kprobe instruction.
425	 */
426	preempt_disable();
427	kcb = get_kprobe_ctlblk();
428	p = get_kprobe((void *)((regs->psw.addr & PSW_ADDR_INSN) - 2));
429
430	if (p) {
431		if (kprobe_running()) {
432			/*
433			 * We have hit a kprobe while another is still
434			 * active. This can happen in the pre and post
435			 * handler. Single step the instruction of the
436			 * new probe but do not call any handler function
437			 * of this secondary kprobe.
438			 * push_kprobe and pop_kprobe saves and restores
439			 * the currently active kprobe.
440			 */
441			kprobe_reenter_check(kcb, p);
442			push_kprobe(kcb, p);
443			kcb->kprobe_status = KPROBE_REENTER;
444		} else {
445			/*
446			 * If we have no pre-handler or it returned 0, we
447			 * continue with single stepping. If we have a
448			 * pre-handler and it returned non-zero, it prepped
449			 * for calling the break_handler below on re-entry
450			 * for jprobe processing, so get out doing nothing
451			 * more here.
452			 */
453			push_kprobe(kcb, p);
454			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
455			if (p->pre_handler && p->pre_handler(p, regs))
 
 
456				return 1;
 
457			kcb->kprobe_status = KPROBE_HIT_SS;
458		}
459		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
460		return 1;
461	} else if (kprobe_running()) {
462		p = __get_cpu_var(current_kprobe);
463		if (p->break_handler && p->break_handler(p, regs)) {
464			/*
465			 * Continuation after the jprobe completed and
466			 * caused the jprobe_return trap. The jprobe
467			 * break_handler "returns" to the original
468			 * function that still has the kprobe breakpoint
469			 * installed. We continue with single stepping.
470			 */
471			kcb->kprobe_status = KPROBE_HIT_SS;
472			enable_singlestep(kcb, regs,
473					  (unsigned long) p->ainsn.insn);
474			return 1;
475		} /* else:
476		   * No kprobe at this address and the current kprobe
477		   * has no break handler (no jprobe!). The kernel just
478		   * exploded, let the standard trap handler pick up the
479		   * pieces.
480		   */
481	} /* else:
482	   * No kprobe at this address and no active kprobe. The trap has
483	   * not been caused by a kprobe breakpoint. The race of breakpoint
484	   * vs. kprobe remove does not exist because on s390 as we use
485	   * stop_machine to arm/disarm the breakpoints.
486	   */
487	preempt_enable_no_resched();
488	return 0;
489}
 
490
491/*
492 * Function return probe trampoline:
493 *	- init_kprobes() establishes a probepoint here
494 *	- When the probed function returns, this probe
495 *		causes the handlers to fire
496 */
497static void __used kretprobe_trampoline_holder(void)
498{
499	asm volatile(".global kretprobe_trampoline\n"
500		     "kretprobe_trampoline: bcr 0,0\n");
501}
502
503/*
504 * Called when the probe at kretprobe trampoline is hit
505 */
506static int __kprobes trampoline_probe_handler(struct kprobe *p,
507					      struct pt_regs *regs)
508{
509	struct kretprobe_instance *ri;
510	struct hlist_head *head, empty_rp;
511	struct hlist_node *tmp;
512	unsigned long flags, orig_ret_address;
513	unsigned long trampoline_address;
514	kprobe_opcode_t *correct_ret_addr;
515
516	INIT_HLIST_HEAD(&empty_rp);
517	kretprobe_hash_lock(current, &head, &flags);
518
519	/*
520	 * It is possible to have multiple instances associated with a given
521	 * task either because an multiple functions in the call path
522	 * have a return probe installed on them, and/or more than one return
523	 * return probe was registered for a target function.
524	 *
525	 * We can handle this because:
526	 *     - instances are always inserted at the head of the list
527	 *     - when multiple return probes are registered for the same
528	 *	 function, the first instance's ret_addr will point to the
529	 *	 real return address, and all the rest will point to
530	 *	 kretprobe_trampoline
531	 */
532	ri = NULL;
533	orig_ret_address = 0;
534	correct_ret_addr = NULL;
535	trampoline_address = (unsigned long) &kretprobe_trampoline;
536	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
537		if (ri->task != current)
538			/* another task is sharing our hash bucket */
539			continue;
540
541		orig_ret_address = (unsigned long) ri->ret_addr;
542
543		if (orig_ret_address != trampoline_address)
544			/*
545			 * This is the real return address. Any other
546			 * instances associated with this task are for
547			 * other calls deeper on the call stack
548			 */
549			break;
550	}
551
552	kretprobe_assert(ri, orig_ret_address, trampoline_address);
553
554	correct_ret_addr = ri->ret_addr;
555	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
556		if (ri->task != current)
557			/* another task is sharing our hash bucket */
558			continue;
559
560		orig_ret_address = (unsigned long) ri->ret_addr;
561
562		if (ri->rp && ri->rp->handler) {
563			ri->ret_addr = correct_ret_addr;
564			ri->rp->handler(ri, regs);
565		}
566
567		recycle_rp_inst(ri, &empty_rp);
568
569		if (orig_ret_address != trampoline_address)
570			/*
571			 * This is the real return address. Any other
572			 * instances associated with this task are for
573			 * other calls deeper on the call stack
574			 */
575			break;
576	}
577
578	regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
579
580	pop_kprobe(get_kprobe_ctlblk());
581	kretprobe_hash_unlock(current, &flags);
582	preempt_enable_no_resched();
583
584	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
585		hlist_del(&ri->hlist);
586		kfree(ri);
587	}
588	/*
589	 * By returning a non-zero value, we are telling
590	 * kprobe_handler() that we don't want the post_handler
591	 * to run (and have re-enabled preemption)
592	 */
593	return 1;
594}
 
595
596/*
597 * Called after single-stepping.  p->addr is the address of the
598 * instruction whose first byte has been replaced by the "breakpoint"
599 * instruction.  To avoid the SMP problems that can occur when we
600 * temporarily put back the original opcode to single-step, we
601 * single-stepped a copy of the instruction.  The address of this
602 * copy is p->ainsn.insn.
603 */
604static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
605{
606	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
607	unsigned long ip = regs->psw.addr & PSW_ADDR_INSN;
608	int fixup = get_fixup_type(p->ainsn.insn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
609
610	if (fixup & FIXUP_PSW_NORMAL)
611		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
612
613	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
614		int ilen = insn_length(p->ainsn.insn[0] >> 8);
615		if (ip - (unsigned long) p->ainsn.insn == ilen)
616			ip = (unsigned long) p->addr + ilen;
617	}
618
619	if (fixup & FIXUP_RETURN_REGISTER) {
620		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
621		regs->gprs[reg] += (unsigned long) p->addr -
622				   (unsigned long) p->ainsn.insn;
623	}
624
625	disable_singlestep(kcb, regs, ip);
626}
 
627
628static int __kprobes post_kprobe_handler(struct pt_regs *regs)
629{
630	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
631	struct kprobe *p = kprobe_running();
632
633	if (!p)
634		return 0;
635
636	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
637		kcb->kprobe_status = KPROBE_HIT_SSDONE;
638		p->post_handler(p, regs, 0);
639	}
640
641	resume_execution(p, regs);
642	pop_kprobe(kcb);
643	preempt_enable_no_resched();
644
645	/*
646	 * if somebody else is singlestepping across a probe point, psw mask
647	 * will have PER set, in which case, continue the remaining processing
648	 * of do_single_step, as if this is not a probe hit.
649	 */
650	if (regs->psw.mask & PSW_MASK_PER)
651		return 0;
652
653	return 1;
654}
 
655
656static int __kprobes kprobe_trap_handler(struct pt_regs *regs, int trapnr)
657{
658	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
659	struct kprobe *p = kprobe_running();
660	const struct exception_table_entry *entry;
661
662	switch(kcb->kprobe_status) {
663	case KPROBE_SWAP_INST:
664		/* We are here because the instruction replacement failed */
665		return 0;
666	case KPROBE_HIT_SS:
667	case KPROBE_REENTER:
668		/*
669		 * We are here because the instruction being single
670		 * stepped caused a page fault. We reset the current
671		 * kprobe and the nip points back to the probe address
672		 * and allow the page fault handler to continue as a
673		 * normal page fault.
674		 */
675		disable_singlestep(kcb, regs, (unsigned long) p->addr);
676		pop_kprobe(kcb);
677		preempt_enable_no_resched();
678		break;
679	case KPROBE_HIT_ACTIVE:
680	case KPROBE_HIT_SSDONE:
681		/*
682		 * We increment the nmissed count for accounting,
683		 * we can also use npre/npostfault count for accounting
684		 * these specific fault cases.
685		 */
686		kprobes_inc_nmissed_count(p);
687
688		/*
689		 * We come here because instructions in the pre/post
690		 * handler caused the page_fault, this could happen
691		 * if handler tries to access user space by
692		 * copy_from_user(), get_user() etc. Let the
693		 * user-specified handler try to fix it first.
694		 */
695		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
696			return 1;
697
698		/*
699		 * In case the user-specified fault handler returned
700		 * zero, try to fix up.
701		 */
702		entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
703		if (entry) {
704			regs->psw.addr = extable_fixup(entry) | PSW_ADDR_AMODE;
705			return 1;
706		}
707
708		/*
709		 * fixup_exception() could not handle it,
710		 * Let do_page_fault() fix it.
711		 */
712		break;
713	default:
714		break;
715	}
716	return 0;
717}
 
718
719int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
720{
721	int ret;
722
723	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
724		local_irq_disable();
725	ret = kprobe_trap_handler(regs, trapnr);
726	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
727		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
728	return ret;
729}
 
730
731/*
732 * Wrapper routine to for handling exceptions.
733 */
734int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
735				       unsigned long val, void *data)
736{
737	struct die_args *args = (struct die_args *) data;
738	struct pt_regs *regs = args->regs;
739	int ret = NOTIFY_DONE;
740
741	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
742		local_irq_disable();
743
744	switch (val) {
745	case DIE_BPT:
746		if (kprobe_handler(regs))
747			ret = NOTIFY_STOP;
748		break;
749	case DIE_SSTEP:
750		if (post_kprobe_handler(regs))
751			ret = NOTIFY_STOP;
752		break;
753	case DIE_TRAP:
754		if (!preemptible() && kprobe_running() &&
755		    kprobe_trap_handler(regs, args->trapnr))
756			ret = NOTIFY_STOP;
757		break;
758	default:
759		break;
760	}
761
762	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
763		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
764
765	return ret;
766}
767
768int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
769{
770	struct jprobe *jp = container_of(p, struct jprobe, kp);
771	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
772	unsigned long stack;
773
774	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
775
776	/* setup return addr to the jprobe handler routine */
777	regs->psw.addr = (unsigned long) jp->entry | PSW_ADDR_AMODE;
778	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
779
780	/* r15 is the stack pointer */
781	stack = (unsigned long) regs->gprs[15];
782
783	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
784	return 1;
785}
786
787void __kprobes jprobe_return(void)
788{
789	asm volatile(".word 0x0002");
790}
791
792static void __used __kprobes jprobe_return_end(void)
793{
794	asm volatile("bcr 0,0");
795}
796
797int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
798{
799	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
800	unsigned long stack;
801
802	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
803
804	/* Put the regs back */
805	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
806	/* put the stack back */
807	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
808	preempt_enable_no_resched();
809	return 1;
810}
811
812static struct kprobe trampoline = {
813	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
814	.pre_handler = trampoline_probe_handler
815};
816
817int __init arch_init_kprobes(void)
818{
819	return register_kprobe(&trampoline);
820}
821
822int __kprobes arch_trampoline_kprobe(struct kprobe *p)
823{
824	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
825}