Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * demand-loading started 01.12.91 - seems it is high on the list of
  10 * things wanted, and it should be easy to implement. - Linus
  11 */
  12
  13/*
  14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  15 * pages started 02.12.91, seems to work. - Linus.
  16 *
  17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  18 * would have taken more than the 6M I have free, but it worked well as
  19 * far as I could see.
  20 *
  21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  22 */
  23
  24/*
  25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  26 * thought has to go into this. Oh, well..
  27 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  28 *		Found it. Everything seems to work now.
  29 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  30 */
  31
  32/*
  33 * 05.04.94  -  Multi-page memory management added for v1.1.
  34 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  35 *
  36 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  37 *		(Gerhard.Wichert@pdb.siemens.de)
  38 *
  39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  40 */
  41
  42#include <linux/kernel_stat.h>
  43#include <linux/mm.h>
  44#include <linux/sched/mm.h>
  45#include <linux/sched/coredump.h>
  46#include <linux/sched/numa_balancing.h>
  47#include <linux/sched/task.h>
  48#include <linux/hugetlb.h>
  49#include <linux/mman.h>
  50#include <linux/swap.h>
  51#include <linux/highmem.h>
  52#include <linux/pagemap.h>
  53#include <linux/memremap.h>
  54#include <linux/ksm.h>
  55#include <linux/rmap.h>
  56#include <linux/export.h>
  57#include <linux/delayacct.h>
  58#include <linux/init.h>
  59#include <linux/pfn_t.h>
  60#include <linux/writeback.h>
  61#include <linux/memcontrol.h>
  62#include <linux/mmu_notifier.h>
 
  63#include <linux/swapops.h>
  64#include <linux/elf.h>
  65#include <linux/gfp.h>
  66#include <linux/migrate.h>
  67#include <linux/string.h>
  68#include <linux/dma-debug.h>
  69#include <linux/debugfs.h>
  70#include <linux/userfaultfd_k.h>
  71#include <linux/dax.h>
  72#include <linux/oom.h>
  73#include <linux/numa.h>
  74
  75#include <asm/io.h>
  76#include <asm/mmu_context.h>
  77#include <asm/pgalloc.h>
  78#include <linux/uaccess.h>
  79#include <asm/tlb.h>
  80#include <asm/tlbflush.h>
  81#include <asm/pgtable.h>
  82
  83#include "internal.h"
  84
  85#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
  86#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  87#endif
  88
  89#ifndef CONFIG_NEED_MULTIPLE_NODES
  90/* use the per-pgdat data instead for discontigmem - mbligh */
  91unsigned long max_mapnr;
  92EXPORT_SYMBOL(max_mapnr);
  93
  94struct page *mem_map;
 
 
  95EXPORT_SYMBOL(mem_map);
  96#endif
  97
 
  98/*
  99 * A number of key systems in x86 including ioremap() rely on the assumption
 100 * that high_memory defines the upper bound on direct map memory, then end
 101 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 103 * and ZONE_HIGHMEM.
 104 */
 105void *high_memory;
 
 
 106EXPORT_SYMBOL(high_memory);
 107
 108/*
 109 * Randomize the address space (stacks, mmaps, brk, etc.).
 110 *
 111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 112 *   as ancient (libc5 based) binaries can segfault. )
 113 */
 114int randomize_va_space __read_mostly =
 115#ifdef CONFIG_COMPAT_BRK
 116					1;
 117#else
 118					2;
 119#endif
 120
 121static int __init disable_randmaps(char *s)
 122{
 123	randomize_va_space = 0;
 124	return 1;
 125}
 126__setup("norandmaps", disable_randmaps);
 127
 128unsigned long zero_pfn __read_mostly;
 129EXPORT_SYMBOL(zero_pfn);
 130
 131unsigned long highest_memmap_pfn __read_mostly;
 132
 133/*
 134 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 135 */
 136static int __init init_zero_pfn(void)
 137{
 138	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 139	return 0;
 140}
 141core_initcall(init_zero_pfn);
 142
 143
 144#if defined(SPLIT_RSS_COUNTING)
 145
 146void sync_mm_rss(struct mm_struct *mm)
 147{
 148	int i;
 149
 150	for (i = 0; i < NR_MM_COUNTERS; i++) {
 151		if (current->rss_stat.count[i]) {
 152			add_mm_counter(mm, i, current->rss_stat.count[i]);
 153			current->rss_stat.count[i] = 0;
 154		}
 155	}
 156	current->rss_stat.events = 0;
 157}
 158
 159static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 160{
 161	struct task_struct *task = current;
 162
 163	if (likely(task->mm == mm))
 164		task->rss_stat.count[member] += val;
 165	else
 166		add_mm_counter(mm, member, val);
 167}
 168#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 169#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 170
 171/* sync counter once per 64 page faults */
 172#define TASK_RSS_EVENTS_THRESH	(64)
 173static void check_sync_rss_stat(struct task_struct *task)
 174{
 175	if (unlikely(task != current))
 176		return;
 177	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 178		sync_mm_rss(task->mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179}
 180#else /* SPLIT_RSS_COUNTING */
 181
 182#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 183#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 184
 185static void check_sync_rss_stat(struct task_struct *task)
 186{
 187}
 188
 189#endif /* SPLIT_RSS_COUNTING */
 190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191/*
 192 * Note: this doesn't free the actual pages themselves. That
 193 * has been handled earlier when unmapping all the memory regions.
 194 */
 195static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 196			   unsigned long addr)
 197{
 198	pgtable_t token = pmd_pgtable(*pmd);
 199	pmd_clear(pmd);
 200	pte_free_tlb(tlb, token, addr);
 201	mm_dec_nr_ptes(tlb->mm);
 202}
 203
 204static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 205				unsigned long addr, unsigned long end,
 206				unsigned long floor, unsigned long ceiling)
 207{
 208	pmd_t *pmd;
 209	unsigned long next;
 210	unsigned long start;
 211
 212	start = addr;
 213	pmd = pmd_offset(pud, addr);
 214	do {
 215		next = pmd_addr_end(addr, end);
 216		if (pmd_none_or_clear_bad(pmd))
 217			continue;
 218		free_pte_range(tlb, pmd, addr);
 219	} while (pmd++, addr = next, addr != end);
 220
 221	start &= PUD_MASK;
 222	if (start < floor)
 223		return;
 224	if (ceiling) {
 225		ceiling &= PUD_MASK;
 226		if (!ceiling)
 227			return;
 228	}
 229	if (end - 1 > ceiling - 1)
 230		return;
 231
 232	pmd = pmd_offset(pud, start);
 233	pud_clear(pud);
 234	pmd_free_tlb(tlb, pmd, start);
 235	mm_dec_nr_pmds(tlb->mm);
 236}
 237
 238static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
 239				unsigned long addr, unsigned long end,
 240				unsigned long floor, unsigned long ceiling)
 241{
 242	pud_t *pud;
 243	unsigned long next;
 244	unsigned long start;
 245
 246	start = addr;
 247	pud = pud_offset(p4d, addr);
 248	do {
 249		next = pud_addr_end(addr, end);
 250		if (pud_none_or_clear_bad(pud))
 251			continue;
 252		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 253	} while (pud++, addr = next, addr != end);
 254
 255	start &= P4D_MASK;
 256	if (start < floor)
 257		return;
 258	if (ceiling) {
 259		ceiling &= P4D_MASK;
 260		if (!ceiling)
 261			return;
 262	}
 263	if (end - 1 > ceiling - 1)
 264		return;
 265
 266	pud = pud_offset(p4d, start);
 267	p4d_clear(p4d);
 268	pud_free_tlb(tlb, pud, start);
 269	mm_dec_nr_puds(tlb->mm);
 270}
 271
 272static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
 273				unsigned long addr, unsigned long end,
 274				unsigned long floor, unsigned long ceiling)
 275{
 276	p4d_t *p4d;
 277	unsigned long next;
 278	unsigned long start;
 279
 280	start = addr;
 281	p4d = p4d_offset(pgd, addr);
 282	do {
 283		next = p4d_addr_end(addr, end);
 284		if (p4d_none_or_clear_bad(p4d))
 285			continue;
 286		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
 287	} while (p4d++, addr = next, addr != end);
 288
 289	start &= PGDIR_MASK;
 290	if (start < floor)
 291		return;
 292	if (ceiling) {
 293		ceiling &= PGDIR_MASK;
 294		if (!ceiling)
 295			return;
 296	}
 297	if (end - 1 > ceiling - 1)
 298		return;
 299
 300	p4d = p4d_offset(pgd, start);
 301	pgd_clear(pgd);
 302	p4d_free_tlb(tlb, p4d, start);
 303}
 304
 305/*
 306 * This function frees user-level page tables of a process.
 
 
 307 */
 308void free_pgd_range(struct mmu_gather *tlb,
 309			unsigned long addr, unsigned long end,
 310			unsigned long floor, unsigned long ceiling)
 311{
 312	pgd_t *pgd;
 313	unsigned long next;
 314
 315	/*
 316	 * The next few lines have given us lots of grief...
 317	 *
 318	 * Why are we testing PMD* at this top level?  Because often
 319	 * there will be no work to do at all, and we'd prefer not to
 320	 * go all the way down to the bottom just to discover that.
 321	 *
 322	 * Why all these "- 1"s?  Because 0 represents both the bottom
 323	 * of the address space and the top of it (using -1 for the
 324	 * top wouldn't help much: the masks would do the wrong thing).
 325	 * The rule is that addr 0 and floor 0 refer to the bottom of
 326	 * the address space, but end 0 and ceiling 0 refer to the top
 327	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 328	 * that end 0 case should be mythical).
 329	 *
 330	 * Wherever addr is brought up or ceiling brought down, we must
 331	 * be careful to reject "the opposite 0" before it confuses the
 332	 * subsequent tests.  But what about where end is brought down
 333	 * by PMD_SIZE below? no, end can't go down to 0 there.
 334	 *
 335	 * Whereas we round start (addr) and ceiling down, by different
 336	 * masks at different levels, in order to test whether a table
 337	 * now has no other vmas using it, so can be freed, we don't
 338	 * bother to round floor or end up - the tests don't need that.
 339	 */
 340
 341	addr &= PMD_MASK;
 342	if (addr < floor) {
 343		addr += PMD_SIZE;
 344		if (!addr)
 345			return;
 346	}
 347	if (ceiling) {
 348		ceiling &= PMD_MASK;
 349		if (!ceiling)
 350			return;
 351	}
 352	if (end - 1 > ceiling - 1)
 353		end -= PMD_SIZE;
 354	if (addr > end - 1)
 355		return;
 356	/*
 357	 * We add page table cache pages with PAGE_SIZE,
 358	 * (see pte_free_tlb()), flush the tlb if we need
 359	 */
 360	tlb_change_page_size(tlb, PAGE_SIZE);
 361	pgd = pgd_offset(tlb->mm, addr);
 362	do {
 363		next = pgd_addr_end(addr, end);
 364		if (pgd_none_or_clear_bad(pgd))
 365			continue;
 366		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
 367	} while (pgd++, addr = next, addr != end);
 368}
 369
 370void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 371		unsigned long floor, unsigned long ceiling)
 372{
 373	while (vma) {
 374		struct vm_area_struct *next = vma->vm_next;
 375		unsigned long addr = vma->vm_start;
 376
 377		/*
 378		 * Hide vma from rmap and truncate_pagecache before freeing
 379		 * pgtables
 380		 */
 381		unlink_anon_vmas(vma);
 382		unlink_file_vma(vma);
 383
 384		if (is_vm_hugetlb_page(vma)) {
 385			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 386				floor, next ? next->vm_start : ceiling);
 387		} else {
 388			/*
 389			 * Optimization: gather nearby vmas into one call down
 390			 */
 391			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 392			       && !is_vm_hugetlb_page(next)) {
 393				vma = next;
 394				next = vma->vm_next;
 395				unlink_anon_vmas(vma);
 396				unlink_file_vma(vma);
 397			}
 398			free_pgd_range(tlb, addr, vma->vm_end,
 399				floor, next ? next->vm_start : ceiling);
 400		}
 401		vma = next;
 402	}
 403}
 404
 405int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
 
 406{
 407	spinlock_t *ptl;
 408	pgtable_t new = pte_alloc_one(mm);
 409	if (!new)
 410		return -ENOMEM;
 411
 412	/*
 413	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 414	 * visible before the pte is made visible to other CPUs by being
 415	 * put into page tables.
 416	 *
 417	 * The other side of the story is the pointer chasing in the page
 418	 * table walking code (when walking the page table without locking;
 419	 * ie. most of the time). Fortunately, these data accesses consist
 420	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 421	 * being the notable exception) will already guarantee loads are
 422	 * seen in-order. See the alpha page table accessors for the
 423	 * smp_read_barrier_depends() barriers in page table walking code.
 424	 */
 425	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 426
 427	ptl = pmd_lock(mm, pmd);
 
 428	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 429		mm_inc_nr_ptes(mm);
 430		pmd_populate(mm, pmd, new);
 431		new = NULL;
 432	}
 433	spin_unlock(ptl);
 
 434	if (new)
 435		pte_free(mm, new);
 
 
 436	return 0;
 437}
 438
 439int __pte_alloc_kernel(pmd_t *pmd)
 440{
 441	pte_t *new = pte_alloc_one_kernel(&init_mm);
 442	if (!new)
 443		return -ENOMEM;
 444
 445	smp_wmb(); /* See comment in __pte_alloc */
 446
 447	spin_lock(&init_mm.page_table_lock);
 448	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 449		pmd_populate_kernel(&init_mm, pmd, new);
 450		new = NULL;
 451	}
 
 452	spin_unlock(&init_mm.page_table_lock);
 453	if (new)
 454		pte_free_kernel(&init_mm, new);
 455	return 0;
 456}
 457
 458static inline void init_rss_vec(int *rss)
 459{
 460	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 461}
 462
 463static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 464{
 465	int i;
 466
 467	if (current->mm == mm)
 468		sync_mm_rss(mm);
 469	for (i = 0; i < NR_MM_COUNTERS; i++)
 470		if (rss[i])
 471			add_mm_counter(mm, i, rss[i]);
 472}
 473
 474/*
 475 * This function is called to print an error when a bad pte
 476 * is found. For example, we might have a PFN-mapped pte in
 477 * a region that doesn't allow it.
 478 *
 479 * The calling function must still handle the error.
 480 */
 481static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 482			  pte_t pte, struct page *page)
 483{
 484	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 485	p4d_t *p4d = p4d_offset(pgd, addr);
 486	pud_t *pud = pud_offset(p4d, addr);
 487	pmd_t *pmd = pmd_offset(pud, addr);
 488	struct address_space *mapping;
 489	pgoff_t index;
 490	static unsigned long resume;
 491	static unsigned long nr_shown;
 492	static unsigned long nr_unshown;
 493
 494	/*
 495	 * Allow a burst of 60 reports, then keep quiet for that minute;
 496	 * or allow a steady drip of one report per second.
 497	 */
 498	if (nr_shown == 60) {
 499		if (time_before(jiffies, resume)) {
 500			nr_unshown++;
 501			return;
 502		}
 503		if (nr_unshown) {
 504			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 505				 nr_unshown);
 
 506			nr_unshown = 0;
 507		}
 508		nr_shown = 0;
 509	}
 510	if (nr_shown++ == 0)
 511		resume = jiffies + 60 * HZ;
 512
 513	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 514	index = linear_page_index(vma, addr);
 515
 516	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 517		 current->comm,
 518		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 
 519	if (page)
 520		dump_page(page, "bad pte");
 521	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
 522		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 523	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
 524		 vma->vm_file,
 525		 vma->vm_ops ? vma->vm_ops->fault : NULL,
 526		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 527		 mapping ? mapping->a_ops->readpage : NULL);
 
 
 
 
 
 528	dump_stack();
 529	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 530}
 531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 532/*
 533 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 534 *
 535 * "Special" mappings do not wish to be associated with a "struct page" (either
 536 * it doesn't exist, or it exists but they don't want to touch it). In this
 537 * case, NULL is returned here. "Normal" mappings do have a struct page.
 538 *
 539 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 540 * pte bit, in which case this function is trivial. Secondly, an architecture
 541 * may not have a spare pte bit, which requires a more complicated scheme,
 542 * described below.
 543 *
 544 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 545 * special mapping (even if there are underlying and valid "struct pages").
 546 * COWed pages of a VM_PFNMAP are always normal.
 547 *
 548 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 549 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 550 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 551 * mapping will always honor the rule
 552 *
 553 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 554 *
 555 * And for normal mappings this is false.
 556 *
 557 * This restricts such mappings to be a linear translation from virtual address
 558 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 559 * as the vma is not a COW mapping; in that case, we know that all ptes are
 560 * special (because none can have been COWed).
 561 *
 562 *
 563 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 564 *
 565 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 566 * page" backing, however the difference is that _all_ pages with a struct
 567 * page (that is, those where pfn_valid is true) are refcounted and considered
 568 * normal pages by the VM. The disadvantage is that pages are refcounted
 569 * (which can be slower and simply not an option for some PFNMAP users). The
 570 * advantage is that we don't have to follow the strict linearity rule of
 571 * PFNMAP mappings in order to support COWable mappings.
 572 *
 573 */
 
 
 
 
 
 574struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 575			    pte_t pte)
 576{
 577	unsigned long pfn = pte_pfn(pte);
 578
 579	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
 580		if (likely(!pte_special(pte)))
 581			goto check_pfn;
 582		if (vma->vm_ops && vma->vm_ops->find_special_page)
 583			return vma->vm_ops->find_special_page(vma, addr);
 584		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 585			return NULL;
 586		if (is_zero_pfn(pfn))
 587			return NULL;
 588		if (pte_devmap(pte))
 589			return NULL;
 590
 591		print_bad_pte(vma, addr, pte, NULL);
 592		return NULL;
 593	}
 594
 595	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
 596
 597	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 598		if (vma->vm_flags & VM_MIXEDMAP) {
 599			if (!pfn_valid(pfn))
 600				return NULL;
 601			goto out;
 602		} else {
 603			unsigned long off;
 604			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 605			if (pfn == vma->vm_pgoff + off)
 606				return NULL;
 607			if (!is_cow_mapping(vma->vm_flags))
 608				return NULL;
 609		}
 610	}
 611
 612	if (is_zero_pfn(pfn))
 613		return NULL;
 614
 615check_pfn:
 616	if (unlikely(pfn > highest_memmap_pfn)) {
 617		print_bad_pte(vma, addr, pte, NULL);
 618		return NULL;
 619	}
 620
 621	/*
 622	 * NOTE! We still have PageReserved() pages in the page tables.
 623	 * eg. VDSO mappings can cause them to exist.
 624	 */
 625out:
 626	return pfn_to_page(pfn);
 627}
 628
 629#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 630struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 631				pmd_t pmd)
 632{
 633	unsigned long pfn = pmd_pfn(pmd);
 634
 635	/*
 636	 * There is no pmd_special() but there may be special pmds, e.g.
 637	 * in a direct-access (dax) mapping, so let's just replicate the
 638	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
 639	 */
 640	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 641		if (vma->vm_flags & VM_MIXEDMAP) {
 642			if (!pfn_valid(pfn))
 643				return NULL;
 644			goto out;
 645		} else {
 646			unsigned long off;
 647			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 648			if (pfn == vma->vm_pgoff + off)
 649				return NULL;
 650			if (!is_cow_mapping(vma->vm_flags))
 651				return NULL;
 652		}
 653	}
 654
 655	if (pmd_devmap(pmd))
 656		return NULL;
 657	if (is_zero_pfn(pfn))
 658		return NULL;
 659	if (unlikely(pfn > highest_memmap_pfn))
 660		return NULL;
 661
 662	/*
 663	 * NOTE! We still have PageReserved() pages in the page tables.
 664	 * eg. VDSO mappings can cause them to exist.
 665	 */
 666out:
 667	return pfn_to_page(pfn);
 668}
 669#endif
 670
 671/*
 672 * copy one vm_area from one task to the other. Assumes the page tables
 673 * already present in the new task to be cleared in the whole range
 674 * covered by this vma.
 675 */
 676
 677static inline unsigned long
 678copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 679		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 680		unsigned long addr, int *rss)
 681{
 682	unsigned long vm_flags = vma->vm_flags;
 683	pte_t pte = *src_pte;
 684	struct page *page;
 685
 686	/* pte contains position in swap or file, so copy. */
 687	if (unlikely(!pte_present(pte))) {
 688		swp_entry_t entry = pte_to_swp_entry(pte);
 
 689
 690		if (likely(!non_swap_entry(entry))) {
 691			if (swap_duplicate(entry) < 0)
 692				return entry.val;
 693
 694			/* make sure dst_mm is on swapoff's mmlist. */
 695			if (unlikely(list_empty(&dst_mm->mmlist))) {
 696				spin_lock(&mmlist_lock);
 697				if (list_empty(&dst_mm->mmlist))
 698					list_add(&dst_mm->mmlist,
 699							&src_mm->mmlist);
 700				spin_unlock(&mmlist_lock);
 701			}
 702			rss[MM_SWAPENTS]++;
 703		} else if (is_migration_entry(entry)) {
 704			page = migration_entry_to_page(entry);
 705
 706			rss[mm_counter(page)]++;
 707
 708			if (is_write_migration_entry(entry) &&
 709					is_cow_mapping(vm_flags)) {
 710				/*
 711				 * COW mappings require pages in both
 712				 * parent and child to be set to read.
 713				 */
 714				make_migration_entry_read(&entry);
 715				pte = swp_entry_to_pte(entry);
 716				if (pte_swp_soft_dirty(*src_pte))
 717					pte = pte_swp_mksoft_dirty(pte);
 718				set_pte_at(src_mm, addr, src_pte, pte);
 719			}
 720		} else if (is_device_private_entry(entry)) {
 721			page = device_private_entry_to_page(entry);
 722
 723			/*
 724			 * Update rss count even for unaddressable pages, as
 725			 * they should treated just like normal pages in this
 726			 * respect.
 727			 *
 728			 * We will likely want to have some new rss counters
 729			 * for unaddressable pages, at some point. But for now
 730			 * keep things as they are.
 731			 */
 732			get_page(page);
 733			rss[mm_counter(page)]++;
 734			page_dup_rmap(page, false);
 735
 736			/*
 737			 * We do not preserve soft-dirty information, because so
 738			 * far, checkpoint/restore is the only feature that
 739			 * requires that. And checkpoint/restore does not work
 740			 * when a device driver is involved (you cannot easily
 741			 * save and restore device driver state).
 742			 */
 743			if (is_write_device_private_entry(entry) &&
 744			    is_cow_mapping(vm_flags)) {
 745				make_device_private_entry_read(&entry);
 746				pte = swp_entry_to_pte(entry);
 747				set_pte_at(src_mm, addr, src_pte, pte);
 748			}
 749		}
 750		goto out_set_pte;
 751	}
 752
 753	/*
 754	 * If it's a COW mapping, write protect it both
 755	 * in the parent and the child
 756	 */
 757	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
 758		ptep_set_wrprotect(src_mm, addr, src_pte);
 759		pte = pte_wrprotect(pte);
 760	}
 761
 762	/*
 763	 * If it's a shared mapping, mark it clean in
 764	 * the child
 765	 */
 766	if (vm_flags & VM_SHARED)
 767		pte = pte_mkclean(pte);
 768	pte = pte_mkold(pte);
 769
 770	page = vm_normal_page(vma, addr, pte);
 771	if (page) {
 772		get_page(page);
 773		page_dup_rmap(page, false);
 774		rss[mm_counter(page)]++;
 775	} else if (pte_devmap(pte)) {
 776		page = pte_page(pte);
 
 777	}
 778
 779out_set_pte:
 780	set_pte_at(dst_mm, addr, dst_pte, pte);
 781	return 0;
 782}
 783
 784static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 785		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 786		   unsigned long addr, unsigned long end)
 787{
 788	pte_t *orig_src_pte, *orig_dst_pte;
 789	pte_t *src_pte, *dst_pte;
 790	spinlock_t *src_ptl, *dst_ptl;
 791	int progress = 0;
 792	int rss[NR_MM_COUNTERS];
 793	swp_entry_t entry = (swp_entry_t){0};
 794
 795again:
 796	init_rss_vec(rss);
 797
 798	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 799	if (!dst_pte)
 800		return -ENOMEM;
 801	src_pte = pte_offset_map(src_pmd, addr);
 802	src_ptl = pte_lockptr(src_mm, src_pmd);
 803	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 804	orig_src_pte = src_pte;
 805	orig_dst_pte = dst_pte;
 806	arch_enter_lazy_mmu_mode();
 807
 808	do {
 809		/*
 810		 * We are holding two locks at this point - either of them
 811		 * could generate latencies in another task on another CPU.
 812		 */
 813		if (progress >= 32) {
 814			progress = 0;
 815			if (need_resched() ||
 816			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 817				break;
 818		}
 819		if (pte_none(*src_pte)) {
 820			progress++;
 821			continue;
 822		}
 823		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 824							vma, addr, rss);
 825		if (entry.val)
 826			break;
 827		progress += 8;
 828	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 829
 830	arch_leave_lazy_mmu_mode();
 831	spin_unlock(src_ptl);
 832	pte_unmap(orig_src_pte);
 833	add_mm_rss_vec(dst_mm, rss);
 834	pte_unmap_unlock(orig_dst_pte, dst_ptl);
 835	cond_resched();
 836
 837	if (entry.val) {
 838		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 839			return -ENOMEM;
 840		progress = 0;
 841	}
 842	if (addr != end)
 843		goto again;
 844	return 0;
 845}
 846
 847static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 848		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 849		unsigned long addr, unsigned long end)
 850{
 851	pmd_t *src_pmd, *dst_pmd;
 852	unsigned long next;
 853
 854	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 855	if (!dst_pmd)
 856		return -ENOMEM;
 857	src_pmd = pmd_offset(src_pud, addr);
 858	do {
 859		next = pmd_addr_end(addr, end);
 860		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
 861			|| pmd_devmap(*src_pmd)) {
 862			int err;
 863			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
 864			err = copy_huge_pmd(dst_mm, src_mm,
 865					    dst_pmd, src_pmd, addr, vma);
 866			if (err == -ENOMEM)
 867				return -ENOMEM;
 868			if (!err)
 869				continue;
 870			/* fall through */
 871		}
 872		if (pmd_none_or_clear_bad(src_pmd))
 873			continue;
 874		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
 875						vma, addr, next))
 876			return -ENOMEM;
 877	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
 878	return 0;
 879}
 880
 881static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 882		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
 883		unsigned long addr, unsigned long end)
 884{
 885	pud_t *src_pud, *dst_pud;
 886	unsigned long next;
 887
 888	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
 889	if (!dst_pud)
 890		return -ENOMEM;
 891	src_pud = pud_offset(src_p4d, addr);
 892	do {
 893		next = pud_addr_end(addr, end);
 894		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
 895			int err;
 896
 897			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
 898			err = copy_huge_pud(dst_mm, src_mm,
 899					    dst_pud, src_pud, addr, vma);
 900			if (err == -ENOMEM)
 901				return -ENOMEM;
 902			if (!err)
 903				continue;
 904			/* fall through */
 905		}
 906		if (pud_none_or_clear_bad(src_pud))
 907			continue;
 908		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
 909						vma, addr, next))
 910			return -ENOMEM;
 911	} while (dst_pud++, src_pud++, addr = next, addr != end);
 912	return 0;
 913}
 914
 915static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 916		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
 917		unsigned long addr, unsigned long end)
 918{
 919	p4d_t *src_p4d, *dst_p4d;
 920	unsigned long next;
 921
 922	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
 923	if (!dst_p4d)
 924		return -ENOMEM;
 925	src_p4d = p4d_offset(src_pgd, addr);
 926	do {
 927		next = p4d_addr_end(addr, end);
 928		if (p4d_none_or_clear_bad(src_p4d))
 929			continue;
 930		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
 931						vma, addr, next))
 932			return -ENOMEM;
 933	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
 934	return 0;
 935}
 936
 937int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 938		struct vm_area_struct *vma)
 939{
 940	pgd_t *src_pgd, *dst_pgd;
 941	unsigned long next;
 942	unsigned long addr = vma->vm_start;
 943	unsigned long end = vma->vm_end;
 944	struct mmu_notifier_range range;
 945	bool is_cow;
 946	int ret;
 947
 948	/*
 949	 * Don't copy ptes where a page fault will fill them correctly.
 950	 * Fork becomes much lighter when there are big shared or private
 951	 * readonly mappings. The tradeoff is that copy_page_range is more
 952	 * efficient than faulting.
 953	 */
 954	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
 955			!vma->anon_vma)
 956		return 0;
 
 957
 958	if (is_vm_hugetlb_page(vma))
 959		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
 960
 961	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
 962		/*
 963		 * We do not free on error cases below as remove_vma
 964		 * gets called on error from higher level routine
 965		 */
 966		ret = track_pfn_copy(vma);
 967		if (ret)
 968			return ret;
 969	}
 970
 971	/*
 972	 * We need to invalidate the secondary MMU mappings only when
 973	 * there could be a permission downgrade on the ptes of the
 974	 * parent mm. And a permission downgrade will only happen if
 975	 * is_cow_mapping() returns true.
 976	 */
 977	is_cow = is_cow_mapping(vma->vm_flags);
 978
 979	if (is_cow) {
 980		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
 981					0, vma, src_mm, addr, end);
 982		mmu_notifier_invalidate_range_start(&range);
 983	}
 984
 985	ret = 0;
 986	dst_pgd = pgd_offset(dst_mm, addr);
 987	src_pgd = pgd_offset(src_mm, addr);
 988	do {
 989		next = pgd_addr_end(addr, end);
 990		if (pgd_none_or_clear_bad(src_pgd))
 991			continue;
 992		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
 993					    vma, addr, next))) {
 994			ret = -ENOMEM;
 995			break;
 996		}
 997	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
 998
 999	if (is_cow)
1000		mmu_notifier_invalidate_range_end(&range);
 
1001	return ret;
1002}
1003
1004static unsigned long zap_pte_range(struct mmu_gather *tlb,
1005				struct vm_area_struct *vma, pmd_t *pmd,
1006				unsigned long addr, unsigned long end,
1007				struct zap_details *details)
1008{
1009	struct mm_struct *mm = tlb->mm;
1010	int force_flush = 0;
1011	int rss[NR_MM_COUNTERS];
1012	spinlock_t *ptl;
1013	pte_t *start_pte;
1014	pte_t *pte;
1015	swp_entry_t entry;
1016
1017	tlb_change_page_size(tlb, PAGE_SIZE);
1018again:
1019	init_rss_vec(rss);
1020	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1021	pte = start_pte;
1022	flush_tlb_batched_pending(mm);
1023	arch_enter_lazy_mmu_mode();
1024	do {
1025		pte_t ptent = *pte;
1026		if (pte_none(ptent))
1027			continue;
1028
1029		if (need_resched())
1030			break;
1031
1032		if (pte_present(ptent)) {
1033			struct page *page;
1034
1035			page = vm_normal_page(vma, addr, ptent);
1036			if (unlikely(details) && page) {
1037				/*
1038				 * unmap_shared_mapping_pages() wants to
1039				 * invalidate cache without truncating:
1040				 * unmap shared but keep private pages.
1041				 */
1042				if (details->check_mapping &&
1043				    details->check_mapping != page_rmapping(page))
 
 
 
 
 
 
 
 
1044					continue;
1045			}
1046			ptent = ptep_get_and_clear_full(mm, addr, pte,
1047							tlb->fullmm);
1048			tlb_remove_tlb_entry(tlb, pte, addr);
1049			if (unlikely(!page))
1050				continue;
1051
1052			if (!PageAnon(page)) {
1053				if (pte_dirty(ptent)) {
1054					force_flush = 1;
 
 
 
 
 
1055					set_page_dirty(page);
1056				}
1057				if (pte_young(ptent) &&
1058				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1059					mark_page_accessed(page);
 
1060			}
1061			rss[mm_counter(page)]--;
1062			page_remove_rmap(page, false);
1063			if (unlikely(page_mapcount(page) < 0))
1064				print_bad_pte(vma, addr, ptent, page);
1065			if (unlikely(__tlb_remove_page(tlb, page))) {
1066				force_flush = 1;
1067				addr += PAGE_SIZE;
1068				break;
1069			}
1070			continue;
1071		}
1072
1073		entry = pte_to_swp_entry(ptent);
1074		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1075			struct page *page = device_private_entry_to_page(entry);
1076
1077			if (unlikely(details && details->check_mapping)) {
1078				/*
1079				 * unmap_shared_mapping_pages() wants to
1080				 * invalidate cache without truncating:
1081				 * unmap shared but keep private pages.
1082				 */
1083				if (details->check_mapping !=
1084				    page_rmapping(page))
1085					continue;
1086			}
1087
1088			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1089			rss[mm_counter(page)]--;
1090			page_remove_rmap(page, false);
1091			put_page(page);
1092			continue;
1093		}
1094
1095		/* If details->check_mapping, we leave swap entries. */
 
 
1096		if (unlikely(details))
1097			continue;
 
 
 
 
 
1098
1099		if (!non_swap_entry(entry))
1100			rss[MM_SWAPENTS]--;
1101		else if (is_migration_entry(entry)) {
1102			struct page *page;
1103
1104			page = migration_entry_to_page(entry);
1105			rss[mm_counter(page)]--;
1106		}
1107		if (unlikely(!free_swap_and_cache(entry)))
1108			print_bad_pte(vma, addr, ptent, NULL);
1109		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1110	} while (pte++, addr += PAGE_SIZE, addr != end);
1111
1112	add_mm_rss_vec(mm, rss);
1113	arch_leave_lazy_mmu_mode();
1114
1115	/* Do the actual TLB flush before dropping ptl */
1116	if (force_flush)
1117		tlb_flush_mmu_tlbonly(tlb);
1118	pte_unmap_unlock(start_pte, ptl);
1119
1120	/*
1121	 * If we forced a TLB flush (either due to running out of
1122	 * batch buffers or because we needed to flush dirty TLB
1123	 * entries before releasing the ptl), free the batched
1124	 * memory too. Restart if we didn't do everything.
1125	 */
1126	if (force_flush) {
1127		force_flush = 0;
1128		tlb_flush_mmu(tlb);
1129	}
1130
1131	if (addr != end) {
1132		cond_resched();
1133		goto again;
1134	}
1135
1136	return addr;
1137}
1138
1139static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1140				struct vm_area_struct *vma, pud_t *pud,
1141				unsigned long addr, unsigned long end,
1142				struct zap_details *details)
1143{
1144	pmd_t *pmd;
1145	unsigned long next;
1146
1147	pmd = pmd_offset(pud, addr);
1148	do {
1149		next = pmd_addr_end(addr, end);
1150		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1151			if (next - addr != HPAGE_PMD_SIZE)
1152				__split_huge_pmd(vma, pmd, addr, false, NULL);
1153			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1154				goto next;
 
1155			/* fall through */
1156		}
1157		/*
1158		 * Here there can be other concurrent MADV_DONTNEED or
1159		 * trans huge page faults running, and if the pmd is
1160		 * none or trans huge it can change under us. This is
1161		 * because MADV_DONTNEED holds the mmap_sem in read
1162		 * mode.
1163		 */
1164		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1165			goto next;
1166		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1167next:
1168		cond_resched();
1169	} while (pmd++, addr = next, addr != end);
1170
1171	return addr;
1172}
1173
1174static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1175				struct vm_area_struct *vma, p4d_t *p4d,
1176				unsigned long addr, unsigned long end,
1177				struct zap_details *details)
1178{
1179	pud_t *pud;
1180	unsigned long next;
1181
1182	pud = pud_offset(p4d, addr);
1183	do {
1184		next = pud_addr_end(addr, end);
1185		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1186			if (next - addr != HPAGE_PUD_SIZE) {
1187				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1188				split_huge_pud(vma, pud, addr);
1189			} else if (zap_huge_pud(tlb, vma, pud, addr))
1190				goto next;
1191			/* fall through */
1192		}
1193		if (pud_none_or_clear_bad(pud))
1194			continue;
1195		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1196next:
1197		cond_resched();
1198	} while (pud++, addr = next, addr != end);
1199
1200	return addr;
1201}
1202
1203static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1204				struct vm_area_struct *vma, pgd_t *pgd,
1205				unsigned long addr, unsigned long end,
1206				struct zap_details *details)
1207{
1208	p4d_t *p4d;
1209	unsigned long next;
1210
1211	p4d = p4d_offset(pgd, addr);
1212	do {
1213		next = p4d_addr_end(addr, end);
1214		if (p4d_none_or_clear_bad(p4d))
1215			continue;
1216		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1217	} while (p4d++, addr = next, addr != end);
1218
1219	return addr;
1220}
1221
1222void unmap_page_range(struct mmu_gather *tlb,
1223			     struct vm_area_struct *vma,
1224			     unsigned long addr, unsigned long end,
1225			     struct zap_details *details)
1226{
1227	pgd_t *pgd;
1228	unsigned long next;
1229
 
 
 
1230	BUG_ON(addr >= end);
 
1231	tlb_start_vma(tlb, vma);
1232	pgd = pgd_offset(vma->vm_mm, addr);
1233	do {
1234		next = pgd_addr_end(addr, end);
1235		if (pgd_none_or_clear_bad(pgd))
1236			continue;
1237		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1238	} while (pgd++, addr = next, addr != end);
1239	tlb_end_vma(tlb, vma);
1240}
1241
1242
1243static void unmap_single_vma(struct mmu_gather *tlb,
1244		struct vm_area_struct *vma, unsigned long start_addr,
1245		unsigned long end_addr,
1246		struct zap_details *details)
1247{
1248	unsigned long start = max(vma->vm_start, start_addr);
1249	unsigned long end;
1250
1251	if (start >= vma->vm_end)
1252		return;
1253	end = min(vma->vm_end, end_addr);
1254	if (end <= vma->vm_start)
1255		return;
1256
1257	if (vma->vm_file)
1258		uprobe_munmap(vma, start, end);
1259
1260	if (unlikely(vma->vm_flags & VM_PFNMAP))
1261		untrack_pfn(vma, 0, 0);
1262
1263	if (start != end) {
1264		if (unlikely(is_vm_hugetlb_page(vma))) {
1265			/*
1266			 * It is undesirable to test vma->vm_file as it
1267			 * should be non-null for valid hugetlb area.
1268			 * However, vm_file will be NULL in the error
1269			 * cleanup path of mmap_region. When
1270			 * hugetlbfs ->mmap method fails,
1271			 * mmap_region() nullifies vma->vm_file
1272			 * before calling this function to clean up.
1273			 * Since no pte has actually been setup, it is
1274			 * safe to do nothing in this case.
1275			 */
1276			if (vma->vm_file) {
1277				i_mmap_lock_write(vma->vm_file->f_mapping);
1278				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1279				i_mmap_unlock_write(vma->vm_file->f_mapping);
1280			}
1281		} else
1282			unmap_page_range(tlb, vma, start, end, details);
1283	}
1284}
1285
1286/**
1287 * unmap_vmas - unmap a range of memory covered by a list of vma's
1288 * @tlb: address of the caller's struct mmu_gather
1289 * @vma: the starting vma
1290 * @start_addr: virtual address at which to start unmapping
1291 * @end_addr: virtual address at which to end unmapping
 
 
 
 
1292 *
1293 * Unmap all pages in the vma list.
1294 *
1295 * Only addresses between `start' and `end' will be unmapped.
1296 *
1297 * The VMA list must be sorted in ascending virtual address order.
1298 *
1299 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1300 * range after unmap_vmas() returns.  So the only responsibility here is to
1301 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1302 * drops the lock and schedules.
1303 */
1304void unmap_vmas(struct mmu_gather *tlb,
1305		struct vm_area_struct *vma, unsigned long start_addr,
1306		unsigned long end_addr)
 
1307{
1308	struct mmu_notifier_range range;
 
1309
1310	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1311				start_addr, end_addr);
1312	mmu_notifier_invalidate_range_start(&range);
1313	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1314		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1315	mmu_notifier_invalidate_range_end(&range);
1316}
1317
1318/**
1319 * zap_page_range - remove user pages in a given range
1320 * @vma: vm_area_struct holding the applicable pages
1321 * @start: starting address of pages to zap
1322 * @size: number of bytes to zap
1323 *
1324 * Caller must protect the VMA list
1325 */
1326void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1327		unsigned long size)
1328{
1329	struct mmu_notifier_range range;
1330	struct mmu_gather tlb;
1331
1332	lru_add_drain();
1333	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1334				start, start + size);
1335	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1336	update_hiwater_rss(vma->vm_mm);
1337	mmu_notifier_invalidate_range_start(&range);
1338	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1339		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1340	mmu_notifier_invalidate_range_end(&range);
1341	tlb_finish_mmu(&tlb, start, range.end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342}
1343
1344/**
1345 * zap_page_range_single - remove user pages in a given range
1346 * @vma: vm_area_struct holding the applicable pages
1347 * @address: starting address of pages to zap
1348 * @size: number of bytes to zap
1349 * @details: details of shared cache invalidation
1350 *
1351 * The range must fit into one VMA.
1352 */
1353static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1354		unsigned long size, struct zap_details *details)
1355{
1356	struct mmu_notifier_range range;
1357	struct mmu_gather tlb;
 
 
1358
1359	lru_add_drain();
1360	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1361				address, address + size);
1362	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1363	update_hiwater_rss(vma->vm_mm);
1364	mmu_notifier_invalidate_range_start(&range);
1365	unmap_single_vma(&tlb, vma, address, range.end, details);
1366	mmu_notifier_invalidate_range_end(&range);
1367	tlb_finish_mmu(&tlb, address, range.end);
1368}
1369
1370/**
1371 * zap_vma_ptes - remove ptes mapping the vma
1372 * @vma: vm_area_struct holding ptes to be zapped
1373 * @address: starting address of pages to zap
1374 * @size: number of bytes to zap
1375 *
1376 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1377 *
1378 * The entire address range must be fully contained within the vma.
1379 *
 
1380 */
1381void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1382		unsigned long size)
1383{
1384	if (address < vma->vm_start || address + size > vma->vm_end ||
1385	    		!(vma->vm_flags & VM_PFNMAP))
1386		return;
1387
1388	zap_page_range_single(vma, address, size, NULL);
1389}
1390EXPORT_SYMBOL_GPL(zap_vma_ptes);
1391
1392pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1393			spinlock_t **ptl)
 
 
 
 
 
 
 
 
 
 
 
 
1394{
1395	pgd_t *pgd;
1396	p4d_t *p4d;
1397	pud_t *pud;
1398	pmd_t *pmd;
 
 
 
 
1399
1400	pgd = pgd_offset(mm, addr);
1401	p4d = p4d_alloc(mm, pgd, addr);
1402	if (!p4d)
1403		return NULL;
1404	pud = pud_alloc(mm, p4d, addr);
1405	if (!pud)
1406		return NULL;
1407	pmd = pmd_alloc(mm, pud, addr);
1408	if (!pmd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409		return NULL;
 
 
 
 
1410
1411	VM_BUG_ON(pmd_trans_huge(*pmd));
1412	return pte_alloc_map_lock(mm, pmd, addr, ptl);
 
 
 
 
 
 
 
 
 
 
 
1413}
1414
1415/*
1416 * This is the old fallback for page remapping.
1417 *
1418 * For historical reasons, it only allows reserved pages. Only
1419 * old drivers should use this, and they needed to mark their
1420 * pages reserved for the old functions anyway.
1421 */
1422static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1423			struct page *page, pgprot_t prot)
1424{
1425	struct mm_struct *mm = vma->vm_mm;
1426	int retval;
1427	pte_t *pte;
1428	spinlock_t *ptl;
1429
1430	retval = -EINVAL;
1431	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1432		goto out;
1433	retval = -ENOMEM;
1434	flush_dcache_page(page);
1435	pte = get_locked_pte(mm, addr, &ptl);
1436	if (!pte)
1437		goto out;
1438	retval = -EBUSY;
1439	if (!pte_none(*pte))
1440		goto out_unlock;
1441
1442	/* Ok, finally just insert the thing.. */
1443	get_page(page);
1444	inc_mm_counter_fast(mm, mm_counter_file(page));
1445	page_add_file_rmap(page, false);
1446	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1447
1448	retval = 0;
 
 
1449out_unlock:
1450	pte_unmap_unlock(pte, ptl);
1451out:
1452	return retval;
1453}
1454
1455/**
1456 * vm_insert_page - insert single page into user vma
1457 * @vma: user vma to map to
1458 * @addr: target user address of this page
1459 * @page: source kernel page
1460 *
1461 * This allows drivers to insert individual pages they've allocated
1462 * into a user vma.
1463 *
1464 * The page has to be a nice clean _individual_ kernel allocation.
1465 * If you allocate a compound page, you need to have marked it as
1466 * such (__GFP_COMP), or manually just split the page up yourself
1467 * (see split_page()).
1468 *
1469 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1470 * took an arbitrary page protection parameter. This doesn't allow
1471 * that. Your vma protection will have to be set up correctly, which
1472 * means that if you want a shared writable mapping, you'd better
1473 * ask for a shared writable mapping!
1474 *
1475 * The page does not need to be reserved.
1476 *
1477 * Usually this function is called from f_op->mmap() handler
1478 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1479 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1480 * function from other places, for example from page-fault handler.
1481 *
1482 * Return: %0 on success, negative error code otherwise.
1483 */
1484int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1485			struct page *page)
1486{
1487	if (addr < vma->vm_start || addr >= vma->vm_end)
1488		return -EFAULT;
1489	if (!page_count(page))
1490		return -EINVAL;
1491	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1492		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1493		BUG_ON(vma->vm_flags & VM_PFNMAP);
1494		vma->vm_flags |= VM_MIXEDMAP;
1495	}
1496	return insert_page(vma, addr, page, vma->vm_page_prot);
1497}
1498EXPORT_SYMBOL(vm_insert_page);
1499
1500/*
1501 * __vm_map_pages - maps range of kernel pages into user vma
1502 * @vma: user vma to map to
1503 * @pages: pointer to array of source kernel pages
1504 * @num: number of pages in page array
1505 * @offset: user's requested vm_pgoff
1506 *
1507 * This allows drivers to map range of kernel pages into a user vma.
1508 *
1509 * Return: 0 on success and error code otherwise.
1510 */
1511static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1512				unsigned long num, unsigned long offset)
1513{
1514	unsigned long count = vma_pages(vma);
1515	unsigned long uaddr = vma->vm_start;
1516	int ret, i;
1517
1518	/* Fail if the user requested offset is beyond the end of the object */
1519	if (offset >= num)
1520		return -ENXIO;
1521
1522	/* Fail if the user requested size exceeds available object size */
1523	if (count > num - offset)
1524		return -ENXIO;
1525
1526	for (i = 0; i < count; i++) {
1527		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1528		if (ret < 0)
1529			return ret;
1530		uaddr += PAGE_SIZE;
1531	}
1532
1533	return 0;
1534}
1535
1536/**
1537 * vm_map_pages - maps range of kernel pages starts with non zero offset
1538 * @vma: user vma to map to
1539 * @pages: pointer to array of source kernel pages
1540 * @num: number of pages in page array
1541 *
1542 * Maps an object consisting of @num pages, catering for the user's
1543 * requested vm_pgoff
1544 *
1545 * If we fail to insert any page into the vma, the function will return
1546 * immediately leaving any previously inserted pages present.  Callers
1547 * from the mmap handler may immediately return the error as their caller
1548 * will destroy the vma, removing any successfully inserted pages. Other
1549 * callers should make their own arrangements for calling unmap_region().
1550 *
1551 * Context: Process context. Called by mmap handlers.
1552 * Return: 0 on success and error code otherwise.
1553 */
1554int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1555				unsigned long num)
1556{
1557	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1558}
1559EXPORT_SYMBOL(vm_map_pages);
1560
1561/**
1562 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1563 * @vma: user vma to map to
1564 * @pages: pointer to array of source kernel pages
1565 * @num: number of pages in page array
1566 *
1567 * Similar to vm_map_pages(), except that it explicitly sets the offset
1568 * to 0. This function is intended for the drivers that did not consider
1569 * vm_pgoff.
1570 *
1571 * Context: Process context. Called by mmap handlers.
1572 * Return: 0 on success and error code otherwise.
1573 */
1574int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1575				unsigned long num)
1576{
1577	return __vm_map_pages(vma, pages, num, 0);
1578}
1579EXPORT_SYMBOL(vm_map_pages_zero);
1580
1581static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1582			pfn_t pfn, pgprot_t prot, bool mkwrite)
1583{
1584	struct mm_struct *mm = vma->vm_mm;
 
1585	pte_t *pte, entry;
1586	spinlock_t *ptl;
1587
 
1588	pte = get_locked_pte(mm, addr, &ptl);
1589	if (!pte)
1590		return VM_FAULT_OOM;
1591	if (!pte_none(*pte)) {
1592		if (mkwrite) {
1593			/*
1594			 * For read faults on private mappings the PFN passed
1595			 * in may not match the PFN we have mapped if the
1596			 * mapped PFN is a writeable COW page.  In the mkwrite
1597			 * case we are creating a writable PTE for a shared
1598			 * mapping and we expect the PFNs to match. If they
1599			 * don't match, we are likely racing with block
1600			 * allocation and mapping invalidation so just skip the
1601			 * update.
1602			 */
1603			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1604				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1605				goto out_unlock;
1606			}
1607			entry = pte_mkyoung(*pte);
1608			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1609			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1610				update_mmu_cache(vma, addr, pte);
1611		}
1612		goto out_unlock;
1613	}
1614
1615	/* Ok, finally just insert the thing.. */
1616	if (pfn_t_devmap(pfn))
1617		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1618	else
1619		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1620
1621	if (mkwrite) {
1622		entry = pte_mkyoung(entry);
1623		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1624	}
1625
1626	set_pte_at(mm, addr, pte, entry);
1627	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1628
 
1629out_unlock:
1630	pte_unmap_unlock(pte, ptl);
1631	return VM_FAULT_NOPAGE;
 
1632}
1633
1634/**
1635 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1636 * @vma: user vma to map to
1637 * @addr: target user address of this page
1638 * @pfn: source kernel pfn
1639 * @pgprot: pgprot flags for the inserted page
1640 *
1641 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1642 * to override pgprot on a per-page basis.
 
 
 
1643 *
1644 * This only makes sense for IO mappings, and it makes no sense for
1645 * COW mappings.  In general, using multiple vmas is preferable;
1646 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1647 * impractical.
1648 *
1649 * Context: Process context.  May allocate using %GFP_KERNEL.
1650 * Return: vm_fault_t value.
1651 */
1652vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1653			unsigned long pfn, pgprot_t pgprot)
1654{
 
 
1655	/*
1656	 * Technically, architectures with pte_special can avoid all these
1657	 * restrictions (same for remap_pfn_range).  However we would like
1658	 * consistency in testing and feature parity among all, so we should
1659	 * try to keep these invariants in place for everybody.
1660	 */
1661	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1662	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1663						(VM_PFNMAP|VM_MIXEDMAP));
1664	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1665	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1666
1667	if (addr < vma->vm_start || addr >= vma->vm_end)
1668		return VM_FAULT_SIGBUS;
 
 
1669
1670	if (!pfn_modify_allowed(pfn, pgprot))
1671		return VM_FAULT_SIGBUS;
1672
1673	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
 
1674
1675	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1676			false);
1677}
1678EXPORT_SYMBOL(vmf_insert_pfn_prot);
1679
1680/**
1681 * vmf_insert_pfn - insert single pfn into user vma
1682 * @vma: user vma to map to
1683 * @addr: target user address of this page
1684 * @pfn: source kernel pfn
1685 *
1686 * Similar to vm_insert_page, this allows drivers to insert individual pages
1687 * they've allocated into a user vma. Same comments apply.
1688 *
1689 * This function should only be called from a vm_ops->fault handler, and
1690 * in that case the handler should return the result of this function.
1691 *
1692 * vma cannot be a COW mapping.
1693 *
1694 * As this is called only for pages that do not currently exist, we
1695 * do not need to flush old virtual caches or the TLB.
1696 *
1697 * Context: Process context.  May allocate using %GFP_KERNEL.
1698 * Return: vm_fault_t value.
1699 */
1700vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1701			unsigned long pfn)
1702{
1703	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1704}
1705EXPORT_SYMBOL(vmf_insert_pfn);
1706
1707static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1708{
1709	/* these checks mirror the abort conditions in vm_normal_page */
1710	if (vma->vm_flags & VM_MIXEDMAP)
1711		return true;
1712	if (pfn_t_devmap(pfn))
1713		return true;
1714	if (pfn_t_special(pfn))
1715		return true;
1716	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1717		return true;
1718	return false;
1719}
1720
1721static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1722		unsigned long addr, pfn_t pfn, bool mkwrite)
1723{
1724	pgprot_t pgprot = vma->vm_page_prot;
1725	int err;
1726
1727	BUG_ON(!vm_mixed_ok(vma, pfn));
1728
1729	if (addr < vma->vm_start || addr >= vma->vm_end)
1730		return VM_FAULT_SIGBUS;
1731
1732	track_pfn_insert(vma, &pgprot, pfn);
1733
1734	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1735		return VM_FAULT_SIGBUS;
1736
1737	/*
1738	 * If we don't have pte special, then we have to use the pfn_valid()
1739	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1740	 * refcount the page if pfn_valid is true (hence insert_page rather
1741	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1742	 * without pte special, it would there be refcounted as a normal page.
1743	 */
1744	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1745	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1746		struct page *page;
1747
1748		/*
1749		 * At this point we are committed to insert_page()
1750		 * regardless of whether the caller specified flags that
1751		 * result in pfn_t_has_page() == false.
1752		 */
1753		page = pfn_to_page(pfn_t_to_pfn(pfn));
1754		err = insert_page(vma, addr, page, pgprot);
1755	} else {
1756		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1757	}
1758
1759	if (err == -ENOMEM)
1760		return VM_FAULT_OOM;
1761	if (err < 0 && err != -EBUSY)
1762		return VM_FAULT_SIGBUS;
1763
1764	return VM_FAULT_NOPAGE;
1765}
1766
1767vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1768		pfn_t pfn)
1769{
1770	return __vm_insert_mixed(vma, addr, pfn, false);
1771}
1772EXPORT_SYMBOL(vmf_insert_mixed);
1773
1774/*
1775 *  If the insertion of PTE failed because someone else already added a
1776 *  different entry in the mean time, we treat that as success as we assume
1777 *  the same entry was actually inserted.
1778 */
1779vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1780		unsigned long addr, pfn_t pfn)
1781{
1782	return __vm_insert_mixed(vma, addr, pfn, true);
1783}
1784EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1785
1786/*
1787 * maps a range of physical memory into the requested pages. the old
1788 * mappings are removed. any references to nonexistent pages results
1789 * in null mappings (currently treated as "copy-on-access")
1790 */
1791static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1792			unsigned long addr, unsigned long end,
1793			unsigned long pfn, pgprot_t prot)
1794{
1795	pte_t *pte;
1796	spinlock_t *ptl;
1797	int err = 0;
1798
1799	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1800	if (!pte)
1801		return -ENOMEM;
1802	arch_enter_lazy_mmu_mode();
1803	do {
1804		BUG_ON(!pte_none(*pte));
1805		if (!pfn_modify_allowed(pfn, prot)) {
1806			err = -EACCES;
1807			break;
1808		}
1809		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1810		pfn++;
1811	} while (pte++, addr += PAGE_SIZE, addr != end);
1812	arch_leave_lazy_mmu_mode();
1813	pte_unmap_unlock(pte - 1, ptl);
1814	return err;
1815}
1816
1817static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1818			unsigned long addr, unsigned long end,
1819			unsigned long pfn, pgprot_t prot)
1820{
1821	pmd_t *pmd;
1822	unsigned long next;
1823	int err;
1824
1825	pfn -= addr >> PAGE_SHIFT;
1826	pmd = pmd_alloc(mm, pud, addr);
1827	if (!pmd)
1828		return -ENOMEM;
1829	VM_BUG_ON(pmd_trans_huge(*pmd));
1830	do {
1831		next = pmd_addr_end(addr, end);
1832		err = remap_pte_range(mm, pmd, addr, next,
1833				pfn + (addr >> PAGE_SHIFT), prot);
1834		if (err)
1835			return err;
1836	} while (pmd++, addr = next, addr != end);
1837	return 0;
1838}
1839
1840static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1841			unsigned long addr, unsigned long end,
1842			unsigned long pfn, pgprot_t prot)
1843{
1844	pud_t *pud;
1845	unsigned long next;
1846	int err;
1847
1848	pfn -= addr >> PAGE_SHIFT;
1849	pud = pud_alloc(mm, p4d, addr);
1850	if (!pud)
1851		return -ENOMEM;
1852	do {
1853		next = pud_addr_end(addr, end);
1854		err = remap_pmd_range(mm, pud, addr, next,
1855				pfn + (addr >> PAGE_SHIFT), prot);
1856		if (err)
1857			return err;
1858	} while (pud++, addr = next, addr != end);
1859	return 0;
1860}
1861
1862static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1863			unsigned long addr, unsigned long end,
1864			unsigned long pfn, pgprot_t prot)
1865{
1866	p4d_t *p4d;
1867	unsigned long next;
1868	int err;
1869
1870	pfn -= addr >> PAGE_SHIFT;
1871	p4d = p4d_alloc(mm, pgd, addr);
1872	if (!p4d)
1873		return -ENOMEM;
1874	do {
1875		next = p4d_addr_end(addr, end);
1876		err = remap_pud_range(mm, p4d, addr, next,
1877				pfn + (addr >> PAGE_SHIFT), prot);
1878		if (err)
1879			return err;
1880	} while (p4d++, addr = next, addr != end);
1881	return 0;
1882}
1883
1884/**
1885 * remap_pfn_range - remap kernel memory to userspace
1886 * @vma: user vma to map to
1887 * @addr: target user address to start at
1888 * @pfn: physical address of kernel memory
1889 * @size: size of map area
1890 * @prot: page protection flags for this mapping
1891 *
1892 * Note: this is only safe if the mm semaphore is held when called.
1893 *
1894 * Return: %0 on success, negative error code otherwise.
1895 */
1896int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1897		    unsigned long pfn, unsigned long size, pgprot_t prot)
1898{
1899	pgd_t *pgd;
1900	unsigned long next;
1901	unsigned long end = addr + PAGE_ALIGN(size);
1902	struct mm_struct *mm = vma->vm_mm;
1903	unsigned long remap_pfn = pfn;
1904	int err;
1905
1906	/*
1907	 * Physically remapped pages are special. Tell the
1908	 * rest of the world about it:
1909	 *   VM_IO tells people not to look at these pages
1910	 *	(accesses can have side effects).
 
 
 
 
 
1911	 *   VM_PFNMAP tells the core MM that the base pages are just
1912	 *	raw PFN mappings, and do not have a "struct page" associated
1913	 *	with them.
1914	 *   VM_DONTEXPAND
1915	 *      Disable vma merging and expanding with mremap().
1916	 *   VM_DONTDUMP
1917	 *      Omit vma from core dump, even when VM_IO turned off.
1918	 *
1919	 * There's a horrible special case to handle copy-on-write
1920	 * behaviour that some programs depend on. We mark the "original"
1921	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1922	 * See vm_normal_page() for details.
1923	 */
1924	if (is_cow_mapping(vma->vm_flags)) {
1925		if (addr != vma->vm_start || end != vma->vm_end)
1926			return -EINVAL;
1927		vma->vm_pgoff = pfn;
1928	}
1929
1930	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1931	if (err)
1932		return -EINVAL;
1933
1934	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
 
 
 
 
 
 
 
 
 
 
 
1935
1936	BUG_ON(addr >= end);
1937	pfn -= addr >> PAGE_SHIFT;
1938	pgd = pgd_offset(mm, addr);
1939	flush_cache_range(vma, addr, end);
1940	do {
1941		next = pgd_addr_end(addr, end);
1942		err = remap_p4d_range(mm, pgd, addr, next,
1943				pfn + (addr >> PAGE_SHIFT), prot);
1944		if (err)
1945			break;
1946	} while (pgd++, addr = next, addr != end);
1947
1948	if (err)
1949		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1950
1951	return err;
1952}
1953EXPORT_SYMBOL(remap_pfn_range);
1954
1955/**
1956 * vm_iomap_memory - remap memory to userspace
1957 * @vma: user vma to map to
1958 * @start: start of area
1959 * @len: size of area
1960 *
1961 * This is a simplified io_remap_pfn_range() for common driver use. The
1962 * driver just needs to give us the physical memory range to be mapped,
1963 * we'll figure out the rest from the vma information.
1964 *
1965 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1966 * whatever write-combining details or similar.
1967 *
1968 * Return: %0 on success, negative error code otherwise.
1969 */
1970int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1971{
1972	unsigned long vm_len, pfn, pages;
1973
1974	/* Check that the physical memory area passed in looks valid */
1975	if (start + len < start)
1976		return -EINVAL;
1977	/*
1978	 * You *really* shouldn't map things that aren't page-aligned,
1979	 * but we've historically allowed it because IO memory might
1980	 * just have smaller alignment.
1981	 */
1982	len += start & ~PAGE_MASK;
1983	pfn = start >> PAGE_SHIFT;
1984	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1985	if (pfn + pages < pfn)
1986		return -EINVAL;
1987
1988	/* We start the mapping 'vm_pgoff' pages into the area */
1989	if (vma->vm_pgoff > pages)
1990		return -EINVAL;
1991	pfn += vma->vm_pgoff;
1992	pages -= vma->vm_pgoff;
1993
1994	/* Can we fit all of the mapping? */
1995	vm_len = vma->vm_end - vma->vm_start;
1996	if (vm_len >> PAGE_SHIFT > pages)
1997		return -EINVAL;
1998
1999	/* Ok, let it rip */
2000	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2001}
2002EXPORT_SYMBOL(vm_iomap_memory);
2003
2004static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2005				     unsigned long addr, unsigned long end,
2006				     pte_fn_t fn, void *data)
2007{
2008	pte_t *pte;
2009	int err;
 
2010	spinlock_t *uninitialized_var(ptl);
2011
2012	pte = (mm == &init_mm) ?
2013		pte_alloc_kernel(pmd, addr) :
2014		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2015	if (!pte)
2016		return -ENOMEM;
2017
2018	BUG_ON(pmd_huge(*pmd));
2019
2020	arch_enter_lazy_mmu_mode();
2021
 
 
2022	do {
2023		err = fn(pte++, addr, data);
2024		if (err)
2025			break;
2026	} while (addr += PAGE_SIZE, addr != end);
2027
2028	arch_leave_lazy_mmu_mode();
2029
2030	if (mm != &init_mm)
2031		pte_unmap_unlock(pte-1, ptl);
2032	return err;
2033}
2034
2035static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2036				     unsigned long addr, unsigned long end,
2037				     pte_fn_t fn, void *data)
2038{
2039	pmd_t *pmd;
2040	unsigned long next;
2041	int err;
2042
2043	BUG_ON(pud_huge(*pud));
2044
2045	pmd = pmd_alloc(mm, pud, addr);
2046	if (!pmd)
2047		return -ENOMEM;
2048	do {
2049		next = pmd_addr_end(addr, end);
2050		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2051		if (err)
2052			break;
2053	} while (pmd++, addr = next, addr != end);
2054	return err;
2055}
2056
2057static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2058				     unsigned long addr, unsigned long end,
2059				     pte_fn_t fn, void *data)
2060{
2061	pud_t *pud;
2062	unsigned long next;
2063	int err;
2064
2065	pud = pud_alloc(mm, p4d, addr);
2066	if (!pud)
2067		return -ENOMEM;
2068	do {
2069		next = pud_addr_end(addr, end);
2070		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2071		if (err)
2072			break;
2073	} while (pud++, addr = next, addr != end);
2074	return err;
2075}
2076
2077static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2078				     unsigned long addr, unsigned long end,
2079				     pte_fn_t fn, void *data)
2080{
2081	p4d_t *p4d;
2082	unsigned long next;
2083	int err;
2084
2085	p4d = p4d_alloc(mm, pgd, addr);
2086	if (!p4d)
2087		return -ENOMEM;
2088	do {
2089		next = p4d_addr_end(addr, end);
2090		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2091		if (err)
2092			break;
2093	} while (p4d++, addr = next, addr != end);
2094	return err;
2095}
2096
2097/*
2098 * Scan a region of virtual memory, filling in page tables as necessary
2099 * and calling a provided function on each leaf page table.
2100 */
2101int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2102			unsigned long size, pte_fn_t fn, void *data)
2103{
2104	pgd_t *pgd;
2105	unsigned long next;
2106	unsigned long end = addr + size;
2107	int err;
2108
2109	if (WARN_ON(addr >= end))
2110		return -EINVAL;
2111
2112	pgd = pgd_offset(mm, addr);
2113	do {
2114		next = pgd_addr_end(addr, end);
2115		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2116		if (err)
2117			break;
2118	} while (pgd++, addr = next, addr != end);
2119
2120	return err;
2121}
2122EXPORT_SYMBOL_GPL(apply_to_page_range);
2123
2124/*
2125 * handle_pte_fault chooses page fault handler according to an entry which was
2126 * read non-atomically.  Before making any commitment, on those architectures
2127 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2128 * parts, do_swap_page must check under lock before unmapping the pte and
2129 * proceeding (but do_wp_page is only called after already making such a check;
 
2130 * and do_anonymous_page can safely check later on).
2131 */
2132static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2133				pte_t *page_table, pte_t orig_pte)
2134{
2135	int same = 1;
2136#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2137	if (sizeof(pte_t) > sizeof(unsigned long)) {
2138		spinlock_t *ptl = pte_lockptr(mm, pmd);
2139		spin_lock(ptl);
2140		same = pte_same(*page_table, orig_pte);
2141		spin_unlock(ptl);
2142	}
2143#endif
2144	pte_unmap(page_table);
2145	return same;
2146}
2147
2148static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2149{
2150	debug_dma_assert_idle(src);
2151
2152	/*
2153	 * If the source page was a PFN mapping, we don't have
2154	 * a "struct page" for it. We do a best-effort copy by
2155	 * just copying from the original user address. If that
2156	 * fails, we just zero-fill it. Live with it.
2157	 */
2158	if (unlikely(!src)) {
2159		void *kaddr = kmap_atomic(dst);
2160		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2161
2162		/*
2163		 * This really shouldn't fail, because the page is there
2164		 * in the page tables. But it might just be unreadable,
2165		 * in which case we just give up and fill the result with
2166		 * zeroes.
2167		 */
2168		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2169			clear_page(kaddr);
2170		kunmap_atomic(kaddr);
2171		flush_dcache_page(dst);
2172	} else
2173		copy_user_highpage(dst, src, va, vma);
2174}
2175
2176static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2177{
2178	struct file *vm_file = vma->vm_file;
 
 
 
 
2179
2180	if (vm_file)
2181		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
 
 
 
 
 
 
 
 
 
 
 
 
2182
2183	/*
2184	 * Special mappings (e.g. VDSO) do not have any file so fake
2185	 * a default GFP_KERNEL for them.
2186	 */
2187	return GFP_KERNEL;
2188}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2189
2190/*
2191 * Notify the address space that the page is about to become writable so that
2192 * it can prohibit this or wait for the page to get into an appropriate state.
2193 *
2194 * We do this without the lock held, so that it can sleep if it needs to.
2195 */
2196static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2197{
2198	vm_fault_t ret;
2199	struct page *page = vmf->page;
2200	unsigned int old_flags = vmf->flags;
2201
2202	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2203
2204	if (vmf->vma->vm_file &&
2205	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2206		return VM_FAULT_SIGBUS;
 
 
 
 
 
 
 
 
 
2207
2208	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2209	/* Restore original flags so that caller is not surprised */
2210	vmf->flags = old_flags;
2211	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2212		return ret;
2213	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2214		lock_page(page);
2215		if (!page->mapping) {
2216			unlock_page(page);
2217			return 0; /* retry */
2218		}
2219		ret |= VM_FAULT_LOCKED;
2220	} else
2221		VM_BUG_ON_PAGE(!PageLocked(page), page);
2222	return ret;
2223}
2224
2225/*
2226 * Handle dirtying of a page in shared file mapping on a write fault.
2227 *
2228 * The function expects the page to be locked and unlocks it.
2229 */
2230static void fault_dirty_shared_page(struct vm_area_struct *vma,
2231				    struct page *page)
2232{
2233	struct address_space *mapping;
2234	bool dirtied;
2235	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2236
2237	dirtied = set_page_dirty(page);
2238	VM_BUG_ON_PAGE(PageAnon(page), page);
2239	/*
2240	 * Take a local copy of the address_space - page.mapping may be zeroed
2241	 * by truncate after unlock_page().   The address_space itself remains
2242	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2243	 * release semantics to prevent the compiler from undoing this copying.
2244	 */
2245	mapping = page_rmapping(page);
2246	unlock_page(page);
2247
2248	if ((dirtied || page_mkwrite) && mapping) {
2249		/*
2250		 * Some device drivers do not set page.mapping
2251		 * but still dirty their pages
 
 
 
 
2252		 */
2253		balance_dirty_pages_ratelimited(mapping);
2254	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2255
2256	if (!page_mkwrite)
2257		file_update_time(vma->vm_file);
2258}
 
 
 
2259
2260/*
2261 * Handle write page faults for pages that can be reused in the current vma
2262 *
2263 * This can happen either due to the mapping being with the VM_SHARED flag,
2264 * or due to us being the last reference standing to the page. In either
2265 * case, all we need to do here is to mark the page as writable and update
2266 * any related book-keeping.
2267 */
2268static inline void wp_page_reuse(struct vm_fault *vmf)
2269	__releases(vmf->ptl)
2270{
2271	struct vm_area_struct *vma = vmf->vma;
2272	struct page *page = vmf->page;
2273	pte_t entry;
2274	/*
2275	 * Clear the pages cpupid information as the existing
2276	 * information potentially belongs to a now completely
2277	 * unrelated process.
2278	 */
2279	if (page)
2280		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2281
2282	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2283	entry = pte_mkyoung(vmf->orig_pte);
2284	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2285	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2286		update_mmu_cache(vma, vmf->address, vmf->pte);
2287	pte_unmap_unlock(vmf->pte, vmf->ptl);
2288}
2289
2290/*
2291 * Handle the case of a page which we actually need to copy to a new page.
2292 *
2293 * Called with mmap_sem locked and the old page referenced, but
2294 * without the ptl held.
2295 *
2296 * High level logic flow:
2297 *
2298 * - Allocate a page, copy the content of the old page to the new one.
2299 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2300 * - Take the PTL. If the pte changed, bail out and release the allocated page
2301 * - If the pte is still the way we remember it, update the page table and all
2302 *   relevant references. This includes dropping the reference the page-table
2303 *   held to the old page, as well as updating the rmap.
2304 * - In any case, unlock the PTL and drop the reference we took to the old page.
2305 */
2306static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2307{
2308	struct vm_area_struct *vma = vmf->vma;
2309	struct mm_struct *mm = vma->vm_mm;
2310	struct page *old_page = vmf->page;
2311	struct page *new_page = NULL;
2312	pte_t entry;
2313	int page_copied = 0;
2314	struct mem_cgroup *memcg;
2315	struct mmu_notifier_range range;
2316
2317	if (unlikely(anon_vma_prepare(vma)))
2318		goto oom;
2319
2320	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2321		new_page = alloc_zeroed_user_highpage_movable(vma,
2322							      vmf->address);
2323		if (!new_page)
2324			goto oom;
2325	} else {
2326		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2327				vmf->address);
2328		if (!new_page)
2329			goto oom;
2330		cow_user_page(new_page, old_page, vmf->address, vma);
2331	}
2332
2333	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2334		goto oom_free_new;
2335
2336	__SetPageUptodate(new_page);
2337
2338	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2339				vmf->address & PAGE_MASK,
2340				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2341	mmu_notifier_invalidate_range_start(&range);
2342
2343	/*
2344	 * Re-check the pte - we dropped the lock
2345	 */
2346	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2347	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2348		if (old_page) {
2349			if (!PageAnon(old_page)) {
2350				dec_mm_counter_fast(mm,
2351						mm_counter_file(old_page));
2352				inc_mm_counter_fast(mm, MM_ANONPAGES);
2353			}
2354		} else {
2355			inc_mm_counter_fast(mm, MM_ANONPAGES);
2356		}
2357		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2358		entry = mk_pte(new_page, vma->vm_page_prot);
2359		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2360		/*
2361		 * Clear the pte entry and flush it first, before updating the
2362		 * pte with the new entry. This will avoid a race condition
2363		 * seen in the presence of one thread doing SMC and another
2364		 * thread doing COW.
2365		 */
2366		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2367		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2368		mem_cgroup_commit_charge(new_page, memcg, false, false);
2369		lru_cache_add_active_or_unevictable(new_page, vma);
2370		/*
2371		 * We call the notify macro here because, when using secondary
2372		 * mmu page tables (such as kvm shadow page tables), we want the
2373		 * new page to be mapped directly into the secondary page table.
2374		 */
2375		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2376		update_mmu_cache(vma, vmf->address, vmf->pte);
2377		if (old_page) {
2378			/*
2379			 * Only after switching the pte to the new page may
2380			 * we remove the mapcount here. Otherwise another
2381			 * process may come and find the rmap count decremented
2382			 * before the pte is switched to the new page, and
2383			 * "reuse" the old page writing into it while our pte
2384			 * here still points into it and can be read by other
2385			 * threads.
2386			 *
2387			 * The critical issue is to order this
2388			 * page_remove_rmap with the ptp_clear_flush above.
2389			 * Those stores are ordered by (if nothing else,)
2390			 * the barrier present in the atomic_add_negative
2391			 * in page_remove_rmap.
2392			 *
2393			 * Then the TLB flush in ptep_clear_flush ensures that
2394			 * no process can access the old page before the
2395			 * decremented mapcount is visible. And the old page
2396			 * cannot be reused until after the decremented
2397			 * mapcount is visible. So transitively, TLBs to
2398			 * old page will be flushed before it can be reused.
2399			 */
2400			page_remove_rmap(old_page, false);
2401		}
2402
2403		/* Free the old page.. */
2404		new_page = old_page;
2405		page_copied = 1;
2406	} else {
2407		mem_cgroup_cancel_charge(new_page, memcg, false);
2408	}
2409
2410	if (new_page)
2411		put_page(new_page);
2412
2413	pte_unmap_unlock(vmf->pte, vmf->ptl);
2414	/*
2415	 * No need to double call mmu_notifier->invalidate_range() callback as
2416	 * the above ptep_clear_flush_notify() did already call it.
2417	 */
2418	mmu_notifier_invalidate_range_only_end(&range);
2419	if (old_page) {
2420		/*
2421		 * Don't let another task, with possibly unlocked vma,
2422		 * keep the mlocked page.
2423		 */
2424		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2425			lock_page(old_page);	/* LRU manipulation */
2426			if (PageMlocked(old_page))
2427				munlock_vma_page(old_page);
2428			unlock_page(old_page);
2429		}
2430		put_page(old_page);
2431	}
2432	return page_copied ? VM_FAULT_WRITE : 0;
2433oom_free_new:
2434	put_page(new_page);
2435oom:
2436	if (old_page)
2437		put_page(old_page);
2438	return VM_FAULT_OOM;
2439}
2440
2441/**
2442 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2443 *			  writeable once the page is prepared
2444 *
2445 * @vmf: structure describing the fault
2446 *
2447 * This function handles all that is needed to finish a write page fault in a
2448 * shared mapping due to PTE being read-only once the mapped page is prepared.
2449 * It handles locking of PTE and modifying it.
2450 *
2451 * The function expects the page to be locked or other protection against
2452 * concurrent faults / writeback (such as DAX radix tree locks).
2453 *
2454 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2455 * we acquired PTE lock.
2456 */
2457vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2458{
2459	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2460	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2461				       &vmf->ptl);
2462	/*
2463	 * We might have raced with another page fault while we released the
2464	 * pte_offset_map_lock.
2465	 */
2466	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2467		pte_unmap_unlock(vmf->pte, vmf->ptl);
2468		return VM_FAULT_NOPAGE;
2469	}
2470	wp_page_reuse(vmf);
2471	return 0;
2472}
2473
2474/*
2475 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2476 * mapping
2477 */
2478static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2479{
2480	struct vm_area_struct *vma = vmf->vma;
2481
2482	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2483		vm_fault_t ret;
2484
2485		pte_unmap_unlock(vmf->pte, vmf->ptl);
2486		vmf->flags |= FAULT_FLAG_MKWRITE;
2487		ret = vma->vm_ops->pfn_mkwrite(vmf);
2488		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2489			return ret;
2490		return finish_mkwrite_fault(vmf);
2491	}
2492	wp_page_reuse(vmf);
2493	return VM_FAULT_WRITE;
2494}
2495
2496static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2497	__releases(vmf->ptl)
2498{
2499	struct vm_area_struct *vma = vmf->vma;
2500
2501	get_page(vmf->page);
2502
2503	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2504		vm_fault_t tmp;
2505
2506		pte_unmap_unlock(vmf->pte, vmf->ptl);
2507		tmp = do_page_mkwrite(vmf);
2508		if (unlikely(!tmp || (tmp &
2509				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2510			put_page(vmf->page);
2511			return tmp;
2512		}
2513		tmp = finish_mkwrite_fault(vmf);
2514		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2515			unlock_page(vmf->page);
2516			put_page(vmf->page);
2517			return tmp;
2518		}
2519	} else {
2520		wp_page_reuse(vmf);
2521		lock_page(vmf->page);
2522	}
2523	fault_dirty_shared_page(vma, vmf->page);
2524	put_page(vmf->page);
2525
2526	return VM_FAULT_WRITE;
2527}
2528
2529/*
2530 * This routine handles present pages, when users try to write
2531 * to a shared page. It is done by copying the page to a new address
2532 * and decrementing the shared-page counter for the old page.
2533 *
2534 * Note that this routine assumes that the protection checks have been
2535 * done by the caller (the low-level page fault routine in most cases).
2536 * Thus we can safely just mark it writable once we've done any necessary
2537 * COW.
2538 *
2539 * We also mark the page dirty at this point even though the page will
2540 * change only once the write actually happens. This avoids a few races,
2541 * and potentially makes it more efficient.
2542 *
2543 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544 * but allow concurrent faults), with pte both mapped and locked.
2545 * We return with mmap_sem still held, but pte unmapped and unlocked.
2546 */
2547static vm_fault_t do_wp_page(struct vm_fault *vmf)
2548	__releases(vmf->ptl)
2549{
2550	struct vm_area_struct *vma = vmf->vma;
2551
2552	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2553	if (!vmf->page) {
2554		/*
2555		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2556		 * VM_PFNMAP VMA.
2557		 *
2558		 * We should not cow pages in a shared writeable mapping.
2559		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2560		 */
2561		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2562				     (VM_WRITE|VM_SHARED))
2563			return wp_pfn_shared(vmf);
2564
2565		pte_unmap_unlock(vmf->pte, vmf->ptl);
2566		return wp_page_copy(vmf);
2567	}
2568
2569	/*
2570	 * Take out anonymous pages first, anonymous shared vmas are
2571	 * not dirty accountable.
2572	 */
2573	if (PageAnon(vmf->page)) {
2574		int total_map_swapcount;
2575		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2576					   page_count(vmf->page) != 1))
2577			goto copy;
2578		if (!trylock_page(vmf->page)) {
2579			get_page(vmf->page);
2580			pte_unmap_unlock(vmf->pte, vmf->ptl);
2581			lock_page(vmf->page);
2582			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2583					vmf->address, &vmf->ptl);
2584			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2585				unlock_page(vmf->page);
2586				pte_unmap_unlock(vmf->pte, vmf->ptl);
2587				put_page(vmf->page);
2588				return 0;
2589			}
2590			put_page(vmf->page);
2591		}
2592		if (PageKsm(vmf->page)) {
2593			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2594						     vmf->address);
2595			unlock_page(vmf->page);
2596			if (!reused)
2597				goto copy;
2598			wp_page_reuse(vmf);
2599			return VM_FAULT_WRITE;
2600		}
2601		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2602			if (total_map_swapcount == 1) {
2603				/*
2604				 * The page is all ours. Move it to
2605				 * our anon_vma so the rmap code will
2606				 * not search our parent or siblings.
2607				 * Protected against the rmap code by
2608				 * the page lock.
2609				 */
2610				page_move_anon_rmap(vmf->page, vma);
2611			}
2612			unlock_page(vmf->page);
2613			wp_page_reuse(vmf);
2614			return VM_FAULT_WRITE;
2615		}
2616		unlock_page(vmf->page);
2617	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2618					(VM_WRITE|VM_SHARED))) {
2619		return wp_page_shared(vmf);
2620	}
2621copy:
2622	/*
2623	 * Ok, we need to copy. Oh, well..
2624	 */
2625	get_page(vmf->page);
2626
2627	pte_unmap_unlock(vmf->pte, vmf->ptl);
2628	return wp_page_copy(vmf);
 
2629}
2630
2631static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2632		unsigned long start_addr, unsigned long end_addr,
2633		struct zap_details *details)
2634{
2635	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2636}
2637
2638static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2639					    struct zap_details *details)
2640{
2641	struct vm_area_struct *vma;
 
2642	pgoff_t vba, vea, zba, zea;
2643
2644	vma_interval_tree_foreach(vma, root,
2645			details->first_index, details->last_index) {
2646
2647		vba = vma->vm_pgoff;
2648		vea = vba + vma_pages(vma) - 1;
 
2649		zba = details->first_index;
2650		if (zba < vba)
2651			zba = vba;
2652		zea = details->last_index;
2653		if (zea > vea)
2654			zea = vea;
2655
2656		unmap_mapping_range_vma(vma,
2657			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2658			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2659				details);
2660	}
2661}
2662
2663/**
2664 * unmap_mapping_pages() - Unmap pages from processes.
2665 * @mapping: The address space containing pages to be unmapped.
2666 * @start: Index of first page to be unmapped.
2667 * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2668 * @even_cows: Whether to unmap even private COWed pages.
2669 *
2670 * Unmap the pages in this address space from any userspace process which
2671 * has them mmaped.  Generally, you want to remove COWed pages as well when
2672 * a file is being truncated, but not when invalidating pages from the page
2673 * cache.
2674 */
2675void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2676		pgoff_t nr, bool even_cows)
2677{
2678	struct zap_details details = { };
2679
2680	details.check_mapping = even_cows ? NULL : mapping;
2681	details.first_index = start;
2682	details.last_index = start + nr - 1;
2683	if (details.last_index < details.first_index)
2684		details.last_index = ULONG_MAX;
2685
2686	i_mmap_lock_write(mapping);
2687	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2688		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2689	i_mmap_unlock_write(mapping);
 
 
 
 
 
 
2690}
2691
2692/**
2693 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2694 * address_space corresponding to the specified byte range in the underlying
2695 * file.
2696 *
2697 * @mapping: the address space containing mmaps to be unmapped.
2698 * @holebegin: byte in first page to unmap, relative to the start of
2699 * the underlying file.  This will be rounded down to a PAGE_SIZE
2700 * boundary.  Note that this is different from truncate_pagecache(), which
2701 * must keep the partial page.  In contrast, we must get rid of
2702 * partial pages.
2703 * @holelen: size of prospective hole in bytes.  This will be rounded
2704 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2705 * end of the file.
2706 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2707 * but 0 when invalidating pagecache, don't throw away private data.
2708 */
2709void unmap_mapping_range(struct address_space *mapping,
2710		loff_t const holebegin, loff_t const holelen, int even_cows)
2711{
 
2712	pgoff_t hba = holebegin >> PAGE_SHIFT;
2713	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2714
2715	/* Check for overflow. */
2716	if (sizeof(holelen) > sizeof(hlen)) {
2717		long long holeend =
2718			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2719		if (holeend & ~(long long)ULONG_MAX)
2720			hlen = ULONG_MAX - hba + 1;
2721	}
2722
2723	unmap_mapping_pages(mapping, hba, hlen, even_cows);
 
 
 
 
 
 
 
 
 
 
 
 
 
2724}
2725EXPORT_SYMBOL(unmap_mapping_range);
2726
2727/*
2728 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2729 * but allow concurrent faults), and pte mapped but not yet locked.
2730 * We return with pte unmapped and unlocked.
2731 *
2732 * We return with the mmap_sem locked or unlocked in the same cases
2733 * as does filemap_fault().
2734 */
2735vm_fault_t do_swap_page(struct vm_fault *vmf)
 
 
2736{
2737	struct vm_area_struct *vma = vmf->vma;
2738	struct page *page = NULL, *swapcache;
2739	struct mem_cgroup *memcg;
2740	swp_entry_t entry;
2741	pte_t pte;
2742	int locked;
 
2743	int exclusive = 0;
2744	vm_fault_t ret = 0;
2745
2746	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2747		goto out;
2748
2749	entry = pte_to_swp_entry(vmf->orig_pte);
2750	if (unlikely(non_swap_entry(entry))) {
2751		if (is_migration_entry(entry)) {
2752			migration_entry_wait(vma->vm_mm, vmf->pmd,
2753					     vmf->address);
2754		} else if (is_device_private_entry(entry)) {
2755			vmf->page = device_private_entry_to_page(entry);
2756			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2757		} else if (is_hwpoison_entry(entry)) {
2758			ret = VM_FAULT_HWPOISON;
2759		} else {
2760			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2761			ret = VM_FAULT_SIGBUS;
2762		}
2763		goto out;
2764	}
2765
2766
2767	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2768	page = lookup_swap_cache(entry, vma, vmf->address);
2769	swapcache = page;
2770
2771	if (!page) {
2772		struct swap_info_struct *si = swp_swap_info(entry);
2773
2774		if (si->flags & SWP_SYNCHRONOUS_IO &&
2775				__swap_count(entry) == 1) {
2776			/* skip swapcache */
2777			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2778							vmf->address);
2779			if (page) {
2780				__SetPageLocked(page);
2781				__SetPageSwapBacked(page);
2782				set_page_private(page, entry.val);
2783				lru_cache_add_anon(page);
2784				swap_readpage(page, true);
2785			}
2786		} else {
2787			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2788						vmf);
2789			swapcache = page;
2790		}
2791
2792		if (!page) {
2793			/*
2794			 * Back out if somebody else faulted in this pte
2795			 * while we released the pte lock.
2796			 */
2797			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2798					vmf->address, &vmf->ptl);
2799			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2800				ret = VM_FAULT_OOM;
2801			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2802			goto unlock;
2803		}
2804
2805		/* Had to read the page from swap area: Major fault */
2806		ret = VM_FAULT_MAJOR;
2807		count_vm_event(PGMAJFAULT);
2808		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2809	} else if (PageHWPoison(page)) {
2810		/*
2811		 * hwpoisoned dirty swapcache pages are kept for killing
2812		 * owner processes (which may be unknown at hwpoison time)
2813		 */
2814		ret = VM_FAULT_HWPOISON;
2815		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2816		goto out_release;
2817	}
2818
2819	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2820
2821	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2822	if (!locked) {
2823		ret |= VM_FAULT_RETRY;
2824		goto out_release;
2825	}
2826
2827	/*
2828	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2829	 * release the swapcache from under us.  The page pin, and pte_same
2830	 * test below, are not enough to exclude that.  Even if it is still
2831	 * swapcache, we need to check that the page's swap has not changed.
2832	 */
2833	if (unlikely((!PageSwapCache(page) ||
2834			page_private(page) != entry.val)) && swapcache)
2835		goto out_page;
2836
2837	page = ksm_might_need_to_copy(page, vma, vmf->address);
2838	if (unlikely(!page)) {
2839		ret = VM_FAULT_OOM;
2840		page = swapcache;
2841		goto out_page;
 
 
 
 
 
2842	}
2843
2844	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2845					&memcg, false)) {
2846		ret = VM_FAULT_OOM;
2847		goto out_page;
2848	}
2849
2850	/*
2851	 * Back out if somebody else already faulted in this pte.
2852	 */
2853	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2854			&vmf->ptl);
2855	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2856		goto out_nomap;
2857
2858	if (unlikely(!PageUptodate(page))) {
2859		ret = VM_FAULT_SIGBUS;
2860		goto out_nomap;
2861	}
2862
2863	/*
2864	 * The page isn't present yet, go ahead with the fault.
2865	 *
2866	 * Be careful about the sequence of operations here.
2867	 * To get its accounting right, reuse_swap_page() must be called
2868	 * while the page is counted on swap but not yet in mapcount i.e.
2869	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2870	 * must be called after the swap_free(), or it will never succeed.
 
 
 
 
2871	 */
2872
2873	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2874	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2875	pte = mk_pte(page, vma->vm_page_prot);
2876	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2877		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2878		vmf->flags &= ~FAULT_FLAG_WRITE;
2879		ret |= VM_FAULT_WRITE;
2880		exclusive = RMAP_EXCLUSIVE;
2881	}
2882	flush_icache_page(vma, page);
2883	if (pte_swp_soft_dirty(vmf->orig_pte))
2884		pte = pte_mksoft_dirty(pte);
2885	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2886	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2887	vmf->orig_pte = pte;
2888
2889	/* ksm created a completely new copy */
2890	if (unlikely(page != swapcache && swapcache)) {
2891		page_add_new_anon_rmap(page, vma, vmf->address, false);
2892		mem_cgroup_commit_charge(page, memcg, false, false);
2893		lru_cache_add_active_or_unevictable(page, vma);
2894	} else {
2895		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2896		mem_cgroup_commit_charge(page, memcg, true, false);
2897		activate_page(page);
2898	}
2899
2900	swap_free(entry);
2901	if (mem_cgroup_swap_full(page) ||
2902	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2903		try_to_free_swap(page);
2904	unlock_page(page);
2905	if (page != swapcache && swapcache) {
2906		/*
2907		 * Hold the lock to avoid the swap entry to be reused
2908		 * until we take the PT lock for the pte_same() check
2909		 * (to avoid false positives from pte_same). For
2910		 * further safety release the lock after the swap_free
2911		 * so that the swap count won't change under a
2912		 * parallel locked swapcache.
2913		 */
2914		unlock_page(swapcache);
2915		put_page(swapcache);
2916	}
2917
2918	if (vmf->flags & FAULT_FLAG_WRITE) {
2919		ret |= do_wp_page(vmf);
2920		if (ret & VM_FAULT_ERROR)
2921			ret &= VM_FAULT_ERROR;
2922		goto out;
2923	}
2924
2925	/* No need to invalidate - it was non-present before */
2926	update_mmu_cache(vma, vmf->address, vmf->pte);
2927unlock:
2928	pte_unmap_unlock(vmf->pte, vmf->ptl);
2929out:
2930	return ret;
2931out_nomap:
2932	mem_cgroup_cancel_charge(page, memcg, false);
2933	pte_unmap_unlock(vmf->pte, vmf->ptl);
2934out_page:
2935	unlock_page(page);
2936out_release:
2937	put_page(page);
2938	if (page != swapcache && swapcache) {
2939		unlock_page(swapcache);
2940		put_page(swapcache);
2941	}
2942	return ret;
2943}
2944
2945/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2946 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2947 * but allow concurrent faults), and pte mapped but not yet locked.
2948 * We return with mmap_sem still held, but pte unmapped and unlocked.
2949 */
2950static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
 
 
2951{
2952	struct vm_area_struct *vma = vmf->vma;
2953	struct mem_cgroup *memcg;
2954	struct page *page;
2955	vm_fault_t ret = 0;
2956	pte_t entry;
2957
2958	/* File mapping without ->vm_ops ? */
2959	if (vma->vm_flags & VM_SHARED)
2960		return VM_FAULT_SIGBUS;
2961
2962	/*
2963	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2964	 * pte_offset_map() on pmds where a huge pmd might be created
2965	 * from a different thread.
2966	 *
2967	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2968	 * parallel threads are excluded by other means.
2969	 *
2970	 * Here we only have down_read(mmap_sem).
2971	 */
2972	if (pte_alloc(vma->vm_mm, vmf->pmd))
2973		return VM_FAULT_OOM;
2974
2975	/* See the comment in pte_alloc_one_map() */
2976	if (unlikely(pmd_trans_unstable(vmf->pmd)))
2977		return 0;
2978
2979	/* Use the zero-page for reads */
2980	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2981			!mm_forbids_zeropage(vma->vm_mm)) {
2982		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2983						vma->vm_page_prot));
2984		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2985				vmf->address, &vmf->ptl);
2986		if (!pte_none(*vmf->pte))
2987			goto unlock;
2988		ret = check_stable_address_space(vma->vm_mm);
2989		if (ret)
2990			goto unlock;
2991		/* Deliver the page fault to userland, check inside PT lock */
2992		if (userfaultfd_missing(vma)) {
2993			pte_unmap_unlock(vmf->pte, vmf->ptl);
2994			return handle_userfault(vmf, VM_UFFD_MISSING);
2995		}
2996		goto setpte;
2997	}
2998
2999	/* Allocate our own private page. */
3000	if (unlikely(anon_vma_prepare(vma)))
3001		goto oom;
3002	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3003	if (!page)
3004		goto oom;
 
3005
3006	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3007					false))
3008		goto oom_free_page;
3009
3010	/*
3011	 * The memory barrier inside __SetPageUptodate makes sure that
3012	 * preceeding stores to the page contents become visible before
3013	 * the set_pte_at() write.
3014	 */
3015	__SetPageUptodate(page);
3016
3017	entry = mk_pte(page, vma->vm_page_prot);
3018	if (vma->vm_flags & VM_WRITE)
3019		entry = pte_mkwrite(pte_mkdirty(entry));
3020
3021	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3022			&vmf->ptl);
3023	if (!pte_none(*vmf->pte))
3024		goto release;
3025
3026	ret = check_stable_address_space(vma->vm_mm);
3027	if (ret)
3028		goto release;
3029
3030	/* Deliver the page fault to userland, check inside PT lock */
3031	if (userfaultfd_missing(vma)) {
3032		pte_unmap_unlock(vmf->pte, vmf->ptl);
3033		mem_cgroup_cancel_charge(page, memcg, false);
3034		put_page(page);
3035		return handle_userfault(vmf, VM_UFFD_MISSING);
3036	}
3037
3038	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3039	page_add_new_anon_rmap(page, vma, vmf->address, false);
3040	mem_cgroup_commit_charge(page, memcg, false, false);
3041	lru_cache_add_active_or_unevictable(page, vma);
3042setpte:
3043	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3044
3045	/* No need to invalidate - it was non-present before */
3046	update_mmu_cache(vma, vmf->address, vmf->pte);
3047unlock:
3048	pte_unmap_unlock(vmf->pte, vmf->ptl);
3049	return ret;
3050release:
3051	mem_cgroup_cancel_charge(page, memcg, false);
3052	put_page(page);
3053	goto unlock;
3054oom_free_page:
3055	put_page(page);
3056oom:
3057	return VM_FAULT_OOM;
3058}
3059
3060/*
3061 * The mmap_sem must have been held on entry, and may have been
3062 * released depending on flags and vma->vm_ops->fault() return value.
3063 * See filemap_fault() and __lock_page_retry().
 
 
 
 
 
 
 
 
3064 */
3065static vm_fault_t __do_fault(struct vm_fault *vmf)
 
 
3066{
3067	struct vm_area_struct *vma = vmf->vma;
3068	vm_fault_t ret;
 
 
 
 
 
 
 
 
3069
3070	/*
3071	 * Preallocate pte before we take page_lock because this might lead to
3072	 * deadlocks for memcg reclaim which waits for pages under writeback:
3073	 *				lock_page(A)
3074	 *				SetPageWriteback(A)
3075	 *				unlock_page(A)
3076	 * lock_page(B)
3077	 *				lock_page(B)
3078	 * pte_alloc_pne
3079	 *   shrink_page_list
3080	 *     wait_on_page_writeback(A)
3081	 *				SetPageWriteback(B)
3082	 *				unlock_page(B)
3083	 *				# flush A, B to clear the writeback
3084	 */
3085	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3086		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3087		if (!vmf->prealloc_pte)
3088			return VM_FAULT_OOM;
3089		smp_wmb(); /* See comment in __pte_alloc() */
3090	}
3091
3092	ret = vma->vm_ops->fault(vmf);
3093	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3094			    VM_FAULT_DONE_COW)))
3095		return ret;
3096
3097	if (unlikely(PageHWPoison(vmf->page))) {
3098		if (ret & VM_FAULT_LOCKED)
3099			unlock_page(vmf->page);
3100		put_page(vmf->page);
3101		vmf->page = NULL;
3102		return VM_FAULT_HWPOISON;
3103	}
3104
3105	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3106		lock_page(vmf->page);
3107	else
3108		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3109
3110	return ret;
3111}
3112
3113/*
3114 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3115 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3116 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3117 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3118 */
3119static int pmd_devmap_trans_unstable(pmd_t *pmd)
3120{
3121	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3122}
3123
3124static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3125{
3126	struct vm_area_struct *vma = vmf->vma;
3127
3128	if (!pmd_none(*vmf->pmd))
3129		goto map_pte;
3130	if (vmf->prealloc_pte) {
3131		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3132		if (unlikely(!pmd_none(*vmf->pmd))) {
3133			spin_unlock(vmf->ptl);
3134			goto map_pte;
3135		}
 
 
3136
3137		mm_inc_nr_ptes(vma->vm_mm);
3138		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3139		spin_unlock(vmf->ptl);
3140		vmf->prealloc_pte = NULL;
3141	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3142		return VM_FAULT_OOM;
3143	}
3144map_pte:
3145	/*
3146	 * If a huge pmd materialized under us just retry later.  Use
3147	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3148	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3149	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3150	 * running immediately after a huge pmd fault in a different thread of
3151	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3152	 * All we have to ensure is that it is a regular pmd that we can walk
3153	 * with pte_offset_map() and we can do that through an atomic read in
3154	 * C, which is what pmd_trans_unstable() provides.
3155	 */
3156	if (pmd_devmap_trans_unstable(vmf->pmd))
3157		return VM_FAULT_NOPAGE;
3158
3159	/*
3160	 * At this point we know that our vmf->pmd points to a page of ptes
3161	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3162	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3163	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3164	 * be valid and we will re-check to make sure the vmf->pte isn't
3165	 * pte_none() under vmf->ptl protection when we return to
3166	 * alloc_set_pte().
3167	 */
3168	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3169			&vmf->ptl);
3170	return 0;
3171}
3172
3173#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3174static void deposit_prealloc_pte(struct vm_fault *vmf)
3175{
3176	struct vm_area_struct *vma = vmf->vma;
3177
3178	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3179	/*
3180	 * We are going to consume the prealloc table,
3181	 * count that as nr_ptes.
3182	 */
3183	mm_inc_nr_ptes(vma->vm_mm);
3184	vmf->prealloc_pte = NULL;
3185}
3186
3187static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3188{
3189	struct vm_area_struct *vma = vmf->vma;
3190	bool write = vmf->flags & FAULT_FLAG_WRITE;
3191	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3192	pmd_t entry;
3193	int i;
3194	vm_fault_t ret;
3195
3196	if (!transhuge_vma_suitable(vma, haddr))
3197		return VM_FAULT_FALLBACK;
3198
3199	ret = VM_FAULT_FALLBACK;
3200	page = compound_head(page);
 
 
3201
3202	/*
3203	 * Archs like ppc64 need additonal space to store information
3204	 * related to pte entry. Use the preallocated table for that.
3205	 */
3206	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3207		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3208		if (!vmf->prealloc_pte)
3209			return VM_FAULT_OOM;
3210		smp_wmb(); /* See comment in __pte_alloc() */
3211	}
3212
3213	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3214	if (unlikely(!pmd_none(*vmf->pmd)))
3215		goto out;
3216
3217	for (i = 0; i < HPAGE_PMD_NR; i++)
3218		flush_icache_page(vma, page + i);
3219
3220	entry = mk_huge_pmd(page, vma->vm_page_prot);
3221	if (write)
3222		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3223
3224	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3225	page_add_file_rmap(page, true);
3226	/*
3227	 * deposit and withdraw with pmd lock held
 
3228	 */
3229	if (arch_needs_pgtable_deposit())
3230		deposit_prealloc_pte(vmf);
3231
3232	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3233
3234	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3235
3236	/* fault is handled */
3237	ret = 0;
3238	count_vm_event(THP_FILE_MAPPED);
3239out:
3240	spin_unlock(vmf->ptl);
3241	return ret;
3242}
3243#else
3244static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3245{
3246	BUILD_BUG();
3247	return 0;
3248}
3249#endif
3250
3251/**
3252 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3253 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3254 *
3255 * @vmf: fault environment
3256 * @memcg: memcg to charge page (only for private mappings)
3257 * @page: page to map
3258 *
3259 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3260 * return.
3261 *
3262 * Target users are page handler itself and implementations of
3263 * vm_ops->map_pages.
3264 *
3265 * Return: %0 on success, %VM_FAULT_ code in case of error.
3266 */
3267vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3268		struct page *page)
3269{
3270	struct vm_area_struct *vma = vmf->vma;
3271	bool write = vmf->flags & FAULT_FLAG_WRITE;
3272	pte_t entry;
3273	vm_fault_t ret;
3274
3275	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3276			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3277		/* THP on COW? */
3278		VM_BUG_ON_PAGE(memcg, page);
3279
3280		ret = do_set_pmd(vmf, page);
3281		if (ret != VM_FAULT_FALLBACK)
3282			return ret;
3283	}
3284
3285	if (!vmf->pte) {
3286		ret = pte_alloc_one_map(vmf);
3287		if (ret)
3288			return ret;
3289	}
3290
3291	/* Re-check under ptl */
3292	if (unlikely(!pte_none(*vmf->pte)))
3293		return VM_FAULT_NOPAGE;
3294
3295	flush_icache_page(vma, page);
3296	entry = mk_pte(page, vma->vm_page_prot);
3297	if (write)
3298		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3299	/* copy-on-write page */
3300	if (write && !(vma->vm_flags & VM_SHARED)) {
3301		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3302		page_add_new_anon_rmap(page, vma, vmf->address, false);
3303		mem_cgroup_commit_charge(page, memcg, false, false);
3304		lru_cache_add_active_or_unevictable(page, vma);
3305	} else {
3306		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3307		page_add_file_rmap(page, false);
3308	}
3309	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3310
3311	/* no need to invalidate: a not-present page won't be cached */
3312	update_mmu_cache(vma, vmf->address, vmf->pte);
3313
3314	return 0;
3315}
3316
3317
3318/**
3319 * finish_fault - finish page fault once we have prepared the page to fault
3320 *
3321 * @vmf: structure describing the fault
3322 *
3323 * This function handles all that is needed to finish a page fault once the
3324 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3325 * given page, adds reverse page mapping, handles memcg charges and LRU
3326 * addition.
3327 *
3328 * The function expects the page to be locked and on success it consumes a
3329 * reference of a page being mapped (for the PTE which maps it).
3330 *
3331 * Return: %0 on success, %VM_FAULT_ code in case of error.
3332 */
3333vm_fault_t finish_fault(struct vm_fault *vmf)
3334{
3335	struct page *page;
3336	vm_fault_t ret = 0;
3337
3338	/* Did we COW the page? */
3339	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3340	    !(vmf->vma->vm_flags & VM_SHARED))
3341		page = vmf->cow_page;
3342	else
3343		page = vmf->page;
3344
3345	/*
3346	 * check even for read faults because we might have lost our CoWed
3347	 * page
3348	 */
3349	if (!(vmf->vma->vm_flags & VM_SHARED))
3350		ret = check_stable_address_space(vmf->vma->vm_mm);
3351	if (!ret)
3352		ret = alloc_set_pte(vmf, vmf->memcg, page);
3353	if (vmf->pte)
3354		pte_unmap_unlock(vmf->pte, vmf->ptl);
3355	return ret;
3356}
3357
3358static unsigned long fault_around_bytes __read_mostly =
3359	rounddown_pow_of_two(65536);
3360
3361#ifdef CONFIG_DEBUG_FS
3362static int fault_around_bytes_get(void *data, u64 *val)
3363{
3364	*val = fault_around_bytes;
3365	return 0;
3366}
3367
3368/*
3369 * fault_around_bytes must be rounded down to the nearest page order as it's
3370 * what do_fault_around() expects to see.
3371 */
3372static int fault_around_bytes_set(void *data, u64 val)
3373{
3374	if (val / PAGE_SIZE > PTRS_PER_PTE)
3375		return -EINVAL;
3376	if (val > PAGE_SIZE)
3377		fault_around_bytes = rounddown_pow_of_two(val);
3378	else
3379		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3380	return 0;
3381}
3382DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3383		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
 
 
 
 
3384
3385static int __init fault_around_debugfs(void)
3386{
3387	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3388				   &fault_around_bytes_fops);
3389	return 0;
3390}
3391late_initcall(fault_around_debugfs);
3392#endif
3393
3394/*
3395 * do_fault_around() tries to map few pages around the fault address. The hope
3396 * is that the pages will be needed soon and this will lower the number of
3397 * faults to handle.
3398 *
3399 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3400 * not ready to be mapped: not up-to-date, locked, etc.
3401 *
3402 * This function is called with the page table lock taken. In the split ptlock
3403 * case the page table lock only protects only those entries which belong to
3404 * the page table corresponding to the fault address.
3405 *
3406 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3407 * only once.
3408 *
3409 * fault_around_bytes defines how many bytes we'll try to map.
3410 * do_fault_around() expects it to be set to a power of two less than or equal
3411 * to PTRS_PER_PTE.
3412 *
3413 * The virtual address of the area that we map is naturally aligned to
3414 * fault_around_bytes rounded down to the machine page size
3415 * (and therefore to page order).  This way it's easier to guarantee
3416 * that we don't cross page table boundaries.
3417 */
3418static vm_fault_t do_fault_around(struct vm_fault *vmf)
3419{
3420	unsigned long address = vmf->address, nr_pages, mask;
3421	pgoff_t start_pgoff = vmf->pgoff;
3422	pgoff_t end_pgoff;
3423	int off;
3424	vm_fault_t ret = 0;
3425
3426	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3427	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3428
3429	vmf->address = max(address & mask, vmf->vma->vm_start);
3430	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3431	start_pgoff -= off;
3432
3433	/*
3434	 *  end_pgoff is either the end of the page table, the end of
3435	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3436	 */
3437	end_pgoff = start_pgoff -
3438		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3439		PTRS_PER_PTE - 1;
3440	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3441			start_pgoff + nr_pages - 1);
3442
3443	if (pmd_none(*vmf->pmd)) {
3444		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3445		if (!vmf->prealloc_pte)
3446			goto out;
3447		smp_wmb(); /* See comment in __pte_alloc() */
3448	}
3449
3450	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
 
 
 
 
 
 
 
 
 
 
3451
3452	/* Huge page is mapped? Page fault is solved */
3453	if (pmd_trans_huge(*vmf->pmd)) {
3454		ret = VM_FAULT_NOPAGE;
3455		goto out;
 
 
 
 
 
3456	}
3457
3458	/* ->map_pages() haven't done anything useful. Cold page cache? */
3459	if (!vmf->pte)
3460		goto out;
3461
3462	/* check if the page fault is solved */
3463	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3464	if (!pte_none(*vmf->pte))
3465		ret = VM_FAULT_NOPAGE;
3466	pte_unmap_unlock(vmf->pte, vmf->ptl);
3467out:
3468	vmf->address = address;
3469	vmf->pte = NULL;
3470	return ret;
3471}
3472
3473static vm_fault_t do_read_fault(struct vm_fault *vmf)
3474{
3475	struct vm_area_struct *vma = vmf->vma;
3476	vm_fault_t ret = 0;
 
 
 
 
 
 
 
3477
3478	/*
3479	 * Let's call ->map_pages() first and use ->fault() as fallback
3480	 * if page by the offset is not ready to be mapped (cold cache or
3481	 * something).
3482	 */
3483	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3484		ret = do_fault_around(vmf);
3485		if (ret)
3486			return ret;
3487	}
3488
3489	ret = __do_fault(vmf);
3490	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3491		return ret;
3492
3493	ret |= finish_fault(vmf);
3494	unlock_page(vmf->page);
3495	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3496		put_page(vmf->page);
3497	return ret;
3498}
3499
3500static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3501{
3502	struct vm_area_struct *vma = vmf->vma;
3503	vm_fault_t ret;
3504
3505	if (unlikely(anon_vma_prepare(vma)))
3506		return VM_FAULT_OOM;
3507
3508	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3509	if (!vmf->cow_page)
3510		return VM_FAULT_OOM;
3511
3512	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3513				&vmf->memcg, false)) {
3514		put_page(vmf->cow_page);
3515		return VM_FAULT_OOM;
3516	}
3517
3518	ret = __do_fault(vmf);
3519	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3520		goto uncharge_out;
3521	if (ret & VM_FAULT_DONE_COW)
3522		return ret;
3523
3524	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3525	__SetPageUptodate(vmf->cow_page);
3526
3527	ret |= finish_fault(vmf);
3528	unlock_page(vmf->page);
3529	put_page(vmf->page);
3530	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3531		goto uncharge_out;
3532	return ret;
3533uncharge_out:
3534	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3535	put_page(vmf->cow_page);
 
 
 
3536	return ret;
3537}
3538
3539static vm_fault_t do_shared_fault(struct vm_fault *vmf)
 
 
3540{
3541	struct vm_area_struct *vma = vmf->vma;
3542	vm_fault_t ret, tmp;
3543
3544	ret = __do_fault(vmf);
3545	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3546		return ret;
3547
3548	/*
3549	 * Check if the backing address space wants to know that the page is
3550	 * about to become writable
3551	 */
3552	if (vma->vm_ops->page_mkwrite) {
3553		unlock_page(vmf->page);
3554		tmp = do_page_mkwrite(vmf);
3555		if (unlikely(!tmp ||
3556				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3557			put_page(vmf->page);
3558			return tmp;
3559		}
3560	}
3561
3562	ret |= finish_fault(vmf);
3563	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3564					VM_FAULT_RETRY))) {
3565		unlock_page(vmf->page);
3566		put_page(vmf->page);
3567		return ret;
3568	}
3569
3570	fault_dirty_shared_page(vma, vmf->page);
3571	return ret;
3572}
3573
3574/*
 
 
 
 
3575 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3576 * but allow concurrent faults).
3577 * The mmap_sem may have been released depending on flags and our
3578 * return value.  See filemap_fault() and __lock_page_or_retry().
3579 * If mmap_sem is released, vma may become invalid (for example
3580 * by other thread calling munmap()).
3581 */
3582static vm_fault_t do_fault(struct vm_fault *vmf)
3583{
3584	struct vm_area_struct *vma = vmf->vma;
3585	struct mm_struct *vm_mm = vma->vm_mm;
3586	vm_fault_t ret;
3587
3588	/*
3589	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3590	 */
3591	if (!vma->vm_ops->fault) {
3592		/*
3593		 * If we find a migration pmd entry or a none pmd entry, which
3594		 * should never happen, return SIGBUS
3595		 */
3596		if (unlikely(!pmd_present(*vmf->pmd)))
3597			ret = VM_FAULT_SIGBUS;
3598		else {
3599			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3600						       vmf->pmd,
3601						       vmf->address,
3602						       &vmf->ptl);
3603			/*
3604			 * Make sure this is not a temporary clearing of pte
3605			 * by holding ptl and checking again. A R/M/W update
3606			 * of pte involves: take ptl, clearing the pte so that
3607			 * we don't have concurrent modification by hardware
3608			 * followed by an update.
3609			 */
3610			if (unlikely(pte_none(*vmf->pte)))
3611				ret = VM_FAULT_SIGBUS;
3612			else
3613				ret = VM_FAULT_NOPAGE;
3614
3615			pte_unmap_unlock(vmf->pte, vmf->ptl);
3616		}
3617	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3618		ret = do_read_fault(vmf);
3619	else if (!(vma->vm_flags & VM_SHARED))
3620		ret = do_cow_fault(vmf);
3621	else
3622		ret = do_shared_fault(vmf);
3623
3624	/* preallocated pagetable is unused: free it */
3625	if (vmf->prealloc_pte) {
3626		pte_free(vm_mm, vmf->prealloc_pte);
3627		vmf->prealloc_pte = NULL;
3628	}
3629	return ret;
3630}
3631
3632static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3633				unsigned long addr, int page_nid,
3634				int *flags)
3635{
3636	get_page(page);
3637
3638	count_vm_numa_event(NUMA_HINT_FAULTS);
3639	if (page_nid == numa_node_id()) {
3640		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3641		*flags |= TNF_FAULT_LOCAL;
3642	}
3643
3644	return mpol_misplaced(page, vma, addr);
3645}
3646
3647static vm_fault_t do_numa_page(struct vm_fault *vmf)
3648{
3649	struct vm_area_struct *vma = vmf->vma;
3650	struct page *page = NULL;
3651	int page_nid = NUMA_NO_NODE;
3652	int last_cpupid;
3653	int target_nid;
3654	bool migrated = false;
3655	pte_t pte, old_pte;
3656	bool was_writable = pte_savedwrite(vmf->orig_pte);
3657	int flags = 0;
3658
3659	/*
3660	 * The "pte" at this point cannot be used safely without
3661	 * validation through pte_unmap_same(). It's of NUMA type but
3662	 * the pfn may be screwed if the read is non atomic.
3663	 */
3664	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3665	spin_lock(vmf->ptl);
3666	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3667		pte_unmap_unlock(vmf->pte, vmf->ptl);
3668		goto out;
3669	}
3670
3671	/*
3672	 * Make it present again, Depending on how arch implementes non
3673	 * accessible ptes, some can allow access by kernel mode.
3674	 */
3675	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3676	pte = pte_modify(old_pte, vma->vm_page_prot);
3677	pte = pte_mkyoung(pte);
3678	if (was_writable)
3679		pte = pte_mkwrite(pte);
3680	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3681	update_mmu_cache(vma, vmf->address, vmf->pte);
3682
3683	page = vm_normal_page(vma, vmf->address, pte);
3684	if (!page) {
3685		pte_unmap_unlock(vmf->pte, vmf->ptl);
3686		return 0;
3687	}
3688
3689	/* TODO: handle PTE-mapped THP */
3690	if (PageCompound(page)) {
3691		pte_unmap_unlock(vmf->pte, vmf->ptl);
3692		return 0;
3693	}
3694
3695	/*
3696	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3697	 * much anyway since they can be in shared cache state. This misses
3698	 * the case where a mapping is writable but the process never writes
3699	 * to it but pte_write gets cleared during protection updates and
3700	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3701	 * background writeback, dirty balancing and application behaviour.
3702	 */
3703	if (!pte_write(pte))
3704		flags |= TNF_NO_GROUP;
3705
3706	/*
3707	 * Flag if the page is shared between multiple address spaces. This
3708	 * is later used when determining whether to group tasks together
3709	 */
3710	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3711		flags |= TNF_SHARED;
3712
3713	last_cpupid = page_cpupid_last(page);
3714	page_nid = page_to_nid(page);
3715	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3716			&flags);
3717	pte_unmap_unlock(vmf->pte, vmf->ptl);
3718	if (target_nid == NUMA_NO_NODE) {
3719		put_page(page);
3720		goto out;
3721	}
3722
3723	/* Migrate to the requested node */
3724	migrated = migrate_misplaced_page(page, vma, target_nid);
3725	if (migrated) {
3726		page_nid = target_nid;
3727		flags |= TNF_MIGRATED;
3728	} else
3729		flags |= TNF_MIGRATE_FAIL;
3730
3731out:
3732	if (page_nid != NUMA_NO_NODE)
3733		task_numa_fault(last_cpupid, page_nid, 1, flags);
3734	return 0;
3735}
3736
3737static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3738{
3739	if (vma_is_anonymous(vmf->vma))
3740		return do_huge_pmd_anonymous_page(vmf);
3741	if (vmf->vma->vm_ops->huge_fault)
3742		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3743	return VM_FAULT_FALLBACK;
3744}
3745
3746/* `inline' is required to avoid gcc 4.1.2 build error */
3747static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3748{
3749	if (vma_is_anonymous(vmf->vma))
3750		return do_huge_pmd_wp_page(vmf, orig_pmd);
3751	if (vmf->vma->vm_ops->huge_fault)
3752		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3753
3754	/* COW handled on pte level: split pmd */
3755	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3756	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3757
3758	return VM_FAULT_FALLBACK;
3759}
3760
3761static inline bool vma_is_accessible(struct vm_area_struct *vma)
3762{
3763	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3764}
3765
3766static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3767{
3768#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3769	/* No support for anonymous transparent PUD pages yet */
3770	if (vma_is_anonymous(vmf->vma))
3771		return VM_FAULT_FALLBACK;
3772	if (vmf->vma->vm_ops->huge_fault)
3773		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3774#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3775	return VM_FAULT_FALLBACK;
3776}
3777
3778static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3779{
3780#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3781	/* No support for anonymous transparent PUD pages yet */
3782	if (vma_is_anonymous(vmf->vma))
3783		return VM_FAULT_FALLBACK;
3784	if (vmf->vma->vm_ops->huge_fault)
3785		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3786#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3787	return VM_FAULT_FALLBACK;
3788}
3789
3790/*
3791 * These routines also need to handle stuff like marking pages dirty
3792 * and/or accessed for architectures that don't do it in hardware (most
3793 * RISC architectures).  The early dirtying is also good on the i386.
3794 *
3795 * There is also a hook called "update_mmu_cache()" that architectures
3796 * with external mmu caches can use to update those (ie the Sparc or
3797 * PowerPC hashed page tables that act as extended TLBs).
3798 *
3799 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3800 * concurrent faults).
3801 *
3802 * The mmap_sem may have been released depending on flags and our return value.
3803 * See filemap_fault() and __lock_page_or_retry().
3804 */
3805static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
 
 
3806{
3807	pte_t entry;
 
3808
3809	if (unlikely(pmd_none(*vmf->pmd))) {
3810		/*
3811		 * Leave __pte_alloc() until later: because vm_ops->fault may
3812		 * want to allocate huge page, and if we expose page table
3813		 * for an instant, it will be difficult to retract from
3814		 * concurrent faults and from rmap lookups.
3815		 */
3816		vmf->pte = NULL;
3817	} else {
3818		/* See comment in pte_alloc_one_map() */
3819		if (pmd_devmap_trans_unstable(vmf->pmd))
3820			return 0;
3821		/*
3822		 * A regular pmd is established and it can't morph into a huge
3823		 * pmd from under us anymore at this point because we hold the
3824		 * mmap_sem read mode and khugepaged takes it in write mode.
3825		 * So now it's safe to run pte_offset_map().
3826		 */
3827		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3828		vmf->orig_pte = *vmf->pte;
3829
3830		/*
3831		 * some architectures can have larger ptes than wordsize,
3832		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3833		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3834		 * accesses.  The code below just needs a consistent view
3835		 * for the ifs and we later double check anyway with the
3836		 * ptl lock held. So here a barrier will do.
3837		 */
3838		barrier();
3839		if (pte_none(vmf->orig_pte)) {
3840			pte_unmap(vmf->pte);
3841			vmf->pte = NULL;
3842		}
 
 
 
 
 
3843	}
3844
3845	if (!vmf->pte) {
3846		if (vma_is_anonymous(vmf->vma))
3847			return do_anonymous_page(vmf);
3848		else
3849			return do_fault(vmf);
3850	}
3851
3852	if (!pte_present(vmf->orig_pte))
3853		return do_swap_page(vmf);
3854
3855	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3856		return do_numa_page(vmf);
3857
3858	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3859	spin_lock(vmf->ptl);
3860	entry = vmf->orig_pte;
3861	if (unlikely(!pte_same(*vmf->pte, entry)))
3862		goto unlock;
3863	if (vmf->flags & FAULT_FLAG_WRITE) {
3864		if (!pte_write(entry))
3865			return do_wp_page(vmf);
 
3866		entry = pte_mkdirty(entry);
3867	}
3868	entry = pte_mkyoung(entry);
3869	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3870				vmf->flags & FAULT_FLAG_WRITE)) {
3871		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3872	} else {
3873		/*
3874		 * This is needed only for protection faults but the arch code
3875		 * is not yet telling us if this is a protection fault or not.
3876		 * This still avoids useless tlb flushes for .text page faults
3877		 * with threads.
3878		 */
3879		if (vmf->flags & FAULT_FLAG_WRITE)
3880			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3881	}
3882unlock:
3883	pte_unmap_unlock(vmf->pte, vmf->ptl);
3884	return 0;
3885}
3886
3887/*
3888 * By the time we get here, we already hold the mm semaphore
3889 *
3890 * The mmap_sem may have been released depending on flags and our
3891 * return value.  See filemap_fault() and __lock_page_or_retry().
3892 */
3893static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3894		unsigned long address, unsigned int flags)
3895{
3896	struct vm_fault vmf = {
3897		.vma = vma,
3898		.address = address & PAGE_MASK,
3899		.flags = flags,
3900		.pgoff = linear_page_index(vma, address),
3901		.gfp_mask = __get_fault_gfp_mask(vma),
3902	};
3903	unsigned int dirty = flags & FAULT_FLAG_WRITE;
3904	struct mm_struct *mm = vma->vm_mm;
3905	pgd_t *pgd;
3906	p4d_t *p4d;
3907	vm_fault_t ret;
3908
3909	pgd = pgd_offset(mm, address);
3910	p4d = p4d_alloc(mm, pgd, address);
3911	if (!p4d)
3912		return VM_FAULT_OOM;
3913
3914	vmf.pud = pud_alloc(mm, p4d, address);
3915	if (!vmf.pud)
3916		return VM_FAULT_OOM;
3917	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3918		ret = create_huge_pud(&vmf);
3919		if (!(ret & VM_FAULT_FALLBACK))
3920			return ret;
3921	} else {
3922		pud_t orig_pud = *vmf.pud;
3923
3924		barrier();
3925		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3926
3927			/* NUMA case for anonymous PUDs would go here */
 
3928
3929			if (dirty && !pud_write(orig_pud)) {
3930				ret = wp_huge_pud(&vmf, orig_pud);
3931				if (!(ret & VM_FAULT_FALLBACK))
3932					return ret;
3933			} else {
3934				huge_pud_set_accessed(&vmf, orig_pud);
3935				return 0;
3936			}
3937		}
3938	}
3939
3940	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3941	if (!vmf.pmd)
 
3942		return VM_FAULT_OOM;
3943	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3944		ret = create_huge_pmd(&vmf);
3945		if (!(ret & VM_FAULT_FALLBACK))
3946			return ret;
 
 
 
3947	} else {
3948		pmd_t orig_pmd = *vmf.pmd;
3949
3950		barrier();
3951		if (unlikely(is_swap_pmd(orig_pmd))) {
3952			VM_BUG_ON(thp_migration_supported() &&
3953					  !is_pmd_migration_entry(orig_pmd));
3954			if (is_pmd_migration_entry(orig_pmd))
3955				pmd_migration_entry_wait(mm, vmf.pmd);
 
3956			return 0;
3957		}
3958		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3959			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3960				return do_huge_pmd_numa_page(&vmf, orig_pmd);
3961
3962			if (dirty && !pmd_write(orig_pmd)) {
3963				ret = wp_huge_pmd(&vmf, orig_pmd);
3964				if (!(ret & VM_FAULT_FALLBACK))
3965					return ret;
3966			} else {
3967				huge_pmd_set_accessed(&vmf, orig_pmd);
3968				return 0;
3969			}
3970		}
3971	}
3972
3973	return handle_pte_fault(&vmf);
3974}
3975
3976/*
3977 * By the time we get here, we already hold the mm semaphore
3978 *
3979 * The mmap_sem may have been released depending on flags and our
3980 * return value.  See filemap_fault() and __lock_page_or_retry().
3981 */
3982vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3983		unsigned int flags)
3984{
3985	vm_fault_t ret;
3986
3987	__set_current_state(TASK_RUNNING);
3988
3989	count_vm_event(PGFAULT);
3990	count_memcg_event_mm(vma->vm_mm, PGFAULT);
3991
3992	/* do counter updates before entering really critical section. */
3993	check_sync_rss_stat(current);
3994
3995	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3996					    flags & FAULT_FLAG_INSTRUCTION,
3997					    flags & FAULT_FLAG_REMOTE))
3998		return VM_FAULT_SIGSEGV;
3999
4000	/*
4001	 * Enable the memcg OOM handling for faults triggered in user
4002	 * space.  Kernel faults are handled more gracefully.
 
4003	 */
4004	if (flags & FAULT_FLAG_USER)
4005		mem_cgroup_enter_user_fault();
4006
4007	if (unlikely(is_vm_hugetlb_page(vma)))
4008		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4009	else
4010		ret = __handle_mm_fault(vma, address, flags);
4011
4012	if (flags & FAULT_FLAG_USER) {
4013		mem_cgroup_exit_user_fault();
4014		/*
4015		 * The task may have entered a memcg OOM situation but
4016		 * if the allocation error was handled gracefully (no
4017		 * VM_FAULT_OOM), there is no need to kill anything.
4018		 * Just clean up the OOM state peacefully.
4019		 */
4020		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4021			mem_cgroup_oom_synchronize(false);
4022	}
4023
4024	return ret;
4025}
4026EXPORT_SYMBOL_GPL(handle_mm_fault);
4027
4028#ifndef __PAGETABLE_P4D_FOLDED
4029/*
4030 * Allocate p4d page table.
4031 * We've already handled the fast-path in-line.
4032 */
4033int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4034{
4035	p4d_t *new = p4d_alloc_one(mm, address);
4036	if (!new)
4037		return -ENOMEM;
4038
4039	smp_wmb(); /* See comment in __pte_alloc */
4040
4041	spin_lock(&mm->page_table_lock);
4042	if (pgd_present(*pgd))		/* Another has populated it */
4043		p4d_free(mm, new);
4044	else
4045		pgd_populate(mm, pgd, new);
4046	spin_unlock(&mm->page_table_lock);
4047	return 0;
4048}
4049#endif /* __PAGETABLE_P4D_FOLDED */
4050
4051#ifndef __PAGETABLE_PUD_FOLDED
4052/*
4053 * Allocate page upper directory.
4054 * We've already handled the fast-path in-line.
4055 */
4056int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4057{
4058	pud_t *new = pud_alloc_one(mm, address);
4059	if (!new)
4060		return -ENOMEM;
4061
4062	smp_wmb(); /* See comment in __pte_alloc */
4063
4064	spin_lock(&mm->page_table_lock);
4065#ifndef __ARCH_HAS_5LEVEL_HACK
4066	if (!p4d_present(*p4d)) {
4067		mm_inc_nr_puds(mm);
4068		p4d_populate(mm, p4d, new);
4069	} else	/* Another has populated it */
4070		pud_free(mm, new);
4071#else
4072	if (!pgd_present(*p4d)) {
4073		mm_inc_nr_puds(mm);
4074		pgd_populate(mm, p4d, new);
4075	} else	/* Another has populated it */
4076		pud_free(mm, new);
4077#endif /* __ARCH_HAS_5LEVEL_HACK */
 
4078	spin_unlock(&mm->page_table_lock);
4079	return 0;
4080}
4081#endif /* __PAGETABLE_PUD_FOLDED */
4082
4083#ifndef __PAGETABLE_PMD_FOLDED
4084/*
4085 * Allocate page middle directory.
4086 * We've already handled the fast-path in-line.
4087 */
4088int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4089{
4090	spinlock_t *ptl;
4091	pmd_t *new = pmd_alloc_one(mm, address);
4092	if (!new)
4093		return -ENOMEM;
4094
4095	smp_wmb(); /* See comment in __pte_alloc */
4096
4097	ptl = pud_lock(mm, pud);
4098#ifndef __ARCH_HAS_4LEVEL_HACK
4099	if (!pud_present(*pud)) {
4100		mm_inc_nr_pmds(mm);
4101		pud_populate(mm, pud, new);
4102	} else	/* Another has populated it */
4103		pmd_free(mm, new);
 
 
4104#else
4105	if (!pgd_present(*pud)) {
4106		mm_inc_nr_pmds(mm);
4107		pgd_populate(mm, pud, new);
4108	} else /* Another has populated it */
4109		pmd_free(mm, new);
 
 
4110#endif /* __ARCH_HAS_4LEVEL_HACK */
4111	spin_unlock(ptl);
4112	return 0;
4113}
4114#endif /* __PAGETABLE_PMD_FOLDED */
4115
4116static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4117			    struct mmu_notifier_range *range,
4118			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4119{
4120	pgd_t *pgd;
4121	p4d_t *p4d;
4122	pud_t *pud;
4123	pmd_t *pmd;
4124	pte_t *ptep;
4125
4126	pgd = pgd_offset(mm, address);
4127	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4128		goto out;
4129
4130	p4d = p4d_offset(pgd, address);
4131	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4132		goto out;
4133
4134	pud = pud_offset(p4d, address);
4135	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4136		goto out;
4137
4138	pmd = pmd_offset(pud, address);
4139	VM_BUG_ON(pmd_trans_huge(*pmd));
4140
4141	if (pmd_huge(*pmd)) {
4142		if (!pmdpp)
4143			goto out;
4144
4145		if (range) {
4146			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4147						NULL, mm, address & PMD_MASK,
4148						(address & PMD_MASK) + PMD_SIZE);
4149			mmu_notifier_invalidate_range_start(range);
4150		}
4151		*ptlp = pmd_lock(mm, pmd);
4152		if (pmd_huge(*pmd)) {
4153			*pmdpp = pmd;
4154			return 0;
4155		}
4156		spin_unlock(*ptlp);
4157		if (range)
4158			mmu_notifier_invalidate_range_end(range);
4159	}
4160
4161	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4162		goto out;
4163
4164	if (range) {
4165		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4166					address & PAGE_MASK,
4167					(address & PAGE_MASK) + PAGE_SIZE);
4168		mmu_notifier_invalidate_range_start(range);
4169	}
4170	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
 
 
4171	if (!pte_present(*ptep))
4172		goto unlock;
4173	*ptepp = ptep;
4174	return 0;
4175unlock:
4176	pte_unmap_unlock(ptep, *ptlp);
4177	if (range)
4178		mmu_notifier_invalidate_range_end(range);
4179out:
4180	return -EINVAL;
4181}
4182
4183static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4184			     pte_t **ptepp, spinlock_t **ptlp)
4185{
4186	int res;
4187
4188	/* (void) is needed to make gcc happy */
4189	(void) __cond_lock(*ptlp,
4190			   !(res = __follow_pte_pmd(mm, address, NULL,
4191						    ptepp, NULL, ptlp)));
4192	return res;
4193}
4194
4195int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4196		   struct mmu_notifier_range *range,
4197		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4198{
4199	int res;
4200
4201	/* (void) is needed to make gcc happy */
4202	(void) __cond_lock(*ptlp,
4203			   !(res = __follow_pte_pmd(mm, address, range,
4204						    ptepp, pmdpp, ptlp)));
4205	return res;
4206}
4207EXPORT_SYMBOL(follow_pte_pmd);
4208
4209/**
4210 * follow_pfn - look up PFN at a user virtual address
4211 * @vma: memory mapping
4212 * @address: user virtual address
4213 * @pfn: location to store found PFN
4214 *
4215 * Only IO mappings and raw PFN mappings are allowed.
4216 *
4217 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4218 */
4219int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4220	unsigned long *pfn)
4221{
4222	int ret = -EINVAL;
4223	spinlock_t *ptl;
4224	pte_t *ptep;
4225
4226	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4227		return ret;
4228
4229	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4230	if (ret)
4231		return ret;
4232	*pfn = pte_pfn(*ptep);
4233	pte_unmap_unlock(ptep, ptl);
4234	return 0;
4235}
4236EXPORT_SYMBOL(follow_pfn);
4237
4238#ifdef CONFIG_HAVE_IOREMAP_PROT
4239int follow_phys(struct vm_area_struct *vma,
4240		unsigned long address, unsigned int flags,
4241		unsigned long *prot, resource_size_t *phys)
4242{
4243	int ret = -EINVAL;
4244	pte_t *ptep, pte;
4245	spinlock_t *ptl;
4246
4247	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4248		goto out;
4249
4250	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4251		goto out;
4252	pte = *ptep;
4253
4254	if ((flags & FOLL_WRITE) && !pte_write(pte))
4255		goto unlock;
4256
4257	*prot = pgprot_val(pte_pgprot(pte));
4258	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4259
4260	ret = 0;
4261unlock:
4262	pte_unmap_unlock(ptep, ptl);
4263out:
4264	return ret;
4265}
4266
4267int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4268			void *buf, int len, int write)
4269{
4270	resource_size_t phys_addr;
4271	unsigned long prot = 0;
4272	void __iomem *maddr;
4273	int offset = addr & (PAGE_SIZE-1);
4274
4275	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4276		return -EINVAL;
4277
4278	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4279	if (!maddr)
4280		return -ENOMEM;
4281
4282	if (write)
4283		memcpy_toio(maddr + offset, buf, len);
4284	else
4285		memcpy_fromio(buf, maddr + offset, len);
4286	iounmap(maddr);
4287
4288	return len;
4289}
4290EXPORT_SYMBOL_GPL(generic_access_phys);
4291#endif
4292
4293/*
4294 * Access another process' address space as given in mm.  If non-NULL, use the
4295 * given task for page fault accounting.
4296 */
4297int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4298		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4299{
4300	struct vm_area_struct *vma;
4301	void *old_buf = buf;
4302	int write = gup_flags & FOLL_WRITE;
4303
4304	if (down_read_killable(&mm->mmap_sem))
4305		return 0;
4306
 
4307	/* ignore errors, just check how much was successfully transferred */
4308	while (len) {
4309		int bytes, ret, offset;
4310		void *maddr;
4311		struct page *page = NULL;
4312
4313		ret = get_user_pages_remote(tsk, mm, addr, 1,
4314				gup_flags, &page, &vma, NULL);
4315		if (ret <= 0) {
4316#ifndef CONFIG_HAVE_IOREMAP_PROT
4317			break;
4318#else
4319			/*
4320			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4321			 * we can access using slightly different code.
4322			 */
 
4323			vma = find_vma(mm, addr);
4324			if (!vma || vma->vm_start > addr)
4325				break;
4326			if (vma->vm_ops && vma->vm_ops->access)
4327				ret = vma->vm_ops->access(vma, addr, buf,
4328							  len, write);
4329			if (ret <= 0)
 
4330				break;
4331			bytes = ret;
4332#endif
4333		} else {
4334			bytes = len;
4335			offset = addr & (PAGE_SIZE-1);
4336			if (bytes > PAGE_SIZE-offset)
4337				bytes = PAGE_SIZE-offset;
4338
4339			maddr = kmap(page);
4340			if (write) {
4341				copy_to_user_page(vma, page, addr,
4342						  maddr + offset, buf, bytes);
4343				set_page_dirty_lock(page);
4344			} else {
4345				copy_from_user_page(vma, page, addr,
4346						    buf, maddr + offset, bytes);
4347			}
4348			kunmap(page);
4349			put_page(page);
4350		}
4351		len -= bytes;
4352		buf += bytes;
4353		addr += bytes;
4354	}
4355	up_read(&mm->mmap_sem);
4356
4357	return buf - old_buf;
4358}
4359
4360/**
4361 * access_remote_vm - access another process' address space
4362 * @mm:		the mm_struct of the target address space
4363 * @addr:	start address to access
4364 * @buf:	source or destination buffer
4365 * @len:	number of bytes to transfer
4366 * @gup_flags:	flags modifying lookup behaviour
4367 *
4368 * The caller must hold a reference on @mm.
4369 *
4370 * Return: number of bytes copied from source to destination.
4371 */
4372int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4373		void *buf, int len, unsigned int gup_flags)
4374{
4375	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4376}
4377
4378/*
4379 * Access another process' address space.
4380 * Source/target buffer must be kernel space,
4381 * Do not walk the page table directly, use get_user_pages
4382 */
4383int access_process_vm(struct task_struct *tsk, unsigned long addr,
4384		void *buf, int len, unsigned int gup_flags)
4385{
4386	struct mm_struct *mm;
4387	int ret;
4388
4389	mm = get_task_mm(tsk);
4390	if (!mm)
4391		return 0;
4392
4393	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4394
4395	mmput(mm);
4396
4397	return ret;
4398}
4399EXPORT_SYMBOL_GPL(access_process_vm);
4400
4401/*
4402 * Print the name of a VMA.
4403 */
4404void print_vma_addr(char *prefix, unsigned long ip)
4405{
4406	struct mm_struct *mm = current->mm;
4407	struct vm_area_struct *vma;
4408
4409	/*
4410	 * we might be running from an atomic context so we cannot sleep
 
4411	 */
4412	if (!down_read_trylock(&mm->mmap_sem))
4413		return;
4414
 
4415	vma = find_vma(mm, ip);
4416	if (vma && vma->vm_file) {
4417		struct file *f = vma->vm_file;
4418		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4419		if (buf) {
4420			char *p;
4421
4422			p = file_path(f, buf, PAGE_SIZE);
4423			if (IS_ERR(p))
4424				p = "?";
4425			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
 
 
 
4426					vma->vm_start,
4427					vma->vm_end - vma->vm_start);
4428			free_page((unsigned long)buf);
4429		}
4430	}
4431	up_read(&mm->mmap_sem);
4432}
4433
4434#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4435void __might_fault(const char *file, int line)
4436{
4437	/*
4438	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4439	 * holding the mmap_sem, this is safe because kernel memory doesn't
4440	 * get paged out, therefore we'll never actually fault, and the
4441	 * below annotations will generate false positives.
4442	 */
4443	if (uaccess_kernel())
4444		return;
4445	if (pagefault_disabled())
4446		return;
4447	__might_sleep(file, line, 0);
4448#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4449	if (current->mm)
4450		might_lock_read(&current->mm->mmap_sem);
4451#endif
4452}
4453EXPORT_SYMBOL(__might_fault);
4454#endif
4455
4456#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4457/*
4458 * Process all subpages of the specified huge page with the specified
4459 * operation.  The target subpage will be processed last to keep its
4460 * cache lines hot.
4461 */
4462static inline void process_huge_page(
4463	unsigned long addr_hint, unsigned int pages_per_huge_page,
4464	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4465	void *arg)
4466{
4467	int i, n, base, l;
4468	unsigned long addr = addr_hint &
4469		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4470
4471	/* Process target subpage last to keep its cache lines hot */
4472	might_sleep();
4473	n = (addr_hint - addr) / PAGE_SIZE;
4474	if (2 * n <= pages_per_huge_page) {
4475		/* If target subpage in first half of huge page */
4476		base = 0;
4477		l = n;
4478		/* Process subpages at the end of huge page */
4479		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4480			cond_resched();
4481			process_subpage(addr + i * PAGE_SIZE, i, arg);
4482		}
4483	} else {
4484		/* If target subpage in second half of huge page */
4485		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4486		l = pages_per_huge_page - n;
4487		/* Process subpages at the begin of huge page */
4488		for (i = 0; i < base; i++) {
4489			cond_resched();
4490			process_subpage(addr + i * PAGE_SIZE, i, arg);
4491		}
4492	}
4493	/*
4494	 * Process remaining subpages in left-right-left-right pattern
4495	 * towards the target subpage
 
4496	 */
4497	for (i = 0; i < l; i++) {
4498		int left_idx = base + i;
4499		int right_idx = base + 2 * l - 1 - i;
4500
4501		cond_resched();
4502		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4503		cond_resched();
4504		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4505	}
4506}
 
 
4507
 
4508static void clear_gigantic_page(struct page *page,
4509				unsigned long addr,
4510				unsigned int pages_per_huge_page)
4511{
4512	int i;
4513	struct page *p = page;
4514
4515	might_sleep();
4516	for (i = 0; i < pages_per_huge_page;
4517	     i++, p = mem_map_next(p, page, i)) {
4518		cond_resched();
4519		clear_user_highpage(p, addr + i * PAGE_SIZE);
4520	}
4521}
4522
4523static void clear_subpage(unsigned long addr, int idx, void *arg)
4524{
4525	struct page *page = arg;
4526
4527	clear_user_highpage(page + idx, addr);
4528}
4529
4530void clear_huge_page(struct page *page,
4531		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4532{
4533	unsigned long addr = addr_hint &
4534		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4535
4536	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4537		clear_gigantic_page(page, addr, pages_per_huge_page);
4538		return;
4539	}
4540
4541	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
 
 
 
 
4542}
4543
4544static void copy_user_gigantic_page(struct page *dst, struct page *src,
4545				    unsigned long addr,
4546				    struct vm_area_struct *vma,
4547				    unsigned int pages_per_huge_page)
4548{
4549	int i;
4550	struct page *dst_base = dst;
4551	struct page *src_base = src;
4552
4553	for (i = 0; i < pages_per_huge_page; ) {
4554		cond_resched();
4555		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4556
4557		i++;
4558		dst = mem_map_next(dst, dst_base, i);
4559		src = mem_map_next(src, src_base, i);
4560	}
4561}
4562
4563struct copy_subpage_arg {
4564	struct page *dst;
4565	struct page *src;
4566	struct vm_area_struct *vma;
4567};
4568
4569static void copy_subpage(unsigned long addr, int idx, void *arg)
4570{
4571	struct copy_subpage_arg *copy_arg = arg;
4572
4573	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4574			   addr, copy_arg->vma);
4575}
4576
4577void copy_user_huge_page(struct page *dst, struct page *src,
4578			 unsigned long addr_hint, struct vm_area_struct *vma,
4579			 unsigned int pages_per_huge_page)
4580{
4581	unsigned long addr = addr_hint &
4582		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4583	struct copy_subpage_arg arg = {
4584		.dst = dst,
4585		.src = src,
4586		.vma = vma,
4587	};
4588
4589	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4590		copy_user_gigantic_page(dst, src, addr, vma,
4591					pages_per_huge_page);
4592		return;
4593	}
4594
4595	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4596}
4597
4598long copy_huge_page_from_user(struct page *dst_page,
4599				const void __user *usr_src,
4600				unsigned int pages_per_huge_page,
4601				bool allow_pagefault)
4602{
4603	void *src = (void *)usr_src;
4604	void *page_kaddr;
4605	unsigned long i, rc = 0;
4606	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4607
4608	for (i = 0; i < pages_per_huge_page; i++) {
4609		if (allow_pagefault)
4610			page_kaddr = kmap(dst_page + i);
4611		else
4612			page_kaddr = kmap_atomic(dst_page + i);
4613		rc = copy_from_user(page_kaddr,
4614				(const void __user *)(src + i * PAGE_SIZE),
4615				PAGE_SIZE);
4616		if (allow_pagefault)
4617			kunmap(dst_page + i);
4618		else
4619			kunmap_atomic(page_kaddr);
4620
4621		ret_val -= (PAGE_SIZE - rc);
4622		if (rc)
4623			break;
4624
4625		cond_resched();
 
4626	}
4627	return ret_val;
4628}
4629#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4630
4631#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4632
4633static struct kmem_cache *page_ptl_cachep;
4634
4635void __init ptlock_cache_init(void)
4636{
4637	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4638			SLAB_PANIC, NULL);
4639}
4640
4641bool ptlock_alloc(struct page *page)
4642{
4643	spinlock_t *ptl;
4644
4645	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4646	if (!ptl)
4647		return false;
4648	page->ptl = ptl;
4649	return true;
4650}
4651
4652void ptlock_free(struct page *page)
4653{
4654	kmem_cache_free(page_ptl_cachep, page->ptl);
4655}
4656#endif
v3.1
 
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *		Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *		(Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
 
 
 
 
  43#include <linux/hugetlb.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/highmem.h>
  47#include <linux/pagemap.h>
 
  48#include <linux/ksm.h>
  49#include <linux/rmap.h>
  50#include <linux/module.h>
  51#include <linux/delayacct.h>
  52#include <linux/init.h>
 
  53#include <linux/writeback.h>
  54#include <linux/memcontrol.h>
  55#include <linux/mmu_notifier.h>
  56#include <linux/kallsyms.h>
  57#include <linux/swapops.h>
  58#include <linux/elf.h>
  59#include <linux/gfp.h>
 
 
 
 
 
 
 
 
  60
  61#include <asm/io.h>
 
  62#include <asm/pgalloc.h>
  63#include <asm/uaccess.h>
  64#include <asm/tlb.h>
  65#include <asm/tlbflush.h>
  66#include <asm/pgtable.h>
  67
  68#include "internal.h"
  69
 
 
 
 
  70#ifndef CONFIG_NEED_MULTIPLE_NODES
  71/* use the per-pgdat data instead for discontigmem - mbligh */
  72unsigned long max_mapnr;
 
 
  73struct page *mem_map;
  74
  75EXPORT_SYMBOL(max_mapnr);
  76EXPORT_SYMBOL(mem_map);
  77#endif
  78
  79unsigned long num_physpages;
  80/*
  81 * A number of key systems in x86 including ioremap() rely on the assumption
  82 * that high_memory defines the upper bound on direct map memory, then end
  83 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
  84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  85 * and ZONE_HIGHMEM.
  86 */
  87void * high_memory;
  88
  89EXPORT_SYMBOL(num_physpages);
  90EXPORT_SYMBOL(high_memory);
  91
  92/*
  93 * Randomize the address space (stacks, mmaps, brk, etc.).
  94 *
  95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  96 *   as ancient (libc5 based) binaries can segfault. )
  97 */
  98int randomize_va_space __read_mostly =
  99#ifdef CONFIG_COMPAT_BRK
 100					1;
 101#else
 102					2;
 103#endif
 104
 105static int __init disable_randmaps(char *s)
 106{
 107	randomize_va_space = 0;
 108	return 1;
 109}
 110__setup("norandmaps", disable_randmaps);
 111
 112unsigned long zero_pfn __read_mostly;
 
 
 113unsigned long highest_memmap_pfn __read_mostly;
 114
 115/*
 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 117 */
 118static int __init init_zero_pfn(void)
 119{
 120	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 121	return 0;
 122}
 123core_initcall(init_zero_pfn);
 124
 125
 126#if defined(SPLIT_RSS_COUNTING)
 127
 128static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
 129{
 130	int i;
 131
 132	for (i = 0; i < NR_MM_COUNTERS; i++) {
 133		if (task->rss_stat.count[i]) {
 134			add_mm_counter(mm, i, task->rss_stat.count[i]);
 135			task->rss_stat.count[i] = 0;
 136		}
 137	}
 138	task->rss_stat.events = 0;
 139}
 140
 141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 142{
 143	struct task_struct *task = current;
 144
 145	if (likely(task->mm == mm))
 146		task->rss_stat.count[member] += val;
 147	else
 148		add_mm_counter(mm, member, val);
 149}
 150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 152
 153/* sync counter once per 64 page faults */
 154#define TASK_RSS_EVENTS_THRESH	(64)
 155static void check_sync_rss_stat(struct task_struct *task)
 156{
 157	if (unlikely(task != current))
 158		return;
 159	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 160		__sync_task_rss_stat(task, task->mm);
 161}
 162
 163unsigned long get_mm_counter(struct mm_struct *mm, int member)
 164{
 165	long val = 0;
 166
 167	/*
 168	 * Don't use task->mm here...for avoiding to use task_get_mm()..
 169	 * The caller must guarantee task->mm is not invalid.
 170	 */
 171	val = atomic_long_read(&mm->rss_stat.count[member]);
 172	/*
 173	 * counter is updated in asynchronous manner and may go to minus.
 174	 * But it's never be expected number for users.
 175	 */
 176	if (val < 0)
 177		return 0;
 178	return (unsigned long)val;
 179}
 180
 181void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
 182{
 183	__sync_task_rss_stat(task, mm);
 184}
 185#else /* SPLIT_RSS_COUNTING */
 186
 187#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 188#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 189
 190static void check_sync_rss_stat(struct task_struct *task)
 191{
 192}
 193
 194#endif /* SPLIT_RSS_COUNTING */
 195
 196#ifdef HAVE_GENERIC_MMU_GATHER
 197
 198static int tlb_next_batch(struct mmu_gather *tlb)
 199{
 200	struct mmu_gather_batch *batch;
 201
 202	batch = tlb->active;
 203	if (batch->next) {
 204		tlb->active = batch->next;
 205		return 1;
 206	}
 207
 208	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 209	if (!batch)
 210		return 0;
 211
 212	batch->next = NULL;
 213	batch->nr   = 0;
 214	batch->max  = MAX_GATHER_BATCH;
 215
 216	tlb->active->next = batch;
 217	tlb->active = batch;
 218
 219	return 1;
 220}
 221
 222/* tlb_gather_mmu
 223 *	Called to initialize an (on-stack) mmu_gather structure for page-table
 224 *	tear-down from @mm. The @fullmm argument is used when @mm is without
 225 *	users and we're going to destroy the full address space (exit/execve).
 226 */
 227void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
 228{
 229	tlb->mm = mm;
 230
 231	tlb->fullmm     = fullmm;
 232	tlb->need_flush = 0;
 233	tlb->fast_mode  = (num_possible_cpus() == 1);
 234	tlb->local.next = NULL;
 235	tlb->local.nr   = 0;
 236	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 237	tlb->active     = &tlb->local;
 238
 239#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 240	tlb->batch = NULL;
 241#endif
 242}
 243
 244void tlb_flush_mmu(struct mmu_gather *tlb)
 245{
 246	struct mmu_gather_batch *batch;
 247
 248	if (!tlb->need_flush)
 249		return;
 250	tlb->need_flush = 0;
 251	tlb_flush(tlb);
 252#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 253	tlb_table_flush(tlb);
 254#endif
 255
 256	if (tlb_fast_mode(tlb))
 257		return;
 258
 259	for (batch = &tlb->local; batch; batch = batch->next) {
 260		free_pages_and_swap_cache(batch->pages, batch->nr);
 261		batch->nr = 0;
 262	}
 263	tlb->active = &tlb->local;
 264}
 265
 266/* tlb_finish_mmu
 267 *	Called at the end of the shootdown operation to free up any resources
 268 *	that were required.
 269 */
 270void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
 271{
 272	struct mmu_gather_batch *batch, *next;
 273
 274	tlb_flush_mmu(tlb);
 275
 276	/* keep the page table cache within bounds */
 277	check_pgt_cache();
 278
 279	for (batch = tlb->local.next; batch; batch = next) {
 280		next = batch->next;
 281		free_pages((unsigned long)batch, 0);
 282	}
 283	tlb->local.next = NULL;
 284}
 285
 286/* __tlb_remove_page
 287 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 288 *	handling the additional races in SMP caused by other CPUs caching valid
 289 *	mappings in their TLBs. Returns the number of free page slots left.
 290 *	When out of page slots we must call tlb_flush_mmu().
 291 */
 292int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
 293{
 294	struct mmu_gather_batch *batch;
 295
 296	tlb->need_flush = 1;
 297
 298	if (tlb_fast_mode(tlb)) {
 299		free_page_and_swap_cache(page);
 300		return 1; /* avoid calling tlb_flush_mmu() */
 301	}
 302
 303	batch = tlb->active;
 304	batch->pages[batch->nr++] = page;
 305	if (batch->nr == batch->max) {
 306		if (!tlb_next_batch(tlb))
 307			return 0;
 308		batch = tlb->active;
 309	}
 310	VM_BUG_ON(batch->nr > batch->max);
 311
 312	return batch->max - batch->nr;
 313}
 314
 315#endif /* HAVE_GENERIC_MMU_GATHER */
 316
 317#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 318
 319/*
 320 * See the comment near struct mmu_table_batch.
 321 */
 322
 323static void tlb_remove_table_smp_sync(void *arg)
 324{
 325	/* Simply deliver the interrupt */
 326}
 327
 328static void tlb_remove_table_one(void *table)
 329{
 330	/*
 331	 * This isn't an RCU grace period and hence the page-tables cannot be
 332	 * assumed to be actually RCU-freed.
 333	 *
 334	 * It is however sufficient for software page-table walkers that rely on
 335	 * IRQ disabling. See the comment near struct mmu_table_batch.
 336	 */
 337	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 338	__tlb_remove_table(table);
 339}
 340
 341static void tlb_remove_table_rcu(struct rcu_head *head)
 342{
 343	struct mmu_table_batch *batch;
 344	int i;
 345
 346	batch = container_of(head, struct mmu_table_batch, rcu);
 347
 348	for (i = 0; i < batch->nr; i++)
 349		__tlb_remove_table(batch->tables[i]);
 350
 351	free_page((unsigned long)batch);
 352}
 353
 354void tlb_table_flush(struct mmu_gather *tlb)
 355{
 356	struct mmu_table_batch **batch = &tlb->batch;
 357
 358	if (*batch) {
 359		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 360		*batch = NULL;
 361	}
 362}
 363
 364void tlb_remove_table(struct mmu_gather *tlb, void *table)
 365{
 366	struct mmu_table_batch **batch = &tlb->batch;
 367
 368	tlb->need_flush = 1;
 369
 370	/*
 371	 * When there's less then two users of this mm there cannot be a
 372	 * concurrent page-table walk.
 373	 */
 374	if (atomic_read(&tlb->mm->mm_users) < 2) {
 375		__tlb_remove_table(table);
 376		return;
 377	}
 378
 379	if (*batch == NULL) {
 380		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 381		if (*batch == NULL) {
 382			tlb_remove_table_one(table);
 383			return;
 384		}
 385		(*batch)->nr = 0;
 386	}
 387	(*batch)->tables[(*batch)->nr++] = table;
 388	if ((*batch)->nr == MAX_TABLE_BATCH)
 389		tlb_table_flush(tlb);
 390}
 391
 392#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 393
 394/*
 395 * If a p?d_bad entry is found while walking page tables, report
 396 * the error, before resetting entry to p?d_none.  Usually (but
 397 * very seldom) called out from the p?d_none_or_clear_bad macros.
 398 */
 399
 400void pgd_clear_bad(pgd_t *pgd)
 401{
 402	pgd_ERROR(*pgd);
 403	pgd_clear(pgd);
 404}
 405
 406void pud_clear_bad(pud_t *pud)
 407{
 408	pud_ERROR(*pud);
 409	pud_clear(pud);
 410}
 411
 412void pmd_clear_bad(pmd_t *pmd)
 413{
 414	pmd_ERROR(*pmd);
 415	pmd_clear(pmd);
 416}
 417
 418/*
 419 * Note: this doesn't free the actual pages themselves. That
 420 * has been handled earlier when unmapping all the memory regions.
 421 */
 422static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 423			   unsigned long addr)
 424{
 425	pgtable_t token = pmd_pgtable(*pmd);
 426	pmd_clear(pmd);
 427	pte_free_tlb(tlb, token, addr);
 428	tlb->mm->nr_ptes--;
 429}
 430
 431static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 432				unsigned long addr, unsigned long end,
 433				unsigned long floor, unsigned long ceiling)
 434{
 435	pmd_t *pmd;
 436	unsigned long next;
 437	unsigned long start;
 438
 439	start = addr;
 440	pmd = pmd_offset(pud, addr);
 441	do {
 442		next = pmd_addr_end(addr, end);
 443		if (pmd_none_or_clear_bad(pmd))
 444			continue;
 445		free_pte_range(tlb, pmd, addr);
 446	} while (pmd++, addr = next, addr != end);
 447
 448	start &= PUD_MASK;
 449	if (start < floor)
 450		return;
 451	if (ceiling) {
 452		ceiling &= PUD_MASK;
 453		if (!ceiling)
 454			return;
 455	}
 456	if (end - 1 > ceiling - 1)
 457		return;
 458
 459	pmd = pmd_offset(pud, start);
 460	pud_clear(pud);
 461	pmd_free_tlb(tlb, pmd, start);
 
 462}
 463
 464static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 465				unsigned long addr, unsigned long end,
 466				unsigned long floor, unsigned long ceiling)
 467{
 468	pud_t *pud;
 469	unsigned long next;
 470	unsigned long start;
 471
 472	start = addr;
 473	pud = pud_offset(pgd, addr);
 474	do {
 475		next = pud_addr_end(addr, end);
 476		if (pud_none_or_clear_bad(pud))
 477			continue;
 478		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 479	} while (pud++, addr = next, addr != end);
 480
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 481	start &= PGDIR_MASK;
 482	if (start < floor)
 483		return;
 484	if (ceiling) {
 485		ceiling &= PGDIR_MASK;
 486		if (!ceiling)
 487			return;
 488	}
 489	if (end - 1 > ceiling - 1)
 490		return;
 491
 492	pud = pud_offset(pgd, start);
 493	pgd_clear(pgd);
 494	pud_free_tlb(tlb, pud, start);
 495}
 496
 497/*
 498 * This function frees user-level page tables of a process.
 499 *
 500 * Must be called with pagetable lock held.
 501 */
 502void free_pgd_range(struct mmu_gather *tlb,
 503			unsigned long addr, unsigned long end,
 504			unsigned long floor, unsigned long ceiling)
 505{
 506	pgd_t *pgd;
 507	unsigned long next;
 508
 509	/*
 510	 * The next few lines have given us lots of grief...
 511	 *
 512	 * Why are we testing PMD* at this top level?  Because often
 513	 * there will be no work to do at all, and we'd prefer not to
 514	 * go all the way down to the bottom just to discover that.
 515	 *
 516	 * Why all these "- 1"s?  Because 0 represents both the bottom
 517	 * of the address space and the top of it (using -1 for the
 518	 * top wouldn't help much: the masks would do the wrong thing).
 519	 * The rule is that addr 0 and floor 0 refer to the bottom of
 520	 * the address space, but end 0 and ceiling 0 refer to the top
 521	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 522	 * that end 0 case should be mythical).
 523	 *
 524	 * Wherever addr is brought up or ceiling brought down, we must
 525	 * be careful to reject "the opposite 0" before it confuses the
 526	 * subsequent tests.  But what about where end is brought down
 527	 * by PMD_SIZE below? no, end can't go down to 0 there.
 528	 *
 529	 * Whereas we round start (addr) and ceiling down, by different
 530	 * masks at different levels, in order to test whether a table
 531	 * now has no other vmas using it, so can be freed, we don't
 532	 * bother to round floor or end up - the tests don't need that.
 533	 */
 534
 535	addr &= PMD_MASK;
 536	if (addr < floor) {
 537		addr += PMD_SIZE;
 538		if (!addr)
 539			return;
 540	}
 541	if (ceiling) {
 542		ceiling &= PMD_MASK;
 543		if (!ceiling)
 544			return;
 545	}
 546	if (end - 1 > ceiling - 1)
 547		end -= PMD_SIZE;
 548	if (addr > end - 1)
 549		return;
 550
 
 
 
 
 551	pgd = pgd_offset(tlb->mm, addr);
 552	do {
 553		next = pgd_addr_end(addr, end);
 554		if (pgd_none_or_clear_bad(pgd))
 555			continue;
 556		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 557	} while (pgd++, addr = next, addr != end);
 558}
 559
 560void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 561		unsigned long floor, unsigned long ceiling)
 562{
 563	while (vma) {
 564		struct vm_area_struct *next = vma->vm_next;
 565		unsigned long addr = vma->vm_start;
 566
 567		/*
 568		 * Hide vma from rmap and truncate_pagecache before freeing
 569		 * pgtables
 570		 */
 571		unlink_anon_vmas(vma);
 572		unlink_file_vma(vma);
 573
 574		if (is_vm_hugetlb_page(vma)) {
 575			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 576				floor, next? next->vm_start: ceiling);
 577		} else {
 578			/*
 579			 * Optimization: gather nearby vmas into one call down
 580			 */
 581			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 582			       && !is_vm_hugetlb_page(next)) {
 583				vma = next;
 584				next = vma->vm_next;
 585				unlink_anon_vmas(vma);
 586				unlink_file_vma(vma);
 587			}
 588			free_pgd_range(tlb, addr, vma->vm_end,
 589				floor, next? next->vm_start: ceiling);
 590		}
 591		vma = next;
 592	}
 593}
 594
 595int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
 596		pmd_t *pmd, unsigned long address)
 597{
 598	pgtable_t new = pte_alloc_one(mm, address);
 599	int wait_split_huge_page;
 600	if (!new)
 601		return -ENOMEM;
 602
 603	/*
 604	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 605	 * visible before the pte is made visible to other CPUs by being
 606	 * put into page tables.
 607	 *
 608	 * The other side of the story is the pointer chasing in the page
 609	 * table walking code (when walking the page table without locking;
 610	 * ie. most of the time). Fortunately, these data accesses consist
 611	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 612	 * being the notable exception) will already guarantee loads are
 613	 * seen in-order. See the alpha page table accessors for the
 614	 * smp_read_barrier_depends() barriers in page table walking code.
 615	 */
 616	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 617
 618	spin_lock(&mm->page_table_lock);
 619	wait_split_huge_page = 0;
 620	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 621		mm->nr_ptes++;
 622		pmd_populate(mm, pmd, new);
 623		new = NULL;
 624	} else if (unlikely(pmd_trans_splitting(*pmd)))
 625		wait_split_huge_page = 1;
 626	spin_unlock(&mm->page_table_lock);
 627	if (new)
 628		pte_free(mm, new);
 629	if (wait_split_huge_page)
 630		wait_split_huge_page(vma->anon_vma, pmd);
 631	return 0;
 632}
 633
 634int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 635{
 636	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 637	if (!new)
 638		return -ENOMEM;
 639
 640	smp_wmb(); /* See comment in __pte_alloc */
 641
 642	spin_lock(&init_mm.page_table_lock);
 643	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 644		pmd_populate_kernel(&init_mm, pmd, new);
 645		new = NULL;
 646	} else
 647		VM_BUG_ON(pmd_trans_splitting(*pmd));
 648	spin_unlock(&init_mm.page_table_lock);
 649	if (new)
 650		pte_free_kernel(&init_mm, new);
 651	return 0;
 652}
 653
 654static inline void init_rss_vec(int *rss)
 655{
 656	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 657}
 658
 659static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 660{
 661	int i;
 662
 663	if (current->mm == mm)
 664		sync_mm_rss(current, mm);
 665	for (i = 0; i < NR_MM_COUNTERS; i++)
 666		if (rss[i])
 667			add_mm_counter(mm, i, rss[i]);
 668}
 669
 670/*
 671 * This function is called to print an error when a bad pte
 672 * is found. For example, we might have a PFN-mapped pte in
 673 * a region that doesn't allow it.
 674 *
 675 * The calling function must still handle the error.
 676 */
 677static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 678			  pte_t pte, struct page *page)
 679{
 680	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 681	pud_t *pud = pud_offset(pgd, addr);
 
 682	pmd_t *pmd = pmd_offset(pud, addr);
 683	struct address_space *mapping;
 684	pgoff_t index;
 685	static unsigned long resume;
 686	static unsigned long nr_shown;
 687	static unsigned long nr_unshown;
 688
 689	/*
 690	 * Allow a burst of 60 reports, then keep quiet for that minute;
 691	 * or allow a steady drip of one report per second.
 692	 */
 693	if (nr_shown == 60) {
 694		if (time_before(jiffies, resume)) {
 695			nr_unshown++;
 696			return;
 697		}
 698		if (nr_unshown) {
 699			printk(KERN_ALERT
 700				"BUG: Bad page map: %lu messages suppressed\n",
 701				nr_unshown);
 702			nr_unshown = 0;
 703		}
 704		nr_shown = 0;
 705	}
 706	if (nr_shown++ == 0)
 707		resume = jiffies + 60 * HZ;
 708
 709	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 710	index = linear_page_index(vma, addr);
 711
 712	printk(KERN_ALERT
 713		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 714		current->comm,
 715		(long long)pte_val(pte), (long long)pmd_val(*pmd));
 716	if (page)
 717		dump_page(page);
 718	printk(KERN_ALERT
 719		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 720		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 721	/*
 722	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 723	 */
 724	if (vma->vm_ops)
 725		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
 726				(unsigned long)vma->vm_ops->fault);
 727	if (vma->vm_file && vma->vm_file->f_op)
 728		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
 729				(unsigned long)vma->vm_file->f_op->mmap);
 730	dump_stack();
 731	add_taint(TAINT_BAD_PAGE);
 732}
 733
 734static inline int is_cow_mapping(vm_flags_t flags)
 735{
 736	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
 737}
 738
 739#ifndef is_zero_pfn
 740static inline int is_zero_pfn(unsigned long pfn)
 741{
 742	return pfn == zero_pfn;
 743}
 744#endif
 745
 746#ifndef my_zero_pfn
 747static inline unsigned long my_zero_pfn(unsigned long addr)
 748{
 749	return zero_pfn;
 750}
 751#endif
 752
 753/*
 754 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 755 *
 756 * "Special" mappings do not wish to be associated with a "struct page" (either
 757 * it doesn't exist, or it exists but they don't want to touch it). In this
 758 * case, NULL is returned here. "Normal" mappings do have a struct page.
 759 *
 760 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 761 * pte bit, in which case this function is trivial. Secondly, an architecture
 762 * may not have a spare pte bit, which requires a more complicated scheme,
 763 * described below.
 764 *
 765 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 766 * special mapping (even if there are underlying and valid "struct pages").
 767 * COWed pages of a VM_PFNMAP are always normal.
 768 *
 769 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 770 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 771 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 772 * mapping will always honor the rule
 773 *
 774 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 775 *
 776 * And for normal mappings this is false.
 777 *
 778 * This restricts such mappings to be a linear translation from virtual address
 779 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 780 * as the vma is not a COW mapping; in that case, we know that all ptes are
 781 * special (because none can have been COWed).
 782 *
 783 *
 784 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 785 *
 786 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 787 * page" backing, however the difference is that _all_ pages with a struct
 788 * page (that is, those where pfn_valid is true) are refcounted and considered
 789 * normal pages by the VM. The disadvantage is that pages are refcounted
 790 * (which can be slower and simply not an option for some PFNMAP users). The
 791 * advantage is that we don't have to follow the strict linearity rule of
 792 * PFNMAP mappings in order to support COWable mappings.
 793 *
 794 */
 795#ifdef __HAVE_ARCH_PTE_SPECIAL
 796# define HAVE_PTE_SPECIAL 1
 797#else
 798# define HAVE_PTE_SPECIAL 0
 799#endif
 800struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 801				pte_t pte)
 802{
 803	unsigned long pfn = pte_pfn(pte);
 804
 805	if (HAVE_PTE_SPECIAL) {
 806		if (likely(!pte_special(pte)))
 807			goto check_pfn;
 
 
 808		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 809			return NULL;
 810		if (!is_zero_pfn(pfn))
 811			print_bad_pte(vma, addr, pte, NULL);
 
 
 
 
 812		return NULL;
 813	}
 814
 815	/* !HAVE_PTE_SPECIAL case follows: */
 816
 817	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 818		if (vma->vm_flags & VM_MIXEDMAP) {
 819			if (!pfn_valid(pfn))
 820				return NULL;
 821			goto out;
 822		} else {
 823			unsigned long off;
 824			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 825			if (pfn == vma->vm_pgoff + off)
 826				return NULL;
 827			if (!is_cow_mapping(vma->vm_flags))
 828				return NULL;
 829		}
 830	}
 831
 832	if (is_zero_pfn(pfn))
 833		return NULL;
 
 834check_pfn:
 835	if (unlikely(pfn > highest_memmap_pfn)) {
 836		print_bad_pte(vma, addr, pte, NULL);
 837		return NULL;
 838	}
 839
 840	/*
 841	 * NOTE! We still have PageReserved() pages in the page tables.
 842	 * eg. VDSO mappings can cause them to exist.
 843	 */
 844out:
 845	return pfn_to_page(pfn);
 846}
 847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 848/*
 849 * copy one vm_area from one task to the other. Assumes the page tables
 850 * already present in the new task to be cleared in the whole range
 851 * covered by this vma.
 852 */
 853
 854static inline unsigned long
 855copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 856		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 857		unsigned long addr, int *rss)
 858{
 859	unsigned long vm_flags = vma->vm_flags;
 860	pte_t pte = *src_pte;
 861	struct page *page;
 862
 863	/* pte contains position in swap or file, so copy. */
 864	if (unlikely(!pte_present(pte))) {
 865		if (!pte_file(pte)) {
 866			swp_entry_t entry = pte_to_swp_entry(pte);
 867
 
 868			if (swap_duplicate(entry) < 0)
 869				return entry.val;
 870
 871			/* make sure dst_mm is on swapoff's mmlist. */
 872			if (unlikely(list_empty(&dst_mm->mmlist))) {
 873				spin_lock(&mmlist_lock);
 874				if (list_empty(&dst_mm->mmlist))
 875					list_add(&dst_mm->mmlist,
 876						 &src_mm->mmlist);
 877				spin_unlock(&mmlist_lock);
 878			}
 879			if (likely(!non_swap_entry(entry)))
 880				rss[MM_SWAPENTS]++;
 881			else if (is_write_migration_entry(entry) &&
 
 
 
 
 882					is_cow_mapping(vm_flags)) {
 883				/*
 884				 * COW mappings require pages in both parent
 885				 * and child to be set to read.
 886				 */
 887				make_migration_entry_read(&entry);
 888				pte = swp_entry_to_pte(entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889				set_pte_at(src_mm, addr, src_pte, pte);
 890			}
 891		}
 892		goto out_set_pte;
 893	}
 894
 895	/*
 896	 * If it's a COW mapping, write protect it both
 897	 * in the parent and the child
 898	 */
 899	if (is_cow_mapping(vm_flags)) {
 900		ptep_set_wrprotect(src_mm, addr, src_pte);
 901		pte = pte_wrprotect(pte);
 902	}
 903
 904	/*
 905	 * If it's a shared mapping, mark it clean in
 906	 * the child
 907	 */
 908	if (vm_flags & VM_SHARED)
 909		pte = pte_mkclean(pte);
 910	pte = pte_mkold(pte);
 911
 912	page = vm_normal_page(vma, addr, pte);
 913	if (page) {
 914		get_page(page);
 915		page_dup_rmap(page);
 916		if (PageAnon(page))
 917			rss[MM_ANONPAGES]++;
 918		else
 919			rss[MM_FILEPAGES]++;
 920	}
 921
 922out_set_pte:
 923	set_pte_at(dst_mm, addr, dst_pte, pte);
 924	return 0;
 925}
 926
 927int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 928		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 929		   unsigned long addr, unsigned long end)
 930{
 931	pte_t *orig_src_pte, *orig_dst_pte;
 932	pte_t *src_pte, *dst_pte;
 933	spinlock_t *src_ptl, *dst_ptl;
 934	int progress = 0;
 935	int rss[NR_MM_COUNTERS];
 936	swp_entry_t entry = (swp_entry_t){0};
 937
 938again:
 939	init_rss_vec(rss);
 940
 941	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 942	if (!dst_pte)
 943		return -ENOMEM;
 944	src_pte = pte_offset_map(src_pmd, addr);
 945	src_ptl = pte_lockptr(src_mm, src_pmd);
 946	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 947	orig_src_pte = src_pte;
 948	orig_dst_pte = dst_pte;
 949	arch_enter_lazy_mmu_mode();
 950
 951	do {
 952		/*
 953		 * We are holding two locks at this point - either of them
 954		 * could generate latencies in another task on another CPU.
 955		 */
 956		if (progress >= 32) {
 957			progress = 0;
 958			if (need_resched() ||
 959			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 960				break;
 961		}
 962		if (pte_none(*src_pte)) {
 963			progress++;
 964			continue;
 965		}
 966		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 967							vma, addr, rss);
 968		if (entry.val)
 969			break;
 970		progress += 8;
 971	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 972
 973	arch_leave_lazy_mmu_mode();
 974	spin_unlock(src_ptl);
 975	pte_unmap(orig_src_pte);
 976	add_mm_rss_vec(dst_mm, rss);
 977	pte_unmap_unlock(orig_dst_pte, dst_ptl);
 978	cond_resched();
 979
 980	if (entry.val) {
 981		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 982			return -ENOMEM;
 983		progress = 0;
 984	}
 985	if (addr != end)
 986		goto again;
 987	return 0;
 988}
 989
 990static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 991		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 992		unsigned long addr, unsigned long end)
 993{
 994	pmd_t *src_pmd, *dst_pmd;
 995	unsigned long next;
 996
 997	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 998	if (!dst_pmd)
 999		return -ENOMEM;
1000	src_pmd = pmd_offset(src_pud, addr);
1001	do {
1002		next = pmd_addr_end(addr, end);
1003		if (pmd_trans_huge(*src_pmd)) {
 
1004			int err;
1005			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1006			err = copy_huge_pmd(dst_mm, src_mm,
1007					    dst_pmd, src_pmd, addr, vma);
1008			if (err == -ENOMEM)
1009				return -ENOMEM;
1010			if (!err)
1011				continue;
1012			/* fall through */
1013		}
1014		if (pmd_none_or_clear_bad(src_pmd))
1015			continue;
1016		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1017						vma, addr, next))
1018			return -ENOMEM;
1019	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1020	return 0;
1021}
1022
1023static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1024		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1025		unsigned long addr, unsigned long end)
1026{
1027	pud_t *src_pud, *dst_pud;
1028	unsigned long next;
1029
1030	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1031	if (!dst_pud)
1032		return -ENOMEM;
1033	src_pud = pud_offset(src_pgd, addr);
1034	do {
1035		next = pud_addr_end(addr, end);
 
 
 
 
 
 
 
 
 
 
 
 
1036		if (pud_none_or_clear_bad(src_pud))
1037			continue;
1038		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1039						vma, addr, next))
1040			return -ENOMEM;
1041	} while (dst_pud++, src_pud++, addr = next, addr != end);
1042	return 0;
1043}
1044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1045int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1046		struct vm_area_struct *vma)
1047{
1048	pgd_t *src_pgd, *dst_pgd;
1049	unsigned long next;
1050	unsigned long addr = vma->vm_start;
1051	unsigned long end = vma->vm_end;
 
 
1052	int ret;
1053
1054	/*
1055	 * Don't copy ptes where a page fault will fill them correctly.
1056	 * Fork becomes much lighter when there are big shared or private
1057	 * readonly mappings. The tradeoff is that copy_page_range is more
1058	 * efficient than faulting.
1059	 */
1060	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1061		if (!vma->anon_vma)
1062			return 0;
1063	}
1064
1065	if (is_vm_hugetlb_page(vma))
1066		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1067
1068	if (unlikely(is_pfn_mapping(vma))) {
1069		/*
1070		 * We do not free on error cases below as remove_vma
1071		 * gets called on error from higher level routine
1072		 */
1073		ret = track_pfn_vma_copy(vma);
1074		if (ret)
1075			return ret;
1076	}
1077
1078	/*
1079	 * We need to invalidate the secondary MMU mappings only when
1080	 * there could be a permission downgrade on the ptes of the
1081	 * parent mm. And a permission downgrade will only happen if
1082	 * is_cow_mapping() returns true.
1083	 */
1084	if (is_cow_mapping(vma->vm_flags))
1085		mmu_notifier_invalidate_range_start(src_mm, addr, end);
 
 
 
 
 
1086
1087	ret = 0;
1088	dst_pgd = pgd_offset(dst_mm, addr);
1089	src_pgd = pgd_offset(src_mm, addr);
1090	do {
1091		next = pgd_addr_end(addr, end);
1092		if (pgd_none_or_clear_bad(src_pgd))
1093			continue;
1094		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1095					    vma, addr, next))) {
1096			ret = -ENOMEM;
1097			break;
1098		}
1099	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1100
1101	if (is_cow_mapping(vma->vm_flags))
1102		mmu_notifier_invalidate_range_end(src_mm,
1103						  vma->vm_start, end);
1104	return ret;
1105}
1106
1107static unsigned long zap_pte_range(struct mmu_gather *tlb,
1108				struct vm_area_struct *vma, pmd_t *pmd,
1109				unsigned long addr, unsigned long end,
1110				struct zap_details *details)
1111{
1112	struct mm_struct *mm = tlb->mm;
1113	int force_flush = 0;
1114	int rss[NR_MM_COUNTERS];
1115	spinlock_t *ptl;
1116	pte_t *start_pte;
1117	pte_t *pte;
 
1118
 
1119again:
1120	init_rss_vec(rss);
1121	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1122	pte = start_pte;
 
1123	arch_enter_lazy_mmu_mode();
1124	do {
1125		pte_t ptent = *pte;
1126		if (pte_none(ptent)) {
1127			continue;
1128		}
 
 
1129
1130		if (pte_present(ptent)) {
1131			struct page *page;
1132
1133			page = vm_normal_page(vma, addr, ptent);
1134			if (unlikely(details) && page) {
1135				/*
1136				 * unmap_shared_mapping_pages() wants to
1137				 * invalidate cache without truncating:
1138				 * unmap shared but keep private pages.
1139				 */
1140				if (details->check_mapping &&
1141				    details->check_mapping != page->mapping)
1142					continue;
1143				/*
1144				 * Each page->index must be checked when
1145				 * invalidating or truncating nonlinear.
1146				 */
1147				if (details->nonlinear_vma &&
1148				    (page->index < details->first_index ||
1149				     page->index > details->last_index))
1150					continue;
1151			}
1152			ptent = ptep_get_and_clear_full(mm, addr, pte,
1153							tlb->fullmm);
1154			tlb_remove_tlb_entry(tlb, pte, addr);
1155			if (unlikely(!page))
1156				continue;
1157			if (unlikely(details) && details->nonlinear_vma
1158			    && linear_page_index(details->nonlinear_vma,
1159						addr) != page->index)
1160				set_pte_at(mm, addr, pte,
1161					   pgoff_to_pte(page->index));
1162			if (PageAnon(page))
1163				rss[MM_ANONPAGES]--;
1164			else {
1165				if (pte_dirty(ptent))
1166					set_page_dirty(page);
 
1167				if (pte_young(ptent) &&
1168				    likely(!VM_SequentialReadHint(vma)))
1169					mark_page_accessed(page);
1170				rss[MM_FILEPAGES]--;
1171			}
1172			page_remove_rmap(page);
 
1173			if (unlikely(page_mapcount(page) < 0))
1174				print_bad_pte(vma, addr, ptent, page);
1175			force_flush = !__tlb_remove_page(tlb, page);
1176			if (force_flush)
 
1177				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178			continue;
1179		}
1180		/*
1181		 * If details->check_mapping, we leave swap entries;
1182		 * if details->nonlinear_vma, we leave file entries.
1183		 */
1184		if (unlikely(details))
1185			continue;
1186		if (pte_file(ptent)) {
1187			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1188				print_bad_pte(vma, addr, ptent, NULL);
1189		} else {
1190			swp_entry_t entry = pte_to_swp_entry(ptent);
1191
1192			if (!non_swap_entry(entry))
1193				rss[MM_SWAPENTS]--;
1194			if (unlikely(!free_swap_and_cache(entry)))
1195				print_bad_pte(vma, addr, ptent, NULL);
 
 
 
1196		}
 
 
1197		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198	} while (pte++, addr += PAGE_SIZE, addr != end);
1199
1200	add_mm_rss_vec(mm, rss);
1201	arch_leave_lazy_mmu_mode();
 
 
 
 
1202	pte_unmap_unlock(start_pte, ptl);
1203
1204	/*
1205	 * mmu_gather ran out of room to batch pages, we break out of
1206	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1207	 * and page-free while holding it.
 
1208	 */
1209	if (force_flush) {
1210		force_flush = 0;
1211		tlb_flush_mmu(tlb);
1212		if (addr != end)
1213			goto again;
 
 
 
1214	}
1215
1216	return addr;
1217}
1218
1219static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1220				struct vm_area_struct *vma, pud_t *pud,
1221				unsigned long addr, unsigned long end,
1222				struct zap_details *details)
1223{
1224	pmd_t *pmd;
1225	unsigned long next;
1226
1227	pmd = pmd_offset(pud, addr);
1228	do {
1229		next = pmd_addr_end(addr, end);
1230		if (pmd_trans_huge(*pmd)) {
1231			if (next-addr != HPAGE_PMD_SIZE) {
1232				VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1233				split_huge_page_pmd(vma->vm_mm, pmd);
1234			} else if (zap_huge_pmd(tlb, vma, pmd))
1235				continue;
1236			/* fall through */
1237		}
1238		if (pmd_none_or_clear_bad(pmd))
1239			continue;
 
 
 
 
 
 
 
1240		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
 
1241		cond_resched();
1242	} while (pmd++, addr = next, addr != end);
1243
1244	return addr;
1245}
1246
1247static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1248				struct vm_area_struct *vma, pgd_t *pgd,
1249				unsigned long addr, unsigned long end,
1250				struct zap_details *details)
1251{
1252	pud_t *pud;
1253	unsigned long next;
1254
1255	pud = pud_offset(pgd, addr);
1256	do {
1257		next = pud_addr_end(addr, end);
 
 
 
 
 
 
 
 
1258		if (pud_none_or_clear_bad(pud))
1259			continue;
1260		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
 
 
1261	} while (pud++, addr = next, addr != end);
1262
1263	return addr;
1264}
1265
1266static unsigned long unmap_page_range(struct mmu_gather *tlb,
1267				struct vm_area_struct *vma,
1268				unsigned long addr, unsigned long end,
1269				struct zap_details *details)
1270{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271	pgd_t *pgd;
1272	unsigned long next;
1273
1274	if (details && !details->check_mapping && !details->nonlinear_vma)
1275		details = NULL;
1276
1277	BUG_ON(addr >= end);
1278	mem_cgroup_uncharge_start();
1279	tlb_start_vma(tlb, vma);
1280	pgd = pgd_offset(vma->vm_mm, addr);
1281	do {
1282		next = pgd_addr_end(addr, end);
1283		if (pgd_none_or_clear_bad(pgd))
1284			continue;
1285		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1286	} while (pgd++, addr = next, addr != end);
1287	tlb_end_vma(tlb, vma);
1288	mem_cgroup_uncharge_end();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289
1290	return addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1291}
1292
1293/**
1294 * unmap_vmas - unmap a range of memory covered by a list of vma's
1295 * @tlb: address of the caller's struct mmu_gather
1296 * @vma: the starting vma
1297 * @start_addr: virtual address at which to start unmapping
1298 * @end_addr: virtual address at which to end unmapping
1299 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1300 * @details: details of nonlinear truncation or shared cache invalidation
1301 *
1302 * Returns the end address of the unmapping (restart addr if interrupted).
1303 *
1304 * Unmap all pages in the vma list.
1305 *
1306 * Only addresses between `start' and `end' will be unmapped.
1307 *
1308 * The VMA list must be sorted in ascending virtual address order.
1309 *
1310 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1311 * range after unmap_vmas() returns.  So the only responsibility here is to
1312 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1313 * drops the lock and schedules.
1314 */
1315unsigned long unmap_vmas(struct mmu_gather *tlb,
1316		struct vm_area_struct *vma, unsigned long start_addr,
1317		unsigned long end_addr, unsigned long *nr_accounted,
1318		struct zap_details *details)
1319{
1320	unsigned long start = start_addr;
1321	struct mm_struct *mm = vma->vm_mm;
1322
1323	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1324	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1325		unsigned long end;
 
 
 
 
1326
1327		start = max(vma->vm_start, start_addr);
1328		if (start >= vma->vm_end)
1329			continue;
1330		end = min(vma->vm_end, end_addr);
1331		if (end <= vma->vm_start)
1332			continue;
 
 
 
 
 
 
 
1333
1334		if (vma->vm_flags & VM_ACCOUNT)
1335			*nr_accounted += (end - start) >> PAGE_SHIFT;
1336
1337		if (unlikely(is_pfn_mapping(vma)))
1338			untrack_pfn_vma(vma, 0, 0);
1339
1340		while (start != end) {
1341			if (unlikely(is_vm_hugetlb_page(vma))) {
1342				/*
1343				 * It is undesirable to test vma->vm_file as it
1344				 * should be non-null for valid hugetlb area.
1345				 * However, vm_file will be NULL in the error
1346				 * cleanup path of do_mmap_pgoff. When
1347				 * hugetlbfs ->mmap method fails,
1348				 * do_mmap_pgoff() nullifies vma->vm_file
1349				 * before calling this function to clean up.
1350				 * Since no pte has actually been setup, it is
1351				 * safe to do nothing in this case.
1352				 */
1353				if (vma->vm_file)
1354					unmap_hugepage_range(vma, start, end, NULL);
1355
1356				start = end;
1357			} else
1358				start = unmap_page_range(tlb, vma, start, end, details);
1359		}
1360	}
1361
1362	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1363	return start;	/* which is now the end (or restart) address */
1364}
1365
1366/**
1367 * zap_page_range - remove user pages in a given range
1368 * @vma: vm_area_struct holding the applicable pages
1369 * @address: starting address of pages to zap
1370 * @size: number of bytes to zap
1371 * @details: details of nonlinear truncation or shared cache invalidation
 
 
1372 */
1373unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1374		unsigned long size, struct zap_details *details)
1375{
1376	struct mm_struct *mm = vma->vm_mm;
1377	struct mmu_gather tlb;
1378	unsigned long end = address + size;
1379	unsigned long nr_accounted = 0;
1380
1381	lru_add_drain();
1382	tlb_gather_mmu(&tlb, mm, 0);
1383	update_hiwater_rss(mm);
1384	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1385	tlb_finish_mmu(&tlb, address, end);
1386	return end;
 
 
 
1387}
1388
1389/**
1390 * zap_vma_ptes - remove ptes mapping the vma
1391 * @vma: vm_area_struct holding ptes to be zapped
1392 * @address: starting address of pages to zap
1393 * @size: number of bytes to zap
1394 *
1395 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1396 *
1397 * The entire address range must be fully contained within the vma.
1398 *
1399 * Returns 0 if successful.
1400 */
1401int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1402		unsigned long size)
1403{
1404	if (address < vma->vm_start || address + size > vma->vm_end ||
1405	    		!(vma->vm_flags & VM_PFNMAP))
1406		return -1;
1407	zap_page_range(vma, address, size, NULL);
1408	return 0;
1409}
1410EXPORT_SYMBOL_GPL(zap_vma_ptes);
1411
1412/**
1413 * follow_page - look up a page descriptor from a user-virtual address
1414 * @vma: vm_area_struct mapping @address
1415 * @address: virtual address to look up
1416 * @flags: flags modifying lookup behaviour
1417 *
1418 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1419 *
1420 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1421 * an error pointer if there is a mapping to something not represented
1422 * by a page descriptor (see also vm_normal_page()).
1423 */
1424struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1425			unsigned int flags)
1426{
1427	pgd_t *pgd;
 
1428	pud_t *pud;
1429	pmd_t *pmd;
1430	pte_t *ptep, pte;
1431	spinlock_t *ptl;
1432	struct page *page;
1433	struct mm_struct *mm = vma->vm_mm;
1434
1435	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1436	if (!IS_ERR(page)) {
1437		BUG_ON(flags & FOLL_GET);
1438		goto out;
1439	}
1440
1441	page = NULL;
1442	pgd = pgd_offset(mm, address);
1443	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1444		goto no_page_table;
1445
1446	pud = pud_offset(pgd, address);
1447	if (pud_none(*pud))
1448		goto no_page_table;
1449	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1450		BUG_ON(flags & FOLL_GET);
1451		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1452		goto out;
1453	}
1454	if (unlikely(pud_bad(*pud)))
1455		goto no_page_table;
1456
1457	pmd = pmd_offset(pud, address);
1458	if (pmd_none(*pmd))
1459		goto no_page_table;
1460	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1461		BUG_ON(flags & FOLL_GET);
1462		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1463		goto out;
1464	}
1465	if (pmd_trans_huge(*pmd)) {
1466		if (flags & FOLL_SPLIT) {
1467			split_huge_page_pmd(mm, pmd);
1468			goto split_fallthrough;
1469		}
1470		spin_lock(&mm->page_table_lock);
1471		if (likely(pmd_trans_huge(*pmd))) {
1472			if (unlikely(pmd_trans_splitting(*pmd))) {
1473				spin_unlock(&mm->page_table_lock);
1474				wait_split_huge_page(vma->anon_vma, pmd);
1475			} else {
1476				page = follow_trans_huge_pmd(mm, address,
1477							     pmd, flags);
1478				spin_unlock(&mm->page_table_lock);
1479				goto out;
1480			}
1481		} else
1482			spin_unlock(&mm->page_table_lock);
1483		/* fall through */
1484	}
1485split_fallthrough:
1486	if (unlikely(pmd_bad(*pmd)))
1487		goto no_page_table;
1488
1489	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1490
1491	pte = *ptep;
1492	if (!pte_present(pte))
1493		goto no_page;
1494	if ((flags & FOLL_WRITE) && !pte_write(pte))
1495		goto unlock;
1496
1497	page = vm_normal_page(vma, address, pte);
1498	if (unlikely(!page)) {
1499		if ((flags & FOLL_DUMP) ||
1500		    !is_zero_pfn(pte_pfn(pte)))
1501			goto bad_page;
1502		page = pte_page(pte);
1503	}
1504
1505	if (flags & FOLL_GET)
1506		get_page(page);
1507	if (flags & FOLL_TOUCH) {
1508		if ((flags & FOLL_WRITE) &&
1509		    !pte_dirty(pte) && !PageDirty(page))
1510			set_page_dirty(page);
1511		/*
1512		 * pte_mkyoung() would be more correct here, but atomic care
1513		 * is needed to avoid losing the dirty bit: it is easier to use
1514		 * mark_page_accessed().
1515		 */
1516		mark_page_accessed(page);
1517	}
1518	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1519		/*
1520		 * The preliminary mapping check is mainly to avoid the
1521		 * pointless overhead of lock_page on the ZERO_PAGE
1522		 * which might bounce very badly if there is contention.
1523		 *
1524		 * If the page is already locked, we don't need to
1525		 * handle it now - vmscan will handle it later if and
1526		 * when it attempts to reclaim the page.
1527		 */
1528		if (page->mapping && trylock_page(page)) {
1529			lru_add_drain();  /* push cached pages to LRU */
1530			/*
1531			 * Because we lock page here and migration is
1532			 * blocked by the pte's page reference, we need
1533			 * only check for file-cache page truncation.
1534			 */
1535			if (page->mapping)
1536				mlock_vma_page(page);
1537			unlock_page(page);
1538		}
1539	}
1540unlock:
1541	pte_unmap_unlock(ptep, ptl);
1542out:
1543	return page;
1544
1545bad_page:
1546	pte_unmap_unlock(ptep, ptl);
1547	return ERR_PTR(-EFAULT);
1548
1549no_page:
1550	pte_unmap_unlock(ptep, ptl);
1551	if (!pte_none(pte))
1552		return page;
1553
1554no_page_table:
1555	/*
1556	 * When core dumping an enormous anonymous area that nobody
1557	 * has touched so far, we don't want to allocate unnecessary pages or
1558	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1559	 * then get_dump_page() will return NULL to leave a hole in the dump.
1560	 * But we can only make this optimization where a hole would surely
1561	 * be zero-filled if handle_mm_fault() actually did handle it.
1562	 */
1563	if ((flags & FOLL_DUMP) &&
1564	    (!vma->vm_ops || !vma->vm_ops->fault))
1565		return ERR_PTR(-EFAULT);
1566	return page;
1567}
1568
1569static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1570{
1571	return stack_guard_page_start(vma, addr) ||
1572	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1573}
1574
1575/**
1576 * __get_user_pages() - pin user pages in memory
1577 * @tsk:	task_struct of target task
1578 * @mm:		mm_struct of target mm
1579 * @start:	starting user address
1580 * @nr_pages:	number of pages from start to pin
1581 * @gup_flags:	flags modifying pin behaviour
1582 * @pages:	array that receives pointers to the pages pinned.
1583 *		Should be at least nr_pages long. Or NULL, if caller
1584 *		only intends to ensure the pages are faulted in.
1585 * @vmas:	array of pointers to vmas corresponding to each page.
1586 *		Or NULL if the caller does not require them.
1587 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1588 *
1589 * Returns number of pages pinned. This may be fewer than the number
1590 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1591 * were pinned, returns -errno. Each page returned must be released
1592 * with a put_page() call when it is finished with. vmas will only
1593 * remain valid while mmap_sem is held.
1594 *
1595 * Must be called with mmap_sem held for read or write.
1596 *
1597 * __get_user_pages walks a process's page tables and takes a reference to
1598 * each struct page that each user address corresponds to at a given
1599 * instant. That is, it takes the page that would be accessed if a user
1600 * thread accesses the given user virtual address at that instant.
1601 *
1602 * This does not guarantee that the page exists in the user mappings when
1603 * __get_user_pages returns, and there may even be a completely different
1604 * page there in some cases (eg. if mmapped pagecache has been invalidated
1605 * and subsequently re faulted). However it does guarantee that the page
1606 * won't be freed completely. And mostly callers simply care that the page
1607 * contains data that was valid *at some point in time*. Typically, an IO
1608 * or similar operation cannot guarantee anything stronger anyway because
1609 * locks can't be held over the syscall boundary.
1610 *
1611 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1612 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1613 * appropriate) must be called after the page is finished with, and
1614 * before put_page is called.
1615 *
1616 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1617 * or mmap_sem contention, and if waiting is needed to pin all pages,
1618 * *@nonblocking will be set to 0.
1619 *
1620 * In most cases, get_user_pages or get_user_pages_fast should be used
1621 * instead of __get_user_pages. __get_user_pages should be used only if
1622 * you need some special @gup_flags.
1623 */
1624int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1625		     unsigned long start, int nr_pages, unsigned int gup_flags,
1626		     struct page **pages, struct vm_area_struct **vmas,
1627		     int *nonblocking)
1628{
1629	int i;
1630	unsigned long vm_flags;
1631
1632	if (nr_pages <= 0)
1633		return 0;
1634
1635	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1636
1637	/* 
1638	 * Require read or write permissions.
1639	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1640	 */
1641	vm_flags  = (gup_flags & FOLL_WRITE) ?
1642			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1643	vm_flags &= (gup_flags & FOLL_FORCE) ?
1644			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1645	i = 0;
1646
1647	do {
1648		struct vm_area_struct *vma;
1649
1650		vma = find_extend_vma(mm, start);
1651		if (!vma && in_gate_area(mm, start)) {
1652			unsigned long pg = start & PAGE_MASK;
1653			pgd_t *pgd;
1654			pud_t *pud;
1655			pmd_t *pmd;
1656			pte_t *pte;
1657
1658			/* user gate pages are read-only */
1659			if (gup_flags & FOLL_WRITE)
1660				return i ? : -EFAULT;
1661			if (pg > TASK_SIZE)
1662				pgd = pgd_offset_k(pg);
1663			else
1664				pgd = pgd_offset_gate(mm, pg);
1665			BUG_ON(pgd_none(*pgd));
1666			pud = pud_offset(pgd, pg);
1667			BUG_ON(pud_none(*pud));
1668			pmd = pmd_offset(pud, pg);
1669			if (pmd_none(*pmd))
1670				return i ? : -EFAULT;
1671			VM_BUG_ON(pmd_trans_huge(*pmd));
1672			pte = pte_offset_map(pmd, pg);
1673			if (pte_none(*pte)) {
1674				pte_unmap(pte);
1675				return i ? : -EFAULT;
1676			}
1677			vma = get_gate_vma(mm);
1678			if (pages) {
1679				struct page *page;
1680
1681				page = vm_normal_page(vma, start, *pte);
1682				if (!page) {
1683					if (!(gup_flags & FOLL_DUMP) &&
1684					     is_zero_pfn(pte_pfn(*pte)))
1685						page = pte_page(*pte);
1686					else {
1687						pte_unmap(pte);
1688						return i ? : -EFAULT;
1689					}
1690				}
1691				pages[i] = page;
1692				get_page(page);
1693			}
1694			pte_unmap(pte);
1695			goto next_page;
1696		}
1697
1698		if (!vma ||
1699		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1700		    !(vm_flags & vma->vm_flags))
1701			return i ? : -EFAULT;
1702
1703		if (is_vm_hugetlb_page(vma)) {
1704			i = follow_hugetlb_page(mm, vma, pages, vmas,
1705					&start, &nr_pages, i, gup_flags);
1706			continue;
1707		}
1708
1709		do {
1710			struct page *page;
1711			unsigned int foll_flags = gup_flags;
1712
1713			/*
1714			 * If we have a pending SIGKILL, don't keep faulting
1715			 * pages and potentially allocating memory.
1716			 */
1717			if (unlikely(fatal_signal_pending(current)))
1718				return i ? i : -ERESTARTSYS;
1719
1720			cond_resched();
1721			while (!(page = follow_page(vma, start, foll_flags))) {
1722				int ret;
1723				unsigned int fault_flags = 0;
1724
1725				/* For mlock, just skip the stack guard page. */
1726				if (foll_flags & FOLL_MLOCK) {
1727					if (stack_guard_page(vma, start))
1728						goto next_page;
1729				}
1730				if (foll_flags & FOLL_WRITE)
1731					fault_flags |= FAULT_FLAG_WRITE;
1732				if (nonblocking)
1733					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1734				if (foll_flags & FOLL_NOWAIT)
1735					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1736
1737				ret = handle_mm_fault(mm, vma, start,
1738							fault_flags);
1739
1740				if (ret & VM_FAULT_ERROR) {
1741					if (ret & VM_FAULT_OOM)
1742						return i ? i : -ENOMEM;
1743					if (ret & (VM_FAULT_HWPOISON |
1744						   VM_FAULT_HWPOISON_LARGE)) {
1745						if (i)
1746							return i;
1747						else if (gup_flags & FOLL_HWPOISON)
1748							return -EHWPOISON;
1749						else
1750							return -EFAULT;
1751					}
1752					if (ret & VM_FAULT_SIGBUS)
1753						return i ? i : -EFAULT;
1754					BUG();
1755				}
1756
1757				if (tsk) {
1758					if (ret & VM_FAULT_MAJOR)
1759						tsk->maj_flt++;
1760					else
1761						tsk->min_flt++;
1762				}
1763
1764				if (ret & VM_FAULT_RETRY) {
1765					if (nonblocking)
1766						*nonblocking = 0;
1767					return i;
1768				}
1769
1770				/*
1771				 * The VM_FAULT_WRITE bit tells us that
1772				 * do_wp_page has broken COW when necessary,
1773				 * even if maybe_mkwrite decided not to set
1774				 * pte_write. We can thus safely do subsequent
1775				 * page lookups as if they were reads. But only
1776				 * do so when looping for pte_write is futile:
1777				 * in some cases userspace may also be wanting
1778				 * to write to the gotten user page, which a
1779				 * read fault here might prevent (a readonly
1780				 * page might get reCOWed by userspace write).
1781				 */
1782				if ((ret & VM_FAULT_WRITE) &&
1783				    !(vma->vm_flags & VM_WRITE))
1784					foll_flags &= ~FOLL_WRITE;
1785
1786				cond_resched();
1787			}
1788			if (IS_ERR(page))
1789				return i ? i : PTR_ERR(page);
1790			if (pages) {
1791				pages[i] = page;
1792
1793				flush_anon_page(vma, page, start);
1794				flush_dcache_page(page);
1795			}
1796next_page:
1797			if (vmas)
1798				vmas[i] = vma;
1799			i++;
1800			start += PAGE_SIZE;
1801			nr_pages--;
1802		} while (nr_pages && start < vma->vm_end);
1803	} while (nr_pages);
1804	return i;
1805}
1806EXPORT_SYMBOL(__get_user_pages);
1807
1808/*
1809 * fixup_user_fault() - manually resolve a user page fault
1810 * @tsk:	the task_struct to use for page fault accounting, or
1811 *		NULL if faults are not to be recorded.
1812 * @mm:		mm_struct of target mm
1813 * @address:	user address
1814 * @fault_flags:flags to pass down to handle_mm_fault()
1815 *
1816 * This is meant to be called in the specific scenario where for locking reasons
1817 * we try to access user memory in atomic context (within a pagefault_disable()
1818 * section), this returns -EFAULT, and we want to resolve the user fault before
1819 * trying again.
1820 *
1821 * Typically this is meant to be used by the futex code.
1822 *
1823 * The main difference with get_user_pages() is that this function will
1824 * unconditionally call handle_mm_fault() which will in turn perform all the
1825 * necessary SW fixup of the dirty and young bits in the PTE, while
1826 * handle_mm_fault() only guarantees to update these in the struct page.
1827 *
1828 * This is important for some architectures where those bits also gate the
1829 * access permission to the page because they are maintained in software.  On
1830 * such architectures, gup() will not be enough to make a subsequent access
1831 * succeed.
1832 *
1833 * This should be called with the mm_sem held for read.
1834 */
1835int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1836		     unsigned long address, unsigned int fault_flags)
1837{
1838	struct vm_area_struct *vma;
1839	int ret;
1840
1841	vma = find_extend_vma(mm, address);
1842	if (!vma || address < vma->vm_start)
1843		return -EFAULT;
1844
1845	ret = handle_mm_fault(mm, vma, address, fault_flags);
1846	if (ret & VM_FAULT_ERROR) {
1847		if (ret & VM_FAULT_OOM)
1848			return -ENOMEM;
1849		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1850			return -EHWPOISON;
1851		if (ret & VM_FAULT_SIGBUS)
1852			return -EFAULT;
1853		BUG();
1854	}
1855	if (tsk) {
1856		if (ret & VM_FAULT_MAJOR)
1857			tsk->maj_flt++;
1858		else
1859			tsk->min_flt++;
1860	}
1861	return 0;
1862}
1863
1864/*
1865 * get_user_pages() - pin user pages in memory
1866 * @tsk:	the task_struct to use for page fault accounting, or
1867 *		NULL if faults are not to be recorded.
1868 * @mm:		mm_struct of target mm
1869 * @start:	starting user address
1870 * @nr_pages:	number of pages from start to pin
1871 * @write:	whether pages will be written to by the caller
1872 * @force:	whether to force write access even if user mapping is
1873 *		readonly. This will result in the page being COWed even
1874 *		in MAP_SHARED mappings. You do not want this.
1875 * @pages:	array that receives pointers to the pages pinned.
1876 *		Should be at least nr_pages long. Or NULL, if caller
1877 *		only intends to ensure the pages are faulted in.
1878 * @vmas:	array of pointers to vmas corresponding to each page.
1879 *		Or NULL if the caller does not require them.
1880 *
1881 * Returns number of pages pinned. This may be fewer than the number
1882 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1883 * were pinned, returns -errno. Each page returned must be released
1884 * with a put_page() call when it is finished with. vmas will only
1885 * remain valid while mmap_sem is held.
1886 *
1887 * Must be called with mmap_sem held for read or write.
1888 *
1889 * get_user_pages walks a process's page tables and takes a reference to
1890 * each struct page that each user address corresponds to at a given
1891 * instant. That is, it takes the page that would be accessed if a user
1892 * thread accesses the given user virtual address at that instant.
1893 *
1894 * This does not guarantee that the page exists in the user mappings when
1895 * get_user_pages returns, and there may even be a completely different
1896 * page there in some cases (eg. if mmapped pagecache has been invalidated
1897 * and subsequently re faulted). However it does guarantee that the page
1898 * won't be freed completely. And mostly callers simply care that the page
1899 * contains data that was valid *at some point in time*. Typically, an IO
1900 * or similar operation cannot guarantee anything stronger anyway because
1901 * locks can't be held over the syscall boundary.
1902 *
1903 * If write=0, the page must not be written to. If the page is written to,
1904 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1905 * after the page is finished with, and before put_page is called.
1906 *
1907 * get_user_pages is typically used for fewer-copy IO operations, to get a
1908 * handle on the memory by some means other than accesses via the user virtual
1909 * addresses. The pages may be submitted for DMA to devices or accessed via
1910 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1911 * use the correct cache flushing APIs.
1912 *
1913 * See also get_user_pages_fast, for performance critical applications.
1914 */
1915int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1916		unsigned long start, int nr_pages, int write, int force,
1917		struct page **pages, struct vm_area_struct **vmas)
1918{
1919	int flags = FOLL_TOUCH;
1920
1921	if (pages)
1922		flags |= FOLL_GET;
1923	if (write)
1924		flags |= FOLL_WRITE;
1925	if (force)
1926		flags |= FOLL_FORCE;
1927
1928	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1929				NULL);
1930}
1931EXPORT_SYMBOL(get_user_pages);
1932
1933/**
1934 * get_dump_page() - pin user page in memory while writing it to core dump
1935 * @addr: user address
1936 *
1937 * Returns struct page pointer of user page pinned for dump,
1938 * to be freed afterwards by page_cache_release() or put_page().
1939 *
1940 * Returns NULL on any kind of failure - a hole must then be inserted into
1941 * the corefile, to preserve alignment with its headers; and also returns
1942 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1943 * allowing a hole to be left in the corefile to save diskspace.
1944 *
1945 * Called without mmap_sem, but after all other threads have been killed.
1946 */
1947#ifdef CONFIG_ELF_CORE
1948struct page *get_dump_page(unsigned long addr)
1949{
1950	struct vm_area_struct *vma;
1951	struct page *page;
1952
1953	if (__get_user_pages(current, current->mm, addr, 1,
1954			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1955			     NULL) < 1)
1956		return NULL;
1957	flush_cache_page(vma, addr, page_to_pfn(page));
1958	return page;
1959}
1960#endif /* CONFIG_ELF_CORE */
1961
1962pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1963			spinlock_t **ptl)
1964{
1965	pgd_t * pgd = pgd_offset(mm, addr);
1966	pud_t * pud = pud_alloc(mm, pgd, addr);
1967	if (pud) {
1968		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1969		if (pmd) {
1970			VM_BUG_ON(pmd_trans_huge(*pmd));
1971			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1972		}
1973	}
1974	return NULL;
1975}
1976
1977/*
1978 * This is the old fallback for page remapping.
1979 *
1980 * For historical reasons, it only allows reserved pages. Only
1981 * old drivers should use this, and they needed to mark their
1982 * pages reserved for the old functions anyway.
1983 */
1984static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1985			struct page *page, pgprot_t prot)
1986{
1987	struct mm_struct *mm = vma->vm_mm;
1988	int retval;
1989	pte_t *pte;
1990	spinlock_t *ptl;
1991
1992	retval = -EINVAL;
1993	if (PageAnon(page))
1994		goto out;
1995	retval = -ENOMEM;
1996	flush_dcache_page(page);
1997	pte = get_locked_pte(mm, addr, &ptl);
1998	if (!pte)
1999		goto out;
2000	retval = -EBUSY;
2001	if (!pte_none(*pte))
2002		goto out_unlock;
2003
2004	/* Ok, finally just insert the thing.. */
2005	get_page(page);
2006	inc_mm_counter_fast(mm, MM_FILEPAGES);
2007	page_add_file_rmap(page);
2008	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2009
2010	retval = 0;
2011	pte_unmap_unlock(pte, ptl);
2012	return retval;
2013out_unlock:
2014	pte_unmap_unlock(pte, ptl);
2015out:
2016	return retval;
2017}
2018
2019/**
2020 * vm_insert_page - insert single page into user vma
2021 * @vma: user vma to map to
2022 * @addr: target user address of this page
2023 * @page: source kernel page
2024 *
2025 * This allows drivers to insert individual pages they've allocated
2026 * into a user vma.
2027 *
2028 * The page has to be a nice clean _individual_ kernel allocation.
2029 * If you allocate a compound page, you need to have marked it as
2030 * such (__GFP_COMP), or manually just split the page up yourself
2031 * (see split_page()).
2032 *
2033 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2034 * took an arbitrary page protection parameter. This doesn't allow
2035 * that. Your vma protection will have to be set up correctly, which
2036 * means that if you want a shared writable mapping, you'd better
2037 * ask for a shared writable mapping!
2038 *
2039 * The page does not need to be reserved.
 
 
 
 
 
 
 
2040 */
2041int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2042			struct page *page)
2043{
2044	if (addr < vma->vm_start || addr >= vma->vm_end)
2045		return -EFAULT;
2046	if (!page_count(page))
2047		return -EINVAL;
2048	vma->vm_flags |= VM_INSERTPAGE;
 
 
 
 
2049	return insert_page(vma, addr, page, vma->vm_page_prot);
2050}
2051EXPORT_SYMBOL(vm_insert_page);
2052
2053static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2054			unsigned long pfn, pgprot_t prot)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2055{
2056	struct mm_struct *mm = vma->vm_mm;
2057	int retval;
2058	pte_t *pte, entry;
2059	spinlock_t *ptl;
2060
2061	retval = -ENOMEM;
2062	pte = get_locked_pte(mm, addr, &ptl);
2063	if (!pte)
2064		goto out;
2065	retval = -EBUSY;
2066	if (!pte_none(*pte))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2067		goto out_unlock;
 
2068
2069	/* Ok, finally just insert the thing.. */
2070	entry = pte_mkspecial(pfn_pte(pfn, prot));
 
 
 
 
 
 
 
 
 
2071	set_pte_at(mm, addr, pte, entry);
2072	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2073
2074	retval = 0;
2075out_unlock:
2076	pte_unmap_unlock(pte, ptl);
2077out:
2078	return retval;
2079}
2080
2081/**
2082 * vm_insert_pfn - insert single pfn into user vma
2083 * @vma: user vma to map to
2084 * @addr: target user address of this page
2085 * @pfn: source kernel pfn
 
2086 *
2087 * Similar to vm_inert_page, this allows drivers to insert individual pages
2088 * they've allocated into a user vma. Same comments apply.
2089 *
2090 * This function should only be called from a vm_ops->fault handler, and
2091 * in that case the handler should return NULL.
2092 *
2093 * vma cannot be a COW mapping.
 
 
 
2094 *
2095 * As this is called only for pages that do not currently exist, we
2096 * do not need to flush old virtual caches or the TLB.
2097 */
2098int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2099			unsigned long pfn)
2100{
2101	int ret;
2102	pgprot_t pgprot = vma->vm_page_prot;
2103	/*
2104	 * Technically, architectures with pte_special can avoid all these
2105	 * restrictions (same for remap_pfn_range).  However we would like
2106	 * consistency in testing and feature parity among all, so we should
2107	 * try to keep these invariants in place for everybody.
2108	 */
2109	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2110	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2111						(VM_PFNMAP|VM_MIXEDMAP));
2112	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2113	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2114
2115	if (addr < vma->vm_start || addr >= vma->vm_end)
2116		return -EFAULT;
2117	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2118		return -EINVAL;
2119
2120	ret = insert_pfn(vma, addr, pfn, pgprot);
 
2121
2122	if (ret)
2123		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2124
2125	return ret;
 
2126}
2127EXPORT_SYMBOL(vm_insert_pfn);
2128
2129int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2130			unsigned long pfn)
2131{
2132	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133
2134	if (addr < vma->vm_start || addr >= vma->vm_end)
2135		return -EFAULT;
 
 
 
 
 
2136
2137	/*
2138	 * If we don't have pte special, then we have to use the pfn_valid()
2139	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2140	 * refcount the page if pfn_valid is true (hence insert_page rather
2141	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2142	 * without pte special, it would there be refcounted as a normal page.
2143	 */
2144	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
 
2145		struct page *page;
2146
2147		page = pfn_to_page(pfn);
2148		return insert_page(vma, addr, page, vma->vm_page_prot);
 
 
 
 
 
 
 
2149	}
2150	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
 
2151}
2152EXPORT_SYMBOL(vm_insert_mixed);
 
 
 
 
 
 
 
 
 
 
 
 
2153
2154/*
2155 * maps a range of physical memory into the requested pages. the old
2156 * mappings are removed. any references to nonexistent pages results
2157 * in null mappings (currently treated as "copy-on-access")
2158 */
2159static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2160			unsigned long addr, unsigned long end,
2161			unsigned long pfn, pgprot_t prot)
2162{
2163	pte_t *pte;
2164	spinlock_t *ptl;
 
2165
2166	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2167	if (!pte)
2168		return -ENOMEM;
2169	arch_enter_lazy_mmu_mode();
2170	do {
2171		BUG_ON(!pte_none(*pte));
 
 
 
 
2172		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2173		pfn++;
2174	} while (pte++, addr += PAGE_SIZE, addr != end);
2175	arch_leave_lazy_mmu_mode();
2176	pte_unmap_unlock(pte - 1, ptl);
2177	return 0;
2178}
2179
2180static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2181			unsigned long addr, unsigned long end,
2182			unsigned long pfn, pgprot_t prot)
2183{
2184	pmd_t *pmd;
2185	unsigned long next;
 
2186
2187	pfn -= addr >> PAGE_SHIFT;
2188	pmd = pmd_alloc(mm, pud, addr);
2189	if (!pmd)
2190		return -ENOMEM;
2191	VM_BUG_ON(pmd_trans_huge(*pmd));
2192	do {
2193		next = pmd_addr_end(addr, end);
2194		if (remap_pte_range(mm, pmd, addr, next,
2195				pfn + (addr >> PAGE_SHIFT), prot))
2196			return -ENOMEM;
 
2197	} while (pmd++, addr = next, addr != end);
2198	return 0;
2199}
2200
2201static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2202			unsigned long addr, unsigned long end,
2203			unsigned long pfn, pgprot_t prot)
2204{
2205	pud_t *pud;
2206	unsigned long next;
 
2207
2208	pfn -= addr >> PAGE_SHIFT;
2209	pud = pud_alloc(mm, pgd, addr);
2210	if (!pud)
2211		return -ENOMEM;
2212	do {
2213		next = pud_addr_end(addr, end);
2214		if (remap_pmd_range(mm, pud, addr, next,
2215				pfn + (addr >> PAGE_SHIFT), prot))
2216			return -ENOMEM;
 
2217	} while (pud++, addr = next, addr != end);
2218	return 0;
2219}
2220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2221/**
2222 * remap_pfn_range - remap kernel memory to userspace
2223 * @vma: user vma to map to
2224 * @addr: target user address to start at
2225 * @pfn: physical address of kernel memory
2226 * @size: size of map area
2227 * @prot: page protection flags for this mapping
2228 *
2229 *  Note: this is only safe if the mm semaphore is held when called.
 
 
2230 */
2231int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2232		    unsigned long pfn, unsigned long size, pgprot_t prot)
2233{
2234	pgd_t *pgd;
2235	unsigned long next;
2236	unsigned long end = addr + PAGE_ALIGN(size);
2237	struct mm_struct *mm = vma->vm_mm;
 
2238	int err;
2239
2240	/*
2241	 * Physically remapped pages are special. Tell the
2242	 * rest of the world about it:
2243	 *   VM_IO tells people not to look at these pages
2244	 *	(accesses can have side effects).
2245	 *   VM_RESERVED is specified all over the place, because
2246	 *	in 2.4 it kept swapout's vma scan off this vma; but
2247	 *	in 2.6 the LRU scan won't even find its pages, so this
2248	 *	flag means no more than count its pages in reserved_vm,
2249	 * 	and omit it from core dump, even when VM_IO turned off.
2250	 *   VM_PFNMAP tells the core MM that the base pages are just
2251	 *	raw PFN mappings, and do not have a "struct page" associated
2252	 *	with them.
 
 
 
 
2253	 *
2254	 * There's a horrible special case to handle copy-on-write
2255	 * behaviour that some programs depend on. We mark the "original"
2256	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
 
2257	 */
2258	if (addr == vma->vm_start && end == vma->vm_end) {
 
 
2259		vma->vm_pgoff = pfn;
2260		vma->vm_flags |= VM_PFN_AT_MMAP;
2261	} else if (is_cow_mapping(vma->vm_flags))
 
 
2262		return -EINVAL;
2263
2264	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2265
2266	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2267	if (err) {
2268		/*
2269		 * To indicate that track_pfn related cleanup is not
2270		 * needed from higher level routine calling unmap_vmas
2271		 */
2272		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2273		vma->vm_flags &= ~VM_PFN_AT_MMAP;
2274		return -EINVAL;
2275	}
2276
2277	BUG_ON(addr >= end);
2278	pfn -= addr >> PAGE_SHIFT;
2279	pgd = pgd_offset(mm, addr);
2280	flush_cache_range(vma, addr, end);
2281	do {
2282		next = pgd_addr_end(addr, end);
2283		err = remap_pud_range(mm, pgd, addr, next,
2284				pfn + (addr >> PAGE_SHIFT), prot);
2285		if (err)
2286			break;
2287	} while (pgd++, addr = next, addr != end);
2288
2289	if (err)
2290		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2291
2292	return err;
2293}
2294EXPORT_SYMBOL(remap_pfn_range);
2295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2296static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2297				     unsigned long addr, unsigned long end,
2298				     pte_fn_t fn, void *data)
2299{
2300	pte_t *pte;
2301	int err;
2302	pgtable_t token;
2303	spinlock_t *uninitialized_var(ptl);
2304
2305	pte = (mm == &init_mm) ?
2306		pte_alloc_kernel(pmd, addr) :
2307		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2308	if (!pte)
2309		return -ENOMEM;
2310
2311	BUG_ON(pmd_huge(*pmd));
2312
2313	arch_enter_lazy_mmu_mode();
2314
2315	token = pmd_pgtable(*pmd);
2316
2317	do {
2318		err = fn(pte++, token, addr, data);
2319		if (err)
2320			break;
2321	} while (addr += PAGE_SIZE, addr != end);
2322
2323	arch_leave_lazy_mmu_mode();
2324
2325	if (mm != &init_mm)
2326		pte_unmap_unlock(pte-1, ptl);
2327	return err;
2328}
2329
2330static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2331				     unsigned long addr, unsigned long end,
2332				     pte_fn_t fn, void *data)
2333{
2334	pmd_t *pmd;
2335	unsigned long next;
2336	int err;
2337
2338	BUG_ON(pud_huge(*pud));
2339
2340	pmd = pmd_alloc(mm, pud, addr);
2341	if (!pmd)
2342		return -ENOMEM;
2343	do {
2344		next = pmd_addr_end(addr, end);
2345		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2346		if (err)
2347			break;
2348	} while (pmd++, addr = next, addr != end);
2349	return err;
2350}
2351
2352static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2353				     unsigned long addr, unsigned long end,
2354				     pte_fn_t fn, void *data)
2355{
2356	pud_t *pud;
2357	unsigned long next;
2358	int err;
2359
2360	pud = pud_alloc(mm, pgd, addr);
2361	if (!pud)
2362		return -ENOMEM;
2363	do {
2364		next = pud_addr_end(addr, end);
2365		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2366		if (err)
2367			break;
2368	} while (pud++, addr = next, addr != end);
2369	return err;
2370}
2371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2372/*
2373 * Scan a region of virtual memory, filling in page tables as necessary
2374 * and calling a provided function on each leaf page table.
2375 */
2376int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2377			unsigned long size, pte_fn_t fn, void *data)
2378{
2379	pgd_t *pgd;
2380	unsigned long next;
2381	unsigned long end = addr + size;
2382	int err;
2383
2384	BUG_ON(addr >= end);
 
 
2385	pgd = pgd_offset(mm, addr);
2386	do {
2387		next = pgd_addr_end(addr, end);
2388		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2389		if (err)
2390			break;
2391	} while (pgd++, addr = next, addr != end);
2392
2393	return err;
2394}
2395EXPORT_SYMBOL_GPL(apply_to_page_range);
2396
2397/*
2398 * handle_pte_fault chooses page fault handler according to an entry
2399 * which was read non-atomically.  Before making any commitment, on
2400 * those architectures or configurations (e.g. i386 with PAE) which
2401 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2402 * must check under lock before unmapping the pte and proceeding
2403 * (but do_wp_page is only called after already making such a check;
2404 * and do_anonymous_page can safely check later on).
2405 */
2406static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2407				pte_t *page_table, pte_t orig_pte)
2408{
2409	int same = 1;
2410#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2411	if (sizeof(pte_t) > sizeof(unsigned long)) {
2412		spinlock_t *ptl = pte_lockptr(mm, pmd);
2413		spin_lock(ptl);
2414		same = pte_same(*page_table, orig_pte);
2415		spin_unlock(ptl);
2416	}
2417#endif
2418	pte_unmap(page_table);
2419	return same;
2420}
2421
2422static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2423{
 
 
2424	/*
2425	 * If the source page was a PFN mapping, we don't have
2426	 * a "struct page" for it. We do a best-effort copy by
2427	 * just copying from the original user address. If that
2428	 * fails, we just zero-fill it. Live with it.
2429	 */
2430	if (unlikely(!src)) {
2431		void *kaddr = kmap_atomic(dst, KM_USER0);
2432		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2433
2434		/*
2435		 * This really shouldn't fail, because the page is there
2436		 * in the page tables. But it might just be unreadable,
2437		 * in which case we just give up and fill the result with
2438		 * zeroes.
2439		 */
2440		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2441			clear_page(kaddr);
2442		kunmap_atomic(kaddr, KM_USER0);
2443		flush_dcache_page(dst);
2444	} else
2445		copy_user_highpage(dst, src, va, vma);
2446}
2447
2448/*
2449 * This routine handles present pages, when users try to write
2450 * to a shared page. It is done by copying the page to a new address
2451 * and decrementing the shared-page counter for the old page.
2452 *
2453 * Note that this routine assumes that the protection checks have been
2454 * done by the caller (the low-level page fault routine in most cases).
2455 * Thus we can safely just mark it writable once we've done any necessary
2456 * COW.
2457 *
2458 * We also mark the page dirty at this point even though the page will
2459 * change only once the write actually happens. This avoids a few races,
2460 * and potentially makes it more efficient.
2461 *
2462 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2463 * but allow concurrent faults), with pte both mapped and locked.
2464 * We return with mmap_sem still held, but pte unmapped and unlocked.
2465 */
2466static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2467		unsigned long address, pte_t *page_table, pmd_t *pmd,
2468		spinlock_t *ptl, pte_t orig_pte)
2469	__releases(ptl)
2470{
2471	struct page *old_page, *new_page;
2472	pte_t entry;
2473	int ret = 0;
2474	int page_mkwrite = 0;
2475	struct page *dirty_page = NULL;
2476
2477	old_page = vm_normal_page(vma, address, orig_pte);
2478	if (!old_page) {
2479		/*
2480		 * VM_MIXEDMAP !pfn_valid() case
2481		 *
2482		 * We should not cow pages in a shared writeable mapping.
2483		 * Just mark the pages writable as we can't do any dirty
2484		 * accounting on raw pfn maps.
2485		 */
2486		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2487				     (VM_WRITE|VM_SHARED))
2488			goto reuse;
2489		goto gotten;
2490	}
2491
2492	/*
2493	 * Take out anonymous pages first, anonymous shared vmas are
2494	 * not dirty accountable.
2495	 */
2496	if (PageAnon(old_page) && !PageKsm(old_page)) {
2497		if (!trylock_page(old_page)) {
2498			page_cache_get(old_page);
2499			pte_unmap_unlock(page_table, ptl);
2500			lock_page(old_page);
2501			page_table = pte_offset_map_lock(mm, pmd, address,
2502							 &ptl);
2503			if (!pte_same(*page_table, orig_pte)) {
2504				unlock_page(old_page);
2505				goto unlock;
2506			}
2507			page_cache_release(old_page);
2508		}
2509		if (reuse_swap_page(old_page)) {
2510			/*
2511			 * The page is all ours.  Move it to our anon_vma so
2512			 * the rmap code will not search our parent or siblings.
2513			 * Protected against the rmap code by the page lock.
2514			 */
2515			page_move_anon_rmap(old_page, vma, address);
2516			unlock_page(old_page);
2517			goto reuse;
2518		}
2519		unlock_page(old_page);
2520	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2521					(VM_WRITE|VM_SHARED))) {
2522		/*
2523		 * Only catch write-faults on shared writable pages,
2524		 * read-only shared pages can get COWed by
2525		 * get_user_pages(.write=1, .force=1).
2526		 */
2527		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2528			struct vm_fault vmf;
2529			int tmp;
2530
2531			vmf.virtual_address = (void __user *)(address &
2532								PAGE_MASK);
2533			vmf.pgoff = old_page->index;
2534			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2535			vmf.page = old_page;
2536
2537			/*
2538			 * Notify the address space that the page is about to
2539			 * become writable so that it can prohibit this or wait
2540			 * for the page to get into an appropriate state.
2541			 *
2542			 * We do this without the lock held, so that it can
2543			 * sleep if it needs to.
2544			 */
2545			page_cache_get(old_page);
2546			pte_unmap_unlock(page_table, ptl);
 
2547
2548			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2549			if (unlikely(tmp &
2550					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2551				ret = tmp;
2552				goto unwritable_page;
2553			}
2554			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2555				lock_page(old_page);
2556				if (!old_page->mapping) {
2557					ret = 0; /* retry the fault */
2558					unlock_page(old_page);
2559					goto unwritable_page;
2560				}
2561			} else
2562				VM_BUG_ON(!PageLocked(old_page));
2563
2564			/*
2565			 * Since we dropped the lock we need to revalidate
2566			 * the PTE as someone else may have changed it.  If
2567			 * they did, we just return, as we can count on the
2568			 * MMU to tell us if they didn't also make it writable.
2569			 */
2570			page_table = pte_offset_map_lock(mm, pmd, address,
2571							 &ptl);
2572			if (!pte_same(*page_table, orig_pte)) {
2573				unlock_page(old_page);
2574				goto unlock;
2575			}
2576
2577			page_mkwrite = 1;
 
 
 
 
 
 
 
 
 
2578		}
2579		dirty_page = old_page;
2580		get_page(dirty_page);
 
 
 
2581
2582reuse:
2583		flush_cache_page(vma, address, pte_pfn(orig_pte));
2584		entry = pte_mkyoung(orig_pte);
2585		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2586		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2587			update_mmu_cache(vma, address, page_table);
2588		pte_unmap_unlock(page_table, ptl);
2589		ret |= VM_FAULT_WRITE;
 
 
 
2590
2591		if (!dirty_page)
2592			return ret;
 
 
 
 
 
 
 
 
2593
 
2594		/*
2595		 * Yes, Virginia, this is actually required to prevent a race
2596		 * with clear_page_dirty_for_io() from clearing the page dirty
2597		 * bit after it clear all dirty ptes, but before a racing
2598		 * do_wp_page installs a dirty pte.
2599		 *
2600		 * __do_fault is protected similarly.
2601		 */
2602		if (!page_mkwrite) {
2603			wait_on_page_locked(dirty_page);
2604			set_page_dirty_balance(dirty_page, page_mkwrite);
2605		}
2606		put_page(dirty_page);
2607		if (page_mkwrite) {
2608			struct address_space *mapping = dirty_page->mapping;
2609
2610			set_page_dirty(dirty_page);
2611			unlock_page(dirty_page);
2612			page_cache_release(dirty_page);
2613			if (mapping)	{
2614				/*
2615				 * Some device drivers do not set page.mapping
2616				 * but still dirty their pages
2617				 */
2618				balance_dirty_pages_ratelimited(mapping);
2619			}
2620		}
2621
2622		/* file_update_time outside page_lock */
2623		if (vma->vm_file)
2624			file_update_time(vma->vm_file);
2625
2626		return ret;
2627	}
2628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2629	/*
2630	 * Ok, we need to copy. Oh, well..
 
 
2631	 */
2632	page_cache_get(old_page);
2633gotten:
2634	pte_unmap_unlock(page_table, ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2635
2636	if (unlikely(anon_vma_prepare(vma)))
2637		goto oom;
2638
2639	if (is_zero_pfn(pte_pfn(orig_pte))) {
2640		new_page = alloc_zeroed_user_highpage_movable(vma, address);
 
2641		if (!new_page)
2642			goto oom;
2643	} else {
2644		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
 
2645		if (!new_page)
2646			goto oom;
2647		cow_user_page(new_page, old_page, address, vma);
2648	}
 
 
 
 
2649	__SetPageUptodate(new_page);
2650
2651	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2652		goto oom_free_new;
 
 
2653
2654	/*
2655	 * Re-check the pte - we dropped the lock
2656	 */
2657	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2658	if (likely(pte_same(*page_table, orig_pte))) {
2659		if (old_page) {
2660			if (!PageAnon(old_page)) {
2661				dec_mm_counter_fast(mm, MM_FILEPAGES);
 
2662				inc_mm_counter_fast(mm, MM_ANONPAGES);
2663			}
2664		} else
2665			inc_mm_counter_fast(mm, MM_ANONPAGES);
2666		flush_cache_page(vma, address, pte_pfn(orig_pte));
 
2667		entry = mk_pte(new_page, vma->vm_page_prot);
2668		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2669		/*
2670		 * Clear the pte entry and flush it first, before updating the
2671		 * pte with the new entry. This will avoid a race condition
2672		 * seen in the presence of one thread doing SMC and another
2673		 * thread doing COW.
2674		 */
2675		ptep_clear_flush(vma, address, page_table);
2676		page_add_new_anon_rmap(new_page, vma, address);
 
 
2677		/*
2678		 * We call the notify macro here because, when using secondary
2679		 * mmu page tables (such as kvm shadow page tables), we want the
2680		 * new page to be mapped directly into the secondary page table.
2681		 */
2682		set_pte_at_notify(mm, address, page_table, entry);
2683		update_mmu_cache(vma, address, page_table);
2684		if (old_page) {
2685			/*
2686			 * Only after switching the pte to the new page may
2687			 * we remove the mapcount here. Otherwise another
2688			 * process may come and find the rmap count decremented
2689			 * before the pte is switched to the new page, and
2690			 * "reuse" the old page writing into it while our pte
2691			 * here still points into it and can be read by other
2692			 * threads.
2693			 *
2694			 * The critical issue is to order this
2695			 * page_remove_rmap with the ptp_clear_flush above.
2696			 * Those stores are ordered by (if nothing else,)
2697			 * the barrier present in the atomic_add_negative
2698			 * in page_remove_rmap.
2699			 *
2700			 * Then the TLB flush in ptep_clear_flush ensures that
2701			 * no process can access the old page before the
2702			 * decremented mapcount is visible. And the old page
2703			 * cannot be reused until after the decremented
2704			 * mapcount is visible. So transitively, TLBs to
2705			 * old page will be flushed before it can be reused.
2706			 */
2707			page_remove_rmap(old_page);
2708		}
2709
2710		/* Free the old page.. */
2711		new_page = old_page;
2712		ret |= VM_FAULT_WRITE;
2713	} else
2714		mem_cgroup_uncharge_page(new_page);
 
2715
2716	if (new_page)
2717		page_cache_release(new_page);
2718unlock:
2719	pte_unmap_unlock(page_table, ptl);
 
 
 
 
 
2720	if (old_page) {
2721		/*
2722		 * Don't let another task, with possibly unlocked vma,
2723		 * keep the mlocked page.
2724		 */
2725		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2726			lock_page(old_page);	/* LRU manipulation */
2727			munlock_vma_page(old_page);
 
2728			unlock_page(old_page);
2729		}
2730		page_cache_release(old_page);
2731	}
2732	return ret;
2733oom_free_new:
2734	page_cache_release(new_page);
2735oom:
2736	if (old_page) {
2737		if (page_mkwrite) {
2738			unlock_page(old_page);
2739			page_cache_release(old_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2740		}
2741		page_cache_release(old_page);
 
 
 
2742	}
2743	return VM_FAULT_OOM;
 
 
 
 
2744
2745unwritable_page:
2746	page_cache_release(old_page);
2747	return ret;
2748}
2749
2750static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2751		unsigned long start_addr, unsigned long end_addr,
2752		struct zap_details *details)
2753{
2754	zap_page_range(vma, start_addr, end_addr - start_addr, details);
2755}
2756
2757static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2758					    struct zap_details *details)
2759{
2760	struct vm_area_struct *vma;
2761	struct prio_tree_iter iter;
2762	pgoff_t vba, vea, zba, zea;
2763
2764	vma_prio_tree_foreach(vma, &iter, root,
2765			details->first_index, details->last_index) {
2766
2767		vba = vma->vm_pgoff;
2768		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2769		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2770		zba = details->first_index;
2771		if (zba < vba)
2772			zba = vba;
2773		zea = details->last_index;
2774		if (zea > vea)
2775			zea = vea;
2776
2777		unmap_mapping_range_vma(vma,
2778			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2779			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2780				details);
2781	}
2782}
2783
2784static inline void unmap_mapping_range_list(struct list_head *head,
2785					    struct zap_details *details)
2786{
2787	struct vm_area_struct *vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2788
2789	/*
2790	 * In nonlinear VMAs there is no correspondence between virtual address
2791	 * offset and file offset.  So we must perform an exhaustive search
2792	 * across *all* the pages in each nonlinear VMA, not just the pages
2793	 * whose virtual address lies outside the file truncation point.
2794	 */
2795	list_for_each_entry(vma, head, shared.vm_set.list) {
2796		details->nonlinear_vma = vma;
2797		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2798	}
2799}
2800
2801/**
2802 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
 
 
 
2803 * @mapping: the address space containing mmaps to be unmapped.
2804 * @holebegin: byte in first page to unmap, relative to the start of
2805 * the underlying file.  This will be rounded down to a PAGE_SIZE
2806 * boundary.  Note that this is different from truncate_pagecache(), which
2807 * must keep the partial page.  In contrast, we must get rid of
2808 * partial pages.
2809 * @holelen: size of prospective hole in bytes.  This will be rounded
2810 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2811 * end of the file.
2812 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2813 * but 0 when invalidating pagecache, don't throw away private data.
2814 */
2815void unmap_mapping_range(struct address_space *mapping,
2816		loff_t const holebegin, loff_t const holelen, int even_cows)
2817{
2818	struct zap_details details;
2819	pgoff_t hba = holebegin >> PAGE_SHIFT;
2820	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2821
2822	/* Check for overflow. */
2823	if (sizeof(holelen) > sizeof(hlen)) {
2824		long long holeend =
2825			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2826		if (holeend & ~(long long)ULONG_MAX)
2827			hlen = ULONG_MAX - hba + 1;
2828	}
2829
2830	details.check_mapping = even_cows? NULL: mapping;
2831	details.nonlinear_vma = NULL;
2832	details.first_index = hba;
2833	details.last_index = hba + hlen - 1;
2834	if (details.last_index < details.first_index)
2835		details.last_index = ULONG_MAX;
2836
2837
2838	mutex_lock(&mapping->i_mmap_mutex);
2839	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2840		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2841	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2842		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2843	mutex_unlock(&mapping->i_mmap_mutex);
2844}
2845EXPORT_SYMBOL(unmap_mapping_range);
2846
2847/*
2848 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2849 * but allow concurrent faults), and pte mapped but not yet locked.
2850 * We return with mmap_sem still held, but pte unmapped and unlocked.
 
 
 
2851 */
2852static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2853		unsigned long address, pte_t *page_table, pmd_t *pmd,
2854		unsigned int flags, pte_t orig_pte)
2855{
2856	spinlock_t *ptl;
2857	struct page *page, *swapcache = NULL;
 
2858	swp_entry_t entry;
2859	pte_t pte;
2860	int locked;
2861	struct mem_cgroup *ptr;
2862	int exclusive = 0;
2863	int ret = 0;
2864
2865	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2866		goto out;
2867
2868	entry = pte_to_swp_entry(orig_pte);
2869	if (unlikely(non_swap_entry(entry))) {
2870		if (is_migration_entry(entry)) {
2871			migration_entry_wait(mm, pmd, address);
 
 
 
 
2872		} else if (is_hwpoison_entry(entry)) {
2873			ret = VM_FAULT_HWPOISON;
2874		} else {
2875			print_bad_pte(vma, address, orig_pte, NULL);
2876			ret = VM_FAULT_SIGBUS;
2877		}
2878		goto out;
2879	}
 
 
2880	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2881	page = lookup_swap_cache(entry);
 
 
2882	if (!page) {
2883		grab_swap_token(mm); /* Contend for token _before_ read-in */
2884		page = swapin_readahead(entry,
2885					GFP_HIGHUSER_MOVABLE, vma, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2886		if (!page) {
2887			/*
2888			 * Back out if somebody else faulted in this pte
2889			 * while we released the pte lock.
2890			 */
2891			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2892			if (likely(pte_same(*page_table, orig_pte)))
 
2893				ret = VM_FAULT_OOM;
2894			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2895			goto unlock;
2896		}
2897
2898		/* Had to read the page from swap area: Major fault */
2899		ret = VM_FAULT_MAJOR;
2900		count_vm_event(PGMAJFAULT);
2901		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2902	} else if (PageHWPoison(page)) {
2903		/*
2904		 * hwpoisoned dirty swapcache pages are kept for killing
2905		 * owner processes (which may be unknown at hwpoison time)
2906		 */
2907		ret = VM_FAULT_HWPOISON;
2908		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2909		goto out_release;
2910	}
2911
2912	locked = lock_page_or_retry(page, mm, flags);
 
2913	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2914	if (!locked) {
2915		ret |= VM_FAULT_RETRY;
2916		goto out_release;
2917	}
2918
2919	/*
2920	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2921	 * release the swapcache from under us.  The page pin, and pte_same
2922	 * test below, are not enough to exclude that.  Even if it is still
2923	 * swapcache, we need to check that the page's swap has not changed.
2924	 */
2925	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
 
2926		goto out_page;
2927
2928	if (ksm_might_need_to_copy(page, vma, address)) {
2929		swapcache = page;
2930		page = ksm_does_need_to_copy(page, vma, address);
2931
2932		if (unlikely(!page)) {
2933			ret = VM_FAULT_OOM;
2934			page = swapcache;
2935			swapcache = NULL;
2936			goto out_page;
2937		}
2938	}
2939
2940	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
 
2941		ret = VM_FAULT_OOM;
2942		goto out_page;
2943	}
2944
2945	/*
2946	 * Back out if somebody else already faulted in this pte.
2947	 */
2948	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2949	if (unlikely(!pte_same(*page_table, orig_pte)))
 
2950		goto out_nomap;
2951
2952	if (unlikely(!PageUptodate(page))) {
2953		ret = VM_FAULT_SIGBUS;
2954		goto out_nomap;
2955	}
2956
2957	/*
2958	 * The page isn't present yet, go ahead with the fault.
2959	 *
2960	 * Be careful about the sequence of operations here.
2961	 * To get its accounting right, reuse_swap_page() must be called
2962	 * while the page is counted on swap but not yet in mapcount i.e.
2963	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2964	 * must be called after the swap_free(), or it will never succeed.
2965	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2966	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2967	 * in page->private. In this case, a record in swap_cgroup  is silently
2968	 * discarded at swap_free().
2969	 */
2970
2971	inc_mm_counter_fast(mm, MM_ANONPAGES);
2972	dec_mm_counter_fast(mm, MM_SWAPENTS);
2973	pte = mk_pte(page, vma->vm_page_prot);
2974	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2975		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2976		flags &= ~FAULT_FLAG_WRITE;
2977		ret |= VM_FAULT_WRITE;
2978		exclusive = 1;
2979	}
2980	flush_icache_page(vma, page);
2981	set_pte_at(mm, address, page_table, pte);
2982	do_page_add_anon_rmap(page, vma, address, exclusive);
2983	/* It's better to call commit-charge after rmap is established */
2984	mem_cgroup_commit_charge_swapin(page, ptr);
 
 
 
 
 
 
 
 
 
 
 
 
2985
2986	swap_free(entry);
2987	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
 
2988		try_to_free_swap(page);
2989	unlock_page(page);
2990	if (swapcache) {
2991		/*
2992		 * Hold the lock to avoid the swap entry to be reused
2993		 * until we take the PT lock for the pte_same() check
2994		 * (to avoid false positives from pte_same). For
2995		 * further safety release the lock after the swap_free
2996		 * so that the swap count won't change under a
2997		 * parallel locked swapcache.
2998		 */
2999		unlock_page(swapcache);
3000		page_cache_release(swapcache);
3001	}
3002
3003	if (flags & FAULT_FLAG_WRITE) {
3004		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3005		if (ret & VM_FAULT_ERROR)
3006			ret &= VM_FAULT_ERROR;
3007		goto out;
3008	}
3009
3010	/* No need to invalidate - it was non-present before */
3011	update_mmu_cache(vma, address, page_table);
3012unlock:
3013	pte_unmap_unlock(page_table, ptl);
3014out:
3015	return ret;
3016out_nomap:
3017	mem_cgroup_cancel_charge_swapin(ptr);
3018	pte_unmap_unlock(page_table, ptl);
3019out_page:
3020	unlock_page(page);
3021out_release:
3022	page_cache_release(page);
3023	if (swapcache) {
3024		unlock_page(swapcache);
3025		page_cache_release(swapcache);
3026	}
3027	return ret;
3028}
3029
3030/*
3031 * This is like a special single-page "expand_{down|up}wards()",
3032 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3033 * doesn't hit another vma.
3034 */
3035static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3036{
3037	address &= PAGE_MASK;
3038	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3039		struct vm_area_struct *prev = vma->vm_prev;
3040
3041		/*
3042		 * Is there a mapping abutting this one below?
3043		 *
3044		 * That's only ok if it's the same stack mapping
3045		 * that has gotten split..
3046		 */
3047		if (prev && prev->vm_end == address)
3048			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3049
3050		expand_downwards(vma, address - PAGE_SIZE);
3051	}
3052	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3053		struct vm_area_struct *next = vma->vm_next;
3054
3055		/* As VM_GROWSDOWN but s/below/above/ */
3056		if (next && next->vm_start == address + PAGE_SIZE)
3057			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3058
3059		expand_upwards(vma, address + PAGE_SIZE);
3060	}
3061	return 0;
3062}
3063
3064/*
3065 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3066 * but allow concurrent faults), and pte mapped but not yet locked.
3067 * We return with mmap_sem still held, but pte unmapped and unlocked.
3068 */
3069static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3070		unsigned long address, pte_t *page_table, pmd_t *pmd,
3071		unsigned int flags)
3072{
 
 
3073	struct page *page;
3074	spinlock_t *ptl;
3075	pte_t entry;
3076
3077	pte_unmap(page_table);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3078
3079	/* Check if we need to add a guard page to the stack */
3080	if (check_stack_guard_page(vma, address) < 0)
3081		return VM_FAULT_SIGBUS;
3082
3083	/* Use the zero-page for reads */
3084	if (!(flags & FAULT_FLAG_WRITE)) {
3085		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
 
3086						vma->vm_page_prot));
3087		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3088		if (!pte_none(*page_table))
 
 
 
 
3089			goto unlock;
 
 
 
 
 
3090		goto setpte;
3091	}
3092
3093	/* Allocate our own private page. */
3094	if (unlikely(anon_vma_prepare(vma)))
3095		goto oom;
3096	page = alloc_zeroed_user_highpage_movable(vma, address);
3097	if (!page)
3098		goto oom;
3099	__SetPageUptodate(page);
3100
3101	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
 
3102		goto oom_free_page;
3103
 
 
 
 
 
 
 
3104	entry = mk_pte(page, vma->vm_page_prot);
3105	if (vma->vm_flags & VM_WRITE)
3106		entry = pte_mkwrite(pte_mkdirty(entry));
3107
3108	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3109	if (!pte_none(*page_table))
 
3110		goto release;
3111
3112	inc_mm_counter_fast(mm, MM_ANONPAGES);
3113	page_add_new_anon_rmap(page, vma, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3114setpte:
3115	set_pte_at(mm, address, page_table, entry);
3116
3117	/* No need to invalidate - it was non-present before */
3118	update_mmu_cache(vma, address, page_table);
3119unlock:
3120	pte_unmap_unlock(page_table, ptl);
3121	return 0;
3122release:
3123	mem_cgroup_uncharge_page(page);
3124	page_cache_release(page);
3125	goto unlock;
3126oom_free_page:
3127	page_cache_release(page);
3128oom:
3129	return VM_FAULT_OOM;
3130}
3131
3132/*
3133 * __do_fault() tries to create a new page mapping. It aggressively
3134 * tries to share with existing pages, but makes a separate copy if
3135 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3136 * the next page fault.
3137 *
3138 * As this is called only for pages that do not currently exist, we
3139 * do not need to flush old virtual caches or the TLB.
3140 *
3141 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3142 * but allow concurrent faults), and pte neither mapped nor locked.
3143 * We return with mmap_sem still held, but pte unmapped and unlocked.
3144 */
3145static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3146		unsigned long address, pmd_t *pmd,
3147		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3148{
3149	pte_t *page_table;
3150	spinlock_t *ptl;
3151	struct page *page;
3152	struct page *cow_page;
3153	pte_t entry;
3154	int anon = 0;
3155	struct page *dirty_page = NULL;
3156	struct vm_fault vmf;
3157	int ret;
3158	int page_mkwrite = 0;
3159
3160	/*
3161	 * If we do COW later, allocate page befor taking lock_page()
3162	 * on the file cache page. This will reduce lock holding time.
 
 
 
 
 
 
 
 
 
 
 
3163	 */
3164	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
 
 
 
 
 
3165
3166		if (unlikely(anon_vma_prepare(vma)))
3167			return VM_FAULT_OOM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3168
3169		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3170		if (!cow_page)
3171			return VM_FAULT_OOM;
3172
3173		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3174			page_cache_release(cow_page);
3175			return VM_FAULT_OOM;
 
 
 
 
3176		}
3177	} else
3178		cow_page = NULL;
3179
3180	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3181	vmf.pgoff = pgoff;
3182	vmf.flags = flags;
3183	vmf.page = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3184
3185	ret = vma->vm_ops->fault(vma, &vmf);
3186	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3187			    VM_FAULT_RETRY)))
3188		goto uncharge_out;
3189
3190	if (unlikely(PageHWPoison(vmf.page))) {
3191		if (ret & VM_FAULT_LOCKED)
3192			unlock_page(vmf.page);
3193		ret = VM_FAULT_HWPOISON;
3194		goto uncharge_out;
 
 
 
 
3195	}
3196
 
 
 
 
 
 
 
 
 
 
 
 
 
3197	/*
3198	 * For consistency in subsequent calls, make the faulted page always
3199	 * locked.
3200	 */
3201	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3202		lock_page(vmf.page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3203	else
3204		VM_BUG_ON(!PageLocked(vmf.page));
3205
3206	/*
3207	 * Should we do an early C-O-W break?
 
3208	 */
3209	page = vmf.page;
3210	if (flags & FAULT_FLAG_WRITE) {
3211		if (!(vma->vm_flags & VM_SHARED)) {
3212			page = cow_page;
3213			anon = 1;
3214			copy_user_highpage(page, vmf.page, address, vma);
3215			__SetPageUptodate(page);
3216		} else {
3217			/*
3218			 * If the page will be shareable, see if the backing
3219			 * address space wants to know that the page is about
3220			 * to become writable
3221			 */
3222			if (vma->vm_ops->page_mkwrite) {
3223				int tmp;
 
 
 
3224
3225				unlock_page(page);
3226				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3227				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3228				if (unlikely(tmp &
3229					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3230					ret = tmp;
3231					goto unwritable_page;
3232				}
3233				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3234					lock_page(page);
3235					if (!page->mapping) {
3236						ret = 0; /* retry the fault */
3237						unlock_page(page);
3238						goto unwritable_page;
3239					}
3240				} else
3241					VM_BUG_ON(!PageLocked(page));
3242				page_mkwrite = 1;
3243			}
3244		}
3245
3246	}
 
 
 
 
 
 
 
3247
3248	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3249
3250	/*
3251	 * This silly early PAGE_DIRTY setting removes a race
3252	 * due to the bad i386 page protection. But it's valid
3253	 * for other architectures too.
3254	 *
3255	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3256	 * an exclusive copy of the page, or this is a shared mapping,
3257	 * so we can make it writable and dirty to avoid having to
3258	 * handle that later.
3259	 */
3260	/* Only go through if we didn't race with anybody else... */
3261	if (likely(pte_same(*page_table, orig_pte))) {
3262		flush_icache_page(vma, page);
3263		entry = mk_pte(page, vma->vm_page_prot);
3264		if (flags & FAULT_FLAG_WRITE)
3265			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3266		if (anon) {
3267			inc_mm_counter_fast(mm, MM_ANONPAGES);
3268			page_add_new_anon_rmap(page, vma, address);
3269		} else {
3270			inc_mm_counter_fast(mm, MM_FILEPAGES);
3271			page_add_file_rmap(page);
3272			if (flags & FAULT_FLAG_WRITE) {
3273				dirty_page = page;
3274				get_page(dirty_page);
3275			}
3276		}
3277		set_pte_at(mm, address, page_table, entry);
3278
3279		/* no need to invalidate: a not-present page won't be cached */
3280		update_mmu_cache(vma, address, page_table);
3281	} else {
3282		if (cow_page)
3283			mem_cgroup_uncharge_page(cow_page);
3284		if (anon)
3285			page_cache_release(page);
3286		else
3287			anon = 1; /* no anon but release faulted_page */
3288	}
3289
3290	pte_unmap_unlock(page_table, ptl);
 
 
3291
3292	if (dirty_page) {
3293		struct address_space *mapping = page->mapping;
 
 
 
 
 
 
 
 
3294
3295		if (set_page_dirty(dirty_page))
3296			page_mkwrite = 1;
3297		unlock_page(dirty_page);
3298		put_page(dirty_page);
3299		if (page_mkwrite && mapping) {
3300			/*
3301			 * Some device drivers do not set page.mapping but still
3302			 * dirty their pages
3303			 */
3304			balance_dirty_pages_ratelimited(mapping);
3305		}
3306
3307		/* file_update_time outside page_lock */
3308		if (vma->vm_file)
3309			file_update_time(vma->vm_file);
3310	} else {
3311		unlock_page(vmf.page);
3312		if (anon)
3313			page_cache_release(vmf.page);
 
 
3314	}
3315
 
 
 
 
 
 
 
 
3316	return ret;
 
 
 
 
 
 
3317
3318unwritable_page:
3319	page_cache_release(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3320	return ret;
3321uncharge_out:
3322	/* fs's fault handler get error */
3323	if (cow_page) {
3324		mem_cgroup_uncharge_page(cow_page);
3325		page_cache_release(cow_page);
3326	}
3327	return ret;
3328}
3329
3330static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3331		unsigned long address, pte_t *page_table, pmd_t *pmd,
3332		unsigned int flags, pte_t orig_pte)
3333{
3334	pgoff_t pgoff = (((address & PAGE_MASK)
3335			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3336
3337	pte_unmap(page_table);
3338	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3339}
3340
3341/*
3342 * Fault of a previously existing named mapping. Repopulate the pte
3343 * from the encoded file_pte if possible. This enables swappable
3344 * nonlinear vmas.
3345 *
3346 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3347 * but allow concurrent faults), and pte mapped but not yet locked.
3348 * We return with mmap_sem still held, but pte unmapped and unlocked.
3349 */
3350static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3351		unsigned long address, pte_t *page_table, pmd_t *pmd,
3352		unsigned int flags, pte_t orig_pte)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3353{
3354	pgoff_t pgoff;
3355
3356	flags |= FAULT_FLAG_NONLINEAR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3357
3358	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3359		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3360
3361	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3362		/*
3363		 * Page table corrupted: show pte and kill process.
3364		 */
3365		print_bad_pte(vma, address, orig_pte, NULL);
3366		return VM_FAULT_SIGBUS;
 
 
3367	}
3368
3369	pgoff = pte_to_pgoff(orig_pte);
3370	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3371}
3372
3373/*
3374 * These routines also need to handle stuff like marking pages dirty
3375 * and/or accessed for architectures that don't do it in hardware (most
3376 * RISC architectures).  The early dirtying is also good on the i386.
3377 *
3378 * There is also a hook called "update_mmu_cache()" that architectures
3379 * with external mmu caches can use to update those (ie the Sparc or
3380 * PowerPC hashed page tables that act as extended TLBs).
3381 *
3382 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3383 * but allow concurrent faults), and pte mapped but not yet locked.
3384 * We return with mmap_sem still held, but pte unmapped and unlocked.
 
 
3385 */
3386int handle_pte_fault(struct mm_struct *mm,
3387		     struct vm_area_struct *vma, unsigned long address,
3388		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3389{
3390	pte_t entry;
3391	spinlock_t *ptl;
3392
3393	entry = *pte;
3394	if (!pte_present(entry)) {
3395		if (pte_none(entry)) {
3396			if (vma->vm_ops) {
3397				if (likely(vma->vm_ops->fault))
3398					return do_linear_fault(mm, vma, address,
3399						pte, pmd, flags, entry);
3400			}
3401			return do_anonymous_page(mm, vma, address,
3402						 pte, pmd, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3403		}
3404		if (pte_file(entry))
3405			return do_nonlinear_fault(mm, vma, address,
3406					pte, pmd, flags, entry);
3407		return do_swap_page(mm, vma, address,
3408					pte, pmd, flags, entry);
3409	}
3410
3411	ptl = pte_lockptr(mm, pmd);
3412	spin_lock(ptl);
3413	if (unlikely(!pte_same(*pte, entry)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3414		goto unlock;
3415	if (flags & FAULT_FLAG_WRITE) {
3416		if (!pte_write(entry))
3417			return do_wp_page(mm, vma, address,
3418					pte, pmd, ptl, entry);
3419		entry = pte_mkdirty(entry);
3420	}
3421	entry = pte_mkyoung(entry);
3422	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3423		update_mmu_cache(vma, address, pte);
 
3424	} else {
3425		/*
3426		 * This is needed only for protection faults but the arch code
3427		 * is not yet telling us if this is a protection fault or not.
3428		 * This still avoids useless tlb flushes for .text page faults
3429		 * with threads.
3430		 */
3431		if (flags & FAULT_FLAG_WRITE)
3432			flush_tlb_fix_spurious_fault(vma, address);
3433	}
3434unlock:
3435	pte_unmap_unlock(pte, ptl);
3436	return 0;
3437}
3438
3439/*
3440 * By the time we get here, we already hold the mm semaphore
 
 
 
3441 */
3442int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3443		unsigned long address, unsigned int flags)
3444{
 
 
 
 
 
 
 
 
 
3445	pgd_t *pgd;
3446	pud_t *pud;
3447	pmd_t *pmd;
3448	pte_t *pte;
 
 
 
 
3449
3450	__set_current_state(TASK_RUNNING);
 
 
 
 
 
 
 
 
3451
3452	count_vm_event(PGFAULT);
3453	mem_cgroup_count_vm_event(mm, PGFAULT);
3454
3455	/* do counter updates before entering really critical section. */
3456	check_sync_rss_stat(current);
3457
3458	if (unlikely(is_vm_hugetlb_page(vma)))
3459		return hugetlb_fault(mm, vma, address, flags);
 
 
 
 
 
 
 
 
3460
3461	pgd = pgd_offset(mm, address);
3462	pud = pud_alloc(mm, pgd, address);
3463	if (!pud)
3464		return VM_FAULT_OOM;
3465	pmd = pmd_alloc(mm, pud, address);
3466	if (!pmd)
3467		return VM_FAULT_OOM;
3468	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3469		if (!vma->vm_ops)
3470			return do_huge_pmd_anonymous_page(mm, vma, address,
3471							  pmd, flags);
3472	} else {
3473		pmd_t orig_pmd = *pmd;
 
3474		barrier();
3475		if (pmd_trans_huge(orig_pmd)) {
3476			if (flags & FAULT_FLAG_WRITE &&
3477			    !pmd_write(orig_pmd) &&
3478			    !pmd_trans_splitting(orig_pmd))
3479				return do_huge_pmd_wp_page(mm, vma, address,
3480							   pmd, orig_pmd);
3481			return 0;
3482		}
 
 
 
 
 
 
 
 
 
 
 
 
 
3483	}
3484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3485	/*
3486	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3487	 * run pte_offset_map on the pmd, if an huge pmd could
3488	 * materialize from under us from a different thread.
3489	 */
3490	if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3491		return VM_FAULT_OOM;
3492	/* if an huge pmd materialized from under us just retry later */
3493	if (unlikely(pmd_trans_huge(*pmd)))
3494		return 0;
3495	/*
3496	 * A regular pmd is established and it can't morph into a huge pmd
3497	 * from under us anymore at this point because we hold the mmap_sem
3498	 * read mode and khugepaged takes it in write mode. So now it's
3499	 * safe to run pte_offset_map().
3500	 */
3501	pte = pte_offset_map(pmd, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3502
3503	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
 
 
 
 
 
 
3504}
 
3505
3506#ifndef __PAGETABLE_PUD_FOLDED
3507/*
3508 * Allocate page upper directory.
3509 * We've already handled the fast-path in-line.
3510 */
3511int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3512{
3513	pud_t *new = pud_alloc_one(mm, address);
3514	if (!new)
3515		return -ENOMEM;
3516
3517	smp_wmb(); /* See comment in __pte_alloc */
3518
3519	spin_lock(&mm->page_table_lock);
3520	if (pgd_present(*pgd))		/* Another has populated it */
 
 
 
 
 
 
 
 
 
 
3521		pud_free(mm, new);
3522	else
3523		pgd_populate(mm, pgd, new);
3524	spin_unlock(&mm->page_table_lock);
3525	return 0;
3526}
3527#endif /* __PAGETABLE_PUD_FOLDED */
3528
3529#ifndef __PAGETABLE_PMD_FOLDED
3530/*
3531 * Allocate page middle directory.
3532 * We've already handled the fast-path in-line.
3533 */
3534int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3535{
 
3536	pmd_t *new = pmd_alloc_one(mm, address);
3537	if (!new)
3538		return -ENOMEM;
3539
3540	smp_wmb(); /* See comment in __pte_alloc */
3541
3542	spin_lock(&mm->page_table_lock);
3543#ifndef __ARCH_HAS_4LEVEL_HACK
3544	if (pud_present(*pud))		/* Another has populated it */
 
 
 
3545		pmd_free(mm, new);
3546	else
3547		pud_populate(mm, pud, new);
3548#else
3549	if (pgd_present(*pud))		/* Another has populated it */
 
 
 
3550		pmd_free(mm, new);
3551	else
3552		pgd_populate(mm, pud, new);
3553#endif /* __ARCH_HAS_4LEVEL_HACK */
3554	spin_unlock(&mm->page_table_lock);
3555	return 0;
3556}
3557#endif /* __PAGETABLE_PMD_FOLDED */
3558
3559int make_pages_present(unsigned long addr, unsigned long end)
3560{
3561	int ret, len, write;
3562	struct vm_area_struct * vma;
3563
3564	vma = find_vma(current->mm, addr);
3565	if (!vma)
3566		return -ENOMEM;
3567	/*
3568	 * We want to touch writable mappings with a write fault in order
3569	 * to break COW, except for shared mappings because these don't COW
3570	 * and we would not want to dirty them for nothing.
3571	 */
3572	write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3573	BUG_ON(addr >= end);
3574	BUG_ON(end > vma->vm_end);
3575	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3576	ret = get_user_pages(current, current->mm, addr,
3577			len, write, 0, NULL, NULL);
3578	if (ret < 0)
3579		return ret;
3580	return ret == len ? 0 : -EFAULT;
3581}
3582
3583#if !defined(__HAVE_ARCH_GATE_AREA)
3584
3585#if defined(AT_SYSINFO_EHDR)
3586static struct vm_area_struct gate_vma;
3587
3588static int __init gate_vma_init(void)
3589{
3590	gate_vma.vm_mm = NULL;
3591	gate_vma.vm_start = FIXADDR_USER_START;
3592	gate_vma.vm_end = FIXADDR_USER_END;
3593	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3594	gate_vma.vm_page_prot = __P101;
3595	/*
3596	 * Make sure the vDSO gets into every core dump.
3597	 * Dumping its contents makes post-mortem fully interpretable later
3598	 * without matching up the same kernel and hardware config to see
3599	 * what PC values meant.
3600	 */
3601	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3602	return 0;
3603}
3604__initcall(gate_vma_init);
3605#endif
3606
3607struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3608{
3609#ifdef AT_SYSINFO_EHDR
3610	return &gate_vma;
3611#else
3612	return NULL;
3613#endif
3614}
3615
3616int in_gate_area_no_mm(unsigned long addr)
3617{
3618#ifdef AT_SYSINFO_EHDR
3619	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3620		return 1;
3621#endif
3622	return 0;
3623}
3624
3625#endif	/* __HAVE_ARCH_GATE_AREA */
3626
3627static int __follow_pte(struct mm_struct *mm, unsigned long address,
3628		pte_t **ptepp, spinlock_t **ptlp)
3629{
3630	pgd_t *pgd;
 
3631	pud_t *pud;
3632	pmd_t *pmd;
3633	pte_t *ptep;
3634
3635	pgd = pgd_offset(mm, address);
3636	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3637		goto out;
3638
3639	pud = pud_offset(pgd, address);
 
 
 
 
3640	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3641		goto out;
3642
3643	pmd = pmd_offset(pud, address);
3644	VM_BUG_ON(pmd_trans_huge(*pmd));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3645	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3646		goto out;
3647
3648	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3649	if (pmd_huge(*pmd))
3650		goto out;
3651
 
 
3652	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3653	if (!ptep)
3654		goto out;
3655	if (!pte_present(*ptep))
3656		goto unlock;
3657	*ptepp = ptep;
3658	return 0;
3659unlock:
3660	pte_unmap_unlock(ptep, *ptlp);
 
 
3661out:
3662	return -EINVAL;
3663}
3664
3665static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3666			     pte_t **ptepp, spinlock_t **ptlp)
3667{
3668	int res;
3669
3670	/* (void) is needed to make gcc happy */
3671	(void) __cond_lock(*ptlp,
3672			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
 
3673	return res;
3674}
3675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3676/**
3677 * follow_pfn - look up PFN at a user virtual address
3678 * @vma: memory mapping
3679 * @address: user virtual address
3680 * @pfn: location to store found PFN
3681 *
3682 * Only IO mappings and raw PFN mappings are allowed.
3683 *
3684 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3685 */
3686int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3687	unsigned long *pfn)
3688{
3689	int ret = -EINVAL;
3690	spinlock_t *ptl;
3691	pte_t *ptep;
3692
3693	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3694		return ret;
3695
3696	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3697	if (ret)
3698		return ret;
3699	*pfn = pte_pfn(*ptep);
3700	pte_unmap_unlock(ptep, ptl);
3701	return 0;
3702}
3703EXPORT_SYMBOL(follow_pfn);
3704
3705#ifdef CONFIG_HAVE_IOREMAP_PROT
3706int follow_phys(struct vm_area_struct *vma,
3707		unsigned long address, unsigned int flags,
3708		unsigned long *prot, resource_size_t *phys)
3709{
3710	int ret = -EINVAL;
3711	pte_t *ptep, pte;
3712	spinlock_t *ptl;
3713
3714	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3715		goto out;
3716
3717	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3718		goto out;
3719	pte = *ptep;
3720
3721	if ((flags & FOLL_WRITE) && !pte_write(pte))
3722		goto unlock;
3723
3724	*prot = pgprot_val(pte_pgprot(pte));
3725	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3726
3727	ret = 0;
3728unlock:
3729	pte_unmap_unlock(ptep, ptl);
3730out:
3731	return ret;
3732}
3733
3734int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3735			void *buf, int len, int write)
3736{
3737	resource_size_t phys_addr;
3738	unsigned long prot = 0;
3739	void __iomem *maddr;
3740	int offset = addr & (PAGE_SIZE-1);
3741
3742	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3743		return -EINVAL;
3744
3745	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
 
 
 
3746	if (write)
3747		memcpy_toio(maddr + offset, buf, len);
3748	else
3749		memcpy_fromio(buf, maddr + offset, len);
3750	iounmap(maddr);
3751
3752	return len;
3753}
 
3754#endif
3755
3756/*
3757 * Access another process' address space as given in mm.  If non-NULL, use the
3758 * given task for page fault accounting.
3759 */
3760static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3761		unsigned long addr, void *buf, int len, int write)
3762{
3763	struct vm_area_struct *vma;
3764	void *old_buf = buf;
 
 
 
 
3765
3766	down_read(&mm->mmap_sem);
3767	/* ignore errors, just check how much was successfully transferred */
3768	while (len) {
3769		int bytes, ret, offset;
3770		void *maddr;
3771		struct page *page = NULL;
3772
3773		ret = get_user_pages(tsk, mm, addr, 1,
3774				write, 1, &page, &vma);
3775		if (ret <= 0) {
 
 
 
3776			/*
3777			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3778			 * we can access using slightly different code.
3779			 */
3780#ifdef CONFIG_HAVE_IOREMAP_PROT
3781			vma = find_vma(mm, addr);
3782			if (!vma || vma->vm_start > addr)
3783				break;
3784			if (vma->vm_ops && vma->vm_ops->access)
3785				ret = vma->vm_ops->access(vma, addr, buf,
3786							  len, write);
3787			if (ret <= 0)
3788#endif
3789				break;
3790			bytes = ret;
 
3791		} else {
3792			bytes = len;
3793			offset = addr & (PAGE_SIZE-1);
3794			if (bytes > PAGE_SIZE-offset)
3795				bytes = PAGE_SIZE-offset;
3796
3797			maddr = kmap(page);
3798			if (write) {
3799				copy_to_user_page(vma, page, addr,
3800						  maddr + offset, buf, bytes);
3801				set_page_dirty_lock(page);
3802			} else {
3803				copy_from_user_page(vma, page, addr,
3804						    buf, maddr + offset, bytes);
3805			}
3806			kunmap(page);
3807			page_cache_release(page);
3808		}
3809		len -= bytes;
3810		buf += bytes;
3811		addr += bytes;
3812	}
3813	up_read(&mm->mmap_sem);
3814
3815	return buf - old_buf;
3816}
3817
3818/**
3819 * access_remote_vm - access another process' address space
3820 * @mm:		the mm_struct of the target address space
3821 * @addr:	start address to access
3822 * @buf:	source or destination buffer
3823 * @len:	number of bytes to transfer
3824 * @write:	whether the access is a write
3825 *
3826 * The caller must hold a reference on @mm.
 
 
3827 */
3828int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3829		void *buf, int len, int write)
3830{
3831	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3832}
3833
3834/*
3835 * Access another process' address space.
3836 * Source/target buffer must be kernel space,
3837 * Do not walk the page table directly, use get_user_pages
3838 */
3839int access_process_vm(struct task_struct *tsk, unsigned long addr,
3840		void *buf, int len, int write)
3841{
3842	struct mm_struct *mm;
3843	int ret;
3844
3845	mm = get_task_mm(tsk);
3846	if (!mm)
3847		return 0;
3848
3849	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
 
3850	mmput(mm);
3851
3852	return ret;
3853}
 
3854
3855/*
3856 * Print the name of a VMA.
3857 */
3858void print_vma_addr(char *prefix, unsigned long ip)
3859{
3860	struct mm_struct *mm = current->mm;
3861	struct vm_area_struct *vma;
3862
3863	/*
3864	 * Do not print if we are in atomic
3865	 * contexts (in exception stacks, etc.):
3866	 */
3867	if (preempt_count())
3868		return;
3869
3870	down_read(&mm->mmap_sem);
3871	vma = find_vma(mm, ip);
3872	if (vma && vma->vm_file) {
3873		struct file *f = vma->vm_file;
3874		char *buf = (char *)__get_free_page(GFP_KERNEL);
3875		if (buf) {
3876			char *p, *s;
3877
3878			p = d_path(&f->f_path, buf, PAGE_SIZE);
3879			if (IS_ERR(p))
3880				p = "?";
3881			s = strrchr(p, '/');
3882			if (s)
3883				p = s+1;
3884			printk("%s%s[%lx+%lx]", prefix, p,
3885					vma->vm_start,
3886					vma->vm_end - vma->vm_start);
3887			free_page((unsigned long)buf);
3888		}
3889	}
3890	up_read(&current->mm->mmap_sem);
3891}
3892
3893#ifdef CONFIG_PROVE_LOCKING
3894void might_fault(void)
3895{
3896	/*
3897	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3898	 * holding the mmap_sem, this is safe because kernel memory doesn't
3899	 * get paged out, therefore we'll never actually fault, and the
3900	 * below annotations will generate false positives.
3901	 */
3902	if (segment_eq(get_fs(), KERNEL_DS))
3903		return;
 
 
 
 
 
 
 
 
 
 
3904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3905	might_sleep();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3906	/*
3907	 * it would be nicer only to annotate paths which are not under
3908	 * pagefault_disable, however that requires a larger audit and
3909	 * providing helpers like get_user_atomic.
3910	 */
3911	if (!in_atomic() && current->mm)
3912		might_lock_read(&current->mm->mmap_sem);
 
 
 
 
 
 
 
3913}
3914EXPORT_SYMBOL(might_fault);
3915#endif
3916
3917#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3918static void clear_gigantic_page(struct page *page,
3919				unsigned long addr,
3920				unsigned int pages_per_huge_page)
3921{
3922	int i;
3923	struct page *p = page;
3924
3925	might_sleep();
3926	for (i = 0; i < pages_per_huge_page;
3927	     i++, p = mem_map_next(p, page, i)) {
3928		cond_resched();
3929		clear_user_highpage(p, addr + i * PAGE_SIZE);
3930	}
3931}
 
 
 
 
 
 
 
 
3932void clear_huge_page(struct page *page,
3933		     unsigned long addr, unsigned int pages_per_huge_page)
3934{
3935	int i;
 
3936
3937	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3938		clear_gigantic_page(page, addr, pages_per_huge_page);
3939		return;
3940	}
3941
3942	might_sleep();
3943	for (i = 0; i < pages_per_huge_page; i++) {
3944		cond_resched();
3945		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3946	}
3947}
3948
3949static void copy_user_gigantic_page(struct page *dst, struct page *src,
3950				    unsigned long addr,
3951				    struct vm_area_struct *vma,
3952				    unsigned int pages_per_huge_page)
3953{
3954	int i;
3955	struct page *dst_base = dst;
3956	struct page *src_base = src;
3957
3958	for (i = 0; i < pages_per_huge_page; ) {
3959		cond_resched();
3960		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3961
3962		i++;
3963		dst = mem_map_next(dst, dst_base, i);
3964		src = mem_map_next(src, src_base, i);
3965	}
3966}
3967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3968void copy_user_huge_page(struct page *dst, struct page *src,
3969			 unsigned long addr, struct vm_area_struct *vma,
3970			 unsigned int pages_per_huge_page)
3971{
3972	int i;
 
 
 
 
 
 
3973
3974	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3975		copy_user_gigantic_page(dst, src, addr, vma,
3976					pages_per_huge_page);
3977		return;
3978	}
3979
3980	might_sleep();
 
 
 
 
 
 
 
 
 
 
 
 
3981	for (i = 0; i < pages_per_huge_page; i++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3982		cond_resched();
3983		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3984	}
 
3985}
3986#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */