Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
44#include <linux/sched/mm.h>
45#include <linux/sched/coredump.h>
46#include <linux/sched/numa_balancing.h>
47#include <linux/sched/task.h>
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
53#include <linux/memremap.h>
54#include <linux/ksm.h>
55#include <linux/rmap.h>
56#include <linux/export.h>
57#include <linux/delayacct.h>
58#include <linux/init.h>
59#include <linux/pfn_t.h>
60#include <linux/writeback.h>
61#include <linux/memcontrol.h>
62#include <linux/mmu_notifier.h>
63#include <linux/swapops.h>
64#include <linux/elf.h>
65#include <linux/gfp.h>
66#include <linux/migrate.h>
67#include <linux/string.h>
68#include <linux/dma-debug.h>
69#include <linux/debugfs.h>
70#include <linux/userfaultfd_k.h>
71#include <linux/dax.h>
72#include <linux/oom.h>
73#include <linux/numa.h>
74
75#include <asm/io.h>
76#include <asm/mmu_context.h>
77#include <asm/pgalloc.h>
78#include <linux/uaccess.h>
79#include <asm/tlb.h>
80#include <asm/tlbflush.h>
81#include <asm/pgtable.h>
82
83#include "internal.h"
84
85#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87#endif
88
89#ifndef CONFIG_NEED_MULTIPLE_NODES
90/* use the per-pgdat data instead for discontigmem - mbligh */
91unsigned long max_mapnr;
92EXPORT_SYMBOL(max_mapnr);
93
94struct page *mem_map;
95EXPORT_SYMBOL(mem_map);
96#endif
97
98/*
99 * A number of key systems in x86 including ioremap() rely on the assumption
100 * that high_memory defines the upper bound on direct map memory, then end
101 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103 * and ZONE_HIGHMEM.
104 */
105void *high_memory;
106EXPORT_SYMBOL(high_memory);
107
108/*
109 * Randomize the address space (stacks, mmaps, brk, etc.).
110 *
111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112 * as ancient (libc5 based) binaries can segfault. )
113 */
114int randomize_va_space __read_mostly =
115#ifdef CONFIG_COMPAT_BRK
116 1;
117#else
118 2;
119#endif
120
121static int __init disable_randmaps(char *s)
122{
123 randomize_va_space = 0;
124 return 1;
125}
126__setup("norandmaps", disable_randmaps);
127
128unsigned long zero_pfn __read_mostly;
129EXPORT_SYMBOL(zero_pfn);
130
131unsigned long highest_memmap_pfn __read_mostly;
132
133/*
134 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135 */
136static int __init init_zero_pfn(void)
137{
138 zero_pfn = page_to_pfn(ZERO_PAGE(0));
139 return 0;
140}
141core_initcall(init_zero_pfn);
142
143
144#if defined(SPLIT_RSS_COUNTING)
145
146void sync_mm_rss(struct mm_struct *mm)
147{
148 int i;
149
150 for (i = 0; i < NR_MM_COUNTERS; i++) {
151 if (current->rss_stat.count[i]) {
152 add_mm_counter(mm, i, current->rss_stat.count[i]);
153 current->rss_stat.count[i] = 0;
154 }
155 }
156 current->rss_stat.events = 0;
157}
158
159static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
160{
161 struct task_struct *task = current;
162
163 if (likely(task->mm == mm))
164 task->rss_stat.count[member] += val;
165 else
166 add_mm_counter(mm, member, val);
167}
168#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
169#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170
171/* sync counter once per 64 page faults */
172#define TASK_RSS_EVENTS_THRESH (64)
173static void check_sync_rss_stat(struct task_struct *task)
174{
175 if (unlikely(task != current))
176 return;
177 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
178 sync_mm_rss(task->mm);
179}
180#else /* SPLIT_RSS_COUNTING */
181
182#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
183#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184
185static void check_sync_rss_stat(struct task_struct *task)
186{
187}
188
189#endif /* SPLIT_RSS_COUNTING */
190
191/*
192 * Note: this doesn't free the actual pages themselves. That
193 * has been handled earlier when unmapping all the memory regions.
194 */
195static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
196 unsigned long addr)
197{
198 pgtable_t token = pmd_pgtable(*pmd);
199 pmd_clear(pmd);
200 pte_free_tlb(tlb, token, addr);
201 mm_dec_nr_ptes(tlb->mm);
202}
203
204static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
205 unsigned long addr, unsigned long end,
206 unsigned long floor, unsigned long ceiling)
207{
208 pmd_t *pmd;
209 unsigned long next;
210 unsigned long start;
211
212 start = addr;
213 pmd = pmd_offset(pud, addr);
214 do {
215 next = pmd_addr_end(addr, end);
216 if (pmd_none_or_clear_bad(pmd))
217 continue;
218 free_pte_range(tlb, pmd, addr);
219 } while (pmd++, addr = next, addr != end);
220
221 start &= PUD_MASK;
222 if (start < floor)
223 return;
224 if (ceiling) {
225 ceiling &= PUD_MASK;
226 if (!ceiling)
227 return;
228 }
229 if (end - 1 > ceiling - 1)
230 return;
231
232 pmd = pmd_offset(pud, start);
233 pud_clear(pud);
234 pmd_free_tlb(tlb, pmd, start);
235 mm_dec_nr_pmds(tlb->mm);
236}
237
238static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
239 unsigned long addr, unsigned long end,
240 unsigned long floor, unsigned long ceiling)
241{
242 pud_t *pud;
243 unsigned long next;
244 unsigned long start;
245
246 start = addr;
247 pud = pud_offset(p4d, addr);
248 do {
249 next = pud_addr_end(addr, end);
250 if (pud_none_or_clear_bad(pud))
251 continue;
252 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
253 } while (pud++, addr = next, addr != end);
254
255 start &= P4D_MASK;
256 if (start < floor)
257 return;
258 if (ceiling) {
259 ceiling &= P4D_MASK;
260 if (!ceiling)
261 return;
262 }
263 if (end - 1 > ceiling - 1)
264 return;
265
266 pud = pud_offset(p4d, start);
267 p4d_clear(p4d);
268 pud_free_tlb(tlb, pud, start);
269 mm_dec_nr_puds(tlb->mm);
270}
271
272static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
273 unsigned long addr, unsigned long end,
274 unsigned long floor, unsigned long ceiling)
275{
276 p4d_t *p4d;
277 unsigned long next;
278 unsigned long start;
279
280 start = addr;
281 p4d = p4d_offset(pgd, addr);
282 do {
283 next = p4d_addr_end(addr, end);
284 if (p4d_none_or_clear_bad(p4d))
285 continue;
286 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
287 } while (p4d++, addr = next, addr != end);
288
289 start &= PGDIR_MASK;
290 if (start < floor)
291 return;
292 if (ceiling) {
293 ceiling &= PGDIR_MASK;
294 if (!ceiling)
295 return;
296 }
297 if (end - 1 > ceiling - 1)
298 return;
299
300 p4d = p4d_offset(pgd, start);
301 pgd_clear(pgd);
302 p4d_free_tlb(tlb, p4d, start);
303}
304
305/*
306 * This function frees user-level page tables of a process.
307 */
308void free_pgd_range(struct mmu_gather *tlb,
309 unsigned long addr, unsigned long end,
310 unsigned long floor, unsigned long ceiling)
311{
312 pgd_t *pgd;
313 unsigned long next;
314
315 /*
316 * The next few lines have given us lots of grief...
317 *
318 * Why are we testing PMD* at this top level? Because often
319 * there will be no work to do at all, and we'd prefer not to
320 * go all the way down to the bottom just to discover that.
321 *
322 * Why all these "- 1"s? Because 0 represents both the bottom
323 * of the address space and the top of it (using -1 for the
324 * top wouldn't help much: the masks would do the wrong thing).
325 * The rule is that addr 0 and floor 0 refer to the bottom of
326 * the address space, but end 0 and ceiling 0 refer to the top
327 * Comparisons need to use "end - 1" and "ceiling - 1" (though
328 * that end 0 case should be mythical).
329 *
330 * Wherever addr is brought up or ceiling brought down, we must
331 * be careful to reject "the opposite 0" before it confuses the
332 * subsequent tests. But what about where end is brought down
333 * by PMD_SIZE below? no, end can't go down to 0 there.
334 *
335 * Whereas we round start (addr) and ceiling down, by different
336 * masks at different levels, in order to test whether a table
337 * now has no other vmas using it, so can be freed, we don't
338 * bother to round floor or end up - the tests don't need that.
339 */
340
341 addr &= PMD_MASK;
342 if (addr < floor) {
343 addr += PMD_SIZE;
344 if (!addr)
345 return;
346 }
347 if (ceiling) {
348 ceiling &= PMD_MASK;
349 if (!ceiling)
350 return;
351 }
352 if (end - 1 > ceiling - 1)
353 end -= PMD_SIZE;
354 if (addr > end - 1)
355 return;
356 /*
357 * We add page table cache pages with PAGE_SIZE,
358 * (see pte_free_tlb()), flush the tlb if we need
359 */
360 tlb_change_page_size(tlb, PAGE_SIZE);
361 pgd = pgd_offset(tlb->mm, addr);
362 do {
363 next = pgd_addr_end(addr, end);
364 if (pgd_none_or_clear_bad(pgd))
365 continue;
366 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
367 } while (pgd++, addr = next, addr != end);
368}
369
370void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
371 unsigned long floor, unsigned long ceiling)
372{
373 while (vma) {
374 struct vm_area_struct *next = vma->vm_next;
375 unsigned long addr = vma->vm_start;
376
377 /*
378 * Hide vma from rmap and truncate_pagecache before freeing
379 * pgtables
380 */
381 unlink_anon_vmas(vma);
382 unlink_file_vma(vma);
383
384 if (is_vm_hugetlb_page(vma)) {
385 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
386 floor, next ? next->vm_start : ceiling);
387 } else {
388 /*
389 * Optimization: gather nearby vmas into one call down
390 */
391 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
392 && !is_vm_hugetlb_page(next)) {
393 vma = next;
394 next = vma->vm_next;
395 unlink_anon_vmas(vma);
396 unlink_file_vma(vma);
397 }
398 free_pgd_range(tlb, addr, vma->vm_end,
399 floor, next ? next->vm_start : ceiling);
400 }
401 vma = next;
402 }
403}
404
405int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
406{
407 spinlock_t *ptl;
408 pgtable_t new = pte_alloc_one(mm);
409 if (!new)
410 return -ENOMEM;
411
412 /*
413 * Ensure all pte setup (eg. pte page lock and page clearing) are
414 * visible before the pte is made visible to other CPUs by being
415 * put into page tables.
416 *
417 * The other side of the story is the pointer chasing in the page
418 * table walking code (when walking the page table without locking;
419 * ie. most of the time). Fortunately, these data accesses consist
420 * of a chain of data-dependent loads, meaning most CPUs (alpha
421 * being the notable exception) will already guarantee loads are
422 * seen in-order. See the alpha page table accessors for the
423 * smp_read_barrier_depends() barriers in page table walking code.
424 */
425 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
426
427 ptl = pmd_lock(mm, pmd);
428 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
429 mm_inc_nr_ptes(mm);
430 pmd_populate(mm, pmd, new);
431 new = NULL;
432 }
433 spin_unlock(ptl);
434 if (new)
435 pte_free(mm, new);
436 return 0;
437}
438
439int __pte_alloc_kernel(pmd_t *pmd)
440{
441 pte_t *new = pte_alloc_one_kernel(&init_mm);
442 if (!new)
443 return -ENOMEM;
444
445 smp_wmb(); /* See comment in __pte_alloc */
446
447 spin_lock(&init_mm.page_table_lock);
448 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
449 pmd_populate_kernel(&init_mm, pmd, new);
450 new = NULL;
451 }
452 spin_unlock(&init_mm.page_table_lock);
453 if (new)
454 pte_free_kernel(&init_mm, new);
455 return 0;
456}
457
458static inline void init_rss_vec(int *rss)
459{
460 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461}
462
463static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
464{
465 int i;
466
467 if (current->mm == mm)
468 sync_mm_rss(mm);
469 for (i = 0; i < NR_MM_COUNTERS; i++)
470 if (rss[i])
471 add_mm_counter(mm, i, rss[i]);
472}
473
474/*
475 * This function is called to print an error when a bad pte
476 * is found. For example, we might have a PFN-mapped pte in
477 * a region that doesn't allow it.
478 *
479 * The calling function must still handle the error.
480 */
481static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
482 pte_t pte, struct page *page)
483{
484 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
485 p4d_t *p4d = p4d_offset(pgd, addr);
486 pud_t *pud = pud_offset(p4d, addr);
487 pmd_t *pmd = pmd_offset(pud, addr);
488 struct address_space *mapping;
489 pgoff_t index;
490 static unsigned long resume;
491 static unsigned long nr_shown;
492 static unsigned long nr_unshown;
493
494 /*
495 * Allow a burst of 60 reports, then keep quiet for that minute;
496 * or allow a steady drip of one report per second.
497 */
498 if (nr_shown == 60) {
499 if (time_before(jiffies, resume)) {
500 nr_unshown++;
501 return;
502 }
503 if (nr_unshown) {
504 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
505 nr_unshown);
506 nr_unshown = 0;
507 }
508 nr_shown = 0;
509 }
510 if (nr_shown++ == 0)
511 resume = jiffies + 60 * HZ;
512
513 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
514 index = linear_page_index(vma, addr);
515
516 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
517 current->comm,
518 (long long)pte_val(pte), (long long)pmd_val(*pmd));
519 if (page)
520 dump_page(page, "bad pte");
521 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
522 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
523 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
524 vma->vm_file,
525 vma->vm_ops ? vma->vm_ops->fault : NULL,
526 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
527 mapping ? mapping->a_ops->readpage : NULL);
528 dump_stack();
529 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
530}
531
532/*
533 * vm_normal_page -- This function gets the "struct page" associated with a pte.
534 *
535 * "Special" mappings do not wish to be associated with a "struct page" (either
536 * it doesn't exist, or it exists but they don't want to touch it). In this
537 * case, NULL is returned here. "Normal" mappings do have a struct page.
538 *
539 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
540 * pte bit, in which case this function is trivial. Secondly, an architecture
541 * may not have a spare pte bit, which requires a more complicated scheme,
542 * described below.
543 *
544 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
545 * special mapping (even if there are underlying and valid "struct pages").
546 * COWed pages of a VM_PFNMAP are always normal.
547 *
548 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
549 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
550 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
551 * mapping will always honor the rule
552 *
553 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
554 *
555 * And for normal mappings this is false.
556 *
557 * This restricts such mappings to be a linear translation from virtual address
558 * to pfn. To get around this restriction, we allow arbitrary mappings so long
559 * as the vma is not a COW mapping; in that case, we know that all ptes are
560 * special (because none can have been COWed).
561 *
562 *
563 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
564 *
565 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
566 * page" backing, however the difference is that _all_ pages with a struct
567 * page (that is, those where pfn_valid is true) are refcounted and considered
568 * normal pages by the VM. The disadvantage is that pages are refcounted
569 * (which can be slower and simply not an option for some PFNMAP users). The
570 * advantage is that we don't have to follow the strict linearity rule of
571 * PFNMAP mappings in order to support COWable mappings.
572 *
573 */
574struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
575 pte_t pte)
576{
577 unsigned long pfn = pte_pfn(pte);
578
579 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
580 if (likely(!pte_special(pte)))
581 goto check_pfn;
582 if (vma->vm_ops && vma->vm_ops->find_special_page)
583 return vma->vm_ops->find_special_page(vma, addr);
584 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
585 return NULL;
586 if (is_zero_pfn(pfn))
587 return NULL;
588 if (pte_devmap(pte))
589 return NULL;
590
591 print_bad_pte(vma, addr, pte, NULL);
592 return NULL;
593 }
594
595 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
596
597 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
598 if (vma->vm_flags & VM_MIXEDMAP) {
599 if (!pfn_valid(pfn))
600 return NULL;
601 goto out;
602 } else {
603 unsigned long off;
604 off = (addr - vma->vm_start) >> PAGE_SHIFT;
605 if (pfn == vma->vm_pgoff + off)
606 return NULL;
607 if (!is_cow_mapping(vma->vm_flags))
608 return NULL;
609 }
610 }
611
612 if (is_zero_pfn(pfn))
613 return NULL;
614
615check_pfn:
616 if (unlikely(pfn > highest_memmap_pfn)) {
617 print_bad_pte(vma, addr, pte, NULL);
618 return NULL;
619 }
620
621 /*
622 * NOTE! We still have PageReserved() pages in the page tables.
623 * eg. VDSO mappings can cause them to exist.
624 */
625out:
626 return pfn_to_page(pfn);
627}
628
629#ifdef CONFIG_TRANSPARENT_HUGEPAGE
630struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
631 pmd_t pmd)
632{
633 unsigned long pfn = pmd_pfn(pmd);
634
635 /*
636 * There is no pmd_special() but there may be special pmds, e.g.
637 * in a direct-access (dax) mapping, so let's just replicate the
638 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
639 */
640 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
641 if (vma->vm_flags & VM_MIXEDMAP) {
642 if (!pfn_valid(pfn))
643 return NULL;
644 goto out;
645 } else {
646 unsigned long off;
647 off = (addr - vma->vm_start) >> PAGE_SHIFT;
648 if (pfn == vma->vm_pgoff + off)
649 return NULL;
650 if (!is_cow_mapping(vma->vm_flags))
651 return NULL;
652 }
653 }
654
655 if (pmd_devmap(pmd))
656 return NULL;
657 if (is_zero_pfn(pfn))
658 return NULL;
659 if (unlikely(pfn > highest_memmap_pfn))
660 return NULL;
661
662 /*
663 * NOTE! We still have PageReserved() pages in the page tables.
664 * eg. VDSO mappings can cause them to exist.
665 */
666out:
667 return pfn_to_page(pfn);
668}
669#endif
670
671/*
672 * copy one vm_area from one task to the other. Assumes the page tables
673 * already present in the new task to be cleared in the whole range
674 * covered by this vma.
675 */
676
677static inline unsigned long
678copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
679 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
680 unsigned long addr, int *rss)
681{
682 unsigned long vm_flags = vma->vm_flags;
683 pte_t pte = *src_pte;
684 struct page *page;
685
686 /* pte contains position in swap or file, so copy. */
687 if (unlikely(!pte_present(pte))) {
688 swp_entry_t entry = pte_to_swp_entry(pte);
689
690 if (likely(!non_swap_entry(entry))) {
691 if (swap_duplicate(entry) < 0)
692 return entry.val;
693
694 /* make sure dst_mm is on swapoff's mmlist. */
695 if (unlikely(list_empty(&dst_mm->mmlist))) {
696 spin_lock(&mmlist_lock);
697 if (list_empty(&dst_mm->mmlist))
698 list_add(&dst_mm->mmlist,
699 &src_mm->mmlist);
700 spin_unlock(&mmlist_lock);
701 }
702 rss[MM_SWAPENTS]++;
703 } else if (is_migration_entry(entry)) {
704 page = migration_entry_to_page(entry);
705
706 rss[mm_counter(page)]++;
707
708 if (is_write_migration_entry(entry) &&
709 is_cow_mapping(vm_flags)) {
710 /*
711 * COW mappings require pages in both
712 * parent and child to be set to read.
713 */
714 make_migration_entry_read(&entry);
715 pte = swp_entry_to_pte(entry);
716 if (pte_swp_soft_dirty(*src_pte))
717 pte = pte_swp_mksoft_dirty(pte);
718 set_pte_at(src_mm, addr, src_pte, pte);
719 }
720 } else if (is_device_private_entry(entry)) {
721 page = device_private_entry_to_page(entry);
722
723 /*
724 * Update rss count even for unaddressable pages, as
725 * they should treated just like normal pages in this
726 * respect.
727 *
728 * We will likely want to have some new rss counters
729 * for unaddressable pages, at some point. But for now
730 * keep things as they are.
731 */
732 get_page(page);
733 rss[mm_counter(page)]++;
734 page_dup_rmap(page, false);
735
736 /*
737 * We do not preserve soft-dirty information, because so
738 * far, checkpoint/restore is the only feature that
739 * requires that. And checkpoint/restore does not work
740 * when a device driver is involved (you cannot easily
741 * save and restore device driver state).
742 */
743 if (is_write_device_private_entry(entry) &&
744 is_cow_mapping(vm_flags)) {
745 make_device_private_entry_read(&entry);
746 pte = swp_entry_to_pte(entry);
747 set_pte_at(src_mm, addr, src_pte, pte);
748 }
749 }
750 goto out_set_pte;
751 }
752
753 /*
754 * If it's a COW mapping, write protect it both
755 * in the parent and the child
756 */
757 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
758 ptep_set_wrprotect(src_mm, addr, src_pte);
759 pte = pte_wrprotect(pte);
760 }
761
762 /*
763 * If it's a shared mapping, mark it clean in
764 * the child
765 */
766 if (vm_flags & VM_SHARED)
767 pte = pte_mkclean(pte);
768 pte = pte_mkold(pte);
769
770 page = vm_normal_page(vma, addr, pte);
771 if (page) {
772 get_page(page);
773 page_dup_rmap(page, false);
774 rss[mm_counter(page)]++;
775 } else if (pte_devmap(pte)) {
776 page = pte_page(pte);
777 }
778
779out_set_pte:
780 set_pte_at(dst_mm, addr, dst_pte, pte);
781 return 0;
782}
783
784static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
785 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
786 unsigned long addr, unsigned long end)
787{
788 pte_t *orig_src_pte, *orig_dst_pte;
789 pte_t *src_pte, *dst_pte;
790 spinlock_t *src_ptl, *dst_ptl;
791 int progress = 0;
792 int rss[NR_MM_COUNTERS];
793 swp_entry_t entry = (swp_entry_t){0};
794
795again:
796 init_rss_vec(rss);
797
798 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
799 if (!dst_pte)
800 return -ENOMEM;
801 src_pte = pte_offset_map(src_pmd, addr);
802 src_ptl = pte_lockptr(src_mm, src_pmd);
803 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
804 orig_src_pte = src_pte;
805 orig_dst_pte = dst_pte;
806 arch_enter_lazy_mmu_mode();
807
808 do {
809 /*
810 * We are holding two locks at this point - either of them
811 * could generate latencies in another task on another CPU.
812 */
813 if (progress >= 32) {
814 progress = 0;
815 if (need_resched() ||
816 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
817 break;
818 }
819 if (pte_none(*src_pte)) {
820 progress++;
821 continue;
822 }
823 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
824 vma, addr, rss);
825 if (entry.val)
826 break;
827 progress += 8;
828 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
829
830 arch_leave_lazy_mmu_mode();
831 spin_unlock(src_ptl);
832 pte_unmap(orig_src_pte);
833 add_mm_rss_vec(dst_mm, rss);
834 pte_unmap_unlock(orig_dst_pte, dst_ptl);
835 cond_resched();
836
837 if (entry.val) {
838 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
839 return -ENOMEM;
840 progress = 0;
841 }
842 if (addr != end)
843 goto again;
844 return 0;
845}
846
847static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
849 unsigned long addr, unsigned long end)
850{
851 pmd_t *src_pmd, *dst_pmd;
852 unsigned long next;
853
854 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
855 if (!dst_pmd)
856 return -ENOMEM;
857 src_pmd = pmd_offset(src_pud, addr);
858 do {
859 next = pmd_addr_end(addr, end);
860 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
861 || pmd_devmap(*src_pmd)) {
862 int err;
863 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
864 err = copy_huge_pmd(dst_mm, src_mm,
865 dst_pmd, src_pmd, addr, vma);
866 if (err == -ENOMEM)
867 return -ENOMEM;
868 if (!err)
869 continue;
870 /* fall through */
871 }
872 if (pmd_none_or_clear_bad(src_pmd))
873 continue;
874 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
875 vma, addr, next))
876 return -ENOMEM;
877 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
878 return 0;
879}
880
881static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
883 unsigned long addr, unsigned long end)
884{
885 pud_t *src_pud, *dst_pud;
886 unsigned long next;
887
888 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
889 if (!dst_pud)
890 return -ENOMEM;
891 src_pud = pud_offset(src_p4d, addr);
892 do {
893 next = pud_addr_end(addr, end);
894 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
895 int err;
896
897 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
898 err = copy_huge_pud(dst_mm, src_mm,
899 dst_pud, src_pud, addr, vma);
900 if (err == -ENOMEM)
901 return -ENOMEM;
902 if (!err)
903 continue;
904 /* fall through */
905 }
906 if (pud_none_or_clear_bad(src_pud))
907 continue;
908 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
909 vma, addr, next))
910 return -ENOMEM;
911 } while (dst_pud++, src_pud++, addr = next, addr != end);
912 return 0;
913}
914
915static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
917 unsigned long addr, unsigned long end)
918{
919 p4d_t *src_p4d, *dst_p4d;
920 unsigned long next;
921
922 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
923 if (!dst_p4d)
924 return -ENOMEM;
925 src_p4d = p4d_offset(src_pgd, addr);
926 do {
927 next = p4d_addr_end(addr, end);
928 if (p4d_none_or_clear_bad(src_p4d))
929 continue;
930 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
931 vma, addr, next))
932 return -ENOMEM;
933 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
934 return 0;
935}
936
937int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
938 struct vm_area_struct *vma)
939{
940 pgd_t *src_pgd, *dst_pgd;
941 unsigned long next;
942 unsigned long addr = vma->vm_start;
943 unsigned long end = vma->vm_end;
944 struct mmu_notifier_range range;
945 bool is_cow;
946 int ret;
947
948 /*
949 * Don't copy ptes where a page fault will fill them correctly.
950 * Fork becomes much lighter when there are big shared or private
951 * readonly mappings. The tradeoff is that copy_page_range is more
952 * efficient than faulting.
953 */
954 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
955 !vma->anon_vma)
956 return 0;
957
958 if (is_vm_hugetlb_page(vma))
959 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
960
961 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
962 /*
963 * We do not free on error cases below as remove_vma
964 * gets called on error from higher level routine
965 */
966 ret = track_pfn_copy(vma);
967 if (ret)
968 return ret;
969 }
970
971 /*
972 * We need to invalidate the secondary MMU mappings only when
973 * there could be a permission downgrade on the ptes of the
974 * parent mm. And a permission downgrade will only happen if
975 * is_cow_mapping() returns true.
976 */
977 is_cow = is_cow_mapping(vma->vm_flags);
978
979 if (is_cow) {
980 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
981 0, vma, src_mm, addr, end);
982 mmu_notifier_invalidate_range_start(&range);
983 }
984
985 ret = 0;
986 dst_pgd = pgd_offset(dst_mm, addr);
987 src_pgd = pgd_offset(src_mm, addr);
988 do {
989 next = pgd_addr_end(addr, end);
990 if (pgd_none_or_clear_bad(src_pgd))
991 continue;
992 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
993 vma, addr, next))) {
994 ret = -ENOMEM;
995 break;
996 }
997 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
998
999 if (is_cow)
1000 mmu_notifier_invalidate_range_end(&range);
1001 return ret;
1002}
1003
1004static unsigned long zap_pte_range(struct mmu_gather *tlb,
1005 struct vm_area_struct *vma, pmd_t *pmd,
1006 unsigned long addr, unsigned long end,
1007 struct zap_details *details)
1008{
1009 struct mm_struct *mm = tlb->mm;
1010 int force_flush = 0;
1011 int rss[NR_MM_COUNTERS];
1012 spinlock_t *ptl;
1013 pte_t *start_pte;
1014 pte_t *pte;
1015 swp_entry_t entry;
1016
1017 tlb_change_page_size(tlb, PAGE_SIZE);
1018again:
1019 init_rss_vec(rss);
1020 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1021 pte = start_pte;
1022 flush_tlb_batched_pending(mm);
1023 arch_enter_lazy_mmu_mode();
1024 do {
1025 pte_t ptent = *pte;
1026 if (pte_none(ptent))
1027 continue;
1028
1029 if (need_resched())
1030 break;
1031
1032 if (pte_present(ptent)) {
1033 struct page *page;
1034
1035 page = vm_normal_page(vma, addr, ptent);
1036 if (unlikely(details) && page) {
1037 /*
1038 * unmap_shared_mapping_pages() wants to
1039 * invalidate cache without truncating:
1040 * unmap shared but keep private pages.
1041 */
1042 if (details->check_mapping &&
1043 details->check_mapping != page_rmapping(page))
1044 continue;
1045 }
1046 ptent = ptep_get_and_clear_full(mm, addr, pte,
1047 tlb->fullmm);
1048 tlb_remove_tlb_entry(tlb, pte, addr);
1049 if (unlikely(!page))
1050 continue;
1051
1052 if (!PageAnon(page)) {
1053 if (pte_dirty(ptent)) {
1054 force_flush = 1;
1055 set_page_dirty(page);
1056 }
1057 if (pte_young(ptent) &&
1058 likely(!(vma->vm_flags & VM_SEQ_READ)))
1059 mark_page_accessed(page);
1060 }
1061 rss[mm_counter(page)]--;
1062 page_remove_rmap(page, false);
1063 if (unlikely(page_mapcount(page) < 0))
1064 print_bad_pte(vma, addr, ptent, page);
1065 if (unlikely(__tlb_remove_page(tlb, page))) {
1066 force_flush = 1;
1067 addr += PAGE_SIZE;
1068 break;
1069 }
1070 continue;
1071 }
1072
1073 entry = pte_to_swp_entry(ptent);
1074 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1075 struct page *page = device_private_entry_to_page(entry);
1076
1077 if (unlikely(details && details->check_mapping)) {
1078 /*
1079 * unmap_shared_mapping_pages() wants to
1080 * invalidate cache without truncating:
1081 * unmap shared but keep private pages.
1082 */
1083 if (details->check_mapping !=
1084 page_rmapping(page))
1085 continue;
1086 }
1087
1088 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1089 rss[mm_counter(page)]--;
1090 page_remove_rmap(page, false);
1091 put_page(page);
1092 continue;
1093 }
1094
1095 /* If details->check_mapping, we leave swap entries. */
1096 if (unlikely(details))
1097 continue;
1098
1099 if (!non_swap_entry(entry))
1100 rss[MM_SWAPENTS]--;
1101 else if (is_migration_entry(entry)) {
1102 struct page *page;
1103
1104 page = migration_entry_to_page(entry);
1105 rss[mm_counter(page)]--;
1106 }
1107 if (unlikely(!free_swap_and_cache(entry)))
1108 print_bad_pte(vma, addr, ptent, NULL);
1109 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1110 } while (pte++, addr += PAGE_SIZE, addr != end);
1111
1112 add_mm_rss_vec(mm, rss);
1113 arch_leave_lazy_mmu_mode();
1114
1115 /* Do the actual TLB flush before dropping ptl */
1116 if (force_flush)
1117 tlb_flush_mmu_tlbonly(tlb);
1118 pte_unmap_unlock(start_pte, ptl);
1119
1120 /*
1121 * If we forced a TLB flush (either due to running out of
1122 * batch buffers or because we needed to flush dirty TLB
1123 * entries before releasing the ptl), free the batched
1124 * memory too. Restart if we didn't do everything.
1125 */
1126 if (force_flush) {
1127 force_flush = 0;
1128 tlb_flush_mmu(tlb);
1129 }
1130
1131 if (addr != end) {
1132 cond_resched();
1133 goto again;
1134 }
1135
1136 return addr;
1137}
1138
1139static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1140 struct vm_area_struct *vma, pud_t *pud,
1141 unsigned long addr, unsigned long end,
1142 struct zap_details *details)
1143{
1144 pmd_t *pmd;
1145 unsigned long next;
1146
1147 pmd = pmd_offset(pud, addr);
1148 do {
1149 next = pmd_addr_end(addr, end);
1150 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1151 if (next - addr != HPAGE_PMD_SIZE)
1152 __split_huge_pmd(vma, pmd, addr, false, NULL);
1153 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1154 goto next;
1155 /* fall through */
1156 }
1157 /*
1158 * Here there can be other concurrent MADV_DONTNEED or
1159 * trans huge page faults running, and if the pmd is
1160 * none or trans huge it can change under us. This is
1161 * because MADV_DONTNEED holds the mmap_sem in read
1162 * mode.
1163 */
1164 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1165 goto next;
1166 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1167next:
1168 cond_resched();
1169 } while (pmd++, addr = next, addr != end);
1170
1171 return addr;
1172}
1173
1174static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1175 struct vm_area_struct *vma, p4d_t *p4d,
1176 unsigned long addr, unsigned long end,
1177 struct zap_details *details)
1178{
1179 pud_t *pud;
1180 unsigned long next;
1181
1182 pud = pud_offset(p4d, addr);
1183 do {
1184 next = pud_addr_end(addr, end);
1185 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1186 if (next - addr != HPAGE_PUD_SIZE) {
1187 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1188 split_huge_pud(vma, pud, addr);
1189 } else if (zap_huge_pud(tlb, vma, pud, addr))
1190 goto next;
1191 /* fall through */
1192 }
1193 if (pud_none_or_clear_bad(pud))
1194 continue;
1195 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1196next:
1197 cond_resched();
1198 } while (pud++, addr = next, addr != end);
1199
1200 return addr;
1201}
1202
1203static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1204 struct vm_area_struct *vma, pgd_t *pgd,
1205 unsigned long addr, unsigned long end,
1206 struct zap_details *details)
1207{
1208 p4d_t *p4d;
1209 unsigned long next;
1210
1211 p4d = p4d_offset(pgd, addr);
1212 do {
1213 next = p4d_addr_end(addr, end);
1214 if (p4d_none_or_clear_bad(p4d))
1215 continue;
1216 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1217 } while (p4d++, addr = next, addr != end);
1218
1219 return addr;
1220}
1221
1222void unmap_page_range(struct mmu_gather *tlb,
1223 struct vm_area_struct *vma,
1224 unsigned long addr, unsigned long end,
1225 struct zap_details *details)
1226{
1227 pgd_t *pgd;
1228 unsigned long next;
1229
1230 BUG_ON(addr >= end);
1231 tlb_start_vma(tlb, vma);
1232 pgd = pgd_offset(vma->vm_mm, addr);
1233 do {
1234 next = pgd_addr_end(addr, end);
1235 if (pgd_none_or_clear_bad(pgd))
1236 continue;
1237 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1238 } while (pgd++, addr = next, addr != end);
1239 tlb_end_vma(tlb, vma);
1240}
1241
1242
1243static void unmap_single_vma(struct mmu_gather *tlb,
1244 struct vm_area_struct *vma, unsigned long start_addr,
1245 unsigned long end_addr,
1246 struct zap_details *details)
1247{
1248 unsigned long start = max(vma->vm_start, start_addr);
1249 unsigned long end;
1250
1251 if (start >= vma->vm_end)
1252 return;
1253 end = min(vma->vm_end, end_addr);
1254 if (end <= vma->vm_start)
1255 return;
1256
1257 if (vma->vm_file)
1258 uprobe_munmap(vma, start, end);
1259
1260 if (unlikely(vma->vm_flags & VM_PFNMAP))
1261 untrack_pfn(vma, 0, 0);
1262
1263 if (start != end) {
1264 if (unlikely(is_vm_hugetlb_page(vma))) {
1265 /*
1266 * It is undesirable to test vma->vm_file as it
1267 * should be non-null for valid hugetlb area.
1268 * However, vm_file will be NULL in the error
1269 * cleanup path of mmap_region. When
1270 * hugetlbfs ->mmap method fails,
1271 * mmap_region() nullifies vma->vm_file
1272 * before calling this function to clean up.
1273 * Since no pte has actually been setup, it is
1274 * safe to do nothing in this case.
1275 */
1276 if (vma->vm_file) {
1277 i_mmap_lock_write(vma->vm_file->f_mapping);
1278 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1279 i_mmap_unlock_write(vma->vm_file->f_mapping);
1280 }
1281 } else
1282 unmap_page_range(tlb, vma, start, end, details);
1283 }
1284}
1285
1286/**
1287 * unmap_vmas - unmap a range of memory covered by a list of vma's
1288 * @tlb: address of the caller's struct mmu_gather
1289 * @vma: the starting vma
1290 * @start_addr: virtual address at which to start unmapping
1291 * @end_addr: virtual address at which to end unmapping
1292 *
1293 * Unmap all pages in the vma list.
1294 *
1295 * Only addresses between `start' and `end' will be unmapped.
1296 *
1297 * The VMA list must be sorted in ascending virtual address order.
1298 *
1299 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1300 * range after unmap_vmas() returns. So the only responsibility here is to
1301 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1302 * drops the lock and schedules.
1303 */
1304void unmap_vmas(struct mmu_gather *tlb,
1305 struct vm_area_struct *vma, unsigned long start_addr,
1306 unsigned long end_addr)
1307{
1308 struct mmu_notifier_range range;
1309
1310 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1311 start_addr, end_addr);
1312 mmu_notifier_invalidate_range_start(&range);
1313 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1314 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1315 mmu_notifier_invalidate_range_end(&range);
1316}
1317
1318/**
1319 * zap_page_range - remove user pages in a given range
1320 * @vma: vm_area_struct holding the applicable pages
1321 * @start: starting address of pages to zap
1322 * @size: number of bytes to zap
1323 *
1324 * Caller must protect the VMA list
1325 */
1326void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1327 unsigned long size)
1328{
1329 struct mmu_notifier_range range;
1330 struct mmu_gather tlb;
1331
1332 lru_add_drain();
1333 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1334 start, start + size);
1335 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1336 update_hiwater_rss(vma->vm_mm);
1337 mmu_notifier_invalidate_range_start(&range);
1338 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1339 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1340 mmu_notifier_invalidate_range_end(&range);
1341 tlb_finish_mmu(&tlb, start, range.end);
1342}
1343
1344/**
1345 * zap_page_range_single - remove user pages in a given range
1346 * @vma: vm_area_struct holding the applicable pages
1347 * @address: starting address of pages to zap
1348 * @size: number of bytes to zap
1349 * @details: details of shared cache invalidation
1350 *
1351 * The range must fit into one VMA.
1352 */
1353static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1354 unsigned long size, struct zap_details *details)
1355{
1356 struct mmu_notifier_range range;
1357 struct mmu_gather tlb;
1358
1359 lru_add_drain();
1360 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1361 address, address + size);
1362 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1363 update_hiwater_rss(vma->vm_mm);
1364 mmu_notifier_invalidate_range_start(&range);
1365 unmap_single_vma(&tlb, vma, address, range.end, details);
1366 mmu_notifier_invalidate_range_end(&range);
1367 tlb_finish_mmu(&tlb, address, range.end);
1368}
1369
1370/**
1371 * zap_vma_ptes - remove ptes mapping the vma
1372 * @vma: vm_area_struct holding ptes to be zapped
1373 * @address: starting address of pages to zap
1374 * @size: number of bytes to zap
1375 *
1376 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1377 *
1378 * The entire address range must be fully contained within the vma.
1379 *
1380 */
1381void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1382 unsigned long size)
1383{
1384 if (address < vma->vm_start || address + size > vma->vm_end ||
1385 !(vma->vm_flags & VM_PFNMAP))
1386 return;
1387
1388 zap_page_range_single(vma, address, size, NULL);
1389}
1390EXPORT_SYMBOL_GPL(zap_vma_ptes);
1391
1392pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1393 spinlock_t **ptl)
1394{
1395 pgd_t *pgd;
1396 p4d_t *p4d;
1397 pud_t *pud;
1398 pmd_t *pmd;
1399
1400 pgd = pgd_offset(mm, addr);
1401 p4d = p4d_alloc(mm, pgd, addr);
1402 if (!p4d)
1403 return NULL;
1404 pud = pud_alloc(mm, p4d, addr);
1405 if (!pud)
1406 return NULL;
1407 pmd = pmd_alloc(mm, pud, addr);
1408 if (!pmd)
1409 return NULL;
1410
1411 VM_BUG_ON(pmd_trans_huge(*pmd));
1412 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1413}
1414
1415/*
1416 * This is the old fallback for page remapping.
1417 *
1418 * For historical reasons, it only allows reserved pages. Only
1419 * old drivers should use this, and they needed to mark their
1420 * pages reserved for the old functions anyway.
1421 */
1422static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1423 struct page *page, pgprot_t prot)
1424{
1425 struct mm_struct *mm = vma->vm_mm;
1426 int retval;
1427 pte_t *pte;
1428 spinlock_t *ptl;
1429
1430 retval = -EINVAL;
1431 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1432 goto out;
1433 retval = -ENOMEM;
1434 flush_dcache_page(page);
1435 pte = get_locked_pte(mm, addr, &ptl);
1436 if (!pte)
1437 goto out;
1438 retval = -EBUSY;
1439 if (!pte_none(*pte))
1440 goto out_unlock;
1441
1442 /* Ok, finally just insert the thing.. */
1443 get_page(page);
1444 inc_mm_counter_fast(mm, mm_counter_file(page));
1445 page_add_file_rmap(page, false);
1446 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1447
1448 retval = 0;
1449out_unlock:
1450 pte_unmap_unlock(pte, ptl);
1451out:
1452 return retval;
1453}
1454
1455/**
1456 * vm_insert_page - insert single page into user vma
1457 * @vma: user vma to map to
1458 * @addr: target user address of this page
1459 * @page: source kernel page
1460 *
1461 * This allows drivers to insert individual pages they've allocated
1462 * into a user vma.
1463 *
1464 * The page has to be a nice clean _individual_ kernel allocation.
1465 * If you allocate a compound page, you need to have marked it as
1466 * such (__GFP_COMP), or manually just split the page up yourself
1467 * (see split_page()).
1468 *
1469 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1470 * took an arbitrary page protection parameter. This doesn't allow
1471 * that. Your vma protection will have to be set up correctly, which
1472 * means that if you want a shared writable mapping, you'd better
1473 * ask for a shared writable mapping!
1474 *
1475 * The page does not need to be reserved.
1476 *
1477 * Usually this function is called from f_op->mmap() handler
1478 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1479 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1480 * function from other places, for example from page-fault handler.
1481 *
1482 * Return: %0 on success, negative error code otherwise.
1483 */
1484int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1485 struct page *page)
1486{
1487 if (addr < vma->vm_start || addr >= vma->vm_end)
1488 return -EFAULT;
1489 if (!page_count(page))
1490 return -EINVAL;
1491 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1492 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1493 BUG_ON(vma->vm_flags & VM_PFNMAP);
1494 vma->vm_flags |= VM_MIXEDMAP;
1495 }
1496 return insert_page(vma, addr, page, vma->vm_page_prot);
1497}
1498EXPORT_SYMBOL(vm_insert_page);
1499
1500/*
1501 * __vm_map_pages - maps range of kernel pages into user vma
1502 * @vma: user vma to map to
1503 * @pages: pointer to array of source kernel pages
1504 * @num: number of pages in page array
1505 * @offset: user's requested vm_pgoff
1506 *
1507 * This allows drivers to map range of kernel pages into a user vma.
1508 *
1509 * Return: 0 on success and error code otherwise.
1510 */
1511static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1512 unsigned long num, unsigned long offset)
1513{
1514 unsigned long count = vma_pages(vma);
1515 unsigned long uaddr = vma->vm_start;
1516 int ret, i;
1517
1518 /* Fail if the user requested offset is beyond the end of the object */
1519 if (offset >= num)
1520 return -ENXIO;
1521
1522 /* Fail if the user requested size exceeds available object size */
1523 if (count > num - offset)
1524 return -ENXIO;
1525
1526 for (i = 0; i < count; i++) {
1527 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1528 if (ret < 0)
1529 return ret;
1530 uaddr += PAGE_SIZE;
1531 }
1532
1533 return 0;
1534}
1535
1536/**
1537 * vm_map_pages - maps range of kernel pages starts with non zero offset
1538 * @vma: user vma to map to
1539 * @pages: pointer to array of source kernel pages
1540 * @num: number of pages in page array
1541 *
1542 * Maps an object consisting of @num pages, catering for the user's
1543 * requested vm_pgoff
1544 *
1545 * If we fail to insert any page into the vma, the function will return
1546 * immediately leaving any previously inserted pages present. Callers
1547 * from the mmap handler may immediately return the error as their caller
1548 * will destroy the vma, removing any successfully inserted pages. Other
1549 * callers should make their own arrangements for calling unmap_region().
1550 *
1551 * Context: Process context. Called by mmap handlers.
1552 * Return: 0 on success and error code otherwise.
1553 */
1554int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1555 unsigned long num)
1556{
1557 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1558}
1559EXPORT_SYMBOL(vm_map_pages);
1560
1561/**
1562 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1563 * @vma: user vma to map to
1564 * @pages: pointer to array of source kernel pages
1565 * @num: number of pages in page array
1566 *
1567 * Similar to vm_map_pages(), except that it explicitly sets the offset
1568 * to 0. This function is intended for the drivers that did not consider
1569 * vm_pgoff.
1570 *
1571 * Context: Process context. Called by mmap handlers.
1572 * Return: 0 on success and error code otherwise.
1573 */
1574int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1575 unsigned long num)
1576{
1577 return __vm_map_pages(vma, pages, num, 0);
1578}
1579EXPORT_SYMBOL(vm_map_pages_zero);
1580
1581static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1582 pfn_t pfn, pgprot_t prot, bool mkwrite)
1583{
1584 struct mm_struct *mm = vma->vm_mm;
1585 pte_t *pte, entry;
1586 spinlock_t *ptl;
1587
1588 pte = get_locked_pte(mm, addr, &ptl);
1589 if (!pte)
1590 return VM_FAULT_OOM;
1591 if (!pte_none(*pte)) {
1592 if (mkwrite) {
1593 /*
1594 * For read faults on private mappings the PFN passed
1595 * in may not match the PFN we have mapped if the
1596 * mapped PFN is a writeable COW page. In the mkwrite
1597 * case we are creating a writable PTE for a shared
1598 * mapping and we expect the PFNs to match. If they
1599 * don't match, we are likely racing with block
1600 * allocation and mapping invalidation so just skip the
1601 * update.
1602 */
1603 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1604 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1605 goto out_unlock;
1606 }
1607 entry = pte_mkyoung(*pte);
1608 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1609 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1610 update_mmu_cache(vma, addr, pte);
1611 }
1612 goto out_unlock;
1613 }
1614
1615 /* Ok, finally just insert the thing.. */
1616 if (pfn_t_devmap(pfn))
1617 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1618 else
1619 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1620
1621 if (mkwrite) {
1622 entry = pte_mkyoung(entry);
1623 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1624 }
1625
1626 set_pte_at(mm, addr, pte, entry);
1627 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1628
1629out_unlock:
1630 pte_unmap_unlock(pte, ptl);
1631 return VM_FAULT_NOPAGE;
1632}
1633
1634/**
1635 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1636 * @vma: user vma to map to
1637 * @addr: target user address of this page
1638 * @pfn: source kernel pfn
1639 * @pgprot: pgprot flags for the inserted page
1640 *
1641 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1642 * to override pgprot on a per-page basis.
1643 *
1644 * This only makes sense for IO mappings, and it makes no sense for
1645 * COW mappings. In general, using multiple vmas is preferable;
1646 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1647 * impractical.
1648 *
1649 * Context: Process context. May allocate using %GFP_KERNEL.
1650 * Return: vm_fault_t value.
1651 */
1652vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1653 unsigned long pfn, pgprot_t pgprot)
1654{
1655 /*
1656 * Technically, architectures with pte_special can avoid all these
1657 * restrictions (same for remap_pfn_range). However we would like
1658 * consistency in testing and feature parity among all, so we should
1659 * try to keep these invariants in place for everybody.
1660 */
1661 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1662 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1663 (VM_PFNMAP|VM_MIXEDMAP));
1664 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1665 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1666
1667 if (addr < vma->vm_start || addr >= vma->vm_end)
1668 return VM_FAULT_SIGBUS;
1669
1670 if (!pfn_modify_allowed(pfn, pgprot))
1671 return VM_FAULT_SIGBUS;
1672
1673 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1674
1675 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1676 false);
1677}
1678EXPORT_SYMBOL(vmf_insert_pfn_prot);
1679
1680/**
1681 * vmf_insert_pfn - insert single pfn into user vma
1682 * @vma: user vma to map to
1683 * @addr: target user address of this page
1684 * @pfn: source kernel pfn
1685 *
1686 * Similar to vm_insert_page, this allows drivers to insert individual pages
1687 * they've allocated into a user vma. Same comments apply.
1688 *
1689 * This function should only be called from a vm_ops->fault handler, and
1690 * in that case the handler should return the result of this function.
1691 *
1692 * vma cannot be a COW mapping.
1693 *
1694 * As this is called only for pages that do not currently exist, we
1695 * do not need to flush old virtual caches or the TLB.
1696 *
1697 * Context: Process context. May allocate using %GFP_KERNEL.
1698 * Return: vm_fault_t value.
1699 */
1700vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1701 unsigned long pfn)
1702{
1703 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1704}
1705EXPORT_SYMBOL(vmf_insert_pfn);
1706
1707static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1708{
1709 /* these checks mirror the abort conditions in vm_normal_page */
1710 if (vma->vm_flags & VM_MIXEDMAP)
1711 return true;
1712 if (pfn_t_devmap(pfn))
1713 return true;
1714 if (pfn_t_special(pfn))
1715 return true;
1716 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1717 return true;
1718 return false;
1719}
1720
1721static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1722 unsigned long addr, pfn_t pfn, bool mkwrite)
1723{
1724 pgprot_t pgprot = vma->vm_page_prot;
1725 int err;
1726
1727 BUG_ON(!vm_mixed_ok(vma, pfn));
1728
1729 if (addr < vma->vm_start || addr >= vma->vm_end)
1730 return VM_FAULT_SIGBUS;
1731
1732 track_pfn_insert(vma, &pgprot, pfn);
1733
1734 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1735 return VM_FAULT_SIGBUS;
1736
1737 /*
1738 * If we don't have pte special, then we have to use the pfn_valid()
1739 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1740 * refcount the page if pfn_valid is true (hence insert_page rather
1741 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1742 * without pte special, it would there be refcounted as a normal page.
1743 */
1744 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1745 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1746 struct page *page;
1747
1748 /*
1749 * At this point we are committed to insert_page()
1750 * regardless of whether the caller specified flags that
1751 * result in pfn_t_has_page() == false.
1752 */
1753 page = pfn_to_page(pfn_t_to_pfn(pfn));
1754 err = insert_page(vma, addr, page, pgprot);
1755 } else {
1756 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1757 }
1758
1759 if (err == -ENOMEM)
1760 return VM_FAULT_OOM;
1761 if (err < 0 && err != -EBUSY)
1762 return VM_FAULT_SIGBUS;
1763
1764 return VM_FAULT_NOPAGE;
1765}
1766
1767vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1768 pfn_t pfn)
1769{
1770 return __vm_insert_mixed(vma, addr, pfn, false);
1771}
1772EXPORT_SYMBOL(vmf_insert_mixed);
1773
1774/*
1775 * If the insertion of PTE failed because someone else already added a
1776 * different entry in the mean time, we treat that as success as we assume
1777 * the same entry was actually inserted.
1778 */
1779vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1780 unsigned long addr, pfn_t pfn)
1781{
1782 return __vm_insert_mixed(vma, addr, pfn, true);
1783}
1784EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1785
1786/*
1787 * maps a range of physical memory into the requested pages. the old
1788 * mappings are removed. any references to nonexistent pages results
1789 * in null mappings (currently treated as "copy-on-access")
1790 */
1791static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1792 unsigned long addr, unsigned long end,
1793 unsigned long pfn, pgprot_t prot)
1794{
1795 pte_t *pte;
1796 spinlock_t *ptl;
1797 int err = 0;
1798
1799 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1800 if (!pte)
1801 return -ENOMEM;
1802 arch_enter_lazy_mmu_mode();
1803 do {
1804 BUG_ON(!pte_none(*pte));
1805 if (!pfn_modify_allowed(pfn, prot)) {
1806 err = -EACCES;
1807 break;
1808 }
1809 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1810 pfn++;
1811 } while (pte++, addr += PAGE_SIZE, addr != end);
1812 arch_leave_lazy_mmu_mode();
1813 pte_unmap_unlock(pte - 1, ptl);
1814 return err;
1815}
1816
1817static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1818 unsigned long addr, unsigned long end,
1819 unsigned long pfn, pgprot_t prot)
1820{
1821 pmd_t *pmd;
1822 unsigned long next;
1823 int err;
1824
1825 pfn -= addr >> PAGE_SHIFT;
1826 pmd = pmd_alloc(mm, pud, addr);
1827 if (!pmd)
1828 return -ENOMEM;
1829 VM_BUG_ON(pmd_trans_huge(*pmd));
1830 do {
1831 next = pmd_addr_end(addr, end);
1832 err = remap_pte_range(mm, pmd, addr, next,
1833 pfn + (addr >> PAGE_SHIFT), prot);
1834 if (err)
1835 return err;
1836 } while (pmd++, addr = next, addr != end);
1837 return 0;
1838}
1839
1840static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1841 unsigned long addr, unsigned long end,
1842 unsigned long pfn, pgprot_t prot)
1843{
1844 pud_t *pud;
1845 unsigned long next;
1846 int err;
1847
1848 pfn -= addr >> PAGE_SHIFT;
1849 pud = pud_alloc(mm, p4d, addr);
1850 if (!pud)
1851 return -ENOMEM;
1852 do {
1853 next = pud_addr_end(addr, end);
1854 err = remap_pmd_range(mm, pud, addr, next,
1855 pfn + (addr >> PAGE_SHIFT), prot);
1856 if (err)
1857 return err;
1858 } while (pud++, addr = next, addr != end);
1859 return 0;
1860}
1861
1862static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1863 unsigned long addr, unsigned long end,
1864 unsigned long pfn, pgprot_t prot)
1865{
1866 p4d_t *p4d;
1867 unsigned long next;
1868 int err;
1869
1870 pfn -= addr >> PAGE_SHIFT;
1871 p4d = p4d_alloc(mm, pgd, addr);
1872 if (!p4d)
1873 return -ENOMEM;
1874 do {
1875 next = p4d_addr_end(addr, end);
1876 err = remap_pud_range(mm, p4d, addr, next,
1877 pfn + (addr >> PAGE_SHIFT), prot);
1878 if (err)
1879 return err;
1880 } while (p4d++, addr = next, addr != end);
1881 return 0;
1882}
1883
1884/**
1885 * remap_pfn_range - remap kernel memory to userspace
1886 * @vma: user vma to map to
1887 * @addr: target user address to start at
1888 * @pfn: physical address of kernel memory
1889 * @size: size of map area
1890 * @prot: page protection flags for this mapping
1891 *
1892 * Note: this is only safe if the mm semaphore is held when called.
1893 *
1894 * Return: %0 on success, negative error code otherwise.
1895 */
1896int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1897 unsigned long pfn, unsigned long size, pgprot_t prot)
1898{
1899 pgd_t *pgd;
1900 unsigned long next;
1901 unsigned long end = addr + PAGE_ALIGN(size);
1902 struct mm_struct *mm = vma->vm_mm;
1903 unsigned long remap_pfn = pfn;
1904 int err;
1905
1906 /*
1907 * Physically remapped pages are special. Tell the
1908 * rest of the world about it:
1909 * VM_IO tells people not to look at these pages
1910 * (accesses can have side effects).
1911 * VM_PFNMAP tells the core MM that the base pages are just
1912 * raw PFN mappings, and do not have a "struct page" associated
1913 * with them.
1914 * VM_DONTEXPAND
1915 * Disable vma merging and expanding with mremap().
1916 * VM_DONTDUMP
1917 * Omit vma from core dump, even when VM_IO turned off.
1918 *
1919 * There's a horrible special case to handle copy-on-write
1920 * behaviour that some programs depend on. We mark the "original"
1921 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1922 * See vm_normal_page() for details.
1923 */
1924 if (is_cow_mapping(vma->vm_flags)) {
1925 if (addr != vma->vm_start || end != vma->vm_end)
1926 return -EINVAL;
1927 vma->vm_pgoff = pfn;
1928 }
1929
1930 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1931 if (err)
1932 return -EINVAL;
1933
1934 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1935
1936 BUG_ON(addr >= end);
1937 pfn -= addr >> PAGE_SHIFT;
1938 pgd = pgd_offset(mm, addr);
1939 flush_cache_range(vma, addr, end);
1940 do {
1941 next = pgd_addr_end(addr, end);
1942 err = remap_p4d_range(mm, pgd, addr, next,
1943 pfn + (addr >> PAGE_SHIFT), prot);
1944 if (err)
1945 break;
1946 } while (pgd++, addr = next, addr != end);
1947
1948 if (err)
1949 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1950
1951 return err;
1952}
1953EXPORT_SYMBOL(remap_pfn_range);
1954
1955/**
1956 * vm_iomap_memory - remap memory to userspace
1957 * @vma: user vma to map to
1958 * @start: start of area
1959 * @len: size of area
1960 *
1961 * This is a simplified io_remap_pfn_range() for common driver use. The
1962 * driver just needs to give us the physical memory range to be mapped,
1963 * we'll figure out the rest from the vma information.
1964 *
1965 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1966 * whatever write-combining details or similar.
1967 *
1968 * Return: %0 on success, negative error code otherwise.
1969 */
1970int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1971{
1972 unsigned long vm_len, pfn, pages;
1973
1974 /* Check that the physical memory area passed in looks valid */
1975 if (start + len < start)
1976 return -EINVAL;
1977 /*
1978 * You *really* shouldn't map things that aren't page-aligned,
1979 * but we've historically allowed it because IO memory might
1980 * just have smaller alignment.
1981 */
1982 len += start & ~PAGE_MASK;
1983 pfn = start >> PAGE_SHIFT;
1984 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1985 if (pfn + pages < pfn)
1986 return -EINVAL;
1987
1988 /* We start the mapping 'vm_pgoff' pages into the area */
1989 if (vma->vm_pgoff > pages)
1990 return -EINVAL;
1991 pfn += vma->vm_pgoff;
1992 pages -= vma->vm_pgoff;
1993
1994 /* Can we fit all of the mapping? */
1995 vm_len = vma->vm_end - vma->vm_start;
1996 if (vm_len >> PAGE_SHIFT > pages)
1997 return -EINVAL;
1998
1999 /* Ok, let it rip */
2000 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2001}
2002EXPORT_SYMBOL(vm_iomap_memory);
2003
2004static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2005 unsigned long addr, unsigned long end,
2006 pte_fn_t fn, void *data)
2007{
2008 pte_t *pte;
2009 int err;
2010 spinlock_t *uninitialized_var(ptl);
2011
2012 pte = (mm == &init_mm) ?
2013 pte_alloc_kernel(pmd, addr) :
2014 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2015 if (!pte)
2016 return -ENOMEM;
2017
2018 BUG_ON(pmd_huge(*pmd));
2019
2020 arch_enter_lazy_mmu_mode();
2021
2022 do {
2023 err = fn(pte++, addr, data);
2024 if (err)
2025 break;
2026 } while (addr += PAGE_SIZE, addr != end);
2027
2028 arch_leave_lazy_mmu_mode();
2029
2030 if (mm != &init_mm)
2031 pte_unmap_unlock(pte-1, ptl);
2032 return err;
2033}
2034
2035static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2036 unsigned long addr, unsigned long end,
2037 pte_fn_t fn, void *data)
2038{
2039 pmd_t *pmd;
2040 unsigned long next;
2041 int err;
2042
2043 BUG_ON(pud_huge(*pud));
2044
2045 pmd = pmd_alloc(mm, pud, addr);
2046 if (!pmd)
2047 return -ENOMEM;
2048 do {
2049 next = pmd_addr_end(addr, end);
2050 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2051 if (err)
2052 break;
2053 } while (pmd++, addr = next, addr != end);
2054 return err;
2055}
2056
2057static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2058 unsigned long addr, unsigned long end,
2059 pte_fn_t fn, void *data)
2060{
2061 pud_t *pud;
2062 unsigned long next;
2063 int err;
2064
2065 pud = pud_alloc(mm, p4d, addr);
2066 if (!pud)
2067 return -ENOMEM;
2068 do {
2069 next = pud_addr_end(addr, end);
2070 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2071 if (err)
2072 break;
2073 } while (pud++, addr = next, addr != end);
2074 return err;
2075}
2076
2077static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2078 unsigned long addr, unsigned long end,
2079 pte_fn_t fn, void *data)
2080{
2081 p4d_t *p4d;
2082 unsigned long next;
2083 int err;
2084
2085 p4d = p4d_alloc(mm, pgd, addr);
2086 if (!p4d)
2087 return -ENOMEM;
2088 do {
2089 next = p4d_addr_end(addr, end);
2090 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2091 if (err)
2092 break;
2093 } while (p4d++, addr = next, addr != end);
2094 return err;
2095}
2096
2097/*
2098 * Scan a region of virtual memory, filling in page tables as necessary
2099 * and calling a provided function on each leaf page table.
2100 */
2101int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2102 unsigned long size, pte_fn_t fn, void *data)
2103{
2104 pgd_t *pgd;
2105 unsigned long next;
2106 unsigned long end = addr + size;
2107 int err;
2108
2109 if (WARN_ON(addr >= end))
2110 return -EINVAL;
2111
2112 pgd = pgd_offset(mm, addr);
2113 do {
2114 next = pgd_addr_end(addr, end);
2115 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2116 if (err)
2117 break;
2118 } while (pgd++, addr = next, addr != end);
2119
2120 return err;
2121}
2122EXPORT_SYMBOL_GPL(apply_to_page_range);
2123
2124/*
2125 * handle_pte_fault chooses page fault handler according to an entry which was
2126 * read non-atomically. Before making any commitment, on those architectures
2127 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2128 * parts, do_swap_page must check under lock before unmapping the pte and
2129 * proceeding (but do_wp_page is only called after already making such a check;
2130 * and do_anonymous_page can safely check later on).
2131 */
2132static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2133 pte_t *page_table, pte_t orig_pte)
2134{
2135 int same = 1;
2136#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2137 if (sizeof(pte_t) > sizeof(unsigned long)) {
2138 spinlock_t *ptl = pte_lockptr(mm, pmd);
2139 spin_lock(ptl);
2140 same = pte_same(*page_table, orig_pte);
2141 spin_unlock(ptl);
2142 }
2143#endif
2144 pte_unmap(page_table);
2145 return same;
2146}
2147
2148static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2149{
2150 debug_dma_assert_idle(src);
2151
2152 /*
2153 * If the source page was a PFN mapping, we don't have
2154 * a "struct page" for it. We do a best-effort copy by
2155 * just copying from the original user address. If that
2156 * fails, we just zero-fill it. Live with it.
2157 */
2158 if (unlikely(!src)) {
2159 void *kaddr = kmap_atomic(dst);
2160 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2161
2162 /*
2163 * This really shouldn't fail, because the page is there
2164 * in the page tables. But it might just be unreadable,
2165 * in which case we just give up and fill the result with
2166 * zeroes.
2167 */
2168 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2169 clear_page(kaddr);
2170 kunmap_atomic(kaddr);
2171 flush_dcache_page(dst);
2172 } else
2173 copy_user_highpage(dst, src, va, vma);
2174}
2175
2176static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2177{
2178 struct file *vm_file = vma->vm_file;
2179
2180 if (vm_file)
2181 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2182
2183 /*
2184 * Special mappings (e.g. VDSO) do not have any file so fake
2185 * a default GFP_KERNEL for them.
2186 */
2187 return GFP_KERNEL;
2188}
2189
2190/*
2191 * Notify the address space that the page is about to become writable so that
2192 * it can prohibit this or wait for the page to get into an appropriate state.
2193 *
2194 * We do this without the lock held, so that it can sleep if it needs to.
2195 */
2196static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2197{
2198 vm_fault_t ret;
2199 struct page *page = vmf->page;
2200 unsigned int old_flags = vmf->flags;
2201
2202 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2203
2204 if (vmf->vma->vm_file &&
2205 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2206 return VM_FAULT_SIGBUS;
2207
2208 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2209 /* Restore original flags so that caller is not surprised */
2210 vmf->flags = old_flags;
2211 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2212 return ret;
2213 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2214 lock_page(page);
2215 if (!page->mapping) {
2216 unlock_page(page);
2217 return 0; /* retry */
2218 }
2219 ret |= VM_FAULT_LOCKED;
2220 } else
2221 VM_BUG_ON_PAGE(!PageLocked(page), page);
2222 return ret;
2223}
2224
2225/*
2226 * Handle dirtying of a page in shared file mapping on a write fault.
2227 *
2228 * The function expects the page to be locked and unlocks it.
2229 */
2230static void fault_dirty_shared_page(struct vm_area_struct *vma,
2231 struct page *page)
2232{
2233 struct address_space *mapping;
2234 bool dirtied;
2235 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2236
2237 dirtied = set_page_dirty(page);
2238 VM_BUG_ON_PAGE(PageAnon(page), page);
2239 /*
2240 * Take a local copy of the address_space - page.mapping may be zeroed
2241 * by truncate after unlock_page(). The address_space itself remains
2242 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2243 * release semantics to prevent the compiler from undoing this copying.
2244 */
2245 mapping = page_rmapping(page);
2246 unlock_page(page);
2247
2248 if ((dirtied || page_mkwrite) && mapping) {
2249 /*
2250 * Some device drivers do not set page.mapping
2251 * but still dirty their pages
2252 */
2253 balance_dirty_pages_ratelimited(mapping);
2254 }
2255
2256 if (!page_mkwrite)
2257 file_update_time(vma->vm_file);
2258}
2259
2260/*
2261 * Handle write page faults for pages that can be reused in the current vma
2262 *
2263 * This can happen either due to the mapping being with the VM_SHARED flag,
2264 * or due to us being the last reference standing to the page. In either
2265 * case, all we need to do here is to mark the page as writable and update
2266 * any related book-keeping.
2267 */
2268static inline void wp_page_reuse(struct vm_fault *vmf)
2269 __releases(vmf->ptl)
2270{
2271 struct vm_area_struct *vma = vmf->vma;
2272 struct page *page = vmf->page;
2273 pte_t entry;
2274 /*
2275 * Clear the pages cpupid information as the existing
2276 * information potentially belongs to a now completely
2277 * unrelated process.
2278 */
2279 if (page)
2280 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2281
2282 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2283 entry = pte_mkyoung(vmf->orig_pte);
2284 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2285 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2286 update_mmu_cache(vma, vmf->address, vmf->pte);
2287 pte_unmap_unlock(vmf->pte, vmf->ptl);
2288}
2289
2290/*
2291 * Handle the case of a page which we actually need to copy to a new page.
2292 *
2293 * Called with mmap_sem locked and the old page referenced, but
2294 * without the ptl held.
2295 *
2296 * High level logic flow:
2297 *
2298 * - Allocate a page, copy the content of the old page to the new one.
2299 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2300 * - Take the PTL. If the pte changed, bail out and release the allocated page
2301 * - If the pte is still the way we remember it, update the page table and all
2302 * relevant references. This includes dropping the reference the page-table
2303 * held to the old page, as well as updating the rmap.
2304 * - In any case, unlock the PTL and drop the reference we took to the old page.
2305 */
2306static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2307{
2308 struct vm_area_struct *vma = vmf->vma;
2309 struct mm_struct *mm = vma->vm_mm;
2310 struct page *old_page = vmf->page;
2311 struct page *new_page = NULL;
2312 pte_t entry;
2313 int page_copied = 0;
2314 struct mem_cgroup *memcg;
2315 struct mmu_notifier_range range;
2316
2317 if (unlikely(anon_vma_prepare(vma)))
2318 goto oom;
2319
2320 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2321 new_page = alloc_zeroed_user_highpage_movable(vma,
2322 vmf->address);
2323 if (!new_page)
2324 goto oom;
2325 } else {
2326 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2327 vmf->address);
2328 if (!new_page)
2329 goto oom;
2330 cow_user_page(new_page, old_page, vmf->address, vma);
2331 }
2332
2333 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2334 goto oom_free_new;
2335
2336 __SetPageUptodate(new_page);
2337
2338 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2339 vmf->address & PAGE_MASK,
2340 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2341 mmu_notifier_invalidate_range_start(&range);
2342
2343 /*
2344 * Re-check the pte - we dropped the lock
2345 */
2346 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2347 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2348 if (old_page) {
2349 if (!PageAnon(old_page)) {
2350 dec_mm_counter_fast(mm,
2351 mm_counter_file(old_page));
2352 inc_mm_counter_fast(mm, MM_ANONPAGES);
2353 }
2354 } else {
2355 inc_mm_counter_fast(mm, MM_ANONPAGES);
2356 }
2357 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2358 entry = mk_pte(new_page, vma->vm_page_prot);
2359 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2360 /*
2361 * Clear the pte entry and flush it first, before updating the
2362 * pte with the new entry. This will avoid a race condition
2363 * seen in the presence of one thread doing SMC and another
2364 * thread doing COW.
2365 */
2366 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2367 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2368 mem_cgroup_commit_charge(new_page, memcg, false, false);
2369 lru_cache_add_active_or_unevictable(new_page, vma);
2370 /*
2371 * We call the notify macro here because, when using secondary
2372 * mmu page tables (such as kvm shadow page tables), we want the
2373 * new page to be mapped directly into the secondary page table.
2374 */
2375 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2376 update_mmu_cache(vma, vmf->address, vmf->pte);
2377 if (old_page) {
2378 /*
2379 * Only after switching the pte to the new page may
2380 * we remove the mapcount here. Otherwise another
2381 * process may come and find the rmap count decremented
2382 * before the pte is switched to the new page, and
2383 * "reuse" the old page writing into it while our pte
2384 * here still points into it and can be read by other
2385 * threads.
2386 *
2387 * The critical issue is to order this
2388 * page_remove_rmap with the ptp_clear_flush above.
2389 * Those stores are ordered by (if nothing else,)
2390 * the barrier present in the atomic_add_negative
2391 * in page_remove_rmap.
2392 *
2393 * Then the TLB flush in ptep_clear_flush ensures that
2394 * no process can access the old page before the
2395 * decremented mapcount is visible. And the old page
2396 * cannot be reused until after the decremented
2397 * mapcount is visible. So transitively, TLBs to
2398 * old page will be flushed before it can be reused.
2399 */
2400 page_remove_rmap(old_page, false);
2401 }
2402
2403 /* Free the old page.. */
2404 new_page = old_page;
2405 page_copied = 1;
2406 } else {
2407 mem_cgroup_cancel_charge(new_page, memcg, false);
2408 }
2409
2410 if (new_page)
2411 put_page(new_page);
2412
2413 pte_unmap_unlock(vmf->pte, vmf->ptl);
2414 /*
2415 * No need to double call mmu_notifier->invalidate_range() callback as
2416 * the above ptep_clear_flush_notify() did already call it.
2417 */
2418 mmu_notifier_invalidate_range_only_end(&range);
2419 if (old_page) {
2420 /*
2421 * Don't let another task, with possibly unlocked vma,
2422 * keep the mlocked page.
2423 */
2424 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2425 lock_page(old_page); /* LRU manipulation */
2426 if (PageMlocked(old_page))
2427 munlock_vma_page(old_page);
2428 unlock_page(old_page);
2429 }
2430 put_page(old_page);
2431 }
2432 return page_copied ? VM_FAULT_WRITE : 0;
2433oom_free_new:
2434 put_page(new_page);
2435oom:
2436 if (old_page)
2437 put_page(old_page);
2438 return VM_FAULT_OOM;
2439}
2440
2441/**
2442 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2443 * writeable once the page is prepared
2444 *
2445 * @vmf: structure describing the fault
2446 *
2447 * This function handles all that is needed to finish a write page fault in a
2448 * shared mapping due to PTE being read-only once the mapped page is prepared.
2449 * It handles locking of PTE and modifying it.
2450 *
2451 * The function expects the page to be locked or other protection against
2452 * concurrent faults / writeback (such as DAX radix tree locks).
2453 *
2454 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2455 * we acquired PTE lock.
2456 */
2457vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2458{
2459 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2460 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2461 &vmf->ptl);
2462 /*
2463 * We might have raced with another page fault while we released the
2464 * pte_offset_map_lock.
2465 */
2466 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2467 pte_unmap_unlock(vmf->pte, vmf->ptl);
2468 return VM_FAULT_NOPAGE;
2469 }
2470 wp_page_reuse(vmf);
2471 return 0;
2472}
2473
2474/*
2475 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2476 * mapping
2477 */
2478static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2479{
2480 struct vm_area_struct *vma = vmf->vma;
2481
2482 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2483 vm_fault_t ret;
2484
2485 pte_unmap_unlock(vmf->pte, vmf->ptl);
2486 vmf->flags |= FAULT_FLAG_MKWRITE;
2487 ret = vma->vm_ops->pfn_mkwrite(vmf);
2488 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2489 return ret;
2490 return finish_mkwrite_fault(vmf);
2491 }
2492 wp_page_reuse(vmf);
2493 return VM_FAULT_WRITE;
2494}
2495
2496static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2497 __releases(vmf->ptl)
2498{
2499 struct vm_area_struct *vma = vmf->vma;
2500
2501 get_page(vmf->page);
2502
2503 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2504 vm_fault_t tmp;
2505
2506 pte_unmap_unlock(vmf->pte, vmf->ptl);
2507 tmp = do_page_mkwrite(vmf);
2508 if (unlikely(!tmp || (tmp &
2509 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2510 put_page(vmf->page);
2511 return tmp;
2512 }
2513 tmp = finish_mkwrite_fault(vmf);
2514 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2515 unlock_page(vmf->page);
2516 put_page(vmf->page);
2517 return tmp;
2518 }
2519 } else {
2520 wp_page_reuse(vmf);
2521 lock_page(vmf->page);
2522 }
2523 fault_dirty_shared_page(vma, vmf->page);
2524 put_page(vmf->page);
2525
2526 return VM_FAULT_WRITE;
2527}
2528
2529/*
2530 * This routine handles present pages, when users try to write
2531 * to a shared page. It is done by copying the page to a new address
2532 * and decrementing the shared-page counter for the old page.
2533 *
2534 * Note that this routine assumes that the protection checks have been
2535 * done by the caller (the low-level page fault routine in most cases).
2536 * Thus we can safely just mark it writable once we've done any necessary
2537 * COW.
2538 *
2539 * We also mark the page dirty at this point even though the page will
2540 * change only once the write actually happens. This avoids a few races,
2541 * and potentially makes it more efficient.
2542 *
2543 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544 * but allow concurrent faults), with pte both mapped and locked.
2545 * We return with mmap_sem still held, but pte unmapped and unlocked.
2546 */
2547static vm_fault_t do_wp_page(struct vm_fault *vmf)
2548 __releases(vmf->ptl)
2549{
2550 struct vm_area_struct *vma = vmf->vma;
2551
2552 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2553 if (!vmf->page) {
2554 /*
2555 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2556 * VM_PFNMAP VMA.
2557 *
2558 * We should not cow pages in a shared writeable mapping.
2559 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2560 */
2561 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2562 (VM_WRITE|VM_SHARED))
2563 return wp_pfn_shared(vmf);
2564
2565 pte_unmap_unlock(vmf->pte, vmf->ptl);
2566 return wp_page_copy(vmf);
2567 }
2568
2569 /*
2570 * Take out anonymous pages first, anonymous shared vmas are
2571 * not dirty accountable.
2572 */
2573 if (PageAnon(vmf->page)) {
2574 int total_map_swapcount;
2575 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2576 page_count(vmf->page) != 1))
2577 goto copy;
2578 if (!trylock_page(vmf->page)) {
2579 get_page(vmf->page);
2580 pte_unmap_unlock(vmf->pte, vmf->ptl);
2581 lock_page(vmf->page);
2582 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2583 vmf->address, &vmf->ptl);
2584 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2585 unlock_page(vmf->page);
2586 pte_unmap_unlock(vmf->pte, vmf->ptl);
2587 put_page(vmf->page);
2588 return 0;
2589 }
2590 put_page(vmf->page);
2591 }
2592 if (PageKsm(vmf->page)) {
2593 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2594 vmf->address);
2595 unlock_page(vmf->page);
2596 if (!reused)
2597 goto copy;
2598 wp_page_reuse(vmf);
2599 return VM_FAULT_WRITE;
2600 }
2601 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2602 if (total_map_swapcount == 1) {
2603 /*
2604 * The page is all ours. Move it to
2605 * our anon_vma so the rmap code will
2606 * not search our parent or siblings.
2607 * Protected against the rmap code by
2608 * the page lock.
2609 */
2610 page_move_anon_rmap(vmf->page, vma);
2611 }
2612 unlock_page(vmf->page);
2613 wp_page_reuse(vmf);
2614 return VM_FAULT_WRITE;
2615 }
2616 unlock_page(vmf->page);
2617 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2618 (VM_WRITE|VM_SHARED))) {
2619 return wp_page_shared(vmf);
2620 }
2621copy:
2622 /*
2623 * Ok, we need to copy. Oh, well..
2624 */
2625 get_page(vmf->page);
2626
2627 pte_unmap_unlock(vmf->pte, vmf->ptl);
2628 return wp_page_copy(vmf);
2629}
2630
2631static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2632 unsigned long start_addr, unsigned long end_addr,
2633 struct zap_details *details)
2634{
2635 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2636}
2637
2638static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2639 struct zap_details *details)
2640{
2641 struct vm_area_struct *vma;
2642 pgoff_t vba, vea, zba, zea;
2643
2644 vma_interval_tree_foreach(vma, root,
2645 details->first_index, details->last_index) {
2646
2647 vba = vma->vm_pgoff;
2648 vea = vba + vma_pages(vma) - 1;
2649 zba = details->first_index;
2650 if (zba < vba)
2651 zba = vba;
2652 zea = details->last_index;
2653 if (zea > vea)
2654 zea = vea;
2655
2656 unmap_mapping_range_vma(vma,
2657 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2658 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2659 details);
2660 }
2661}
2662
2663/**
2664 * unmap_mapping_pages() - Unmap pages from processes.
2665 * @mapping: The address space containing pages to be unmapped.
2666 * @start: Index of first page to be unmapped.
2667 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2668 * @even_cows: Whether to unmap even private COWed pages.
2669 *
2670 * Unmap the pages in this address space from any userspace process which
2671 * has them mmaped. Generally, you want to remove COWed pages as well when
2672 * a file is being truncated, but not when invalidating pages from the page
2673 * cache.
2674 */
2675void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2676 pgoff_t nr, bool even_cows)
2677{
2678 struct zap_details details = { };
2679
2680 details.check_mapping = even_cows ? NULL : mapping;
2681 details.first_index = start;
2682 details.last_index = start + nr - 1;
2683 if (details.last_index < details.first_index)
2684 details.last_index = ULONG_MAX;
2685
2686 i_mmap_lock_write(mapping);
2687 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2688 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2689 i_mmap_unlock_write(mapping);
2690}
2691
2692/**
2693 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2694 * address_space corresponding to the specified byte range in the underlying
2695 * file.
2696 *
2697 * @mapping: the address space containing mmaps to be unmapped.
2698 * @holebegin: byte in first page to unmap, relative to the start of
2699 * the underlying file. This will be rounded down to a PAGE_SIZE
2700 * boundary. Note that this is different from truncate_pagecache(), which
2701 * must keep the partial page. In contrast, we must get rid of
2702 * partial pages.
2703 * @holelen: size of prospective hole in bytes. This will be rounded
2704 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2705 * end of the file.
2706 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2707 * but 0 when invalidating pagecache, don't throw away private data.
2708 */
2709void unmap_mapping_range(struct address_space *mapping,
2710 loff_t const holebegin, loff_t const holelen, int even_cows)
2711{
2712 pgoff_t hba = holebegin >> PAGE_SHIFT;
2713 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2714
2715 /* Check for overflow. */
2716 if (sizeof(holelen) > sizeof(hlen)) {
2717 long long holeend =
2718 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2719 if (holeend & ~(long long)ULONG_MAX)
2720 hlen = ULONG_MAX - hba + 1;
2721 }
2722
2723 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2724}
2725EXPORT_SYMBOL(unmap_mapping_range);
2726
2727/*
2728 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2729 * but allow concurrent faults), and pte mapped but not yet locked.
2730 * We return with pte unmapped and unlocked.
2731 *
2732 * We return with the mmap_sem locked or unlocked in the same cases
2733 * as does filemap_fault().
2734 */
2735vm_fault_t do_swap_page(struct vm_fault *vmf)
2736{
2737 struct vm_area_struct *vma = vmf->vma;
2738 struct page *page = NULL, *swapcache;
2739 struct mem_cgroup *memcg;
2740 swp_entry_t entry;
2741 pte_t pte;
2742 int locked;
2743 int exclusive = 0;
2744 vm_fault_t ret = 0;
2745
2746 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2747 goto out;
2748
2749 entry = pte_to_swp_entry(vmf->orig_pte);
2750 if (unlikely(non_swap_entry(entry))) {
2751 if (is_migration_entry(entry)) {
2752 migration_entry_wait(vma->vm_mm, vmf->pmd,
2753 vmf->address);
2754 } else if (is_device_private_entry(entry)) {
2755 vmf->page = device_private_entry_to_page(entry);
2756 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2757 } else if (is_hwpoison_entry(entry)) {
2758 ret = VM_FAULT_HWPOISON;
2759 } else {
2760 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2761 ret = VM_FAULT_SIGBUS;
2762 }
2763 goto out;
2764 }
2765
2766
2767 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2768 page = lookup_swap_cache(entry, vma, vmf->address);
2769 swapcache = page;
2770
2771 if (!page) {
2772 struct swap_info_struct *si = swp_swap_info(entry);
2773
2774 if (si->flags & SWP_SYNCHRONOUS_IO &&
2775 __swap_count(entry) == 1) {
2776 /* skip swapcache */
2777 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2778 vmf->address);
2779 if (page) {
2780 __SetPageLocked(page);
2781 __SetPageSwapBacked(page);
2782 set_page_private(page, entry.val);
2783 lru_cache_add_anon(page);
2784 swap_readpage(page, true);
2785 }
2786 } else {
2787 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2788 vmf);
2789 swapcache = page;
2790 }
2791
2792 if (!page) {
2793 /*
2794 * Back out if somebody else faulted in this pte
2795 * while we released the pte lock.
2796 */
2797 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2798 vmf->address, &vmf->ptl);
2799 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2800 ret = VM_FAULT_OOM;
2801 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2802 goto unlock;
2803 }
2804
2805 /* Had to read the page from swap area: Major fault */
2806 ret = VM_FAULT_MAJOR;
2807 count_vm_event(PGMAJFAULT);
2808 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2809 } else if (PageHWPoison(page)) {
2810 /*
2811 * hwpoisoned dirty swapcache pages are kept for killing
2812 * owner processes (which may be unknown at hwpoison time)
2813 */
2814 ret = VM_FAULT_HWPOISON;
2815 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2816 goto out_release;
2817 }
2818
2819 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2820
2821 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2822 if (!locked) {
2823 ret |= VM_FAULT_RETRY;
2824 goto out_release;
2825 }
2826
2827 /*
2828 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2829 * release the swapcache from under us. The page pin, and pte_same
2830 * test below, are not enough to exclude that. Even if it is still
2831 * swapcache, we need to check that the page's swap has not changed.
2832 */
2833 if (unlikely((!PageSwapCache(page) ||
2834 page_private(page) != entry.val)) && swapcache)
2835 goto out_page;
2836
2837 page = ksm_might_need_to_copy(page, vma, vmf->address);
2838 if (unlikely(!page)) {
2839 ret = VM_FAULT_OOM;
2840 page = swapcache;
2841 goto out_page;
2842 }
2843
2844 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2845 &memcg, false)) {
2846 ret = VM_FAULT_OOM;
2847 goto out_page;
2848 }
2849
2850 /*
2851 * Back out if somebody else already faulted in this pte.
2852 */
2853 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2854 &vmf->ptl);
2855 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2856 goto out_nomap;
2857
2858 if (unlikely(!PageUptodate(page))) {
2859 ret = VM_FAULT_SIGBUS;
2860 goto out_nomap;
2861 }
2862
2863 /*
2864 * The page isn't present yet, go ahead with the fault.
2865 *
2866 * Be careful about the sequence of operations here.
2867 * To get its accounting right, reuse_swap_page() must be called
2868 * while the page is counted on swap but not yet in mapcount i.e.
2869 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2870 * must be called after the swap_free(), or it will never succeed.
2871 */
2872
2873 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2874 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2875 pte = mk_pte(page, vma->vm_page_prot);
2876 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2877 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2878 vmf->flags &= ~FAULT_FLAG_WRITE;
2879 ret |= VM_FAULT_WRITE;
2880 exclusive = RMAP_EXCLUSIVE;
2881 }
2882 flush_icache_page(vma, page);
2883 if (pte_swp_soft_dirty(vmf->orig_pte))
2884 pte = pte_mksoft_dirty(pte);
2885 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2886 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2887 vmf->orig_pte = pte;
2888
2889 /* ksm created a completely new copy */
2890 if (unlikely(page != swapcache && swapcache)) {
2891 page_add_new_anon_rmap(page, vma, vmf->address, false);
2892 mem_cgroup_commit_charge(page, memcg, false, false);
2893 lru_cache_add_active_or_unevictable(page, vma);
2894 } else {
2895 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2896 mem_cgroup_commit_charge(page, memcg, true, false);
2897 activate_page(page);
2898 }
2899
2900 swap_free(entry);
2901 if (mem_cgroup_swap_full(page) ||
2902 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2903 try_to_free_swap(page);
2904 unlock_page(page);
2905 if (page != swapcache && swapcache) {
2906 /*
2907 * Hold the lock to avoid the swap entry to be reused
2908 * until we take the PT lock for the pte_same() check
2909 * (to avoid false positives from pte_same). For
2910 * further safety release the lock after the swap_free
2911 * so that the swap count won't change under a
2912 * parallel locked swapcache.
2913 */
2914 unlock_page(swapcache);
2915 put_page(swapcache);
2916 }
2917
2918 if (vmf->flags & FAULT_FLAG_WRITE) {
2919 ret |= do_wp_page(vmf);
2920 if (ret & VM_FAULT_ERROR)
2921 ret &= VM_FAULT_ERROR;
2922 goto out;
2923 }
2924
2925 /* No need to invalidate - it was non-present before */
2926 update_mmu_cache(vma, vmf->address, vmf->pte);
2927unlock:
2928 pte_unmap_unlock(vmf->pte, vmf->ptl);
2929out:
2930 return ret;
2931out_nomap:
2932 mem_cgroup_cancel_charge(page, memcg, false);
2933 pte_unmap_unlock(vmf->pte, vmf->ptl);
2934out_page:
2935 unlock_page(page);
2936out_release:
2937 put_page(page);
2938 if (page != swapcache && swapcache) {
2939 unlock_page(swapcache);
2940 put_page(swapcache);
2941 }
2942 return ret;
2943}
2944
2945/*
2946 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2947 * but allow concurrent faults), and pte mapped but not yet locked.
2948 * We return with mmap_sem still held, but pte unmapped and unlocked.
2949 */
2950static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2951{
2952 struct vm_area_struct *vma = vmf->vma;
2953 struct mem_cgroup *memcg;
2954 struct page *page;
2955 vm_fault_t ret = 0;
2956 pte_t entry;
2957
2958 /* File mapping without ->vm_ops ? */
2959 if (vma->vm_flags & VM_SHARED)
2960 return VM_FAULT_SIGBUS;
2961
2962 /*
2963 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2964 * pte_offset_map() on pmds where a huge pmd might be created
2965 * from a different thread.
2966 *
2967 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2968 * parallel threads are excluded by other means.
2969 *
2970 * Here we only have down_read(mmap_sem).
2971 */
2972 if (pte_alloc(vma->vm_mm, vmf->pmd))
2973 return VM_FAULT_OOM;
2974
2975 /* See the comment in pte_alloc_one_map() */
2976 if (unlikely(pmd_trans_unstable(vmf->pmd)))
2977 return 0;
2978
2979 /* Use the zero-page for reads */
2980 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2981 !mm_forbids_zeropage(vma->vm_mm)) {
2982 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2983 vma->vm_page_prot));
2984 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2985 vmf->address, &vmf->ptl);
2986 if (!pte_none(*vmf->pte))
2987 goto unlock;
2988 ret = check_stable_address_space(vma->vm_mm);
2989 if (ret)
2990 goto unlock;
2991 /* Deliver the page fault to userland, check inside PT lock */
2992 if (userfaultfd_missing(vma)) {
2993 pte_unmap_unlock(vmf->pte, vmf->ptl);
2994 return handle_userfault(vmf, VM_UFFD_MISSING);
2995 }
2996 goto setpte;
2997 }
2998
2999 /* Allocate our own private page. */
3000 if (unlikely(anon_vma_prepare(vma)))
3001 goto oom;
3002 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3003 if (!page)
3004 goto oom;
3005
3006 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3007 false))
3008 goto oom_free_page;
3009
3010 /*
3011 * The memory barrier inside __SetPageUptodate makes sure that
3012 * preceeding stores to the page contents become visible before
3013 * the set_pte_at() write.
3014 */
3015 __SetPageUptodate(page);
3016
3017 entry = mk_pte(page, vma->vm_page_prot);
3018 if (vma->vm_flags & VM_WRITE)
3019 entry = pte_mkwrite(pte_mkdirty(entry));
3020
3021 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3022 &vmf->ptl);
3023 if (!pte_none(*vmf->pte))
3024 goto release;
3025
3026 ret = check_stable_address_space(vma->vm_mm);
3027 if (ret)
3028 goto release;
3029
3030 /* Deliver the page fault to userland, check inside PT lock */
3031 if (userfaultfd_missing(vma)) {
3032 pte_unmap_unlock(vmf->pte, vmf->ptl);
3033 mem_cgroup_cancel_charge(page, memcg, false);
3034 put_page(page);
3035 return handle_userfault(vmf, VM_UFFD_MISSING);
3036 }
3037
3038 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3039 page_add_new_anon_rmap(page, vma, vmf->address, false);
3040 mem_cgroup_commit_charge(page, memcg, false, false);
3041 lru_cache_add_active_or_unevictable(page, vma);
3042setpte:
3043 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3044
3045 /* No need to invalidate - it was non-present before */
3046 update_mmu_cache(vma, vmf->address, vmf->pte);
3047unlock:
3048 pte_unmap_unlock(vmf->pte, vmf->ptl);
3049 return ret;
3050release:
3051 mem_cgroup_cancel_charge(page, memcg, false);
3052 put_page(page);
3053 goto unlock;
3054oom_free_page:
3055 put_page(page);
3056oom:
3057 return VM_FAULT_OOM;
3058}
3059
3060/*
3061 * The mmap_sem must have been held on entry, and may have been
3062 * released depending on flags and vma->vm_ops->fault() return value.
3063 * See filemap_fault() and __lock_page_retry().
3064 */
3065static vm_fault_t __do_fault(struct vm_fault *vmf)
3066{
3067 struct vm_area_struct *vma = vmf->vma;
3068 vm_fault_t ret;
3069
3070 /*
3071 * Preallocate pte before we take page_lock because this might lead to
3072 * deadlocks for memcg reclaim which waits for pages under writeback:
3073 * lock_page(A)
3074 * SetPageWriteback(A)
3075 * unlock_page(A)
3076 * lock_page(B)
3077 * lock_page(B)
3078 * pte_alloc_pne
3079 * shrink_page_list
3080 * wait_on_page_writeback(A)
3081 * SetPageWriteback(B)
3082 * unlock_page(B)
3083 * # flush A, B to clear the writeback
3084 */
3085 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3086 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3087 if (!vmf->prealloc_pte)
3088 return VM_FAULT_OOM;
3089 smp_wmb(); /* See comment in __pte_alloc() */
3090 }
3091
3092 ret = vma->vm_ops->fault(vmf);
3093 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3094 VM_FAULT_DONE_COW)))
3095 return ret;
3096
3097 if (unlikely(PageHWPoison(vmf->page))) {
3098 if (ret & VM_FAULT_LOCKED)
3099 unlock_page(vmf->page);
3100 put_page(vmf->page);
3101 vmf->page = NULL;
3102 return VM_FAULT_HWPOISON;
3103 }
3104
3105 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3106 lock_page(vmf->page);
3107 else
3108 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3109
3110 return ret;
3111}
3112
3113/*
3114 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3115 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3116 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3117 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3118 */
3119static int pmd_devmap_trans_unstable(pmd_t *pmd)
3120{
3121 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3122}
3123
3124static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3125{
3126 struct vm_area_struct *vma = vmf->vma;
3127
3128 if (!pmd_none(*vmf->pmd))
3129 goto map_pte;
3130 if (vmf->prealloc_pte) {
3131 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3132 if (unlikely(!pmd_none(*vmf->pmd))) {
3133 spin_unlock(vmf->ptl);
3134 goto map_pte;
3135 }
3136
3137 mm_inc_nr_ptes(vma->vm_mm);
3138 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3139 spin_unlock(vmf->ptl);
3140 vmf->prealloc_pte = NULL;
3141 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3142 return VM_FAULT_OOM;
3143 }
3144map_pte:
3145 /*
3146 * If a huge pmd materialized under us just retry later. Use
3147 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3148 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3149 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3150 * running immediately after a huge pmd fault in a different thread of
3151 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3152 * All we have to ensure is that it is a regular pmd that we can walk
3153 * with pte_offset_map() and we can do that through an atomic read in
3154 * C, which is what pmd_trans_unstable() provides.
3155 */
3156 if (pmd_devmap_trans_unstable(vmf->pmd))
3157 return VM_FAULT_NOPAGE;
3158
3159 /*
3160 * At this point we know that our vmf->pmd points to a page of ptes
3161 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3162 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3163 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3164 * be valid and we will re-check to make sure the vmf->pte isn't
3165 * pte_none() under vmf->ptl protection when we return to
3166 * alloc_set_pte().
3167 */
3168 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3169 &vmf->ptl);
3170 return 0;
3171}
3172
3173#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3174static void deposit_prealloc_pte(struct vm_fault *vmf)
3175{
3176 struct vm_area_struct *vma = vmf->vma;
3177
3178 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3179 /*
3180 * We are going to consume the prealloc table,
3181 * count that as nr_ptes.
3182 */
3183 mm_inc_nr_ptes(vma->vm_mm);
3184 vmf->prealloc_pte = NULL;
3185}
3186
3187static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3188{
3189 struct vm_area_struct *vma = vmf->vma;
3190 bool write = vmf->flags & FAULT_FLAG_WRITE;
3191 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3192 pmd_t entry;
3193 int i;
3194 vm_fault_t ret;
3195
3196 if (!transhuge_vma_suitable(vma, haddr))
3197 return VM_FAULT_FALLBACK;
3198
3199 ret = VM_FAULT_FALLBACK;
3200 page = compound_head(page);
3201
3202 /*
3203 * Archs like ppc64 need additonal space to store information
3204 * related to pte entry. Use the preallocated table for that.
3205 */
3206 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3207 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3208 if (!vmf->prealloc_pte)
3209 return VM_FAULT_OOM;
3210 smp_wmb(); /* See comment in __pte_alloc() */
3211 }
3212
3213 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3214 if (unlikely(!pmd_none(*vmf->pmd)))
3215 goto out;
3216
3217 for (i = 0; i < HPAGE_PMD_NR; i++)
3218 flush_icache_page(vma, page + i);
3219
3220 entry = mk_huge_pmd(page, vma->vm_page_prot);
3221 if (write)
3222 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3223
3224 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3225 page_add_file_rmap(page, true);
3226 /*
3227 * deposit and withdraw with pmd lock held
3228 */
3229 if (arch_needs_pgtable_deposit())
3230 deposit_prealloc_pte(vmf);
3231
3232 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3233
3234 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3235
3236 /* fault is handled */
3237 ret = 0;
3238 count_vm_event(THP_FILE_MAPPED);
3239out:
3240 spin_unlock(vmf->ptl);
3241 return ret;
3242}
3243#else
3244static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3245{
3246 BUILD_BUG();
3247 return 0;
3248}
3249#endif
3250
3251/**
3252 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3253 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3254 *
3255 * @vmf: fault environment
3256 * @memcg: memcg to charge page (only for private mappings)
3257 * @page: page to map
3258 *
3259 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3260 * return.
3261 *
3262 * Target users are page handler itself and implementations of
3263 * vm_ops->map_pages.
3264 *
3265 * Return: %0 on success, %VM_FAULT_ code in case of error.
3266 */
3267vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3268 struct page *page)
3269{
3270 struct vm_area_struct *vma = vmf->vma;
3271 bool write = vmf->flags & FAULT_FLAG_WRITE;
3272 pte_t entry;
3273 vm_fault_t ret;
3274
3275 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3276 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3277 /* THP on COW? */
3278 VM_BUG_ON_PAGE(memcg, page);
3279
3280 ret = do_set_pmd(vmf, page);
3281 if (ret != VM_FAULT_FALLBACK)
3282 return ret;
3283 }
3284
3285 if (!vmf->pte) {
3286 ret = pte_alloc_one_map(vmf);
3287 if (ret)
3288 return ret;
3289 }
3290
3291 /* Re-check under ptl */
3292 if (unlikely(!pte_none(*vmf->pte)))
3293 return VM_FAULT_NOPAGE;
3294
3295 flush_icache_page(vma, page);
3296 entry = mk_pte(page, vma->vm_page_prot);
3297 if (write)
3298 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3299 /* copy-on-write page */
3300 if (write && !(vma->vm_flags & VM_SHARED)) {
3301 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3302 page_add_new_anon_rmap(page, vma, vmf->address, false);
3303 mem_cgroup_commit_charge(page, memcg, false, false);
3304 lru_cache_add_active_or_unevictable(page, vma);
3305 } else {
3306 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3307 page_add_file_rmap(page, false);
3308 }
3309 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3310
3311 /* no need to invalidate: a not-present page won't be cached */
3312 update_mmu_cache(vma, vmf->address, vmf->pte);
3313
3314 return 0;
3315}
3316
3317
3318/**
3319 * finish_fault - finish page fault once we have prepared the page to fault
3320 *
3321 * @vmf: structure describing the fault
3322 *
3323 * This function handles all that is needed to finish a page fault once the
3324 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3325 * given page, adds reverse page mapping, handles memcg charges and LRU
3326 * addition.
3327 *
3328 * The function expects the page to be locked and on success it consumes a
3329 * reference of a page being mapped (for the PTE which maps it).
3330 *
3331 * Return: %0 on success, %VM_FAULT_ code in case of error.
3332 */
3333vm_fault_t finish_fault(struct vm_fault *vmf)
3334{
3335 struct page *page;
3336 vm_fault_t ret = 0;
3337
3338 /* Did we COW the page? */
3339 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3340 !(vmf->vma->vm_flags & VM_SHARED))
3341 page = vmf->cow_page;
3342 else
3343 page = vmf->page;
3344
3345 /*
3346 * check even for read faults because we might have lost our CoWed
3347 * page
3348 */
3349 if (!(vmf->vma->vm_flags & VM_SHARED))
3350 ret = check_stable_address_space(vmf->vma->vm_mm);
3351 if (!ret)
3352 ret = alloc_set_pte(vmf, vmf->memcg, page);
3353 if (vmf->pte)
3354 pte_unmap_unlock(vmf->pte, vmf->ptl);
3355 return ret;
3356}
3357
3358static unsigned long fault_around_bytes __read_mostly =
3359 rounddown_pow_of_two(65536);
3360
3361#ifdef CONFIG_DEBUG_FS
3362static int fault_around_bytes_get(void *data, u64 *val)
3363{
3364 *val = fault_around_bytes;
3365 return 0;
3366}
3367
3368/*
3369 * fault_around_bytes must be rounded down to the nearest page order as it's
3370 * what do_fault_around() expects to see.
3371 */
3372static int fault_around_bytes_set(void *data, u64 val)
3373{
3374 if (val / PAGE_SIZE > PTRS_PER_PTE)
3375 return -EINVAL;
3376 if (val > PAGE_SIZE)
3377 fault_around_bytes = rounddown_pow_of_two(val);
3378 else
3379 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3380 return 0;
3381}
3382DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3383 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3384
3385static int __init fault_around_debugfs(void)
3386{
3387 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3388 &fault_around_bytes_fops);
3389 return 0;
3390}
3391late_initcall(fault_around_debugfs);
3392#endif
3393
3394/*
3395 * do_fault_around() tries to map few pages around the fault address. The hope
3396 * is that the pages will be needed soon and this will lower the number of
3397 * faults to handle.
3398 *
3399 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3400 * not ready to be mapped: not up-to-date, locked, etc.
3401 *
3402 * This function is called with the page table lock taken. In the split ptlock
3403 * case the page table lock only protects only those entries which belong to
3404 * the page table corresponding to the fault address.
3405 *
3406 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3407 * only once.
3408 *
3409 * fault_around_bytes defines how many bytes we'll try to map.
3410 * do_fault_around() expects it to be set to a power of two less than or equal
3411 * to PTRS_PER_PTE.
3412 *
3413 * The virtual address of the area that we map is naturally aligned to
3414 * fault_around_bytes rounded down to the machine page size
3415 * (and therefore to page order). This way it's easier to guarantee
3416 * that we don't cross page table boundaries.
3417 */
3418static vm_fault_t do_fault_around(struct vm_fault *vmf)
3419{
3420 unsigned long address = vmf->address, nr_pages, mask;
3421 pgoff_t start_pgoff = vmf->pgoff;
3422 pgoff_t end_pgoff;
3423 int off;
3424 vm_fault_t ret = 0;
3425
3426 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3427 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3428
3429 vmf->address = max(address & mask, vmf->vma->vm_start);
3430 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3431 start_pgoff -= off;
3432
3433 /*
3434 * end_pgoff is either the end of the page table, the end of
3435 * the vma or nr_pages from start_pgoff, depending what is nearest.
3436 */
3437 end_pgoff = start_pgoff -
3438 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3439 PTRS_PER_PTE - 1;
3440 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3441 start_pgoff + nr_pages - 1);
3442
3443 if (pmd_none(*vmf->pmd)) {
3444 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3445 if (!vmf->prealloc_pte)
3446 goto out;
3447 smp_wmb(); /* See comment in __pte_alloc() */
3448 }
3449
3450 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3451
3452 /* Huge page is mapped? Page fault is solved */
3453 if (pmd_trans_huge(*vmf->pmd)) {
3454 ret = VM_FAULT_NOPAGE;
3455 goto out;
3456 }
3457
3458 /* ->map_pages() haven't done anything useful. Cold page cache? */
3459 if (!vmf->pte)
3460 goto out;
3461
3462 /* check if the page fault is solved */
3463 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3464 if (!pte_none(*vmf->pte))
3465 ret = VM_FAULT_NOPAGE;
3466 pte_unmap_unlock(vmf->pte, vmf->ptl);
3467out:
3468 vmf->address = address;
3469 vmf->pte = NULL;
3470 return ret;
3471}
3472
3473static vm_fault_t do_read_fault(struct vm_fault *vmf)
3474{
3475 struct vm_area_struct *vma = vmf->vma;
3476 vm_fault_t ret = 0;
3477
3478 /*
3479 * Let's call ->map_pages() first and use ->fault() as fallback
3480 * if page by the offset is not ready to be mapped (cold cache or
3481 * something).
3482 */
3483 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3484 ret = do_fault_around(vmf);
3485 if (ret)
3486 return ret;
3487 }
3488
3489 ret = __do_fault(vmf);
3490 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3491 return ret;
3492
3493 ret |= finish_fault(vmf);
3494 unlock_page(vmf->page);
3495 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3496 put_page(vmf->page);
3497 return ret;
3498}
3499
3500static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3501{
3502 struct vm_area_struct *vma = vmf->vma;
3503 vm_fault_t ret;
3504
3505 if (unlikely(anon_vma_prepare(vma)))
3506 return VM_FAULT_OOM;
3507
3508 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3509 if (!vmf->cow_page)
3510 return VM_FAULT_OOM;
3511
3512 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3513 &vmf->memcg, false)) {
3514 put_page(vmf->cow_page);
3515 return VM_FAULT_OOM;
3516 }
3517
3518 ret = __do_fault(vmf);
3519 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3520 goto uncharge_out;
3521 if (ret & VM_FAULT_DONE_COW)
3522 return ret;
3523
3524 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3525 __SetPageUptodate(vmf->cow_page);
3526
3527 ret |= finish_fault(vmf);
3528 unlock_page(vmf->page);
3529 put_page(vmf->page);
3530 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3531 goto uncharge_out;
3532 return ret;
3533uncharge_out:
3534 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3535 put_page(vmf->cow_page);
3536 return ret;
3537}
3538
3539static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3540{
3541 struct vm_area_struct *vma = vmf->vma;
3542 vm_fault_t ret, tmp;
3543
3544 ret = __do_fault(vmf);
3545 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3546 return ret;
3547
3548 /*
3549 * Check if the backing address space wants to know that the page is
3550 * about to become writable
3551 */
3552 if (vma->vm_ops->page_mkwrite) {
3553 unlock_page(vmf->page);
3554 tmp = do_page_mkwrite(vmf);
3555 if (unlikely(!tmp ||
3556 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3557 put_page(vmf->page);
3558 return tmp;
3559 }
3560 }
3561
3562 ret |= finish_fault(vmf);
3563 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3564 VM_FAULT_RETRY))) {
3565 unlock_page(vmf->page);
3566 put_page(vmf->page);
3567 return ret;
3568 }
3569
3570 fault_dirty_shared_page(vma, vmf->page);
3571 return ret;
3572}
3573
3574/*
3575 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3576 * but allow concurrent faults).
3577 * The mmap_sem may have been released depending on flags and our
3578 * return value. See filemap_fault() and __lock_page_or_retry().
3579 * If mmap_sem is released, vma may become invalid (for example
3580 * by other thread calling munmap()).
3581 */
3582static vm_fault_t do_fault(struct vm_fault *vmf)
3583{
3584 struct vm_area_struct *vma = vmf->vma;
3585 struct mm_struct *vm_mm = vma->vm_mm;
3586 vm_fault_t ret;
3587
3588 /*
3589 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3590 */
3591 if (!vma->vm_ops->fault) {
3592 /*
3593 * If we find a migration pmd entry or a none pmd entry, which
3594 * should never happen, return SIGBUS
3595 */
3596 if (unlikely(!pmd_present(*vmf->pmd)))
3597 ret = VM_FAULT_SIGBUS;
3598 else {
3599 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3600 vmf->pmd,
3601 vmf->address,
3602 &vmf->ptl);
3603 /*
3604 * Make sure this is not a temporary clearing of pte
3605 * by holding ptl and checking again. A R/M/W update
3606 * of pte involves: take ptl, clearing the pte so that
3607 * we don't have concurrent modification by hardware
3608 * followed by an update.
3609 */
3610 if (unlikely(pte_none(*vmf->pte)))
3611 ret = VM_FAULT_SIGBUS;
3612 else
3613 ret = VM_FAULT_NOPAGE;
3614
3615 pte_unmap_unlock(vmf->pte, vmf->ptl);
3616 }
3617 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3618 ret = do_read_fault(vmf);
3619 else if (!(vma->vm_flags & VM_SHARED))
3620 ret = do_cow_fault(vmf);
3621 else
3622 ret = do_shared_fault(vmf);
3623
3624 /* preallocated pagetable is unused: free it */
3625 if (vmf->prealloc_pte) {
3626 pte_free(vm_mm, vmf->prealloc_pte);
3627 vmf->prealloc_pte = NULL;
3628 }
3629 return ret;
3630}
3631
3632static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3633 unsigned long addr, int page_nid,
3634 int *flags)
3635{
3636 get_page(page);
3637
3638 count_vm_numa_event(NUMA_HINT_FAULTS);
3639 if (page_nid == numa_node_id()) {
3640 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3641 *flags |= TNF_FAULT_LOCAL;
3642 }
3643
3644 return mpol_misplaced(page, vma, addr);
3645}
3646
3647static vm_fault_t do_numa_page(struct vm_fault *vmf)
3648{
3649 struct vm_area_struct *vma = vmf->vma;
3650 struct page *page = NULL;
3651 int page_nid = NUMA_NO_NODE;
3652 int last_cpupid;
3653 int target_nid;
3654 bool migrated = false;
3655 pte_t pte, old_pte;
3656 bool was_writable = pte_savedwrite(vmf->orig_pte);
3657 int flags = 0;
3658
3659 /*
3660 * The "pte" at this point cannot be used safely without
3661 * validation through pte_unmap_same(). It's of NUMA type but
3662 * the pfn may be screwed if the read is non atomic.
3663 */
3664 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3665 spin_lock(vmf->ptl);
3666 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3667 pte_unmap_unlock(vmf->pte, vmf->ptl);
3668 goto out;
3669 }
3670
3671 /*
3672 * Make it present again, Depending on how arch implementes non
3673 * accessible ptes, some can allow access by kernel mode.
3674 */
3675 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3676 pte = pte_modify(old_pte, vma->vm_page_prot);
3677 pte = pte_mkyoung(pte);
3678 if (was_writable)
3679 pte = pte_mkwrite(pte);
3680 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3681 update_mmu_cache(vma, vmf->address, vmf->pte);
3682
3683 page = vm_normal_page(vma, vmf->address, pte);
3684 if (!page) {
3685 pte_unmap_unlock(vmf->pte, vmf->ptl);
3686 return 0;
3687 }
3688
3689 /* TODO: handle PTE-mapped THP */
3690 if (PageCompound(page)) {
3691 pte_unmap_unlock(vmf->pte, vmf->ptl);
3692 return 0;
3693 }
3694
3695 /*
3696 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3697 * much anyway since they can be in shared cache state. This misses
3698 * the case where a mapping is writable but the process never writes
3699 * to it but pte_write gets cleared during protection updates and
3700 * pte_dirty has unpredictable behaviour between PTE scan updates,
3701 * background writeback, dirty balancing and application behaviour.
3702 */
3703 if (!pte_write(pte))
3704 flags |= TNF_NO_GROUP;
3705
3706 /*
3707 * Flag if the page is shared between multiple address spaces. This
3708 * is later used when determining whether to group tasks together
3709 */
3710 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3711 flags |= TNF_SHARED;
3712
3713 last_cpupid = page_cpupid_last(page);
3714 page_nid = page_to_nid(page);
3715 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3716 &flags);
3717 pte_unmap_unlock(vmf->pte, vmf->ptl);
3718 if (target_nid == NUMA_NO_NODE) {
3719 put_page(page);
3720 goto out;
3721 }
3722
3723 /* Migrate to the requested node */
3724 migrated = migrate_misplaced_page(page, vma, target_nid);
3725 if (migrated) {
3726 page_nid = target_nid;
3727 flags |= TNF_MIGRATED;
3728 } else
3729 flags |= TNF_MIGRATE_FAIL;
3730
3731out:
3732 if (page_nid != NUMA_NO_NODE)
3733 task_numa_fault(last_cpupid, page_nid, 1, flags);
3734 return 0;
3735}
3736
3737static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3738{
3739 if (vma_is_anonymous(vmf->vma))
3740 return do_huge_pmd_anonymous_page(vmf);
3741 if (vmf->vma->vm_ops->huge_fault)
3742 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3743 return VM_FAULT_FALLBACK;
3744}
3745
3746/* `inline' is required to avoid gcc 4.1.2 build error */
3747static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3748{
3749 if (vma_is_anonymous(vmf->vma))
3750 return do_huge_pmd_wp_page(vmf, orig_pmd);
3751 if (vmf->vma->vm_ops->huge_fault)
3752 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3753
3754 /* COW handled on pte level: split pmd */
3755 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3756 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3757
3758 return VM_FAULT_FALLBACK;
3759}
3760
3761static inline bool vma_is_accessible(struct vm_area_struct *vma)
3762{
3763 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3764}
3765
3766static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3767{
3768#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3769 /* No support for anonymous transparent PUD pages yet */
3770 if (vma_is_anonymous(vmf->vma))
3771 return VM_FAULT_FALLBACK;
3772 if (vmf->vma->vm_ops->huge_fault)
3773 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3774#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3775 return VM_FAULT_FALLBACK;
3776}
3777
3778static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3779{
3780#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3781 /* No support for anonymous transparent PUD pages yet */
3782 if (vma_is_anonymous(vmf->vma))
3783 return VM_FAULT_FALLBACK;
3784 if (vmf->vma->vm_ops->huge_fault)
3785 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3786#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3787 return VM_FAULT_FALLBACK;
3788}
3789
3790/*
3791 * These routines also need to handle stuff like marking pages dirty
3792 * and/or accessed for architectures that don't do it in hardware (most
3793 * RISC architectures). The early dirtying is also good on the i386.
3794 *
3795 * There is also a hook called "update_mmu_cache()" that architectures
3796 * with external mmu caches can use to update those (ie the Sparc or
3797 * PowerPC hashed page tables that act as extended TLBs).
3798 *
3799 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3800 * concurrent faults).
3801 *
3802 * The mmap_sem may have been released depending on flags and our return value.
3803 * See filemap_fault() and __lock_page_or_retry().
3804 */
3805static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3806{
3807 pte_t entry;
3808
3809 if (unlikely(pmd_none(*vmf->pmd))) {
3810 /*
3811 * Leave __pte_alloc() until later: because vm_ops->fault may
3812 * want to allocate huge page, and if we expose page table
3813 * for an instant, it will be difficult to retract from
3814 * concurrent faults and from rmap lookups.
3815 */
3816 vmf->pte = NULL;
3817 } else {
3818 /* See comment in pte_alloc_one_map() */
3819 if (pmd_devmap_trans_unstable(vmf->pmd))
3820 return 0;
3821 /*
3822 * A regular pmd is established and it can't morph into a huge
3823 * pmd from under us anymore at this point because we hold the
3824 * mmap_sem read mode and khugepaged takes it in write mode.
3825 * So now it's safe to run pte_offset_map().
3826 */
3827 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3828 vmf->orig_pte = *vmf->pte;
3829
3830 /*
3831 * some architectures can have larger ptes than wordsize,
3832 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3833 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3834 * accesses. The code below just needs a consistent view
3835 * for the ifs and we later double check anyway with the
3836 * ptl lock held. So here a barrier will do.
3837 */
3838 barrier();
3839 if (pte_none(vmf->orig_pte)) {
3840 pte_unmap(vmf->pte);
3841 vmf->pte = NULL;
3842 }
3843 }
3844
3845 if (!vmf->pte) {
3846 if (vma_is_anonymous(vmf->vma))
3847 return do_anonymous_page(vmf);
3848 else
3849 return do_fault(vmf);
3850 }
3851
3852 if (!pte_present(vmf->orig_pte))
3853 return do_swap_page(vmf);
3854
3855 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3856 return do_numa_page(vmf);
3857
3858 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3859 spin_lock(vmf->ptl);
3860 entry = vmf->orig_pte;
3861 if (unlikely(!pte_same(*vmf->pte, entry)))
3862 goto unlock;
3863 if (vmf->flags & FAULT_FLAG_WRITE) {
3864 if (!pte_write(entry))
3865 return do_wp_page(vmf);
3866 entry = pte_mkdirty(entry);
3867 }
3868 entry = pte_mkyoung(entry);
3869 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3870 vmf->flags & FAULT_FLAG_WRITE)) {
3871 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3872 } else {
3873 /*
3874 * This is needed only for protection faults but the arch code
3875 * is not yet telling us if this is a protection fault or not.
3876 * This still avoids useless tlb flushes for .text page faults
3877 * with threads.
3878 */
3879 if (vmf->flags & FAULT_FLAG_WRITE)
3880 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3881 }
3882unlock:
3883 pte_unmap_unlock(vmf->pte, vmf->ptl);
3884 return 0;
3885}
3886
3887/*
3888 * By the time we get here, we already hold the mm semaphore
3889 *
3890 * The mmap_sem may have been released depending on flags and our
3891 * return value. See filemap_fault() and __lock_page_or_retry().
3892 */
3893static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3894 unsigned long address, unsigned int flags)
3895{
3896 struct vm_fault vmf = {
3897 .vma = vma,
3898 .address = address & PAGE_MASK,
3899 .flags = flags,
3900 .pgoff = linear_page_index(vma, address),
3901 .gfp_mask = __get_fault_gfp_mask(vma),
3902 };
3903 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3904 struct mm_struct *mm = vma->vm_mm;
3905 pgd_t *pgd;
3906 p4d_t *p4d;
3907 vm_fault_t ret;
3908
3909 pgd = pgd_offset(mm, address);
3910 p4d = p4d_alloc(mm, pgd, address);
3911 if (!p4d)
3912 return VM_FAULT_OOM;
3913
3914 vmf.pud = pud_alloc(mm, p4d, address);
3915 if (!vmf.pud)
3916 return VM_FAULT_OOM;
3917 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3918 ret = create_huge_pud(&vmf);
3919 if (!(ret & VM_FAULT_FALLBACK))
3920 return ret;
3921 } else {
3922 pud_t orig_pud = *vmf.pud;
3923
3924 barrier();
3925 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3926
3927 /* NUMA case for anonymous PUDs would go here */
3928
3929 if (dirty && !pud_write(orig_pud)) {
3930 ret = wp_huge_pud(&vmf, orig_pud);
3931 if (!(ret & VM_FAULT_FALLBACK))
3932 return ret;
3933 } else {
3934 huge_pud_set_accessed(&vmf, orig_pud);
3935 return 0;
3936 }
3937 }
3938 }
3939
3940 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3941 if (!vmf.pmd)
3942 return VM_FAULT_OOM;
3943 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3944 ret = create_huge_pmd(&vmf);
3945 if (!(ret & VM_FAULT_FALLBACK))
3946 return ret;
3947 } else {
3948 pmd_t orig_pmd = *vmf.pmd;
3949
3950 barrier();
3951 if (unlikely(is_swap_pmd(orig_pmd))) {
3952 VM_BUG_ON(thp_migration_supported() &&
3953 !is_pmd_migration_entry(orig_pmd));
3954 if (is_pmd_migration_entry(orig_pmd))
3955 pmd_migration_entry_wait(mm, vmf.pmd);
3956 return 0;
3957 }
3958 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3959 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3960 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3961
3962 if (dirty && !pmd_write(orig_pmd)) {
3963 ret = wp_huge_pmd(&vmf, orig_pmd);
3964 if (!(ret & VM_FAULT_FALLBACK))
3965 return ret;
3966 } else {
3967 huge_pmd_set_accessed(&vmf, orig_pmd);
3968 return 0;
3969 }
3970 }
3971 }
3972
3973 return handle_pte_fault(&vmf);
3974}
3975
3976/*
3977 * By the time we get here, we already hold the mm semaphore
3978 *
3979 * The mmap_sem may have been released depending on flags and our
3980 * return value. See filemap_fault() and __lock_page_or_retry().
3981 */
3982vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3983 unsigned int flags)
3984{
3985 vm_fault_t ret;
3986
3987 __set_current_state(TASK_RUNNING);
3988
3989 count_vm_event(PGFAULT);
3990 count_memcg_event_mm(vma->vm_mm, PGFAULT);
3991
3992 /* do counter updates before entering really critical section. */
3993 check_sync_rss_stat(current);
3994
3995 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3996 flags & FAULT_FLAG_INSTRUCTION,
3997 flags & FAULT_FLAG_REMOTE))
3998 return VM_FAULT_SIGSEGV;
3999
4000 /*
4001 * Enable the memcg OOM handling for faults triggered in user
4002 * space. Kernel faults are handled more gracefully.
4003 */
4004 if (flags & FAULT_FLAG_USER)
4005 mem_cgroup_enter_user_fault();
4006
4007 if (unlikely(is_vm_hugetlb_page(vma)))
4008 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4009 else
4010 ret = __handle_mm_fault(vma, address, flags);
4011
4012 if (flags & FAULT_FLAG_USER) {
4013 mem_cgroup_exit_user_fault();
4014 /*
4015 * The task may have entered a memcg OOM situation but
4016 * if the allocation error was handled gracefully (no
4017 * VM_FAULT_OOM), there is no need to kill anything.
4018 * Just clean up the OOM state peacefully.
4019 */
4020 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4021 mem_cgroup_oom_synchronize(false);
4022 }
4023
4024 return ret;
4025}
4026EXPORT_SYMBOL_GPL(handle_mm_fault);
4027
4028#ifndef __PAGETABLE_P4D_FOLDED
4029/*
4030 * Allocate p4d page table.
4031 * We've already handled the fast-path in-line.
4032 */
4033int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4034{
4035 p4d_t *new = p4d_alloc_one(mm, address);
4036 if (!new)
4037 return -ENOMEM;
4038
4039 smp_wmb(); /* See comment in __pte_alloc */
4040
4041 spin_lock(&mm->page_table_lock);
4042 if (pgd_present(*pgd)) /* Another has populated it */
4043 p4d_free(mm, new);
4044 else
4045 pgd_populate(mm, pgd, new);
4046 spin_unlock(&mm->page_table_lock);
4047 return 0;
4048}
4049#endif /* __PAGETABLE_P4D_FOLDED */
4050
4051#ifndef __PAGETABLE_PUD_FOLDED
4052/*
4053 * Allocate page upper directory.
4054 * We've already handled the fast-path in-line.
4055 */
4056int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4057{
4058 pud_t *new = pud_alloc_one(mm, address);
4059 if (!new)
4060 return -ENOMEM;
4061
4062 smp_wmb(); /* See comment in __pte_alloc */
4063
4064 spin_lock(&mm->page_table_lock);
4065#ifndef __ARCH_HAS_5LEVEL_HACK
4066 if (!p4d_present(*p4d)) {
4067 mm_inc_nr_puds(mm);
4068 p4d_populate(mm, p4d, new);
4069 } else /* Another has populated it */
4070 pud_free(mm, new);
4071#else
4072 if (!pgd_present(*p4d)) {
4073 mm_inc_nr_puds(mm);
4074 pgd_populate(mm, p4d, new);
4075 } else /* Another has populated it */
4076 pud_free(mm, new);
4077#endif /* __ARCH_HAS_5LEVEL_HACK */
4078 spin_unlock(&mm->page_table_lock);
4079 return 0;
4080}
4081#endif /* __PAGETABLE_PUD_FOLDED */
4082
4083#ifndef __PAGETABLE_PMD_FOLDED
4084/*
4085 * Allocate page middle directory.
4086 * We've already handled the fast-path in-line.
4087 */
4088int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4089{
4090 spinlock_t *ptl;
4091 pmd_t *new = pmd_alloc_one(mm, address);
4092 if (!new)
4093 return -ENOMEM;
4094
4095 smp_wmb(); /* See comment in __pte_alloc */
4096
4097 ptl = pud_lock(mm, pud);
4098#ifndef __ARCH_HAS_4LEVEL_HACK
4099 if (!pud_present(*pud)) {
4100 mm_inc_nr_pmds(mm);
4101 pud_populate(mm, pud, new);
4102 } else /* Another has populated it */
4103 pmd_free(mm, new);
4104#else
4105 if (!pgd_present(*pud)) {
4106 mm_inc_nr_pmds(mm);
4107 pgd_populate(mm, pud, new);
4108 } else /* Another has populated it */
4109 pmd_free(mm, new);
4110#endif /* __ARCH_HAS_4LEVEL_HACK */
4111 spin_unlock(ptl);
4112 return 0;
4113}
4114#endif /* __PAGETABLE_PMD_FOLDED */
4115
4116static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4117 struct mmu_notifier_range *range,
4118 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4119{
4120 pgd_t *pgd;
4121 p4d_t *p4d;
4122 pud_t *pud;
4123 pmd_t *pmd;
4124 pte_t *ptep;
4125
4126 pgd = pgd_offset(mm, address);
4127 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4128 goto out;
4129
4130 p4d = p4d_offset(pgd, address);
4131 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4132 goto out;
4133
4134 pud = pud_offset(p4d, address);
4135 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4136 goto out;
4137
4138 pmd = pmd_offset(pud, address);
4139 VM_BUG_ON(pmd_trans_huge(*pmd));
4140
4141 if (pmd_huge(*pmd)) {
4142 if (!pmdpp)
4143 goto out;
4144
4145 if (range) {
4146 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4147 NULL, mm, address & PMD_MASK,
4148 (address & PMD_MASK) + PMD_SIZE);
4149 mmu_notifier_invalidate_range_start(range);
4150 }
4151 *ptlp = pmd_lock(mm, pmd);
4152 if (pmd_huge(*pmd)) {
4153 *pmdpp = pmd;
4154 return 0;
4155 }
4156 spin_unlock(*ptlp);
4157 if (range)
4158 mmu_notifier_invalidate_range_end(range);
4159 }
4160
4161 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4162 goto out;
4163
4164 if (range) {
4165 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4166 address & PAGE_MASK,
4167 (address & PAGE_MASK) + PAGE_SIZE);
4168 mmu_notifier_invalidate_range_start(range);
4169 }
4170 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4171 if (!pte_present(*ptep))
4172 goto unlock;
4173 *ptepp = ptep;
4174 return 0;
4175unlock:
4176 pte_unmap_unlock(ptep, *ptlp);
4177 if (range)
4178 mmu_notifier_invalidate_range_end(range);
4179out:
4180 return -EINVAL;
4181}
4182
4183static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4184 pte_t **ptepp, spinlock_t **ptlp)
4185{
4186 int res;
4187
4188 /* (void) is needed to make gcc happy */
4189 (void) __cond_lock(*ptlp,
4190 !(res = __follow_pte_pmd(mm, address, NULL,
4191 ptepp, NULL, ptlp)));
4192 return res;
4193}
4194
4195int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4196 struct mmu_notifier_range *range,
4197 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4198{
4199 int res;
4200
4201 /* (void) is needed to make gcc happy */
4202 (void) __cond_lock(*ptlp,
4203 !(res = __follow_pte_pmd(mm, address, range,
4204 ptepp, pmdpp, ptlp)));
4205 return res;
4206}
4207EXPORT_SYMBOL(follow_pte_pmd);
4208
4209/**
4210 * follow_pfn - look up PFN at a user virtual address
4211 * @vma: memory mapping
4212 * @address: user virtual address
4213 * @pfn: location to store found PFN
4214 *
4215 * Only IO mappings and raw PFN mappings are allowed.
4216 *
4217 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4218 */
4219int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4220 unsigned long *pfn)
4221{
4222 int ret = -EINVAL;
4223 spinlock_t *ptl;
4224 pte_t *ptep;
4225
4226 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4227 return ret;
4228
4229 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4230 if (ret)
4231 return ret;
4232 *pfn = pte_pfn(*ptep);
4233 pte_unmap_unlock(ptep, ptl);
4234 return 0;
4235}
4236EXPORT_SYMBOL(follow_pfn);
4237
4238#ifdef CONFIG_HAVE_IOREMAP_PROT
4239int follow_phys(struct vm_area_struct *vma,
4240 unsigned long address, unsigned int flags,
4241 unsigned long *prot, resource_size_t *phys)
4242{
4243 int ret = -EINVAL;
4244 pte_t *ptep, pte;
4245 spinlock_t *ptl;
4246
4247 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4248 goto out;
4249
4250 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4251 goto out;
4252 pte = *ptep;
4253
4254 if ((flags & FOLL_WRITE) && !pte_write(pte))
4255 goto unlock;
4256
4257 *prot = pgprot_val(pte_pgprot(pte));
4258 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4259
4260 ret = 0;
4261unlock:
4262 pte_unmap_unlock(ptep, ptl);
4263out:
4264 return ret;
4265}
4266
4267int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4268 void *buf, int len, int write)
4269{
4270 resource_size_t phys_addr;
4271 unsigned long prot = 0;
4272 void __iomem *maddr;
4273 int offset = addr & (PAGE_SIZE-1);
4274
4275 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4276 return -EINVAL;
4277
4278 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4279 if (!maddr)
4280 return -ENOMEM;
4281
4282 if (write)
4283 memcpy_toio(maddr + offset, buf, len);
4284 else
4285 memcpy_fromio(buf, maddr + offset, len);
4286 iounmap(maddr);
4287
4288 return len;
4289}
4290EXPORT_SYMBOL_GPL(generic_access_phys);
4291#endif
4292
4293/*
4294 * Access another process' address space as given in mm. If non-NULL, use the
4295 * given task for page fault accounting.
4296 */
4297int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4298 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4299{
4300 struct vm_area_struct *vma;
4301 void *old_buf = buf;
4302 int write = gup_flags & FOLL_WRITE;
4303
4304 if (down_read_killable(&mm->mmap_sem))
4305 return 0;
4306
4307 /* ignore errors, just check how much was successfully transferred */
4308 while (len) {
4309 int bytes, ret, offset;
4310 void *maddr;
4311 struct page *page = NULL;
4312
4313 ret = get_user_pages_remote(tsk, mm, addr, 1,
4314 gup_flags, &page, &vma, NULL);
4315 if (ret <= 0) {
4316#ifndef CONFIG_HAVE_IOREMAP_PROT
4317 break;
4318#else
4319 /*
4320 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4321 * we can access using slightly different code.
4322 */
4323 vma = find_vma(mm, addr);
4324 if (!vma || vma->vm_start > addr)
4325 break;
4326 if (vma->vm_ops && vma->vm_ops->access)
4327 ret = vma->vm_ops->access(vma, addr, buf,
4328 len, write);
4329 if (ret <= 0)
4330 break;
4331 bytes = ret;
4332#endif
4333 } else {
4334 bytes = len;
4335 offset = addr & (PAGE_SIZE-1);
4336 if (bytes > PAGE_SIZE-offset)
4337 bytes = PAGE_SIZE-offset;
4338
4339 maddr = kmap(page);
4340 if (write) {
4341 copy_to_user_page(vma, page, addr,
4342 maddr + offset, buf, bytes);
4343 set_page_dirty_lock(page);
4344 } else {
4345 copy_from_user_page(vma, page, addr,
4346 buf, maddr + offset, bytes);
4347 }
4348 kunmap(page);
4349 put_page(page);
4350 }
4351 len -= bytes;
4352 buf += bytes;
4353 addr += bytes;
4354 }
4355 up_read(&mm->mmap_sem);
4356
4357 return buf - old_buf;
4358}
4359
4360/**
4361 * access_remote_vm - access another process' address space
4362 * @mm: the mm_struct of the target address space
4363 * @addr: start address to access
4364 * @buf: source or destination buffer
4365 * @len: number of bytes to transfer
4366 * @gup_flags: flags modifying lookup behaviour
4367 *
4368 * The caller must hold a reference on @mm.
4369 *
4370 * Return: number of bytes copied from source to destination.
4371 */
4372int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4373 void *buf, int len, unsigned int gup_flags)
4374{
4375 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4376}
4377
4378/*
4379 * Access another process' address space.
4380 * Source/target buffer must be kernel space,
4381 * Do not walk the page table directly, use get_user_pages
4382 */
4383int access_process_vm(struct task_struct *tsk, unsigned long addr,
4384 void *buf, int len, unsigned int gup_flags)
4385{
4386 struct mm_struct *mm;
4387 int ret;
4388
4389 mm = get_task_mm(tsk);
4390 if (!mm)
4391 return 0;
4392
4393 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4394
4395 mmput(mm);
4396
4397 return ret;
4398}
4399EXPORT_SYMBOL_GPL(access_process_vm);
4400
4401/*
4402 * Print the name of a VMA.
4403 */
4404void print_vma_addr(char *prefix, unsigned long ip)
4405{
4406 struct mm_struct *mm = current->mm;
4407 struct vm_area_struct *vma;
4408
4409 /*
4410 * we might be running from an atomic context so we cannot sleep
4411 */
4412 if (!down_read_trylock(&mm->mmap_sem))
4413 return;
4414
4415 vma = find_vma(mm, ip);
4416 if (vma && vma->vm_file) {
4417 struct file *f = vma->vm_file;
4418 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4419 if (buf) {
4420 char *p;
4421
4422 p = file_path(f, buf, PAGE_SIZE);
4423 if (IS_ERR(p))
4424 p = "?";
4425 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4426 vma->vm_start,
4427 vma->vm_end - vma->vm_start);
4428 free_page((unsigned long)buf);
4429 }
4430 }
4431 up_read(&mm->mmap_sem);
4432}
4433
4434#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4435void __might_fault(const char *file, int line)
4436{
4437 /*
4438 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4439 * holding the mmap_sem, this is safe because kernel memory doesn't
4440 * get paged out, therefore we'll never actually fault, and the
4441 * below annotations will generate false positives.
4442 */
4443 if (uaccess_kernel())
4444 return;
4445 if (pagefault_disabled())
4446 return;
4447 __might_sleep(file, line, 0);
4448#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4449 if (current->mm)
4450 might_lock_read(¤t->mm->mmap_sem);
4451#endif
4452}
4453EXPORT_SYMBOL(__might_fault);
4454#endif
4455
4456#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4457/*
4458 * Process all subpages of the specified huge page with the specified
4459 * operation. The target subpage will be processed last to keep its
4460 * cache lines hot.
4461 */
4462static inline void process_huge_page(
4463 unsigned long addr_hint, unsigned int pages_per_huge_page,
4464 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4465 void *arg)
4466{
4467 int i, n, base, l;
4468 unsigned long addr = addr_hint &
4469 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4470
4471 /* Process target subpage last to keep its cache lines hot */
4472 might_sleep();
4473 n = (addr_hint - addr) / PAGE_SIZE;
4474 if (2 * n <= pages_per_huge_page) {
4475 /* If target subpage in first half of huge page */
4476 base = 0;
4477 l = n;
4478 /* Process subpages at the end of huge page */
4479 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4480 cond_resched();
4481 process_subpage(addr + i * PAGE_SIZE, i, arg);
4482 }
4483 } else {
4484 /* If target subpage in second half of huge page */
4485 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4486 l = pages_per_huge_page - n;
4487 /* Process subpages at the begin of huge page */
4488 for (i = 0; i < base; i++) {
4489 cond_resched();
4490 process_subpage(addr + i * PAGE_SIZE, i, arg);
4491 }
4492 }
4493 /*
4494 * Process remaining subpages in left-right-left-right pattern
4495 * towards the target subpage
4496 */
4497 for (i = 0; i < l; i++) {
4498 int left_idx = base + i;
4499 int right_idx = base + 2 * l - 1 - i;
4500
4501 cond_resched();
4502 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4503 cond_resched();
4504 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4505 }
4506}
4507
4508static void clear_gigantic_page(struct page *page,
4509 unsigned long addr,
4510 unsigned int pages_per_huge_page)
4511{
4512 int i;
4513 struct page *p = page;
4514
4515 might_sleep();
4516 for (i = 0; i < pages_per_huge_page;
4517 i++, p = mem_map_next(p, page, i)) {
4518 cond_resched();
4519 clear_user_highpage(p, addr + i * PAGE_SIZE);
4520 }
4521}
4522
4523static void clear_subpage(unsigned long addr, int idx, void *arg)
4524{
4525 struct page *page = arg;
4526
4527 clear_user_highpage(page + idx, addr);
4528}
4529
4530void clear_huge_page(struct page *page,
4531 unsigned long addr_hint, unsigned int pages_per_huge_page)
4532{
4533 unsigned long addr = addr_hint &
4534 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4535
4536 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4537 clear_gigantic_page(page, addr, pages_per_huge_page);
4538 return;
4539 }
4540
4541 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4542}
4543
4544static void copy_user_gigantic_page(struct page *dst, struct page *src,
4545 unsigned long addr,
4546 struct vm_area_struct *vma,
4547 unsigned int pages_per_huge_page)
4548{
4549 int i;
4550 struct page *dst_base = dst;
4551 struct page *src_base = src;
4552
4553 for (i = 0; i < pages_per_huge_page; ) {
4554 cond_resched();
4555 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4556
4557 i++;
4558 dst = mem_map_next(dst, dst_base, i);
4559 src = mem_map_next(src, src_base, i);
4560 }
4561}
4562
4563struct copy_subpage_arg {
4564 struct page *dst;
4565 struct page *src;
4566 struct vm_area_struct *vma;
4567};
4568
4569static void copy_subpage(unsigned long addr, int idx, void *arg)
4570{
4571 struct copy_subpage_arg *copy_arg = arg;
4572
4573 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4574 addr, copy_arg->vma);
4575}
4576
4577void copy_user_huge_page(struct page *dst, struct page *src,
4578 unsigned long addr_hint, struct vm_area_struct *vma,
4579 unsigned int pages_per_huge_page)
4580{
4581 unsigned long addr = addr_hint &
4582 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4583 struct copy_subpage_arg arg = {
4584 .dst = dst,
4585 .src = src,
4586 .vma = vma,
4587 };
4588
4589 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4590 copy_user_gigantic_page(dst, src, addr, vma,
4591 pages_per_huge_page);
4592 return;
4593 }
4594
4595 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4596}
4597
4598long copy_huge_page_from_user(struct page *dst_page,
4599 const void __user *usr_src,
4600 unsigned int pages_per_huge_page,
4601 bool allow_pagefault)
4602{
4603 void *src = (void *)usr_src;
4604 void *page_kaddr;
4605 unsigned long i, rc = 0;
4606 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4607
4608 for (i = 0; i < pages_per_huge_page; i++) {
4609 if (allow_pagefault)
4610 page_kaddr = kmap(dst_page + i);
4611 else
4612 page_kaddr = kmap_atomic(dst_page + i);
4613 rc = copy_from_user(page_kaddr,
4614 (const void __user *)(src + i * PAGE_SIZE),
4615 PAGE_SIZE);
4616 if (allow_pagefault)
4617 kunmap(dst_page + i);
4618 else
4619 kunmap_atomic(page_kaddr);
4620
4621 ret_val -= (PAGE_SIZE - rc);
4622 if (rc)
4623 break;
4624
4625 cond_resched();
4626 }
4627 return ret_val;
4628}
4629#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4630
4631#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4632
4633static struct kmem_cache *page_ptl_cachep;
4634
4635void __init ptlock_cache_init(void)
4636{
4637 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4638 SLAB_PANIC, NULL);
4639}
4640
4641bool ptlock_alloc(struct page *page)
4642{
4643 spinlock_t *ptl;
4644
4645 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4646 if (!ptl)
4647 return false;
4648 page->ptl = ptl;
4649 return true;
4650}
4651
4652void ptlock_free(struct page *page)
4653{
4654 kmem_cache_free(page_ptl_cachep, page->ptl);
4655}
4656#endif
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
44#include <linux/mm_inline.h>
45#include <linux/sched/mm.h>
46#include <linux/sched/numa_balancing.h>
47#include <linux/sched/task.h>
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
53#include <linux/memremap.h>
54#include <linux/kmsan.h>
55#include <linux/ksm.h>
56#include <linux/rmap.h>
57#include <linux/export.h>
58#include <linux/delayacct.h>
59#include <linux/init.h>
60#include <linux/pfn_t.h>
61#include <linux/writeback.h>
62#include <linux/memcontrol.h>
63#include <linux/mmu_notifier.h>
64#include <linux/swapops.h>
65#include <linux/elf.h>
66#include <linux/gfp.h>
67#include <linux/migrate.h>
68#include <linux/string.h>
69#include <linux/memory-tiers.h>
70#include <linux/debugfs.h>
71#include <linux/userfaultfd_k.h>
72#include <linux/dax.h>
73#include <linux/oom.h>
74#include <linux/numa.h>
75#include <linux/perf_event.h>
76#include <linux/ptrace.h>
77#include <linux/vmalloc.h>
78#include <linux/sched/sysctl.h>
79
80#include <trace/events/kmem.h>
81
82#include <asm/io.h>
83#include <asm/mmu_context.h>
84#include <asm/pgalloc.h>
85#include <linux/uaccess.h>
86#include <asm/tlb.h>
87#include <asm/tlbflush.h>
88
89#include "pgalloc-track.h"
90#include "internal.h"
91#include "swap.h"
92
93#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
94#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
95#endif
96
97#ifndef CONFIG_NUMA
98unsigned long max_mapnr;
99EXPORT_SYMBOL(max_mapnr);
100
101struct page *mem_map;
102EXPORT_SYMBOL(mem_map);
103#endif
104
105static vm_fault_t do_fault(struct vm_fault *vmf);
106static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
107static bool vmf_pte_changed(struct vm_fault *vmf);
108
109/*
110 * Return true if the original pte was a uffd-wp pte marker (so the pte was
111 * wr-protected).
112 */
113static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
114{
115 if (!userfaultfd_wp(vmf->vma))
116 return false;
117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 return false;
119
120 return pte_marker_uffd_wp(vmf->orig_pte);
121}
122
123/*
124 * A number of key systems in x86 including ioremap() rely on the assumption
125 * that high_memory defines the upper bound on direct map memory, then end
126 * of ZONE_NORMAL.
127 */
128void *high_memory;
129EXPORT_SYMBOL(high_memory);
130
131/*
132 * Randomize the address space (stacks, mmaps, brk, etc.).
133 *
134 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
135 * as ancient (libc5 based) binaries can segfault. )
136 */
137int randomize_va_space __read_mostly =
138#ifdef CONFIG_COMPAT_BRK
139 1;
140#else
141 2;
142#endif
143
144#ifndef arch_wants_old_prefaulted_pte
145static inline bool arch_wants_old_prefaulted_pte(void)
146{
147 /*
148 * Transitioning a PTE from 'old' to 'young' can be expensive on
149 * some architectures, even if it's performed in hardware. By
150 * default, "false" means prefaulted entries will be 'young'.
151 */
152 return false;
153}
154#endif
155
156static int __init disable_randmaps(char *s)
157{
158 randomize_va_space = 0;
159 return 1;
160}
161__setup("norandmaps", disable_randmaps);
162
163unsigned long zero_pfn __read_mostly;
164EXPORT_SYMBOL(zero_pfn);
165
166unsigned long highest_memmap_pfn __read_mostly;
167
168/*
169 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
170 */
171static int __init init_zero_pfn(void)
172{
173 zero_pfn = page_to_pfn(ZERO_PAGE(0));
174 return 0;
175}
176early_initcall(init_zero_pfn);
177
178void mm_trace_rss_stat(struct mm_struct *mm, int member)
179{
180 trace_rss_stat(mm, member);
181}
182
183/*
184 * Note: this doesn't free the actual pages themselves. That
185 * has been handled earlier when unmapping all the memory regions.
186 */
187static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
188 unsigned long addr)
189{
190 pgtable_t token = pmd_pgtable(*pmd);
191 pmd_clear(pmd);
192 pte_free_tlb(tlb, token, addr);
193 mm_dec_nr_ptes(tlb->mm);
194}
195
196static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
197 unsigned long addr, unsigned long end,
198 unsigned long floor, unsigned long ceiling)
199{
200 pmd_t *pmd;
201 unsigned long next;
202 unsigned long start;
203
204 start = addr;
205 pmd = pmd_offset(pud, addr);
206 do {
207 next = pmd_addr_end(addr, end);
208 if (pmd_none_or_clear_bad(pmd))
209 continue;
210 free_pte_range(tlb, pmd, addr);
211 } while (pmd++, addr = next, addr != end);
212
213 start &= PUD_MASK;
214 if (start < floor)
215 return;
216 if (ceiling) {
217 ceiling &= PUD_MASK;
218 if (!ceiling)
219 return;
220 }
221 if (end - 1 > ceiling - 1)
222 return;
223
224 pmd = pmd_offset(pud, start);
225 pud_clear(pud);
226 pmd_free_tlb(tlb, pmd, start);
227 mm_dec_nr_pmds(tlb->mm);
228}
229
230static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
231 unsigned long addr, unsigned long end,
232 unsigned long floor, unsigned long ceiling)
233{
234 pud_t *pud;
235 unsigned long next;
236 unsigned long start;
237
238 start = addr;
239 pud = pud_offset(p4d, addr);
240 do {
241 next = pud_addr_end(addr, end);
242 if (pud_none_or_clear_bad(pud))
243 continue;
244 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
245 } while (pud++, addr = next, addr != end);
246
247 start &= P4D_MASK;
248 if (start < floor)
249 return;
250 if (ceiling) {
251 ceiling &= P4D_MASK;
252 if (!ceiling)
253 return;
254 }
255 if (end - 1 > ceiling - 1)
256 return;
257
258 pud = pud_offset(p4d, start);
259 p4d_clear(p4d);
260 pud_free_tlb(tlb, pud, start);
261 mm_dec_nr_puds(tlb->mm);
262}
263
264static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
265 unsigned long addr, unsigned long end,
266 unsigned long floor, unsigned long ceiling)
267{
268 p4d_t *p4d;
269 unsigned long next;
270 unsigned long start;
271
272 start = addr;
273 p4d = p4d_offset(pgd, addr);
274 do {
275 next = p4d_addr_end(addr, end);
276 if (p4d_none_or_clear_bad(p4d))
277 continue;
278 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
279 } while (p4d++, addr = next, addr != end);
280
281 start &= PGDIR_MASK;
282 if (start < floor)
283 return;
284 if (ceiling) {
285 ceiling &= PGDIR_MASK;
286 if (!ceiling)
287 return;
288 }
289 if (end - 1 > ceiling - 1)
290 return;
291
292 p4d = p4d_offset(pgd, start);
293 pgd_clear(pgd);
294 p4d_free_tlb(tlb, p4d, start);
295}
296
297/*
298 * This function frees user-level page tables of a process.
299 */
300void free_pgd_range(struct mmu_gather *tlb,
301 unsigned long addr, unsigned long end,
302 unsigned long floor, unsigned long ceiling)
303{
304 pgd_t *pgd;
305 unsigned long next;
306
307 /*
308 * The next few lines have given us lots of grief...
309 *
310 * Why are we testing PMD* at this top level? Because often
311 * there will be no work to do at all, and we'd prefer not to
312 * go all the way down to the bottom just to discover that.
313 *
314 * Why all these "- 1"s? Because 0 represents both the bottom
315 * of the address space and the top of it (using -1 for the
316 * top wouldn't help much: the masks would do the wrong thing).
317 * The rule is that addr 0 and floor 0 refer to the bottom of
318 * the address space, but end 0 and ceiling 0 refer to the top
319 * Comparisons need to use "end - 1" and "ceiling - 1" (though
320 * that end 0 case should be mythical).
321 *
322 * Wherever addr is brought up or ceiling brought down, we must
323 * be careful to reject "the opposite 0" before it confuses the
324 * subsequent tests. But what about where end is brought down
325 * by PMD_SIZE below? no, end can't go down to 0 there.
326 *
327 * Whereas we round start (addr) and ceiling down, by different
328 * masks at different levels, in order to test whether a table
329 * now has no other vmas using it, so can be freed, we don't
330 * bother to round floor or end up - the tests don't need that.
331 */
332
333 addr &= PMD_MASK;
334 if (addr < floor) {
335 addr += PMD_SIZE;
336 if (!addr)
337 return;
338 }
339 if (ceiling) {
340 ceiling &= PMD_MASK;
341 if (!ceiling)
342 return;
343 }
344 if (end - 1 > ceiling - 1)
345 end -= PMD_SIZE;
346 if (addr > end - 1)
347 return;
348 /*
349 * We add page table cache pages with PAGE_SIZE,
350 * (see pte_free_tlb()), flush the tlb if we need
351 */
352 tlb_change_page_size(tlb, PAGE_SIZE);
353 pgd = pgd_offset(tlb->mm, addr);
354 do {
355 next = pgd_addr_end(addr, end);
356 if (pgd_none_or_clear_bad(pgd))
357 continue;
358 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
359 } while (pgd++, addr = next, addr != end);
360}
361
362void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
363 struct vm_area_struct *vma, unsigned long floor,
364 unsigned long ceiling, bool mm_wr_locked)
365{
366 struct unlink_vma_file_batch vb;
367
368 do {
369 unsigned long addr = vma->vm_start;
370 struct vm_area_struct *next;
371
372 /*
373 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
374 * be 0. This will underflow and is okay.
375 */
376 next = mas_find(mas, ceiling - 1);
377 if (unlikely(xa_is_zero(next)))
378 next = NULL;
379
380 /*
381 * Hide vma from rmap and truncate_pagecache before freeing
382 * pgtables
383 */
384 if (mm_wr_locked)
385 vma_start_write(vma);
386 unlink_anon_vmas(vma);
387
388 if (is_vm_hugetlb_page(vma)) {
389 unlink_file_vma(vma);
390 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
391 floor, next ? next->vm_start : ceiling);
392 } else {
393 unlink_file_vma_batch_init(&vb);
394 unlink_file_vma_batch_add(&vb, vma);
395
396 /*
397 * Optimization: gather nearby vmas into one call down
398 */
399 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
400 && !is_vm_hugetlb_page(next)) {
401 vma = next;
402 next = mas_find(mas, ceiling - 1);
403 if (unlikely(xa_is_zero(next)))
404 next = NULL;
405 if (mm_wr_locked)
406 vma_start_write(vma);
407 unlink_anon_vmas(vma);
408 unlink_file_vma_batch_add(&vb, vma);
409 }
410 unlink_file_vma_batch_final(&vb);
411 free_pgd_range(tlb, addr, vma->vm_end,
412 floor, next ? next->vm_start : ceiling);
413 }
414 vma = next;
415 } while (vma);
416}
417
418void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
419{
420 spinlock_t *ptl = pmd_lock(mm, pmd);
421
422 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
423 mm_inc_nr_ptes(mm);
424 /*
425 * Ensure all pte setup (eg. pte page lock and page clearing) are
426 * visible before the pte is made visible to other CPUs by being
427 * put into page tables.
428 *
429 * The other side of the story is the pointer chasing in the page
430 * table walking code (when walking the page table without locking;
431 * ie. most of the time). Fortunately, these data accesses consist
432 * of a chain of data-dependent loads, meaning most CPUs (alpha
433 * being the notable exception) will already guarantee loads are
434 * seen in-order. See the alpha page table accessors for the
435 * smp_rmb() barriers in page table walking code.
436 */
437 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
438 pmd_populate(mm, pmd, *pte);
439 *pte = NULL;
440 }
441 spin_unlock(ptl);
442}
443
444int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
445{
446 pgtable_t new = pte_alloc_one(mm);
447 if (!new)
448 return -ENOMEM;
449
450 pmd_install(mm, pmd, &new);
451 if (new)
452 pte_free(mm, new);
453 return 0;
454}
455
456int __pte_alloc_kernel(pmd_t *pmd)
457{
458 pte_t *new = pte_alloc_one_kernel(&init_mm);
459 if (!new)
460 return -ENOMEM;
461
462 spin_lock(&init_mm.page_table_lock);
463 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
464 smp_wmb(); /* See comment in pmd_install() */
465 pmd_populate_kernel(&init_mm, pmd, new);
466 new = NULL;
467 }
468 spin_unlock(&init_mm.page_table_lock);
469 if (new)
470 pte_free_kernel(&init_mm, new);
471 return 0;
472}
473
474static inline void init_rss_vec(int *rss)
475{
476 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
477}
478
479static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
480{
481 int i;
482
483 for (i = 0; i < NR_MM_COUNTERS; i++)
484 if (rss[i])
485 add_mm_counter(mm, i, rss[i]);
486}
487
488/*
489 * This function is called to print an error when a bad pte
490 * is found. For example, we might have a PFN-mapped pte in
491 * a region that doesn't allow it.
492 *
493 * The calling function must still handle the error.
494 */
495static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
496 pte_t pte, struct page *page)
497{
498 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
499 p4d_t *p4d = p4d_offset(pgd, addr);
500 pud_t *pud = pud_offset(p4d, addr);
501 pmd_t *pmd = pmd_offset(pud, addr);
502 struct address_space *mapping;
503 pgoff_t index;
504 static unsigned long resume;
505 static unsigned long nr_shown;
506 static unsigned long nr_unshown;
507
508 /*
509 * Allow a burst of 60 reports, then keep quiet for that minute;
510 * or allow a steady drip of one report per second.
511 */
512 if (nr_shown == 60) {
513 if (time_before(jiffies, resume)) {
514 nr_unshown++;
515 return;
516 }
517 if (nr_unshown) {
518 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
519 nr_unshown);
520 nr_unshown = 0;
521 }
522 nr_shown = 0;
523 }
524 if (nr_shown++ == 0)
525 resume = jiffies + 60 * HZ;
526
527 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
528 index = linear_page_index(vma, addr);
529
530 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
531 current->comm,
532 (long long)pte_val(pte), (long long)pmd_val(*pmd));
533 if (page)
534 dump_page(page, "bad pte");
535 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
536 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
537 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
538 vma->vm_file,
539 vma->vm_ops ? vma->vm_ops->fault : NULL,
540 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
541 mapping ? mapping->a_ops->read_folio : NULL);
542 dump_stack();
543 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
544}
545
546/*
547 * vm_normal_page -- This function gets the "struct page" associated with a pte.
548 *
549 * "Special" mappings do not wish to be associated with a "struct page" (either
550 * it doesn't exist, or it exists but they don't want to touch it). In this
551 * case, NULL is returned here. "Normal" mappings do have a struct page.
552 *
553 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
554 * pte bit, in which case this function is trivial. Secondly, an architecture
555 * may not have a spare pte bit, which requires a more complicated scheme,
556 * described below.
557 *
558 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
559 * special mapping (even if there are underlying and valid "struct pages").
560 * COWed pages of a VM_PFNMAP are always normal.
561 *
562 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
563 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
564 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
565 * mapping will always honor the rule
566 *
567 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
568 *
569 * And for normal mappings this is false.
570 *
571 * This restricts such mappings to be a linear translation from virtual address
572 * to pfn. To get around this restriction, we allow arbitrary mappings so long
573 * as the vma is not a COW mapping; in that case, we know that all ptes are
574 * special (because none can have been COWed).
575 *
576 *
577 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
578 *
579 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
580 * page" backing, however the difference is that _all_ pages with a struct
581 * page (that is, those where pfn_valid is true) are refcounted and considered
582 * normal pages by the VM. The only exception are zeropages, which are
583 * *never* refcounted.
584 *
585 * The disadvantage is that pages are refcounted (which can be slower and
586 * simply not an option for some PFNMAP users). The advantage is that we
587 * don't have to follow the strict linearity rule of PFNMAP mappings in
588 * order to support COWable mappings.
589 *
590 */
591struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
592 pte_t pte)
593{
594 unsigned long pfn = pte_pfn(pte);
595
596 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
597 if (likely(!pte_special(pte)))
598 goto check_pfn;
599 if (vma->vm_ops && vma->vm_ops->find_special_page)
600 return vma->vm_ops->find_special_page(vma, addr);
601 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
602 return NULL;
603 if (is_zero_pfn(pfn))
604 return NULL;
605 if (pte_devmap(pte))
606 /*
607 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
608 * and will have refcounts incremented on their struct pages
609 * when they are inserted into PTEs, thus they are safe to
610 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
611 * do not have refcounts. Example of legacy ZONE_DEVICE is
612 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
613 */
614 return NULL;
615
616 print_bad_pte(vma, addr, pte, NULL);
617 return NULL;
618 }
619
620 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
621
622 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
623 if (vma->vm_flags & VM_MIXEDMAP) {
624 if (!pfn_valid(pfn))
625 return NULL;
626 if (is_zero_pfn(pfn))
627 return NULL;
628 goto out;
629 } else {
630 unsigned long off;
631 off = (addr - vma->vm_start) >> PAGE_SHIFT;
632 if (pfn == vma->vm_pgoff + off)
633 return NULL;
634 if (!is_cow_mapping(vma->vm_flags))
635 return NULL;
636 }
637 }
638
639 if (is_zero_pfn(pfn))
640 return NULL;
641
642check_pfn:
643 if (unlikely(pfn > highest_memmap_pfn)) {
644 print_bad_pte(vma, addr, pte, NULL);
645 return NULL;
646 }
647
648 /*
649 * NOTE! We still have PageReserved() pages in the page tables.
650 * eg. VDSO mappings can cause them to exist.
651 */
652out:
653 VM_WARN_ON_ONCE(is_zero_pfn(pfn));
654 return pfn_to_page(pfn);
655}
656
657struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
658 pte_t pte)
659{
660 struct page *page = vm_normal_page(vma, addr, pte);
661
662 if (page)
663 return page_folio(page);
664 return NULL;
665}
666
667#ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
668struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
669 pmd_t pmd)
670{
671 unsigned long pfn = pmd_pfn(pmd);
672
673 /* Currently it's only used for huge pfnmaps */
674 if (unlikely(pmd_special(pmd)))
675 return NULL;
676
677 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
678 if (vma->vm_flags & VM_MIXEDMAP) {
679 if (!pfn_valid(pfn))
680 return NULL;
681 goto out;
682 } else {
683 unsigned long off;
684 off = (addr - vma->vm_start) >> PAGE_SHIFT;
685 if (pfn == vma->vm_pgoff + off)
686 return NULL;
687 if (!is_cow_mapping(vma->vm_flags))
688 return NULL;
689 }
690 }
691
692 if (pmd_devmap(pmd))
693 return NULL;
694 if (is_huge_zero_pmd(pmd))
695 return NULL;
696 if (unlikely(pfn > highest_memmap_pfn))
697 return NULL;
698
699 /*
700 * NOTE! We still have PageReserved() pages in the page tables.
701 * eg. VDSO mappings can cause them to exist.
702 */
703out:
704 return pfn_to_page(pfn);
705}
706
707struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
708 unsigned long addr, pmd_t pmd)
709{
710 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
711
712 if (page)
713 return page_folio(page);
714 return NULL;
715}
716#endif
717
718static void restore_exclusive_pte(struct vm_area_struct *vma,
719 struct page *page, unsigned long address,
720 pte_t *ptep)
721{
722 struct folio *folio = page_folio(page);
723 pte_t orig_pte;
724 pte_t pte;
725 swp_entry_t entry;
726
727 orig_pte = ptep_get(ptep);
728 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
729 if (pte_swp_soft_dirty(orig_pte))
730 pte = pte_mksoft_dirty(pte);
731
732 entry = pte_to_swp_entry(orig_pte);
733 if (pte_swp_uffd_wp(orig_pte))
734 pte = pte_mkuffd_wp(pte);
735 else if (is_writable_device_exclusive_entry(entry))
736 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
737
738 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
739 PageAnonExclusive(page)), folio);
740
741 /*
742 * No need to take a page reference as one was already
743 * created when the swap entry was made.
744 */
745 if (folio_test_anon(folio))
746 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
747 else
748 /*
749 * Currently device exclusive access only supports anonymous
750 * memory so the entry shouldn't point to a filebacked page.
751 */
752 WARN_ON_ONCE(1);
753
754 set_pte_at(vma->vm_mm, address, ptep, pte);
755
756 /*
757 * No need to invalidate - it was non-present before. However
758 * secondary CPUs may have mappings that need invalidating.
759 */
760 update_mmu_cache(vma, address, ptep);
761}
762
763/*
764 * Tries to restore an exclusive pte if the page lock can be acquired without
765 * sleeping.
766 */
767static int
768try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
769 unsigned long addr)
770{
771 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
772 struct page *page = pfn_swap_entry_to_page(entry);
773
774 if (trylock_page(page)) {
775 restore_exclusive_pte(vma, page, addr, src_pte);
776 unlock_page(page);
777 return 0;
778 }
779
780 return -EBUSY;
781}
782
783/*
784 * copy one vm_area from one task to the other. Assumes the page tables
785 * already present in the new task to be cleared in the whole range
786 * covered by this vma.
787 */
788
789static unsigned long
790copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
791 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
792 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
793{
794 unsigned long vm_flags = dst_vma->vm_flags;
795 pte_t orig_pte = ptep_get(src_pte);
796 pte_t pte = orig_pte;
797 struct folio *folio;
798 struct page *page;
799 swp_entry_t entry = pte_to_swp_entry(orig_pte);
800
801 if (likely(!non_swap_entry(entry))) {
802 if (swap_duplicate(entry) < 0)
803 return -EIO;
804
805 /* make sure dst_mm is on swapoff's mmlist. */
806 if (unlikely(list_empty(&dst_mm->mmlist))) {
807 spin_lock(&mmlist_lock);
808 if (list_empty(&dst_mm->mmlist))
809 list_add(&dst_mm->mmlist,
810 &src_mm->mmlist);
811 spin_unlock(&mmlist_lock);
812 }
813 /* Mark the swap entry as shared. */
814 if (pte_swp_exclusive(orig_pte)) {
815 pte = pte_swp_clear_exclusive(orig_pte);
816 set_pte_at(src_mm, addr, src_pte, pte);
817 }
818 rss[MM_SWAPENTS]++;
819 } else if (is_migration_entry(entry)) {
820 folio = pfn_swap_entry_folio(entry);
821
822 rss[mm_counter(folio)]++;
823
824 if (!is_readable_migration_entry(entry) &&
825 is_cow_mapping(vm_flags)) {
826 /*
827 * COW mappings require pages in both parent and child
828 * to be set to read. A previously exclusive entry is
829 * now shared.
830 */
831 entry = make_readable_migration_entry(
832 swp_offset(entry));
833 pte = swp_entry_to_pte(entry);
834 if (pte_swp_soft_dirty(orig_pte))
835 pte = pte_swp_mksoft_dirty(pte);
836 if (pte_swp_uffd_wp(orig_pte))
837 pte = pte_swp_mkuffd_wp(pte);
838 set_pte_at(src_mm, addr, src_pte, pte);
839 }
840 } else if (is_device_private_entry(entry)) {
841 page = pfn_swap_entry_to_page(entry);
842 folio = page_folio(page);
843
844 /*
845 * Update rss count even for unaddressable pages, as
846 * they should treated just like normal pages in this
847 * respect.
848 *
849 * We will likely want to have some new rss counters
850 * for unaddressable pages, at some point. But for now
851 * keep things as they are.
852 */
853 folio_get(folio);
854 rss[mm_counter(folio)]++;
855 /* Cannot fail as these pages cannot get pinned. */
856 folio_try_dup_anon_rmap_pte(folio, page, src_vma);
857
858 /*
859 * We do not preserve soft-dirty information, because so
860 * far, checkpoint/restore is the only feature that
861 * requires that. And checkpoint/restore does not work
862 * when a device driver is involved (you cannot easily
863 * save and restore device driver state).
864 */
865 if (is_writable_device_private_entry(entry) &&
866 is_cow_mapping(vm_flags)) {
867 entry = make_readable_device_private_entry(
868 swp_offset(entry));
869 pte = swp_entry_to_pte(entry);
870 if (pte_swp_uffd_wp(orig_pte))
871 pte = pte_swp_mkuffd_wp(pte);
872 set_pte_at(src_mm, addr, src_pte, pte);
873 }
874 } else if (is_device_exclusive_entry(entry)) {
875 /*
876 * Make device exclusive entries present by restoring the
877 * original entry then copying as for a present pte. Device
878 * exclusive entries currently only support private writable
879 * (ie. COW) mappings.
880 */
881 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
882 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
883 return -EBUSY;
884 return -ENOENT;
885 } else if (is_pte_marker_entry(entry)) {
886 pte_marker marker = copy_pte_marker(entry, dst_vma);
887
888 if (marker)
889 set_pte_at(dst_mm, addr, dst_pte,
890 make_pte_marker(marker));
891 return 0;
892 }
893 if (!userfaultfd_wp(dst_vma))
894 pte = pte_swp_clear_uffd_wp(pte);
895 set_pte_at(dst_mm, addr, dst_pte, pte);
896 return 0;
897}
898
899/*
900 * Copy a present and normal page.
901 *
902 * NOTE! The usual case is that this isn't required;
903 * instead, the caller can just increase the page refcount
904 * and re-use the pte the traditional way.
905 *
906 * And if we need a pre-allocated page but don't yet have
907 * one, return a negative error to let the preallocation
908 * code know so that it can do so outside the page table
909 * lock.
910 */
911static inline int
912copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
913 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
914 struct folio **prealloc, struct page *page)
915{
916 struct folio *new_folio;
917 pte_t pte;
918
919 new_folio = *prealloc;
920 if (!new_folio)
921 return -EAGAIN;
922
923 /*
924 * We have a prealloc page, all good! Take it
925 * over and copy the page & arm it.
926 */
927
928 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
929 return -EHWPOISON;
930
931 *prealloc = NULL;
932 __folio_mark_uptodate(new_folio);
933 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
934 folio_add_lru_vma(new_folio, dst_vma);
935 rss[MM_ANONPAGES]++;
936
937 /* All done, just insert the new page copy in the child */
938 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
939 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
940 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
941 /* Uffd-wp needs to be delivered to dest pte as well */
942 pte = pte_mkuffd_wp(pte);
943 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
944 return 0;
945}
946
947static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
948 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
949 pte_t pte, unsigned long addr, int nr)
950{
951 struct mm_struct *src_mm = src_vma->vm_mm;
952
953 /* If it's a COW mapping, write protect it both processes. */
954 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
955 wrprotect_ptes(src_mm, addr, src_pte, nr);
956 pte = pte_wrprotect(pte);
957 }
958
959 /* If it's a shared mapping, mark it clean in the child. */
960 if (src_vma->vm_flags & VM_SHARED)
961 pte = pte_mkclean(pte);
962 pte = pte_mkold(pte);
963
964 if (!userfaultfd_wp(dst_vma))
965 pte = pte_clear_uffd_wp(pte);
966
967 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
968}
969
970/*
971 * Copy one present PTE, trying to batch-process subsequent PTEs that map
972 * consecutive pages of the same folio by copying them as well.
973 *
974 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
975 * Otherwise, returns the number of copied PTEs (at least 1).
976 */
977static inline int
978copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
979 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
980 int max_nr, int *rss, struct folio **prealloc)
981{
982 struct page *page;
983 struct folio *folio;
984 bool any_writable;
985 fpb_t flags = 0;
986 int err, nr;
987
988 page = vm_normal_page(src_vma, addr, pte);
989 if (unlikely(!page))
990 goto copy_pte;
991
992 folio = page_folio(page);
993
994 /*
995 * If we likely have to copy, just don't bother with batching. Make
996 * sure that the common "small folio" case is as fast as possible
997 * by keeping the batching logic separate.
998 */
999 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1000 if (src_vma->vm_flags & VM_SHARED)
1001 flags |= FPB_IGNORE_DIRTY;
1002 if (!vma_soft_dirty_enabled(src_vma))
1003 flags |= FPB_IGNORE_SOFT_DIRTY;
1004
1005 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
1006 &any_writable, NULL, NULL);
1007 folio_ref_add(folio, nr);
1008 if (folio_test_anon(folio)) {
1009 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1010 nr, src_vma))) {
1011 folio_ref_sub(folio, nr);
1012 return -EAGAIN;
1013 }
1014 rss[MM_ANONPAGES] += nr;
1015 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1016 } else {
1017 folio_dup_file_rmap_ptes(folio, page, nr);
1018 rss[mm_counter_file(folio)] += nr;
1019 }
1020 if (any_writable)
1021 pte = pte_mkwrite(pte, src_vma);
1022 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1023 addr, nr);
1024 return nr;
1025 }
1026
1027 folio_get(folio);
1028 if (folio_test_anon(folio)) {
1029 /*
1030 * If this page may have been pinned by the parent process,
1031 * copy the page immediately for the child so that we'll always
1032 * guarantee the pinned page won't be randomly replaced in the
1033 * future.
1034 */
1035 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1036 /* Page may be pinned, we have to copy. */
1037 folio_put(folio);
1038 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1039 addr, rss, prealloc, page);
1040 return err ? err : 1;
1041 }
1042 rss[MM_ANONPAGES]++;
1043 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1044 } else {
1045 folio_dup_file_rmap_pte(folio, page);
1046 rss[mm_counter_file(folio)]++;
1047 }
1048
1049copy_pte:
1050 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1051 return 1;
1052}
1053
1054static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1055 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1056{
1057 struct folio *new_folio;
1058
1059 if (need_zero)
1060 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1061 else
1062 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
1063
1064 if (!new_folio)
1065 return NULL;
1066
1067 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1068 folio_put(new_folio);
1069 return NULL;
1070 }
1071 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1072
1073 return new_folio;
1074}
1075
1076static int
1077copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1078 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1079 unsigned long end)
1080{
1081 struct mm_struct *dst_mm = dst_vma->vm_mm;
1082 struct mm_struct *src_mm = src_vma->vm_mm;
1083 pte_t *orig_src_pte, *orig_dst_pte;
1084 pte_t *src_pte, *dst_pte;
1085 pmd_t dummy_pmdval;
1086 pte_t ptent;
1087 spinlock_t *src_ptl, *dst_ptl;
1088 int progress, max_nr, ret = 0;
1089 int rss[NR_MM_COUNTERS];
1090 swp_entry_t entry = (swp_entry_t){0};
1091 struct folio *prealloc = NULL;
1092 int nr;
1093
1094again:
1095 progress = 0;
1096 init_rss_vec(rss);
1097
1098 /*
1099 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1100 * error handling here, assume that exclusive mmap_lock on dst and src
1101 * protects anon from unexpected THP transitions; with shmem and file
1102 * protected by mmap_lock-less collapse skipping areas with anon_vma
1103 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1104 * can remove such assumptions later, but this is good enough for now.
1105 */
1106 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1107 if (!dst_pte) {
1108 ret = -ENOMEM;
1109 goto out;
1110 }
1111
1112 /*
1113 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1114 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1115 * the PTE page is stable, and there is no need to get pmdval and do
1116 * pmd_same() check.
1117 */
1118 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
1119 &src_ptl);
1120 if (!src_pte) {
1121 pte_unmap_unlock(dst_pte, dst_ptl);
1122 /* ret == 0 */
1123 goto out;
1124 }
1125 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1126 orig_src_pte = src_pte;
1127 orig_dst_pte = dst_pte;
1128 arch_enter_lazy_mmu_mode();
1129
1130 do {
1131 nr = 1;
1132
1133 /*
1134 * We are holding two locks at this point - either of them
1135 * could generate latencies in another task on another CPU.
1136 */
1137 if (progress >= 32) {
1138 progress = 0;
1139 if (need_resched() ||
1140 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1141 break;
1142 }
1143 ptent = ptep_get(src_pte);
1144 if (pte_none(ptent)) {
1145 progress++;
1146 continue;
1147 }
1148 if (unlikely(!pte_present(ptent))) {
1149 ret = copy_nonpresent_pte(dst_mm, src_mm,
1150 dst_pte, src_pte,
1151 dst_vma, src_vma,
1152 addr, rss);
1153 if (ret == -EIO) {
1154 entry = pte_to_swp_entry(ptep_get(src_pte));
1155 break;
1156 } else if (ret == -EBUSY) {
1157 break;
1158 } else if (!ret) {
1159 progress += 8;
1160 continue;
1161 }
1162 ptent = ptep_get(src_pte);
1163 VM_WARN_ON_ONCE(!pte_present(ptent));
1164
1165 /*
1166 * Device exclusive entry restored, continue by copying
1167 * the now present pte.
1168 */
1169 WARN_ON_ONCE(ret != -ENOENT);
1170 }
1171 /* copy_present_ptes() will clear `*prealloc' if consumed */
1172 max_nr = (end - addr) / PAGE_SIZE;
1173 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1174 ptent, addr, max_nr, rss, &prealloc);
1175 /*
1176 * If we need a pre-allocated page for this pte, drop the
1177 * locks, allocate, and try again.
1178 * If copy failed due to hwpoison in source page, break out.
1179 */
1180 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1181 break;
1182 if (unlikely(prealloc)) {
1183 /*
1184 * pre-alloc page cannot be reused by next time so as
1185 * to strictly follow mempolicy (e.g., alloc_page_vma()
1186 * will allocate page according to address). This
1187 * could only happen if one pinned pte changed.
1188 */
1189 folio_put(prealloc);
1190 prealloc = NULL;
1191 }
1192 nr = ret;
1193 progress += 8 * nr;
1194 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1195 addr != end);
1196
1197 arch_leave_lazy_mmu_mode();
1198 pte_unmap_unlock(orig_src_pte, src_ptl);
1199 add_mm_rss_vec(dst_mm, rss);
1200 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1201 cond_resched();
1202
1203 if (ret == -EIO) {
1204 VM_WARN_ON_ONCE(!entry.val);
1205 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1206 ret = -ENOMEM;
1207 goto out;
1208 }
1209 entry.val = 0;
1210 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1211 goto out;
1212 } else if (ret == -EAGAIN) {
1213 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1214 if (!prealloc)
1215 return -ENOMEM;
1216 } else if (ret < 0) {
1217 VM_WARN_ON_ONCE(1);
1218 }
1219
1220 /* We've captured and resolved the error. Reset, try again. */
1221 ret = 0;
1222
1223 if (addr != end)
1224 goto again;
1225out:
1226 if (unlikely(prealloc))
1227 folio_put(prealloc);
1228 return ret;
1229}
1230
1231static inline int
1232copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1233 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1234 unsigned long end)
1235{
1236 struct mm_struct *dst_mm = dst_vma->vm_mm;
1237 struct mm_struct *src_mm = src_vma->vm_mm;
1238 pmd_t *src_pmd, *dst_pmd;
1239 unsigned long next;
1240
1241 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1242 if (!dst_pmd)
1243 return -ENOMEM;
1244 src_pmd = pmd_offset(src_pud, addr);
1245 do {
1246 next = pmd_addr_end(addr, end);
1247 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1248 || pmd_devmap(*src_pmd)) {
1249 int err;
1250 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1251 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1252 addr, dst_vma, src_vma);
1253 if (err == -ENOMEM)
1254 return -ENOMEM;
1255 if (!err)
1256 continue;
1257 /* fall through */
1258 }
1259 if (pmd_none_or_clear_bad(src_pmd))
1260 continue;
1261 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1262 addr, next))
1263 return -ENOMEM;
1264 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1265 return 0;
1266}
1267
1268static inline int
1269copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1270 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1271 unsigned long end)
1272{
1273 struct mm_struct *dst_mm = dst_vma->vm_mm;
1274 struct mm_struct *src_mm = src_vma->vm_mm;
1275 pud_t *src_pud, *dst_pud;
1276 unsigned long next;
1277
1278 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1279 if (!dst_pud)
1280 return -ENOMEM;
1281 src_pud = pud_offset(src_p4d, addr);
1282 do {
1283 next = pud_addr_end(addr, end);
1284 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1285 int err;
1286
1287 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1288 err = copy_huge_pud(dst_mm, src_mm,
1289 dst_pud, src_pud, addr, src_vma);
1290 if (err == -ENOMEM)
1291 return -ENOMEM;
1292 if (!err)
1293 continue;
1294 /* fall through */
1295 }
1296 if (pud_none_or_clear_bad(src_pud))
1297 continue;
1298 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1299 addr, next))
1300 return -ENOMEM;
1301 } while (dst_pud++, src_pud++, addr = next, addr != end);
1302 return 0;
1303}
1304
1305static inline int
1306copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1307 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1308 unsigned long end)
1309{
1310 struct mm_struct *dst_mm = dst_vma->vm_mm;
1311 p4d_t *src_p4d, *dst_p4d;
1312 unsigned long next;
1313
1314 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1315 if (!dst_p4d)
1316 return -ENOMEM;
1317 src_p4d = p4d_offset(src_pgd, addr);
1318 do {
1319 next = p4d_addr_end(addr, end);
1320 if (p4d_none_or_clear_bad(src_p4d))
1321 continue;
1322 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1323 addr, next))
1324 return -ENOMEM;
1325 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1326 return 0;
1327}
1328
1329/*
1330 * Return true if the vma needs to copy the pgtable during this fork(). Return
1331 * false when we can speed up fork() by allowing lazy page faults later until
1332 * when the child accesses the memory range.
1333 */
1334static bool
1335vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1336{
1337 /*
1338 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1339 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1340 * contains uffd-wp protection information, that's something we can't
1341 * retrieve from page cache, and skip copying will lose those info.
1342 */
1343 if (userfaultfd_wp(dst_vma))
1344 return true;
1345
1346 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1347 return true;
1348
1349 if (src_vma->anon_vma)
1350 return true;
1351
1352 /*
1353 * Don't copy ptes where a page fault will fill them correctly. Fork
1354 * becomes much lighter when there are big shared or private readonly
1355 * mappings. The tradeoff is that copy_page_range is more efficient
1356 * than faulting.
1357 */
1358 return false;
1359}
1360
1361int
1362copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1363{
1364 pgd_t *src_pgd, *dst_pgd;
1365 unsigned long next;
1366 unsigned long addr = src_vma->vm_start;
1367 unsigned long end = src_vma->vm_end;
1368 struct mm_struct *dst_mm = dst_vma->vm_mm;
1369 struct mm_struct *src_mm = src_vma->vm_mm;
1370 struct mmu_notifier_range range;
1371 bool is_cow;
1372 int ret;
1373
1374 if (!vma_needs_copy(dst_vma, src_vma))
1375 return 0;
1376
1377 if (is_vm_hugetlb_page(src_vma))
1378 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1379
1380 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1381 /*
1382 * We do not free on error cases below as remove_vma
1383 * gets called on error from higher level routine
1384 */
1385 ret = track_pfn_copy(src_vma);
1386 if (ret)
1387 return ret;
1388 }
1389
1390 /*
1391 * We need to invalidate the secondary MMU mappings only when
1392 * there could be a permission downgrade on the ptes of the
1393 * parent mm. And a permission downgrade will only happen if
1394 * is_cow_mapping() returns true.
1395 */
1396 is_cow = is_cow_mapping(src_vma->vm_flags);
1397
1398 if (is_cow) {
1399 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1400 0, src_mm, addr, end);
1401 mmu_notifier_invalidate_range_start(&range);
1402 /*
1403 * Disabling preemption is not needed for the write side, as
1404 * the read side doesn't spin, but goes to the mmap_lock.
1405 *
1406 * Use the raw variant of the seqcount_t write API to avoid
1407 * lockdep complaining about preemptibility.
1408 */
1409 vma_assert_write_locked(src_vma);
1410 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1411 }
1412
1413 ret = 0;
1414 dst_pgd = pgd_offset(dst_mm, addr);
1415 src_pgd = pgd_offset(src_mm, addr);
1416 do {
1417 next = pgd_addr_end(addr, end);
1418 if (pgd_none_or_clear_bad(src_pgd))
1419 continue;
1420 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1421 addr, next))) {
1422 untrack_pfn_clear(dst_vma);
1423 ret = -ENOMEM;
1424 break;
1425 }
1426 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1427
1428 if (is_cow) {
1429 raw_write_seqcount_end(&src_mm->write_protect_seq);
1430 mmu_notifier_invalidate_range_end(&range);
1431 }
1432 return ret;
1433}
1434
1435/* Whether we should zap all COWed (private) pages too */
1436static inline bool should_zap_cows(struct zap_details *details)
1437{
1438 /* By default, zap all pages */
1439 if (!details)
1440 return true;
1441
1442 /* Or, we zap COWed pages only if the caller wants to */
1443 return details->even_cows;
1444}
1445
1446/* Decides whether we should zap this folio with the folio pointer specified */
1447static inline bool should_zap_folio(struct zap_details *details,
1448 struct folio *folio)
1449{
1450 /* If we can make a decision without *folio.. */
1451 if (should_zap_cows(details))
1452 return true;
1453
1454 /* Otherwise we should only zap non-anon folios */
1455 return !folio_test_anon(folio);
1456}
1457
1458static inline bool zap_drop_markers(struct zap_details *details)
1459{
1460 if (!details)
1461 return false;
1462
1463 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1464}
1465
1466/*
1467 * This function makes sure that we'll replace the none pte with an uffd-wp
1468 * swap special pte marker when necessary. Must be with the pgtable lock held.
1469 */
1470static inline void
1471zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1472 unsigned long addr, pte_t *pte, int nr,
1473 struct zap_details *details, pte_t pteval)
1474{
1475 /* Zap on anonymous always means dropping everything */
1476 if (vma_is_anonymous(vma))
1477 return;
1478
1479 if (zap_drop_markers(details))
1480 return;
1481
1482 for (;;) {
1483 /* the PFN in the PTE is irrelevant. */
1484 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1485 if (--nr == 0)
1486 break;
1487 pte++;
1488 addr += PAGE_SIZE;
1489 }
1490}
1491
1492static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1493 struct vm_area_struct *vma, struct folio *folio,
1494 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1495 unsigned long addr, struct zap_details *details, int *rss,
1496 bool *force_flush, bool *force_break)
1497{
1498 struct mm_struct *mm = tlb->mm;
1499 bool delay_rmap = false;
1500
1501 if (!folio_test_anon(folio)) {
1502 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1503 if (pte_dirty(ptent)) {
1504 folio_mark_dirty(folio);
1505 if (tlb_delay_rmap(tlb)) {
1506 delay_rmap = true;
1507 *force_flush = true;
1508 }
1509 }
1510 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1511 folio_mark_accessed(folio);
1512 rss[mm_counter(folio)] -= nr;
1513 } else {
1514 /* We don't need up-to-date accessed/dirty bits. */
1515 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1516 rss[MM_ANONPAGES] -= nr;
1517 }
1518 /* Checking a single PTE in a batch is sufficient. */
1519 arch_check_zapped_pte(vma, ptent);
1520 tlb_remove_tlb_entries(tlb, pte, nr, addr);
1521 if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1522 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1523 ptent);
1524
1525 if (!delay_rmap) {
1526 folio_remove_rmap_ptes(folio, page, nr, vma);
1527
1528 if (unlikely(folio_mapcount(folio) < 0))
1529 print_bad_pte(vma, addr, ptent, page);
1530 }
1531 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1532 *force_flush = true;
1533 *force_break = true;
1534 }
1535}
1536
1537/*
1538 * Zap or skip at least one present PTE, trying to batch-process subsequent
1539 * PTEs that map consecutive pages of the same folio.
1540 *
1541 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1542 */
1543static inline int zap_present_ptes(struct mmu_gather *tlb,
1544 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1545 unsigned int max_nr, unsigned long addr,
1546 struct zap_details *details, int *rss, bool *force_flush,
1547 bool *force_break)
1548{
1549 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1550 struct mm_struct *mm = tlb->mm;
1551 struct folio *folio;
1552 struct page *page;
1553 int nr;
1554
1555 page = vm_normal_page(vma, addr, ptent);
1556 if (!page) {
1557 /* We don't need up-to-date accessed/dirty bits. */
1558 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1559 arch_check_zapped_pte(vma, ptent);
1560 tlb_remove_tlb_entry(tlb, pte, addr);
1561 if (userfaultfd_pte_wp(vma, ptent))
1562 zap_install_uffd_wp_if_needed(vma, addr, pte, 1,
1563 details, ptent);
1564 ksm_might_unmap_zero_page(mm, ptent);
1565 return 1;
1566 }
1567
1568 folio = page_folio(page);
1569 if (unlikely(!should_zap_folio(details, folio)))
1570 return 1;
1571
1572 /*
1573 * Make sure that the common "small folio" case is as fast as possible
1574 * by keeping the batching logic separate.
1575 */
1576 if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1577 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1578 NULL, NULL, NULL);
1579
1580 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1581 addr, details, rss, force_flush,
1582 force_break);
1583 return nr;
1584 }
1585 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1586 details, rss, force_flush, force_break);
1587 return 1;
1588}
1589
1590static unsigned long zap_pte_range(struct mmu_gather *tlb,
1591 struct vm_area_struct *vma, pmd_t *pmd,
1592 unsigned long addr, unsigned long end,
1593 struct zap_details *details)
1594{
1595 bool force_flush = false, force_break = false;
1596 struct mm_struct *mm = tlb->mm;
1597 int rss[NR_MM_COUNTERS];
1598 spinlock_t *ptl;
1599 pte_t *start_pte;
1600 pte_t *pte;
1601 swp_entry_t entry;
1602 int nr;
1603
1604 tlb_change_page_size(tlb, PAGE_SIZE);
1605 init_rss_vec(rss);
1606 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1607 if (!pte)
1608 return addr;
1609
1610 flush_tlb_batched_pending(mm);
1611 arch_enter_lazy_mmu_mode();
1612 do {
1613 pte_t ptent = ptep_get(pte);
1614 struct folio *folio;
1615 struct page *page;
1616 int max_nr;
1617
1618 nr = 1;
1619 if (pte_none(ptent))
1620 continue;
1621
1622 if (need_resched())
1623 break;
1624
1625 if (pte_present(ptent)) {
1626 max_nr = (end - addr) / PAGE_SIZE;
1627 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1628 addr, details, rss, &force_flush,
1629 &force_break);
1630 if (unlikely(force_break)) {
1631 addr += nr * PAGE_SIZE;
1632 break;
1633 }
1634 continue;
1635 }
1636
1637 entry = pte_to_swp_entry(ptent);
1638 if (is_device_private_entry(entry) ||
1639 is_device_exclusive_entry(entry)) {
1640 page = pfn_swap_entry_to_page(entry);
1641 folio = page_folio(page);
1642 if (unlikely(!should_zap_folio(details, folio)))
1643 continue;
1644 /*
1645 * Both device private/exclusive mappings should only
1646 * work with anonymous page so far, so we don't need to
1647 * consider uffd-wp bit when zap. For more information,
1648 * see zap_install_uffd_wp_if_needed().
1649 */
1650 WARN_ON_ONCE(!vma_is_anonymous(vma));
1651 rss[mm_counter(folio)]--;
1652 if (is_device_private_entry(entry))
1653 folio_remove_rmap_pte(folio, page, vma);
1654 folio_put(folio);
1655 } else if (!non_swap_entry(entry)) {
1656 max_nr = (end - addr) / PAGE_SIZE;
1657 nr = swap_pte_batch(pte, max_nr, ptent);
1658 /* Genuine swap entries, hence a private anon pages */
1659 if (!should_zap_cows(details))
1660 continue;
1661 rss[MM_SWAPENTS] -= nr;
1662 free_swap_and_cache_nr(entry, nr);
1663 } else if (is_migration_entry(entry)) {
1664 folio = pfn_swap_entry_folio(entry);
1665 if (!should_zap_folio(details, folio))
1666 continue;
1667 rss[mm_counter(folio)]--;
1668 } else if (pte_marker_entry_uffd_wp(entry)) {
1669 /*
1670 * For anon: always drop the marker; for file: only
1671 * drop the marker if explicitly requested.
1672 */
1673 if (!vma_is_anonymous(vma) &&
1674 !zap_drop_markers(details))
1675 continue;
1676 } else if (is_guard_swp_entry(entry)) {
1677 /*
1678 * Ordinary zapping should not remove guard PTE
1679 * markers. Only do so if we should remove PTE markers
1680 * in general.
1681 */
1682 if (!zap_drop_markers(details))
1683 continue;
1684 } else if (is_hwpoison_entry(entry) ||
1685 is_poisoned_swp_entry(entry)) {
1686 if (!should_zap_cows(details))
1687 continue;
1688 } else {
1689 /* We should have covered all the swap entry types */
1690 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1691 WARN_ON_ONCE(1);
1692 }
1693 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1694 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1695 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1696
1697 add_mm_rss_vec(mm, rss);
1698 arch_leave_lazy_mmu_mode();
1699
1700 /* Do the actual TLB flush before dropping ptl */
1701 if (force_flush) {
1702 tlb_flush_mmu_tlbonly(tlb);
1703 tlb_flush_rmaps(tlb, vma);
1704 }
1705 pte_unmap_unlock(start_pte, ptl);
1706
1707 /*
1708 * If we forced a TLB flush (either due to running out of
1709 * batch buffers or because we needed to flush dirty TLB
1710 * entries before releasing the ptl), free the batched
1711 * memory too. Come back again if we didn't do everything.
1712 */
1713 if (force_flush)
1714 tlb_flush_mmu(tlb);
1715
1716 return addr;
1717}
1718
1719static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1720 struct vm_area_struct *vma, pud_t *pud,
1721 unsigned long addr, unsigned long end,
1722 struct zap_details *details)
1723{
1724 pmd_t *pmd;
1725 unsigned long next;
1726
1727 pmd = pmd_offset(pud, addr);
1728 do {
1729 next = pmd_addr_end(addr, end);
1730 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1731 if (next - addr != HPAGE_PMD_SIZE)
1732 __split_huge_pmd(vma, pmd, addr, false, NULL);
1733 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1734 addr = next;
1735 continue;
1736 }
1737 /* fall through */
1738 } else if (details && details->single_folio &&
1739 folio_test_pmd_mappable(details->single_folio) &&
1740 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1741 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1742 /*
1743 * Take and drop THP pmd lock so that we cannot return
1744 * prematurely, while zap_huge_pmd() has cleared *pmd,
1745 * but not yet decremented compound_mapcount().
1746 */
1747 spin_unlock(ptl);
1748 }
1749 if (pmd_none(*pmd)) {
1750 addr = next;
1751 continue;
1752 }
1753 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1754 if (addr != next)
1755 pmd--;
1756 } while (pmd++, cond_resched(), addr != end);
1757
1758 return addr;
1759}
1760
1761static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1762 struct vm_area_struct *vma, p4d_t *p4d,
1763 unsigned long addr, unsigned long end,
1764 struct zap_details *details)
1765{
1766 pud_t *pud;
1767 unsigned long next;
1768
1769 pud = pud_offset(p4d, addr);
1770 do {
1771 next = pud_addr_end(addr, end);
1772 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1773 if (next - addr != HPAGE_PUD_SIZE) {
1774 mmap_assert_locked(tlb->mm);
1775 split_huge_pud(vma, pud, addr);
1776 } else if (zap_huge_pud(tlb, vma, pud, addr))
1777 goto next;
1778 /* fall through */
1779 }
1780 if (pud_none_or_clear_bad(pud))
1781 continue;
1782 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1783next:
1784 cond_resched();
1785 } while (pud++, addr = next, addr != end);
1786
1787 return addr;
1788}
1789
1790static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1791 struct vm_area_struct *vma, pgd_t *pgd,
1792 unsigned long addr, unsigned long end,
1793 struct zap_details *details)
1794{
1795 p4d_t *p4d;
1796 unsigned long next;
1797
1798 p4d = p4d_offset(pgd, addr);
1799 do {
1800 next = p4d_addr_end(addr, end);
1801 if (p4d_none_or_clear_bad(p4d))
1802 continue;
1803 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1804 } while (p4d++, addr = next, addr != end);
1805
1806 return addr;
1807}
1808
1809void unmap_page_range(struct mmu_gather *tlb,
1810 struct vm_area_struct *vma,
1811 unsigned long addr, unsigned long end,
1812 struct zap_details *details)
1813{
1814 pgd_t *pgd;
1815 unsigned long next;
1816
1817 BUG_ON(addr >= end);
1818 tlb_start_vma(tlb, vma);
1819 pgd = pgd_offset(vma->vm_mm, addr);
1820 do {
1821 next = pgd_addr_end(addr, end);
1822 if (pgd_none_or_clear_bad(pgd))
1823 continue;
1824 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1825 } while (pgd++, addr = next, addr != end);
1826 tlb_end_vma(tlb, vma);
1827}
1828
1829
1830static void unmap_single_vma(struct mmu_gather *tlb,
1831 struct vm_area_struct *vma, unsigned long start_addr,
1832 unsigned long end_addr,
1833 struct zap_details *details, bool mm_wr_locked)
1834{
1835 unsigned long start = max(vma->vm_start, start_addr);
1836 unsigned long end;
1837
1838 if (start >= vma->vm_end)
1839 return;
1840 end = min(vma->vm_end, end_addr);
1841 if (end <= vma->vm_start)
1842 return;
1843
1844 if (vma->vm_file)
1845 uprobe_munmap(vma, start, end);
1846
1847 if (unlikely(vma->vm_flags & VM_PFNMAP))
1848 untrack_pfn(vma, 0, 0, mm_wr_locked);
1849
1850 if (start != end) {
1851 if (unlikely(is_vm_hugetlb_page(vma))) {
1852 /*
1853 * It is undesirable to test vma->vm_file as it
1854 * should be non-null for valid hugetlb area.
1855 * However, vm_file will be NULL in the error
1856 * cleanup path of mmap_region. When
1857 * hugetlbfs ->mmap method fails,
1858 * mmap_region() nullifies vma->vm_file
1859 * before calling this function to clean up.
1860 * Since no pte has actually been setup, it is
1861 * safe to do nothing in this case.
1862 */
1863 if (vma->vm_file) {
1864 zap_flags_t zap_flags = details ?
1865 details->zap_flags : 0;
1866 __unmap_hugepage_range(tlb, vma, start, end,
1867 NULL, zap_flags);
1868 }
1869 } else
1870 unmap_page_range(tlb, vma, start, end, details);
1871 }
1872}
1873
1874/**
1875 * unmap_vmas - unmap a range of memory covered by a list of vma's
1876 * @tlb: address of the caller's struct mmu_gather
1877 * @mas: the maple state
1878 * @vma: the starting vma
1879 * @start_addr: virtual address at which to start unmapping
1880 * @end_addr: virtual address at which to end unmapping
1881 * @tree_end: The maximum index to check
1882 * @mm_wr_locked: lock flag
1883 *
1884 * Unmap all pages in the vma list.
1885 *
1886 * Only addresses between `start' and `end' will be unmapped.
1887 *
1888 * The VMA list must be sorted in ascending virtual address order.
1889 *
1890 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1891 * range after unmap_vmas() returns. So the only responsibility here is to
1892 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1893 * drops the lock and schedules.
1894 */
1895void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1896 struct vm_area_struct *vma, unsigned long start_addr,
1897 unsigned long end_addr, unsigned long tree_end,
1898 bool mm_wr_locked)
1899{
1900 struct mmu_notifier_range range;
1901 struct zap_details details = {
1902 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1903 /* Careful - we need to zap private pages too! */
1904 .even_cows = true,
1905 };
1906
1907 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1908 start_addr, end_addr);
1909 mmu_notifier_invalidate_range_start(&range);
1910 do {
1911 unsigned long start = start_addr;
1912 unsigned long end = end_addr;
1913 hugetlb_zap_begin(vma, &start, &end);
1914 unmap_single_vma(tlb, vma, start, end, &details,
1915 mm_wr_locked);
1916 hugetlb_zap_end(vma, &details);
1917 vma = mas_find(mas, tree_end - 1);
1918 } while (vma && likely(!xa_is_zero(vma)));
1919 mmu_notifier_invalidate_range_end(&range);
1920}
1921
1922/**
1923 * zap_page_range_single - remove user pages in a given range
1924 * @vma: vm_area_struct holding the applicable pages
1925 * @address: starting address of pages to zap
1926 * @size: number of bytes to zap
1927 * @details: details of shared cache invalidation
1928 *
1929 * The range must fit into one VMA.
1930 */
1931void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1932 unsigned long size, struct zap_details *details)
1933{
1934 const unsigned long end = address + size;
1935 struct mmu_notifier_range range;
1936 struct mmu_gather tlb;
1937
1938 lru_add_drain();
1939 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1940 address, end);
1941 hugetlb_zap_begin(vma, &range.start, &range.end);
1942 tlb_gather_mmu(&tlb, vma->vm_mm);
1943 update_hiwater_rss(vma->vm_mm);
1944 mmu_notifier_invalidate_range_start(&range);
1945 /*
1946 * unmap 'address-end' not 'range.start-range.end' as range
1947 * could have been expanded for hugetlb pmd sharing.
1948 */
1949 unmap_single_vma(&tlb, vma, address, end, details, false);
1950 mmu_notifier_invalidate_range_end(&range);
1951 tlb_finish_mmu(&tlb);
1952 hugetlb_zap_end(vma, details);
1953}
1954
1955/**
1956 * zap_vma_ptes - remove ptes mapping the vma
1957 * @vma: vm_area_struct holding ptes to be zapped
1958 * @address: starting address of pages to zap
1959 * @size: number of bytes to zap
1960 *
1961 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1962 *
1963 * The entire address range must be fully contained within the vma.
1964 *
1965 */
1966void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1967 unsigned long size)
1968{
1969 if (!range_in_vma(vma, address, address + size) ||
1970 !(vma->vm_flags & VM_PFNMAP))
1971 return;
1972
1973 zap_page_range_single(vma, address, size, NULL);
1974}
1975EXPORT_SYMBOL_GPL(zap_vma_ptes);
1976
1977static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1978{
1979 pgd_t *pgd;
1980 p4d_t *p4d;
1981 pud_t *pud;
1982 pmd_t *pmd;
1983
1984 pgd = pgd_offset(mm, addr);
1985 p4d = p4d_alloc(mm, pgd, addr);
1986 if (!p4d)
1987 return NULL;
1988 pud = pud_alloc(mm, p4d, addr);
1989 if (!pud)
1990 return NULL;
1991 pmd = pmd_alloc(mm, pud, addr);
1992 if (!pmd)
1993 return NULL;
1994
1995 VM_BUG_ON(pmd_trans_huge(*pmd));
1996 return pmd;
1997}
1998
1999pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2000 spinlock_t **ptl)
2001{
2002 pmd_t *pmd = walk_to_pmd(mm, addr);
2003
2004 if (!pmd)
2005 return NULL;
2006 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2007}
2008
2009static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
2010{
2011 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
2012 /*
2013 * Whoever wants to forbid the zeropage after some zeropages
2014 * might already have been mapped has to scan the page tables and
2015 * bail out on any zeropages. Zeropages in COW mappings can
2016 * be unshared using FAULT_FLAG_UNSHARE faults.
2017 */
2018 if (mm_forbids_zeropage(vma->vm_mm))
2019 return false;
2020 /* zeropages in COW mappings are common and unproblematic. */
2021 if (is_cow_mapping(vma->vm_flags))
2022 return true;
2023 /* Mappings that do not allow for writable PTEs are unproblematic. */
2024 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2025 return true;
2026 /*
2027 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2028 * find the shared zeropage and longterm-pin it, which would
2029 * be problematic as soon as the zeropage gets replaced by a different
2030 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2031 * now differ to what GUP looked up. FSDAX is incompatible to
2032 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2033 * check_vma_flags).
2034 */
2035 return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2036 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2037}
2038
2039static int validate_page_before_insert(struct vm_area_struct *vma,
2040 struct page *page)
2041{
2042 struct folio *folio = page_folio(page);
2043
2044 if (!folio_ref_count(folio))
2045 return -EINVAL;
2046 if (unlikely(is_zero_folio(folio))) {
2047 if (!vm_mixed_zeropage_allowed(vma))
2048 return -EINVAL;
2049 return 0;
2050 }
2051 if (folio_test_anon(folio) || folio_test_slab(folio) ||
2052 page_has_type(page))
2053 return -EINVAL;
2054 flush_dcache_folio(folio);
2055 return 0;
2056}
2057
2058static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2059 unsigned long addr, struct page *page, pgprot_t prot)
2060{
2061 struct folio *folio = page_folio(page);
2062 pte_t pteval;
2063
2064 if (!pte_none(ptep_get(pte)))
2065 return -EBUSY;
2066 /* Ok, finally just insert the thing.. */
2067 pteval = mk_pte(page, prot);
2068 if (unlikely(is_zero_folio(folio))) {
2069 pteval = pte_mkspecial(pteval);
2070 } else {
2071 folio_get(folio);
2072 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2073 folio_add_file_rmap_pte(folio, page, vma);
2074 }
2075 set_pte_at(vma->vm_mm, addr, pte, pteval);
2076 return 0;
2077}
2078
2079static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2080 struct page *page, pgprot_t prot)
2081{
2082 int retval;
2083 pte_t *pte;
2084 spinlock_t *ptl;
2085
2086 retval = validate_page_before_insert(vma, page);
2087 if (retval)
2088 goto out;
2089 retval = -ENOMEM;
2090 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2091 if (!pte)
2092 goto out;
2093 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2094 pte_unmap_unlock(pte, ptl);
2095out:
2096 return retval;
2097}
2098
2099static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2100 unsigned long addr, struct page *page, pgprot_t prot)
2101{
2102 int err;
2103
2104 err = validate_page_before_insert(vma, page);
2105 if (err)
2106 return err;
2107 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2108}
2109
2110/* insert_pages() amortizes the cost of spinlock operations
2111 * when inserting pages in a loop.
2112 */
2113static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2114 struct page **pages, unsigned long *num, pgprot_t prot)
2115{
2116 pmd_t *pmd = NULL;
2117 pte_t *start_pte, *pte;
2118 spinlock_t *pte_lock;
2119 struct mm_struct *const mm = vma->vm_mm;
2120 unsigned long curr_page_idx = 0;
2121 unsigned long remaining_pages_total = *num;
2122 unsigned long pages_to_write_in_pmd;
2123 int ret;
2124more:
2125 ret = -EFAULT;
2126 pmd = walk_to_pmd(mm, addr);
2127 if (!pmd)
2128 goto out;
2129
2130 pages_to_write_in_pmd = min_t(unsigned long,
2131 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2132
2133 /* Allocate the PTE if necessary; takes PMD lock once only. */
2134 ret = -ENOMEM;
2135 if (pte_alloc(mm, pmd))
2136 goto out;
2137
2138 while (pages_to_write_in_pmd) {
2139 int pte_idx = 0;
2140 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2141
2142 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2143 if (!start_pte) {
2144 ret = -EFAULT;
2145 goto out;
2146 }
2147 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2148 int err = insert_page_in_batch_locked(vma, pte,
2149 addr, pages[curr_page_idx], prot);
2150 if (unlikely(err)) {
2151 pte_unmap_unlock(start_pte, pte_lock);
2152 ret = err;
2153 remaining_pages_total -= pte_idx;
2154 goto out;
2155 }
2156 addr += PAGE_SIZE;
2157 ++curr_page_idx;
2158 }
2159 pte_unmap_unlock(start_pte, pte_lock);
2160 pages_to_write_in_pmd -= batch_size;
2161 remaining_pages_total -= batch_size;
2162 }
2163 if (remaining_pages_total)
2164 goto more;
2165 ret = 0;
2166out:
2167 *num = remaining_pages_total;
2168 return ret;
2169}
2170
2171/**
2172 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2173 * @vma: user vma to map to
2174 * @addr: target start user address of these pages
2175 * @pages: source kernel pages
2176 * @num: in: number of pages to map. out: number of pages that were *not*
2177 * mapped. (0 means all pages were successfully mapped).
2178 *
2179 * Preferred over vm_insert_page() when inserting multiple pages.
2180 *
2181 * In case of error, we may have mapped a subset of the provided
2182 * pages. It is the caller's responsibility to account for this case.
2183 *
2184 * The same restrictions apply as in vm_insert_page().
2185 */
2186int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2187 struct page **pages, unsigned long *num)
2188{
2189 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2190
2191 if (addr < vma->vm_start || end_addr >= vma->vm_end)
2192 return -EFAULT;
2193 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2194 BUG_ON(mmap_read_trylock(vma->vm_mm));
2195 BUG_ON(vma->vm_flags & VM_PFNMAP);
2196 vm_flags_set(vma, VM_MIXEDMAP);
2197 }
2198 /* Defer page refcount checking till we're about to map that page. */
2199 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2200}
2201EXPORT_SYMBOL(vm_insert_pages);
2202
2203/**
2204 * vm_insert_page - insert single page into user vma
2205 * @vma: user vma to map to
2206 * @addr: target user address of this page
2207 * @page: source kernel page
2208 *
2209 * This allows drivers to insert individual pages they've allocated
2210 * into a user vma. The zeropage is supported in some VMAs,
2211 * see vm_mixed_zeropage_allowed().
2212 *
2213 * The page has to be a nice clean _individual_ kernel allocation.
2214 * If you allocate a compound page, you need to have marked it as
2215 * such (__GFP_COMP), or manually just split the page up yourself
2216 * (see split_page()).
2217 *
2218 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2219 * took an arbitrary page protection parameter. This doesn't allow
2220 * that. Your vma protection will have to be set up correctly, which
2221 * means that if you want a shared writable mapping, you'd better
2222 * ask for a shared writable mapping!
2223 *
2224 * The page does not need to be reserved.
2225 *
2226 * Usually this function is called from f_op->mmap() handler
2227 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2228 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2229 * function from other places, for example from page-fault handler.
2230 *
2231 * Return: %0 on success, negative error code otherwise.
2232 */
2233int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2234 struct page *page)
2235{
2236 if (addr < vma->vm_start || addr >= vma->vm_end)
2237 return -EFAULT;
2238 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2239 BUG_ON(mmap_read_trylock(vma->vm_mm));
2240 BUG_ON(vma->vm_flags & VM_PFNMAP);
2241 vm_flags_set(vma, VM_MIXEDMAP);
2242 }
2243 return insert_page(vma, addr, page, vma->vm_page_prot);
2244}
2245EXPORT_SYMBOL(vm_insert_page);
2246
2247/*
2248 * __vm_map_pages - maps range of kernel pages into user vma
2249 * @vma: user vma to map to
2250 * @pages: pointer to array of source kernel pages
2251 * @num: number of pages in page array
2252 * @offset: user's requested vm_pgoff
2253 *
2254 * This allows drivers to map range of kernel pages into a user vma.
2255 * The zeropage is supported in some VMAs, see
2256 * vm_mixed_zeropage_allowed().
2257 *
2258 * Return: 0 on success and error code otherwise.
2259 */
2260static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2261 unsigned long num, unsigned long offset)
2262{
2263 unsigned long count = vma_pages(vma);
2264 unsigned long uaddr = vma->vm_start;
2265 int ret, i;
2266
2267 /* Fail if the user requested offset is beyond the end of the object */
2268 if (offset >= num)
2269 return -ENXIO;
2270
2271 /* Fail if the user requested size exceeds available object size */
2272 if (count > num - offset)
2273 return -ENXIO;
2274
2275 for (i = 0; i < count; i++) {
2276 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2277 if (ret < 0)
2278 return ret;
2279 uaddr += PAGE_SIZE;
2280 }
2281
2282 return 0;
2283}
2284
2285/**
2286 * vm_map_pages - maps range of kernel pages starts with non zero offset
2287 * @vma: user vma to map to
2288 * @pages: pointer to array of source kernel pages
2289 * @num: number of pages in page array
2290 *
2291 * Maps an object consisting of @num pages, catering for the user's
2292 * requested vm_pgoff
2293 *
2294 * If we fail to insert any page into the vma, the function will return
2295 * immediately leaving any previously inserted pages present. Callers
2296 * from the mmap handler may immediately return the error as their caller
2297 * will destroy the vma, removing any successfully inserted pages. Other
2298 * callers should make their own arrangements for calling unmap_region().
2299 *
2300 * Context: Process context. Called by mmap handlers.
2301 * Return: 0 on success and error code otherwise.
2302 */
2303int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2304 unsigned long num)
2305{
2306 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2307}
2308EXPORT_SYMBOL(vm_map_pages);
2309
2310/**
2311 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2312 * @vma: user vma to map to
2313 * @pages: pointer to array of source kernel pages
2314 * @num: number of pages in page array
2315 *
2316 * Similar to vm_map_pages(), except that it explicitly sets the offset
2317 * to 0. This function is intended for the drivers that did not consider
2318 * vm_pgoff.
2319 *
2320 * Context: Process context. Called by mmap handlers.
2321 * Return: 0 on success and error code otherwise.
2322 */
2323int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2324 unsigned long num)
2325{
2326 return __vm_map_pages(vma, pages, num, 0);
2327}
2328EXPORT_SYMBOL(vm_map_pages_zero);
2329
2330static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2331 pfn_t pfn, pgprot_t prot, bool mkwrite)
2332{
2333 struct mm_struct *mm = vma->vm_mm;
2334 pte_t *pte, entry;
2335 spinlock_t *ptl;
2336
2337 pte = get_locked_pte(mm, addr, &ptl);
2338 if (!pte)
2339 return VM_FAULT_OOM;
2340 entry = ptep_get(pte);
2341 if (!pte_none(entry)) {
2342 if (mkwrite) {
2343 /*
2344 * For read faults on private mappings the PFN passed
2345 * in may not match the PFN we have mapped if the
2346 * mapped PFN is a writeable COW page. In the mkwrite
2347 * case we are creating a writable PTE for a shared
2348 * mapping and we expect the PFNs to match. If they
2349 * don't match, we are likely racing with block
2350 * allocation and mapping invalidation so just skip the
2351 * update.
2352 */
2353 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2354 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2355 goto out_unlock;
2356 }
2357 entry = pte_mkyoung(entry);
2358 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2359 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2360 update_mmu_cache(vma, addr, pte);
2361 }
2362 goto out_unlock;
2363 }
2364
2365 /* Ok, finally just insert the thing.. */
2366 if (pfn_t_devmap(pfn))
2367 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2368 else
2369 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2370
2371 if (mkwrite) {
2372 entry = pte_mkyoung(entry);
2373 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2374 }
2375
2376 set_pte_at(mm, addr, pte, entry);
2377 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2378
2379out_unlock:
2380 pte_unmap_unlock(pte, ptl);
2381 return VM_FAULT_NOPAGE;
2382}
2383
2384/**
2385 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2386 * @vma: user vma to map to
2387 * @addr: target user address of this page
2388 * @pfn: source kernel pfn
2389 * @pgprot: pgprot flags for the inserted page
2390 *
2391 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2392 * to override pgprot on a per-page basis.
2393 *
2394 * This only makes sense for IO mappings, and it makes no sense for
2395 * COW mappings. In general, using multiple vmas is preferable;
2396 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2397 * impractical.
2398 *
2399 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2400 * caching- and encryption bits different than those of @vma->vm_page_prot,
2401 * because the caching- or encryption mode may not be known at mmap() time.
2402 *
2403 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2404 * to set caching and encryption bits for those vmas (except for COW pages).
2405 * This is ensured by core vm only modifying these page table entries using
2406 * functions that don't touch caching- or encryption bits, using pte_modify()
2407 * if needed. (See for example mprotect()).
2408 *
2409 * Also when new page-table entries are created, this is only done using the
2410 * fault() callback, and never using the value of vma->vm_page_prot,
2411 * except for page-table entries that point to anonymous pages as the result
2412 * of COW.
2413 *
2414 * Context: Process context. May allocate using %GFP_KERNEL.
2415 * Return: vm_fault_t value.
2416 */
2417vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2418 unsigned long pfn, pgprot_t pgprot)
2419{
2420 /*
2421 * Technically, architectures with pte_special can avoid all these
2422 * restrictions (same for remap_pfn_range). However we would like
2423 * consistency in testing and feature parity among all, so we should
2424 * try to keep these invariants in place for everybody.
2425 */
2426 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2427 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2428 (VM_PFNMAP|VM_MIXEDMAP));
2429 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2430 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2431
2432 if (addr < vma->vm_start || addr >= vma->vm_end)
2433 return VM_FAULT_SIGBUS;
2434
2435 if (!pfn_modify_allowed(pfn, pgprot))
2436 return VM_FAULT_SIGBUS;
2437
2438 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2439
2440 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2441 false);
2442}
2443EXPORT_SYMBOL(vmf_insert_pfn_prot);
2444
2445/**
2446 * vmf_insert_pfn - insert single pfn into user vma
2447 * @vma: user vma to map to
2448 * @addr: target user address of this page
2449 * @pfn: source kernel pfn
2450 *
2451 * Similar to vm_insert_page, this allows drivers to insert individual pages
2452 * they've allocated into a user vma. Same comments apply.
2453 *
2454 * This function should only be called from a vm_ops->fault handler, and
2455 * in that case the handler should return the result of this function.
2456 *
2457 * vma cannot be a COW mapping.
2458 *
2459 * As this is called only for pages that do not currently exist, we
2460 * do not need to flush old virtual caches or the TLB.
2461 *
2462 * Context: Process context. May allocate using %GFP_KERNEL.
2463 * Return: vm_fault_t value.
2464 */
2465vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2466 unsigned long pfn)
2467{
2468 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2469}
2470EXPORT_SYMBOL(vmf_insert_pfn);
2471
2472static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2473{
2474 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2475 (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2476 return false;
2477 /* these checks mirror the abort conditions in vm_normal_page */
2478 if (vma->vm_flags & VM_MIXEDMAP)
2479 return true;
2480 if (pfn_t_devmap(pfn))
2481 return true;
2482 if (pfn_t_special(pfn))
2483 return true;
2484 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2485 return true;
2486 return false;
2487}
2488
2489static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2490 unsigned long addr, pfn_t pfn, bool mkwrite)
2491{
2492 pgprot_t pgprot = vma->vm_page_prot;
2493 int err;
2494
2495 if (!vm_mixed_ok(vma, pfn, mkwrite))
2496 return VM_FAULT_SIGBUS;
2497
2498 if (addr < vma->vm_start || addr >= vma->vm_end)
2499 return VM_FAULT_SIGBUS;
2500
2501 track_pfn_insert(vma, &pgprot, pfn);
2502
2503 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2504 return VM_FAULT_SIGBUS;
2505
2506 /*
2507 * If we don't have pte special, then we have to use the pfn_valid()
2508 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2509 * refcount the page if pfn_valid is true (hence insert_page rather
2510 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2511 * without pte special, it would there be refcounted as a normal page.
2512 */
2513 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2514 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2515 struct page *page;
2516
2517 /*
2518 * At this point we are committed to insert_page()
2519 * regardless of whether the caller specified flags that
2520 * result in pfn_t_has_page() == false.
2521 */
2522 page = pfn_to_page(pfn_t_to_pfn(pfn));
2523 err = insert_page(vma, addr, page, pgprot);
2524 } else {
2525 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2526 }
2527
2528 if (err == -ENOMEM)
2529 return VM_FAULT_OOM;
2530 if (err < 0 && err != -EBUSY)
2531 return VM_FAULT_SIGBUS;
2532
2533 return VM_FAULT_NOPAGE;
2534}
2535
2536vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2537 pfn_t pfn)
2538{
2539 return __vm_insert_mixed(vma, addr, pfn, false);
2540}
2541EXPORT_SYMBOL(vmf_insert_mixed);
2542
2543/*
2544 * If the insertion of PTE failed because someone else already added a
2545 * different entry in the mean time, we treat that as success as we assume
2546 * the same entry was actually inserted.
2547 */
2548vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2549 unsigned long addr, pfn_t pfn)
2550{
2551 return __vm_insert_mixed(vma, addr, pfn, true);
2552}
2553
2554/*
2555 * maps a range of physical memory into the requested pages. the old
2556 * mappings are removed. any references to nonexistent pages results
2557 * in null mappings (currently treated as "copy-on-access")
2558 */
2559static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2560 unsigned long addr, unsigned long end,
2561 unsigned long pfn, pgprot_t prot)
2562{
2563 pte_t *pte, *mapped_pte;
2564 spinlock_t *ptl;
2565 int err = 0;
2566
2567 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2568 if (!pte)
2569 return -ENOMEM;
2570 arch_enter_lazy_mmu_mode();
2571 do {
2572 BUG_ON(!pte_none(ptep_get(pte)));
2573 if (!pfn_modify_allowed(pfn, prot)) {
2574 err = -EACCES;
2575 break;
2576 }
2577 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2578 pfn++;
2579 } while (pte++, addr += PAGE_SIZE, addr != end);
2580 arch_leave_lazy_mmu_mode();
2581 pte_unmap_unlock(mapped_pte, ptl);
2582 return err;
2583}
2584
2585static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2586 unsigned long addr, unsigned long end,
2587 unsigned long pfn, pgprot_t prot)
2588{
2589 pmd_t *pmd;
2590 unsigned long next;
2591 int err;
2592
2593 pfn -= addr >> PAGE_SHIFT;
2594 pmd = pmd_alloc(mm, pud, addr);
2595 if (!pmd)
2596 return -ENOMEM;
2597 VM_BUG_ON(pmd_trans_huge(*pmd));
2598 do {
2599 next = pmd_addr_end(addr, end);
2600 err = remap_pte_range(mm, pmd, addr, next,
2601 pfn + (addr >> PAGE_SHIFT), prot);
2602 if (err)
2603 return err;
2604 } while (pmd++, addr = next, addr != end);
2605 return 0;
2606}
2607
2608static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2609 unsigned long addr, unsigned long end,
2610 unsigned long pfn, pgprot_t prot)
2611{
2612 pud_t *pud;
2613 unsigned long next;
2614 int err;
2615
2616 pfn -= addr >> PAGE_SHIFT;
2617 pud = pud_alloc(mm, p4d, addr);
2618 if (!pud)
2619 return -ENOMEM;
2620 do {
2621 next = pud_addr_end(addr, end);
2622 err = remap_pmd_range(mm, pud, addr, next,
2623 pfn + (addr >> PAGE_SHIFT), prot);
2624 if (err)
2625 return err;
2626 } while (pud++, addr = next, addr != end);
2627 return 0;
2628}
2629
2630static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2631 unsigned long addr, unsigned long end,
2632 unsigned long pfn, pgprot_t prot)
2633{
2634 p4d_t *p4d;
2635 unsigned long next;
2636 int err;
2637
2638 pfn -= addr >> PAGE_SHIFT;
2639 p4d = p4d_alloc(mm, pgd, addr);
2640 if (!p4d)
2641 return -ENOMEM;
2642 do {
2643 next = p4d_addr_end(addr, end);
2644 err = remap_pud_range(mm, p4d, addr, next,
2645 pfn + (addr >> PAGE_SHIFT), prot);
2646 if (err)
2647 return err;
2648 } while (p4d++, addr = next, addr != end);
2649 return 0;
2650}
2651
2652static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2653 unsigned long pfn, unsigned long size, pgprot_t prot)
2654{
2655 pgd_t *pgd;
2656 unsigned long next;
2657 unsigned long end = addr + PAGE_ALIGN(size);
2658 struct mm_struct *mm = vma->vm_mm;
2659 int err;
2660
2661 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2662 return -EINVAL;
2663
2664 /*
2665 * Physically remapped pages are special. Tell the
2666 * rest of the world about it:
2667 * VM_IO tells people not to look at these pages
2668 * (accesses can have side effects).
2669 * VM_PFNMAP tells the core MM that the base pages are just
2670 * raw PFN mappings, and do not have a "struct page" associated
2671 * with them.
2672 * VM_DONTEXPAND
2673 * Disable vma merging and expanding with mremap().
2674 * VM_DONTDUMP
2675 * Omit vma from core dump, even when VM_IO turned off.
2676 *
2677 * There's a horrible special case to handle copy-on-write
2678 * behaviour that some programs depend on. We mark the "original"
2679 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2680 * See vm_normal_page() for details.
2681 */
2682 if (is_cow_mapping(vma->vm_flags)) {
2683 if (addr != vma->vm_start || end != vma->vm_end)
2684 return -EINVAL;
2685 vma->vm_pgoff = pfn;
2686 }
2687
2688 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2689
2690 BUG_ON(addr >= end);
2691 pfn -= addr >> PAGE_SHIFT;
2692 pgd = pgd_offset(mm, addr);
2693 flush_cache_range(vma, addr, end);
2694 do {
2695 next = pgd_addr_end(addr, end);
2696 err = remap_p4d_range(mm, pgd, addr, next,
2697 pfn + (addr >> PAGE_SHIFT), prot);
2698 if (err)
2699 return err;
2700 } while (pgd++, addr = next, addr != end);
2701
2702 return 0;
2703}
2704
2705/*
2706 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2707 * must have pre-validated the caching bits of the pgprot_t.
2708 */
2709int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2710 unsigned long pfn, unsigned long size, pgprot_t prot)
2711{
2712 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2713
2714 if (!error)
2715 return 0;
2716
2717 /*
2718 * A partial pfn range mapping is dangerous: it does not
2719 * maintain page reference counts, and callers may free
2720 * pages due to the error. So zap it early.
2721 */
2722 zap_page_range_single(vma, addr, size, NULL);
2723 return error;
2724}
2725
2726/**
2727 * remap_pfn_range - remap kernel memory to userspace
2728 * @vma: user vma to map to
2729 * @addr: target page aligned user address to start at
2730 * @pfn: page frame number of kernel physical memory address
2731 * @size: size of mapping area
2732 * @prot: page protection flags for this mapping
2733 *
2734 * Note: this is only safe if the mm semaphore is held when called.
2735 *
2736 * Return: %0 on success, negative error code otherwise.
2737 */
2738int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2739 unsigned long pfn, unsigned long size, pgprot_t prot)
2740{
2741 int err;
2742
2743 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2744 if (err)
2745 return -EINVAL;
2746
2747 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2748 if (err)
2749 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2750 return err;
2751}
2752EXPORT_SYMBOL(remap_pfn_range);
2753
2754/**
2755 * vm_iomap_memory - remap memory to userspace
2756 * @vma: user vma to map to
2757 * @start: start of the physical memory to be mapped
2758 * @len: size of area
2759 *
2760 * This is a simplified io_remap_pfn_range() for common driver use. The
2761 * driver just needs to give us the physical memory range to be mapped,
2762 * we'll figure out the rest from the vma information.
2763 *
2764 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2765 * whatever write-combining details or similar.
2766 *
2767 * Return: %0 on success, negative error code otherwise.
2768 */
2769int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2770{
2771 unsigned long vm_len, pfn, pages;
2772
2773 /* Check that the physical memory area passed in looks valid */
2774 if (start + len < start)
2775 return -EINVAL;
2776 /*
2777 * You *really* shouldn't map things that aren't page-aligned,
2778 * but we've historically allowed it because IO memory might
2779 * just have smaller alignment.
2780 */
2781 len += start & ~PAGE_MASK;
2782 pfn = start >> PAGE_SHIFT;
2783 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2784 if (pfn + pages < pfn)
2785 return -EINVAL;
2786
2787 /* We start the mapping 'vm_pgoff' pages into the area */
2788 if (vma->vm_pgoff > pages)
2789 return -EINVAL;
2790 pfn += vma->vm_pgoff;
2791 pages -= vma->vm_pgoff;
2792
2793 /* Can we fit all of the mapping? */
2794 vm_len = vma->vm_end - vma->vm_start;
2795 if (vm_len >> PAGE_SHIFT > pages)
2796 return -EINVAL;
2797
2798 /* Ok, let it rip */
2799 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2800}
2801EXPORT_SYMBOL(vm_iomap_memory);
2802
2803static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2804 unsigned long addr, unsigned long end,
2805 pte_fn_t fn, void *data, bool create,
2806 pgtbl_mod_mask *mask)
2807{
2808 pte_t *pte, *mapped_pte;
2809 int err = 0;
2810 spinlock_t *ptl;
2811
2812 if (create) {
2813 mapped_pte = pte = (mm == &init_mm) ?
2814 pte_alloc_kernel_track(pmd, addr, mask) :
2815 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2816 if (!pte)
2817 return -ENOMEM;
2818 } else {
2819 mapped_pte = pte = (mm == &init_mm) ?
2820 pte_offset_kernel(pmd, addr) :
2821 pte_offset_map_lock(mm, pmd, addr, &ptl);
2822 if (!pte)
2823 return -EINVAL;
2824 }
2825
2826 arch_enter_lazy_mmu_mode();
2827
2828 if (fn) {
2829 do {
2830 if (create || !pte_none(ptep_get(pte))) {
2831 err = fn(pte++, addr, data);
2832 if (err)
2833 break;
2834 }
2835 } while (addr += PAGE_SIZE, addr != end);
2836 }
2837 *mask |= PGTBL_PTE_MODIFIED;
2838
2839 arch_leave_lazy_mmu_mode();
2840
2841 if (mm != &init_mm)
2842 pte_unmap_unlock(mapped_pte, ptl);
2843 return err;
2844}
2845
2846static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2847 unsigned long addr, unsigned long end,
2848 pte_fn_t fn, void *data, bool create,
2849 pgtbl_mod_mask *mask)
2850{
2851 pmd_t *pmd;
2852 unsigned long next;
2853 int err = 0;
2854
2855 BUG_ON(pud_leaf(*pud));
2856
2857 if (create) {
2858 pmd = pmd_alloc_track(mm, pud, addr, mask);
2859 if (!pmd)
2860 return -ENOMEM;
2861 } else {
2862 pmd = pmd_offset(pud, addr);
2863 }
2864 do {
2865 next = pmd_addr_end(addr, end);
2866 if (pmd_none(*pmd) && !create)
2867 continue;
2868 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2869 return -EINVAL;
2870 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2871 if (!create)
2872 continue;
2873 pmd_clear_bad(pmd);
2874 }
2875 err = apply_to_pte_range(mm, pmd, addr, next,
2876 fn, data, create, mask);
2877 if (err)
2878 break;
2879 } while (pmd++, addr = next, addr != end);
2880
2881 return err;
2882}
2883
2884static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2885 unsigned long addr, unsigned long end,
2886 pte_fn_t fn, void *data, bool create,
2887 pgtbl_mod_mask *mask)
2888{
2889 pud_t *pud;
2890 unsigned long next;
2891 int err = 0;
2892
2893 if (create) {
2894 pud = pud_alloc_track(mm, p4d, addr, mask);
2895 if (!pud)
2896 return -ENOMEM;
2897 } else {
2898 pud = pud_offset(p4d, addr);
2899 }
2900 do {
2901 next = pud_addr_end(addr, end);
2902 if (pud_none(*pud) && !create)
2903 continue;
2904 if (WARN_ON_ONCE(pud_leaf(*pud)))
2905 return -EINVAL;
2906 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2907 if (!create)
2908 continue;
2909 pud_clear_bad(pud);
2910 }
2911 err = apply_to_pmd_range(mm, pud, addr, next,
2912 fn, data, create, mask);
2913 if (err)
2914 break;
2915 } while (pud++, addr = next, addr != end);
2916
2917 return err;
2918}
2919
2920static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2921 unsigned long addr, unsigned long end,
2922 pte_fn_t fn, void *data, bool create,
2923 pgtbl_mod_mask *mask)
2924{
2925 p4d_t *p4d;
2926 unsigned long next;
2927 int err = 0;
2928
2929 if (create) {
2930 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2931 if (!p4d)
2932 return -ENOMEM;
2933 } else {
2934 p4d = p4d_offset(pgd, addr);
2935 }
2936 do {
2937 next = p4d_addr_end(addr, end);
2938 if (p4d_none(*p4d) && !create)
2939 continue;
2940 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2941 return -EINVAL;
2942 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2943 if (!create)
2944 continue;
2945 p4d_clear_bad(p4d);
2946 }
2947 err = apply_to_pud_range(mm, p4d, addr, next,
2948 fn, data, create, mask);
2949 if (err)
2950 break;
2951 } while (p4d++, addr = next, addr != end);
2952
2953 return err;
2954}
2955
2956static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2957 unsigned long size, pte_fn_t fn,
2958 void *data, bool create)
2959{
2960 pgd_t *pgd;
2961 unsigned long start = addr, next;
2962 unsigned long end = addr + size;
2963 pgtbl_mod_mask mask = 0;
2964 int err = 0;
2965
2966 if (WARN_ON(addr >= end))
2967 return -EINVAL;
2968
2969 pgd = pgd_offset(mm, addr);
2970 do {
2971 next = pgd_addr_end(addr, end);
2972 if (pgd_none(*pgd) && !create)
2973 continue;
2974 if (WARN_ON_ONCE(pgd_leaf(*pgd))) {
2975 err = -EINVAL;
2976 break;
2977 }
2978 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2979 if (!create)
2980 continue;
2981 pgd_clear_bad(pgd);
2982 }
2983 err = apply_to_p4d_range(mm, pgd, addr, next,
2984 fn, data, create, &mask);
2985 if (err)
2986 break;
2987 } while (pgd++, addr = next, addr != end);
2988
2989 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2990 arch_sync_kernel_mappings(start, start + size);
2991
2992 return err;
2993}
2994
2995/*
2996 * Scan a region of virtual memory, filling in page tables as necessary
2997 * and calling a provided function on each leaf page table.
2998 */
2999int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3000 unsigned long size, pte_fn_t fn, void *data)
3001{
3002 return __apply_to_page_range(mm, addr, size, fn, data, true);
3003}
3004EXPORT_SYMBOL_GPL(apply_to_page_range);
3005
3006/*
3007 * Scan a region of virtual memory, calling a provided function on
3008 * each leaf page table where it exists.
3009 *
3010 * Unlike apply_to_page_range, this does _not_ fill in page tables
3011 * where they are absent.
3012 */
3013int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
3014 unsigned long size, pte_fn_t fn, void *data)
3015{
3016 return __apply_to_page_range(mm, addr, size, fn, data, false);
3017}
3018EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
3019
3020/*
3021 * handle_pte_fault chooses page fault handler according to an entry which was
3022 * read non-atomically. Before making any commitment, on those architectures
3023 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3024 * parts, do_swap_page must check under lock before unmapping the pte and
3025 * proceeding (but do_wp_page is only called after already making such a check;
3026 * and do_anonymous_page can safely check later on).
3027 */
3028static inline int pte_unmap_same(struct vm_fault *vmf)
3029{
3030 int same = 1;
3031#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3032 if (sizeof(pte_t) > sizeof(unsigned long)) {
3033 spin_lock(vmf->ptl);
3034 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3035 spin_unlock(vmf->ptl);
3036 }
3037#endif
3038 pte_unmap(vmf->pte);
3039 vmf->pte = NULL;
3040 return same;
3041}
3042
3043/*
3044 * Return:
3045 * 0: copied succeeded
3046 * -EHWPOISON: copy failed due to hwpoison in source page
3047 * -EAGAIN: copied failed (some other reason)
3048 */
3049static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3050 struct vm_fault *vmf)
3051{
3052 int ret;
3053 void *kaddr;
3054 void __user *uaddr;
3055 struct vm_area_struct *vma = vmf->vma;
3056 struct mm_struct *mm = vma->vm_mm;
3057 unsigned long addr = vmf->address;
3058
3059 if (likely(src)) {
3060 if (copy_mc_user_highpage(dst, src, addr, vma))
3061 return -EHWPOISON;
3062 return 0;
3063 }
3064
3065 /*
3066 * If the source page was a PFN mapping, we don't have
3067 * a "struct page" for it. We do a best-effort copy by
3068 * just copying from the original user address. If that
3069 * fails, we just zero-fill it. Live with it.
3070 */
3071 kaddr = kmap_local_page(dst);
3072 pagefault_disable();
3073 uaddr = (void __user *)(addr & PAGE_MASK);
3074
3075 /*
3076 * On architectures with software "accessed" bits, we would
3077 * take a double page fault, so mark it accessed here.
3078 */
3079 vmf->pte = NULL;
3080 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3081 pte_t entry;
3082
3083 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3084 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3085 /*
3086 * Other thread has already handled the fault
3087 * and update local tlb only
3088 */
3089 if (vmf->pte)
3090 update_mmu_tlb(vma, addr, vmf->pte);
3091 ret = -EAGAIN;
3092 goto pte_unlock;
3093 }
3094
3095 entry = pte_mkyoung(vmf->orig_pte);
3096 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3097 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3098 }
3099
3100 /*
3101 * This really shouldn't fail, because the page is there
3102 * in the page tables. But it might just be unreadable,
3103 * in which case we just give up and fill the result with
3104 * zeroes.
3105 */
3106 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3107 if (vmf->pte)
3108 goto warn;
3109
3110 /* Re-validate under PTL if the page is still mapped */
3111 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3112 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3113 /* The PTE changed under us, update local tlb */
3114 if (vmf->pte)
3115 update_mmu_tlb(vma, addr, vmf->pte);
3116 ret = -EAGAIN;
3117 goto pte_unlock;
3118 }
3119
3120 /*
3121 * The same page can be mapped back since last copy attempt.
3122 * Try to copy again under PTL.
3123 */
3124 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3125 /*
3126 * Give a warn in case there can be some obscure
3127 * use-case
3128 */
3129warn:
3130 WARN_ON_ONCE(1);
3131 clear_page(kaddr);
3132 }
3133 }
3134
3135 ret = 0;
3136
3137pte_unlock:
3138 if (vmf->pte)
3139 pte_unmap_unlock(vmf->pte, vmf->ptl);
3140 pagefault_enable();
3141 kunmap_local(kaddr);
3142 flush_dcache_page(dst);
3143
3144 return ret;
3145}
3146
3147static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3148{
3149 struct file *vm_file = vma->vm_file;
3150
3151 if (vm_file)
3152 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3153
3154 /*
3155 * Special mappings (e.g. VDSO) do not have any file so fake
3156 * a default GFP_KERNEL for them.
3157 */
3158 return GFP_KERNEL;
3159}
3160
3161/*
3162 * Notify the address space that the page is about to become writable so that
3163 * it can prohibit this or wait for the page to get into an appropriate state.
3164 *
3165 * We do this without the lock held, so that it can sleep if it needs to.
3166 */
3167static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3168{
3169 vm_fault_t ret;
3170 unsigned int old_flags = vmf->flags;
3171
3172 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3173
3174 if (vmf->vma->vm_file &&
3175 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3176 return VM_FAULT_SIGBUS;
3177
3178 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3179 /* Restore original flags so that caller is not surprised */
3180 vmf->flags = old_flags;
3181 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3182 return ret;
3183 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3184 folio_lock(folio);
3185 if (!folio->mapping) {
3186 folio_unlock(folio);
3187 return 0; /* retry */
3188 }
3189 ret |= VM_FAULT_LOCKED;
3190 } else
3191 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3192 return ret;
3193}
3194
3195/*
3196 * Handle dirtying of a page in shared file mapping on a write fault.
3197 *
3198 * The function expects the page to be locked and unlocks it.
3199 */
3200static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3201{
3202 struct vm_area_struct *vma = vmf->vma;
3203 struct address_space *mapping;
3204 struct folio *folio = page_folio(vmf->page);
3205 bool dirtied;
3206 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3207
3208 dirtied = folio_mark_dirty(folio);
3209 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3210 /*
3211 * Take a local copy of the address_space - folio.mapping may be zeroed
3212 * by truncate after folio_unlock(). The address_space itself remains
3213 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
3214 * release semantics to prevent the compiler from undoing this copying.
3215 */
3216 mapping = folio_raw_mapping(folio);
3217 folio_unlock(folio);
3218
3219 if (!page_mkwrite)
3220 file_update_time(vma->vm_file);
3221
3222 /*
3223 * Throttle page dirtying rate down to writeback speed.
3224 *
3225 * mapping may be NULL here because some device drivers do not
3226 * set page.mapping but still dirty their pages
3227 *
3228 * Drop the mmap_lock before waiting on IO, if we can. The file
3229 * is pinning the mapping, as per above.
3230 */
3231 if ((dirtied || page_mkwrite) && mapping) {
3232 struct file *fpin;
3233
3234 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3235 balance_dirty_pages_ratelimited(mapping);
3236 if (fpin) {
3237 fput(fpin);
3238 return VM_FAULT_COMPLETED;
3239 }
3240 }
3241
3242 return 0;
3243}
3244
3245/*
3246 * Handle write page faults for pages that can be reused in the current vma
3247 *
3248 * This can happen either due to the mapping being with the VM_SHARED flag,
3249 * or due to us being the last reference standing to the page. In either
3250 * case, all we need to do here is to mark the page as writable and update
3251 * any related book-keeping.
3252 */
3253static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3254 __releases(vmf->ptl)
3255{
3256 struct vm_area_struct *vma = vmf->vma;
3257 pte_t entry;
3258
3259 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3260 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3261
3262 if (folio) {
3263 VM_BUG_ON(folio_test_anon(folio) &&
3264 !PageAnonExclusive(vmf->page));
3265 /*
3266 * Clear the folio's cpupid information as the existing
3267 * information potentially belongs to a now completely
3268 * unrelated process.
3269 */
3270 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3271 }
3272
3273 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3274 entry = pte_mkyoung(vmf->orig_pte);
3275 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3276 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3277 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3278 pte_unmap_unlock(vmf->pte, vmf->ptl);
3279 count_vm_event(PGREUSE);
3280}
3281
3282/*
3283 * We could add a bitflag somewhere, but for now, we know that all
3284 * vm_ops that have a ->map_pages have been audited and don't need
3285 * the mmap_lock to be held.
3286 */
3287static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3288{
3289 struct vm_area_struct *vma = vmf->vma;
3290
3291 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3292 return 0;
3293 vma_end_read(vma);
3294 return VM_FAULT_RETRY;
3295}
3296
3297/**
3298 * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3299 * @vmf: The vm_fault descriptor passed from the fault handler.
3300 *
3301 * When preparing to insert an anonymous page into a VMA from a
3302 * fault handler, call this function rather than anon_vma_prepare().
3303 * If this vma does not already have an associated anon_vma and we are
3304 * only protected by the per-VMA lock, the caller must retry with the
3305 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
3306 * determine if this VMA can share its anon_vma, and that's not safe to
3307 * do with only the per-VMA lock held for this VMA.
3308 *
3309 * Return: 0 if fault handling can proceed. Any other value should be
3310 * returned to the caller.
3311 */
3312vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3313{
3314 struct vm_area_struct *vma = vmf->vma;
3315 vm_fault_t ret = 0;
3316
3317 if (likely(vma->anon_vma))
3318 return 0;
3319 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3320 if (!mmap_read_trylock(vma->vm_mm))
3321 return VM_FAULT_RETRY;
3322 }
3323 if (__anon_vma_prepare(vma))
3324 ret = VM_FAULT_OOM;
3325 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3326 mmap_read_unlock(vma->vm_mm);
3327 return ret;
3328}
3329
3330/*
3331 * Handle the case of a page which we actually need to copy to a new page,
3332 * either due to COW or unsharing.
3333 *
3334 * Called with mmap_lock locked and the old page referenced, but
3335 * without the ptl held.
3336 *
3337 * High level logic flow:
3338 *
3339 * - Allocate a page, copy the content of the old page to the new one.
3340 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3341 * - Take the PTL. If the pte changed, bail out and release the allocated page
3342 * - If the pte is still the way we remember it, update the page table and all
3343 * relevant references. This includes dropping the reference the page-table
3344 * held to the old page, as well as updating the rmap.
3345 * - In any case, unlock the PTL and drop the reference we took to the old page.
3346 */
3347static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3348{
3349 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3350 struct vm_area_struct *vma = vmf->vma;
3351 struct mm_struct *mm = vma->vm_mm;
3352 struct folio *old_folio = NULL;
3353 struct folio *new_folio = NULL;
3354 pte_t entry;
3355 int page_copied = 0;
3356 struct mmu_notifier_range range;
3357 vm_fault_t ret;
3358 bool pfn_is_zero;
3359
3360 delayacct_wpcopy_start();
3361
3362 if (vmf->page)
3363 old_folio = page_folio(vmf->page);
3364 ret = vmf_anon_prepare(vmf);
3365 if (unlikely(ret))
3366 goto out;
3367
3368 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3369 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3370 if (!new_folio)
3371 goto oom;
3372
3373 if (!pfn_is_zero) {
3374 int err;
3375
3376 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3377 if (err) {
3378 /*
3379 * COW failed, if the fault was solved by other,
3380 * it's fine. If not, userspace would re-fault on
3381 * the same address and we will handle the fault
3382 * from the second attempt.
3383 * The -EHWPOISON case will not be retried.
3384 */
3385 folio_put(new_folio);
3386 if (old_folio)
3387 folio_put(old_folio);
3388
3389 delayacct_wpcopy_end();
3390 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3391 }
3392 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3393 }
3394
3395 __folio_mark_uptodate(new_folio);
3396
3397 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3398 vmf->address & PAGE_MASK,
3399 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3400 mmu_notifier_invalidate_range_start(&range);
3401
3402 /*
3403 * Re-check the pte - we dropped the lock
3404 */
3405 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3406 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3407 if (old_folio) {
3408 if (!folio_test_anon(old_folio)) {
3409 dec_mm_counter(mm, mm_counter_file(old_folio));
3410 inc_mm_counter(mm, MM_ANONPAGES);
3411 }
3412 } else {
3413 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3414 inc_mm_counter(mm, MM_ANONPAGES);
3415 }
3416 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3417 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3418 entry = pte_sw_mkyoung(entry);
3419 if (unlikely(unshare)) {
3420 if (pte_soft_dirty(vmf->orig_pte))
3421 entry = pte_mksoft_dirty(entry);
3422 if (pte_uffd_wp(vmf->orig_pte))
3423 entry = pte_mkuffd_wp(entry);
3424 } else {
3425 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3426 }
3427
3428 /*
3429 * Clear the pte entry and flush it first, before updating the
3430 * pte with the new entry, to keep TLBs on different CPUs in
3431 * sync. This code used to set the new PTE then flush TLBs, but
3432 * that left a window where the new PTE could be loaded into
3433 * some TLBs while the old PTE remains in others.
3434 */
3435 ptep_clear_flush(vma, vmf->address, vmf->pte);
3436 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3437 folio_add_lru_vma(new_folio, vma);
3438 BUG_ON(unshare && pte_write(entry));
3439 set_pte_at(mm, vmf->address, vmf->pte, entry);
3440 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3441 if (old_folio) {
3442 /*
3443 * Only after switching the pte to the new page may
3444 * we remove the mapcount here. Otherwise another
3445 * process may come and find the rmap count decremented
3446 * before the pte is switched to the new page, and
3447 * "reuse" the old page writing into it while our pte
3448 * here still points into it and can be read by other
3449 * threads.
3450 *
3451 * The critical issue is to order this
3452 * folio_remove_rmap_pte() with the ptp_clear_flush
3453 * above. Those stores are ordered by (if nothing else,)
3454 * the barrier present in the atomic_add_negative
3455 * in folio_remove_rmap_pte();
3456 *
3457 * Then the TLB flush in ptep_clear_flush ensures that
3458 * no process can access the old page before the
3459 * decremented mapcount is visible. And the old page
3460 * cannot be reused until after the decremented
3461 * mapcount is visible. So transitively, TLBs to
3462 * old page will be flushed before it can be reused.
3463 */
3464 folio_remove_rmap_pte(old_folio, vmf->page, vma);
3465 }
3466
3467 /* Free the old page.. */
3468 new_folio = old_folio;
3469 page_copied = 1;
3470 pte_unmap_unlock(vmf->pte, vmf->ptl);
3471 } else if (vmf->pte) {
3472 update_mmu_tlb(vma, vmf->address, vmf->pte);
3473 pte_unmap_unlock(vmf->pte, vmf->ptl);
3474 }
3475
3476 mmu_notifier_invalidate_range_end(&range);
3477
3478 if (new_folio)
3479 folio_put(new_folio);
3480 if (old_folio) {
3481 if (page_copied)
3482 free_swap_cache(old_folio);
3483 folio_put(old_folio);
3484 }
3485
3486 delayacct_wpcopy_end();
3487 return 0;
3488oom:
3489 ret = VM_FAULT_OOM;
3490out:
3491 if (old_folio)
3492 folio_put(old_folio);
3493
3494 delayacct_wpcopy_end();
3495 return ret;
3496}
3497
3498/**
3499 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3500 * writeable once the page is prepared
3501 *
3502 * @vmf: structure describing the fault
3503 * @folio: the folio of vmf->page
3504 *
3505 * This function handles all that is needed to finish a write page fault in a
3506 * shared mapping due to PTE being read-only once the mapped page is prepared.
3507 * It handles locking of PTE and modifying it.
3508 *
3509 * The function expects the page to be locked or other protection against
3510 * concurrent faults / writeback (such as DAX radix tree locks).
3511 *
3512 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3513 * we acquired PTE lock.
3514 */
3515static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3516{
3517 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3518 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3519 &vmf->ptl);
3520 if (!vmf->pte)
3521 return VM_FAULT_NOPAGE;
3522 /*
3523 * We might have raced with another page fault while we released the
3524 * pte_offset_map_lock.
3525 */
3526 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3527 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3528 pte_unmap_unlock(vmf->pte, vmf->ptl);
3529 return VM_FAULT_NOPAGE;
3530 }
3531 wp_page_reuse(vmf, folio);
3532 return 0;
3533}
3534
3535/*
3536 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3537 * mapping
3538 */
3539static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3540{
3541 struct vm_area_struct *vma = vmf->vma;
3542
3543 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3544 vm_fault_t ret;
3545
3546 pte_unmap_unlock(vmf->pte, vmf->ptl);
3547 ret = vmf_can_call_fault(vmf);
3548 if (ret)
3549 return ret;
3550
3551 vmf->flags |= FAULT_FLAG_MKWRITE;
3552 ret = vma->vm_ops->pfn_mkwrite(vmf);
3553 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3554 return ret;
3555 return finish_mkwrite_fault(vmf, NULL);
3556 }
3557 wp_page_reuse(vmf, NULL);
3558 return 0;
3559}
3560
3561static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3562 __releases(vmf->ptl)
3563{
3564 struct vm_area_struct *vma = vmf->vma;
3565 vm_fault_t ret = 0;
3566
3567 folio_get(folio);
3568
3569 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3570 vm_fault_t tmp;
3571
3572 pte_unmap_unlock(vmf->pte, vmf->ptl);
3573 tmp = vmf_can_call_fault(vmf);
3574 if (tmp) {
3575 folio_put(folio);
3576 return tmp;
3577 }
3578
3579 tmp = do_page_mkwrite(vmf, folio);
3580 if (unlikely(!tmp || (tmp &
3581 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3582 folio_put(folio);
3583 return tmp;
3584 }
3585 tmp = finish_mkwrite_fault(vmf, folio);
3586 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3587 folio_unlock(folio);
3588 folio_put(folio);
3589 return tmp;
3590 }
3591 } else {
3592 wp_page_reuse(vmf, folio);
3593 folio_lock(folio);
3594 }
3595 ret |= fault_dirty_shared_page(vmf);
3596 folio_put(folio);
3597
3598 return ret;
3599}
3600
3601static bool wp_can_reuse_anon_folio(struct folio *folio,
3602 struct vm_area_struct *vma)
3603{
3604 /*
3605 * We could currently only reuse a subpage of a large folio if no
3606 * other subpages of the large folios are still mapped. However,
3607 * let's just consistently not reuse subpages even if we could
3608 * reuse in that scenario, and give back a large folio a bit
3609 * sooner.
3610 */
3611 if (folio_test_large(folio))
3612 return false;
3613
3614 /*
3615 * We have to verify under folio lock: these early checks are
3616 * just an optimization to avoid locking the folio and freeing
3617 * the swapcache if there is little hope that we can reuse.
3618 *
3619 * KSM doesn't necessarily raise the folio refcount.
3620 */
3621 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3622 return false;
3623 if (!folio_test_lru(folio))
3624 /*
3625 * We cannot easily detect+handle references from
3626 * remote LRU caches or references to LRU folios.
3627 */
3628 lru_add_drain();
3629 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3630 return false;
3631 if (!folio_trylock(folio))
3632 return false;
3633 if (folio_test_swapcache(folio))
3634 folio_free_swap(folio);
3635 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3636 folio_unlock(folio);
3637 return false;
3638 }
3639 /*
3640 * Ok, we've got the only folio reference from our mapping
3641 * and the folio is locked, it's dark out, and we're wearing
3642 * sunglasses. Hit it.
3643 */
3644 folio_move_anon_rmap(folio, vma);
3645 folio_unlock(folio);
3646 return true;
3647}
3648
3649/*
3650 * This routine handles present pages, when
3651 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3652 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3653 * (FAULT_FLAG_UNSHARE)
3654 *
3655 * It is done by copying the page to a new address and decrementing the
3656 * shared-page counter for the old page.
3657 *
3658 * Note that this routine assumes that the protection checks have been
3659 * done by the caller (the low-level page fault routine in most cases).
3660 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3661 * done any necessary COW.
3662 *
3663 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3664 * though the page will change only once the write actually happens. This
3665 * avoids a few races, and potentially makes it more efficient.
3666 *
3667 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3668 * but allow concurrent faults), with pte both mapped and locked.
3669 * We return with mmap_lock still held, but pte unmapped and unlocked.
3670 */
3671static vm_fault_t do_wp_page(struct vm_fault *vmf)
3672 __releases(vmf->ptl)
3673{
3674 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3675 struct vm_area_struct *vma = vmf->vma;
3676 struct folio *folio = NULL;
3677 pte_t pte;
3678
3679 if (likely(!unshare)) {
3680 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3681 if (!userfaultfd_wp_async(vma)) {
3682 pte_unmap_unlock(vmf->pte, vmf->ptl);
3683 return handle_userfault(vmf, VM_UFFD_WP);
3684 }
3685
3686 /*
3687 * Nothing needed (cache flush, TLB invalidations,
3688 * etc.) because we're only removing the uffd-wp bit,
3689 * which is completely invisible to the user.
3690 */
3691 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3692
3693 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3694 /*
3695 * Update this to be prepared for following up CoW
3696 * handling
3697 */
3698 vmf->orig_pte = pte;
3699 }
3700
3701 /*
3702 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3703 * is flushed in this case before copying.
3704 */
3705 if (unlikely(userfaultfd_wp(vmf->vma) &&
3706 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3707 flush_tlb_page(vmf->vma, vmf->address);
3708 }
3709
3710 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3711
3712 if (vmf->page)
3713 folio = page_folio(vmf->page);
3714
3715 /*
3716 * Shared mapping: we are guaranteed to have VM_WRITE and
3717 * FAULT_FLAG_WRITE set at this point.
3718 */
3719 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3720 /*
3721 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3722 * VM_PFNMAP VMA.
3723 *
3724 * We should not cow pages in a shared writeable mapping.
3725 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3726 */
3727 if (!vmf->page)
3728 return wp_pfn_shared(vmf);
3729 return wp_page_shared(vmf, folio);
3730 }
3731
3732 /*
3733 * Private mapping: create an exclusive anonymous page copy if reuse
3734 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3735 *
3736 * If we encounter a page that is marked exclusive, we must reuse
3737 * the page without further checks.
3738 */
3739 if (folio && folio_test_anon(folio) &&
3740 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3741 if (!PageAnonExclusive(vmf->page))
3742 SetPageAnonExclusive(vmf->page);
3743 if (unlikely(unshare)) {
3744 pte_unmap_unlock(vmf->pte, vmf->ptl);
3745 return 0;
3746 }
3747 wp_page_reuse(vmf, folio);
3748 return 0;
3749 }
3750 /*
3751 * Ok, we need to copy. Oh, well..
3752 */
3753 if (folio)
3754 folio_get(folio);
3755
3756 pte_unmap_unlock(vmf->pte, vmf->ptl);
3757#ifdef CONFIG_KSM
3758 if (folio && folio_test_ksm(folio))
3759 count_vm_event(COW_KSM);
3760#endif
3761 return wp_page_copy(vmf);
3762}
3763
3764static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3765 unsigned long start_addr, unsigned long end_addr,
3766 struct zap_details *details)
3767{
3768 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3769}
3770
3771static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3772 pgoff_t first_index,
3773 pgoff_t last_index,
3774 struct zap_details *details)
3775{
3776 struct vm_area_struct *vma;
3777 pgoff_t vba, vea, zba, zea;
3778
3779 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3780 vba = vma->vm_pgoff;
3781 vea = vba + vma_pages(vma) - 1;
3782 zba = max(first_index, vba);
3783 zea = min(last_index, vea);
3784
3785 unmap_mapping_range_vma(vma,
3786 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3787 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3788 details);
3789 }
3790}
3791
3792/**
3793 * unmap_mapping_folio() - Unmap single folio from processes.
3794 * @folio: The locked folio to be unmapped.
3795 *
3796 * Unmap this folio from any userspace process which still has it mmaped.
3797 * Typically, for efficiency, the range of nearby pages has already been
3798 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3799 * truncation or invalidation holds the lock on a folio, it may find that
3800 * the page has been remapped again: and then uses unmap_mapping_folio()
3801 * to unmap it finally.
3802 */
3803void unmap_mapping_folio(struct folio *folio)
3804{
3805 struct address_space *mapping = folio->mapping;
3806 struct zap_details details = { };
3807 pgoff_t first_index;
3808 pgoff_t last_index;
3809
3810 VM_BUG_ON(!folio_test_locked(folio));
3811
3812 first_index = folio->index;
3813 last_index = folio_next_index(folio) - 1;
3814
3815 details.even_cows = false;
3816 details.single_folio = folio;
3817 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3818
3819 i_mmap_lock_read(mapping);
3820 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3821 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3822 last_index, &details);
3823 i_mmap_unlock_read(mapping);
3824}
3825
3826/**
3827 * unmap_mapping_pages() - Unmap pages from processes.
3828 * @mapping: The address space containing pages to be unmapped.
3829 * @start: Index of first page to be unmapped.
3830 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3831 * @even_cows: Whether to unmap even private COWed pages.
3832 *
3833 * Unmap the pages in this address space from any userspace process which
3834 * has them mmaped. Generally, you want to remove COWed pages as well when
3835 * a file is being truncated, but not when invalidating pages from the page
3836 * cache.
3837 */
3838void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3839 pgoff_t nr, bool even_cows)
3840{
3841 struct zap_details details = { };
3842 pgoff_t first_index = start;
3843 pgoff_t last_index = start + nr - 1;
3844
3845 details.even_cows = even_cows;
3846 if (last_index < first_index)
3847 last_index = ULONG_MAX;
3848
3849 i_mmap_lock_read(mapping);
3850 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3851 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3852 last_index, &details);
3853 i_mmap_unlock_read(mapping);
3854}
3855EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3856
3857/**
3858 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3859 * address_space corresponding to the specified byte range in the underlying
3860 * file.
3861 *
3862 * @mapping: the address space containing mmaps to be unmapped.
3863 * @holebegin: byte in first page to unmap, relative to the start of
3864 * the underlying file. This will be rounded down to a PAGE_SIZE
3865 * boundary. Note that this is different from truncate_pagecache(), which
3866 * must keep the partial page. In contrast, we must get rid of
3867 * partial pages.
3868 * @holelen: size of prospective hole in bytes. This will be rounded
3869 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3870 * end of the file.
3871 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3872 * but 0 when invalidating pagecache, don't throw away private data.
3873 */
3874void unmap_mapping_range(struct address_space *mapping,
3875 loff_t const holebegin, loff_t const holelen, int even_cows)
3876{
3877 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3878 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3879
3880 /* Check for overflow. */
3881 if (sizeof(holelen) > sizeof(hlen)) {
3882 long long holeend =
3883 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3884 if (holeend & ~(long long)ULONG_MAX)
3885 hlen = ULONG_MAX - hba + 1;
3886 }
3887
3888 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3889}
3890EXPORT_SYMBOL(unmap_mapping_range);
3891
3892/*
3893 * Restore a potential device exclusive pte to a working pte entry
3894 */
3895static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3896{
3897 struct folio *folio = page_folio(vmf->page);
3898 struct vm_area_struct *vma = vmf->vma;
3899 struct mmu_notifier_range range;
3900 vm_fault_t ret;
3901
3902 /*
3903 * We need a reference to lock the folio because we don't hold
3904 * the PTL so a racing thread can remove the device-exclusive
3905 * entry and unmap it. If the folio is free the entry must
3906 * have been removed already. If it happens to have already
3907 * been re-allocated after being freed all we do is lock and
3908 * unlock it.
3909 */
3910 if (!folio_try_get(folio))
3911 return 0;
3912
3913 ret = folio_lock_or_retry(folio, vmf);
3914 if (ret) {
3915 folio_put(folio);
3916 return ret;
3917 }
3918 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3919 vma->vm_mm, vmf->address & PAGE_MASK,
3920 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3921 mmu_notifier_invalidate_range_start(&range);
3922
3923 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3924 &vmf->ptl);
3925 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3926 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3927
3928 if (vmf->pte)
3929 pte_unmap_unlock(vmf->pte, vmf->ptl);
3930 folio_unlock(folio);
3931 folio_put(folio);
3932
3933 mmu_notifier_invalidate_range_end(&range);
3934 return 0;
3935}
3936
3937static inline bool should_try_to_free_swap(struct folio *folio,
3938 struct vm_area_struct *vma,
3939 unsigned int fault_flags)
3940{
3941 if (!folio_test_swapcache(folio))
3942 return false;
3943 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3944 folio_test_mlocked(folio))
3945 return true;
3946 /*
3947 * If we want to map a page that's in the swapcache writable, we
3948 * have to detect via the refcount if we're really the exclusive
3949 * user. Try freeing the swapcache to get rid of the swapcache
3950 * reference only in case it's likely that we'll be the exlusive user.
3951 */
3952 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3953 folio_ref_count(folio) == (1 + folio_nr_pages(folio));
3954}
3955
3956static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3957{
3958 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3959 vmf->address, &vmf->ptl);
3960 if (!vmf->pte)
3961 return 0;
3962 /*
3963 * Be careful so that we will only recover a special uffd-wp pte into a
3964 * none pte. Otherwise it means the pte could have changed, so retry.
3965 *
3966 * This should also cover the case where e.g. the pte changed
3967 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3968 * So is_pte_marker() check is not enough to safely drop the pte.
3969 */
3970 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3971 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3972 pte_unmap_unlock(vmf->pte, vmf->ptl);
3973 return 0;
3974}
3975
3976static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3977{
3978 if (vma_is_anonymous(vmf->vma))
3979 return do_anonymous_page(vmf);
3980 else
3981 return do_fault(vmf);
3982}
3983
3984/*
3985 * This is actually a page-missing access, but with uffd-wp special pte
3986 * installed. It means this pte was wr-protected before being unmapped.
3987 */
3988static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3989{
3990 /*
3991 * Just in case there're leftover special ptes even after the region
3992 * got unregistered - we can simply clear them.
3993 */
3994 if (unlikely(!userfaultfd_wp(vmf->vma)))
3995 return pte_marker_clear(vmf);
3996
3997 return do_pte_missing(vmf);
3998}
3999
4000static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
4001{
4002 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
4003 unsigned long marker = pte_marker_get(entry);
4004
4005 /*
4006 * PTE markers should never be empty. If anything weird happened,
4007 * the best thing to do is to kill the process along with its mm.
4008 */
4009 if (WARN_ON_ONCE(!marker))
4010 return VM_FAULT_SIGBUS;
4011
4012 /* Higher priority than uffd-wp when data corrupted */
4013 if (marker & PTE_MARKER_POISONED)
4014 return VM_FAULT_HWPOISON;
4015
4016 /* Hitting a guard page is always a fatal condition. */
4017 if (marker & PTE_MARKER_GUARD)
4018 return VM_FAULT_SIGSEGV;
4019
4020 if (pte_marker_entry_uffd_wp(entry))
4021 return pte_marker_handle_uffd_wp(vmf);
4022
4023 /* This is an unknown pte marker */
4024 return VM_FAULT_SIGBUS;
4025}
4026
4027static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4028{
4029 struct vm_area_struct *vma = vmf->vma;
4030 struct folio *folio;
4031 swp_entry_t entry;
4032
4033 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
4034 if (!folio)
4035 return NULL;
4036
4037 entry = pte_to_swp_entry(vmf->orig_pte);
4038 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4039 GFP_KERNEL, entry)) {
4040 folio_put(folio);
4041 return NULL;
4042 }
4043
4044 return folio;
4045}
4046
4047#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4048static inline int non_swapcache_batch(swp_entry_t entry, int max_nr)
4049{
4050 struct swap_info_struct *si = swp_swap_info(entry);
4051 pgoff_t offset = swp_offset(entry);
4052 int i;
4053
4054 /*
4055 * While allocating a large folio and doing swap_read_folio, which is
4056 * the case the being faulted pte doesn't have swapcache. We need to
4057 * ensure all PTEs have no cache as well, otherwise, we might go to
4058 * swap devices while the content is in swapcache.
4059 */
4060 for (i = 0; i < max_nr; i++) {
4061 if ((si->swap_map[offset + i] & SWAP_HAS_CACHE))
4062 return i;
4063 }
4064
4065 return i;
4066}
4067
4068/*
4069 * Check if the PTEs within a range are contiguous swap entries
4070 * and have consistent swapcache, zeromap.
4071 */
4072static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4073{
4074 unsigned long addr;
4075 swp_entry_t entry;
4076 int idx;
4077 pte_t pte;
4078
4079 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4080 idx = (vmf->address - addr) / PAGE_SIZE;
4081 pte = ptep_get(ptep);
4082
4083 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4084 return false;
4085 entry = pte_to_swp_entry(pte);
4086 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4087 return false;
4088
4089 /*
4090 * swap_read_folio() can't handle the case a large folio is hybridly
4091 * from different backends. And they are likely corner cases. Similar
4092 * things might be added once zswap support large folios.
4093 */
4094 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4095 return false;
4096 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4097 return false;
4098
4099 return true;
4100}
4101
4102static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4103 unsigned long addr,
4104 unsigned long orders)
4105{
4106 int order, nr;
4107
4108 order = highest_order(orders);
4109
4110 /*
4111 * To swap in a THP with nr pages, we require that its first swap_offset
4112 * is aligned with that number, as it was when the THP was swapped out.
4113 * This helps filter out most invalid entries.
4114 */
4115 while (orders) {
4116 nr = 1 << order;
4117 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4118 break;
4119 order = next_order(&orders, order);
4120 }
4121
4122 return orders;
4123}
4124
4125static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4126{
4127 struct vm_area_struct *vma = vmf->vma;
4128 unsigned long orders;
4129 struct folio *folio;
4130 unsigned long addr;
4131 swp_entry_t entry;
4132 spinlock_t *ptl;
4133 pte_t *pte;
4134 gfp_t gfp;
4135 int order;
4136
4137 /*
4138 * If uffd is active for the vma we need per-page fault fidelity to
4139 * maintain the uffd semantics.
4140 */
4141 if (unlikely(userfaultfd_armed(vma)))
4142 goto fallback;
4143
4144 /*
4145 * A large swapped out folio could be partially or fully in zswap. We
4146 * lack handling for such cases, so fallback to swapping in order-0
4147 * folio.
4148 */
4149 if (!zswap_never_enabled())
4150 goto fallback;
4151
4152 entry = pte_to_swp_entry(vmf->orig_pte);
4153 /*
4154 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4155 * and suitable for swapping THP.
4156 */
4157 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4158 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4159 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4160 orders = thp_swap_suitable_orders(swp_offset(entry),
4161 vmf->address, orders);
4162
4163 if (!orders)
4164 goto fallback;
4165
4166 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4167 vmf->address & PMD_MASK, &ptl);
4168 if (unlikely(!pte))
4169 goto fallback;
4170
4171 /*
4172 * For do_swap_page, find the highest order where the aligned range is
4173 * completely swap entries with contiguous swap offsets.
4174 */
4175 order = highest_order(orders);
4176 while (orders) {
4177 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4178 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4179 break;
4180 order = next_order(&orders, order);
4181 }
4182
4183 pte_unmap_unlock(pte, ptl);
4184
4185 /* Try allocating the highest of the remaining orders. */
4186 gfp = vma_thp_gfp_mask(vma);
4187 while (orders) {
4188 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4189 folio = vma_alloc_folio(gfp, order, vma, addr);
4190 if (folio) {
4191 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4192 gfp, entry))
4193 return folio;
4194 folio_put(folio);
4195 }
4196 order = next_order(&orders, order);
4197 }
4198
4199fallback:
4200 return __alloc_swap_folio(vmf);
4201}
4202#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
4203static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4204{
4205 return __alloc_swap_folio(vmf);
4206}
4207#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4208
4209static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
4210
4211/*
4212 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4213 * but allow concurrent faults), and pte mapped but not yet locked.
4214 * We return with pte unmapped and unlocked.
4215 *
4216 * We return with the mmap_lock locked or unlocked in the same cases
4217 * as does filemap_fault().
4218 */
4219vm_fault_t do_swap_page(struct vm_fault *vmf)
4220{
4221 struct vm_area_struct *vma = vmf->vma;
4222 struct folio *swapcache, *folio = NULL;
4223 DECLARE_WAITQUEUE(wait, current);
4224 struct page *page;
4225 struct swap_info_struct *si = NULL;
4226 rmap_t rmap_flags = RMAP_NONE;
4227 bool need_clear_cache = false;
4228 bool exclusive = false;
4229 swp_entry_t entry;
4230 pte_t pte;
4231 vm_fault_t ret = 0;
4232 void *shadow = NULL;
4233 int nr_pages;
4234 unsigned long page_idx;
4235 unsigned long address;
4236 pte_t *ptep;
4237
4238 if (!pte_unmap_same(vmf))
4239 goto out;
4240
4241 entry = pte_to_swp_entry(vmf->orig_pte);
4242 if (unlikely(non_swap_entry(entry))) {
4243 if (is_migration_entry(entry)) {
4244 migration_entry_wait(vma->vm_mm, vmf->pmd,
4245 vmf->address);
4246 } else if (is_device_exclusive_entry(entry)) {
4247 vmf->page = pfn_swap_entry_to_page(entry);
4248 ret = remove_device_exclusive_entry(vmf);
4249 } else if (is_device_private_entry(entry)) {
4250 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4251 /*
4252 * migrate_to_ram is not yet ready to operate
4253 * under VMA lock.
4254 */
4255 vma_end_read(vma);
4256 ret = VM_FAULT_RETRY;
4257 goto out;
4258 }
4259
4260 vmf->page = pfn_swap_entry_to_page(entry);
4261 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4262 vmf->address, &vmf->ptl);
4263 if (unlikely(!vmf->pte ||
4264 !pte_same(ptep_get(vmf->pte),
4265 vmf->orig_pte)))
4266 goto unlock;
4267
4268 /*
4269 * Get a page reference while we know the page can't be
4270 * freed.
4271 */
4272 get_page(vmf->page);
4273 pte_unmap_unlock(vmf->pte, vmf->ptl);
4274 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
4275 put_page(vmf->page);
4276 } else if (is_hwpoison_entry(entry)) {
4277 ret = VM_FAULT_HWPOISON;
4278 } else if (is_pte_marker_entry(entry)) {
4279 ret = handle_pte_marker(vmf);
4280 } else {
4281 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4282 ret = VM_FAULT_SIGBUS;
4283 }
4284 goto out;
4285 }
4286
4287 /* Prevent swapoff from happening to us. */
4288 si = get_swap_device(entry);
4289 if (unlikely(!si))
4290 goto out;
4291
4292 folio = swap_cache_get_folio(entry, vma, vmf->address);
4293 if (folio)
4294 page = folio_file_page(folio, swp_offset(entry));
4295 swapcache = folio;
4296
4297 if (!folio) {
4298 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4299 __swap_count(entry) == 1) {
4300 /* skip swapcache */
4301 folio = alloc_swap_folio(vmf);
4302 if (folio) {
4303 __folio_set_locked(folio);
4304 __folio_set_swapbacked(folio);
4305
4306 nr_pages = folio_nr_pages(folio);
4307 if (folio_test_large(folio))
4308 entry.val = ALIGN_DOWN(entry.val, nr_pages);
4309 /*
4310 * Prevent parallel swapin from proceeding with
4311 * the cache flag. Otherwise, another thread
4312 * may finish swapin first, free the entry, and
4313 * swapout reusing the same entry. It's
4314 * undetectable as pte_same() returns true due
4315 * to entry reuse.
4316 */
4317 if (swapcache_prepare(entry, nr_pages)) {
4318 /*
4319 * Relax a bit to prevent rapid
4320 * repeated page faults.
4321 */
4322 add_wait_queue(&swapcache_wq, &wait);
4323 schedule_timeout_uninterruptible(1);
4324 remove_wait_queue(&swapcache_wq, &wait);
4325 goto out_page;
4326 }
4327 need_clear_cache = true;
4328
4329 mem_cgroup_swapin_uncharge_swap(entry, nr_pages);
4330
4331 shadow = get_shadow_from_swap_cache(entry);
4332 if (shadow)
4333 workingset_refault(folio, shadow);
4334
4335 folio_add_lru(folio);
4336
4337 /* To provide entry to swap_read_folio() */
4338 folio->swap = entry;
4339 swap_read_folio(folio, NULL);
4340 folio->private = NULL;
4341 }
4342 } else {
4343 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4344 vmf);
4345 swapcache = folio;
4346 }
4347
4348 if (!folio) {
4349 /*
4350 * Back out if somebody else faulted in this pte
4351 * while we released the pte lock.
4352 */
4353 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4354 vmf->address, &vmf->ptl);
4355 if (likely(vmf->pte &&
4356 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4357 ret = VM_FAULT_OOM;
4358 goto unlock;
4359 }
4360
4361 /* Had to read the page from swap area: Major fault */
4362 ret = VM_FAULT_MAJOR;
4363 count_vm_event(PGMAJFAULT);
4364 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4365 page = folio_file_page(folio, swp_offset(entry));
4366 } else if (PageHWPoison(page)) {
4367 /*
4368 * hwpoisoned dirty swapcache pages are kept for killing
4369 * owner processes (which may be unknown at hwpoison time)
4370 */
4371 ret = VM_FAULT_HWPOISON;
4372 goto out_release;
4373 }
4374
4375 ret |= folio_lock_or_retry(folio, vmf);
4376 if (ret & VM_FAULT_RETRY)
4377 goto out_release;
4378
4379 if (swapcache) {
4380 /*
4381 * Make sure folio_free_swap() or swapoff did not release the
4382 * swapcache from under us. The page pin, and pte_same test
4383 * below, are not enough to exclude that. Even if it is still
4384 * swapcache, we need to check that the page's swap has not
4385 * changed.
4386 */
4387 if (unlikely(!folio_test_swapcache(folio) ||
4388 page_swap_entry(page).val != entry.val))
4389 goto out_page;
4390
4391 /*
4392 * KSM sometimes has to copy on read faults, for example, if
4393 * page->index of !PageKSM() pages would be nonlinear inside the
4394 * anon VMA -- PageKSM() is lost on actual swapout.
4395 */
4396 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4397 if (unlikely(!folio)) {
4398 ret = VM_FAULT_OOM;
4399 folio = swapcache;
4400 goto out_page;
4401 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4402 ret = VM_FAULT_HWPOISON;
4403 folio = swapcache;
4404 goto out_page;
4405 }
4406 if (folio != swapcache)
4407 page = folio_page(folio, 0);
4408
4409 /*
4410 * If we want to map a page that's in the swapcache writable, we
4411 * have to detect via the refcount if we're really the exclusive
4412 * owner. Try removing the extra reference from the local LRU
4413 * caches if required.
4414 */
4415 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4416 !folio_test_ksm(folio) && !folio_test_lru(folio))
4417 lru_add_drain();
4418 }
4419
4420 folio_throttle_swaprate(folio, GFP_KERNEL);
4421
4422 /*
4423 * Back out if somebody else already faulted in this pte.
4424 */
4425 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4426 &vmf->ptl);
4427 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4428 goto out_nomap;
4429
4430 if (unlikely(!folio_test_uptodate(folio))) {
4431 ret = VM_FAULT_SIGBUS;
4432 goto out_nomap;
4433 }
4434
4435 /* allocated large folios for SWP_SYNCHRONOUS_IO */
4436 if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4437 unsigned long nr = folio_nr_pages(folio);
4438 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4439 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4440 pte_t *folio_ptep = vmf->pte - idx;
4441 pte_t folio_pte = ptep_get(folio_ptep);
4442
4443 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4444 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4445 goto out_nomap;
4446
4447 page_idx = idx;
4448 address = folio_start;
4449 ptep = folio_ptep;
4450 goto check_folio;
4451 }
4452
4453 nr_pages = 1;
4454 page_idx = 0;
4455 address = vmf->address;
4456 ptep = vmf->pte;
4457 if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4458 int nr = folio_nr_pages(folio);
4459 unsigned long idx = folio_page_idx(folio, page);
4460 unsigned long folio_start = address - idx * PAGE_SIZE;
4461 unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4462 pte_t *folio_ptep;
4463 pte_t folio_pte;
4464
4465 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4466 goto check_folio;
4467 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4468 goto check_folio;
4469
4470 folio_ptep = vmf->pte - idx;
4471 folio_pte = ptep_get(folio_ptep);
4472 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4473 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4474 goto check_folio;
4475
4476 page_idx = idx;
4477 address = folio_start;
4478 ptep = folio_ptep;
4479 nr_pages = nr;
4480 entry = folio->swap;
4481 page = &folio->page;
4482 }
4483
4484check_folio:
4485 /*
4486 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4487 * must never point at an anonymous page in the swapcache that is
4488 * PG_anon_exclusive. Sanity check that this holds and especially, that
4489 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4490 * check after taking the PT lock and making sure that nobody
4491 * concurrently faulted in this page and set PG_anon_exclusive.
4492 */
4493 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4494 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4495
4496 /*
4497 * Check under PT lock (to protect against concurrent fork() sharing
4498 * the swap entry concurrently) for certainly exclusive pages.
4499 */
4500 if (!folio_test_ksm(folio)) {
4501 exclusive = pte_swp_exclusive(vmf->orig_pte);
4502 if (folio != swapcache) {
4503 /*
4504 * We have a fresh page that is not exposed to the
4505 * swapcache -> certainly exclusive.
4506 */
4507 exclusive = true;
4508 } else if (exclusive && folio_test_writeback(folio) &&
4509 data_race(si->flags & SWP_STABLE_WRITES)) {
4510 /*
4511 * This is tricky: not all swap backends support
4512 * concurrent page modifications while under writeback.
4513 *
4514 * So if we stumble over such a page in the swapcache
4515 * we must not set the page exclusive, otherwise we can
4516 * map it writable without further checks and modify it
4517 * while still under writeback.
4518 *
4519 * For these problematic swap backends, simply drop the
4520 * exclusive marker: this is perfectly fine as we start
4521 * writeback only if we fully unmapped the page and
4522 * there are no unexpected references on the page after
4523 * unmapping succeeded. After fully unmapped, no
4524 * further GUP references (FOLL_GET and FOLL_PIN) can
4525 * appear, so dropping the exclusive marker and mapping
4526 * it only R/O is fine.
4527 */
4528 exclusive = false;
4529 }
4530 }
4531
4532 /*
4533 * Some architectures may have to restore extra metadata to the page
4534 * when reading from swap. This metadata may be indexed by swap entry
4535 * so this must be called before swap_free().
4536 */
4537 arch_swap_restore(folio_swap(entry, folio), folio);
4538
4539 /*
4540 * Remove the swap entry and conditionally try to free up the swapcache.
4541 * We're already holding a reference on the page but haven't mapped it
4542 * yet.
4543 */
4544 swap_free_nr(entry, nr_pages);
4545 if (should_try_to_free_swap(folio, vma, vmf->flags))
4546 folio_free_swap(folio);
4547
4548 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4549 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4550 pte = mk_pte(page, vma->vm_page_prot);
4551 if (pte_swp_soft_dirty(vmf->orig_pte))
4552 pte = pte_mksoft_dirty(pte);
4553 if (pte_swp_uffd_wp(vmf->orig_pte))
4554 pte = pte_mkuffd_wp(pte);
4555
4556 /*
4557 * Same logic as in do_wp_page(); however, optimize for pages that are
4558 * certainly not shared either because we just allocated them without
4559 * exposing them to the swapcache or because the swap entry indicates
4560 * exclusivity.
4561 */
4562 if (!folio_test_ksm(folio) &&
4563 (exclusive || folio_ref_count(folio) == 1)) {
4564 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4565 !pte_needs_soft_dirty_wp(vma, pte)) {
4566 pte = pte_mkwrite(pte, vma);
4567 if (vmf->flags & FAULT_FLAG_WRITE) {
4568 pte = pte_mkdirty(pte);
4569 vmf->flags &= ~FAULT_FLAG_WRITE;
4570 }
4571 }
4572 rmap_flags |= RMAP_EXCLUSIVE;
4573 }
4574 folio_ref_add(folio, nr_pages - 1);
4575 flush_icache_pages(vma, page, nr_pages);
4576 vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4577
4578 /* ksm created a completely new copy */
4579 if (unlikely(folio != swapcache && swapcache)) {
4580 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4581 folio_add_lru_vma(folio, vma);
4582 } else if (!folio_test_anon(folio)) {
4583 /*
4584 * We currently only expect small !anon folios which are either
4585 * fully exclusive or fully shared, or new allocated large
4586 * folios which are fully exclusive. If we ever get large
4587 * folios within swapcache here, we have to be careful.
4588 */
4589 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
4590 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4591 folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4592 } else {
4593 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4594 rmap_flags);
4595 }
4596
4597 VM_BUG_ON(!folio_test_anon(folio) ||
4598 (pte_write(pte) && !PageAnonExclusive(page)));
4599 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4600 arch_do_swap_page_nr(vma->vm_mm, vma, address,
4601 pte, pte, nr_pages);
4602
4603 folio_unlock(folio);
4604 if (folio != swapcache && swapcache) {
4605 /*
4606 * Hold the lock to avoid the swap entry to be reused
4607 * until we take the PT lock for the pte_same() check
4608 * (to avoid false positives from pte_same). For
4609 * further safety release the lock after the swap_free
4610 * so that the swap count won't change under a
4611 * parallel locked swapcache.
4612 */
4613 folio_unlock(swapcache);
4614 folio_put(swapcache);
4615 }
4616
4617 if (vmf->flags & FAULT_FLAG_WRITE) {
4618 ret |= do_wp_page(vmf);
4619 if (ret & VM_FAULT_ERROR)
4620 ret &= VM_FAULT_ERROR;
4621 goto out;
4622 }
4623
4624 /* No need to invalidate - it was non-present before */
4625 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4626unlock:
4627 if (vmf->pte)
4628 pte_unmap_unlock(vmf->pte, vmf->ptl);
4629out:
4630 /* Clear the swap cache pin for direct swapin after PTL unlock */
4631 if (need_clear_cache) {
4632 swapcache_clear(si, entry, nr_pages);
4633 if (waitqueue_active(&swapcache_wq))
4634 wake_up(&swapcache_wq);
4635 }
4636 if (si)
4637 put_swap_device(si);
4638 return ret;
4639out_nomap:
4640 if (vmf->pte)
4641 pte_unmap_unlock(vmf->pte, vmf->ptl);
4642out_page:
4643 folio_unlock(folio);
4644out_release:
4645 folio_put(folio);
4646 if (folio != swapcache && swapcache) {
4647 folio_unlock(swapcache);
4648 folio_put(swapcache);
4649 }
4650 if (need_clear_cache) {
4651 swapcache_clear(si, entry, nr_pages);
4652 if (waitqueue_active(&swapcache_wq))
4653 wake_up(&swapcache_wq);
4654 }
4655 if (si)
4656 put_swap_device(si);
4657 return ret;
4658}
4659
4660static bool pte_range_none(pte_t *pte, int nr_pages)
4661{
4662 int i;
4663
4664 for (i = 0; i < nr_pages; i++) {
4665 if (!pte_none(ptep_get_lockless(pte + i)))
4666 return false;
4667 }
4668
4669 return true;
4670}
4671
4672static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4673{
4674 struct vm_area_struct *vma = vmf->vma;
4675#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4676 unsigned long orders;
4677 struct folio *folio;
4678 unsigned long addr;
4679 pte_t *pte;
4680 gfp_t gfp;
4681 int order;
4682
4683 /*
4684 * If uffd is active for the vma we need per-page fault fidelity to
4685 * maintain the uffd semantics.
4686 */
4687 if (unlikely(userfaultfd_armed(vma)))
4688 goto fallback;
4689
4690 /*
4691 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4692 * for this vma. Then filter out the orders that can't be allocated over
4693 * the faulting address and still be fully contained in the vma.
4694 */
4695 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4696 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4697 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4698
4699 if (!orders)
4700 goto fallback;
4701
4702 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4703 if (!pte)
4704 return ERR_PTR(-EAGAIN);
4705
4706 /*
4707 * Find the highest order where the aligned range is completely
4708 * pte_none(). Note that all remaining orders will be completely
4709 * pte_none().
4710 */
4711 order = highest_order(orders);
4712 while (orders) {
4713 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4714 if (pte_range_none(pte + pte_index(addr), 1 << order))
4715 break;
4716 order = next_order(&orders, order);
4717 }
4718
4719 pte_unmap(pte);
4720
4721 if (!orders)
4722 goto fallback;
4723
4724 /* Try allocating the highest of the remaining orders. */
4725 gfp = vma_thp_gfp_mask(vma);
4726 while (orders) {
4727 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4728 folio = vma_alloc_folio(gfp, order, vma, addr);
4729 if (folio) {
4730 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4731 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4732 folio_put(folio);
4733 goto next;
4734 }
4735 folio_throttle_swaprate(folio, gfp);
4736 /*
4737 * When a folio is not zeroed during allocation
4738 * (__GFP_ZERO not used) or user folios require special
4739 * handling, folio_zero_user() is used to make sure
4740 * that the page corresponding to the faulting address
4741 * will be hot in the cache after zeroing.
4742 */
4743 if (user_alloc_needs_zeroing())
4744 folio_zero_user(folio, vmf->address);
4745 return folio;
4746 }
4747next:
4748 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4749 order = next_order(&orders, order);
4750 }
4751
4752fallback:
4753#endif
4754 return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4755}
4756
4757/*
4758 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4759 * but allow concurrent faults), and pte mapped but not yet locked.
4760 * We return with mmap_lock still held, but pte unmapped and unlocked.
4761 */
4762static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4763{
4764 struct vm_area_struct *vma = vmf->vma;
4765 unsigned long addr = vmf->address;
4766 struct folio *folio;
4767 vm_fault_t ret = 0;
4768 int nr_pages = 1;
4769 pte_t entry;
4770
4771 /* File mapping without ->vm_ops ? */
4772 if (vma->vm_flags & VM_SHARED)
4773 return VM_FAULT_SIGBUS;
4774
4775 /*
4776 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4777 * be distinguished from a transient failure of pte_offset_map().
4778 */
4779 if (pte_alloc(vma->vm_mm, vmf->pmd))
4780 return VM_FAULT_OOM;
4781
4782 /* Use the zero-page for reads */
4783 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4784 !mm_forbids_zeropage(vma->vm_mm)) {
4785 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4786 vma->vm_page_prot));
4787 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4788 vmf->address, &vmf->ptl);
4789 if (!vmf->pte)
4790 goto unlock;
4791 if (vmf_pte_changed(vmf)) {
4792 update_mmu_tlb(vma, vmf->address, vmf->pte);
4793 goto unlock;
4794 }
4795 ret = check_stable_address_space(vma->vm_mm);
4796 if (ret)
4797 goto unlock;
4798 /* Deliver the page fault to userland, check inside PT lock */
4799 if (userfaultfd_missing(vma)) {
4800 pte_unmap_unlock(vmf->pte, vmf->ptl);
4801 return handle_userfault(vmf, VM_UFFD_MISSING);
4802 }
4803 goto setpte;
4804 }
4805
4806 /* Allocate our own private page. */
4807 ret = vmf_anon_prepare(vmf);
4808 if (ret)
4809 return ret;
4810 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4811 folio = alloc_anon_folio(vmf);
4812 if (IS_ERR(folio))
4813 return 0;
4814 if (!folio)
4815 goto oom;
4816
4817 nr_pages = folio_nr_pages(folio);
4818 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4819
4820 /*
4821 * The memory barrier inside __folio_mark_uptodate makes sure that
4822 * preceding stores to the page contents become visible before
4823 * the set_pte_at() write.
4824 */
4825 __folio_mark_uptodate(folio);
4826
4827 entry = mk_pte(&folio->page, vma->vm_page_prot);
4828 entry = pte_sw_mkyoung(entry);
4829 if (vma->vm_flags & VM_WRITE)
4830 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4831
4832 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4833 if (!vmf->pte)
4834 goto release;
4835 if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4836 update_mmu_tlb(vma, addr, vmf->pte);
4837 goto release;
4838 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4839 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4840 goto release;
4841 }
4842
4843 ret = check_stable_address_space(vma->vm_mm);
4844 if (ret)
4845 goto release;
4846
4847 /* Deliver the page fault to userland, check inside PT lock */
4848 if (userfaultfd_missing(vma)) {
4849 pte_unmap_unlock(vmf->pte, vmf->ptl);
4850 folio_put(folio);
4851 return handle_userfault(vmf, VM_UFFD_MISSING);
4852 }
4853
4854 folio_ref_add(folio, nr_pages - 1);
4855 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4856 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4857 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4858 folio_add_lru_vma(folio, vma);
4859setpte:
4860 if (vmf_orig_pte_uffd_wp(vmf))
4861 entry = pte_mkuffd_wp(entry);
4862 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4863
4864 /* No need to invalidate - it was non-present before */
4865 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4866unlock:
4867 if (vmf->pte)
4868 pte_unmap_unlock(vmf->pte, vmf->ptl);
4869 return ret;
4870release:
4871 folio_put(folio);
4872 goto unlock;
4873oom:
4874 return VM_FAULT_OOM;
4875}
4876
4877/*
4878 * The mmap_lock must have been held on entry, and may have been
4879 * released depending on flags and vma->vm_ops->fault() return value.
4880 * See filemap_fault() and __lock_page_retry().
4881 */
4882static vm_fault_t __do_fault(struct vm_fault *vmf)
4883{
4884 struct vm_area_struct *vma = vmf->vma;
4885 struct folio *folio;
4886 vm_fault_t ret;
4887
4888 /*
4889 * Preallocate pte before we take page_lock because this might lead to
4890 * deadlocks for memcg reclaim which waits for pages under writeback:
4891 * lock_page(A)
4892 * SetPageWriteback(A)
4893 * unlock_page(A)
4894 * lock_page(B)
4895 * lock_page(B)
4896 * pte_alloc_one
4897 * shrink_folio_list
4898 * wait_on_page_writeback(A)
4899 * SetPageWriteback(B)
4900 * unlock_page(B)
4901 * # flush A, B to clear the writeback
4902 */
4903 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4904 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4905 if (!vmf->prealloc_pte)
4906 return VM_FAULT_OOM;
4907 }
4908
4909 ret = vma->vm_ops->fault(vmf);
4910 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4911 VM_FAULT_DONE_COW)))
4912 return ret;
4913
4914 folio = page_folio(vmf->page);
4915 if (unlikely(PageHWPoison(vmf->page))) {
4916 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4917 if (ret & VM_FAULT_LOCKED) {
4918 if (page_mapped(vmf->page))
4919 unmap_mapping_folio(folio);
4920 /* Retry if a clean folio was removed from the cache. */
4921 if (mapping_evict_folio(folio->mapping, folio))
4922 poisonret = VM_FAULT_NOPAGE;
4923 folio_unlock(folio);
4924 }
4925 folio_put(folio);
4926 vmf->page = NULL;
4927 return poisonret;
4928 }
4929
4930 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4931 folio_lock(folio);
4932 else
4933 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4934
4935 return ret;
4936}
4937
4938#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4939static void deposit_prealloc_pte(struct vm_fault *vmf)
4940{
4941 struct vm_area_struct *vma = vmf->vma;
4942
4943 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4944 /*
4945 * We are going to consume the prealloc table,
4946 * count that as nr_ptes.
4947 */
4948 mm_inc_nr_ptes(vma->vm_mm);
4949 vmf->prealloc_pte = NULL;
4950}
4951
4952vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4953{
4954 struct folio *folio = page_folio(page);
4955 struct vm_area_struct *vma = vmf->vma;
4956 bool write = vmf->flags & FAULT_FLAG_WRITE;
4957 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4958 pmd_t entry;
4959 vm_fault_t ret = VM_FAULT_FALLBACK;
4960
4961 /*
4962 * It is too late to allocate a small folio, we already have a large
4963 * folio in the pagecache: especially s390 KVM cannot tolerate any
4964 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
4965 * PMD mappings if THPs are disabled.
4966 */
4967 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
4968 return ret;
4969
4970 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4971 return ret;
4972
4973 if (folio_order(folio) != HPAGE_PMD_ORDER)
4974 return ret;
4975 page = &folio->page;
4976
4977 /*
4978 * Just backoff if any subpage of a THP is corrupted otherwise
4979 * the corrupted page may mapped by PMD silently to escape the
4980 * check. This kind of THP just can be PTE mapped. Access to
4981 * the corrupted subpage should trigger SIGBUS as expected.
4982 */
4983 if (unlikely(folio_test_has_hwpoisoned(folio)))
4984 return ret;
4985
4986 /*
4987 * Archs like ppc64 need additional space to store information
4988 * related to pte entry. Use the preallocated table for that.
4989 */
4990 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4991 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4992 if (!vmf->prealloc_pte)
4993 return VM_FAULT_OOM;
4994 }
4995
4996 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4997 if (unlikely(!pmd_none(*vmf->pmd)))
4998 goto out;
4999
5000 flush_icache_pages(vma, page, HPAGE_PMD_NR);
5001
5002 entry = mk_huge_pmd(page, vma->vm_page_prot);
5003 if (write)
5004 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
5005
5006 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
5007 folio_add_file_rmap_pmd(folio, page, vma);
5008
5009 /*
5010 * deposit and withdraw with pmd lock held
5011 */
5012 if (arch_needs_pgtable_deposit())
5013 deposit_prealloc_pte(vmf);
5014
5015 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
5016
5017 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
5018
5019 /* fault is handled */
5020 ret = 0;
5021 count_vm_event(THP_FILE_MAPPED);
5022out:
5023 spin_unlock(vmf->ptl);
5024 return ret;
5025}
5026#else
5027vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
5028{
5029 return VM_FAULT_FALLBACK;
5030}
5031#endif
5032
5033/**
5034 * set_pte_range - Set a range of PTEs to point to pages in a folio.
5035 * @vmf: Fault decription.
5036 * @folio: The folio that contains @page.
5037 * @page: The first page to create a PTE for.
5038 * @nr: The number of PTEs to create.
5039 * @addr: The first address to create a PTE for.
5040 */
5041void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5042 struct page *page, unsigned int nr, unsigned long addr)
5043{
5044 struct vm_area_struct *vma = vmf->vma;
5045 bool write = vmf->flags & FAULT_FLAG_WRITE;
5046 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5047 pte_t entry;
5048
5049 flush_icache_pages(vma, page, nr);
5050 entry = mk_pte(page, vma->vm_page_prot);
5051
5052 if (prefault && arch_wants_old_prefaulted_pte())
5053 entry = pte_mkold(entry);
5054 else
5055 entry = pte_sw_mkyoung(entry);
5056
5057 if (write)
5058 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5059 if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5060 entry = pte_mkuffd_wp(entry);
5061 /* copy-on-write page */
5062 if (write && !(vma->vm_flags & VM_SHARED)) {
5063 VM_BUG_ON_FOLIO(nr != 1, folio);
5064 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5065 folio_add_lru_vma(folio, vma);
5066 } else {
5067 folio_add_file_rmap_ptes(folio, page, nr, vma);
5068 }
5069 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5070
5071 /* no need to invalidate: a not-present page won't be cached */
5072 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5073}
5074
5075static bool vmf_pte_changed(struct vm_fault *vmf)
5076{
5077 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5078 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5079
5080 return !pte_none(ptep_get(vmf->pte));
5081}
5082
5083/**
5084 * finish_fault - finish page fault once we have prepared the page to fault
5085 *
5086 * @vmf: structure describing the fault
5087 *
5088 * This function handles all that is needed to finish a page fault once the
5089 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5090 * given page, adds reverse page mapping, handles memcg charges and LRU
5091 * addition.
5092 *
5093 * The function expects the page to be locked and on success it consumes a
5094 * reference of a page being mapped (for the PTE which maps it).
5095 *
5096 * Return: %0 on success, %VM_FAULT_ code in case of error.
5097 */
5098vm_fault_t finish_fault(struct vm_fault *vmf)
5099{
5100 struct vm_area_struct *vma = vmf->vma;
5101 struct page *page;
5102 struct folio *folio;
5103 vm_fault_t ret;
5104 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5105 !(vma->vm_flags & VM_SHARED);
5106 int type, nr_pages;
5107 unsigned long addr;
5108 bool needs_fallback = false;
5109
5110fallback:
5111 addr = vmf->address;
5112
5113 /* Did we COW the page? */
5114 if (is_cow)
5115 page = vmf->cow_page;
5116 else
5117 page = vmf->page;
5118
5119 /*
5120 * check even for read faults because we might have lost our CoWed
5121 * page
5122 */
5123 if (!(vma->vm_flags & VM_SHARED)) {
5124 ret = check_stable_address_space(vma->vm_mm);
5125 if (ret)
5126 return ret;
5127 }
5128
5129 if (pmd_none(*vmf->pmd)) {
5130 if (PageTransCompound(page)) {
5131 ret = do_set_pmd(vmf, page);
5132 if (ret != VM_FAULT_FALLBACK)
5133 return ret;
5134 }
5135
5136 if (vmf->prealloc_pte)
5137 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5138 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5139 return VM_FAULT_OOM;
5140 }
5141
5142 folio = page_folio(page);
5143 nr_pages = folio_nr_pages(folio);
5144
5145 /*
5146 * Using per-page fault to maintain the uffd semantics, and same
5147 * approach also applies to non-anonymous-shmem faults to avoid
5148 * inflating the RSS of the process.
5149 */
5150 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma)) ||
5151 unlikely(needs_fallback)) {
5152 nr_pages = 1;
5153 } else if (nr_pages > 1) {
5154 pgoff_t idx = folio_page_idx(folio, page);
5155 /* The page offset of vmf->address within the VMA. */
5156 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5157 /* The index of the entry in the pagetable for fault page. */
5158 pgoff_t pte_off = pte_index(vmf->address);
5159
5160 /*
5161 * Fallback to per-page fault in case the folio size in page
5162 * cache beyond the VMA limits and PMD pagetable limits.
5163 */
5164 if (unlikely(vma_off < idx ||
5165 vma_off + (nr_pages - idx) > vma_pages(vma) ||
5166 pte_off < idx ||
5167 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) {
5168 nr_pages = 1;
5169 } else {
5170 /* Now we can set mappings for the whole large folio. */
5171 addr = vmf->address - idx * PAGE_SIZE;
5172 page = &folio->page;
5173 }
5174 }
5175
5176 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5177 addr, &vmf->ptl);
5178 if (!vmf->pte)
5179 return VM_FAULT_NOPAGE;
5180
5181 /* Re-check under ptl */
5182 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5183 update_mmu_tlb(vma, addr, vmf->pte);
5184 ret = VM_FAULT_NOPAGE;
5185 goto unlock;
5186 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5187 needs_fallback = true;
5188 pte_unmap_unlock(vmf->pte, vmf->ptl);
5189 goto fallback;
5190 }
5191
5192 folio_ref_add(folio, nr_pages - 1);
5193 set_pte_range(vmf, folio, page, nr_pages, addr);
5194 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5195 add_mm_counter(vma->vm_mm, type, nr_pages);
5196 ret = 0;
5197
5198unlock:
5199 pte_unmap_unlock(vmf->pte, vmf->ptl);
5200 return ret;
5201}
5202
5203static unsigned long fault_around_pages __read_mostly =
5204 65536 >> PAGE_SHIFT;
5205
5206#ifdef CONFIG_DEBUG_FS
5207static int fault_around_bytes_get(void *data, u64 *val)
5208{
5209 *val = fault_around_pages << PAGE_SHIFT;
5210 return 0;
5211}
5212
5213/*
5214 * fault_around_bytes must be rounded down to the nearest page order as it's
5215 * what do_fault_around() expects to see.
5216 */
5217static int fault_around_bytes_set(void *data, u64 val)
5218{
5219 if (val / PAGE_SIZE > PTRS_PER_PTE)
5220 return -EINVAL;
5221
5222 /*
5223 * The minimum value is 1 page, however this results in no fault-around
5224 * at all. See should_fault_around().
5225 */
5226 val = max(val, PAGE_SIZE);
5227 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5228
5229 return 0;
5230}
5231DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5232 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5233
5234static int __init fault_around_debugfs(void)
5235{
5236 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5237 &fault_around_bytes_fops);
5238 return 0;
5239}
5240late_initcall(fault_around_debugfs);
5241#endif
5242
5243/*
5244 * do_fault_around() tries to map few pages around the fault address. The hope
5245 * is that the pages will be needed soon and this will lower the number of
5246 * faults to handle.
5247 *
5248 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5249 * not ready to be mapped: not up-to-date, locked, etc.
5250 *
5251 * This function doesn't cross VMA or page table boundaries, in order to call
5252 * map_pages() and acquire a PTE lock only once.
5253 *
5254 * fault_around_pages defines how many pages we'll try to map.
5255 * do_fault_around() expects it to be set to a power of two less than or equal
5256 * to PTRS_PER_PTE.
5257 *
5258 * The virtual address of the area that we map is naturally aligned to
5259 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5260 * (and therefore to page order). This way it's easier to guarantee
5261 * that we don't cross page table boundaries.
5262 */
5263static vm_fault_t do_fault_around(struct vm_fault *vmf)
5264{
5265 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5266 pgoff_t pte_off = pte_index(vmf->address);
5267 /* The page offset of vmf->address within the VMA. */
5268 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5269 pgoff_t from_pte, to_pte;
5270 vm_fault_t ret;
5271
5272 /* The PTE offset of the start address, clamped to the VMA. */
5273 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5274 pte_off - min(pte_off, vma_off));
5275
5276 /* The PTE offset of the end address, clamped to the VMA and PTE. */
5277 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5278 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5279
5280 if (pmd_none(*vmf->pmd)) {
5281 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5282 if (!vmf->prealloc_pte)
5283 return VM_FAULT_OOM;
5284 }
5285
5286 rcu_read_lock();
5287 ret = vmf->vma->vm_ops->map_pages(vmf,
5288 vmf->pgoff + from_pte - pte_off,
5289 vmf->pgoff + to_pte - pte_off);
5290 rcu_read_unlock();
5291
5292 return ret;
5293}
5294
5295/* Return true if we should do read fault-around, false otherwise */
5296static inline bool should_fault_around(struct vm_fault *vmf)
5297{
5298 /* No ->map_pages? No way to fault around... */
5299 if (!vmf->vma->vm_ops->map_pages)
5300 return false;
5301
5302 if (uffd_disable_fault_around(vmf->vma))
5303 return false;
5304
5305 /* A single page implies no faulting 'around' at all. */
5306 return fault_around_pages > 1;
5307}
5308
5309static vm_fault_t do_read_fault(struct vm_fault *vmf)
5310{
5311 vm_fault_t ret = 0;
5312 struct folio *folio;
5313
5314 /*
5315 * Let's call ->map_pages() first and use ->fault() as fallback
5316 * if page by the offset is not ready to be mapped (cold cache or
5317 * something).
5318 */
5319 if (should_fault_around(vmf)) {
5320 ret = do_fault_around(vmf);
5321 if (ret)
5322 return ret;
5323 }
5324
5325 ret = vmf_can_call_fault(vmf);
5326 if (ret)
5327 return ret;
5328
5329 ret = __do_fault(vmf);
5330 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5331 return ret;
5332
5333 ret |= finish_fault(vmf);
5334 folio = page_folio(vmf->page);
5335 folio_unlock(folio);
5336 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5337 folio_put(folio);
5338 return ret;
5339}
5340
5341static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5342{
5343 struct vm_area_struct *vma = vmf->vma;
5344 struct folio *folio;
5345 vm_fault_t ret;
5346
5347 ret = vmf_can_call_fault(vmf);
5348 if (!ret)
5349 ret = vmf_anon_prepare(vmf);
5350 if (ret)
5351 return ret;
5352
5353 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5354 if (!folio)
5355 return VM_FAULT_OOM;
5356
5357 vmf->cow_page = &folio->page;
5358
5359 ret = __do_fault(vmf);
5360 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5361 goto uncharge_out;
5362 if (ret & VM_FAULT_DONE_COW)
5363 return ret;
5364
5365 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5366 ret = VM_FAULT_HWPOISON;
5367 goto unlock;
5368 }
5369 __folio_mark_uptodate(folio);
5370
5371 ret |= finish_fault(vmf);
5372unlock:
5373 unlock_page(vmf->page);
5374 put_page(vmf->page);
5375 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5376 goto uncharge_out;
5377 return ret;
5378uncharge_out:
5379 folio_put(folio);
5380 return ret;
5381}
5382
5383static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5384{
5385 struct vm_area_struct *vma = vmf->vma;
5386 vm_fault_t ret, tmp;
5387 struct folio *folio;
5388
5389 ret = vmf_can_call_fault(vmf);
5390 if (ret)
5391 return ret;
5392
5393 ret = __do_fault(vmf);
5394 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5395 return ret;
5396
5397 folio = page_folio(vmf->page);
5398
5399 /*
5400 * Check if the backing address space wants to know that the page is
5401 * about to become writable
5402 */
5403 if (vma->vm_ops->page_mkwrite) {
5404 folio_unlock(folio);
5405 tmp = do_page_mkwrite(vmf, folio);
5406 if (unlikely(!tmp ||
5407 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5408 folio_put(folio);
5409 return tmp;
5410 }
5411 }
5412
5413 ret |= finish_fault(vmf);
5414 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5415 VM_FAULT_RETRY))) {
5416 folio_unlock(folio);
5417 folio_put(folio);
5418 return ret;
5419 }
5420
5421 ret |= fault_dirty_shared_page(vmf);
5422 return ret;
5423}
5424
5425/*
5426 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5427 * but allow concurrent faults).
5428 * The mmap_lock may have been released depending on flags and our
5429 * return value. See filemap_fault() and __folio_lock_or_retry().
5430 * If mmap_lock is released, vma may become invalid (for example
5431 * by other thread calling munmap()).
5432 */
5433static vm_fault_t do_fault(struct vm_fault *vmf)
5434{
5435 struct vm_area_struct *vma = vmf->vma;
5436 struct mm_struct *vm_mm = vma->vm_mm;
5437 vm_fault_t ret;
5438
5439 /*
5440 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5441 */
5442 if (!vma->vm_ops->fault) {
5443 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5444 vmf->address, &vmf->ptl);
5445 if (unlikely(!vmf->pte))
5446 ret = VM_FAULT_SIGBUS;
5447 else {
5448 /*
5449 * Make sure this is not a temporary clearing of pte
5450 * by holding ptl and checking again. A R/M/W update
5451 * of pte involves: take ptl, clearing the pte so that
5452 * we don't have concurrent modification by hardware
5453 * followed by an update.
5454 */
5455 if (unlikely(pte_none(ptep_get(vmf->pte))))
5456 ret = VM_FAULT_SIGBUS;
5457 else
5458 ret = VM_FAULT_NOPAGE;
5459
5460 pte_unmap_unlock(vmf->pte, vmf->ptl);
5461 }
5462 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
5463 ret = do_read_fault(vmf);
5464 else if (!(vma->vm_flags & VM_SHARED))
5465 ret = do_cow_fault(vmf);
5466 else
5467 ret = do_shared_fault(vmf);
5468
5469 /* preallocated pagetable is unused: free it */
5470 if (vmf->prealloc_pte) {
5471 pte_free(vm_mm, vmf->prealloc_pte);
5472 vmf->prealloc_pte = NULL;
5473 }
5474 return ret;
5475}
5476
5477int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5478 unsigned long addr, int *flags,
5479 bool writable, int *last_cpupid)
5480{
5481 struct vm_area_struct *vma = vmf->vma;
5482
5483 /*
5484 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5485 * much anyway since they can be in shared cache state. This misses
5486 * the case where a mapping is writable but the process never writes
5487 * to it but pte_write gets cleared during protection updates and
5488 * pte_dirty has unpredictable behaviour between PTE scan updates,
5489 * background writeback, dirty balancing and application behaviour.
5490 */
5491 if (!writable)
5492 *flags |= TNF_NO_GROUP;
5493
5494 /*
5495 * Flag if the folio is shared between multiple address spaces. This
5496 * is later used when determining whether to group tasks together
5497 */
5498 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5499 *flags |= TNF_SHARED;
5500 /*
5501 * For memory tiering mode, cpupid of slow memory page is used
5502 * to record page access time. So use default value.
5503 */
5504 if (folio_use_access_time(folio))
5505 *last_cpupid = (-1 & LAST_CPUPID_MASK);
5506 else
5507 *last_cpupid = folio_last_cpupid(folio);
5508
5509 /* Record the current PID acceesing VMA */
5510 vma_set_access_pid_bit(vma);
5511
5512 count_vm_numa_event(NUMA_HINT_FAULTS);
5513#ifdef CONFIG_NUMA_BALANCING
5514 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5515#endif
5516 if (folio_nid(folio) == numa_node_id()) {
5517 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5518 *flags |= TNF_FAULT_LOCAL;
5519 }
5520
5521 return mpol_misplaced(folio, vmf, addr);
5522}
5523
5524static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5525 unsigned long fault_addr, pte_t *fault_pte,
5526 bool writable)
5527{
5528 pte_t pte, old_pte;
5529
5530 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5531 pte = pte_modify(old_pte, vma->vm_page_prot);
5532 pte = pte_mkyoung(pte);
5533 if (writable)
5534 pte = pte_mkwrite(pte, vma);
5535 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5536 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5537}
5538
5539static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5540 struct folio *folio, pte_t fault_pte,
5541 bool ignore_writable, bool pte_write_upgrade)
5542{
5543 int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5544 unsigned long start, end, addr = vmf->address;
5545 unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5546 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5547 pte_t *start_ptep;
5548
5549 /* Stay within the VMA and within the page table. */
5550 start = max3(addr_start, pt_start, vma->vm_start);
5551 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5552 vma->vm_end);
5553 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5554
5555 /* Restore all PTEs' mapping of the large folio */
5556 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5557 pte_t ptent = ptep_get(start_ptep);
5558 bool writable = false;
5559
5560 if (!pte_present(ptent) || !pte_protnone(ptent))
5561 continue;
5562
5563 if (pfn_folio(pte_pfn(ptent)) != folio)
5564 continue;
5565
5566 if (!ignore_writable) {
5567 ptent = pte_modify(ptent, vma->vm_page_prot);
5568 writable = pte_write(ptent);
5569 if (!writable && pte_write_upgrade &&
5570 can_change_pte_writable(vma, addr, ptent))
5571 writable = true;
5572 }
5573
5574 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5575 }
5576}
5577
5578static vm_fault_t do_numa_page(struct vm_fault *vmf)
5579{
5580 struct vm_area_struct *vma = vmf->vma;
5581 struct folio *folio = NULL;
5582 int nid = NUMA_NO_NODE;
5583 bool writable = false, ignore_writable = false;
5584 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5585 int last_cpupid;
5586 int target_nid;
5587 pte_t pte, old_pte;
5588 int flags = 0, nr_pages;
5589
5590 /*
5591 * The pte cannot be used safely until we verify, while holding the page
5592 * table lock, that its contents have not changed during fault handling.
5593 */
5594 spin_lock(vmf->ptl);
5595 /* Read the live PTE from the page tables: */
5596 old_pte = ptep_get(vmf->pte);
5597
5598 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5599 pte_unmap_unlock(vmf->pte, vmf->ptl);
5600 return 0;
5601 }
5602
5603 pte = pte_modify(old_pte, vma->vm_page_prot);
5604
5605 /*
5606 * Detect now whether the PTE could be writable; this information
5607 * is only valid while holding the PT lock.
5608 */
5609 writable = pte_write(pte);
5610 if (!writable && pte_write_upgrade &&
5611 can_change_pte_writable(vma, vmf->address, pte))
5612 writable = true;
5613
5614 folio = vm_normal_folio(vma, vmf->address, pte);
5615 if (!folio || folio_is_zone_device(folio))
5616 goto out_map;
5617
5618 nid = folio_nid(folio);
5619 nr_pages = folio_nr_pages(folio);
5620
5621 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
5622 writable, &last_cpupid);
5623 if (target_nid == NUMA_NO_NODE)
5624 goto out_map;
5625 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5626 flags |= TNF_MIGRATE_FAIL;
5627 goto out_map;
5628 }
5629 /* The folio is isolated and isolation code holds a folio reference. */
5630 pte_unmap_unlock(vmf->pte, vmf->ptl);
5631 writable = false;
5632 ignore_writable = true;
5633
5634 /* Migrate to the requested node */
5635 if (!migrate_misplaced_folio(folio, vma, target_nid)) {
5636 nid = target_nid;
5637 flags |= TNF_MIGRATED;
5638 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5639 return 0;
5640 }
5641
5642 flags |= TNF_MIGRATE_FAIL;
5643 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5644 vmf->address, &vmf->ptl);
5645 if (unlikely(!vmf->pte))
5646 return 0;
5647 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5648 pte_unmap_unlock(vmf->pte, vmf->ptl);
5649 return 0;
5650 }
5651out_map:
5652 /*
5653 * Make it present again, depending on how arch implements
5654 * non-accessible ptes, some can allow access by kernel mode.
5655 */
5656 if (folio && folio_test_large(folio))
5657 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5658 pte_write_upgrade);
5659 else
5660 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5661 writable);
5662 pte_unmap_unlock(vmf->pte, vmf->ptl);
5663
5664 if (nid != NUMA_NO_NODE)
5665 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5666 return 0;
5667}
5668
5669static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5670{
5671 struct vm_area_struct *vma = vmf->vma;
5672 if (vma_is_anonymous(vma))
5673 return do_huge_pmd_anonymous_page(vmf);
5674 if (vma->vm_ops->huge_fault)
5675 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5676 return VM_FAULT_FALLBACK;
5677}
5678
5679/* `inline' is required to avoid gcc 4.1.2 build error */
5680static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5681{
5682 struct vm_area_struct *vma = vmf->vma;
5683 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5684 vm_fault_t ret;
5685
5686 if (vma_is_anonymous(vma)) {
5687 if (likely(!unshare) &&
5688 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5689 if (userfaultfd_wp_async(vmf->vma))
5690 goto split;
5691 return handle_userfault(vmf, VM_UFFD_WP);
5692 }
5693 return do_huge_pmd_wp_page(vmf);
5694 }
5695
5696 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5697 if (vma->vm_ops->huge_fault) {
5698 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5699 if (!(ret & VM_FAULT_FALLBACK))
5700 return ret;
5701 }
5702 }
5703
5704split:
5705 /* COW or write-notify handled on pte level: split pmd. */
5706 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5707
5708 return VM_FAULT_FALLBACK;
5709}
5710
5711static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5712{
5713#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5714 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5715 struct vm_area_struct *vma = vmf->vma;
5716 /* No support for anonymous transparent PUD pages yet */
5717 if (vma_is_anonymous(vma))
5718 return VM_FAULT_FALLBACK;
5719 if (vma->vm_ops->huge_fault)
5720 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5721#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5722 return VM_FAULT_FALLBACK;
5723}
5724
5725static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5726{
5727#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5728 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5729 struct vm_area_struct *vma = vmf->vma;
5730 vm_fault_t ret;
5731
5732 /* No support for anonymous transparent PUD pages yet */
5733 if (vma_is_anonymous(vma))
5734 goto split;
5735 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5736 if (vma->vm_ops->huge_fault) {
5737 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5738 if (!(ret & VM_FAULT_FALLBACK))
5739 return ret;
5740 }
5741 }
5742split:
5743 /* COW or write-notify not handled on PUD level: split pud.*/
5744 __split_huge_pud(vma, vmf->pud, vmf->address);
5745#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5746 return VM_FAULT_FALLBACK;
5747}
5748
5749/*
5750 * These routines also need to handle stuff like marking pages dirty
5751 * and/or accessed for architectures that don't do it in hardware (most
5752 * RISC architectures). The early dirtying is also good on the i386.
5753 *
5754 * There is also a hook called "update_mmu_cache()" that architectures
5755 * with external mmu caches can use to update those (ie the Sparc or
5756 * PowerPC hashed page tables that act as extended TLBs).
5757 *
5758 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5759 * concurrent faults).
5760 *
5761 * The mmap_lock may have been released depending on flags and our return value.
5762 * See filemap_fault() and __folio_lock_or_retry().
5763 */
5764static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5765{
5766 pte_t entry;
5767
5768 if (unlikely(pmd_none(*vmf->pmd))) {
5769 /*
5770 * Leave __pte_alloc() until later: because vm_ops->fault may
5771 * want to allocate huge page, and if we expose page table
5772 * for an instant, it will be difficult to retract from
5773 * concurrent faults and from rmap lookups.
5774 */
5775 vmf->pte = NULL;
5776 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5777 } else {
5778 pmd_t dummy_pmdval;
5779
5780 /*
5781 * A regular pmd is established and it can't morph into a huge
5782 * pmd by anon khugepaged, since that takes mmap_lock in write
5783 * mode; but shmem or file collapse to THP could still morph
5784 * it into a huge pmd: just retry later if so.
5785 *
5786 * Use the maywrite version to indicate that vmf->pte may be
5787 * modified, but since we will use pte_same() to detect the
5788 * change of the !pte_none() entry, there is no need to recheck
5789 * the pmdval. Here we chooes to pass a dummy variable instead
5790 * of NULL, which helps new user think about why this place is
5791 * special.
5792 */
5793 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
5794 vmf->address, &dummy_pmdval,
5795 &vmf->ptl);
5796 if (unlikely(!vmf->pte))
5797 return 0;
5798 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5799 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5800
5801 if (pte_none(vmf->orig_pte)) {
5802 pte_unmap(vmf->pte);
5803 vmf->pte = NULL;
5804 }
5805 }
5806
5807 if (!vmf->pte)
5808 return do_pte_missing(vmf);
5809
5810 if (!pte_present(vmf->orig_pte))
5811 return do_swap_page(vmf);
5812
5813 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5814 return do_numa_page(vmf);
5815
5816 spin_lock(vmf->ptl);
5817 entry = vmf->orig_pte;
5818 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5819 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5820 goto unlock;
5821 }
5822 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5823 if (!pte_write(entry))
5824 return do_wp_page(vmf);
5825 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5826 entry = pte_mkdirty(entry);
5827 }
5828 entry = pte_mkyoung(entry);
5829 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5830 vmf->flags & FAULT_FLAG_WRITE)) {
5831 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5832 vmf->pte, 1);
5833 } else {
5834 /* Skip spurious TLB flush for retried page fault */
5835 if (vmf->flags & FAULT_FLAG_TRIED)
5836 goto unlock;
5837 /*
5838 * This is needed only for protection faults but the arch code
5839 * is not yet telling us if this is a protection fault or not.
5840 * This still avoids useless tlb flushes for .text page faults
5841 * with threads.
5842 */
5843 if (vmf->flags & FAULT_FLAG_WRITE)
5844 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5845 vmf->pte);
5846 }
5847unlock:
5848 pte_unmap_unlock(vmf->pte, vmf->ptl);
5849 return 0;
5850}
5851
5852/*
5853 * On entry, we hold either the VMA lock or the mmap_lock
5854 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5855 * the result, the mmap_lock is not held on exit. See filemap_fault()
5856 * and __folio_lock_or_retry().
5857 */
5858static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5859 unsigned long address, unsigned int flags)
5860{
5861 struct vm_fault vmf = {
5862 .vma = vma,
5863 .address = address & PAGE_MASK,
5864 .real_address = address,
5865 .flags = flags,
5866 .pgoff = linear_page_index(vma, address),
5867 .gfp_mask = __get_fault_gfp_mask(vma),
5868 };
5869 struct mm_struct *mm = vma->vm_mm;
5870 unsigned long vm_flags = vma->vm_flags;
5871 pgd_t *pgd;
5872 p4d_t *p4d;
5873 vm_fault_t ret;
5874
5875 pgd = pgd_offset(mm, address);
5876 p4d = p4d_alloc(mm, pgd, address);
5877 if (!p4d)
5878 return VM_FAULT_OOM;
5879
5880 vmf.pud = pud_alloc(mm, p4d, address);
5881 if (!vmf.pud)
5882 return VM_FAULT_OOM;
5883retry_pud:
5884 if (pud_none(*vmf.pud) &&
5885 thp_vma_allowable_order(vma, vm_flags,
5886 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5887 ret = create_huge_pud(&vmf);
5888 if (!(ret & VM_FAULT_FALLBACK))
5889 return ret;
5890 } else {
5891 pud_t orig_pud = *vmf.pud;
5892
5893 barrier();
5894 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5895
5896 /*
5897 * TODO once we support anonymous PUDs: NUMA case and
5898 * FAULT_FLAG_UNSHARE handling.
5899 */
5900 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5901 ret = wp_huge_pud(&vmf, orig_pud);
5902 if (!(ret & VM_FAULT_FALLBACK))
5903 return ret;
5904 } else {
5905 huge_pud_set_accessed(&vmf, orig_pud);
5906 return 0;
5907 }
5908 }
5909 }
5910
5911 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5912 if (!vmf.pmd)
5913 return VM_FAULT_OOM;
5914
5915 /* Huge pud page fault raced with pmd_alloc? */
5916 if (pud_trans_unstable(vmf.pud))
5917 goto retry_pud;
5918
5919 if (pmd_none(*vmf.pmd) &&
5920 thp_vma_allowable_order(vma, vm_flags,
5921 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
5922 ret = create_huge_pmd(&vmf);
5923 if (!(ret & VM_FAULT_FALLBACK))
5924 return ret;
5925 } else {
5926 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5927
5928 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5929 VM_BUG_ON(thp_migration_supported() &&
5930 !is_pmd_migration_entry(vmf.orig_pmd));
5931 if (is_pmd_migration_entry(vmf.orig_pmd))
5932 pmd_migration_entry_wait(mm, vmf.pmd);
5933 return 0;
5934 }
5935 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5936 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5937 return do_huge_pmd_numa_page(&vmf);
5938
5939 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5940 !pmd_write(vmf.orig_pmd)) {
5941 ret = wp_huge_pmd(&vmf);
5942 if (!(ret & VM_FAULT_FALLBACK))
5943 return ret;
5944 } else {
5945 huge_pmd_set_accessed(&vmf);
5946 return 0;
5947 }
5948 }
5949 }
5950
5951 return handle_pte_fault(&vmf);
5952}
5953
5954/**
5955 * mm_account_fault - Do page fault accounting
5956 * @mm: mm from which memcg should be extracted. It can be NULL.
5957 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5958 * of perf event counters, but we'll still do the per-task accounting to
5959 * the task who triggered this page fault.
5960 * @address: the faulted address.
5961 * @flags: the fault flags.
5962 * @ret: the fault retcode.
5963 *
5964 * This will take care of most of the page fault accounting. Meanwhile, it
5965 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5966 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5967 * still be in per-arch page fault handlers at the entry of page fault.
5968 */
5969static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5970 unsigned long address, unsigned int flags,
5971 vm_fault_t ret)
5972{
5973 bool major;
5974
5975 /* Incomplete faults will be accounted upon completion. */
5976 if (ret & VM_FAULT_RETRY)
5977 return;
5978
5979 /*
5980 * To preserve the behavior of older kernels, PGFAULT counters record
5981 * both successful and failed faults, as opposed to perf counters,
5982 * which ignore failed cases.
5983 */
5984 count_vm_event(PGFAULT);
5985 count_memcg_event_mm(mm, PGFAULT);
5986
5987 /*
5988 * Do not account for unsuccessful faults (e.g. when the address wasn't
5989 * valid). That includes arch_vma_access_permitted() failing before
5990 * reaching here. So this is not a "this many hardware page faults"
5991 * counter. We should use the hw profiling for that.
5992 */
5993 if (ret & VM_FAULT_ERROR)
5994 return;
5995
5996 /*
5997 * We define the fault as a major fault when the final successful fault
5998 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5999 * handle it immediately previously).
6000 */
6001 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
6002
6003 if (major)
6004 current->maj_flt++;
6005 else
6006 current->min_flt++;
6007
6008 /*
6009 * If the fault is done for GUP, regs will be NULL. We only do the
6010 * accounting for the per thread fault counters who triggered the
6011 * fault, and we skip the perf event updates.
6012 */
6013 if (!regs)
6014 return;
6015
6016 if (major)
6017 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
6018 else
6019 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
6020}
6021
6022#ifdef CONFIG_LRU_GEN
6023static void lru_gen_enter_fault(struct vm_area_struct *vma)
6024{
6025 /* the LRU algorithm only applies to accesses with recency */
6026 current->in_lru_fault = vma_has_recency(vma);
6027}
6028
6029static void lru_gen_exit_fault(void)
6030{
6031 current->in_lru_fault = false;
6032}
6033#else
6034static void lru_gen_enter_fault(struct vm_area_struct *vma)
6035{
6036}
6037
6038static void lru_gen_exit_fault(void)
6039{
6040}
6041#endif /* CONFIG_LRU_GEN */
6042
6043static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6044 unsigned int *flags)
6045{
6046 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6047 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6048 return VM_FAULT_SIGSEGV;
6049 /*
6050 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6051 * just treat it like an ordinary read-fault otherwise.
6052 */
6053 if (!is_cow_mapping(vma->vm_flags))
6054 *flags &= ~FAULT_FLAG_UNSHARE;
6055 } else if (*flags & FAULT_FLAG_WRITE) {
6056 /* Write faults on read-only mappings are impossible ... */
6057 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6058 return VM_FAULT_SIGSEGV;
6059 /* ... and FOLL_FORCE only applies to COW mappings. */
6060 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6061 !is_cow_mapping(vma->vm_flags)))
6062 return VM_FAULT_SIGSEGV;
6063 }
6064#ifdef CONFIG_PER_VMA_LOCK
6065 /*
6066 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6067 * the assumption that lock is dropped on VM_FAULT_RETRY.
6068 */
6069 if (WARN_ON_ONCE((*flags &
6070 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6071 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6072 return VM_FAULT_SIGSEGV;
6073#endif
6074
6075 return 0;
6076}
6077
6078/*
6079 * By the time we get here, we already hold the mm semaphore
6080 *
6081 * The mmap_lock may have been released depending on flags and our
6082 * return value. See filemap_fault() and __folio_lock_or_retry().
6083 */
6084vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6085 unsigned int flags, struct pt_regs *regs)
6086{
6087 /* If the fault handler drops the mmap_lock, vma may be freed */
6088 struct mm_struct *mm = vma->vm_mm;
6089 vm_fault_t ret;
6090 bool is_droppable;
6091
6092 __set_current_state(TASK_RUNNING);
6093
6094 ret = sanitize_fault_flags(vma, &flags);
6095 if (ret)
6096 goto out;
6097
6098 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6099 flags & FAULT_FLAG_INSTRUCTION,
6100 flags & FAULT_FLAG_REMOTE)) {
6101 ret = VM_FAULT_SIGSEGV;
6102 goto out;
6103 }
6104
6105 is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6106
6107 /*
6108 * Enable the memcg OOM handling for faults triggered in user
6109 * space. Kernel faults are handled more gracefully.
6110 */
6111 if (flags & FAULT_FLAG_USER)
6112 mem_cgroup_enter_user_fault();
6113
6114 lru_gen_enter_fault(vma);
6115
6116 if (unlikely(is_vm_hugetlb_page(vma)))
6117 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6118 else
6119 ret = __handle_mm_fault(vma, address, flags);
6120
6121 /*
6122 * Warning: It is no longer safe to dereference vma-> after this point,
6123 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6124 * vma might be destroyed from underneath us.
6125 */
6126
6127 lru_gen_exit_fault();
6128
6129 /* If the mapping is droppable, then errors due to OOM aren't fatal. */
6130 if (is_droppable)
6131 ret &= ~VM_FAULT_OOM;
6132
6133 if (flags & FAULT_FLAG_USER) {
6134 mem_cgroup_exit_user_fault();
6135 /*
6136 * The task may have entered a memcg OOM situation but
6137 * if the allocation error was handled gracefully (no
6138 * VM_FAULT_OOM), there is no need to kill anything.
6139 * Just clean up the OOM state peacefully.
6140 */
6141 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6142 mem_cgroup_oom_synchronize(false);
6143 }
6144out:
6145 mm_account_fault(mm, regs, address, flags, ret);
6146
6147 return ret;
6148}
6149EXPORT_SYMBOL_GPL(handle_mm_fault);
6150
6151#ifdef CONFIG_LOCK_MM_AND_FIND_VMA
6152#include <linux/extable.h>
6153
6154static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6155{
6156 if (likely(mmap_read_trylock(mm)))
6157 return true;
6158
6159 if (regs && !user_mode(regs)) {
6160 unsigned long ip = exception_ip(regs);
6161 if (!search_exception_tables(ip))
6162 return false;
6163 }
6164
6165 return !mmap_read_lock_killable(mm);
6166}
6167
6168static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
6169{
6170 /*
6171 * We don't have this operation yet.
6172 *
6173 * It should be easy enough to do: it's basically a
6174 * atomic_long_try_cmpxchg_acquire()
6175 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
6176 * it also needs the proper lockdep magic etc.
6177 */
6178 return false;
6179}
6180
6181static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6182{
6183 mmap_read_unlock(mm);
6184 if (regs && !user_mode(regs)) {
6185 unsigned long ip = exception_ip(regs);
6186 if (!search_exception_tables(ip))
6187 return false;
6188 }
6189 return !mmap_write_lock_killable(mm);
6190}
6191
6192/*
6193 * Helper for page fault handling.
6194 *
6195 * This is kind of equivalend to "mmap_read_lock()" followed
6196 * by "find_extend_vma()", except it's a lot more careful about
6197 * the locking (and will drop the lock on failure).
6198 *
6199 * For example, if we have a kernel bug that causes a page
6200 * fault, we don't want to just use mmap_read_lock() to get
6201 * the mm lock, because that would deadlock if the bug were
6202 * to happen while we're holding the mm lock for writing.
6203 *
6204 * So this checks the exception tables on kernel faults in
6205 * order to only do this all for instructions that are actually
6206 * expected to fault.
6207 *
6208 * We can also actually take the mm lock for writing if we
6209 * need to extend the vma, which helps the VM layer a lot.
6210 */
6211struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
6212 unsigned long addr, struct pt_regs *regs)
6213{
6214 struct vm_area_struct *vma;
6215
6216 if (!get_mmap_lock_carefully(mm, regs))
6217 return NULL;
6218
6219 vma = find_vma(mm, addr);
6220 if (likely(vma && (vma->vm_start <= addr)))
6221 return vma;
6222
6223 /*
6224 * Well, dang. We might still be successful, but only
6225 * if we can extend a vma to do so.
6226 */
6227 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
6228 mmap_read_unlock(mm);
6229 return NULL;
6230 }
6231
6232 /*
6233 * We can try to upgrade the mmap lock atomically,
6234 * in which case we can continue to use the vma
6235 * we already looked up.
6236 *
6237 * Otherwise we'll have to drop the mmap lock and
6238 * re-take it, and also look up the vma again,
6239 * re-checking it.
6240 */
6241 if (!mmap_upgrade_trylock(mm)) {
6242 if (!upgrade_mmap_lock_carefully(mm, regs))
6243 return NULL;
6244
6245 vma = find_vma(mm, addr);
6246 if (!vma)
6247 goto fail;
6248 if (vma->vm_start <= addr)
6249 goto success;
6250 if (!(vma->vm_flags & VM_GROWSDOWN))
6251 goto fail;
6252 }
6253
6254 if (expand_stack_locked(vma, addr))
6255 goto fail;
6256
6257success:
6258 mmap_write_downgrade(mm);
6259 return vma;
6260
6261fail:
6262 mmap_write_unlock(mm);
6263 return NULL;
6264}
6265#endif
6266
6267#ifdef CONFIG_PER_VMA_LOCK
6268/*
6269 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
6270 * stable and not isolated. If the VMA is not found or is being modified the
6271 * function returns NULL.
6272 */
6273struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
6274 unsigned long address)
6275{
6276 MA_STATE(mas, &mm->mm_mt, address, address);
6277 struct vm_area_struct *vma;
6278
6279 rcu_read_lock();
6280retry:
6281 vma = mas_walk(&mas);
6282 if (!vma)
6283 goto inval;
6284
6285 if (!vma_start_read(vma))
6286 goto inval;
6287
6288 /* Check if the VMA got isolated after we found it */
6289 if (vma->detached) {
6290 vma_end_read(vma);
6291 count_vm_vma_lock_event(VMA_LOCK_MISS);
6292 /* The area was replaced with another one */
6293 goto retry;
6294 }
6295 /*
6296 * At this point, we have a stable reference to a VMA: The VMA is
6297 * locked and we know it hasn't already been isolated.
6298 * From here on, we can access the VMA without worrying about which
6299 * fields are accessible for RCU readers.
6300 */
6301
6302 /* Check since vm_start/vm_end might change before we lock the VMA */
6303 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6304 goto inval_end_read;
6305
6306 rcu_read_unlock();
6307 return vma;
6308
6309inval_end_read:
6310 vma_end_read(vma);
6311inval:
6312 rcu_read_unlock();
6313 count_vm_vma_lock_event(VMA_LOCK_ABORT);
6314 return NULL;
6315}
6316#endif /* CONFIG_PER_VMA_LOCK */
6317
6318#ifndef __PAGETABLE_P4D_FOLDED
6319/*
6320 * Allocate p4d page table.
6321 * We've already handled the fast-path in-line.
6322 */
6323int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6324{
6325 p4d_t *new = p4d_alloc_one(mm, address);
6326 if (!new)
6327 return -ENOMEM;
6328
6329 spin_lock(&mm->page_table_lock);
6330 if (pgd_present(*pgd)) { /* Another has populated it */
6331 p4d_free(mm, new);
6332 } else {
6333 smp_wmb(); /* See comment in pmd_install() */
6334 pgd_populate(mm, pgd, new);
6335 }
6336 spin_unlock(&mm->page_table_lock);
6337 return 0;
6338}
6339#endif /* __PAGETABLE_P4D_FOLDED */
6340
6341#ifndef __PAGETABLE_PUD_FOLDED
6342/*
6343 * Allocate page upper directory.
6344 * We've already handled the fast-path in-line.
6345 */
6346int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6347{
6348 pud_t *new = pud_alloc_one(mm, address);
6349 if (!new)
6350 return -ENOMEM;
6351
6352 spin_lock(&mm->page_table_lock);
6353 if (!p4d_present(*p4d)) {
6354 mm_inc_nr_puds(mm);
6355 smp_wmb(); /* See comment in pmd_install() */
6356 p4d_populate(mm, p4d, new);
6357 } else /* Another has populated it */
6358 pud_free(mm, new);
6359 spin_unlock(&mm->page_table_lock);
6360 return 0;
6361}
6362#endif /* __PAGETABLE_PUD_FOLDED */
6363
6364#ifndef __PAGETABLE_PMD_FOLDED
6365/*
6366 * Allocate page middle directory.
6367 * We've already handled the fast-path in-line.
6368 */
6369int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6370{
6371 spinlock_t *ptl;
6372 pmd_t *new = pmd_alloc_one(mm, address);
6373 if (!new)
6374 return -ENOMEM;
6375
6376 ptl = pud_lock(mm, pud);
6377 if (!pud_present(*pud)) {
6378 mm_inc_nr_pmds(mm);
6379 smp_wmb(); /* See comment in pmd_install() */
6380 pud_populate(mm, pud, new);
6381 } else { /* Another has populated it */
6382 pmd_free(mm, new);
6383 }
6384 spin_unlock(ptl);
6385 return 0;
6386}
6387#endif /* __PAGETABLE_PMD_FOLDED */
6388
6389static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6390 spinlock_t *lock, pte_t *ptep,
6391 pgprot_t pgprot, unsigned long pfn_base,
6392 unsigned long addr_mask, bool writable,
6393 bool special)
6394{
6395 args->lock = lock;
6396 args->ptep = ptep;
6397 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6398 args->pgprot = pgprot;
6399 args->writable = writable;
6400 args->special = special;
6401}
6402
6403static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6404{
6405#ifdef CONFIG_LOCKDEP
6406 struct file *file = vma->vm_file;
6407 struct address_space *mapping = file ? file->f_mapping : NULL;
6408
6409 if (mapping)
6410 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
6411 lockdep_is_held(&vma->vm_mm->mmap_lock));
6412 else
6413 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6414#endif
6415}
6416
6417/**
6418 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6419 * @args: Pointer to struct @follow_pfnmap_args
6420 *
6421 * The caller needs to setup args->vma and args->address to point to the
6422 * virtual address as the target of such lookup. On a successful return,
6423 * the results will be put into other output fields.
6424 *
6425 * After the caller finished using the fields, the caller must invoke
6426 * another follow_pfnmap_end() to proper releases the locks and resources
6427 * of such look up request.
6428 *
6429 * During the start() and end() calls, the results in @args will be valid
6430 * as proper locks will be held. After the end() is called, all the fields
6431 * in @follow_pfnmap_args will be invalid to be further accessed. Further
6432 * use of such information after end() may require proper synchronizations
6433 * by the caller with page table updates, otherwise it can create a
6434 * security bug.
6435 *
6436 * If the PTE maps a refcounted page, callers are responsible to protect
6437 * against invalidation with MMU notifiers; otherwise access to the PFN at
6438 * a later point in time can trigger use-after-free.
6439 *
6440 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
6441 * should be taken for read, and the mmap semaphore cannot be released
6442 * before the end() is invoked.
6443 *
6444 * This function must not be used to modify PTE content.
6445 *
6446 * Return: zero on success, negative otherwise.
6447 */
6448int follow_pfnmap_start(struct follow_pfnmap_args *args)
6449{
6450 struct vm_area_struct *vma = args->vma;
6451 unsigned long address = args->address;
6452 struct mm_struct *mm = vma->vm_mm;
6453 spinlock_t *lock;
6454 pgd_t *pgdp;
6455 p4d_t *p4dp, p4d;
6456 pud_t *pudp, pud;
6457 pmd_t *pmdp, pmd;
6458 pte_t *ptep, pte;
6459
6460 pfnmap_lockdep_assert(vma);
6461
6462 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6463 goto out;
6464
6465 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6466 goto out;
6467retry:
6468 pgdp = pgd_offset(mm, address);
6469 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6470 goto out;
6471
6472 p4dp = p4d_offset(pgdp, address);
6473 p4d = READ_ONCE(*p4dp);
6474 if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6475 goto out;
6476
6477 pudp = pud_offset(p4dp, address);
6478 pud = READ_ONCE(*pudp);
6479 if (pud_none(pud))
6480 goto out;
6481 if (pud_leaf(pud)) {
6482 lock = pud_lock(mm, pudp);
6483 if (!unlikely(pud_leaf(pud))) {
6484 spin_unlock(lock);
6485 goto retry;
6486 }
6487 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6488 pud_pfn(pud), PUD_MASK, pud_write(pud),
6489 pud_special(pud));
6490 return 0;
6491 }
6492
6493 pmdp = pmd_offset(pudp, address);
6494 pmd = pmdp_get_lockless(pmdp);
6495 if (pmd_leaf(pmd)) {
6496 lock = pmd_lock(mm, pmdp);
6497 if (!unlikely(pmd_leaf(pmd))) {
6498 spin_unlock(lock);
6499 goto retry;
6500 }
6501 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6502 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6503 pmd_special(pmd));
6504 return 0;
6505 }
6506
6507 ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6508 if (!ptep)
6509 goto out;
6510 pte = ptep_get(ptep);
6511 if (!pte_present(pte))
6512 goto unlock;
6513 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6514 pte_pfn(pte), PAGE_MASK, pte_write(pte),
6515 pte_special(pte));
6516 return 0;
6517unlock:
6518 pte_unmap_unlock(ptep, lock);
6519out:
6520 return -EINVAL;
6521}
6522EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6523
6524/**
6525 * follow_pfnmap_end(): End a follow_pfnmap_start() process
6526 * @args: Pointer to struct @follow_pfnmap_args
6527 *
6528 * Must be used in pair of follow_pfnmap_start(). See the start() function
6529 * above for more information.
6530 */
6531void follow_pfnmap_end(struct follow_pfnmap_args *args)
6532{
6533 if (args->lock)
6534 spin_unlock(args->lock);
6535 if (args->ptep)
6536 pte_unmap(args->ptep);
6537}
6538EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6539
6540#ifdef CONFIG_HAVE_IOREMAP_PROT
6541/**
6542 * generic_access_phys - generic implementation for iomem mmap access
6543 * @vma: the vma to access
6544 * @addr: userspace address, not relative offset within @vma
6545 * @buf: buffer to read/write
6546 * @len: length of transfer
6547 * @write: set to FOLL_WRITE when writing, otherwise reading
6548 *
6549 * This is a generic implementation for &vm_operations_struct.access for an
6550 * iomem mapping. This callback is used by access_process_vm() when the @vma is
6551 * not page based.
6552 */
6553int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6554 void *buf, int len, int write)
6555{
6556 resource_size_t phys_addr;
6557 unsigned long prot = 0;
6558 void __iomem *maddr;
6559 int offset = offset_in_page(addr);
6560 int ret = -EINVAL;
6561 bool writable;
6562 struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6563
6564retry:
6565 if (follow_pfnmap_start(&args))
6566 return -EINVAL;
6567 prot = pgprot_val(args.pgprot);
6568 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6569 writable = args.writable;
6570 follow_pfnmap_end(&args);
6571
6572 if ((write & FOLL_WRITE) && !writable)
6573 return -EINVAL;
6574
6575 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6576 if (!maddr)
6577 return -ENOMEM;
6578
6579 if (follow_pfnmap_start(&args))
6580 goto out_unmap;
6581
6582 if ((prot != pgprot_val(args.pgprot)) ||
6583 (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6584 (writable != args.writable)) {
6585 follow_pfnmap_end(&args);
6586 iounmap(maddr);
6587 goto retry;
6588 }
6589
6590 if (write)
6591 memcpy_toio(maddr + offset, buf, len);
6592 else
6593 memcpy_fromio(buf, maddr + offset, len);
6594 ret = len;
6595 follow_pfnmap_end(&args);
6596out_unmap:
6597 iounmap(maddr);
6598
6599 return ret;
6600}
6601EXPORT_SYMBOL_GPL(generic_access_phys);
6602#endif
6603
6604/*
6605 * Access another process' address space as given in mm.
6606 */
6607static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6608 void *buf, int len, unsigned int gup_flags)
6609{
6610 void *old_buf = buf;
6611 int write = gup_flags & FOLL_WRITE;
6612
6613 if (mmap_read_lock_killable(mm))
6614 return 0;
6615
6616 /* Untag the address before looking up the VMA */
6617 addr = untagged_addr_remote(mm, addr);
6618
6619 /* Avoid triggering the temporary warning in __get_user_pages */
6620 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6621 return 0;
6622
6623 /* ignore errors, just check how much was successfully transferred */
6624 while (len) {
6625 int bytes, offset;
6626 void *maddr;
6627 struct vm_area_struct *vma = NULL;
6628 struct page *page = get_user_page_vma_remote(mm, addr,
6629 gup_flags, &vma);
6630
6631 if (IS_ERR(page)) {
6632 /* We might need to expand the stack to access it */
6633 vma = vma_lookup(mm, addr);
6634 if (!vma) {
6635 vma = expand_stack(mm, addr);
6636
6637 /* mmap_lock was dropped on failure */
6638 if (!vma)
6639 return buf - old_buf;
6640
6641 /* Try again if stack expansion worked */
6642 continue;
6643 }
6644
6645 /*
6646 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6647 * we can access using slightly different code.
6648 */
6649 bytes = 0;
6650#ifdef CONFIG_HAVE_IOREMAP_PROT
6651 if (vma->vm_ops && vma->vm_ops->access)
6652 bytes = vma->vm_ops->access(vma, addr, buf,
6653 len, write);
6654#endif
6655 if (bytes <= 0)
6656 break;
6657 } else {
6658 bytes = len;
6659 offset = addr & (PAGE_SIZE-1);
6660 if (bytes > PAGE_SIZE-offset)
6661 bytes = PAGE_SIZE-offset;
6662
6663 maddr = kmap_local_page(page);
6664 if (write) {
6665 copy_to_user_page(vma, page, addr,
6666 maddr + offset, buf, bytes);
6667 set_page_dirty_lock(page);
6668 } else {
6669 copy_from_user_page(vma, page, addr,
6670 buf, maddr + offset, bytes);
6671 }
6672 unmap_and_put_page(page, maddr);
6673 }
6674 len -= bytes;
6675 buf += bytes;
6676 addr += bytes;
6677 }
6678 mmap_read_unlock(mm);
6679
6680 return buf - old_buf;
6681}
6682
6683/**
6684 * access_remote_vm - access another process' address space
6685 * @mm: the mm_struct of the target address space
6686 * @addr: start address to access
6687 * @buf: source or destination buffer
6688 * @len: number of bytes to transfer
6689 * @gup_flags: flags modifying lookup behaviour
6690 *
6691 * The caller must hold a reference on @mm.
6692 *
6693 * Return: number of bytes copied from source to destination.
6694 */
6695int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6696 void *buf, int len, unsigned int gup_flags)
6697{
6698 return __access_remote_vm(mm, addr, buf, len, gup_flags);
6699}
6700
6701/*
6702 * Access another process' address space.
6703 * Source/target buffer must be kernel space,
6704 * Do not walk the page table directly, use get_user_pages
6705 */
6706int access_process_vm(struct task_struct *tsk, unsigned long addr,
6707 void *buf, int len, unsigned int gup_flags)
6708{
6709 struct mm_struct *mm;
6710 int ret;
6711
6712 mm = get_task_mm(tsk);
6713 if (!mm)
6714 return 0;
6715
6716 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6717
6718 mmput(mm);
6719
6720 return ret;
6721}
6722EXPORT_SYMBOL_GPL(access_process_vm);
6723
6724/*
6725 * Print the name of a VMA.
6726 */
6727void print_vma_addr(char *prefix, unsigned long ip)
6728{
6729 struct mm_struct *mm = current->mm;
6730 struct vm_area_struct *vma;
6731
6732 /*
6733 * we might be running from an atomic context so we cannot sleep
6734 */
6735 if (!mmap_read_trylock(mm))
6736 return;
6737
6738 vma = vma_lookup(mm, ip);
6739 if (vma && vma->vm_file) {
6740 struct file *f = vma->vm_file;
6741 ip -= vma->vm_start;
6742 ip += vma->vm_pgoff << PAGE_SHIFT;
6743 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6744 vma->vm_start,
6745 vma->vm_end - vma->vm_start);
6746 }
6747 mmap_read_unlock(mm);
6748}
6749
6750#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6751void __might_fault(const char *file, int line)
6752{
6753 if (pagefault_disabled())
6754 return;
6755 __might_sleep(file, line);
6756#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6757 if (current->mm)
6758 might_lock_read(¤t->mm->mmap_lock);
6759#endif
6760}
6761EXPORT_SYMBOL(__might_fault);
6762#endif
6763
6764#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6765/*
6766 * Process all subpages of the specified huge page with the specified
6767 * operation. The target subpage will be processed last to keep its
6768 * cache lines hot.
6769 */
6770static inline int process_huge_page(
6771 unsigned long addr_hint, unsigned int nr_pages,
6772 int (*process_subpage)(unsigned long addr, int idx, void *arg),
6773 void *arg)
6774{
6775 int i, n, base, l, ret;
6776 unsigned long addr = addr_hint &
6777 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6778
6779 /* Process target subpage last to keep its cache lines hot */
6780 might_sleep();
6781 n = (addr_hint - addr) / PAGE_SIZE;
6782 if (2 * n <= nr_pages) {
6783 /* If target subpage in first half of huge page */
6784 base = 0;
6785 l = n;
6786 /* Process subpages at the end of huge page */
6787 for (i = nr_pages - 1; i >= 2 * n; i--) {
6788 cond_resched();
6789 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6790 if (ret)
6791 return ret;
6792 }
6793 } else {
6794 /* If target subpage in second half of huge page */
6795 base = nr_pages - 2 * (nr_pages - n);
6796 l = nr_pages - n;
6797 /* Process subpages at the begin of huge page */
6798 for (i = 0; i < base; i++) {
6799 cond_resched();
6800 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6801 if (ret)
6802 return ret;
6803 }
6804 }
6805 /*
6806 * Process remaining subpages in left-right-left-right pattern
6807 * towards the target subpage
6808 */
6809 for (i = 0; i < l; i++) {
6810 int left_idx = base + i;
6811 int right_idx = base + 2 * l - 1 - i;
6812
6813 cond_resched();
6814 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6815 if (ret)
6816 return ret;
6817 cond_resched();
6818 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6819 if (ret)
6820 return ret;
6821 }
6822 return 0;
6823}
6824
6825static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint,
6826 unsigned int nr_pages)
6827{
6828 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio));
6829 int i;
6830
6831 might_sleep();
6832 for (i = 0; i < nr_pages; i++) {
6833 cond_resched();
6834 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
6835 }
6836}
6837
6838static int clear_subpage(unsigned long addr, int idx, void *arg)
6839{
6840 struct folio *folio = arg;
6841
6842 clear_user_highpage(folio_page(folio, idx), addr);
6843 return 0;
6844}
6845
6846/**
6847 * folio_zero_user - Zero a folio which will be mapped to userspace.
6848 * @folio: The folio to zero.
6849 * @addr_hint: The address will be accessed or the base address if uncelar.
6850 */
6851void folio_zero_user(struct folio *folio, unsigned long addr_hint)
6852{
6853 unsigned int nr_pages = folio_nr_pages(folio);
6854
6855 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6856 clear_gigantic_page(folio, addr_hint, nr_pages);
6857 else
6858 process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
6859}
6860
6861static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6862 unsigned long addr_hint,
6863 struct vm_area_struct *vma,
6864 unsigned int nr_pages)
6865{
6866 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst));
6867 struct page *dst_page;
6868 struct page *src_page;
6869 int i;
6870
6871 for (i = 0; i < nr_pages; i++) {
6872 dst_page = folio_page(dst, i);
6873 src_page = folio_page(src, i);
6874
6875 cond_resched();
6876 if (copy_mc_user_highpage(dst_page, src_page,
6877 addr + i*PAGE_SIZE, vma))
6878 return -EHWPOISON;
6879 }
6880 return 0;
6881}
6882
6883struct copy_subpage_arg {
6884 struct folio *dst;
6885 struct folio *src;
6886 struct vm_area_struct *vma;
6887};
6888
6889static int copy_subpage(unsigned long addr, int idx, void *arg)
6890{
6891 struct copy_subpage_arg *copy_arg = arg;
6892 struct page *dst = folio_page(copy_arg->dst, idx);
6893 struct page *src = folio_page(copy_arg->src, idx);
6894
6895 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
6896 return -EHWPOISON;
6897 return 0;
6898}
6899
6900int copy_user_large_folio(struct folio *dst, struct folio *src,
6901 unsigned long addr_hint, struct vm_area_struct *vma)
6902{
6903 unsigned int nr_pages = folio_nr_pages(dst);
6904 struct copy_subpage_arg arg = {
6905 .dst = dst,
6906 .src = src,
6907 .vma = vma,
6908 };
6909
6910 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6911 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
6912
6913 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
6914}
6915
6916long copy_folio_from_user(struct folio *dst_folio,
6917 const void __user *usr_src,
6918 bool allow_pagefault)
6919{
6920 void *kaddr;
6921 unsigned long i, rc = 0;
6922 unsigned int nr_pages = folio_nr_pages(dst_folio);
6923 unsigned long ret_val = nr_pages * PAGE_SIZE;
6924 struct page *subpage;
6925
6926 for (i = 0; i < nr_pages; i++) {
6927 subpage = folio_page(dst_folio, i);
6928 kaddr = kmap_local_page(subpage);
6929 if (!allow_pagefault)
6930 pagefault_disable();
6931 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6932 if (!allow_pagefault)
6933 pagefault_enable();
6934 kunmap_local(kaddr);
6935
6936 ret_val -= (PAGE_SIZE - rc);
6937 if (rc)
6938 break;
6939
6940 flush_dcache_page(subpage);
6941
6942 cond_resched();
6943 }
6944 return ret_val;
6945}
6946#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6947
6948#if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
6949
6950static struct kmem_cache *page_ptl_cachep;
6951
6952void __init ptlock_cache_init(void)
6953{
6954 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6955 SLAB_PANIC, NULL);
6956}
6957
6958bool ptlock_alloc(struct ptdesc *ptdesc)
6959{
6960 spinlock_t *ptl;
6961
6962 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6963 if (!ptl)
6964 return false;
6965 ptdesc->ptl = ptl;
6966 return true;
6967}
6968
6969void ptlock_free(struct ptdesc *ptdesc)
6970{
6971 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6972}
6973#endif
6974
6975void vma_pgtable_walk_begin(struct vm_area_struct *vma)
6976{
6977 if (is_vm_hugetlb_page(vma))
6978 hugetlb_vma_lock_read(vma);
6979}
6980
6981void vma_pgtable_walk_end(struct vm_area_struct *vma)
6982{
6983 if (is_vm_hugetlb_page(vma))
6984 hugetlb_vma_unlock_read(vma);
6985}