Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * demand-loading started 01.12.91 - seems it is high on the list of
  10 * things wanted, and it should be easy to implement. - Linus
  11 */
  12
  13/*
  14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  15 * pages started 02.12.91, seems to work. - Linus.
  16 *
  17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  18 * would have taken more than the 6M I have free, but it worked well as
  19 * far as I could see.
  20 *
  21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  22 */
  23
  24/*
  25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  26 * thought has to go into this. Oh, well..
  27 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  28 *		Found it. Everything seems to work now.
  29 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  30 */
  31
  32/*
  33 * 05.04.94  -  Multi-page memory management added for v1.1.
  34 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  35 *
  36 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  37 *		(Gerhard.Wichert@pdb.siemens.de)
  38 *
  39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  40 */
  41
  42#include <linux/kernel_stat.h>
  43#include <linux/mm.h>
  44#include <linux/sched/mm.h>
  45#include <linux/sched/coredump.h>
  46#include <linux/sched/numa_balancing.h>
  47#include <linux/sched/task.h>
  48#include <linux/hugetlb.h>
  49#include <linux/mman.h>
  50#include <linux/swap.h>
  51#include <linux/highmem.h>
  52#include <linux/pagemap.h>
  53#include <linux/memremap.h>
  54#include <linux/ksm.h>
  55#include <linux/rmap.h>
  56#include <linux/export.h>
  57#include <linux/delayacct.h>
  58#include <linux/init.h>
  59#include <linux/pfn_t.h>
  60#include <linux/writeback.h>
  61#include <linux/memcontrol.h>
  62#include <linux/mmu_notifier.h>
  63#include <linux/swapops.h>
  64#include <linux/elf.h>
  65#include <linux/gfp.h>
  66#include <linux/migrate.h>
  67#include <linux/string.h>
  68#include <linux/dma-debug.h>
  69#include <linux/debugfs.h>
  70#include <linux/userfaultfd_k.h>
  71#include <linux/dax.h>
  72#include <linux/oom.h>
  73#include <linux/numa.h>
  74
  75#include <asm/io.h>
  76#include <asm/mmu_context.h>
  77#include <asm/pgalloc.h>
  78#include <linux/uaccess.h>
  79#include <asm/tlb.h>
  80#include <asm/tlbflush.h>
  81#include <asm/pgtable.h>
  82
  83#include "internal.h"
  84
  85#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
  86#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  87#endif
  88
  89#ifndef CONFIG_NEED_MULTIPLE_NODES
  90/* use the per-pgdat data instead for discontigmem - mbligh */
  91unsigned long max_mapnr;
  92EXPORT_SYMBOL(max_mapnr);
  93
  94struct page *mem_map;
  95EXPORT_SYMBOL(mem_map);
  96#endif
  97
  98/*
  99 * A number of key systems in x86 including ioremap() rely on the assumption
 100 * that high_memory defines the upper bound on direct map memory, then end
 101 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 103 * and ZONE_HIGHMEM.
 104 */
 105void *high_memory;
 106EXPORT_SYMBOL(high_memory);
 107
 108/*
 109 * Randomize the address space (stacks, mmaps, brk, etc.).
 110 *
 111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 112 *   as ancient (libc5 based) binaries can segfault. )
 113 */
 114int randomize_va_space __read_mostly =
 115#ifdef CONFIG_COMPAT_BRK
 116					1;
 117#else
 118					2;
 119#endif
 120
 121static int __init disable_randmaps(char *s)
 122{
 123	randomize_va_space = 0;
 124	return 1;
 125}
 126__setup("norandmaps", disable_randmaps);
 127
 128unsigned long zero_pfn __read_mostly;
 129EXPORT_SYMBOL(zero_pfn);
 130
 131unsigned long highest_memmap_pfn __read_mostly;
 132
 133/*
 134 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 135 */
 136static int __init init_zero_pfn(void)
 137{
 138	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 139	return 0;
 140}
 141core_initcall(init_zero_pfn);
 142
 143
 144#if defined(SPLIT_RSS_COUNTING)
 145
 146void sync_mm_rss(struct mm_struct *mm)
 147{
 148	int i;
 149
 150	for (i = 0; i < NR_MM_COUNTERS; i++) {
 151		if (current->rss_stat.count[i]) {
 152			add_mm_counter(mm, i, current->rss_stat.count[i]);
 153			current->rss_stat.count[i] = 0;
 154		}
 155	}
 156	current->rss_stat.events = 0;
 157}
 158
 159static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 160{
 161	struct task_struct *task = current;
 162
 163	if (likely(task->mm == mm))
 164		task->rss_stat.count[member] += val;
 165	else
 166		add_mm_counter(mm, member, val);
 167}
 168#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 169#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 170
 171/* sync counter once per 64 page faults */
 172#define TASK_RSS_EVENTS_THRESH	(64)
 173static void check_sync_rss_stat(struct task_struct *task)
 174{
 175	if (unlikely(task != current))
 176		return;
 177	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 178		sync_mm_rss(task->mm);
 179}
 180#else /* SPLIT_RSS_COUNTING */
 181
 182#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 183#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 184
 185static void check_sync_rss_stat(struct task_struct *task)
 186{
 187}
 188
 189#endif /* SPLIT_RSS_COUNTING */
 190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191/*
 192 * Note: this doesn't free the actual pages themselves. That
 193 * has been handled earlier when unmapping all the memory regions.
 194 */
 195static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 196			   unsigned long addr)
 197{
 198	pgtable_t token = pmd_pgtable(*pmd);
 199	pmd_clear(pmd);
 200	pte_free_tlb(tlb, token, addr);
 201	mm_dec_nr_ptes(tlb->mm);
 202}
 203
 204static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 205				unsigned long addr, unsigned long end,
 206				unsigned long floor, unsigned long ceiling)
 207{
 208	pmd_t *pmd;
 209	unsigned long next;
 210	unsigned long start;
 211
 212	start = addr;
 213	pmd = pmd_offset(pud, addr);
 214	do {
 215		next = pmd_addr_end(addr, end);
 216		if (pmd_none_or_clear_bad(pmd))
 217			continue;
 218		free_pte_range(tlb, pmd, addr);
 219	} while (pmd++, addr = next, addr != end);
 220
 221	start &= PUD_MASK;
 222	if (start < floor)
 223		return;
 224	if (ceiling) {
 225		ceiling &= PUD_MASK;
 226		if (!ceiling)
 227			return;
 228	}
 229	if (end - 1 > ceiling - 1)
 230		return;
 231
 232	pmd = pmd_offset(pud, start);
 233	pud_clear(pud);
 234	pmd_free_tlb(tlb, pmd, start);
 235	mm_dec_nr_pmds(tlb->mm);
 236}
 237
 238static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
 239				unsigned long addr, unsigned long end,
 240				unsigned long floor, unsigned long ceiling)
 241{
 242	pud_t *pud;
 243	unsigned long next;
 244	unsigned long start;
 245
 246	start = addr;
 247	pud = pud_offset(p4d, addr);
 248	do {
 249		next = pud_addr_end(addr, end);
 250		if (pud_none_or_clear_bad(pud))
 251			continue;
 252		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 253	} while (pud++, addr = next, addr != end);
 254
 255	start &= P4D_MASK;
 256	if (start < floor)
 257		return;
 258	if (ceiling) {
 259		ceiling &= P4D_MASK;
 260		if (!ceiling)
 261			return;
 262	}
 263	if (end - 1 > ceiling - 1)
 264		return;
 265
 266	pud = pud_offset(p4d, start);
 267	p4d_clear(p4d);
 268	pud_free_tlb(tlb, pud, start);
 269	mm_dec_nr_puds(tlb->mm);
 270}
 271
 272static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
 273				unsigned long addr, unsigned long end,
 274				unsigned long floor, unsigned long ceiling)
 275{
 276	p4d_t *p4d;
 277	unsigned long next;
 278	unsigned long start;
 279
 280	start = addr;
 281	p4d = p4d_offset(pgd, addr);
 282	do {
 283		next = p4d_addr_end(addr, end);
 284		if (p4d_none_or_clear_bad(p4d))
 285			continue;
 286		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
 287	} while (p4d++, addr = next, addr != end);
 288
 289	start &= PGDIR_MASK;
 290	if (start < floor)
 291		return;
 292	if (ceiling) {
 293		ceiling &= PGDIR_MASK;
 294		if (!ceiling)
 295			return;
 296	}
 297	if (end - 1 > ceiling - 1)
 298		return;
 299
 300	p4d = p4d_offset(pgd, start);
 301	pgd_clear(pgd);
 302	p4d_free_tlb(tlb, p4d, start);
 303}
 304
 305/*
 306 * This function frees user-level page tables of a process.
 307 */
 308void free_pgd_range(struct mmu_gather *tlb,
 309			unsigned long addr, unsigned long end,
 310			unsigned long floor, unsigned long ceiling)
 311{
 312	pgd_t *pgd;
 313	unsigned long next;
 314
 315	/*
 316	 * The next few lines have given us lots of grief...
 317	 *
 318	 * Why are we testing PMD* at this top level?  Because often
 319	 * there will be no work to do at all, and we'd prefer not to
 320	 * go all the way down to the bottom just to discover that.
 321	 *
 322	 * Why all these "- 1"s?  Because 0 represents both the bottom
 323	 * of the address space and the top of it (using -1 for the
 324	 * top wouldn't help much: the masks would do the wrong thing).
 325	 * The rule is that addr 0 and floor 0 refer to the bottom of
 326	 * the address space, but end 0 and ceiling 0 refer to the top
 327	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 328	 * that end 0 case should be mythical).
 329	 *
 330	 * Wherever addr is brought up or ceiling brought down, we must
 331	 * be careful to reject "the opposite 0" before it confuses the
 332	 * subsequent tests.  But what about where end is brought down
 333	 * by PMD_SIZE below? no, end can't go down to 0 there.
 334	 *
 335	 * Whereas we round start (addr) and ceiling down, by different
 336	 * masks at different levels, in order to test whether a table
 337	 * now has no other vmas using it, so can be freed, we don't
 338	 * bother to round floor or end up - the tests don't need that.
 339	 */
 340
 341	addr &= PMD_MASK;
 342	if (addr < floor) {
 343		addr += PMD_SIZE;
 344		if (!addr)
 345			return;
 346	}
 347	if (ceiling) {
 348		ceiling &= PMD_MASK;
 349		if (!ceiling)
 350			return;
 351	}
 352	if (end - 1 > ceiling - 1)
 353		end -= PMD_SIZE;
 354	if (addr > end - 1)
 355		return;
 356	/*
 357	 * We add page table cache pages with PAGE_SIZE,
 358	 * (see pte_free_tlb()), flush the tlb if we need
 359	 */
 360	tlb_change_page_size(tlb, PAGE_SIZE);
 361	pgd = pgd_offset(tlb->mm, addr);
 362	do {
 363		next = pgd_addr_end(addr, end);
 364		if (pgd_none_or_clear_bad(pgd))
 365			continue;
 366		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
 367	} while (pgd++, addr = next, addr != end);
 368}
 369
 370void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 371		unsigned long floor, unsigned long ceiling)
 372{
 373	while (vma) {
 374		struct vm_area_struct *next = vma->vm_next;
 375		unsigned long addr = vma->vm_start;
 376
 377		/*
 378		 * Hide vma from rmap and truncate_pagecache before freeing
 379		 * pgtables
 380		 */
 381		unlink_anon_vmas(vma);
 382		unlink_file_vma(vma);
 383
 384		if (is_vm_hugetlb_page(vma)) {
 385			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 386				floor, next ? next->vm_start : ceiling);
 387		} else {
 388			/*
 389			 * Optimization: gather nearby vmas into one call down
 390			 */
 391			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 392			       && !is_vm_hugetlb_page(next)) {
 393				vma = next;
 394				next = vma->vm_next;
 395				unlink_anon_vmas(vma);
 396				unlink_file_vma(vma);
 397			}
 398			free_pgd_range(tlb, addr, vma->vm_end,
 399				floor, next ? next->vm_start : ceiling);
 400		}
 401		vma = next;
 402	}
 403}
 404
 405int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
 406{
 407	spinlock_t *ptl;
 408	pgtable_t new = pte_alloc_one(mm);
 409	if (!new)
 410		return -ENOMEM;
 411
 412	/*
 413	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 414	 * visible before the pte is made visible to other CPUs by being
 415	 * put into page tables.
 416	 *
 417	 * The other side of the story is the pointer chasing in the page
 418	 * table walking code (when walking the page table without locking;
 419	 * ie. most of the time). Fortunately, these data accesses consist
 420	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 421	 * being the notable exception) will already guarantee loads are
 422	 * seen in-order. See the alpha page table accessors for the
 423	 * smp_read_barrier_depends() barriers in page table walking code.
 424	 */
 425	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 426
 427	ptl = pmd_lock(mm, pmd);
 428	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 429		mm_inc_nr_ptes(mm);
 430		pmd_populate(mm, pmd, new);
 431		new = NULL;
 432	}
 433	spin_unlock(ptl);
 434	if (new)
 435		pte_free(mm, new);
 436	return 0;
 437}
 438
 439int __pte_alloc_kernel(pmd_t *pmd)
 440{
 441	pte_t *new = pte_alloc_one_kernel(&init_mm);
 442	if (!new)
 443		return -ENOMEM;
 444
 445	smp_wmb(); /* See comment in __pte_alloc */
 446
 447	spin_lock(&init_mm.page_table_lock);
 448	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 449		pmd_populate_kernel(&init_mm, pmd, new);
 450		new = NULL;
 451	}
 452	spin_unlock(&init_mm.page_table_lock);
 453	if (new)
 454		pte_free_kernel(&init_mm, new);
 455	return 0;
 456}
 457
 458static inline void init_rss_vec(int *rss)
 459{
 460	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 461}
 462
 463static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 464{
 465	int i;
 466
 467	if (current->mm == mm)
 468		sync_mm_rss(mm);
 469	for (i = 0; i < NR_MM_COUNTERS; i++)
 470		if (rss[i])
 471			add_mm_counter(mm, i, rss[i]);
 472}
 473
 474/*
 475 * This function is called to print an error when a bad pte
 476 * is found. For example, we might have a PFN-mapped pte in
 477 * a region that doesn't allow it.
 478 *
 479 * The calling function must still handle the error.
 480 */
 481static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 482			  pte_t pte, struct page *page)
 483{
 484	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 485	p4d_t *p4d = p4d_offset(pgd, addr);
 486	pud_t *pud = pud_offset(p4d, addr);
 487	pmd_t *pmd = pmd_offset(pud, addr);
 488	struct address_space *mapping;
 489	pgoff_t index;
 490	static unsigned long resume;
 491	static unsigned long nr_shown;
 492	static unsigned long nr_unshown;
 493
 494	/*
 495	 * Allow a burst of 60 reports, then keep quiet for that minute;
 496	 * or allow a steady drip of one report per second.
 497	 */
 498	if (nr_shown == 60) {
 499		if (time_before(jiffies, resume)) {
 500			nr_unshown++;
 501			return;
 502		}
 503		if (nr_unshown) {
 504			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 505				 nr_unshown);
 506			nr_unshown = 0;
 507		}
 508		nr_shown = 0;
 509	}
 510	if (nr_shown++ == 0)
 511		resume = jiffies + 60 * HZ;
 512
 513	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 514	index = linear_page_index(vma, addr);
 515
 516	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 517		 current->comm,
 518		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 519	if (page)
 520		dump_page(page, "bad pte");
 521	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
 522		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 523	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
 524		 vma->vm_file,
 525		 vma->vm_ops ? vma->vm_ops->fault : NULL,
 526		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 527		 mapping ? mapping->a_ops->readpage : NULL);
 528	dump_stack();
 529	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 530}
 531
 532/*
 533 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 534 *
 535 * "Special" mappings do not wish to be associated with a "struct page" (either
 536 * it doesn't exist, or it exists but they don't want to touch it). In this
 537 * case, NULL is returned here. "Normal" mappings do have a struct page.
 538 *
 539 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 540 * pte bit, in which case this function is trivial. Secondly, an architecture
 541 * may not have a spare pte bit, which requires a more complicated scheme,
 542 * described below.
 543 *
 544 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 545 * special mapping (even if there are underlying and valid "struct pages").
 546 * COWed pages of a VM_PFNMAP are always normal.
 547 *
 548 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 549 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 550 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 551 * mapping will always honor the rule
 552 *
 553 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 554 *
 555 * And for normal mappings this is false.
 556 *
 557 * This restricts such mappings to be a linear translation from virtual address
 558 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 559 * as the vma is not a COW mapping; in that case, we know that all ptes are
 560 * special (because none can have been COWed).
 561 *
 562 *
 563 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 564 *
 565 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 566 * page" backing, however the difference is that _all_ pages with a struct
 567 * page (that is, those where pfn_valid is true) are refcounted and considered
 568 * normal pages by the VM. The disadvantage is that pages are refcounted
 569 * (which can be slower and simply not an option for some PFNMAP users). The
 570 * advantage is that we don't have to follow the strict linearity rule of
 571 * PFNMAP mappings in order to support COWable mappings.
 572 *
 573 */
 574struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 575			    pte_t pte)
 
 
 
 
 
 576{
 577	unsigned long pfn = pte_pfn(pte);
 578
 579	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
 580		if (likely(!pte_special(pte)))
 581			goto check_pfn;
 582		if (vma->vm_ops && vma->vm_ops->find_special_page)
 583			return vma->vm_ops->find_special_page(vma, addr);
 584		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 585			return NULL;
 586		if (is_zero_pfn(pfn))
 587			return NULL;
 588		if (pte_devmap(pte))
 589			return NULL;
 590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591		print_bad_pte(vma, addr, pte, NULL);
 592		return NULL;
 593	}
 594
 595	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
 596
 597	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 598		if (vma->vm_flags & VM_MIXEDMAP) {
 599			if (!pfn_valid(pfn))
 600				return NULL;
 601			goto out;
 602		} else {
 603			unsigned long off;
 604			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 605			if (pfn == vma->vm_pgoff + off)
 606				return NULL;
 607			if (!is_cow_mapping(vma->vm_flags))
 608				return NULL;
 609		}
 610	}
 611
 612	if (is_zero_pfn(pfn))
 613		return NULL;
 614
 615check_pfn:
 616	if (unlikely(pfn > highest_memmap_pfn)) {
 617		print_bad_pte(vma, addr, pte, NULL);
 618		return NULL;
 619	}
 620
 621	/*
 622	 * NOTE! We still have PageReserved() pages in the page tables.
 623	 * eg. VDSO mappings can cause them to exist.
 624	 */
 625out:
 626	return pfn_to_page(pfn);
 627}
 628
 629#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 630struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 631				pmd_t pmd)
 632{
 633	unsigned long pfn = pmd_pfn(pmd);
 634
 635	/*
 636	 * There is no pmd_special() but there may be special pmds, e.g.
 637	 * in a direct-access (dax) mapping, so let's just replicate the
 638	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
 639	 */
 640	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 641		if (vma->vm_flags & VM_MIXEDMAP) {
 642			if (!pfn_valid(pfn))
 643				return NULL;
 644			goto out;
 645		} else {
 646			unsigned long off;
 647			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 648			if (pfn == vma->vm_pgoff + off)
 649				return NULL;
 650			if (!is_cow_mapping(vma->vm_flags))
 651				return NULL;
 652		}
 653	}
 654
 655	if (pmd_devmap(pmd))
 656		return NULL;
 657	if (is_zero_pfn(pfn))
 658		return NULL;
 659	if (unlikely(pfn > highest_memmap_pfn))
 660		return NULL;
 661
 662	/*
 663	 * NOTE! We still have PageReserved() pages in the page tables.
 664	 * eg. VDSO mappings can cause them to exist.
 665	 */
 666out:
 667	return pfn_to_page(pfn);
 668}
 669#endif
 670
 671/*
 672 * copy one vm_area from one task to the other. Assumes the page tables
 673 * already present in the new task to be cleared in the whole range
 674 * covered by this vma.
 675 */
 676
 677static inline unsigned long
 678copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 679		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 680		unsigned long addr, int *rss)
 681{
 682	unsigned long vm_flags = vma->vm_flags;
 683	pte_t pte = *src_pte;
 684	struct page *page;
 685
 686	/* pte contains position in swap or file, so copy. */
 687	if (unlikely(!pte_present(pte))) {
 688		swp_entry_t entry = pte_to_swp_entry(pte);
 689
 690		if (likely(!non_swap_entry(entry))) {
 691			if (swap_duplicate(entry) < 0)
 692				return entry.val;
 693
 694			/* make sure dst_mm is on swapoff's mmlist. */
 695			if (unlikely(list_empty(&dst_mm->mmlist))) {
 696				spin_lock(&mmlist_lock);
 697				if (list_empty(&dst_mm->mmlist))
 698					list_add(&dst_mm->mmlist,
 699							&src_mm->mmlist);
 700				spin_unlock(&mmlist_lock);
 701			}
 702			rss[MM_SWAPENTS]++;
 703		} else if (is_migration_entry(entry)) {
 704			page = migration_entry_to_page(entry);
 705
 706			rss[mm_counter(page)]++;
 707
 708			if (is_write_migration_entry(entry) &&
 709					is_cow_mapping(vm_flags)) {
 710				/*
 711				 * COW mappings require pages in both
 712				 * parent and child to be set to read.
 713				 */
 714				make_migration_entry_read(&entry);
 715				pte = swp_entry_to_pte(entry);
 716				if (pte_swp_soft_dirty(*src_pte))
 717					pte = pte_swp_mksoft_dirty(pte);
 718				set_pte_at(src_mm, addr, src_pte, pte);
 719			}
 720		} else if (is_device_private_entry(entry)) {
 721			page = device_private_entry_to_page(entry);
 722
 723			/*
 724			 * Update rss count even for unaddressable pages, as
 725			 * they should treated just like normal pages in this
 726			 * respect.
 727			 *
 728			 * We will likely want to have some new rss counters
 729			 * for unaddressable pages, at some point. But for now
 730			 * keep things as they are.
 731			 */
 732			get_page(page);
 733			rss[mm_counter(page)]++;
 734			page_dup_rmap(page, false);
 735
 736			/*
 737			 * We do not preserve soft-dirty information, because so
 738			 * far, checkpoint/restore is the only feature that
 739			 * requires that. And checkpoint/restore does not work
 740			 * when a device driver is involved (you cannot easily
 741			 * save and restore device driver state).
 742			 */
 743			if (is_write_device_private_entry(entry) &&
 744			    is_cow_mapping(vm_flags)) {
 745				make_device_private_entry_read(&entry);
 746				pte = swp_entry_to_pte(entry);
 747				set_pte_at(src_mm, addr, src_pte, pte);
 748			}
 749		}
 750		goto out_set_pte;
 751	}
 752
 753	/*
 754	 * If it's a COW mapping, write protect it both
 755	 * in the parent and the child
 756	 */
 757	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
 758		ptep_set_wrprotect(src_mm, addr, src_pte);
 759		pte = pte_wrprotect(pte);
 760	}
 761
 762	/*
 763	 * If it's a shared mapping, mark it clean in
 764	 * the child
 765	 */
 766	if (vm_flags & VM_SHARED)
 767		pte = pte_mkclean(pte);
 768	pte = pte_mkold(pte);
 769
 770	page = vm_normal_page(vma, addr, pte);
 771	if (page) {
 772		get_page(page);
 773		page_dup_rmap(page, false);
 774		rss[mm_counter(page)]++;
 775	} else if (pte_devmap(pte)) {
 776		page = pte_page(pte);
 
 
 
 
 
 
 
 
 
 
 
 777	}
 778
 779out_set_pte:
 780	set_pte_at(dst_mm, addr, dst_pte, pte);
 781	return 0;
 782}
 783
 784static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 785		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 786		   unsigned long addr, unsigned long end)
 787{
 788	pte_t *orig_src_pte, *orig_dst_pte;
 789	pte_t *src_pte, *dst_pte;
 790	spinlock_t *src_ptl, *dst_ptl;
 791	int progress = 0;
 792	int rss[NR_MM_COUNTERS];
 793	swp_entry_t entry = (swp_entry_t){0};
 794
 795again:
 796	init_rss_vec(rss);
 797
 798	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 799	if (!dst_pte)
 800		return -ENOMEM;
 801	src_pte = pte_offset_map(src_pmd, addr);
 802	src_ptl = pte_lockptr(src_mm, src_pmd);
 803	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 804	orig_src_pte = src_pte;
 805	orig_dst_pte = dst_pte;
 806	arch_enter_lazy_mmu_mode();
 807
 808	do {
 809		/*
 810		 * We are holding two locks at this point - either of them
 811		 * could generate latencies in another task on another CPU.
 812		 */
 813		if (progress >= 32) {
 814			progress = 0;
 815			if (need_resched() ||
 816			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 817				break;
 818		}
 819		if (pte_none(*src_pte)) {
 820			progress++;
 821			continue;
 822		}
 823		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 824							vma, addr, rss);
 825		if (entry.val)
 826			break;
 827		progress += 8;
 828	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 829
 830	arch_leave_lazy_mmu_mode();
 831	spin_unlock(src_ptl);
 832	pte_unmap(orig_src_pte);
 833	add_mm_rss_vec(dst_mm, rss);
 834	pte_unmap_unlock(orig_dst_pte, dst_ptl);
 835	cond_resched();
 836
 837	if (entry.val) {
 838		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 839			return -ENOMEM;
 840		progress = 0;
 841	}
 842	if (addr != end)
 843		goto again;
 844	return 0;
 845}
 846
 847static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 848		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 849		unsigned long addr, unsigned long end)
 850{
 851	pmd_t *src_pmd, *dst_pmd;
 852	unsigned long next;
 853
 854	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 855	if (!dst_pmd)
 856		return -ENOMEM;
 857	src_pmd = pmd_offset(src_pud, addr);
 858	do {
 859		next = pmd_addr_end(addr, end);
 860		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
 861			|| pmd_devmap(*src_pmd)) {
 862			int err;
 863			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
 864			err = copy_huge_pmd(dst_mm, src_mm,
 865					    dst_pmd, src_pmd, addr, vma);
 866			if (err == -ENOMEM)
 867				return -ENOMEM;
 868			if (!err)
 869				continue;
 870			/* fall through */
 871		}
 872		if (pmd_none_or_clear_bad(src_pmd))
 873			continue;
 874		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
 875						vma, addr, next))
 876			return -ENOMEM;
 877	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
 878	return 0;
 879}
 880
 881static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 882		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
 883		unsigned long addr, unsigned long end)
 884{
 885	pud_t *src_pud, *dst_pud;
 886	unsigned long next;
 887
 888	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
 889	if (!dst_pud)
 890		return -ENOMEM;
 891	src_pud = pud_offset(src_p4d, addr);
 892	do {
 893		next = pud_addr_end(addr, end);
 894		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
 895			int err;
 896
 897			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
 898			err = copy_huge_pud(dst_mm, src_mm,
 899					    dst_pud, src_pud, addr, vma);
 900			if (err == -ENOMEM)
 901				return -ENOMEM;
 902			if (!err)
 903				continue;
 904			/* fall through */
 905		}
 906		if (pud_none_or_clear_bad(src_pud))
 907			continue;
 908		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
 909						vma, addr, next))
 910			return -ENOMEM;
 911	} while (dst_pud++, src_pud++, addr = next, addr != end);
 912	return 0;
 913}
 914
 915static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 916		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
 917		unsigned long addr, unsigned long end)
 918{
 919	p4d_t *src_p4d, *dst_p4d;
 920	unsigned long next;
 921
 922	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
 923	if (!dst_p4d)
 924		return -ENOMEM;
 925	src_p4d = p4d_offset(src_pgd, addr);
 926	do {
 927		next = p4d_addr_end(addr, end);
 928		if (p4d_none_or_clear_bad(src_p4d))
 929			continue;
 930		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
 931						vma, addr, next))
 932			return -ENOMEM;
 933	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
 934	return 0;
 935}
 936
 937int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 938		struct vm_area_struct *vma)
 939{
 940	pgd_t *src_pgd, *dst_pgd;
 941	unsigned long next;
 942	unsigned long addr = vma->vm_start;
 943	unsigned long end = vma->vm_end;
 944	struct mmu_notifier_range range;
 
 945	bool is_cow;
 946	int ret;
 947
 948	/*
 949	 * Don't copy ptes where a page fault will fill them correctly.
 950	 * Fork becomes much lighter when there are big shared or private
 951	 * readonly mappings. The tradeoff is that copy_page_range is more
 952	 * efficient than faulting.
 953	 */
 954	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
 955			!vma->anon_vma)
 956		return 0;
 957
 958	if (is_vm_hugetlb_page(vma))
 959		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
 960
 961	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
 962		/*
 963		 * We do not free on error cases below as remove_vma
 964		 * gets called on error from higher level routine
 965		 */
 966		ret = track_pfn_copy(vma);
 967		if (ret)
 968			return ret;
 969	}
 970
 971	/*
 972	 * We need to invalidate the secondary MMU mappings only when
 973	 * there could be a permission downgrade on the ptes of the
 974	 * parent mm. And a permission downgrade will only happen if
 975	 * is_cow_mapping() returns true.
 976	 */
 977	is_cow = is_cow_mapping(vma->vm_flags);
 978
 979	if (is_cow) {
 980		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
 981					0, vma, src_mm, addr, end);
 982		mmu_notifier_invalidate_range_start(&range);
 983	}
 984
 985	ret = 0;
 986	dst_pgd = pgd_offset(dst_mm, addr);
 987	src_pgd = pgd_offset(src_mm, addr);
 988	do {
 989		next = pgd_addr_end(addr, end);
 990		if (pgd_none_or_clear_bad(src_pgd))
 991			continue;
 992		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
 993					    vma, addr, next))) {
 994			ret = -ENOMEM;
 995			break;
 996		}
 997	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
 998
 999	if (is_cow)
1000		mmu_notifier_invalidate_range_end(&range);
1001	return ret;
1002}
1003
1004static unsigned long zap_pte_range(struct mmu_gather *tlb,
1005				struct vm_area_struct *vma, pmd_t *pmd,
1006				unsigned long addr, unsigned long end,
1007				struct zap_details *details)
1008{
1009	struct mm_struct *mm = tlb->mm;
1010	int force_flush = 0;
1011	int rss[NR_MM_COUNTERS];
1012	spinlock_t *ptl;
1013	pte_t *start_pte;
1014	pte_t *pte;
1015	swp_entry_t entry;
1016
1017	tlb_change_page_size(tlb, PAGE_SIZE);
1018again:
1019	init_rss_vec(rss);
1020	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1021	pte = start_pte;
1022	flush_tlb_batched_pending(mm);
1023	arch_enter_lazy_mmu_mode();
1024	do {
1025		pte_t ptent = *pte;
1026		if (pte_none(ptent))
1027			continue;
1028
1029		if (need_resched())
1030			break;
1031
1032		if (pte_present(ptent)) {
1033			struct page *page;
1034
1035			page = vm_normal_page(vma, addr, ptent);
1036			if (unlikely(details) && page) {
1037				/*
1038				 * unmap_shared_mapping_pages() wants to
1039				 * invalidate cache without truncating:
1040				 * unmap shared but keep private pages.
1041				 */
1042				if (details->check_mapping &&
1043				    details->check_mapping != page_rmapping(page))
1044					continue;
1045			}
1046			ptent = ptep_get_and_clear_full(mm, addr, pte,
1047							tlb->fullmm);
1048			tlb_remove_tlb_entry(tlb, pte, addr);
1049			if (unlikely(!page))
1050				continue;
1051
1052			if (!PageAnon(page)) {
1053				if (pte_dirty(ptent)) {
1054					force_flush = 1;
1055					set_page_dirty(page);
1056				}
1057				if (pte_young(ptent) &&
1058				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1059					mark_page_accessed(page);
1060			}
1061			rss[mm_counter(page)]--;
1062			page_remove_rmap(page, false);
1063			if (unlikely(page_mapcount(page) < 0))
1064				print_bad_pte(vma, addr, ptent, page);
1065			if (unlikely(__tlb_remove_page(tlb, page))) {
1066				force_flush = 1;
1067				addr += PAGE_SIZE;
1068				break;
1069			}
1070			continue;
1071		}
1072
1073		entry = pte_to_swp_entry(ptent);
1074		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1075			struct page *page = device_private_entry_to_page(entry);
1076
1077			if (unlikely(details && details->check_mapping)) {
1078				/*
1079				 * unmap_shared_mapping_pages() wants to
1080				 * invalidate cache without truncating:
1081				 * unmap shared but keep private pages.
1082				 */
1083				if (details->check_mapping !=
1084				    page_rmapping(page))
1085					continue;
1086			}
1087
1088			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1089			rss[mm_counter(page)]--;
1090			page_remove_rmap(page, false);
1091			put_page(page);
1092			continue;
1093		}
1094
1095		/* If details->check_mapping, we leave swap entries. */
1096		if (unlikely(details))
1097			continue;
1098
 
1099		if (!non_swap_entry(entry))
1100			rss[MM_SWAPENTS]--;
1101		else if (is_migration_entry(entry)) {
1102			struct page *page;
1103
1104			page = migration_entry_to_page(entry);
1105			rss[mm_counter(page)]--;
1106		}
1107		if (unlikely(!free_swap_and_cache(entry)))
1108			print_bad_pte(vma, addr, ptent, NULL);
1109		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1110	} while (pte++, addr += PAGE_SIZE, addr != end);
1111
1112	add_mm_rss_vec(mm, rss);
1113	arch_leave_lazy_mmu_mode();
1114
1115	/* Do the actual TLB flush before dropping ptl */
1116	if (force_flush)
1117		tlb_flush_mmu_tlbonly(tlb);
1118	pte_unmap_unlock(start_pte, ptl);
1119
1120	/*
1121	 * If we forced a TLB flush (either due to running out of
1122	 * batch buffers or because we needed to flush dirty TLB
1123	 * entries before releasing the ptl), free the batched
1124	 * memory too. Restart if we didn't do everything.
1125	 */
1126	if (force_flush) {
1127		force_flush = 0;
1128		tlb_flush_mmu(tlb);
1129	}
1130
1131	if (addr != end) {
1132		cond_resched();
1133		goto again;
1134	}
1135
1136	return addr;
1137}
1138
1139static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1140				struct vm_area_struct *vma, pud_t *pud,
1141				unsigned long addr, unsigned long end,
1142				struct zap_details *details)
1143{
1144	pmd_t *pmd;
1145	unsigned long next;
1146
1147	pmd = pmd_offset(pud, addr);
1148	do {
1149		next = pmd_addr_end(addr, end);
1150		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1151			if (next - addr != HPAGE_PMD_SIZE)
 
 
1152				__split_huge_pmd(vma, pmd, addr, false, NULL);
1153			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1154				goto next;
1155			/* fall through */
1156		}
1157		/*
1158		 * Here there can be other concurrent MADV_DONTNEED or
1159		 * trans huge page faults running, and if the pmd is
1160		 * none or trans huge it can change under us. This is
1161		 * because MADV_DONTNEED holds the mmap_sem in read
1162		 * mode.
1163		 */
1164		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1165			goto next;
1166		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1167next:
1168		cond_resched();
1169	} while (pmd++, addr = next, addr != end);
1170
1171	return addr;
1172}
1173
1174static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1175				struct vm_area_struct *vma, p4d_t *p4d,
1176				unsigned long addr, unsigned long end,
1177				struct zap_details *details)
1178{
1179	pud_t *pud;
1180	unsigned long next;
1181
1182	pud = pud_offset(p4d, addr);
1183	do {
1184		next = pud_addr_end(addr, end);
1185		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1186			if (next - addr != HPAGE_PUD_SIZE) {
1187				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1188				split_huge_pud(vma, pud, addr);
1189			} else if (zap_huge_pud(tlb, vma, pud, addr))
1190				goto next;
1191			/* fall through */
1192		}
1193		if (pud_none_or_clear_bad(pud))
1194			continue;
1195		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1196next:
1197		cond_resched();
1198	} while (pud++, addr = next, addr != end);
1199
1200	return addr;
1201}
1202
1203static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1204				struct vm_area_struct *vma, pgd_t *pgd,
1205				unsigned long addr, unsigned long end,
1206				struct zap_details *details)
1207{
1208	p4d_t *p4d;
1209	unsigned long next;
1210
1211	p4d = p4d_offset(pgd, addr);
1212	do {
1213		next = p4d_addr_end(addr, end);
1214		if (p4d_none_or_clear_bad(p4d))
1215			continue;
1216		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1217	} while (p4d++, addr = next, addr != end);
1218
1219	return addr;
1220}
1221
1222void unmap_page_range(struct mmu_gather *tlb,
1223			     struct vm_area_struct *vma,
1224			     unsigned long addr, unsigned long end,
1225			     struct zap_details *details)
1226{
1227	pgd_t *pgd;
1228	unsigned long next;
1229
1230	BUG_ON(addr >= end);
1231	tlb_start_vma(tlb, vma);
1232	pgd = pgd_offset(vma->vm_mm, addr);
1233	do {
1234		next = pgd_addr_end(addr, end);
1235		if (pgd_none_or_clear_bad(pgd))
1236			continue;
1237		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1238	} while (pgd++, addr = next, addr != end);
1239	tlb_end_vma(tlb, vma);
1240}
1241
1242
1243static void unmap_single_vma(struct mmu_gather *tlb,
1244		struct vm_area_struct *vma, unsigned long start_addr,
1245		unsigned long end_addr,
1246		struct zap_details *details)
1247{
1248	unsigned long start = max(vma->vm_start, start_addr);
1249	unsigned long end;
1250
1251	if (start >= vma->vm_end)
1252		return;
1253	end = min(vma->vm_end, end_addr);
1254	if (end <= vma->vm_start)
1255		return;
1256
1257	if (vma->vm_file)
1258		uprobe_munmap(vma, start, end);
1259
1260	if (unlikely(vma->vm_flags & VM_PFNMAP))
1261		untrack_pfn(vma, 0, 0);
1262
1263	if (start != end) {
1264		if (unlikely(is_vm_hugetlb_page(vma))) {
1265			/*
1266			 * It is undesirable to test vma->vm_file as it
1267			 * should be non-null for valid hugetlb area.
1268			 * However, vm_file will be NULL in the error
1269			 * cleanup path of mmap_region. When
1270			 * hugetlbfs ->mmap method fails,
1271			 * mmap_region() nullifies vma->vm_file
1272			 * before calling this function to clean up.
1273			 * Since no pte has actually been setup, it is
1274			 * safe to do nothing in this case.
1275			 */
1276			if (vma->vm_file) {
1277				i_mmap_lock_write(vma->vm_file->f_mapping);
1278				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1279				i_mmap_unlock_write(vma->vm_file->f_mapping);
1280			}
1281		} else
1282			unmap_page_range(tlb, vma, start, end, details);
1283	}
1284}
1285
1286/**
1287 * unmap_vmas - unmap a range of memory covered by a list of vma's
1288 * @tlb: address of the caller's struct mmu_gather
1289 * @vma: the starting vma
1290 * @start_addr: virtual address at which to start unmapping
1291 * @end_addr: virtual address at which to end unmapping
1292 *
1293 * Unmap all pages in the vma list.
1294 *
1295 * Only addresses between `start' and `end' will be unmapped.
1296 *
1297 * The VMA list must be sorted in ascending virtual address order.
1298 *
1299 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1300 * range after unmap_vmas() returns.  So the only responsibility here is to
1301 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1302 * drops the lock and schedules.
1303 */
1304void unmap_vmas(struct mmu_gather *tlb,
1305		struct vm_area_struct *vma, unsigned long start_addr,
1306		unsigned long end_addr)
1307{
1308	struct mmu_notifier_range range;
1309
1310	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1311				start_addr, end_addr);
1312	mmu_notifier_invalidate_range_start(&range);
1313	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1314		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1315	mmu_notifier_invalidate_range_end(&range);
1316}
1317
1318/**
1319 * zap_page_range - remove user pages in a given range
1320 * @vma: vm_area_struct holding the applicable pages
1321 * @start: starting address of pages to zap
1322 * @size: number of bytes to zap
1323 *
1324 * Caller must protect the VMA list
1325 */
1326void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1327		unsigned long size)
1328{
1329	struct mmu_notifier_range range;
1330	struct mmu_gather tlb;
 
1331
1332	lru_add_drain();
1333	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1334				start, start + size);
1335	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1336	update_hiwater_rss(vma->vm_mm);
1337	mmu_notifier_invalidate_range_start(&range);
1338	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1339		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1340	mmu_notifier_invalidate_range_end(&range);
1341	tlb_finish_mmu(&tlb, start, range.end);
 
 
 
 
 
 
 
 
 
 
1342}
1343
1344/**
1345 * zap_page_range_single - remove user pages in a given range
1346 * @vma: vm_area_struct holding the applicable pages
1347 * @address: starting address of pages to zap
1348 * @size: number of bytes to zap
1349 * @details: details of shared cache invalidation
1350 *
1351 * The range must fit into one VMA.
1352 */
1353static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1354		unsigned long size, struct zap_details *details)
1355{
1356	struct mmu_notifier_range range;
1357	struct mmu_gather tlb;
 
1358
1359	lru_add_drain();
1360	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1361				address, address + size);
1362	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1363	update_hiwater_rss(vma->vm_mm);
1364	mmu_notifier_invalidate_range_start(&range);
1365	unmap_single_vma(&tlb, vma, address, range.end, details);
1366	mmu_notifier_invalidate_range_end(&range);
1367	tlb_finish_mmu(&tlb, address, range.end);
1368}
1369
1370/**
1371 * zap_vma_ptes - remove ptes mapping the vma
1372 * @vma: vm_area_struct holding ptes to be zapped
1373 * @address: starting address of pages to zap
1374 * @size: number of bytes to zap
1375 *
1376 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1377 *
1378 * The entire address range must be fully contained within the vma.
1379 *
 
1380 */
1381void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1382		unsigned long size)
1383{
1384	if (address < vma->vm_start || address + size > vma->vm_end ||
1385	    		!(vma->vm_flags & VM_PFNMAP))
1386		return;
1387
1388	zap_page_range_single(vma, address, size, NULL);
 
1389}
1390EXPORT_SYMBOL_GPL(zap_vma_ptes);
1391
1392pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1393			spinlock_t **ptl)
1394{
1395	pgd_t *pgd;
1396	p4d_t *p4d;
1397	pud_t *pud;
1398	pmd_t *pmd;
1399
1400	pgd = pgd_offset(mm, addr);
1401	p4d = p4d_alloc(mm, pgd, addr);
1402	if (!p4d)
1403		return NULL;
1404	pud = pud_alloc(mm, p4d, addr);
1405	if (!pud)
1406		return NULL;
1407	pmd = pmd_alloc(mm, pud, addr);
1408	if (!pmd)
1409		return NULL;
1410
1411	VM_BUG_ON(pmd_trans_huge(*pmd));
1412	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1413}
1414
1415/*
1416 * This is the old fallback for page remapping.
1417 *
1418 * For historical reasons, it only allows reserved pages. Only
1419 * old drivers should use this, and they needed to mark their
1420 * pages reserved for the old functions anyway.
1421 */
1422static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1423			struct page *page, pgprot_t prot)
1424{
1425	struct mm_struct *mm = vma->vm_mm;
1426	int retval;
1427	pte_t *pte;
1428	spinlock_t *ptl;
1429
1430	retval = -EINVAL;
1431	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1432		goto out;
1433	retval = -ENOMEM;
1434	flush_dcache_page(page);
1435	pte = get_locked_pte(mm, addr, &ptl);
1436	if (!pte)
1437		goto out;
1438	retval = -EBUSY;
1439	if (!pte_none(*pte))
1440		goto out_unlock;
1441
1442	/* Ok, finally just insert the thing.. */
1443	get_page(page);
1444	inc_mm_counter_fast(mm, mm_counter_file(page));
1445	page_add_file_rmap(page, false);
1446	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1447
1448	retval = 0;
 
 
1449out_unlock:
1450	pte_unmap_unlock(pte, ptl);
1451out:
1452	return retval;
1453}
1454
1455/**
1456 * vm_insert_page - insert single page into user vma
1457 * @vma: user vma to map to
1458 * @addr: target user address of this page
1459 * @page: source kernel page
1460 *
1461 * This allows drivers to insert individual pages they've allocated
1462 * into a user vma.
1463 *
1464 * The page has to be a nice clean _individual_ kernel allocation.
1465 * If you allocate a compound page, you need to have marked it as
1466 * such (__GFP_COMP), or manually just split the page up yourself
1467 * (see split_page()).
1468 *
1469 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1470 * took an arbitrary page protection parameter. This doesn't allow
1471 * that. Your vma protection will have to be set up correctly, which
1472 * means that if you want a shared writable mapping, you'd better
1473 * ask for a shared writable mapping!
1474 *
1475 * The page does not need to be reserved.
1476 *
1477 * Usually this function is called from f_op->mmap() handler
1478 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1479 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1480 * function from other places, for example from page-fault handler.
1481 *
1482 * Return: %0 on success, negative error code otherwise.
1483 */
1484int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1485			struct page *page)
1486{
1487	if (addr < vma->vm_start || addr >= vma->vm_end)
1488		return -EFAULT;
1489	if (!page_count(page))
1490		return -EINVAL;
1491	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1492		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1493		BUG_ON(vma->vm_flags & VM_PFNMAP);
1494		vma->vm_flags |= VM_MIXEDMAP;
1495	}
1496	return insert_page(vma, addr, page, vma->vm_page_prot);
1497}
1498EXPORT_SYMBOL(vm_insert_page);
1499
1500/*
1501 * __vm_map_pages - maps range of kernel pages into user vma
1502 * @vma: user vma to map to
1503 * @pages: pointer to array of source kernel pages
1504 * @num: number of pages in page array
1505 * @offset: user's requested vm_pgoff
1506 *
1507 * This allows drivers to map range of kernel pages into a user vma.
1508 *
1509 * Return: 0 on success and error code otherwise.
1510 */
1511static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1512				unsigned long num, unsigned long offset)
1513{
1514	unsigned long count = vma_pages(vma);
1515	unsigned long uaddr = vma->vm_start;
1516	int ret, i;
1517
1518	/* Fail if the user requested offset is beyond the end of the object */
1519	if (offset >= num)
1520		return -ENXIO;
1521
1522	/* Fail if the user requested size exceeds available object size */
1523	if (count > num - offset)
1524		return -ENXIO;
1525
1526	for (i = 0; i < count; i++) {
1527		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1528		if (ret < 0)
1529			return ret;
1530		uaddr += PAGE_SIZE;
1531	}
1532
1533	return 0;
1534}
1535
1536/**
1537 * vm_map_pages - maps range of kernel pages starts with non zero offset
1538 * @vma: user vma to map to
1539 * @pages: pointer to array of source kernel pages
1540 * @num: number of pages in page array
1541 *
1542 * Maps an object consisting of @num pages, catering for the user's
1543 * requested vm_pgoff
1544 *
1545 * If we fail to insert any page into the vma, the function will return
1546 * immediately leaving any previously inserted pages present.  Callers
1547 * from the mmap handler may immediately return the error as their caller
1548 * will destroy the vma, removing any successfully inserted pages. Other
1549 * callers should make their own arrangements for calling unmap_region().
1550 *
1551 * Context: Process context. Called by mmap handlers.
1552 * Return: 0 on success and error code otherwise.
1553 */
1554int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1555				unsigned long num)
1556{
1557	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1558}
1559EXPORT_SYMBOL(vm_map_pages);
1560
1561/**
1562 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1563 * @vma: user vma to map to
1564 * @pages: pointer to array of source kernel pages
1565 * @num: number of pages in page array
1566 *
1567 * Similar to vm_map_pages(), except that it explicitly sets the offset
1568 * to 0. This function is intended for the drivers that did not consider
1569 * vm_pgoff.
1570 *
1571 * Context: Process context. Called by mmap handlers.
1572 * Return: 0 on success and error code otherwise.
1573 */
1574int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1575				unsigned long num)
1576{
1577	return __vm_map_pages(vma, pages, num, 0);
1578}
1579EXPORT_SYMBOL(vm_map_pages_zero);
1580
1581static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1582			pfn_t pfn, pgprot_t prot, bool mkwrite)
1583{
1584	struct mm_struct *mm = vma->vm_mm;
 
1585	pte_t *pte, entry;
1586	spinlock_t *ptl;
1587
 
1588	pte = get_locked_pte(mm, addr, &ptl);
1589	if (!pte)
1590		return VM_FAULT_OOM;
 
1591	if (!pte_none(*pte)) {
1592		if (mkwrite) {
1593			/*
1594			 * For read faults on private mappings the PFN passed
1595			 * in may not match the PFN we have mapped if the
1596			 * mapped PFN is a writeable COW page.  In the mkwrite
1597			 * case we are creating a writable PTE for a shared
1598			 * mapping and we expect the PFNs to match. If they
1599			 * don't match, we are likely racing with block
1600			 * allocation and mapping invalidation so just skip the
1601			 * update.
1602			 */
1603			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1604				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1605				goto out_unlock;
1606			}
1607			entry = pte_mkyoung(*pte);
1608			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1609			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1610				update_mmu_cache(vma, addr, pte);
1611		}
1612		goto out_unlock;
1613	}
1614
1615	/* Ok, finally just insert the thing.. */
1616	if (pfn_t_devmap(pfn))
1617		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1618	else
1619		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1620
 
1621	if (mkwrite) {
1622		entry = pte_mkyoung(entry);
1623		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1624	}
1625
1626	set_pte_at(mm, addr, pte, entry);
1627	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1628
 
1629out_unlock:
1630	pte_unmap_unlock(pte, ptl);
1631	return VM_FAULT_NOPAGE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1632}
 
1633
1634/**
1635 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1636 * @vma: user vma to map to
1637 * @addr: target user address of this page
1638 * @pfn: source kernel pfn
1639 * @pgprot: pgprot flags for the inserted page
1640 *
1641 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1642 * to override pgprot on a per-page basis.
1643 *
1644 * This only makes sense for IO mappings, and it makes no sense for
1645 * COW mappings.  In general, using multiple vmas is preferable;
1646 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1647 * impractical.
1648 *
1649 * Context: Process context.  May allocate using %GFP_KERNEL.
1650 * Return: vm_fault_t value.
1651 */
1652vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1653			unsigned long pfn, pgprot_t pgprot)
1654{
 
1655	/*
1656	 * Technically, architectures with pte_special can avoid all these
1657	 * restrictions (same for remap_pfn_range).  However we would like
1658	 * consistency in testing and feature parity among all, so we should
1659	 * try to keep these invariants in place for everybody.
1660	 */
1661	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1662	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1663						(VM_PFNMAP|VM_MIXEDMAP));
1664	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1665	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1666
1667	if (addr < vma->vm_start || addr >= vma->vm_end)
1668		return VM_FAULT_SIGBUS;
1669
1670	if (!pfn_modify_allowed(pfn, pgprot))
1671		return VM_FAULT_SIGBUS;
1672
1673	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1674
1675	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1676			false);
1677}
1678EXPORT_SYMBOL(vmf_insert_pfn_prot);
1679
1680/**
1681 * vmf_insert_pfn - insert single pfn into user vma
1682 * @vma: user vma to map to
1683 * @addr: target user address of this page
1684 * @pfn: source kernel pfn
1685 *
1686 * Similar to vm_insert_page, this allows drivers to insert individual pages
1687 * they've allocated into a user vma. Same comments apply.
1688 *
1689 * This function should only be called from a vm_ops->fault handler, and
1690 * in that case the handler should return the result of this function.
1691 *
1692 * vma cannot be a COW mapping.
1693 *
1694 * As this is called only for pages that do not currently exist, we
1695 * do not need to flush old virtual caches or the TLB.
1696 *
1697 * Context: Process context.  May allocate using %GFP_KERNEL.
1698 * Return: vm_fault_t value.
1699 */
1700vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1701			unsigned long pfn)
1702{
1703	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1704}
1705EXPORT_SYMBOL(vmf_insert_pfn);
1706
1707static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1708{
1709	/* these checks mirror the abort conditions in vm_normal_page */
1710	if (vma->vm_flags & VM_MIXEDMAP)
1711		return true;
1712	if (pfn_t_devmap(pfn))
1713		return true;
1714	if (pfn_t_special(pfn))
1715		return true;
1716	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1717		return true;
1718	return false;
1719}
1720
1721static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1722		unsigned long addr, pfn_t pfn, bool mkwrite)
1723{
1724	pgprot_t pgprot = vma->vm_page_prot;
1725	int err;
1726
1727	BUG_ON(!vm_mixed_ok(vma, pfn));
1728
1729	if (addr < vma->vm_start || addr >= vma->vm_end)
1730		return VM_FAULT_SIGBUS;
1731
1732	track_pfn_insert(vma, &pgprot, pfn);
1733
1734	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1735		return VM_FAULT_SIGBUS;
1736
1737	/*
1738	 * If we don't have pte special, then we have to use the pfn_valid()
1739	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1740	 * refcount the page if pfn_valid is true (hence insert_page rather
1741	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1742	 * without pte special, it would there be refcounted as a normal page.
1743	 */
1744	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1745	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1746		struct page *page;
1747
1748		/*
1749		 * At this point we are committed to insert_page()
1750		 * regardless of whether the caller specified flags that
1751		 * result in pfn_t_has_page() == false.
1752		 */
1753		page = pfn_to_page(pfn_t_to_pfn(pfn));
1754		err = insert_page(vma, addr, page, pgprot);
1755	} else {
1756		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1757	}
1758
1759	if (err == -ENOMEM)
1760		return VM_FAULT_OOM;
1761	if (err < 0 && err != -EBUSY)
1762		return VM_FAULT_SIGBUS;
1763
1764	return VM_FAULT_NOPAGE;
1765}
1766
1767vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1768		pfn_t pfn)
1769{
1770	return __vm_insert_mixed(vma, addr, pfn, false);
 
1771}
1772EXPORT_SYMBOL(vmf_insert_mixed);
1773
1774/*
1775 *  If the insertion of PTE failed because someone else already added a
1776 *  different entry in the mean time, we treat that as success as we assume
1777 *  the same entry was actually inserted.
1778 */
1779vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1780		unsigned long addr, pfn_t pfn)
1781{
1782	return __vm_insert_mixed(vma, addr, pfn, true);
1783}
1784EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1785
1786/*
1787 * maps a range of physical memory into the requested pages. the old
1788 * mappings are removed. any references to nonexistent pages results
1789 * in null mappings (currently treated as "copy-on-access")
1790 */
1791static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1792			unsigned long addr, unsigned long end,
1793			unsigned long pfn, pgprot_t prot)
1794{
1795	pte_t *pte;
1796	spinlock_t *ptl;
1797	int err = 0;
1798
1799	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1800	if (!pte)
1801		return -ENOMEM;
1802	arch_enter_lazy_mmu_mode();
1803	do {
1804		BUG_ON(!pte_none(*pte));
1805		if (!pfn_modify_allowed(pfn, prot)) {
1806			err = -EACCES;
1807			break;
1808		}
1809		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1810		pfn++;
1811	} while (pte++, addr += PAGE_SIZE, addr != end);
1812	arch_leave_lazy_mmu_mode();
1813	pte_unmap_unlock(pte - 1, ptl);
1814	return err;
1815}
1816
1817static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1818			unsigned long addr, unsigned long end,
1819			unsigned long pfn, pgprot_t prot)
1820{
1821	pmd_t *pmd;
1822	unsigned long next;
1823	int err;
1824
1825	pfn -= addr >> PAGE_SHIFT;
1826	pmd = pmd_alloc(mm, pud, addr);
1827	if (!pmd)
1828		return -ENOMEM;
1829	VM_BUG_ON(pmd_trans_huge(*pmd));
1830	do {
1831		next = pmd_addr_end(addr, end);
1832		err = remap_pte_range(mm, pmd, addr, next,
1833				pfn + (addr >> PAGE_SHIFT), prot);
1834		if (err)
1835			return err;
1836	} while (pmd++, addr = next, addr != end);
1837	return 0;
1838}
1839
1840static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1841			unsigned long addr, unsigned long end,
1842			unsigned long pfn, pgprot_t prot)
1843{
1844	pud_t *pud;
1845	unsigned long next;
1846	int err;
1847
1848	pfn -= addr >> PAGE_SHIFT;
1849	pud = pud_alloc(mm, p4d, addr);
1850	if (!pud)
1851		return -ENOMEM;
1852	do {
1853		next = pud_addr_end(addr, end);
1854		err = remap_pmd_range(mm, pud, addr, next,
1855				pfn + (addr >> PAGE_SHIFT), prot);
1856		if (err)
1857			return err;
1858	} while (pud++, addr = next, addr != end);
1859	return 0;
1860}
1861
1862static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1863			unsigned long addr, unsigned long end,
1864			unsigned long pfn, pgprot_t prot)
1865{
1866	p4d_t *p4d;
1867	unsigned long next;
1868	int err;
1869
1870	pfn -= addr >> PAGE_SHIFT;
1871	p4d = p4d_alloc(mm, pgd, addr);
1872	if (!p4d)
1873		return -ENOMEM;
1874	do {
1875		next = p4d_addr_end(addr, end);
1876		err = remap_pud_range(mm, p4d, addr, next,
1877				pfn + (addr >> PAGE_SHIFT), prot);
1878		if (err)
1879			return err;
1880	} while (p4d++, addr = next, addr != end);
1881	return 0;
1882}
1883
1884/**
1885 * remap_pfn_range - remap kernel memory to userspace
1886 * @vma: user vma to map to
1887 * @addr: target user address to start at
1888 * @pfn: physical address of kernel memory
1889 * @size: size of map area
1890 * @prot: page protection flags for this mapping
1891 *
1892 * Note: this is only safe if the mm semaphore is held when called.
1893 *
1894 * Return: %0 on success, negative error code otherwise.
1895 */
1896int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1897		    unsigned long pfn, unsigned long size, pgprot_t prot)
1898{
1899	pgd_t *pgd;
1900	unsigned long next;
1901	unsigned long end = addr + PAGE_ALIGN(size);
1902	struct mm_struct *mm = vma->vm_mm;
1903	unsigned long remap_pfn = pfn;
1904	int err;
1905
1906	/*
1907	 * Physically remapped pages are special. Tell the
1908	 * rest of the world about it:
1909	 *   VM_IO tells people not to look at these pages
1910	 *	(accesses can have side effects).
1911	 *   VM_PFNMAP tells the core MM that the base pages are just
1912	 *	raw PFN mappings, and do not have a "struct page" associated
1913	 *	with them.
1914	 *   VM_DONTEXPAND
1915	 *      Disable vma merging and expanding with mremap().
1916	 *   VM_DONTDUMP
1917	 *      Omit vma from core dump, even when VM_IO turned off.
1918	 *
1919	 * There's a horrible special case to handle copy-on-write
1920	 * behaviour that some programs depend on. We mark the "original"
1921	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1922	 * See vm_normal_page() for details.
1923	 */
1924	if (is_cow_mapping(vma->vm_flags)) {
1925		if (addr != vma->vm_start || end != vma->vm_end)
1926			return -EINVAL;
1927		vma->vm_pgoff = pfn;
1928	}
1929
1930	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1931	if (err)
1932		return -EINVAL;
1933
1934	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1935
1936	BUG_ON(addr >= end);
1937	pfn -= addr >> PAGE_SHIFT;
1938	pgd = pgd_offset(mm, addr);
1939	flush_cache_range(vma, addr, end);
1940	do {
1941		next = pgd_addr_end(addr, end);
1942		err = remap_p4d_range(mm, pgd, addr, next,
1943				pfn + (addr >> PAGE_SHIFT), prot);
1944		if (err)
1945			break;
1946	} while (pgd++, addr = next, addr != end);
1947
1948	if (err)
1949		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1950
1951	return err;
1952}
1953EXPORT_SYMBOL(remap_pfn_range);
1954
1955/**
1956 * vm_iomap_memory - remap memory to userspace
1957 * @vma: user vma to map to
1958 * @start: start of area
1959 * @len: size of area
1960 *
1961 * This is a simplified io_remap_pfn_range() for common driver use. The
1962 * driver just needs to give us the physical memory range to be mapped,
1963 * we'll figure out the rest from the vma information.
1964 *
1965 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1966 * whatever write-combining details or similar.
1967 *
1968 * Return: %0 on success, negative error code otherwise.
1969 */
1970int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1971{
1972	unsigned long vm_len, pfn, pages;
1973
1974	/* Check that the physical memory area passed in looks valid */
1975	if (start + len < start)
1976		return -EINVAL;
1977	/*
1978	 * You *really* shouldn't map things that aren't page-aligned,
1979	 * but we've historically allowed it because IO memory might
1980	 * just have smaller alignment.
1981	 */
1982	len += start & ~PAGE_MASK;
1983	pfn = start >> PAGE_SHIFT;
1984	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1985	if (pfn + pages < pfn)
1986		return -EINVAL;
1987
1988	/* We start the mapping 'vm_pgoff' pages into the area */
1989	if (vma->vm_pgoff > pages)
1990		return -EINVAL;
1991	pfn += vma->vm_pgoff;
1992	pages -= vma->vm_pgoff;
1993
1994	/* Can we fit all of the mapping? */
1995	vm_len = vma->vm_end - vma->vm_start;
1996	if (vm_len >> PAGE_SHIFT > pages)
1997		return -EINVAL;
1998
1999	/* Ok, let it rip */
2000	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2001}
2002EXPORT_SYMBOL(vm_iomap_memory);
2003
2004static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2005				     unsigned long addr, unsigned long end,
2006				     pte_fn_t fn, void *data)
2007{
2008	pte_t *pte;
2009	int err;
 
2010	spinlock_t *uninitialized_var(ptl);
2011
2012	pte = (mm == &init_mm) ?
2013		pte_alloc_kernel(pmd, addr) :
2014		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2015	if (!pte)
2016		return -ENOMEM;
2017
2018	BUG_ON(pmd_huge(*pmd));
2019
2020	arch_enter_lazy_mmu_mode();
2021
 
 
2022	do {
2023		err = fn(pte++, addr, data);
2024		if (err)
2025			break;
2026	} while (addr += PAGE_SIZE, addr != end);
2027
2028	arch_leave_lazy_mmu_mode();
2029
2030	if (mm != &init_mm)
2031		pte_unmap_unlock(pte-1, ptl);
2032	return err;
2033}
2034
2035static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2036				     unsigned long addr, unsigned long end,
2037				     pte_fn_t fn, void *data)
2038{
2039	pmd_t *pmd;
2040	unsigned long next;
2041	int err;
2042
2043	BUG_ON(pud_huge(*pud));
2044
2045	pmd = pmd_alloc(mm, pud, addr);
2046	if (!pmd)
2047		return -ENOMEM;
2048	do {
2049		next = pmd_addr_end(addr, end);
2050		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2051		if (err)
2052			break;
2053	} while (pmd++, addr = next, addr != end);
2054	return err;
2055}
2056
2057static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2058				     unsigned long addr, unsigned long end,
2059				     pte_fn_t fn, void *data)
2060{
2061	pud_t *pud;
2062	unsigned long next;
2063	int err;
2064
2065	pud = pud_alloc(mm, p4d, addr);
2066	if (!pud)
2067		return -ENOMEM;
2068	do {
2069		next = pud_addr_end(addr, end);
2070		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2071		if (err)
2072			break;
2073	} while (pud++, addr = next, addr != end);
2074	return err;
2075}
2076
2077static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2078				     unsigned long addr, unsigned long end,
2079				     pte_fn_t fn, void *data)
2080{
2081	p4d_t *p4d;
2082	unsigned long next;
2083	int err;
2084
2085	p4d = p4d_alloc(mm, pgd, addr);
2086	if (!p4d)
2087		return -ENOMEM;
2088	do {
2089		next = p4d_addr_end(addr, end);
2090		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2091		if (err)
2092			break;
2093	} while (p4d++, addr = next, addr != end);
2094	return err;
2095}
2096
2097/*
2098 * Scan a region of virtual memory, filling in page tables as necessary
2099 * and calling a provided function on each leaf page table.
2100 */
2101int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2102			unsigned long size, pte_fn_t fn, void *data)
2103{
2104	pgd_t *pgd;
2105	unsigned long next;
2106	unsigned long end = addr + size;
2107	int err;
2108
2109	if (WARN_ON(addr >= end))
2110		return -EINVAL;
2111
2112	pgd = pgd_offset(mm, addr);
2113	do {
2114		next = pgd_addr_end(addr, end);
2115		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2116		if (err)
2117			break;
2118	} while (pgd++, addr = next, addr != end);
2119
2120	return err;
2121}
2122EXPORT_SYMBOL_GPL(apply_to_page_range);
2123
2124/*
2125 * handle_pte_fault chooses page fault handler according to an entry which was
2126 * read non-atomically.  Before making any commitment, on those architectures
2127 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2128 * parts, do_swap_page must check under lock before unmapping the pte and
2129 * proceeding (but do_wp_page is only called after already making such a check;
2130 * and do_anonymous_page can safely check later on).
2131 */
2132static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2133				pte_t *page_table, pte_t orig_pte)
2134{
2135	int same = 1;
2136#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2137	if (sizeof(pte_t) > sizeof(unsigned long)) {
2138		spinlock_t *ptl = pte_lockptr(mm, pmd);
2139		spin_lock(ptl);
2140		same = pte_same(*page_table, orig_pte);
2141		spin_unlock(ptl);
2142	}
2143#endif
2144	pte_unmap(page_table);
2145	return same;
2146}
2147
2148static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2149{
2150	debug_dma_assert_idle(src);
2151
2152	/*
2153	 * If the source page was a PFN mapping, we don't have
2154	 * a "struct page" for it. We do a best-effort copy by
2155	 * just copying from the original user address. If that
2156	 * fails, we just zero-fill it. Live with it.
2157	 */
2158	if (unlikely(!src)) {
2159		void *kaddr = kmap_atomic(dst);
2160		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2161
2162		/*
2163		 * This really shouldn't fail, because the page is there
2164		 * in the page tables. But it might just be unreadable,
2165		 * in which case we just give up and fill the result with
2166		 * zeroes.
2167		 */
2168		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2169			clear_page(kaddr);
2170		kunmap_atomic(kaddr);
2171		flush_dcache_page(dst);
2172	} else
2173		copy_user_highpage(dst, src, va, vma);
2174}
2175
2176static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2177{
2178	struct file *vm_file = vma->vm_file;
2179
2180	if (vm_file)
2181		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2182
2183	/*
2184	 * Special mappings (e.g. VDSO) do not have any file so fake
2185	 * a default GFP_KERNEL for them.
2186	 */
2187	return GFP_KERNEL;
2188}
2189
2190/*
2191 * Notify the address space that the page is about to become writable so that
2192 * it can prohibit this or wait for the page to get into an appropriate state.
2193 *
2194 * We do this without the lock held, so that it can sleep if it needs to.
2195 */
2196static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2197{
2198	vm_fault_t ret;
2199	struct page *page = vmf->page;
2200	unsigned int old_flags = vmf->flags;
2201
2202	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2203
2204	if (vmf->vma->vm_file &&
2205	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2206		return VM_FAULT_SIGBUS;
2207
2208	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2209	/* Restore original flags so that caller is not surprised */
2210	vmf->flags = old_flags;
2211	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2212		return ret;
2213	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2214		lock_page(page);
2215		if (!page->mapping) {
2216			unlock_page(page);
2217			return 0; /* retry */
2218		}
2219		ret |= VM_FAULT_LOCKED;
2220	} else
2221		VM_BUG_ON_PAGE(!PageLocked(page), page);
2222	return ret;
2223}
2224
2225/*
2226 * Handle dirtying of a page in shared file mapping on a write fault.
2227 *
2228 * The function expects the page to be locked and unlocks it.
2229 */
2230static void fault_dirty_shared_page(struct vm_area_struct *vma,
2231				    struct page *page)
2232{
2233	struct address_space *mapping;
2234	bool dirtied;
2235	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2236
2237	dirtied = set_page_dirty(page);
2238	VM_BUG_ON_PAGE(PageAnon(page), page);
2239	/*
2240	 * Take a local copy of the address_space - page.mapping may be zeroed
2241	 * by truncate after unlock_page().   The address_space itself remains
2242	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2243	 * release semantics to prevent the compiler from undoing this copying.
2244	 */
2245	mapping = page_rmapping(page);
2246	unlock_page(page);
2247
2248	if ((dirtied || page_mkwrite) && mapping) {
2249		/*
2250		 * Some device drivers do not set page.mapping
2251		 * but still dirty their pages
2252		 */
2253		balance_dirty_pages_ratelimited(mapping);
2254	}
2255
2256	if (!page_mkwrite)
2257		file_update_time(vma->vm_file);
2258}
2259
2260/*
2261 * Handle write page faults for pages that can be reused in the current vma
2262 *
2263 * This can happen either due to the mapping being with the VM_SHARED flag,
2264 * or due to us being the last reference standing to the page. In either
2265 * case, all we need to do here is to mark the page as writable and update
2266 * any related book-keeping.
2267 */
2268static inline void wp_page_reuse(struct vm_fault *vmf)
2269	__releases(vmf->ptl)
2270{
2271	struct vm_area_struct *vma = vmf->vma;
2272	struct page *page = vmf->page;
2273	pte_t entry;
2274	/*
2275	 * Clear the pages cpupid information as the existing
2276	 * information potentially belongs to a now completely
2277	 * unrelated process.
2278	 */
2279	if (page)
2280		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2281
2282	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2283	entry = pte_mkyoung(vmf->orig_pte);
2284	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2285	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2286		update_mmu_cache(vma, vmf->address, vmf->pte);
2287	pte_unmap_unlock(vmf->pte, vmf->ptl);
2288}
2289
2290/*
2291 * Handle the case of a page which we actually need to copy to a new page.
2292 *
2293 * Called with mmap_sem locked and the old page referenced, but
2294 * without the ptl held.
2295 *
2296 * High level logic flow:
2297 *
2298 * - Allocate a page, copy the content of the old page to the new one.
2299 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2300 * - Take the PTL. If the pte changed, bail out and release the allocated page
2301 * - If the pte is still the way we remember it, update the page table and all
2302 *   relevant references. This includes dropping the reference the page-table
2303 *   held to the old page, as well as updating the rmap.
2304 * - In any case, unlock the PTL and drop the reference we took to the old page.
2305 */
2306static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2307{
2308	struct vm_area_struct *vma = vmf->vma;
2309	struct mm_struct *mm = vma->vm_mm;
2310	struct page *old_page = vmf->page;
2311	struct page *new_page = NULL;
2312	pte_t entry;
2313	int page_copied = 0;
 
 
2314	struct mem_cgroup *memcg;
2315	struct mmu_notifier_range range;
2316
2317	if (unlikely(anon_vma_prepare(vma)))
2318		goto oom;
2319
2320	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2321		new_page = alloc_zeroed_user_highpage_movable(vma,
2322							      vmf->address);
2323		if (!new_page)
2324			goto oom;
2325	} else {
2326		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2327				vmf->address);
2328		if (!new_page)
2329			goto oom;
2330		cow_user_page(new_page, old_page, vmf->address, vma);
2331	}
2332
2333	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2334		goto oom_free_new;
2335
2336	__SetPageUptodate(new_page);
2337
2338	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2339				vmf->address & PAGE_MASK,
2340				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2341	mmu_notifier_invalidate_range_start(&range);
2342
2343	/*
2344	 * Re-check the pte - we dropped the lock
2345	 */
2346	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2347	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2348		if (old_page) {
2349			if (!PageAnon(old_page)) {
2350				dec_mm_counter_fast(mm,
2351						mm_counter_file(old_page));
2352				inc_mm_counter_fast(mm, MM_ANONPAGES);
2353			}
2354		} else {
2355			inc_mm_counter_fast(mm, MM_ANONPAGES);
2356		}
2357		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2358		entry = mk_pte(new_page, vma->vm_page_prot);
2359		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2360		/*
2361		 * Clear the pte entry and flush it first, before updating the
2362		 * pte with the new entry. This will avoid a race condition
2363		 * seen in the presence of one thread doing SMC and another
2364		 * thread doing COW.
2365		 */
2366		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2367		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2368		mem_cgroup_commit_charge(new_page, memcg, false, false);
2369		lru_cache_add_active_or_unevictable(new_page, vma);
2370		/*
2371		 * We call the notify macro here because, when using secondary
2372		 * mmu page tables (such as kvm shadow page tables), we want the
2373		 * new page to be mapped directly into the secondary page table.
2374		 */
2375		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2376		update_mmu_cache(vma, vmf->address, vmf->pte);
2377		if (old_page) {
2378			/*
2379			 * Only after switching the pte to the new page may
2380			 * we remove the mapcount here. Otherwise another
2381			 * process may come and find the rmap count decremented
2382			 * before the pte is switched to the new page, and
2383			 * "reuse" the old page writing into it while our pte
2384			 * here still points into it and can be read by other
2385			 * threads.
2386			 *
2387			 * The critical issue is to order this
2388			 * page_remove_rmap with the ptp_clear_flush above.
2389			 * Those stores are ordered by (if nothing else,)
2390			 * the barrier present in the atomic_add_negative
2391			 * in page_remove_rmap.
2392			 *
2393			 * Then the TLB flush in ptep_clear_flush ensures that
2394			 * no process can access the old page before the
2395			 * decremented mapcount is visible. And the old page
2396			 * cannot be reused until after the decremented
2397			 * mapcount is visible. So transitively, TLBs to
2398			 * old page will be flushed before it can be reused.
2399			 */
2400			page_remove_rmap(old_page, false);
2401		}
2402
2403		/* Free the old page.. */
2404		new_page = old_page;
2405		page_copied = 1;
2406	} else {
2407		mem_cgroup_cancel_charge(new_page, memcg, false);
2408	}
2409
2410	if (new_page)
2411		put_page(new_page);
2412
2413	pte_unmap_unlock(vmf->pte, vmf->ptl);
2414	/*
2415	 * No need to double call mmu_notifier->invalidate_range() callback as
2416	 * the above ptep_clear_flush_notify() did already call it.
2417	 */
2418	mmu_notifier_invalidate_range_only_end(&range);
2419	if (old_page) {
2420		/*
2421		 * Don't let another task, with possibly unlocked vma,
2422		 * keep the mlocked page.
2423		 */
2424		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2425			lock_page(old_page);	/* LRU manipulation */
2426			if (PageMlocked(old_page))
2427				munlock_vma_page(old_page);
2428			unlock_page(old_page);
2429		}
2430		put_page(old_page);
2431	}
2432	return page_copied ? VM_FAULT_WRITE : 0;
2433oom_free_new:
2434	put_page(new_page);
2435oom:
2436	if (old_page)
2437		put_page(old_page);
2438	return VM_FAULT_OOM;
2439}
2440
2441/**
2442 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2443 *			  writeable once the page is prepared
2444 *
2445 * @vmf: structure describing the fault
2446 *
2447 * This function handles all that is needed to finish a write page fault in a
2448 * shared mapping due to PTE being read-only once the mapped page is prepared.
2449 * It handles locking of PTE and modifying it.
 
 
2450 *
2451 * The function expects the page to be locked or other protection against
2452 * concurrent faults / writeback (such as DAX radix tree locks).
2453 *
2454 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2455 * we acquired PTE lock.
2456 */
2457vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2458{
2459	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2460	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2461				       &vmf->ptl);
2462	/*
2463	 * We might have raced with another page fault while we released the
2464	 * pte_offset_map_lock.
2465	 */
2466	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2467		pte_unmap_unlock(vmf->pte, vmf->ptl);
2468		return VM_FAULT_NOPAGE;
2469	}
2470	wp_page_reuse(vmf);
2471	return 0;
2472}
2473
2474/*
2475 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2476 * mapping
2477 */
2478static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2479{
2480	struct vm_area_struct *vma = vmf->vma;
2481
2482	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2483		vm_fault_t ret;
2484
2485		pte_unmap_unlock(vmf->pte, vmf->ptl);
2486		vmf->flags |= FAULT_FLAG_MKWRITE;
2487		ret = vma->vm_ops->pfn_mkwrite(vmf);
2488		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2489			return ret;
2490		return finish_mkwrite_fault(vmf);
2491	}
2492	wp_page_reuse(vmf);
2493	return VM_FAULT_WRITE;
2494}
2495
2496static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2497	__releases(vmf->ptl)
2498{
2499	struct vm_area_struct *vma = vmf->vma;
2500
2501	get_page(vmf->page);
2502
2503	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2504		vm_fault_t tmp;
2505
2506		pte_unmap_unlock(vmf->pte, vmf->ptl);
2507		tmp = do_page_mkwrite(vmf);
2508		if (unlikely(!tmp || (tmp &
2509				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2510			put_page(vmf->page);
2511			return tmp;
2512		}
2513		tmp = finish_mkwrite_fault(vmf);
2514		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2515			unlock_page(vmf->page);
2516			put_page(vmf->page);
2517			return tmp;
2518		}
2519	} else {
2520		wp_page_reuse(vmf);
2521		lock_page(vmf->page);
2522	}
2523	fault_dirty_shared_page(vma, vmf->page);
2524	put_page(vmf->page);
2525
2526	return VM_FAULT_WRITE;
2527}
2528
2529/*
2530 * This routine handles present pages, when users try to write
2531 * to a shared page. It is done by copying the page to a new address
2532 * and decrementing the shared-page counter for the old page.
2533 *
2534 * Note that this routine assumes that the protection checks have been
2535 * done by the caller (the low-level page fault routine in most cases).
2536 * Thus we can safely just mark it writable once we've done any necessary
2537 * COW.
2538 *
2539 * We also mark the page dirty at this point even though the page will
2540 * change only once the write actually happens. This avoids a few races,
2541 * and potentially makes it more efficient.
2542 *
2543 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544 * but allow concurrent faults), with pte both mapped and locked.
2545 * We return with mmap_sem still held, but pte unmapped and unlocked.
2546 */
2547static vm_fault_t do_wp_page(struct vm_fault *vmf)
2548	__releases(vmf->ptl)
2549{
2550	struct vm_area_struct *vma = vmf->vma;
2551
2552	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2553	if (!vmf->page) {
2554		/*
2555		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2556		 * VM_PFNMAP VMA.
2557		 *
2558		 * We should not cow pages in a shared writeable mapping.
2559		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2560		 */
2561		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2562				     (VM_WRITE|VM_SHARED))
2563			return wp_pfn_shared(vmf);
2564
2565		pte_unmap_unlock(vmf->pte, vmf->ptl);
2566		return wp_page_copy(vmf);
2567	}
2568
2569	/*
2570	 * Take out anonymous pages first, anonymous shared vmas are
2571	 * not dirty accountable.
2572	 */
2573	if (PageAnon(vmf->page)) {
2574		int total_map_swapcount;
2575		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2576					   page_count(vmf->page) != 1))
2577			goto copy;
2578		if (!trylock_page(vmf->page)) {
2579			get_page(vmf->page);
2580			pte_unmap_unlock(vmf->pte, vmf->ptl);
2581			lock_page(vmf->page);
2582			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2583					vmf->address, &vmf->ptl);
2584			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2585				unlock_page(vmf->page);
2586				pte_unmap_unlock(vmf->pte, vmf->ptl);
2587				put_page(vmf->page);
2588				return 0;
2589			}
2590			put_page(vmf->page);
2591		}
2592		if (PageKsm(vmf->page)) {
2593			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2594						     vmf->address);
2595			unlock_page(vmf->page);
2596			if (!reused)
2597				goto copy;
2598			wp_page_reuse(vmf);
2599			return VM_FAULT_WRITE;
2600		}
2601		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2602			if (total_map_swapcount == 1) {
2603				/*
2604				 * The page is all ours. Move it to
2605				 * our anon_vma so the rmap code will
2606				 * not search our parent or siblings.
2607				 * Protected against the rmap code by
2608				 * the page lock.
2609				 */
2610				page_move_anon_rmap(vmf->page, vma);
2611			}
2612			unlock_page(vmf->page);
2613			wp_page_reuse(vmf);
2614			return VM_FAULT_WRITE;
2615		}
2616		unlock_page(vmf->page);
2617	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2618					(VM_WRITE|VM_SHARED))) {
2619		return wp_page_shared(vmf);
2620	}
2621copy:
2622	/*
2623	 * Ok, we need to copy. Oh, well..
2624	 */
2625	get_page(vmf->page);
2626
2627	pte_unmap_unlock(vmf->pte, vmf->ptl);
2628	return wp_page_copy(vmf);
2629}
2630
2631static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2632		unsigned long start_addr, unsigned long end_addr,
2633		struct zap_details *details)
2634{
2635	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2636}
2637
2638static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2639					    struct zap_details *details)
2640{
2641	struct vm_area_struct *vma;
2642	pgoff_t vba, vea, zba, zea;
2643
2644	vma_interval_tree_foreach(vma, root,
2645			details->first_index, details->last_index) {
2646
2647		vba = vma->vm_pgoff;
2648		vea = vba + vma_pages(vma) - 1;
2649		zba = details->first_index;
2650		if (zba < vba)
2651			zba = vba;
2652		zea = details->last_index;
2653		if (zea > vea)
2654			zea = vea;
2655
2656		unmap_mapping_range_vma(vma,
2657			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2658			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2659				details);
2660	}
2661}
2662
2663/**
2664 * unmap_mapping_pages() - Unmap pages from processes.
2665 * @mapping: The address space containing pages to be unmapped.
2666 * @start: Index of first page to be unmapped.
2667 * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2668 * @even_cows: Whether to unmap even private COWed pages.
2669 *
2670 * Unmap the pages in this address space from any userspace process which
2671 * has them mmaped.  Generally, you want to remove COWed pages as well when
2672 * a file is being truncated, but not when invalidating pages from the page
2673 * cache.
2674 */
2675void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2676		pgoff_t nr, bool even_cows)
2677{
2678	struct zap_details details = { };
2679
2680	details.check_mapping = even_cows ? NULL : mapping;
2681	details.first_index = start;
2682	details.last_index = start + nr - 1;
2683	if (details.last_index < details.first_index)
2684		details.last_index = ULONG_MAX;
2685
2686	i_mmap_lock_write(mapping);
2687	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2688		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2689	i_mmap_unlock_write(mapping);
2690}
2691
2692/**
2693 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2694 * address_space corresponding to the specified byte range in the underlying
2695 * file.
2696 *
2697 * @mapping: the address space containing mmaps to be unmapped.
2698 * @holebegin: byte in first page to unmap, relative to the start of
2699 * the underlying file.  This will be rounded down to a PAGE_SIZE
2700 * boundary.  Note that this is different from truncate_pagecache(), which
2701 * must keep the partial page.  In contrast, we must get rid of
2702 * partial pages.
2703 * @holelen: size of prospective hole in bytes.  This will be rounded
2704 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2705 * end of the file.
2706 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2707 * but 0 when invalidating pagecache, don't throw away private data.
2708 */
2709void unmap_mapping_range(struct address_space *mapping,
2710		loff_t const holebegin, loff_t const holelen, int even_cows)
2711{
2712	pgoff_t hba = holebegin >> PAGE_SHIFT;
2713	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2714
2715	/* Check for overflow. */
2716	if (sizeof(holelen) > sizeof(hlen)) {
2717		long long holeend =
2718			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2719		if (holeend & ~(long long)ULONG_MAX)
2720			hlen = ULONG_MAX - hba + 1;
2721	}
2722
2723	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2724}
2725EXPORT_SYMBOL(unmap_mapping_range);
2726
2727/*
2728 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2729 * but allow concurrent faults), and pte mapped but not yet locked.
2730 * We return with pte unmapped and unlocked.
2731 *
2732 * We return with the mmap_sem locked or unlocked in the same cases
2733 * as does filemap_fault().
2734 */
2735vm_fault_t do_swap_page(struct vm_fault *vmf)
2736{
2737	struct vm_area_struct *vma = vmf->vma;
2738	struct page *page = NULL, *swapcache;
2739	struct mem_cgroup *memcg;
2740	swp_entry_t entry;
2741	pte_t pte;
2742	int locked;
2743	int exclusive = 0;
2744	vm_fault_t ret = 0;
2745
2746	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2747		goto out;
2748
2749	entry = pte_to_swp_entry(vmf->orig_pte);
2750	if (unlikely(non_swap_entry(entry))) {
2751		if (is_migration_entry(entry)) {
2752			migration_entry_wait(vma->vm_mm, vmf->pmd,
2753					     vmf->address);
2754		} else if (is_device_private_entry(entry)) {
2755			vmf->page = device_private_entry_to_page(entry);
2756			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
 
 
 
 
 
2757		} else if (is_hwpoison_entry(entry)) {
2758			ret = VM_FAULT_HWPOISON;
2759		} else {
2760			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2761			ret = VM_FAULT_SIGBUS;
2762		}
2763		goto out;
2764	}
2765
2766
2767	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2768	page = lookup_swap_cache(entry, vma, vmf->address);
2769	swapcache = page;
2770
2771	if (!page) {
2772		struct swap_info_struct *si = swp_swap_info(entry);
2773
2774		if (si->flags & SWP_SYNCHRONOUS_IO &&
2775				__swap_count(entry) == 1) {
2776			/* skip swapcache */
2777			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2778							vmf->address);
2779			if (page) {
2780				__SetPageLocked(page);
2781				__SetPageSwapBacked(page);
2782				set_page_private(page, entry.val);
2783				lru_cache_add_anon(page);
2784				swap_readpage(page, true);
2785			}
2786		} else {
2787			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2788						vmf);
2789			swapcache = page;
2790		}
2791
2792		if (!page) {
2793			/*
2794			 * Back out if somebody else faulted in this pte
2795			 * while we released the pte lock.
2796			 */
2797			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2798					vmf->address, &vmf->ptl);
2799			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2800				ret = VM_FAULT_OOM;
2801			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2802			goto unlock;
2803		}
2804
2805		/* Had to read the page from swap area: Major fault */
2806		ret = VM_FAULT_MAJOR;
2807		count_vm_event(PGMAJFAULT);
2808		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2809	} else if (PageHWPoison(page)) {
2810		/*
2811		 * hwpoisoned dirty swapcache pages are kept for killing
2812		 * owner processes (which may be unknown at hwpoison time)
2813		 */
2814		ret = VM_FAULT_HWPOISON;
2815		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2816		goto out_release;
2817	}
2818
2819	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2820
2821	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2822	if (!locked) {
2823		ret |= VM_FAULT_RETRY;
2824		goto out_release;
2825	}
2826
2827	/*
2828	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2829	 * release the swapcache from under us.  The page pin, and pte_same
2830	 * test below, are not enough to exclude that.  Even if it is still
2831	 * swapcache, we need to check that the page's swap has not changed.
2832	 */
2833	if (unlikely((!PageSwapCache(page) ||
2834			page_private(page) != entry.val)) && swapcache)
2835		goto out_page;
2836
2837	page = ksm_might_need_to_copy(page, vma, vmf->address);
2838	if (unlikely(!page)) {
2839		ret = VM_FAULT_OOM;
2840		page = swapcache;
2841		goto out_page;
2842	}
2843
2844	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2845					&memcg, false)) {
2846		ret = VM_FAULT_OOM;
2847		goto out_page;
2848	}
2849
2850	/*
2851	 * Back out if somebody else already faulted in this pte.
2852	 */
2853	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2854			&vmf->ptl);
2855	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2856		goto out_nomap;
2857
2858	if (unlikely(!PageUptodate(page))) {
2859		ret = VM_FAULT_SIGBUS;
2860		goto out_nomap;
2861	}
2862
2863	/*
2864	 * The page isn't present yet, go ahead with the fault.
2865	 *
2866	 * Be careful about the sequence of operations here.
2867	 * To get its accounting right, reuse_swap_page() must be called
2868	 * while the page is counted on swap but not yet in mapcount i.e.
2869	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2870	 * must be called after the swap_free(), or it will never succeed.
2871	 */
2872
2873	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2874	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2875	pte = mk_pte(page, vma->vm_page_prot);
2876	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2877		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2878		vmf->flags &= ~FAULT_FLAG_WRITE;
2879		ret |= VM_FAULT_WRITE;
2880		exclusive = RMAP_EXCLUSIVE;
2881	}
2882	flush_icache_page(vma, page);
2883	if (pte_swp_soft_dirty(vmf->orig_pte))
2884		pte = pte_mksoft_dirty(pte);
2885	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2886	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2887	vmf->orig_pte = pte;
2888
2889	/* ksm created a completely new copy */
2890	if (unlikely(page != swapcache && swapcache)) {
2891		page_add_new_anon_rmap(page, vma, vmf->address, false);
2892		mem_cgroup_commit_charge(page, memcg, false, false);
2893		lru_cache_add_active_or_unevictable(page, vma);
2894	} else {
2895		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2896		mem_cgroup_commit_charge(page, memcg, true, false);
2897		activate_page(page);
2898	}
2899
2900	swap_free(entry);
2901	if (mem_cgroup_swap_full(page) ||
2902	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2903		try_to_free_swap(page);
2904	unlock_page(page);
2905	if (page != swapcache && swapcache) {
2906		/*
2907		 * Hold the lock to avoid the swap entry to be reused
2908		 * until we take the PT lock for the pte_same() check
2909		 * (to avoid false positives from pte_same). For
2910		 * further safety release the lock after the swap_free
2911		 * so that the swap count won't change under a
2912		 * parallel locked swapcache.
2913		 */
2914		unlock_page(swapcache);
2915		put_page(swapcache);
2916	}
2917
2918	if (vmf->flags & FAULT_FLAG_WRITE) {
2919		ret |= do_wp_page(vmf);
2920		if (ret & VM_FAULT_ERROR)
2921			ret &= VM_FAULT_ERROR;
2922		goto out;
2923	}
2924
2925	/* No need to invalidate - it was non-present before */
2926	update_mmu_cache(vma, vmf->address, vmf->pte);
2927unlock:
2928	pte_unmap_unlock(vmf->pte, vmf->ptl);
2929out:
2930	return ret;
2931out_nomap:
2932	mem_cgroup_cancel_charge(page, memcg, false);
2933	pte_unmap_unlock(vmf->pte, vmf->ptl);
2934out_page:
2935	unlock_page(page);
2936out_release:
2937	put_page(page);
2938	if (page != swapcache && swapcache) {
2939		unlock_page(swapcache);
2940		put_page(swapcache);
2941	}
2942	return ret;
2943}
2944
2945/*
2946 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2947 * but allow concurrent faults), and pte mapped but not yet locked.
2948 * We return with mmap_sem still held, but pte unmapped and unlocked.
2949 */
2950static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2951{
2952	struct vm_area_struct *vma = vmf->vma;
2953	struct mem_cgroup *memcg;
2954	struct page *page;
2955	vm_fault_t ret = 0;
2956	pte_t entry;
2957
2958	/* File mapping without ->vm_ops ? */
2959	if (vma->vm_flags & VM_SHARED)
2960		return VM_FAULT_SIGBUS;
2961
2962	/*
2963	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2964	 * pte_offset_map() on pmds where a huge pmd might be created
2965	 * from a different thread.
2966	 *
2967	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2968	 * parallel threads are excluded by other means.
2969	 *
2970	 * Here we only have down_read(mmap_sem).
2971	 */
2972	if (pte_alloc(vma->vm_mm, vmf->pmd))
2973		return VM_FAULT_OOM;
2974
2975	/* See the comment in pte_alloc_one_map() */
2976	if (unlikely(pmd_trans_unstable(vmf->pmd)))
2977		return 0;
2978
2979	/* Use the zero-page for reads */
2980	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2981			!mm_forbids_zeropage(vma->vm_mm)) {
2982		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2983						vma->vm_page_prot));
2984		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2985				vmf->address, &vmf->ptl);
2986		if (!pte_none(*vmf->pte))
2987			goto unlock;
2988		ret = check_stable_address_space(vma->vm_mm);
2989		if (ret)
2990			goto unlock;
2991		/* Deliver the page fault to userland, check inside PT lock */
2992		if (userfaultfd_missing(vma)) {
2993			pte_unmap_unlock(vmf->pte, vmf->ptl);
2994			return handle_userfault(vmf, VM_UFFD_MISSING);
2995		}
2996		goto setpte;
2997	}
2998
2999	/* Allocate our own private page. */
3000	if (unlikely(anon_vma_prepare(vma)))
3001		goto oom;
3002	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3003	if (!page)
3004		goto oom;
3005
3006	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3007					false))
3008		goto oom_free_page;
3009
3010	/*
3011	 * The memory barrier inside __SetPageUptodate makes sure that
3012	 * preceeding stores to the page contents become visible before
3013	 * the set_pte_at() write.
3014	 */
3015	__SetPageUptodate(page);
3016
3017	entry = mk_pte(page, vma->vm_page_prot);
3018	if (vma->vm_flags & VM_WRITE)
3019		entry = pte_mkwrite(pte_mkdirty(entry));
3020
3021	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3022			&vmf->ptl);
3023	if (!pte_none(*vmf->pte))
3024		goto release;
3025
3026	ret = check_stable_address_space(vma->vm_mm);
3027	if (ret)
3028		goto release;
3029
3030	/* Deliver the page fault to userland, check inside PT lock */
3031	if (userfaultfd_missing(vma)) {
3032		pte_unmap_unlock(vmf->pte, vmf->ptl);
3033		mem_cgroup_cancel_charge(page, memcg, false);
3034		put_page(page);
3035		return handle_userfault(vmf, VM_UFFD_MISSING);
3036	}
3037
3038	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3039	page_add_new_anon_rmap(page, vma, vmf->address, false);
3040	mem_cgroup_commit_charge(page, memcg, false, false);
3041	lru_cache_add_active_or_unevictable(page, vma);
3042setpte:
3043	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3044
3045	/* No need to invalidate - it was non-present before */
3046	update_mmu_cache(vma, vmf->address, vmf->pte);
3047unlock:
3048	pte_unmap_unlock(vmf->pte, vmf->ptl);
3049	return ret;
3050release:
3051	mem_cgroup_cancel_charge(page, memcg, false);
3052	put_page(page);
3053	goto unlock;
3054oom_free_page:
3055	put_page(page);
3056oom:
3057	return VM_FAULT_OOM;
3058}
3059
3060/*
3061 * The mmap_sem must have been held on entry, and may have been
3062 * released depending on flags and vma->vm_ops->fault() return value.
3063 * See filemap_fault() and __lock_page_retry().
3064 */
3065static vm_fault_t __do_fault(struct vm_fault *vmf)
3066{
3067	struct vm_area_struct *vma = vmf->vma;
3068	vm_fault_t ret;
3069
3070	/*
3071	 * Preallocate pte before we take page_lock because this might lead to
3072	 * deadlocks for memcg reclaim which waits for pages under writeback:
3073	 *				lock_page(A)
3074	 *				SetPageWriteback(A)
3075	 *				unlock_page(A)
3076	 * lock_page(B)
3077	 *				lock_page(B)
3078	 * pte_alloc_pne
3079	 *   shrink_page_list
3080	 *     wait_on_page_writeback(A)
3081	 *				SetPageWriteback(B)
3082	 *				unlock_page(B)
3083	 *				# flush A, B to clear the writeback
3084	 */
3085	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3086		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3087		if (!vmf->prealloc_pte)
3088			return VM_FAULT_OOM;
3089		smp_wmb(); /* See comment in __pte_alloc() */
3090	}
3091
3092	ret = vma->vm_ops->fault(vmf);
3093	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3094			    VM_FAULT_DONE_COW)))
3095		return ret;
3096
3097	if (unlikely(PageHWPoison(vmf->page))) {
3098		if (ret & VM_FAULT_LOCKED)
3099			unlock_page(vmf->page);
3100		put_page(vmf->page);
3101		vmf->page = NULL;
3102		return VM_FAULT_HWPOISON;
3103	}
3104
3105	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3106		lock_page(vmf->page);
3107	else
3108		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3109
3110	return ret;
3111}
3112
3113/*
3114 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3115 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3116 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3117 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3118 */
3119static int pmd_devmap_trans_unstable(pmd_t *pmd)
3120{
3121	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3122}
3123
3124static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3125{
3126	struct vm_area_struct *vma = vmf->vma;
3127
3128	if (!pmd_none(*vmf->pmd))
3129		goto map_pte;
3130	if (vmf->prealloc_pte) {
3131		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3132		if (unlikely(!pmd_none(*vmf->pmd))) {
3133			spin_unlock(vmf->ptl);
3134			goto map_pte;
3135		}
3136
3137		mm_inc_nr_ptes(vma->vm_mm);
3138		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3139		spin_unlock(vmf->ptl);
3140		vmf->prealloc_pte = NULL;
3141	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3142		return VM_FAULT_OOM;
3143	}
3144map_pte:
3145	/*
3146	 * If a huge pmd materialized under us just retry later.  Use
3147	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3148	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3149	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3150	 * running immediately after a huge pmd fault in a different thread of
3151	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3152	 * All we have to ensure is that it is a regular pmd that we can walk
3153	 * with pte_offset_map() and we can do that through an atomic read in
3154	 * C, which is what pmd_trans_unstable() provides.
3155	 */
3156	if (pmd_devmap_trans_unstable(vmf->pmd))
3157		return VM_FAULT_NOPAGE;
3158
3159	/*
3160	 * At this point we know that our vmf->pmd points to a page of ptes
3161	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3162	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3163	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3164	 * be valid and we will re-check to make sure the vmf->pte isn't
3165	 * pte_none() under vmf->ptl protection when we return to
3166	 * alloc_set_pte().
3167	 */
3168	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3169			&vmf->ptl);
3170	return 0;
3171}
3172
3173#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
 
 
 
 
 
 
 
 
 
 
 
 
 
3174static void deposit_prealloc_pte(struct vm_fault *vmf)
3175{
3176	struct vm_area_struct *vma = vmf->vma;
3177
3178	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3179	/*
3180	 * We are going to consume the prealloc table,
3181	 * count that as nr_ptes.
3182	 */
3183	mm_inc_nr_ptes(vma->vm_mm);
3184	vmf->prealloc_pte = NULL;
3185}
3186
3187static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3188{
3189	struct vm_area_struct *vma = vmf->vma;
3190	bool write = vmf->flags & FAULT_FLAG_WRITE;
3191	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3192	pmd_t entry;
3193	int i;
3194	vm_fault_t ret;
3195
3196	if (!transhuge_vma_suitable(vma, haddr))
3197		return VM_FAULT_FALLBACK;
3198
3199	ret = VM_FAULT_FALLBACK;
3200	page = compound_head(page);
3201
3202	/*
3203	 * Archs like ppc64 need additonal space to store information
3204	 * related to pte entry. Use the preallocated table for that.
3205	 */
3206	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3207		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3208		if (!vmf->prealloc_pte)
3209			return VM_FAULT_OOM;
3210		smp_wmb(); /* See comment in __pte_alloc() */
3211	}
3212
3213	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3214	if (unlikely(!pmd_none(*vmf->pmd)))
3215		goto out;
3216
3217	for (i = 0; i < HPAGE_PMD_NR; i++)
3218		flush_icache_page(vma, page + i);
3219
3220	entry = mk_huge_pmd(page, vma->vm_page_prot);
3221	if (write)
3222		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3223
3224	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3225	page_add_file_rmap(page, true);
3226	/*
3227	 * deposit and withdraw with pmd lock held
3228	 */
3229	if (arch_needs_pgtable_deposit())
3230		deposit_prealloc_pte(vmf);
3231
3232	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3233
3234	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3235
3236	/* fault is handled */
3237	ret = 0;
3238	count_vm_event(THP_FILE_MAPPED);
3239out:
3240	spin_unlock(vmf->ptl);
3241	return ret;
3242}
3243#else
3244static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3245{
3246	BUILD_BUG();
3247	return 0;
3248}
3249#endif
3250
3251/**
3252 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3253 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3254 *
3255 * @vmf: fault environment
3256 * @memcg: memcg to charge page (only for private mappings)
3257 * @page: page to map
3258 *
3259 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3260 * return.
3261 *
3262 * Target users are page handler itself and implementations of
3263 * vm_ops->map_pages.
3264 *
3265 * Return: %0 on success, %VM_FAULT_ code in case of error.
3266 */
3267vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3268		struct page *page)
3269{
3270	struct vm_area_struct *vma = vmf->vma;
3271	bool write = vmf->flags & FAULT_FLAG_WRITE;
3272	pte_t entry;
3273	vm_fault_t ret;
3274
3275	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3276			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3277		/* THP on COW? */
3278		VM_BUG_ON_PAGE(memcg, page);
3279
3280		ret = do_set_pmd(vmf, page);
3281		if (ret != VM_FAULT_FALLBACK)
3282			return ret;
3283	}
3284
3285	if (!vmf->pte) {
3286		ret = pte_alloc_one_map(vmf);
3287		if (ret)
3288			return ret;
3289	}
3290
3291	/* Re-check under ptl */
3292	if (unlikely(!pte_none(*vmf->pte)))
3293		return VM_FAULT_NOPAGE;
3294
3295	flush_icache_page(vma, page);
3296	entry = mk_pte(page, vma->vm_page_prot);
3297	if (write)
3298		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3299	/* copy-on-write page */
3300	if (write && !(vma->vm_flags & VM_SHARED)) {
3301		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3302		page_add_new_anon_rmap(page, vma, vmf->address, false);
3303		mem_cgroup_commit_charge(page, memcg, false, false);
3304		lru_cache_add_active_or_unevictable(page, vma);
3305	} else {
3306		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3307		page_add_file_rmap(page, false);
3308	}
3309	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3310
3311	/* no need to invalidate: a not-present page won't be cached */
3312	update_mmu_cache(vma, vmf->address, vmf->pte);
3313
3314	return 0;
3315}
3316
3317
3318/**
3319 * finish_fault - finish page fault once we have prepared the page to fault
3320 *
3321 * @vmf: structure describing the fault
3322 *
3323 * This function handles all that is needed to finish a page fault once the
3324 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3325 * given page, adds reverse page mapping, handles memcg charges and LRU
3326 * addition.
 
3327 *
3328 * The function expects the page to be locked and on success it consumes a
3329 * reference of a page being mapped (for the PTE which maps it).
3330 *
3331 * Return: %0 on success, %VM_FAULT_ code in case of error.
3332 */
3333vm_fault_t finish_fault(struct vm_fault *vmf)
3334{
3335	struct page *page;
3336	vm_fault_t ret = 0;
3337
3338	/* Did we COW the page? */
3339	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3340	    !(vmf->vma->vm_flags & VM_SHARED))
3341		page = vmf->cow_page;
3342	else
3343		page = vmf->page;
3344
3345	/*
3346	 * check even for read faults because we might have lost our CoWed
3347	 * page
3348	 */
3349	if (!(vmf->vma->vm_flags & VM_SHARED))
3350		ret = check_stable_address_space(vmf->vma->vm_mm);
3351	if (!ret)
3352		ret = alloc_set_pte(vmf, vmf->memcg, page);
3353	if (vmf->pte)
3354		pte_unmap_unlock(vmf->pte, vmf->ptl);
3355	return ret;
3356}
3357
3358static unsigned long fault_around_bytes __read_mostly =
3359	rounddown_pow_of_two(65536);
3360
3361#ifdef CONFIG_DEBUG_FS
3362static int fault_around_bytes_get(void *data, u64 *val)
3363{
3364	*val = fault_around_bytes;
3365	return 0;
3366}
3367
3368/*
3369 * fault_around_bytes must be rounded down to the nearest page order as it's
3370 * what do_fault_around() expects to see.
3371 */
3372static int fault_around_bytes_set(void *data, u64 val)
3373{
3374	if (val / PAGE_SIZE > PTRS_PER_PTE)
3375		return -EINVAL;
3376	if (val > PAGE_SIZE)
3377		fault_around_bytes = rounddown_pow_of_two(val);
3378	else
3379		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3380	return 0;
3381}
3382DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3383		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3384
3385static int __init fault_around_debugfs(void)
3386{
3387	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3388				   &fault_around_bytes_fops);
 
 
 
 
3389	return 0;
3390}
3391late_initcall(fault_around_debugfs);
3392#endif
3393
3394/*
3395 * do_fault_around() tries to map few pages around the fault address. The hope
3396 * is that the pages will be needed soon and this will lower the number of
3397 * faults to handle.
3398 *
3399 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3400 * not ready to be mapped: not up-to-date, locked, etc.
3401 *
3402 * This function is called with the page table lock taken. In the split ptlock
3403 * case the page table lock only protects only those entries which belong to
3404 * the page table corresponding to the fault address.
3405 *
3406 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3407 * only once.
3408 *
3409 * fault_around_bytes defines how many bytes we'll try to map.
3410 * do_fault_around() expects it to be set to a power of two less than or equal
3411 * to PTRS_PER_PTE.
3412 *
3413 * The virtual address of the area that we map is naturally aligned to
3414 * fault_around_bytes rounded down to the machine page size
3415 * (and therefore to page order).  This way it's easier to guarantee
3416 * that we don't cross page table boundaries.
3417 */
3418static vm_fault_t do_fault_around(struct vm_fault *vmf)
3419{
3420	unsigned long address = vmf->address, nr_pages, mask;
3421	pgoff_t start_pgoff = vmf->pgoff;
3422	pgoff_t end_pgoff;
3423	int off;
3424	vm_fault_t ret = 0;
3425
3426	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3427	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3428
3429	vmf->address = max(address & mask, vmf->vma->vm_start);
3430	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3431	start_pgoff -= off;
3432
3433	/*
3434	 *  end_pgoff is either the end of the page table, the end of
3435	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3436	 */
3437	end_pgoff = start_pgoff -
3438		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3439		PTRS_PER_PTE - 1;
3440	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3441			start_pgoff + nr_pages - 1);
3442
3443	if (pmd_none(*vmf->pmd)) {
3444		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
 
3445		if (!vmf->prealloc_pte)
3446			goto out;
3447		smp_wmb(); /* See comment in __pte_alloc() */
3448	}
3449
3450	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3451
3452	/* Huge page is mapped? Page fault is solved */
3453	if (pmd_trans_huge(*vmf->pmd)) {
3454		ret = VM_FAULT_NOPAGE;
3455		goto out;
3456	}
3457
3458	/* ->map_pages() haven't done anything useful. Cold page cache? */
3459	if (!vmf->pte)
3460		goto out;
3461
3462	/* check if the page fault is solved */
3463	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3464	if (!pte_none(*vmf->pte))
3465		ret = VM_FAULT_NOPAGE;
3466	pte_unmap_unlock(vmf->pte, vmf->ptl);
3467out:
3468	vmf->address = address;
3469	vmf->pte = NULL;
3470	return ret;
3471}
3472
3473static vm_fault_t do_read_fault(struct vm_fault *vmf)
3474{
3475	struct vm_area_struct *vma = vmf->vma;
3476	vm_fault_t ret = 0;
3477
3478	/*
3479	 * Let's call ->map_pages() first and use ->fault() as fallback
3480	 * if page by the offset is not ready to be mapped (cold cache or
3481	 * something).
3482	 */
3483	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3484		ret = do_fault_around(vmf);
3485		if (ret)
3486			return ret;
3487	}
3488
3489	ret = __do_fault(vmf);
3490	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3491		return ret;
3492
3493	ret |= finish_fault(vmf);
3494	unlock_page(vmf->page);
3495	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3496		put_page(vmf->page);
3497	return ret;
3498}
3499
3500static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3501{
3502	struct vm_area_struct *vma = vmf->vma;
3503	vm_fault_t ret;
3504
3505	if (unlikely(anon_vma_prepare(vma)))
3506		return VM_FAULT_OOM;
3507
3508	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3509	if (!vmf->cow_page)
3510		return VM_FAULT_OOM;
3511
3512	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3513				&vmf->memcg, false)) {
3514		put_page(vmf->cow_page);
3515		return VM_FAULT_OOM;
3516	}
3517
3518	ret = __do_fault(vmf);
3519	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3520		goto uncharge_out;
3521	if (ret & VM_FAULT_DONE_COW)
3522		return ret;
3523
3524	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3525	__SetPageUptodate(vmf->cow_page);
3526
3527	ret |= finish_fault(vmf);
3528	unlock_page(vmf->page);
3529	put_page(vmf->page);
3530	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3531		goto uncharge_out;
3532	return ret;
3533uncharge_out:
3534	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3535	put_page(vmf->cow_page);
3536	return ret;
3537}
3538
3539static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3540{
3541	struct vm_area_struct *vma = vmf->vma;
3542	vm_fault_t ret, tmp;
3543
3544	ret = __do_fault(vmf);
3545	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3546		return ret;
3547
3548	/*
3549	 * Check if the backing address space wants to know that the page is
3550	 * about to become writable
3551	 */
3552	if (vma->vm_ops->page_mkwrite) {
3553		unlock_page(vmf->page);
3554		tmp = do_page_mkwrite(vmf);
3555		if (unlikely(!tmp ||
3556				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3557			put_page(vmf->page);
3558			return tmp;
3559		}
3560	}
3561
3562	ret |= finish_fault(vmf);
3563	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3564					VM_FAULT_RETRY))) {
3565		unlock_page(vmf->page);
3566		put_page(vmf->page);
3567		return ret;
3568	}
3569
3570	fault_dirty_shared_page(vma, vmf->page);
3571	return ret;
3572}
3573
3574/*
3575 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3576 * but allow concurrent faults).
3577 * The mmap_sem may have been released depending on flags and our
3578 * return value.  See filemap_fault() and __lock_page_or_retry().
3579 * If mmap_sem is released, vma may become invalid (for example
3580 * by other thread calling munmap()).
3581 */
3582static vm_fault_t do_fault(struct vm_fault *vmf)
3583{
3584	struct vm_area_struct *vma = vmf->vma;
3585	struct mm_struct *vm_mm = vma->vm_mm;
3586	vm_fault_t ret;
3587
3588	/*
3589	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3590	 */
3591	if (!vma->vm_ops->fault) {
3592		/*
3593		 * If we find a migration pmd entry or a none pmd entry, which
3594		 * should never happen, return SIGBUS
3595		 */
3596		if (unlikely(!pmd_present(*vmf->pmd)))
3597			ret = VM_FAULT_SIGBUS;
3598		else {
3599			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3600						       vmf->pmd,
3601						       vmf->address,
3602						       &vmf->ptl);
3603			/*
3604			 * Make sure this is not a temporary clearing of pte
3605			 * by holding ptl and checking again. A R/M/W update
3606			 * of pte involves: take ptl, clearing the pte so that
3607			 * we don't have concurrent modification by hardware
3608			 * followed by an update.
3609			 */
3610			if (unlikely(pte_none(*vmf->pte)))
3611				ret = VM_FAULT_SIGBUS;
3612			else
3613				ret = VM_FAULT_NOPAGE;
3614
3615			pte_unmap_unlock(vmf->pte, vmf->ptl);
3616		}
3617	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
 
3618		ret = do_read_fault(vmf);
3619	else if (!(vma->vm_flags & VM_SHARED))
3620		ret = do_cow_fault(vmf);
3621	else
3622		ret = do_shared_fault(vmf);
3623
3624	/* preallocated pagetable is unused: free it */
3625	if (vmf->prealloc_pte) {
3626		pte_free(vm_mm, vmf->prealloc_pte);
3627		vmf->prealloc_pte = NULL;
3628	}
3629	return ret;
3630}
3631
3632static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3633				unsigned long addr, int page_nid,
3634				int *flags)
3635{
3636	get_page(page);
3637
3638	count_vm_numa_event(NUMA_HINT_FAULTS);
3639	if (page_nid == numa_node_id()) {
3640		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3641		*flags |= TNF_FAULT_LOCAL;
3642	}
3643
3644	return mpol_misplaced(page, vma, addr);
3645}
3646
3647static vm_fault_t do_numa_page(struct vm_fault *vmf)
3648{
3649	struct vm_area_struct *vma = vmf->vma;
3650	struct page *page = NULL;
3651	int page_nid = NUMA_NO_NODE;
3652	int last_cpupid;
3653	int target_nid;
3654	bool migrated = false;
3655	pte_t pte, old_pte;
3656	bool was_writable = pte_savedwrite(vmf->orig_pte);
3657	int flags = 0;
3658
3659	/*
3660	 * The "pte" at this point cannot be used safely without
3661	 * validation through pte_unmap_same(). It's of NUMA type but
3662	 * the pfn may be screwed if the read is non atomic.
3663	 */
3664	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3665	spin_lock(vmf->ptl);
3666	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3667		pte_unmap_unlock(vmf->pte, vmf->ptl);
3668		goto out;
3669	}
3670
3671	/*
3672	 * Make it present again, Depending on how arch implementes non
3673	 * accessible ptes, some can allow access by kernel mode.
3674	 */
3675	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3676	pte = pte_modify(old_pte, vma->vm_page_prot);
3677	pte = pte_mkyoung(pte);
3678	if (was_writable)
3679		pte = pte_mkwrite(pte);
3680	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3681	update_mmu_cache(vma, vmf->address, vmf->pte);
3682
3683	page = vm_normal_page(vma, vmf->address, pte);
3684	if (!page) {
3685		pte_unmap_unlock(vmf->pte, vmf->ptl);
3686		return 0;
3687	}
3688
3689	/* TODO: handle PTE-mapped THP */
3690	if (PageCompound(page)) {
3691		pte_unmap_unlock(vmf->pte, vmf->ptl);
3692		return 0;
3693	}
3694
3695	/*
3696	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3697	 * much anyway since they can be in shared cache state. This misses
3698	 * the case where a mapping is writable but the process never writes
3699	 * to it but pte_write gets cleared during protection updates and
3700	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3701	 * background writeback, dirty balancing and application behaviour.
3702	 */
3703	if (!pte_write(pte))
3704		flags |= TNF_NO_GROUP;
3705
3706	/*
3707	 * Flag if the page is shared between multiple address spaces. This
3708	 * is later used when determining whether to group tasks together
3709	 */
3710	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3711		flags |= TNF_SHARED;
3712
3713	last_cpupid = page_cpupid_last(page);
3714	page_nid = page_to_nid(page);
3715	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3716			&flags);
3717	pte_unmap_unlock(vmf->pte, vmf->ptl);
3718	if (target_nid == NUMA_NO_NODE) {
3719		put_page(page);
3720		goto out;
3721	}
3722
3723	/* Migrate to the requested node */
3724	migrated = migrate_misplaced_page(page, vma, target_nid);
3725	if (migrated) {
3726		page_nid = target_nid;
3727		flags |= TNF_MIGRATED;
3728	} else
3729		flags |= TNF_MIGRATE_FAIL;
3730
3731out:
3732	if (page_nid != NUMA_NO_NODE)
3733		task_numa_fault(last_cpupid, page_nid, 1, flags);
3734	return 0;
3735}
3736
3737static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3738{
3739	if (vma_is_anonymous(vmf->vma))
3740		return do_huge_pmd_anonymous_page(vmf);
3741	if (vmf->vma->vm_ops->huge_fault)
3742		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3743	return VM_FAULT_FALLBACK;
3744}
3745
3746/* `inline' is required to avoid gcc 4.1.2 build error */
3747static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3748{
3749	if (vma_is_anonymous(vmf->vma))
3750		return do_huge_pmd_wp_page(vmf, orig_pmd);
3751	if (vmf->vma->vm_ops->huge_fault)
3752		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3753
3754	/* COW handled on pte level: split pmd */
3755	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3756	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3757
3758	return VM_FAULT_FALLBACK;
3759}
3760
3761static inline bool vma_is_accessible(struct vm_area_struct *vma)
3762{
3763	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3764}
3765
3766static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3767{
3768#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3769	/* No support for anonymous transparent PUD pages yet */
3770	if (vma_is_anonymous(vmf->vma))
3771		return VM_FAULT_FALLBACK;
3772	if (vmf->vma->vm_ops->huge_fault)
3773		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3774#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3775	return VM_FAULT_FALLBACK;
3776}
3777
3778static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3779{
3780#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3781	/* No support for anonymous transparent PUD pages yet */
3782	if (vma_is_anonymous(vmf->vma))
3783		return VM_FAULT_FALLBACK;
3784	if (vmf->vma->vm_ops->huge_fault)
3785		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3786#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3787	return VM_FAULT_FALLBACK;
3788}
3789
3790/*
3791 * These routines also need to handle stuff like marking pages dirty
3792 * and/or accessed for architectures that don't do it in hardware (most
3793 * RISC architectures).  The early dirtying is also good on the i386.
3794 *
3795 * There is also a hook called "update_mmu_cache()" that architectures
3796 * with external mmu caches can use to update those (ie the Sparc or
3797 * PowerPC hashed page tables that act as extended TLBs).
3798 *
3799 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3800 * concurrent faults).
3801 *
3802 * The mmap_sem may have been released depending on flags and our return value.
3803 * See filemap_fault() and __lock_page_or_retry().
3804 */
3805static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3806{
3807	pte_t entry;
3808
3809	if (unlikely(pmd_none(*vmf->pmd))) {
3810		/*
3811		 * Leave __pte_alloc() until later: because vm_ops->fault may
3812		 * want to allocate huge page, and if we expose page table
3813		 * for an instant, it will be difficult to retract from
3814		 * concurrent faults and from rmap lookups.
3815		 */
3816		vmf->pte = NULL;
3817	} else {
3818		/* See comment in pte_alloc_one_map() */
3819		if (pmd_devmap_trans_unstable(vmf->pmd))
3820			return 0;
3821		/*
3822		 * A regular pmd is established and it can't morph into a huge
3823		 * pmd from under us anymore at this point because we hold the
3824		 * mmap_sem read mode and khugepaged takes it in write mode.
3825		 * So now it's safe to run pte_offset_map().
3826		 */
3827		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3828		vmf->orig_pte = *vmf->pte;
3829
3830		/*
3831		 * some architectures can have larger ptes than wordsize,
3832		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3833		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3834		 * accesses.  The code below just needs a consistent view
3835		 * for the ifs and we later double check anyway with the
3836		 * ptl lock held. So here a barrier will do.
3837		 */
3838		barrier();
3839		if (pte_none(vmf->orig_pte)) {
3840			pte_unmap(vmf->pte);
3841			vmf->pte = NULL;
3842		}
3843	}
3844
3845	if (!vmf->pte) {
3846		if (vma_is_anonymous(vmf->vma))
3847			return do_anonymous_page(vmf);
3848		else
3849			return do_fault(vmf);
3850	}
3851
3852	if (!pte_present(vmf->orig_pte))
3853		return do_swap_page(vmf);
3854
3855	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3856		return do_numa_page(vmf);
3857
3858	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3859	spin_lock(vmf->ptl);
3860	entry = vmf->orig_pte;
3861	if (unlikely(!pte_same(*vmf->pte, entry)))
3862		goto unlock;
3863	if (vmf->flags & FAULT_FLAG_WRITE) {
3864		if (!pte_write(entry))
3865			return do_wp_page(vmf);
3866		entry = pte_mkdirty(entry);
3867	}
3868	entry = pte_mkyoung(entry);
3869	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3870				vmf->flags & FAULT_FLAG_WRITE)) {
3871		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3872	} else {
3873		/*
3874		 * This is needed only for protection faults but the arch code
3875		 * is not yet telling us if this is a protection fault or not.
3876		 * This still avoids useless tlb flushes for .text page faults
3877		 * with threads.
3878		 */
3879		if (vmf->flags & FAULT_FLAG_WRITE)
3880			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3881	}
3882unlock:
3883	pte_unmap_unlock(vmf->pte, vmf->ptl);
3884	return 0;
3885}
3886
3887/*
3888 * By the time we get here, we already hold the mm semaphore
3889 *
3890 * The mmap_sem may have been released depending on flags and our
3891 * return value.  See filemap_fault() and __lock_page_or_retry().
3892 */
3893static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3894		unsigned long address, unsigned int flags)
3895{
3896	struct vm_fault vmf = {
3897		.vma = vma,
3898		.address = address & PAGE_MASK,
3899		.flags = flags,
3900		.pgoff = linear_page_index(vma, address),
3901		.gfp_mask = __get_fault_gfp_mask(vma),
3902	};
3903	unsigned int dirty = flags & FAULT_FLAG_WRITE;
3904	struct mm_struct *mm = vma->vm_mm;
3905	pgd_t *pgd;
3906	p4d_t *p4d;
3907	vm_fault_t ret;
3908
3909	pgd = pgd_offset(mm, address);
3910	p4d = p4d_alloc(mm, pgd, address);
3911	if (!p4d)
3912		return VM_FAULT_OOM;
3913
3914	vmf.pud = pud_alloc(mm, p4d, address);
3915	if (!vmf.pud)
3916		return VM_FAULT_OOM;
3917	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3918		ret = create_huge_pud(&vmf);
3919		if (!(ret & VM_FAULT_FALLBACK))
3920			return ret;
3921	} else {
3922		pud_t orig_pud = *vmf.pud;
3923
3924		barrier();
3925		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3926
3927			/* NUMA case for anonymous PUDs would go here */
3928
3929			if (dirty && !pud_write(orig_pud)) {
3930				ret = wp_huge_pud(&vmf, orig_pud);
3931				if (!(ret & VM_FAULT_FALLBACK))
3932					return ret;
3933			} else {
3934				huge_pud_set_accessed(&vmf, orig_pud);
3935				return 0;
3936			}
3937		}
3938	}
3939
3940	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3941	if (!vmf.pmd)
3942		return VM_FAULT_OOM;
3943	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3944		ret = create_huge_pmd(&vmf);
3945		if (!(ret & VM_FAULT_FALLBACK))
3946			return ret;
3947	} else {
3948		pmd_t orig_pmd = *vmf.pmd;
3949
3950		barrier();
3951		if (unlikely(is_swap_pmd(orig_pmd))) {
3952			VM_BUG_ON(thp_migration_supported() &&
3953					  !is_pmd_migration_entry(orig_pmd));
3954			if (is_pmd_migration_entry(orig_pmd))
3955				pmd_migration_entry_wait(mm, vmf.pmd);
3956			return 0;
3957		}
3958		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3959			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3960				return do_huge_pmd_numa_page(&vmf, orig_pmd);
3961
3962			if (dirty && !pmd_write(orig_pmd)) {
3963				ret = wp_huge_pmd(&vmf, orig_pmd);
3964				if (!(ret & VM_FAULT_FALLBACK))
3965					return ret;
3966			} else {
3967				huge_pmd_set_accessed(&vmf, orig_pmd);
3968				return 0;
3969			}
3970		}
3971	}
3972
3973	return handle_pte_fault(&vmf);
3974}
3975
3976/*
3977 * By the time we get here, we already hold the mm semaphore
3978 *
3979 * The mmap_sem may have been released depending on flags and our
3980 * return value.  See filemap_fault() and __lock_page_or_retry().
3981 */
3982vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3983		unsigned int flags)
3984{
3985	vm_fault_t ret;
3986
3987	__set_current_state(TASK_RUNNING);
3988
3989	count_vm_event(PGFAULT);
3990	count_memcg_event_mm(vma->vm_mm, PGFAULT);
3991
3992	/* do counter updates before entering really critical section. */
3993	check_sync_rss_stat(current);
3994
3995	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3996					    flags & FAULT_FLAG_INSTRUCTION,
3997					    flags & FAULT_FLAG_REMOTE))
3998		return VM_FAULT_SIGSEGV;
3999
4000	/*
4001	 * Enable the memcg OOM handling for faults triggered in user
4002	 * space.  Kernel faults are handled more gracefully.
4003	 */
4004	if (flags & FAULT_FLAG_USER)
4005		mem_cgroup_enter_user_fault();
4006
4007	if (unlikely(is_vm_hugetlb_page(vma)))
4008		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4009	else
4010		ret = __handle_mm_fault(vma, address, flags);
4011
4012	if (flags & FAULT_FLAG_USER) {
4013		mem_cgroup_exit_user_fault();
4014		/*
4015		 * The task may have entered a memcg OOM situation but
4016		 * if the allocation error was handled gracefully (no
4017		 * VM_FAULT_OOM), there is no need to kill anything.
4018		 * Just clean up the OOM state peacefully.
4019		 */
4020		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4021			mem_cgroup_oom_synchronize(false);
4022	}
4023
4024	return ret;
4025}
4026EXPORT_SYMBOL_GPL(handle_mm_fault);
4027
4028#ifndef __PAGETABLE_P4D_FOLDED
4029/*
4030 * Allocate p4d page table.
4031 * We've already handled the fast-path in-line.
4032 */
4033int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4034{
4035	p4d_t *new = p4d_alloc_one(mm, address);
4036	if (!new)
4037		return -ENOMEM;
4038
4039	smp_wmb(); /* See comment in __pte_alloc */
4040
4041	spin_lock(&mm->page_table_lock);
4042	if (pgd_present(*pgd))		/* Another has populated it */
4043		p4d_free(mm, new);
4044	else
4045		pgd_populate(mm, pgd, new);
4046	spin_unlock(&mm->page_table_lock);
4047	return 0;
4048}
4049#endif /* __PAGETABLE_P4D_FOLDED */
4050
4051#ifndef __PAGETABLE_PUD_FOLDED
4052/*
4053 * Allocate page upper directory.
4054 * We've already handled the fast-path in-line.
4055 */
4056int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4057{
4058	pud_t *new = pud_alloc_one(mm, address);
4059	if (!new)
4060		return -ENOMEM;
4061
4062	smp_wmb(); /* See comment in __pte_alloc */
4063
4064	spin_lock(&mm->page_table_lock);
4065#ifndef __ARCH_HAS_5LEVEL_HACK
4066	if (!p4d_present(*p4d)) {
4067		mm_inc_nr_puds(mm);
4068		p4d_populate(mm, p4d, new);
4069	} else	/* Another has populated it */
4070		pud_free(mm, new);
4071#else
4072	if (!pgd_present(*p4d)) {
4073		mm_inc_nr_puds(mm);
4074		pgd_populate(mm, p4d, new);
4075	} else	/* Another has populated it */
4076		pud_free(mm, new);
4077#endif /* __ARCH_HAS_5LEVEL_HACK */
4078	spin_unlock(&mm->page_table_lock);
4079	return 0;
4080}
4081#endif /* __PAGETABLE_PUD_FOLDED */
4082
4083#ifndef __PAGETABLE_PMD_FOLDED
4084/*
4085 * Allocate page middle directory.
4086 * We've already handled the fast-path in-line.
4087 */
4088int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4089{
4090	spinlock_t *ptl;
4091	pmd_t *new = pmd_alloc_one(mm, address);
4092	if (!new)
4093		return -ENOMEM;
4094
4095	smp_wmb(); /* See comment in __pte_alloc */
4096
4097	ptl = pud_lock(mm, pud);
4098#ifndef __ARCH_HAS_4LEVEL_HACK
4099	if (!pud_present(*pud)) {
4100		mm_inc_nr_pmds(mm);
4101		pud_populate(mm, pud, new);
4102	} else	/* Another has populated it */
4103		pmd_free(mm, new);
4104#else
4105	if (!pgd_present(*pud)) {
4106		mm_inc_nr_pmds(mm);
4107		pgd_populate(mm, pud, new);
4108	} else /* Another has populated it */
4109		pmd_free(mm, new);
4110#endif /* __ARCH_HAS_4LEVEL_HACK */
4111	spin_unlock(ptl);
4112	return 0;
4113}
4114#endif /* __PAGETABLE_PMD_FOLDED */
4115
4116static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4117			    struct mmu_notifier_range *range,
4118			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4119{
4120	pgd_t *pgd;
4121	p4d_t *p4d;
4122	pud_t *pud;
4123	pmd_t *pmd;
4124	pte_t *ptep;
4125
4126	pgd = pgd_offset(mm, address);
4127	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4128		goto out;
4129
4130	p4d = p4d_offset(pgd, address);
4131	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4132		goto out;
4133
4134	pud = pud_offset(p4d, address);
4135	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4136		goto out;
4137
4138	pmd = pmd_offset(pud, address);
4139	VM_BUG_ON(pmd_trans_huge(*pmd));
4140
4141	if (pmd_huge(*pmd)) {
4142		if (!pmdpp)
4143			goto out;
4144
4145		if (range) {
4146			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4147						NULL, mm, address & PMD_MASK,
4148						(address & PMD_MASK) + PMD_SIZE);
4149			mmu_notifier_invalidate_range_start(range);
4150		}
4151		*ptlp = pmd_lock(mm, pmd);
4152		if (pmd_huge(*pmd)) {
4153			*pmdpp = pmd;
4154			return 0;
4155		}
4156		spin_unlock(*ptlp);
4157		if (range)
4158			mmu_notifier_invalidate_range_end(range);
4159	}
4160
4161	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4162		goto out;
4163
4164	if (range) {
4165		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4166					address & PAGE_MASK,
4167					(address & PAGE_MASK) + PAGE_SIZE);
4168		mmu_notifier_invalidate_range_start(range);
4169	}
4170	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4171	if (!pte_present(*ptep))
4172		goto unlock;
4173	*ptepp = ptep;
4174	return 0;
4175unlock:
4176	pte_unmap_unlock(ptep, *ptlp);
4177	if (range)
4178		mmu_notifier_invalidate_range_end(range);
4179out:
4180	return -EINVAL;
4181}
4182
4183static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4184			     pte_t **ptepp, spinlock_t **ptlp)
4185{
4186	int res;
4187
4188	/* (void) is needed to make gcc happy */
4189	(void) __cond_lock(*ptlp,
4190			   !(res = __follow_pte_pmd(mm, address, NULL,
4191						    ptepp, NULL, ptlp)));
4192	return res;
4193}
4194
4195int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4196		   struct mmu_notifier_range *range,
4197		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4198{
4199	int res;
4200
4201	/* (void) is needed to make gcc happy */
4202	(void) __cond_lock(*ptlp,
4203			   !(res = __follow_pte_pmd(mm, address, range,
4204						    ptepp, pmdpp, ptlp)));
4205	return res;
4206}
4207EXPORT_SYMBOL(follow_pte_pmd);
4208
4209/**
4210 * follow_pfn - look up PFN at a user virtual address
4211 * @vma: memory mapping
4212 * @address: user virtual address
4213 * @pfn: location to store found PFN
4214 *
4215 * Only IO mappings and raw PFN mappings are allowed.
4216 *
4217 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4218 */
4219int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4220	unsigned long *pfn)
4221{
4222	int ret = -EINVAL;
4223	spinlock_t *ptl;
4224	pte_t *ptep;
4225
4226	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4227		return ret;
4228
4229	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4230	if (ret)
4231		return ret;
4232	*pfn = pte_pfn(*ptep);
4233	pte_unmap_unlock(ptep, ptl);
4234	return 0;
4235}
4236EXPORT_SYMBOL(follow_pfn);
4237
4238#ifdef CONFIG_HAVE_IOREMAP_PROT
4239int follow_phys(struct vm_area_struct *vma,
4240		unsigned long address, unsigned int flags,
4241		unsigned long *prot, resource_size_t *phys)
4242{
4243	int ret = -EINVAL;
4244	pte_t *ptep, pte;
4245	spinlock_t *ptl;
4246
4247	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4248		goto out;
4249
4250	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4251		goto out;
4252	pte = *ptep;
4253
4254	if ((flags & FOLL_WRITE) && !pte_write(pte))
4255		goto unlock;
4256
4257	*prot = pgprot_val(pte_pgprot(pte));
4258	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4259
4260	ret = 0;
4261unlock:
4262	pte_unmap_unlock(ptep, ptl);
4263out:
4264	return ret;
4265}
4266
4267int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4268			void *buf, int len, int write)
4269{
4270	resource_size_t phys_addr;
4271	unsigned long prot = 0;
4272	void __iomem *maddr;
4273	int offset = addr & (PAGE_SIZE-1);
4274
4275	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4276		return -EINVAL;
4277
4278	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4279	if (!maddr)
4280		return -ENOMEM;
4281
4282	if (write)
4283		memcpy_toio(maddr + offset, buf, len);
4284	else
4285		memcpy_fromio(buf, maddr + offset, len);
4286	iounmap(maddr);
4287
4288	return len;
4289}
4290EXPORT_SYMBOL_GPL(generic_access_phys);
4291#endif
4292
4293/*
4294 * Access another process' address space as given in mm.  If non-NULL, use the
4295 * given task for page fault accounting.
4296 */
4297int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4298		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4299{
4300	struct vm_area_struct *vma;
4301	void *old_buf = buf;
4302	int write = gup_flags & FOLL_WRITE;
4303
4304	if (down_read_killable(&mm->mmap_sem))
4305		return 0;
4306
4307	/* ignore errors, just check how much was successfully transferred */
4308	while (len) {
4309		int bytes, ret, offset;
4310		void *maddr;
4311		struct page *page = NULL;
4312
4313		ret = get_user_pages_remote(tsk, mm, addr, 1,
4314				gup_flags, &page, &vma, NULL);
4315		if (ret <= 0) {
4316#ifndef CONFIG_HAVE_IOREMAP_PROT
4317			break;
4318#else
4319			/*
4320			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4321			 * we can access using slightly different code.
4322			 */
4323			vma = find_vma(mm, addr);
4324			if (!vma || vma->vm_start > addr)
4325				break;
4326			if (vma->vm_ops && vma->vm_ops->access)
4327				ret = vma->vm_ops->access(vma, addr, buf,
4328							  len, write);
4329			if (ret <= 0)
4330				break;
4331			bytes = ret;
4332#endif
4333		} else {
4334			bytes = len;
4335			offset = addr & (PAGE_SIZE-1);
4336			if (bytes > PAGE_SIZE-offset)
4337				bytes = PAGE_SIZE-offset;
4338
4339			maddr = kmap(page);
4340			if (write) {
4341				copy_to_user_page(vma, page, addr,
4342						  maddr + offset, buf, bytes);
4343				set_page_dirty_lock(page);
4344			} else {
4345				copy_from_user_page(vma, page, addr,
4346						    buf, maddr + offset, bytes);
4347			}
4348			kunmap(page);
4349			put_page(page);
4350		}
4351		len -= bytes;
4352		buf += bytes;
4353		addr += bytes;
4354	}
4355	up_read(&mm->mmap_sem);
4356
4357	return buf - old_buf;
4358}
4359
4360/**
4361 * access_remote_vm - access another process' address space
4362 * @mm:		the mm_struct of the target address space
4363 * @addr:	start address to access
4364 * @buf:	source or destination buffer
4365 * @len:	number of bytes to transfer
4366 * @gup_flags:	flags modifying lookup behaviour
4367 *
4368 * The caller must hold a reference on @mm.
4369 *
4370 * Return: number of bytes copied from source to destination.
4371 */
4372int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4373		void *buf, int len, unsigned int gup_flags)
4374{
4375	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4376}
4377
4378/*
4379 * Access another process' address space.
4380 * Source/target buffer must be kernel space,
4381 * Do not walk the page table directly, use get_user_pages
4382 */
4383int access_process_vm(struct task_struct *tsk, unsigned long addr,
4384		void *buf, int len, unsigned int gup_flags)
4385{
4386	struct mm_struct *mm;
4387	int ret;
4388
4389	mm = get_task_mm(tsk);
4390	if (!mm)
4391		return 0;
4392
4393	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4394
4395	mmput(mm);
4396
4397	return ret;
4398}
4399EXPORT_SYMBOL_GPL(access_process_vm);
4400
4401/*
4402 * Print the name of a VMA.
4403 */
4404void print_vma_addr(char *prefix, unsigned long ip)
4405{
4406	struct mm_struct *mm = current->mm;
4407	struct vm_area_struct *vma;
4408
4409	/*
4410	 * we might be running from an atomic context so we cannot sleep
4411	 */
4412	if (!down_read_trylock(&mm->mmap_sem))
4413		return;
4414
4415	vma = find_vma(mm, ip);
4416	if (vma && vma->vm_file) {
4417		struct file *f = vma->vm_file;
4418		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4419		if (buf) {
4420			char *p;
4421
4422			p = file_path(f, buf, PAGE_SIZE);
4423			if (IS_ERR(p))
4424				p = "?";
4425			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4426					vma->vm_start,
4427					vma->vm_end - vma->vm_start);
4428			free_page((unsigned long)buf);
4429		}
4430	}
4431	up_read(&mm->mmap_sem);
4432}
4433
4434#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4435void __might_fault(const char *file, int line)
4436{
4437	/*
4438	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4439	 * holding the mmap_sem, this is safe because kernel memory doesn't
4440	 * get paged out, therefore we'll never actually fault, and the
4441	 * below annotations will generate false positives.
4442	 */
4443	if (uaccess_kernel())
4444		return;
4445	if (pagefault_disabled())
4446		return;
4447	__might_sleep(file, line, 0);
4448#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4449	if (current->mm)
4450		might_lock_read(&current->mm->mmap_sem);
4451#endif
4452}
4453EXPORT_SYMBOL(__might_fault);
4454#endif
4455
4456#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4457/*
4458 * Process all subpages of the specified huge page with the specified
4459 * operation.  The target subpage will be processed last to keep its
4460 * cache lines hot.
4461 */
4462static inline void process_huge_page(
4463	unsigned long addr_hint, unsigned int pages_per_huge_page,
4464	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4465	void *arg)
 
 
 
 
 
 
 
4466{
4467	int i, n, base, l;
4468	unsigned long addr = addr_hint &
4469		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4470
4471	/* Process target subpage last to keep its cache lines hot */
 
 
 
 
 
4472	might_sleep();
4473	n = (addr_hint - addr) / PAGE_SIZE;
4474	if (2 * n <= pages_per_huge_page) {
4475		/* If target subpage in first half of huge page */
4476		base = 0;
4477		l = n;
4478		/* Process subpages at the end of huge page */
4479		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4480			cond_resched();
4481			process_subpage(addr + i * PAGE_SIZE, i, arg);
4482		}
4483	} else {
4484		/* If target subpage in second half of huge page */
4485		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4486		l = pages_per_huge_page - n;
4487		/* Process subpages at the begin of huge page */
4488		for (i = 0; i < base; i++) {
4489			cond_resched();
4490			process_subpage(addr + i * PAGE_SIZE, i, arg);
4491		}
4492	}
4493	/*
4494	 * Process remaining subpages in left-right-left-right pattern
4495	 * towards the target subpage
4496	 */
4497	for (i = 0; i < l; i++) {
4498		int left_idx = base + i;
4499		int right_idx = base + 2 * l - 1 - i;
4500
4501		cond_resched();
4502		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4503		cond_resched();
4504		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4505	}
4506}
4507
4508static void clear_gigantic_page(struct page *page,
4509				unsigned long addr,
4510				unsigned int pages_per_huge_page)
4511{
4512	int i;
4513	struct page *p = page;
4514
4515	might_sleep();
4516	for (i = 0; i < pages_per_huge_page;
4517	     i++, p = mem_map_next(p, page, i)) {
4518		cond_resched();
4519		clear_user_highpage(p, addr + i * PAGE_SIZE);
4520	}
4521}
4522
4523static void clear_subpage(unsigned long addr, int idx, void *arg)
4524{
4525	struct page *page = arg;
4526
4527	clear_user_highpage(page + idx, addr);
4528}
4529
4530void clear_huge_page(struct page *page,
4531		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4532{
4533	unsigned long addr = addr_hint &
4534		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4535
4536	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4537		clear_gigantic_page(page, addr, pages_per_huge_page);
4538		return;
4539	}
4540
4541	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4542}
4543
4544static void copy_user_gigantic_page(struct page *dst, struct page *src,
4545				    unsigned long addr,
4546				    struct vm_area_struct *vma,
4547				    unsigned int pages_per_huge_page)
4548{
4549	int i;
4550	struct page *dst_base = dst;
4551	struct page *src_base = src;
4552
4553	for (i = 0; i < pages_per_huge_page; ) {
4554		cond_resched();
4555		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4556
4557		i++;
4558		dst = mem_map_next(dst, dst_base, i);
4559		src = mem_map_next(src, src_base, i);
4560	}
4561}
4562
4563struct copy_subpage_arg {
4564	struct page *dst;
4565	struct page *src;
4566	struct vm_area_struct *vma;
4567};
4568
4569static void copy_subpage(unsigned long addr, int idx, void *arg)
4570{
4571	struct copy_subpage_arg *copy_arg = arg;
4572
4573	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4574			   addr, copy_arg->vma);
4575}
4576
4577void copy_user_huge_page(struct page *dst, struct page *src,
4578			 unsigned long addr_hint, struct vm_area_struct *vma,
4579			 unsigned int pages_per_huge_page)
4580{
4581	unsigned long addr = addr_hint &
4582		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4583	struct copy_subpage_arg arg = {
4584		.dst = dst,
4585		.src = src,
4586		.vma = vma,
4587	};
4588
4589	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4590		copy_user_gigantic_page(dst, src, addr, vma,
4591					pages_per_huge_page);
4592		return;
4593	}
4594
4595	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
 
 
 
 
4596}
4597
4598long copy_huge_page_from_user(struct page *dst_page,
4599				const void __user *usr_src,
4600				unsigned int pages_per_huge_page,
4601				bool allow_pagefault)
4602{
4603	void *src = (void *)usr_src;
4604	void *page_kaddr;
4605	unsigned long i, rc = 0;
4606	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4607
4608	for (i = 0; i < pages_per_huge_page; i++) {
4609		if (allow_pagefault)
4610			page_kaddr = kmap(dst_page + i);
4611		else
4612			page_kaddr = kmap_atomic(dst_page + i);
4613		rc = copy_from_user(page_kaddr,
4614				(const void __user *)(src + i * PAGE_SIZE),
4615				PAGE_SIZE);
4616		if (allow_pagefault)
4617			kunmap(dst_page + i);
4618		else
4619			kunmap_atomic(page_kaddr);
4620
4621		ret_val -= (PAGE_SIZE - rc);
4622		if (rc)
4623			break;
4624
4625		cond_resched();
4626	}
4627	return ret_val;
4628}
4629#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4630
4631#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4632
4633static struct kmem_cache *page_ptl_cachep;
4634
4635void __init ptlock_cache_init(void)
4636{
4637	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4638			SLAB_PANIC, NULL);
4639}
4640
4641bool ptlock_alloc(struct page *page)
4642{
4643	spinlock_t *ptl;
4644
4645	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4646	if (!ptl)
4647		return false;
4648	page->ptl = ptl;
4649	return true;
4650}
4651
4652void ptlock_free(struct page *page)
4653{
4654	kmem_cache_free(page_ptl_cachep, page->ptl);
4655}
4656#endif
v4.17
 
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *		Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *		(Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
  43#include <linux/sched/mm.h>
  44#include <linux/sched/coredump.h>
  45#include <linux/sched/numa_balancing.h>
  46#include <linux/sched/task.h>
  47#include <linux/hugetlb.h>
  48#include <linux/mman.h>
  49#include <linux/swap.h>
  50#include <linux/highmem.h>
  51#include <linux/pagemap.h>
  52#include <linux/memremap.h>
  53#include <linux/ksm.h>
  54#include <linux/rmap.h>
  55#include <linux/export.h>
  56#include <linux/delayacct.h>
  57#include <linux/init.h>
  58#include <linux/pfn_t.h>
  59#include <linux/writeback.h>
  60#include <linux/memcontrol.h>
  61#include <linux/mmu_notifier.h>
  62#include <linux/swapops.h>
  63#include <linux/elf.h>
  64#include <linux/gfp.h>
  65#include <linux/migrate.h>
  66#include <linux/string.h>
  67#include <linux/dma-debug.h>
  68#include <linux/debugfs.h>
  69#include <linux/userfaultfd_k.h>
  70#include <linux/dax.h>
  71#include <linux/oom.h>
 
  72
  73#include <asm/io.h>
  74#include <asm/mmu_context.h>
  75#include <asm/pgalloc.h>
  76#include <linux/uaccess.h>
  77#include <asm/tlb.h>
  78#include <asm/tlbflush.h>
  79#include <asm/pgtable.h>
  80
  81#include "internal.h"
  82
  83#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
  84#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  85#endif
  86
  87#ifndef CONFIG_NEED_MULTIPLE_NODES
  88/* use the per-pgdat data instead for discontigmem - mbligh */
  89unsigned long max_mapnr;
  90EXPORT_SYMBOL(max_mapnr);
  91
  92struct page *mem_map;
  93EXPORT_SYMBOL(mem_map);
  94#endif
  95
  96/*
  97 * A number of key systems in x86 including ioremap() rely on the assumption
  98 * that high_memory defines the upper bound on direct map memory, then end
  99 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 101 * and ZONE_HIGHMEM.
 102 */
 103void *high_memory;
 104EXPORT_SYMBOL(high_memory);
 105
 106/*
 107 * Randomize the address space (stacks, mmaps, brk, etc.).
 108 *
 109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 110 *   as ancient (libc5 based) binaries can segfault. )
 111 */
 112int randomize_va_space __read_mostly =
 113#ifdef CONFIG_COMPAT_BRK
 114					1;
 115#else
 116					2;
 117#endif
 118
 119static int __init disable_randmaps(char *s)
 120{
 121	randomize_va_space = 0;
 122	return 1;
 123}
 124__setup("norandmaps", disable_randmaps);
 125
 126unsigned long zero_pfn __read_mostly;
 127EXPORT_SYMBOL(zero_pfn);
 128
 129unsigned long highest_memmap_pfn __read_mostly;
 130
 131/*
 132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 133 */
 134static int __init init_zero_pfn(void)
 135{
 136	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 137	return 0;
 138}
 139core_initcall(init_zero_pfn);
 140
 141
 142#if defined(SPLIT_RSS_COUNTING)
 143
 144void sync_mm_rss(struct mm_struct *mm)
 145{
 146	int i;
 147
 148	for (i = 0; i < NR_MM_COUNTERS; i++) {
 149		if (current->rss_stat.count[i]) {
 150			add_mm_counter(mm, i, current->rss_stat.count[i]);
 151			current->rss_stat.count[i] = 0;
 152		}
 153	}
 154	current->rss_stat.events = 0;
 155}
 156
 157static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 158{
 159	struct task_struct *task = current;
 160
 161	if (likely(task->mm == mm))
 162		task->rss_stat.count[member] += val;
 163	else
 164		add_mm_counter(mm, member, val);
 165}
 166#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 167#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 168
 169/* sync counter once per 64 page faults */
 170#define TASK_RSS_EVENTS_THRESH	(64)
 171static void check_sync_rss_stat(struct task_struct *task)
 172{
 173	if (unlikely(task != current))
 174		return;
 175	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 176		sync_mm_rss(task->mm);
 177}
 178#else /* SPLIT_RSS_COUNTING */
 179
 180#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 181#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 182
 183static void check_sync_rss_stat(struct task_struct *task)
 184{
 185}
 186
 187#endif /* SPLIT_RSS_COUNTING */
 188
 189#ifdef HAVE_GENERIC_MMU_GATHER
 190
 191static bool tlb_next_batch(struct mmu_gather *tlb)
 192{
 193	struct mmu_gather_batch *batch;
 194
 195	batch = tlb->active;
 196	if (batch->next) {
 197		tlb->active = batch->next;
 198		return true;
 199	}
 200
 201	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
 202		return false;
 203
 204	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 205	if (!batch)
 206		return false;
 207
 208	tlb->batch_count++;
 209	batch->next = NULL;
 210	batch->nr   = 0;
 211	batch->max  = MAX_GATHER_BATCH;
 212
 213	tlb->active->next = batch;
 214	tlb->active = batch;
 215
 216	return true;
 217}
 218
 219void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
 220				unsigned long start, unsigned long end)
 221{
 222	tlb->mm = mm;
 223
 224	/* Is it from 0 to ~0? */
 225	tlb->fullmm     = !(start | (end+1));
 226	tlb->need_flush_all = 0;
 227	tlb->local.next = NULL;
 228	tlb->local.nr   = 0;
 229	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 230	tlb->active     = &tlb->local;
 231	tlb->batch_count = 0;
 232
 233#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 234	tlb->batch = NULL;
 235#endif
 236	tlb->page_size = 0;
 237
 238	__tlb_reset_range(tlb);
 239}
 240
 241static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
 242{
 243	if (!tlb->end)
 244		return;
 245
 246	tlb_flush(tlb);
 247	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
 248#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 249	tlb_table_flush(tlb);
 250#endif
 251	__tlb_reset_range(tlb);
 252}
 253
 254static void tlb_flush_mmu_free(struct mmu_gather *tlb)
 255{
 256	struct mmu_gather_batch *batch;
 257
 258	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
 259		free_pages_and_swap_cache(batch->pages, batch->nr);
 260		batch->nr = 0;
 261	}
 262	tlb->active = &tlb->local;
 263}
 264
 265void tlb_flush_mmu(struct mmu_gather *tlb)
 266{
 267	tlb_flush_mmu_tlbonly(tlb);
 268	tlb_flush_mmu_free(tlb);
 269}
 270
 271/* tlb_finish_mmu
 272 *	Called at the end of the shootdown operation to free up any resources
 273 *	that were required.
 274 */
 275void arch_tlb_finish_mmu(struct mmu_gather *tlb,
 276		unsigned long start, unsigned long end, bool force)
 277{
 278	struct mmu_gather_batch *batch, *next;
 279
 280	if (force)
 281		__tlb_adjust_range(tlb, start, end - start);
 282
 283	tlb_flush_mmu(tlb);
 284
 285	/* keep the page table cache within bounds */
 286	check_pgt_cache();
 287
 288	for (batch = tlb->local.next; batch; batch = next) {
 289		next = batch->next;
 290		free_pages((unsigned long)batch, 0);
 291	}
 292	tlb->local.next = NULL;
 293}
 294
 295/* __tlb_remove_page
 296 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 297 *	handling the additional races in SMP caused by other CPUs caching valid
 298 *	mappings in their TLBs. Returns the number of free page slots left.
 299 *	When out of page slots we must call tlb_flush_mmu().
 300 *returns true if the caller should flush.
 301 */
 302bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
 303{
 304	struct mmu_gather_batch *batch;
 305
 306	VM_BUG_ON(!tlb->end);
 307	VM_WARN_ON(tlb->page_size != page_size);
 308
 309	batch = tlb->active;
 310	/*
 311	 * Add the page and check if we are full. If so
 312	 * force a flush.
 313	 */
 314	batch->pages[batch->nr++] = page;
 315	if (batch->nr == batch->max) {
 316		if (!tlb_next_batch(tlb))
 317			return true;
 318		batch = tlb->active;
 319	}
 320	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
 321
 322	return false;
 323}
 324
 325#endif /* HAVE_GENERIC_MMU_GATHER */
 326
 327#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 328
 329/*
 330 * See the comment near struct mmu_table_batch.
 331 */
 332
 333static void tlb_remove_table_smp_sync(void *arg)
 334{
 335	/* Simply deliver the interrupt */
 336}
 337
 338static void tlb_remove_table_one(void *table)
 339{
 340	/*
 341	 * This isn't an RCU grace period and hence the page-tables cannot be
 342	 * assumed to be actually RCU-freed.
 343	 *
 344	 * It is however sufficient for software page-table walkers that rely on
 345	 * IRQ disabling. See the comment near struct mmu_table_batch.
 346	 */
 347	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 348	__tlb_remove_table(table);
 349}
 350
 351static void tlb_remove_table_rcu(struct rcu_head *head)
 352{
 353	struct mmu_table_batch *batch;
 354	int i;
 355
 356	batch = container_of(head, struct mmu_table_batch, rcu);
 357
 358	for (i = 0; i < batch->nr; i++)
 359		__tlb_remove_table(batch->tables[i]);
 360
 361	free_page((unsigned long)batch);
 362}
 363
 364void tlb_table_flush(struct mmu_gather *tlb)
 365{
 366	struct mmu_table_batch **batch = &tlb->batch;
 367
 368	if (*batch) {
 369		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 370		*batch = NULL;
 371	}
 372}
 373
 374void tlb_remove_table(struct mmu_gather *tlb, void *table)
 375{
 376	struct mmu_table_batch **batch = &tlb->batch;
 377
 378	/*
 379	 * When there's less then two users of this mm there cannot be a
 380	 * concurrent page-table walk.
 381	 */
 382	if (atomic_read(&tlb->mm->mm_users) < 2) {
 383		__tlb_remove_table(table);
 384		return;
 385	}
 386
 387	if (*batch == NULL) {
 388		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 389		if (*batch == NULL) {
 390			tlb_remove_table_one(table);
 391			return;
 392		}
 393		(*batch)->nr = 0;
 394	}
 395	(*batch)->tables[(*batch)->nr++] = table;
 396	if ((*batch)->nr == MAX_TABLE_BATCH)
 397		tlb_table_flush(tlb);
 398}
 399
 400#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 401
 402/**
 403 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
 404 * @tlb: the mmu_gather structure to initialize
 405 * @mm: the mm_struct of the target address space
 406 * @start: start of the region that will be removed from the page-table
 407 * @end: end of the region that will be removed from the page-table
 408 *
 409 * Called to initialize an (on-stack) mmu_gather structure for page-table
 410 * tear-down from @mm. The @start and @end are set to 0 and -1
 411 * respectively when @mm is without users and we're going to destroy
 412 * the full address space (exit/execve).
 413 */
 414void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
 415			unsigned long start, unsigned long end)
 416{
 417	arch_tlb_gather_mmu(tlb, mm, start, end);
 418	inc_tlb_flush_pending(tlb->mm);
 419}
 420
 421void tlb_finish_mmu(struct mmu_gather *tlb,
 422		unsigned long start, unsigned long end)
 423{
 424	/*
 425	 * If there are parallel threads are doing PTE changes on same range
 426	 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
 427	 * flush by batching, a thread has stable TLB entry can fail to flush
 428	 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
 429	 * forcefully if we detect parallel PTE batching threads.
 430	 */
 431	bool force = mm_tlb_flush_nested(tlb->mm);
 432
 433	arch_tlb_finish_mmu(tlb, start, end, force);
 434	dec_tlb_flush_pending(tlb->mm);
 435}
 436
 437/*
 438 * Note: this doesn't free the actual pages themselves. That
 439 * has been handled earlier when unmapping all the memory regions.
 440 */
 441static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 442			   unsigned long addr)
 443{
 444	pgtable_t token = pmd_pgtable(*pmd);
 445	pmd_clear(pmd);
 446	pte_free_tlb(tlb, token, addr);
 447	mm_dec_nr_ptes(tlb->mm);
 448}
 449
 450static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 451				unsigned long addr, unsigned long end,
 452				unsigned long floor, unsigned long ceiling)
 453{
 454	pmd_t *pmd;
 455	unsigned long next;
 456	unsigned long start;
 457
 458	start = addr;
 459	pmd = pmd_offset(pud, addr);
 460	do {
 461		next = pmd_addr_end(addr, end);
 462		if (pmd_none_or_clear_bad(pmd))
 463			continue;
 464		free_pte_range(tlb, pmd, addr);
 465	} while (pmd++, addr = next, addr != end);
 466
 467	start &= PUD_MASK;
 468	if (start < floor)
 469		return;
 470	if (ceiling) {
 471		ceiling &= PUD_MASK;
 472		if (!ceiling)
 473			return;
 474	}
 475	if (end - 1 > ceiling - 1)
 476		return;
 477
 478	pmd = pmd_offset(pud, start);
 479	pud_clear(pud);
 480	pmd_free_tlb(tlb, pmd, start);
 481	mm_dec_nr_pmds(tlb->mm);
 482}
 483
 484static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
 485				unsigned long addr, unsigned long end,
 486				unsigned long floor, unsigned long ceiling)
 487{
 488	pud_t *pud;
 489	unsigned long next;
 490	unsigned long start;
 491
 492	start = addr;
 493	pud = pud_offset(p4d, addr);
 494	do {
 495		next = pud_addr_end(addr, end);
 496		if (pud_none_or_clear_bad(pud))
 497			continue;
 498		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 499	} while (pud++, addr = next, addr != end);
 500
 501	start &= P4D_MASK;
 502	if (start < floor)
 503		return;
 504	if (ceiling) {
 505		ceiling &= P4D_MASK;
 506		if (!ceiling)
 507			return;
 508	}
 509	if (end - 1 > ceiling - 1)
 510		return;
 511
 512	pud = pud_offset(p4d, start);
 513	p4d_clear(p4d);
 514	pud_free_tlb(tlb, pud, start);
 515	mm_dec_nr_puds(tlb->mm);
 516}
 517
 518static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
 519				unsigned long addr, unsigned long end,
 520				unsigned long floor, unsigned long ceiling)
 521{
 522	p4d_t *p4d;
 523	unsigned long next;
 524	unsigned long start;
 525
 526	start = addr;
 527	p4d = p4d_offset(pgd, addr);
 528	do {
 529		next = p4d_addr_end(addr, end);
 530		if (p4d_none_or_clear_bad(p4d))
 531			continue;
 532		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
 533	} while (p4d++, addr = next, addr != end);
 534
 535	start &= PGDIR_MASK;
 536	if (start < floor)
 537		return;
 538	if (ceiling) {
 539		ceiling &= PGDIR_MASK;
 540		if (!ceiling)
 541			return;
 542	}
 543	if (end - 1 > ceiling - 1)
 544		return;
 545
 546	p4d = p4d_offset(pgd, start);
 547	pgd_clear(pgd);
 548	p4d_free_tlb(tlb, p4d, start);
 549}
 550
 551/*
 552 * This function frees user-level page tables of a process.
 553 */
 554void free_pgd_range(struct mmu_gather *tlb,
 555			unsigned long addr, unsigned long end,
 556			unsigned long floor, unsigned long ceiling)
 557{
 558	pgd_t *pgd;
 559	unsigned long next;
 560
 561	/*
 562	 * The next few lines have given us lots of grief...
 563	 *
 564	 * Why are we testing PMD* at this top level?  Because often
 565	 * there will be no work to do at all, and we'd prefer not to
 566	 * go all the way down to the bottom just to discover that.
 567	 *
 568	 * Why all these "- 1"s?  Because 0 represents both the bottom
 569	 * of the address space and the top of it (using -1 for the
 570	 * top wouldn't help much: the masks would do the wrong thing).
 571	 * The rule is that addr 0 and floor 0 refer to the bottom of
 572	 * the address space, but end 0 and ceiling 0 refer to the top
 573	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 574	 * that end 0 case should be mythical).
 575	 *
 576	 * Wherever addr is brought up or ceiling brought down, we must
 577	 * be careful to reject "the opposite 0" before it confuses the
 578	 * subsequent tests.  But what about where end is brought down
 579	 * by PMD_SIZE below? no, end can't go down to 0 there.
 580	 *
 581	 * Whereas we round start (addr) and ceiling down, by different
 582	 * masks at different levels, in order to test whether a table
 583	 * now has no other vmas using it, so can be freed, we don't
 584	 * bother to round floor or end up - the tests don't need that.
 585	 */
 586
 587	addr &= PMD_MASK;
 588	if (addr < floor) {
 589		addr += PMD_SIZE;
 590		if (!addr)
 591			return;
 592	}
 593	if (ceiling) {
 594		ceiling &= PMD_MASK;
 595		if (!ceiling)
 596			return;
 597	}
 598	if (end - 1 > ceiling - 1)
 599		end -= PMD_SIZE;
 600	if (addr > end - 1)
 601		return;
 602	/*
 603	 * We add page table cache pages with PAGE_SIZE,
 604	 * (see pte_free_tlb()), flush the tlb if we need
 605	 */
 606	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
 607	pgd = pgd_offset(tlb->mm, addr);
 608	do {
 609		next = pgd_addr_end(addr, end);
 610		if (pgd_none_or_clear_bad(pgd))
 611			continue;
 612		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
 613	} while (pgd++, addr = next, addr != end);
 614}
 615
 616void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 617		unsigned long floor, unsigned long ceiling)
 618{
 619	while (vma) {
 620		struct vm_area_struct *next = vma->vm_next;
 621		unsigned long addr = vma->vm_start;
 622
 623		/*
 624		 * Hide vma from rmap and truncate_pagecache before freeing
 625		 * pgtables
 626		 */
 627		unlink_anon_vmas(vma);
 628		unlink_file_vma(vma);
 629
 630		if (is_vm_hugetlb_page(vma)) {
 631			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 632				floor, next ? next->vm_start : ceiling);
 633		} else {
 634			/*
 635			 * Optimization: gather nearby vmas into one call down
 636			 */
 637			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 638			       && !is_vm_hugetlb_page(next)) {
 639				vma = next;
 640				next = vma->vm_next;
 641				unlink_anon_vmas(vma);
 642				unlink_file_vma(vma);
 643			}
 644			free_pgd_range(tlb, addr, vma->vm_end,
 645				floor, next ? next->vm_start : ceiling);
 646		}
 647		vma = next;
 648	}
 649}
 650
 651int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
 652{
 653	spinlock_t *ptl;
 654	pgtable_t new = pte_alloc_one(mm, address);
 655	if (!new)
 656		return -ENOMEM;
 657
 658	/*
 659	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 660	 * visible before the pte is made visible to other CPUs by being
 661	 * put into page tables.
 662	 *
 663	 * The other side of the story is the pointer chasing in the page
 664	 * table walking code (when walking the page table without locking;
 665	 * ie. most of the time). Fortunately, these data accesses consist
 666	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 667	 * being the notable exception) will already guarantee loads are
 668	 * seen in-order. See the alpha page table accessors for the
 669	 * smp_read_barrier_depends() barriers in page table walking code.
 670	 */
 671	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 672
 673	ptl = pmd_lock(mm, pmd);
 674	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 675		mm_inc_nr_ptes(mm);
 676		pmd_populate(mm, pmd, new);
 677		new = NULL;
 678	}
 679	spin_unlock(ptl);
 680	if (new)
 681		pte_free(mm, new);
 682	return 0;
 683}
 684
 685int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 686{
 687	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 688	if (!new)
 689		return -ENOMEM;
 690
 691	smp_wmb(); /* See comment in __pte_alloc */
 692
 693	spin_lock(&init_mm.page_table_lock);
 694	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 695		pmd_populate_kernel(&init_mm, pmd, new);
 696		new = NULL;
 697	}
 698	spin_unlock(&init_mm.page_table_lock);
 699	if (new)
 700		pte_free_kernel(&init_mm, new);
 701	return 0;
 702}
 703
 704static inline void init_rss_vec(int *rss)
 705{
 706	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 707}
 708
 709static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 710{
 711	int i;
 712
 713	if (current->mm == mm)
 714		sync_mm_rss(mm);
 715	for (i = 0; i < NR_MM_COUNTERS; i++)
 716		if (rss[i])
 717			add_mm_counter(mm, i, rss[i]);
 718}
 719
 720/*
 721 * This function is called to print an error when a bad pte
 722 * is found. For example, we might have a PFN-mapped pte in
 723 * a region that doesn't allow it.
 724 *
 725 * The calling function must still handle the error.
 726 */
 727static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 728			  pte_t pte, struct page *page)
 729{
 730	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 731	p4d_t *p4d = p4d_offset(pgd, addr);
 732	pud_t *pud = pud_offset(p4d, addr);
 733	pmd_t *pmd = pmd_offset(pud, addr);
 734	struct address_space *mapping;
 735	pgoff_t index;
 736	static unsigned long resume;
 737	static unsigned long nr_shown;
 738	static unsigned long nr_unshown;
 739
 740	/*
 741	 * Allow a burst of 60 reports, then keep quiet for that minute;
 742	 * or allow a steady drip of one report per second.
 743	 */
 744	if (nr_shown == 60) {
 745		if (time_before(jiffies, resume)) {
 746			nr_unshown++;
 747			return;
 748		}
 749		if (nr_unshown) {
 750			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 751				 nr_unshown);
 752			nr_unshown = 0;
 753		}
 754		nr_shown = 0;
 755	}
 756	if (nr_shown++ == 0)
 757		resume = jiffies + 60 * HZ;
 758
 759	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 760	index = linear_page_index(vma, addr);
 761
 762	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 763		 current->comm,
 764		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 765	if (page)
 766		dump_page(page, "bad pte");
 767	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 768		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 769	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
 770		 vma->vm_file,
 771		 vma->vm_ops ? vma->vm_ops->fault : NULL,
 772		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 773		 mapping ? mapping->a_ops->readpage : NULL);
 774	dump_stack();
 775	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 776}
 777
 778/*
 779 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 780 *
 781 * "Special" mappings do not wish to be associated with a "struct page" (either
 782 * it doesn't exist, or it exists but they don't want to touch it). In this
 783 * case, NULL is returned here. "Normal" mappings do have a struct page.
 784 *
 785 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 786 * pte bit, in which case this function is trivial. Secondly, an architecture
 787 * may not have a spare pte bit, which requires a more complicated scheme,
 788 * described below.
 789 *
 790 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 791 * special mapping (even if there are underlying and valid "struct pages").
 792 * COWed pages of a VM_PFNMAP are always normal.
 793 *
 794 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 795 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 796 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 797 * mapping will always honor the rule
 798 *
 799 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 800 *
 801 * And for normal mappings this is false.
 802 *
 803 * This restricts such mappings to be a linear translation from virtual address
 804 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 805 * as the vma is not a COW mapping; in that case, we know that all ptes are
 806 * special (because none can have been COWed).
 807 *
 808 *
 809 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 810 *
 811 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 812 * page" backing, however the difference is that _all_ pages with a struct
 813 * page (that is, those where pfn_valid is true) are refcounted and considered
 814 * normal pages by the VM. The disadvantage is that pages are refcounted
 815 * (which can be slower and simply not an option for some PFNMAP users). The
 816 * advantage is that we don't have to follow the strict linearity rule of
 817 * PFNMAP mappings in order to support COWable mappings.
 818 *
 819 */
 820#ifdef __HAVE_ARCH_PTE_SPECIAL
 821# define HAVE_PTE_SPECIAL 1
 822#else
 823# define HAVE_PTE_SPECIAL 0
 824#endif
 825struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 826			     pte_t pte, bool with_public_device)
 827{
 828	unsigned long pfn = pte_pfn(pte);
 829
 830	if (HAVE_PTE_SPECIAL) {
 831		if (likely(!pte_special(pte)))
 832			goto check_pfn;
 833		if (vma->vm_ops && vma->vm_ops->find_special_page)
 834			return vma->vm_ops->find_special_page(vma, addr);
 835		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 836			return NULL;
 837		if (is_zero_pfn(pfn))
 838			return NULL;
 
 
 839
 840		/*
 841		 * Device public pages are special pages (they are ZONE_DEVICE
 842		 * pages but different from persistent memory). They behave
 843		 * allmost like normal pages. The difference is that they are
 844		 * not on the lru and thus should never be involve with any-
 845		 * thing that involve lru manipulation (mlock, numa balancing,
 846		 * ...).
 847		 *
 848		 * This is why we still want to return NULL for such page from
 849		 * vm_normal_page() so that we do not have to special case all
 850		 * call site of vm_normal_page().
 851		 */
 852		if (likely(pfn <= highest_memmap_pfn)) {
 853			struct page *page = pfn_to_page(pfn);
 854
 855			if (is_device_public_page(page)) {
 856				if (with_public_device)
 857					return page;
 858				return NULL;
 859			}
 860		}
 861		print_bad_pte(vma, addr, pte, NULL);
 862		return NULL;
 863	}
 864
 865	/* !HAVE_PTE_SPECIAL case follows: */
 866
 867	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 868		if (vma->vm_flags & VM_MIXEDMAP) {
 869			if (!pfn_valid(pfn))
 870				return NULL;
 871			goto out;
 872		} else {
 873			unsigned long off;
 874			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 875			if (pfn == vma->vm_pgoff + off)
 876				return NULL;
 877			if (!is_cow_mapping(vma->vm_flags))
 878				return NULL;
 879		}
 880	}
 881
 882	if (is_zero_pfn(pfn))
 883		return NULL;
 
 884check_pfn:
 885	if (unlikely(pfn > highest_memmap_pfn)) {
 886		print_bad_pte(vma, addr, pte, NULL);
 887		return NULL;
 888	}
 889
 890	/*
 891	 * NOTE! We still have PageReserved() pages in the page tables.
 892	 * eg. VDSO mappings can cause them to exist.
 893	 */
 894out:
 895	return pfn_to_page(pfn);
 896}
 897
 898#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 899struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 900				pmd_t pmd)
 901{
 902	unsigned long pfn = pmd_pfn(pmd);
 903
 904	/*
 905	 * There is no pmd_special() but there may be special pmds, e.g.
 906	 * in a direct-access (dax) mapping, so let's just replicate the
 907	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
 908	 */
 909	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 910		if (vma->vm_flags & VM_MIXEDMAP) {
 911			if (!pfn_valid(pfn))
 912				return NULL;
 913			goto out;
 914		} else {
 915			unsigned long off;
 916			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 917			if (pfn == vma->vm_pgoff + off)
 918				return NULL;
 919			if (!is_cow_mapping(vma->vm_flags))
 920				return NULL;
 921		}
 922	}
 923
 
 
 924	if (is_zero_pfn(pfn))
 925		return NULL;
 926	if (unlikely(pfn > highest_memmap_pfn))
 927		return NULL;
 928
 929	/*
 930	 * NOTE! We still have PageReserved() pages in the page tables.
 931	 * eg. VDSO mappings can cause them to exist.
 932	 */
 933out:
 934	return pfn_to_page(pfn);
 935}
 936#endif
 937
 938/*
 939 * copy one vm_area from one task to the other. Assumes the page tables
 940 * already present in the new task to be cleared in the whole range
 941 * covered by this vma.
 942 */
 943
 944static inline unsigned long
 945copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 946		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 947		unsigned long addr, int *rss)
 948{
 949	unsigned long vm_flags = vma->vm_flags;
 950	pte_t pte = *src_pte;
 951	struct page *page;
 952
 953	/* pte contains position in swap or file, so copy. */
 954	if (unlikely(!pte_present(pte))) {
 955		swp_entry_t entry = pte_to_swp_entry(pte);
 956
 957		if (likely(!non_swap_entry(entry))) {
 958			if (swap_duplicate(entry) < 0)
 959				return entry.val;
 960
 961			/* make sure dst_mm is on swapoff's mmlist. */
 962			if (unlikely(list_empty(&dst_mm->mmlist))) {
 963				spin_lock(&mmlist_lock);
 964				if (list_empty(&dst_mm->mmlist))
 965					list_add(&dst_mm->mmlist,
 966							&src_mm->mmlist);
 967				spin_unlock(&mmlist_lock);
 968			}
 969			rss[MM_SWAPENTS]++;
 970		} else if (is_migration_entry(entry)) {
 971			page = migration_entry_to_page(entry);
 972
 973			rss[mm_counter(page)]++;
 974
 975			if (is_write_migration_entry(entry) &&
 976					is_cow_mapping(vm_flags)) {
 977				/*
 978				 * COW mappings require pages in both
 979				 * parent and child to be set to read.
 980				 */
 981				make_migration_entry_read(&entry);
 982				pte = swp_entry_to_pte(entry);
 983				if (pte_swp_soft_dirty(*src_pte))
 984					pte = pte_swp_mksoft_dirty(pte);
 985				set_pte_at(src_mm, addr, src_pte, pte);
 986			}
 987		} else if (is_device_private_entry(entry)) {
 988			page = device_private_entry_to_page(entry);
 989
 990			/*
 991			 * Update rss count even for unaddressable pages, as
 992			 * they should treated just like normal pages in this
 993			 * respect.
 994			 *
 995			 * We will likely want to have some new rss counters
 996			 * for unaddressable pages, at some point. But for now
 997			 * keep things as they are.
 998			 */
 999			get_page(page);
1000			rss[mm_counter(page)]++;
1001			page_dup_rmap(page, false);
1002
1003			/*
1004			 * We do not preserve soft-dirty information, because so
1005			 * far, checkpoint/restore is the only feature that
1006			 * requires that. And checkpoint/restore does not work
1007			 * when a device driver is involved (you cannot easily
1008			 * save and restore device driver state).
1009			 */
1010			if (is_write_device_private_entry(entry) &&
1011			    is_cow_mapping(vm_flags)) {
1012				make_device_private_entry_read(&entry);
1013				pte = swp_entry_to_pte(entry);
1014				set_pte_at(src_mm, addr, src_pte, pte);
1015			}
1016		}
1017		goto out_set_pte;
1018	}
1019
1020	/*
1021	 * If it's a COW mapping, write protect it both
1022	 * in the parent and the child
1023	 */
1024	if (is_cow_mapping(vm_flags)) {
1025		ptep_set_wrprotect(src_mm, addr, src_pte);
1026		pte = pte_wrprotect(pte);
1027	}
1028
1029	/*
1030	 * If it's a shared mapping, mark it clean in
1031	 * the child
1032	 */
1033	if (vm_flags & VM_SHARED)
1034		pte = pte_mkclean(pte);
1035	pte = pte_mkold(pte);
1036
1037	page = vm_normal_page(vma, addr, pte);
1038	if (page) {
1039		get_page(page);
1040		page_dup_rmap(page, false);
1041		rss[mm_counter(page)]++;
1042	} else if (pte_devmap(pte)) {
1043		page = pte_page(pte);
1044
1045		/*
1046		 * Cache coherent device memory behave like regular page and
1047		 * not like persistent memory page. For more informations see
1048		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1049		 */
1050		if (is_device_public_page(page)) {
1051			get_page(page);
1052			page_dup_rmap(page, false);
1053			rss[mm_counter(page)]++;
1054		}
1055	}
1056
1057out_set_pte:
1058	set_pte_at(dst_mm, addr, dst_pte, pte);
1059	return 0;
1060}
1061
1062static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1063		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1064		   unsigned long addr, unsigned long end)
1065{
1066	pte_t *orig_src_pte, *orig_dst_pte;
1067	pte_t *src_pte, *dst_pte;
1068	spinlock_t *src_ptl, *dst_ptl;
1069	int progress = 0;
1070	int rss[NR_MM_COUNTERS];
1071	swp_entry_t entry = (swp_entry_t){0};
1072
1073again:
1074	init_rss_vec(rss);
1075
1076	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1077	if (!dst_pte)
1078		return -ENOMEM;
1079	src_pte = pte_offset_map(src_pmd, addr);
1080	src_ptl = pte_lockptr(src_mm, src_pmd);
1081	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1082	orig_src_pte = src_pte;
1083	orig_dst_pte = dst_pte;
1084	arch_enter_lazy_mmu_mode();
1085
1086	do {
1087		/*
1088		 * We are holding two locks at this point - either of them
1089		 * could generate latencies in another task on another CPU.
1090		 */
1091		if (progress >= 32) {
1092			progress = 0;
1093			if (need_resched() ||
1094			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1095				break;
1096		}
1097		if (pte_none(*src_pte)) {
1098			progress++;
1099			continue;
1100		}
1101		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1102							vma, addr, rss);
1103		if (entry.val)
1104			break;
1105		progress += 8;
1106	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1107
1108	arch_leave_lazy_mmu_mode();
1109	spin_unlock(src_ptl);
1110	pte_unmap(orig_src_pte);
1111	add_mm_rss_vec(dst_mm, rss);
1112	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1113	cond_resched();
1114
1115	if (entry.val) {
1116		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1117			return -ENOMEM;
1118		progress = 0;
1119	}
1120	if (addr != end)
1121		goto again;
1122	return 0;
1123}
1124
1125static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1126		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1127		unsigned long addr, unsigned long end)
1128{
1129	pmd_t *src_pmd, *dst_pmd;
1130	unsigned long next;
1131
1132	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1133	if (!dst_pmd)
1134		return -ENOMEM;
1135	src_pmd = pmd_offset(src_pud, addr);
1136	do {
1137		next = pmd_addr_end(addr, end);
1138		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1139			|| pmd_devmap(*src_pmd)) {
1140			int err;
1141			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1142			err = copy_huge_pmd(dst_mm, src_mm,
1143					    dst_pmd, src_pmd, addr, vma);
1144			if (err == -ENOMEM)
1145				return -ENOMEM;
1146			if (!err)
1147				continue;
1148			/* fall through */
1149		}
1150		if (pmd_none_or_clear_bad(src_pmd))
1151			continue;
1152		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1153						vma, addr, next))
1154			return -ENOMEM;
1155	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1156	return 0;
1157}
1158
1159static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1160		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1161		unsigned long addr, unsigned long end)
1162{
1163	pud_t *src_pud, *dst_pud;
1164	unsigned long next;
1165
1166	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1167	if (!dst_pud)
1168		return -ENOMEM;
1169	src_pud = pud_offset(src_p4d, addr);
1170	do {
1171		next = pud_addr_end(addr, end);
1172		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1173			int err;
1174
1175			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1176			err = copy_huge_pud(dst_mm, src_mm,
1177					    dst_pud, src_pud, addr, vma);
1178			if (err == -ENOMEM)
1179				return -ENOMEM;
1180			if (!err)
1181				continue;
1182			/* fall through */
1183		}
1184		if (pud_none_or_clear_bad(src_pud))
1185			continue;
1186		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1187						vma, addr, next))
1188			return -ENOMEM;
1189	} while (dst_pud++, src_pud++, addr = next, addr != end);
1190	return 0;
1191}
1192
1193static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1194		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1195		unsigned long addr, unsigned long end)
1196{
1197	p4d_t *src_p4d, *dst_p4d;
1198	unsigned long next;
1199
1200	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1201	if (!dst_p4d)
1202		return -ENOMEM;
1203	src_p4d = p4d_offset(src_pgd, addr);
1204	do {
1205		next = p4d_addr_end(addr, end);
1206		if (p4d_none_or_clear_bad(src_p4d))
1207			continue;
1208		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1209						vma, addr, next))
1210			return -ENOMEM;
1211	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1212	return 0;
1213}
1214
1215int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1216		struct vm_area_struct *vma)
1217{
1218	pgd_t *src_pgd, *dst_pgd;
1219	unsigned long next;
1220	unsigned long addr = vma->vm_start;
1221	unsigned long end = vma->vm_end;
1222	unsigned long mmun_start;	/* For mmu_notifiers */
1223	unsigned long mmun_end;		/* For mmu_notifiers */
1224	bool is_cow;
1225	int ret;
1226
1227	/*
1228	 * Don't copy ptes where a page fault will fill them correctly.
1229	 * Fork becomes much lighter when there are big shared or private
1230	 * readonly mappings. The tradeoff is that copy_page_range is more
1231	 * efficient than faulting.
1232	 */
1233	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1234			!vma->anon_vma)
1235		return 0;
1236
1237	if (is_vm_hugetlb_page(vma))
1238		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1239
1240	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1241		/*
1242		 * We do not free on error cases below as remove_vma
1243		 * gets called on error from higher level routine
1244		 */
1245		ret = track_pfn_copy(vma);
1246		if (ret)
1247			return ret;
1248	}
1249
1250	/*
1251	 * We need to invalidate the secondary MMU mappings only when
1252	 * there could be a permission downgrade on the ptes of the
1253	 * parent mm. And a permission downgrade will only happen if
1254	 * is_cow_mapping() returns true.
1255	 */
1256	is_cow = is_cow_mapping(vma->vm_flags);
1257	mmun_start = addr;
1258	mmun_end   = end;
1259	if (is_cow)
1260		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1261						    mmun_end);
 
1262
1263	ret = 0;
1264	dst_pgd = pgd_offset(dst_mm, addr);
1265	src_pgd = pgd_offset(src_mm, addr);
1266	do {
1267		next = pgd_addr_end(addr, end);
1268		if (pgd_none_or_clear_bad(src_pgd))
1269			continue;
1270		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1271					    vma, addr, next))) {
1272			ret = -ENOMEM;
1273			break;
1274		}
1275	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1276
1277	if (is_cow)
1278		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1279	return ret;
1280}
1281
1282static unsigned long zap_pte_range(struct mmu_gather *tlb,
1283				struct vm_area_struct *vma, pmd_t *pmd,
1284				unsigned long addr, unsigned long end,
1285				struct zap_details *details)
1286{
1287	struct mm_struct *mm = tlb->mm;
1288	int force_flush = 0;
1289	int rss[NR_MM_COUNTERS];
1290	spinlock_t *ptl;
1291	pte_t *start_pte;
1292	pte_t *pte;
1293	swp_entry_t entry;
1294
1295	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1296again:
1297	init_rss_vec(rss);
1298	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1299	pte = start_pte;
1300	flush_tlb_batched_pending(mm);
1301	arch_enter_lazy_mmu_mode();
1302	do {
1303		pte_t ptent = *pte;
1304		if (pte_none(ptent))
1305			continue;
1306
 
 
 
1307		if (pte_present(ptent)) {
1308			struct page *page;
1309
1310			page = _vm_normal_page(vma, addr, ptent, true);
1311			if (unlikely(details) && page) {
1312				/*
1313				 * unmap_shared_mapping_pages() wants to
1314				 * invalidate cache without truncating:
1315				 * unmap shared but keep private pages.
1316				 */
1317				if (details->check_mapping &&
1318				    details->check_mapping != page_rmapping(page))
1319					continue;
1320			}
1321			ptent = ptep_get_and_clear_full(mm, addr, pte,
1322							tlb->fullmm);
1323			tlb_remove_tlb_entry(tlb, pte, addr);
1324			if (unlikely(!page))
1325				continue;
1326
1327			if (!PageAnon(page)) {
1328				if (pte_dirty(ptent)) {
1329					force_flush = 1;
1330					set_page_dirty(page);
1331				}
1332				if (pte_young(ptent) &&
1333				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1334					mark_page_accessed(page);
1335			}
1336			rss[mm_counter(page)]--;
1337			page_remove_rmap(page, false);
1338			if (unlikely(page_mapcount(page) < 0))
1339				print_bad_pte(vma, addr, ptent, page);
1340			if (unlikely(__tlb_remove_page(tlb, page))) {
1341				force_flush = 1;
1342				addr += PAGE_SIZE;
1343				break;
1344			}
1345			continue;
1346		}
1347
1348		entry = pte_to_swp_entry(ptent);
1349		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1350			struct page *page = device_private_entry_to_page(entry);
1351
1352			if (unlikely(details && details->check_mapping)) {
1353				/*
1354				 * unmap_shared_mapping_pages() wants to
1355				 * invalidate cache without truncating:
1356				 * unmap shared but keep private pages.
1357				 */
1358				if (details->check_mapping !=
1359				    page_rmapping(page))
1360					continue;
1361			}
1362
1363			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1364			rss[mm_counter(page)]--;
1365			page_remove_rmap(page, false);
1366			put_page(page);
1367			continue;
1368		}
1369
1370		/* If details->check_mapping, we leave swap entries. */
1371		if (unlikely(details))
1372			continue;
1373
1374		entry = pte_to_swp_entry(ptent);
1375		if (!non_swap_entry(entry))
1376			rss[MM_SWAPENTS]--;
1377		else if (is_migration_entry(entry)) {
1378			struct page *page;
1379
1380			page = migration_entry_to_page(entry);
1381			rss[mm_counter(page)]--;
1382		}
1383		if (unlikely(!free_swap_and_cache(entry)))
1384			print_bad_pte(vma, addr, ptent, NULL);
1385		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1386	} while (pte++, addr += PAGE_SIZE, addr != end);
1387
1388	add_mm_rss_vec(mm, rss);
1389	arch_leave_lazy_mmu_mode();
1390
1391	/* Do the actual TLB flush before dropping ptl */
1392	if (force_flush)
1393		tlb_flush_mmu_tlbonly(tlb);
1394	pte_unmap_unlock(start_pte, ptl);
1395
1396	/*
1397	 * If we forced a TLB flush (either due to running out of
1398	 * batch buffers or because we needed to flush dirty TLB
1399	 * entries before releasing the ptl), free the batched
1400	 * memory too. Restart if we didn't do everything.
1401	 */
1402	if (force_flush) {
1403		force_flush = 0;
1404		tlb_flush_mmu_free(tlb);
1405		if (addr != end)
1406			goto again;
 
 
 
1407	}
1408
1409	return addr;
1410}
1411
1412static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1413				struct vm_area_struct *vma, pud_t *pud,
1414				unsigned long addr, unsigned long end,
1415				struct zap_details *details)
1416{
1417	pmd_t *pmd;
1418	unsigned long next;
1419
1420	pmd = pmd_offset(pud, addr);
1421	do {
1422		next = pmd_addr_end(addr, end);
1423		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1424			if (next - addr != HPAGE_PMD_SIZE) {
1425				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1426				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1427				__split_huge_pmd(vma, pmd, addr, false, NULL);
1428			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1429				goto next;
1430			/* fall through */
1431		}
1432		/*
1433		 * Here there can be other concurrent MADV_DONTNEED or
1434		 * trans huge page faults running, and if the pmd is
1435		 * none or trans huge it can change under us. This is
1436		 * because MADV_DONTNEED holds the mmap_sem in read
1437		 * mode.
1438		 */
1439		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1440			goto next;
1441		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1442next:
1443		cond_resched();
1444	} while (pmd++, addr = next, addr != end);
1445
1446	return addr;
1447}
1448
1449static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1450				struct vm_area_struct *vma, p4d_t *p4d,
1451				unsigned long addr, unsigned long end,
1452				struct zap_details *details)
1453{
1454	pud_t *pud;
1455	unsigned long next;
1456
1457	pud = pud_offset(p4d, addr);
1458	do {
1459		next = pud_addr_end(addr, end);
1460		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1461			if (next - addr != HPAGE_PUD_SIZE) {
1462				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1463				split_huge_pud(vma, pud, addr);
1464			} else if (zap_huge_pud(tlb, vma, pud, addr))
1465				goto next;
1466			/* fall through */
1467		}
1468		if (pud_none_or_clear_bad(pud))
1469			continue;
1470		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1471next:
1472		cond_resched();
1473	} while (pud++, addr = next, addr != end);
1474
1475	return addr;
1476}
1477
1478static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1479				struct vm_area_struct *vma, pgd_t *pgd,
1480				unsigned long addr, unsigned long end,
1481				struct zap_details *details)
1482{
1483	p4d_t *p4d;
1484	unsigned long next;
1485
1486	p4d = p4d_offset(pgd, addr);
1487	do {
1488		next = p4d_addr_end(addr, end);
1489		if (p4d_none_or_clear_bad(p4d))
1490			continue;
1491		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1492	} while (p4d++, addr = next, addr != end);
1493
1494	return addr;
1495}
1496
1497void unmap_page_range(struct mmu_gather *tlb,
1498			     struct vm_area_struct *vma,
1499			     unsigned long addr, unsigned long end,
1500			     struct zap_details *details)
1501{
1502	pgd_t *pgd;
1503	unsigned long next;
1504
1505	BUG_ON(addr >= end);
1506	tlb_start_vma(tlb, vma);
1507	pgd = pgd_offset(vma->vm_mm, addr);
1508	do {
1509		next = pgd_addr_end(addr, end);
1510		if (pgd_none_or_clear_bad(pgd))
1511			continue;
1512		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1513	} while (pgd++, addr = next, addr != end);
1514	tlb_end_vma(tlb, vma);
1515}
1516
1517
1518static void unmap_single_vma(struct mmu_gather *tlb,
1519		struct vm_area_struct *vma, unsigned long start_addr,
1520		unsigned long end_addr,
1521		struct zap_details *details)
1522{
1523	unsigned long start = max(vma->vm_start, start_addr);
1524	unsigned long end;
1525
1526	if (start >= vma->vm_end)
1527		return;
1528	end = min(vma->vm_end, end_addr);
1529	if (end <= vma->vm_start)
1530		return;
1531
1532	if (vma->vm_file)
1533		uprobe_munmap(vma, start, end);
1534
1535	if (unlikely(vma->vm_flags & VM_PFNMAP))
1536		untrack_pfn(vma, 0, 0);
1537
1538	if (start != end) {
1539		if (unlikely(is_vm_hugetlb_page(vma))) {
1540			/*
1541			 * It is undesirable to test vma->vm_file as it
1542			 * should be non-null for valid hugetlb area.
1543			 * However, vm_file will be NULL in the error
1544			 * cleanup path of mmap_region. When
1545			 * hugetlbfs ->mmap method fails,
1546			 * mmap_region() nullifies vma->vm_file
1547			 * before calling this function to clean up.
1548			 * Since no pte has actually been setup, it is
1549			 * safe to do nothing in this case.
1550			 */
1551			if (vma->vm_file) {
1552				i_mmap_lock_write(vma->vm_file->f_mapping);
1553				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1554				i_mmap_unlock_write(vma->vm_file->f_mapping);
1555			}
1556		} else
1557			unmap_page_range(tlb, vma, start, end, details);
1558	}
1559}
1560
1561/**
1562 * unmap_vmas - unmap a range of memory covered by a list of vma's
1563 * @tlb: address of the caller's struct mmu_gather
1564 * @vma: the starting vma
1565 * @start_addr: virtual address at which to start unmapping
1566 * @end_addr: virtual address at which to end unmapping
1567 *
1568 * Unmap all pages in the vma list.
1569 *
1570 * Only addresses between `start' and `end' will be unmapped.
1571 *
1572 * The VMA list must be sorted in ascending virtual address order.
1573 *
1574 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1575 * range after unmap_vmas() returns.  So the only responsibility here is to
1576 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1577 * drops the lock and schedules.
1578 */
1579void unmap_vmas(struct mmu_gather *tlb,
1580		struct vm_area_struct *vma, unsigned long start_addr,
1581		unsigned long end_addr)
1582{
1583	struct mm_struct *mm = vma->vm_mm;
1584
1585	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
 
 
1586	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1587		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1588	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1589}
1590
1591/**
1592 * zap_page_range - remove user pages in a given range
1593 * @vma: vm_area_struct holding the applicable pages
1594 * @start: starting address of pages to zap
1595 * @size: number of bytes to zap
1596 *
1597 * Caller must protect the VMA list
1598 */
1599void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1600		unsigned long size)
1601{
1602	struct mm_struct *mm = vma->vm_mm;
1603	struct mmu_gather tlb;
1604	unsigned long end = start + size;
1605
1606	lru_add_drain();
1607	tlb_gather_mmu(&tlb, mm, start, end);
1608	update_hiwater_rss(mm);
1609	mmu_notifier_invalidate_range_start(mm, start, end);
1610	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1611		unmap_single_vma(&tlb, vma, start, end, NULL);
1612
1613		/*
1614		 * zap_page_range does not specify whether mmap_sem should be
1615		 * held for read or write. That allows parallel zap_page_range
1616		 * operations to unmap a PTE and defer a flush meaning that
1617		 * this call observes pte_none and fails to flush the TLB.
1618		 * Rather than adding a complex API, ensure that no stale
1619		 * TLB entries exist when this call returns.
1620		 */
1621		flush_tlb_range(vma, start, end);
1622	}
1623
1624	mmu_notifier_invalidate_range_end(mm, start, end);
1625	tlb_finish_mmu(&tlb, start, end);
1626}
1627
1628/**
1629 * zap_page_range_single - remove user pages in a given range
1630 * @vma: vm_area_struct holding the applicable pages
1631 * @address: starting address of pages to zap
1632 * @size: number of bytes to zap
1633 * @details: details of shared cache invalidation
1634 *
1635 * The range must fit into one VMA.
1636 */
1637static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1638		unsigned long size, struct zap_details *details)
1639{
1640	struct mm_struct *mm = vma->vm_mm;
1641	struct mmu_gather tlb;
1642	unsigned long end = address + size;
1643
1644	lru_add_drain();
1645	tlb_gather_mmu(&tlb, mm, address, end);
1646	update_hiwater_rss(mm);
1647	mmu_notifier_invalidate_range_start(mm, address, end);
1648	unmap_single_vma(&tlb, vma, address, end, details);
1649	mmu_notifier_invalidate_range_end(mm, address, end);
1650	tlb_finish_mmu(&tlb, address, end);
 
 
1651}
1652
1653/**
1654 * zap_vma_ptes - remove ptes mapping the vma
1655 * @vma: vm_area_struct holding ptes to be zapped
1656 * @address: starting address of pages to zap
1657 * @size: number of bytes to zap
1658 *
1659 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1660 *
1661 * The entire address range must be fully contained within the vma.
1662 *
1663 * Returns 0 if successful.
1664 */
1665int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1666		unsigned long size)
1667{
1668	if (address < vma->vm_start || address + size > vma->vm_end ||
1669	    		!(vma->vm_flags & VM_PFNMAP))
1670		return -1;
 
1671	zap_page_range_single(vma, address, size, NULL);
1672	return 0;
1673}
1674EXPORT_SYMBOL_GPL(zap_vma_ptes);
1675
1676pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1677			spinlock_t **ptl)
1678{
1679	pgd_t *pgd;
1680	p4d_t *p4d;
1681	pud_t *pud;
1682	pmd_t *pmd;
1683
1684	pgd = pgd_offset(mm, addr);
1685	p4d = p4d_alloc(mm, pgd, addr);
1686	if (!p4d)
1687		return NULL;
1688	pud = pud_alloc(mm, p4d, addr);
1689	if (!pud)
1690		return NULL;
1691	pmd = pmd_alloc(mm, pud, addr);
1692	if (!pmd)
1693		return NULL;
1694
1695	VM_BUG_ON(pmd_trans_huge(*pmd));
1696	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1697}
1698
1699/*
1700 * This is the old fallback for page remapping.
1701 *
1702 * For historical reasons, it only allows reserved pages. Only
1703 * old drivers should use this, and they needed to mark their
1704 * pages reserved for the old functions anyway.
1705 */
1706static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1707			struct page *page, pgprot_t prot)
1708{
1709	struct mm_struct *mm = vma->vm_mm;
1710	int retval;
1711	pte_t *pte;
1712	spinlock_t *ptl;
1713
1714	retval = -EINVAL;
1715	if (PageAnon(page))
1716		goto out;
1717	retval = -ENOMEM;
1718	flush_dcache_page(page);
1719	pte = get_locked_pte(mm, addr, &ptl);
1720	if (!pte)
1721		goto out;
1722	retval = -EBUSY;
1723	if (!pte_none(*pte))
1724		goto out_unlock;
1725
1726	/* Ok, finally just insert the thing.. */
1727	get_page(page);
1728	inc_mm_counter_fast(mm, mm_counter_file(page));
1729	page_add_file_rmap(page, false);
1730	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1731
1732	retval = 0;
1733	pte_unmap_unlock(pte, ptl);
1734	return retval;
1735out_unlock:
1736	pte_unmap_unlock(pte, ptl);
1737out:
1738	return retval;
1739}
1740
1741/**
1742 * vm_insert_page - insert single page into user vma
1743 * @vma: user vma to map to
1744 * @addr: target user address of this page
1745 * @page: source kernel page
1746 *
1747 * This allows drivers to insert individual pages they've allocated
1748 * into a user vma.
1749 *
1750 * The page has to be a nice clean _individual_ kernel allocation.
1751 * If you allocate a compound page, you need to have marked it as
1752 * such (__GFP_COMP), or manually just split the page up yourself
1753 * (see split_page()).
1754 *
1755 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1756 * took an arbitrary page protection parameter. This doesn't allow
1757 * that. Your vma protection will have to be set up correctly, which
1758 * means that if you want a shared writable mapping, you'd better
1759 * ask for a shared writable mapping!
1760 *
1761 * The page does not need to be reserved.
1762 *
1763 * Usually this function is called from f_op->mmap() handler
1764 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1765 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1766 * function from other places, for example from page-fault handler.
 
 
1767 */
1768int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1769			struct page *page)
1770{
1771	if (addr < vma->vm_start || addr >= vma->vm_end)
1772		return -EFAULT;
1773	if (!page_count(page))
1774		return -EINVAL;
1775	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1776		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1777		BUG_ON(vma->vm_flags & VM_PFNMAP);
1778		vma->vm_flags |= VM_MIXEDMAP;
1779	}
1780	return insert_page(vma, addr, page, vma->vm_page_prot);
1781}
1782EXPORT_SYMBOL(vm_insert_page);
1783
1784static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1785			pfn_t pfn, pgprot_t prot, bool mkwrite)
1786{
1787	struct mm_struct *mm = vma->vm_mm;
1788	int retval;
1789	pte_t *pte, entry;
1790	spinlock_t *ptl;
1791
1792	retval = -ENOMEM;
1793	pte = get_locked_pte(mm, addr, &ptl);
1794	if (!pte)
1795		goto out;
1796	retval = -EBUSY;
1797	if (!pte_none(*pte)) {
1798		if (mkwrite) {
1799			/*
1800			 * For read faults on private mappings the PFN passed
1801			 * in may not match the PFN we have mapped if the
1802			 * mapped PFN is a writeable COW page.  In the mkwrite
1803			 * case we are creating a writable PTE for a shared
1804			 * mapping and we expect the PFNs to match.
 
 
 
1805			 */
1806			if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
 
1807				goto out_unlock;
1808			entry = *pte;
1809			goto out_mkwrite;
1810		} else
1811			goto out_unlock;
 
 
 
1812	}
1813
1814	/* Ok, finally just insert the thing.. */
1815	if (pfn_t_devmap(pfn))
1816		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1817	else
1818		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1819
1820out_mkwrite:
1821	if (mkwrite) {
1822		entry = pte_mkyoung(entry);
1823		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1824	}
1825
1826	set_pte_at(mm, addr, pte, entry);
1827	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1828
1829	retval = 0;
1830out_unlock:
1831	pte_unmap_unlock(pte, ptl);
1832out:
1833	return retval;
1834}
1835
1836/**
1837 * vm_insert_pfn - insert single pfn into user vma
1838 * @vma: user vma to map to
1839 * @addr: target user address of this page
1840 * @pfn: source kernel pfn
1841 *
1842 * Similar to vm_insert_page, this allows drivers to insert individual pages
1843 * they've allocated into a user vma. Same comments apply.
1844 *
1845 * This function should only be called from a vm_ops->fault handler, and
1846 * in that case the handler should return NULL.
1847 *
1848 * vma cannot be a COW mapping.
1849 *
1850 * As this is called only for pages that do not currently exist, we
1851 * do not need to flush old virtual caches or the TLB.
1852 */
1853int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1854			unsigned long pfn)
1855{
1856	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1857}
1858EXPORT_SYMBOL(vm_insert_pfn);
1859
1860/**
1861 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1862 * @vma: user vma to map to
1863 * @addr: target user address of this page
1864 * @pfn: source kernel pfn
1865 * @pgprot: pgprot flags for the inserted page
1866 *
1867 * This is exactly like vm_insert_pfn, except that it allows drivers to
1868 * to override pgprot on a per-page basis.
1869 *
1870 * This only makes sense for IO mappings, and it makes no sense for
1871 * cow mappings.  In general, using multiple vmas is preferable;
1872 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1873 * impractical.
 
 
 
1874 */
1875int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1876			unsigned long pfn, pgprot_t pgprot)
1877{
1878	int ret;
1879	/*
1880	 * Technically, architectures with pte_special can avoid all these
1881	 * restrictions (same for remap_pfn_range).  However we would like
1882	 * consistency in testing and feature parity among all, so we should
1883	 * try to keep these invariants in place for everybody.
1884	 */
1885	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1886	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1887						(VM_PFNMAP|VM_MIXEDMAP));
1888	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1889	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1890
1891	if (addr < vma->vm_start || addr >= vma->vm_end)
1892		return -EFAULT;
 
 
 
1893
1894	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1895
1896	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1897			false);
 
 
1898
1899	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1900}
1901EXPORT_SYMBOL(vm_insert_pfn_prot);
1902
1903static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1904{
1905	/* these checks mirror the abort conditions in vm_normal_page */
1906	if (vma->vm_flags & VM_MIXEDMAP)
1907		return true;
1908	if (pfn_t_devmap(pfn))
1909		return true;
1910	if (pfn_t_special(pfn))
1911		return true;
1912	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1913		return true;
1914	return false;
1915}
1916
1917static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1918			pfn_t pfn, bool mkwrite)
1919{
1920	pgprot_t pgprot = vma->vm_page_prot;
 
1921
1922	BUG_ON(!vm_mixed_ok(vma, pfn));
1923
1924	if (addr < vma->vm_start || addr >= vma->vm_end)
1925		return -EFAULT;
1926
1927	track_pfn_insert(vma, &pgprot, pfn);
1928
 
 
 
1929	/*
1930	 * If we don't have pte special, then we have to use the pfn_valid()
1931	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1932	 * refcount the page if pfn_valid is true (hence insert_page rather
1933	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1934	 * without pte special, it would there be refcounted as a normal page.
1935	 */
1936	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
 
1937		struct page *page;
1938
1939		/*
1940		 * At this point we are committed to insert_page()
1941		 * regardless of whether the caller specified flags that
1942		 * result in pfn_t_has_page() == false.
1943		 */
1944		page = pfn_to_page(pfn_t_to_pfn(pfn));
1945		return insert_page(vma, addr, page, pgprot);
 
 
1946	}
1947	return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
 
 
 
 
 
 
1948}
1949
1950int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1951			pfn_t pfn)
1952{
1953	return __vm_insert_mixed(vma, addr, pfn, false);
1954
1955}
1956EXPORT_SYMBOL(vm_insert_mixed);
1957
1958int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1959			pfn_t pfn)
 
 
 
 
 
1960{
1961	return __vm_insert_mixed(vma, addr, pfn, true);
1962}
1963EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1964
1965/*
1966 * maps a range of physical memory into the requested pages. the old
1967 * mappings are removed. any references to nonexistent pages results
1968 * in null mappings (currently treated as "copy-on-access")
1969 */
1970static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1971			unsigned long addr, unsigned long end,
1972			unsigned long pfn, pgprot_t prot)
1973{
1974	pte_t *pte;
1975	spinlock_t *ptl;
 
1976
1977	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1978	if (!pte)
1979		return -ENOMEM;
1980	arch_enter_lazy_mmu_mode();
1981	do {
1982		BUG_ON(!pte_none(*pte));
 
 
 
 
1983		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1984		pfn++;
1985	} while (pte++, addr += PAGE_SIZE, addr != end);
1986	arch_leave_lazy_mmu_mode();
1987	pte_unmap_unlock(pte - 1, ptl);
1988	return 0;
1989}
1990
1991static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1992			unsigned long addr, unsigned long end,
1993			unsigned long pfn, pgprot_t prot)
1994{
1995	pmd_t *pmd;
1996	unsigned long next;
 
1997
1998	pfn -= addr >> PAGE_SHIFT;
1999	pmd = pmd_alloc(mm, pud, addr);
2000	if (!pmd)
2001		return -ENOMEM;
2002	VM_BUG_ON(pmd_trans_huge(*pmd));
2003	do {
2004		next = pmd_addr_end(addr, end);
2005		if (remap_pte_range(mm, pmd, addr, next,
2006				pfn + (addr >> PAGE_SHIFT), prot))
2007			return -ENOMEM;
 
2008	} while (pmd++, addr = next, addr != end);
2009	return 0;
2010}
2011
2012static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2013			unsigned long addr, unsigned long end,
2014			unsigned long pfn, pgprot_t prot)
2015{
2016	pud_t *pud;
2017	unsigned long next;
 
2018
2019	pfn -= addr >> PAGE_SHIFT;
2020	pud = pud_alloc(mm, p4d, addr);
2021	if (!pud)
2022		return -ENOMEM;
2023	do {
2024		next = pud_addr_end(addr, end);
2025		if (remap_pmd_range(mm, pud, addr, next,
2026				pfn + (addr >> PAGE_SHIFT), prot))
2027			return -ENOMEM;
 
2028	} while (pud++, addr = next, addr != end);
2029	return 0;
2030}
2031
2032static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2033			unsigned long addr, unsigned long end,
2034			unsigned long pfn, pgprot_t prot)
2035{
2036	p4d_t *p4d;
2037	unsigned long next;
 
2038
2039	pfn -= addr >> PAGE_SHIFT;
2040	p4d = p4d_alloc(mm, pgd, addr);
2041	if (!p4d)
2042		return -ENOMEM;
2043	do {
2044		next = p4d_addr_end(addr, end);
2045		if (remap_pud_range(mm, p4d, addr, next,
2046				pfn + (addr >> PAGE_SHIFT), prot))
2047			return -ENOMEM;
 
2048	} while (p4d++, addr = next, addr != end);
2049	return 0;
2050}
2051
2052/**
2053 * remap_pfn_range - remap kernel memory to userspace
2054 * @vma: user vma to map to
2055 * @addr: target user address to start at
2056 * @pfn: physical address of kernel memory
2057 * @size: size of map area
2058 * @prot: page protection flags for this mapping
2059 *
2060 *  Note: this is only safe if the mm semaphore is held when called.
 
 
2061 */
2062int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2063		    unsigned long pfn, unsigned long size, pgprot_t prot)
2064{
2065	pgd_t *pgd;
2066	unsigned long next;
2067	unsigned long end = addr + PAGE_ALIGN(size);
2068	struct mm_struct *mm = vma->vm_mm;
2069	unsigned long remap_pfn = pfn;
2070	int err;
2071
2072	/*
2073	 * Physically remapped pages are special. Tell the
2074	 * rest of the world about it:
2075	 *   VM_IO tells people not to look at these pages
2076	 *	(accesses can have side effects).
2077	 *   VM_PFNMAP tells the core MM that the base pages are just
2078	 *	raw PFN mappings, and do not have a "struct page" associated
2079	 *	with them.
2080	 *   VM_DONTEXPAND
2081	 *      Disable vma merging and expanding with mremap().
2082	 *   VM_DONTDUMP
2083	 *      Omit vma from core dump, even when VM_IO turned off.
2084	 *
2085	 * There's a horrible special case to handle copy-on-write
2086	 * behaviour that some programs depend on. We mark the "original"
2087	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2088	 * See vm_normal_page() for details.
2089	 */
2090	if (is_cow_mapping(vma->vm_flags)) {
2091		if (addr != vma->vm_start || end != vma->vm_end)
2092			return -EINVAL;
2093		vma->vm_pgoff = pfn;
2094	}
2095
2096	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2097	if (err)
2098		return -EINVAL;
2099
2100	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2101
2102	BUG_ON(addr >= end);
2103	pfn -= addr >> PAGE_SHIFT;
2104	pgd = pgd_offset(mm, addr);
2105	flush_cache_range(vma, addr, end);
2106	do {
2107		next = pgd_addr_end(addr, end);
2108		err = remap_p4d_range(mm, pgd, addr, next,
2109				pfn + (addr >> PAGE_SHIFT), prot);
2110		if (err)
2111			break;
2112	} while (pgd++, addr = next, addr != end);
2113
2114	if (err)
2115		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2116
2117	return err;
2118}
2119EXPORT_SYMBOL(remap_pfn_range);
2120
2121/**
2122 * vm_iomap_memory - remap memory to userspace
2123 * @vma: user vma to map to
2124 * @start: start of area
2125 * @len: size of area
2126 *
2127 * This is a simplified io_remap_pfn_range() for common driver use. The
2128 * driver just needs to give us the physical memory range to be mapped,
2129 * we'll figure out the rest from the vma information.
2130 *
2131 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2132 * whatever write-combining details or similar.
 
 
2133 */
2134int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2135{
2136	unsigned long vm_len, pfn, pages;
2137
2138	/* Check that the physical memory area passed in looks valid */
2139	if (start + len < start)
2140		return -EINVAL;
2141	/*
2142	 * You *really* shouldn't map things that aren't page-aligned,
2143	 * but we've historically allowed it because IO memory might
2144	 * just have smaller alignment.
2145	 */
2146	len += start & ~PAGE_MASK;
2147	pfn = start >> PAGE_SHIFT;
2148	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2149	if (pfn + pages < pfn)
2150		return -EINVAL;
2151
2152	/* We start the mapping 'vm_pgoff' pages into the area */
2153	if (vma->vm_pgoff > pages)
2154		return -EINVAL;
2155	pfn += vma->vm_pgoff;
2156	pages -= vma->vm_pgoff;
2157
2158	/* Can we fit all of the mapping? */
2159	vm_len = vma->vm_end - vma->vm_start;
2160	if (vm_len >> PAGE_SHIFT > pages)
2161		return -EINVAL;
2162
2163	/* Ok, let it rip */
2164	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2165}
2166EXPORT_SYMBOL(vm_iomap_memory);
2167
2168static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2169				     unsigned long addr, unsigned long end,
2170				     pte_fn_t fn, void *data)
2171{
2172	pte_t *pte;
2173	int err;
2174	pgtable_t token;
2175	spinlock_t *uninitialized_var(ptl);
2176
2177	pte = (mm == &init_mm) ?
2178		pte_alloc_kernel(pmd, addr) :
2179		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2180	if (!pte)
2181		return -ENOMEM;
2182
2183	BUG_ON(pmd_huge(*pmd));
2184
2185	arch_enter_lazy_mmu_mode();
2186
2187	token = pmd_pgtable(*pmd);
2188
2189	do {
2190		err = fn(pte++, token, addr, data);
2191		if (err)
2192			break;
2193	} while (addr += PAGE_SIZE, addr != end);
2194
2195	arch_leave_lazy_mmu_mode();
2196
2197	if (mm != &init_mm)
2198		pte_unmap_unlock(pte-1, ptl);
2199	return err;
2200}
2201
2202static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2203				     unsigned long addr, unsigned long end,
2204				     pte_fn_t fn, void *data)
2205{
2206	pmd_t *pmd;
2207	unsigned long next;
2208	int err;
2209
2210	BUG_ON(pud_huge(*pud));
2211
2212	pmd = pmd_alloc(mm, pud, addr);
2213	if (!pmd)
2214		return -ENOMEM;
2215	do {
2216		next = pmd_addr_end(addr, end);
2217		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2218		if (err)
2219			break;
2220	} while (pmd++, addr = next, addr != end);
2221	return err;
2222}
2223
2224static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2225				     unsigned long addr, unsigned long end,
2226				     pte_fn_t fn, void *data)
2227{
2228	pud_t *pud;
2229	unsigned long next;
2230	int err;
2231
2232	pud = pud_alloc(mm, p4d, addr);
2233	if (!pud)
2234		return -ENOMEM;
2235	do {
2236		next = pud_addr_end(addr, end);
2237		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2238		if (err)
2239			break;
2240	} while (pud++, addr = next, addr != end);
2241	return err;
2242}
2243
2244static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2245				     unsigned long addr, unsigned long end,
2246				     pte_fn_t fn, void *data)
2247{
2248	p4d_t *p4d;
2249	unsigned long next;
2250	int err;
2251
2252	p4d = p4d_alloc(mm, pgd, addr);
2253	if (!p4d)
2254		return -ENOMEM;
2255	do {
2256		next = p4d_addr_end(addr, end);
2257		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2258		if (err)
2259			break;
2260	} while (p4d++, addr = next, addr != end);
2261	return err;
2262}
2263
2264/*
2265 * Scan a region of virtual memory, filling in page tables as necessary
2266 * and calling a provided function on each leaf page table.
2267 */
2268int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2269			unsigned long size, pte_fn_t fn, void *data)
2270{
2271	pgd_t *pgd;
2272	unsigned long next;
2273	unsigned long end = addr + size;
2274	int err;
2275
2276	if (WARN_ON(addr >= end))
2277		return -EINVAL;
2278
2279	pgd = pgd_offset(mm, addr);
2280	do {
2281		next = pgd_addr_end(addr, end);
2282		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2283		if (err)
2284			break;
2285	} while (pgd++, addr = next, addr != end);
2286
2287	return err;
2288}
2289EXPORT_SYMBOL_GPL(apply_to_page_range);
2290
2291/*
2292 * handle_pte_fault chooses page fault handler according to an entry which was
2293 * read non-atomically.  Before making any commitment, on those architectures
2294 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2295 * parts, do_swap_page must check under lock before unmapping the pte and
2296 * proceeding (but do_wp_page is only called after already making such a check;
2297 * and do_anonymous_page can safely check later on).
2298 */
2299static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2300				pte_t *page_table, pte_t orig_pte)
2301{
2302	int same = 1;
2303#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2304	if (sizeof(pte_t) > sizeof(unsigned long)) {
2305		spinlock_t *ptl = pte_lockptr(mm, pmd);
2306		spin_lock(ptl);
2307		same = pte_same(*page_table, orig_pte);
2308		spin_unlock(ptl);
2309	}
2310#endif
2311	pte_unmap(page_table);
2312	return same;
2313}
2314
2315static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2316{
2317	debug_dma_assert_idle(src);
2318
2319	/*
2320	 * If the source page was a PFN mapping, we don't have
2321	 * a "struct page" for it. We do a best-effort copy by
2322	 * just copying from the original user address. If that
2323	 * fails, we just zero-fill it. Live with it.
2324	 */
2325	if (unlikely(!src)) {
2326		void *kaddr = kmap_atomic(dst);
2327		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2328
2329		/*
2330		 * This really shouldn't fail, because the page is there
2331		 * in the page tables. But it might just be unreadable,
2332		 * in which case we just give up and fill the result with
2333		 * zeroes.
2334		 */
2335		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2336			clear_page(kaddr);
2337		kunmap_atomic(kaddr);
2338		flush_dcache_page(dst);
2339	} else
2340		copy_user_highpage(dst, src, va, vma);
2341}
2342
2343static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2344{
2345	struct file *vm_file = vma->vm_file;
2346
2347	if (vm_file)
2348		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2349
2350	/*
2351	 * Special mappings (e.g. VDSO) do not have any file so fake
2352	 * a default GFP_KERNEL for them.
2353	 */
2354	return GFP_KERNEL;
2355}
2356
2357/*
2358 * Notify the address space that the page is about to become writable so that
2359 * it can prohibit this or wait for the page to get into an appropriate state.
2360 *
2361 * We do this without the lock held, so that it can sleep if it needs to.
2362 */
2363static int do_page_mkwrite(struct vm_fault *vmf)
2364{
2365	int ret;
2366	struct page *page = vmf->page;
2367	unsigned int old_flags = vmf->flags;
2368
2369	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2370
 
 
 
 
2371	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2372	/* Restore original flags so that caller is not surprised */
2373	vmf->flags = old_flags;
2374	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2375		return ret;
2376	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2377		lock_page(page);
2378		if (!page->mapping) {
2379			unlock_page(page);
2380			return 0; /* retry */
2381		}
2382		ret |= VM_FAULT_LOCKED;
2383	} else
2384		VM_BUG_ON_PAGE(!PageLocked(page), page);
2385	return ret;
2386}
2387
2388/*
2389 * Handle dirtying of a page in shared file mapping on a write fault.
2390 *
2391 * The function expects the page to be locked and unlocks it.
2392 */
2393static void fault_dirty_shared_page(struct vm_area_struct *vma,
2394				    struct page *page)
2395{
2396	struct address_space *mapping;
2397	bool dirtied;
2398	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2399
2400	dirtied = set_page_dirty(page);
2401	VM_BUG_ON_PAGE(PageAnon(page), page);
2402	/*
2403	 * Take a local copy of the address_space - page.mapping may be zeroed
2404	 * by truncate after unlock_page().   The address_space itself remains
2405	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2406	 * release semantics to prevent the compiler from undoing this copying.
2407	 */
2408	mapping = page_rmapping(page);
2409	unlock_page(page);
2410
2411	if ((dirtied || page_mkwrite) && mapping) {
2412		/*
2413		 * Some device drivers do not set page.mapping
2414		 * but still dirty their pages
2415		 */
2416		balance_dirty_pages_ratelimited(mapping);
2417	}
2418
2419	if (!page_mkwrite)
2420		file_update_time(vma->vm_file);
2421}
2422
2423/*
2424 * Handle write page faults for pages that can be reused in the current vma
2425 *
2426 * This can happen either due to the mapping being with the VM_SHARED flag,
2427 * or due to us being the last reference standing to the page. In either
2428 * case, all we need to do here is to mark the page as writable and update
2429 * any related book-keeping.
2430 */
2431static inline void wp_page_reuse(struct vm_fault *vmf)
2432	__releases(vmf->ptl)
2433{
2434	struct vm_area_struct *vma = vmf->vma;
2435	struct page *page = vmf->page;
2436	pte_t entry;
2437	/*
2438	 * Clear the pages cpupid information as the existing
2439	 * information potentially belongs to a now completely
2440	 * unrelated process.
2441	 */
2442	if (page)
2443		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2444
2445	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2446	entry = pte_mkyoung(vmf->orig_pte);
2447	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2448	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2449		update_mmu_cache(vma, vmf->address, vmf->pte);
2450	pte_unmap_unlock(vmf->pte, vmf->ptl);
2451}
2452
2453/*
2454 * Handle the case of a page which we actually need to copy to a new page.
2455 *
2456 * Called with mmap_sem locked and the old page referenced, but
2457 * without the ptl held.
2458 *
2459 * High level logic flow:
2460 *
2461 * - Allocate a page, copy the content of the old page to the new one.
2462 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2463 * - Take the PTL. If the pte changed, bail out and release the allocated page
2464 * - If the pte is still the way we remember it, update the page table and all
2465 *   relevant references. This includes dropping the reference the page-table
2466 *   held to the old page, as well as updating the rmap.
2467 * - In any case, unlock the PTL and drop the reference we took to the old page.
2468 */
2469static int wp_page_copy(struct vm_fault *vmf)
2470{
2471	struct vm_area_struct *vma = vmf->vma;
2472	struct mm_struct *mm = vma->vm_mm;
2473	struct page *old_page = vmf->page;
2474	struct page *new_page = NULL;
2475	pte_t entry;
2476	int page_copied = 0;
2477	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2478	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2479	struct mem_cgroup *memcg;
 
2480
2481	if (unlikely(anon_vma_prepare(vma)))
2482		goto oom;
2483
2484	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2485		new_page = alloc_zeroed_user_highpage_movable(vma,
2486							      vmf->address);
2487		if (!new_page)
2488			goto oom;
2489	} else {
2490		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2491				vmf->address);
2492		if (!new_page)
2493			goto oom;
2494		cow_user_page(new_page, old_page, vmf->address, vma);
2495	}
2496
2497	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2498		goto oom_free_new;
2499
2500	__SetPageUptodate(new_page);
2501
2502	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 
 
 
2503
2504	/*
2505	 * Re-check the pte - we dropped the lock
2506	 */
2507	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2508	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2509		if (old_page) {
2510			if (!PageAnon(old_page)) {
2511				dec_mm_counter_fast(mm,
2512						mm_counter_file(old_page));
2513				inc_mm_counter_fast(mm, MM_ANONPAGES);
2514			}
2515		} else {
2516			inc_mm_counter_fast(mm, MM_ANONPAGES);
2517		}
2518		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2519		entry = mk_pte(new_page, vma->vm_page_prot);
2520		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2521		/*
2522		 * Clear the pte entry and flush it first, before updating the
2523		 * pte with the new entry. This will avoid a race condition
2524		 * seen in the presence of one thread doing SMC and another
2525		 * thread doing COW.
2526		 */
2527		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2528		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2529		mem_cgroup_commit_charge(new_page, memcg, false, false);
2530		lru_cache_add_active_or_unevictable(new_page, vma);
2531		/*
2532		 * We call the notify macro here because, when using secondary
2533		 * mmu page tables (such as kvm shadow page tables), we want the
2534		 * new page to be mapped directly into the secondary page table.
2535		 */
2536		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2537		update_mmu_cache(vma, vmf->address, vmf->pte);
2538		if (old_page) {
2539			/*
2540			 * Only after switching the pte to the new page may
2541			 * we remove the mapcount here. Otherwise another
2542			 * process may come and find the rmap count decremented
2543			 * before the pte is switched to the new page, and
2544			 * "reuse" the old page writing into it while our pte
2545			 * here still points into it and can be read by other
2546			 * threads.
2547			 *
2548			 * The critical issue is to order this
2549			 * page_remove_rmap with the ptp_clear_flush above.
2550			 * Those stores are ordered by (if nothing else,)
2551			 * the barrier present in the atomic_add_negative
2552			 * in page_remove_rmap.
2553			 *
2554			 * Then the TLB flush in ptep_clear_flush ensures that
2555			 * no process can access the old page before the
2556			 * decremented mapcount is visible. And the old page
2557			 * cannot be reused until after the decremented
2558			 * mapcount is visible. So transitively, TLBs to
2559			 * old page will be flushed before it can be reused.
2560			 */
2561			page_remove_rmap(old_page, false);
2562		}
2563
2564		/* Free the old page.. */
2565		new_page = old_page;
2566		page_copied = 1;
2567	} else {
2568		mem_cgroup_cancel_charge(new_page, memcg, false);
2569	}
2570
2571	if (new_page)
2572		put_page(new_page);
2573
2574	pte_unmap_unlock(vmf->pte, vmf->ptl);
2575	/*
2576	 * No need to double call mmu_notifier->invalidate_range() callback as
2577	 * the above ptep_clear_flush_notify() did already call it.
2578	 */
2579	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2580	if (old_page) {
2581		/*
2582		 * Don't let another task, with possibly unlocked vma,
2583		 * keep the mlocked page.
2584		 */
2585		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2586			lock_page(old_page);	/* LRU manipulation */
2587			if (PageMlocked(old_page))
2588				munlock_vma_page(old_page);
2589			unlock_page(old_page);
2590		}
2591		put_page(old_page);
2592	}
2593	return page_copied ? VM_FAULT_WRITE : 0;
2594oom_free_new:
2595	put_page(new_page);
2596oom:
2597	if (old_page)
2598		put_page(old_page);
2599	return VM_FAULT_OOM;
2600}
2601
2602/**
2603 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2604 *			  writeable once the page is prepared
2605 *
2606 * @vmf: structure describing the fault
2607 *
2608 * This function handles all that is needed to finish a write page fault in a
2609 * shared mapping due to PTE being read-only once the mapped page is prepared.
2610 * It handles locking of PTE and modifying it. The function returns
2611 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2612 * lock.
2613 *
2614 * The function expects the page to be locked or other protection against
2615 * concurrent faults / writeback (such as DAX radix tree locks).
 
 
 
2616 */
2617int finish_mkwrite_fault(struct vm_fault *vmf)
2618{
2619	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2620	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2621				       &vmf->ptl);
2622	/*
2623	 * We might have raced with another page fault while we released the
2624	 * pte_offset_map_lock.
2625	 */
2626	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2627		pte_unmap_unlock(vmf->pte, vmf->ptl);
2628		return VM_FAULT_NOPAGE;
2629	}
2630	wp_page_reuse(vmf);
2631	return 0;
2632}
2633
2634/*
2635 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2636 * mapping
2637 */
2638static int wp_pfn_shared(struct vm_fault *vmf)
2639{
2640	struct vm_area_struct *vma = vmf->vma;
2641
2642	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2643		int ret;
2644
2645		pte_unmap_unlock(vmf->pte, vmf->ptl);
2646		vmf->flags |= FAULT_FLAG_MKWRITE;
2647		ret = vma->vm_ops->pfn_mkwrite(vmf);
2648		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2649			return ret;
2650		return finish_mkwrite_fault(vmf);
2651	}
2652	wp_page_reuse(vmf);
2653	return VM_FAULT_WRITE;
2654}
2655
2656static int wp_page_shared(struct vm_fault *vmf)
2657	__releases(vmf->ptl)
2658{
2659	struct vm_area_struct *vma = vmf->vma;
2660
2661	get_page(vmf->page);
2662
2663	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2664		int tmp;
2665
2666		pte_unmap_unlock(vmf->pte, vmf->ptl);
2667		tmp = do_page_mkwrite(vmf);
2668		if (unlikely(!tmp || (tmp &
2669				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2670			put_page(vmf->page);
2671			return tmp;
2672		}
2673		tmp = finish_mkwrite_fault(vmf);
2674		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2675			unlock_page(vmf->page);
2676			put_page(vmf->page);
2677			return tmp;
2678		}
2679	} else {
2680		wp_page_reuse(vmf);
2681		lock_page(vmf->page);
2682	}
2683	fault_dirty_shared_page(vma, vmf->page);
2684	put_page(vmf->page);
2685
2686	return VM_FAULT_WRITE;
2687}
2688
2689/*
2690 * This routine handles present pages, when users try to write
2691 * to a shared page. It is done by copying the page to a new address
2692 * and decrementing the shared-page counter for the old page.
2693 *
2694 * Note that this routine assumes that the protection checks have been
2695 * done by the caller (the low-level page fault routine in most cases).
2696 * Thus we can safely just mark it writable once we've done any necessary
2697 * COW.
2698 *
2699 * We also mark the page dirty at this point even though the page will
2700 * change only once the write actually happens. This avoids a few races,
2701 * and potentially makes it more efficient.
2702 *
2703 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2704 * but allow concurrent faults), with pte both mapped and locked.
2705 * We return with mmap_sem still held, but pte unmapped and unlocked.
2706 */
2707static int do_wp_page(struct vm_fault *vmf)
2708	__releases(vmf->ptl)
2709{
2710	struct vm_area_struct *vma = vmf->vma;
2711
2712	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2713	if (!vmf->page) {
2714		/*
2715		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2716		 * VM_PFNMAP VMA.
2717		 *
2718		 * We should not cow pages in a shared writeable mapping.
2719		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2720		 */
2721		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2722				     (VM_WRITE|VM_SHARED))
2723			return wp_pfn_shared(vmf);
2724
2725		pte_unmap_unlock(vmf->pte, vmf->ptl);
2726		return wp_page_copy(vmf);
2727	}
2728
2729	/*
2730	 * Take out anonymous pages first, anonymous shared vmas are
2731	 * not dirty accountable.
2732	 */
2733	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2734		int total_map_swapcount;
 
 
 
2735		if (!trylock_page(vmf->page)) {
2736			get_page(vmf->page);
2737			pte_unmap_unlock(vmf->pte, vmf->ptl);
2738			lock_page(vmf->page);
2739			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2740					vmf->address, &vmf->ptl);
2741			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2742				unlock_page(vmf->page);
2743				pte_unmap_unlock(vmf->pte, vmf->ptl);
2744				put_page(vmf->page);
2745				return 0;
2746			}
2747			put_page(vmf->page);
2748		}
 
 
 
 
 
 
 
 
 
2749		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2750			if (total_map_swapcount == 1) {
2751				/*
2752				 * The page is all ours. Move it to
2753				 * our anon_vma so the rmap code will
2754				 * not search our parent or siblings.
2755				 * Protected against the rmap code by
2756				 * the page lock.
2757				 */
2758				page_move_anon_rmap(vmf->page, vma);
2759			}
2760			unlock_page(vmf->page);
2761			wp_page_reuse(vmf);
2762			return VM_FAULT_WRITE;
2763		}
2764		unlock_page(vmf->page);
2765	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2766					(VM_WRITE|VM_SHARED))) {
2767		return wp_page_shared(vmf);
2768	}
2769
2770	/*
2771	 * Ok, we need to copy. Oh, well..
2772	 */
2773	get_page(vmf->page);
2774
2775	pte_unmap_unlock(vmf->pte, vmf->ptl);
2776	return wp_page_copy(vmf);
2777}
2778
2779static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2780		unsigned long start_addr, unsigned long end_addr,
2781		struct zap_details *details)
2782{
2783	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2784}
2785
2786static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2787					    struct zap_details *details)
2788{
2789	struct vm_area_struct *vma;
2790	pgoff_t vba, vea, zba, zea;
2791
2792	vma_interval_tree_foreach(vma, root,
2793			details->first_index, details->last_index) {
2794
2795		vba = vma->vm_pgoff;
2796		vea = vba + vma_pages(vma) - 1;
2797		zba = details->first_index;
2798		if (zba < vba)
2799			zba = vba;
2800		zea = details->last_index;
2801		if (zea > vea)
2802			zea = vea;
2803
2804		unmap_mapping_range_vma(vma,
2805			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2806			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2807				details);
2808	}
2809}
2810
2811/**
2812 * unmap_mapping_pages() - Unmap pages from processes.
2813 * @mapping: The address space containing pages to be unmapped.
2814 * @start: Index of first page to be unmapped.
2815 * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2816 * @even_cows: Whether to unmap even private COWed pages.
2817 *
2818 * Unmap the pages in this address space from any userspace process which
2819 * has them mmaped.  Generally, you want to remove COWed pages as well when
2820 * a file is being truncated, but not when invalidating pages from the page
2821 * cache.
2822 */
2823void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2824		pgoff_t nr, bool even_cows)
2825{
2826	struct zap_details details = { };
2827
2828	details.check_mapping = even_cows ? NULL : mapping;
2829	details.first_index = start;
2830	details.last_index = start + nr - 1;
2831	if (details.last_index < details.first_index)
2832		details.last_index = ULONG_MAX;
2833
2834	i_mmap_lock_write(mapping);
2835	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2836		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2837	i_mmap_unlock_write(mapping);
2838}
2839
2840/**
2841 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2842 * address_space corresponding to the specified byte range in the underlying
2843 * file.
2844 *
2845 * @mapping: the address space containing mmaps to be unmapped.
2846 * @holebegin: byte in first page to unmap, relative to the start of
2847 * the underlying file.  This will be rounded down to a PAGE_SIZE
2848 * boundary.  Note that this is different from truncate_pagecache(), which
2849 * must keep the partial page.  In contrast, we must get rid of
2850 * partial pages.
2851 * @holelen: size of prospective hole in bytes.  This will be rounded
2852 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2853 * end of the file.
2854 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2855 * but 0 when invalidating pagecache, don't throw away private data.
2856 */
2857void unmap_mapping_range(struct address_space *mapping,
2858		loff_t const holebegin, loff_t const holelen, int even_cows)
2859{
2860	pgoff_t hba = holebegin >> PAGE_SHIFT;
2861	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2862
2863	/* Check for overflow. */
2864	if (sizeof(holelen) > sizeof(hlen)) {
2865		long long holeend =
2866			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2867		if (holeend & ~(long long)ULONG_MAX)
2868			hlen = ULONG_MAX - hba + 1;
2869	}
2870
2871	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2872}
2873EXPORT_SYMBOL(unmap_mapping_range);
2874
2875/*
2876 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2877 * but allow concurrent faults), and pte mapped but not yet locked.
2878 * We return with pte unmapped and unlocked.
2879 *
2880 * We return with the mmap_sem locked or unlocked in the same cases
2881 * as does filemap_fault().
2882 */
2883int do_swap_page(struct vm_fault *vmf)
2884{
2885	struct vm_area_struct *vma = vmf->vma;
2886	struct page *page = NULL, *swapcache;
2887	struct mem_cgroup *memcg;
2888	swp_entry_t entry;
2889	pte_t pte;
2890	int locked;
2891	int exclusive = 0;
2892	int ret = 0;
2893
2894	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2895		goto out;
2896
2897	entry = pte_to_swp_entry(vmf->orig_pte);
2898	if (unlikely(non_swap_entry(entry))) {
2899		if (is_migration_entry(entry)) {
2900			migration_entry_wait(vma->vm_mm, vmf->pmd,
2901					     vmf->address);
2902		} else if (is_device_private_entry(entry)) {
2903			/*
2904			 * For un-addressable device memory we call the pgmap
2905			 * fault handler callback. The callback must migrate
2906			 * the page back to some CPU accessible page.
2907			 */
2908			ret = device_private_entry_fault(vma, vmf->address, entry,
2909						 vmf->flags, vmf->pmd);
2910		} else if (is_hwpoison_entry(entry)) {
2911			ret = VM_FAULT_HWPOISON;
2912		} else {
2913			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2914			ret = VM_FAULT_SIGBUS;
2915		}
2916		goto out;
2917	}
2918
2919
2920	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2921	page = lookup_swap_cache(entry, vma, vmf->address);
2922	swapcache = page;
2923
2924	if (!page) {
2925		struct swap_info_struct *si = swp_swap_info(entry);
2926
2927		if (si->flags & SWP_SYNCHRONOUS_IO &&
2928				__swap_count(si, entry) == 1) {
2929			/* skip swapcache */
2930			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2931							vmf->address);
2932			if (page) {
2933				__SetPageLocked(page);
2934				__SetPageSwapBacked(page);
2935				set_page_private(page, entry.val);
2936				lru_cache_add_anon(page);
2937				swap_readpage(page, true);
2938			}
2939		} else {
2940			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2941						vmf);
2942			swapcache = page;
2943		}
2944
2945		if (!page) {
2946			/*
2947			 * Back out if somebody else faulted in this pte
2948			 * while we released the pte lock.
2949			 */
2950			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2951					vmf->address, &vmf->ptl);
2952			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2953				ret = VM_FAULT_OOM;
2954			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2955			goto unlock;
2956		}
2957
2958		/* Had to read the page from swap area: Major fault */
2959		ret = VM_FAULT_MAJOR;
2960		count_vm_event(PGMAJFAULT);
2961		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2962	} else if (PageHWPoison(page)) {
2963		/*
2964		 * hwpoisoned dirty swapcache pages are kept for killing
2965		 * owner processes (which may be unknown at hwpoison time)
2966		 */
2967		ret = VM_FAULT_HWPOISON;
2968		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2969		goto out_release;
2970	}
2971
2972	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2973
2974	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2975	if (!locked) {
2976		ret |= VM_FAULT_RETRY;
2977		goto out_release;
2978	}
2979
2980	/*
2981	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2982	 * release the swapcache from under us.  The page pin, and pte_same
2983	 * test below, are not enough to exclude that.  Even if it is still
2984	 * swapcache, we need to check that the page's swap has not changed.
2985	 */
2986	if (unlikely((!PageSwapCache(page) ||
2987			page_private(page) != entry.val)) && swapcache)
2988		goto out_page;
2989
2990	page = ksm_might_need_to_copy(page, vma, vmf->address);
2991	if (unlikely(!page)) {
2992		ret = VM_FAULT_OOM;
2993		page = swapcache;
2994		goto out_page;
2995	}
2996
2997	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2998				&memcg, false)) {
2999		ret = VM_FAULT_OOM;
3000		goto out_page;
3001	}
3002
3003	/*
3004	 * Back out if somebody else already faulted in this pte.
3005	 */
3006	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3007			&vmf->ptl);
3008	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3009		goto out_nomap;
3010
3011	if (unlikely(!PageUptodate(page))) {
3012		ret = VM_FAULT_SIGBUS;
3013		goto out_nomap;
3014	}
3015
3016	/*
3017	 * The page isn't present yet, go ahead with the fault.
3018	 *
3019	 * Be careful about the sequence of operations here.
3020	 * To get its accounting right, reuse_swap_page() must be called
3021	 * while the page is counted on swap but not yet in mapcount i.e.
3022	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3023	 * must be called after the swap_free(), or it will never succeed.
3024	 */
3025
3026	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3027	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3028	pte = mk_pte(page, vma->vm_page_prot);
3029	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3030		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3031		vmf->flags &= ~FAULT_FLAG_WRITE;
3032		ret |= VM_FAULT_WRITE;
3033		exclusive = RMAP_EXCLUSIVE;
3034	}
3035	flush_icache_page(vma, page);
3036	if (pte_swp_soft_dirty(vmf->orig_pte))
3037		pte = pte_mksoft_dirty(pte);
3038	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3039	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3040	vmf->orig_pte = pte;
3041
3042	/* ksm created a completely new copy */
3043	if (unlikely(page != swapcache && swapcache)) {
3044		page_add_new_anon_rmap(page, vma, vmf->address, false);
3045		mem_cgroup_commit_charge(page, memcg, false, false);
3046		lru_cache_add_active_or_unevictable(page, vma);
3047	} else {
3048		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3049		mem_cgroup_commit_charge(page, memcg, true, false);
3050		activate_page(page);
3051	}
3052
3053	swap_free(entry);
3054	if (mem_cgroup_swap_full(page) ||
3055	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3056		try_to_free_swap(page);
3057	unlock_page(page);
3058	if (page != swapcache && swapcache) {
3059		/*
3060		 * Hold the lock to avoid the swap entry to be reused
3061		 * until we take the PT lock for the pte_same() check
3062		 * (to avoid false positives from pte_same). For
3063		 * further safety release the lock after the swap_free
3064		 * so that the swap count won't change under a
3065		 * parallel locked swapcache.
3066		 */
3067		unlock_page(swapcache);
3068		put_page(swapcache);
3069	}
3070
3071	if (vmf->flags & FAULT_FLAG_WRITE) {
3072		ret |= do_wp_page(vmf);
3073		if (ret & VM_FAULT_ERROR)
3074			ret &= VM_FAULT_ERROR;
3075		goto out;
3076	}
3077
3078	/* No need to invalidate - it was non-present before */
3079	update_mmu_cache(vma, vmf->address, vmf->pte);
3080unlock:
3081	pte_unmap_unlock(vmf->pte, vmf->ptl);
3082out:
3083	return ret;
3084out_nomap:
3085	mem_cgroup_cancel_charge(page, memcg, false);
3086	pte_unmap_unlock(vmf->pte, vmf->ptl);
3087out_page:
3088	unlock_page(page);
3089out_release:
3090	put_page(page);
3091	if (page != swapcache && swapcache) {
3092		unlock_page(swapcache);
3093		put_page(swapcache);
3094	}
3095	return ret;
3096}
3097
3098/*
3099 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3100 * but allow concurrent faults), and pte mapped but not yet locked.
3101 * We return with mmap_sem still held, but pte unmapped and unlocked.
3102 */
3103static int do_anonymous_page(struct vm_fault *vmf)
3104{
3105	struct vm_area_struct *vma = vmf->vma;
3106	struct mem_cgroup *memcg;
3107	struct page *page;
3108	int ret = 0;
3109	pte_t entry;
3110
3111	/* File mapping without ->vm_ops ? */
3112	if (vma->vm_flags & VM_SHARED)
3113		return VM_FAULT_SIGBUS;
3114
3115	/*
3116	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3117	 * pte_offset_map() on pmds where a huge pmd might be created
3118	 * from a different thread.
3119	 *
3120	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3121	 * parallel threads are excluded by other means.
3122	 *
3123	 * Here we only have down_read(mmap_sem).
3124	 */
3125	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3126		return VM_FAULT_OOM;
3127
3128	/* See the comment in pte_alloc_one_map() */
3129	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3130		return 0;
3131
3132	/* Use the zero-page for reads */
3133	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3134			!mm_forbids_zeropage(vma->vm_mm)) {
3135		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3136						vma->vm_page_prot));
3137		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3138				vmf->address, &vmf->ptl);
3139		if (!pte_none(*vmf->pte))
3140			goto unlock;
3141		ret = check_stable_address_space(vma->vm_mm);
3142		if (ret)
3143			goto unlock;
3144		/* Deliver the page fault to userland, check inside PT lock */
3145		if (userfaultfd_missing(vma)) {
3146			pte_unmap_unlock(vmf->pte, vmf->ptl);
3147			return handle_userfault(vmf, VM_UFFD_MISSING);
3148		}
3149		goto setpte;
3150	}
3151
3152	/* Allocate our own private page. */
3153	if (unlikely(anon_vma_prepare(vma)))
3154		goto oom;
3155	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3156	if (!page)
3157		goto oom;
3158
3159	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
 
3160		goto oom_free_page;
3161
3162	/*
3163	 * The memory barrier inside __SetPageUptodate makes sure that
3164	 * preceeding stores to the page contents become visible before
3165	 * the set_pte_at() write.
3166	 */
3167	__SetPageUptodate(page);
3168
3169	entry = mk_pte(page, vma->vm_page_prot);
3170	if (vma->vm_flags & VM_WRITE)
3171		entry = pte_mkwrite(pte_mkdirty(entry));
3172
3173	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3174			&vmf->ptl);
3175	if (!pte_none(*vmf->pte))
3176		goto release;
3177
3178	ret = check_stable_address_space(vma->vm_mm);
3179	if (ret)
3180		goto release;
3181
3182	/* Deliver the page fault to userland, check inside PT lock */
3183	if (userfaultfd_missing(vma)) {
3184		pte_unmap_unlock(vmf->pte, vmf->ptl);
3185		mem_cgroup_cancel_charge(page, memcg, false);
3186		put_page(page);
3187		return handle_userfault(vmf, VM_UFFD_MISSING);
3188	}
3189
3190	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3191	page_add_new_anon_rmap(page, vma, vmf->address, false);
3192	mem_cgroup_commit_charge(page, memcg, false, false);
3193	lru_cache_add_active_or_unevictable(page, vma);
3194setpte:
3195	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3196
3197	/* No need to invalidate - it was non-present before */
3198	update_mmu_cache(vma, vmf->address, vmf->pte);
3199unlock:
3200	pte_unmap_unlock(vmf->pte, vmf->ptl);
3201	return ret;
3202release:
3203	mem_cgroup_cancel_charge(page, memcg, false);
3204	put_page(page);
3205	goto unlock;
3206oom_free_page:
3207	put_page(page);
3208oom:
3209	return VM_FAULT_OOM;
3210}
3211
3212/*
3213 * The mmap_sem must have been held on entry, and may have been
3214 * released depending on flags and vma->vm_ops->fault() return value.
3215 * See filemap_fault() and __lock_page_retry().
3216 */
3217static int __do_fault(struct vm_fault *vmf)
3218{
3219	struct vm_area_struct *vma = vmf->vma;
3220	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3221
3222	ret = vma->vm_ops->fault(vmf);
3223	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3224			    VM_FAULT_DONE_COW)))
3225		return ret;
3226
3227	if (unlikely(PageHWPoison(vmf->page))) {
3228		if (ret & VM_FAULT_LOCKED)
3229			unlock_page(vmf->page);
3230		put_page(vmf->page);
3231		vmf->page = NULL;
3232		return VM_FAULT_HWPOISON;
3233	}
3234
3235	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3236		lock_page(vmf->page);
3237	else
3238		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3239
3240	return ret;
3241}
3242
3243/*
3244 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3245 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3246 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3247 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3248 */
3249static int pmd_devmap_trans_unstable(pmd_t *pmd)
3250{
3251	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3252}
3253
3254static int pte_alloc_one_map(struct vm_fault *vmf)
3255{
3256	struct vm_area_struct *vma = vmf->vma;
3257
3258	if (!pmd_none(*vmf->pmd))
3259		goto map_pte;
3260	if (vmf->prealloc_pte) {
3261		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3262		if (unlikely(!pmd_none(*vmf->pmd))) {
3263			spin_unlock(vmf->ptl);
3264			goto map_pte;
3265		}
3266
3267		mm_inc_nr_ptes(vma->vm_mm);
3268		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3269		spin_unlock(vmf->ptl);
3270		vmf->prealloc_pte = NULL;
3271	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3272		return VM_FAULT_OOM;
3273	}
3274map_pte:
3275	/*
3276	 * If a huge pmd materialized under us just retry later.  Use
3277	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3278	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3279	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3280	 * running immediately after a huge pmd fault in a different thread of
3281	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3282	 * All we have to ensure is that it is a regular pmd that we can walk
3283	 * with pte_offset_map() and we can do that through an atomic read in
3284	 * C, which is what pmd_trans_unstable() provides.
3285	 */
3286	if (pmd_devmap_trans_unstable(vmf->pmd))
3287		return VM_FAULT_NOPAGE;
3288
3289	/*
3290	 * At this point we know that our vmf->pmd points to a page of ptes
3291	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3292	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3293	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3294	 * be valid and we will re-check to make sure the vmf->pte isn't
3295	 * pte_none() under vmf->ptl protection when we return to
3296	 * alloc_set_pte().
3297	 */
3298	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3299			&vmf->ptl);
3300	return 0;
3301}
3302
3303#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3304
3305#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3306static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3307		unsigned long haddr)
3308{
3309	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3310			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3311		return false;
3312	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3313		return false;
3314	return true;
3315}
3316
3317static void deposit_prealloc_pte(struct vm_fault *vmf)
3318{
3319	struct vm_area_struct *vma = vmf->vma;
3320
3321	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3322	/*
3323	 * We are going to consume the prealloc table,
3324	 * count that as nr_ptes.
3325	 */
3326	mm_inc_nr_ptes(vma->vm_mm);
3327	vmf->prealloc_pte = NULL;
3328}
3329
3330static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3331{
3332	struct vm_area_struct *vma = vmf->vma;
3333	bool write = vmf->flags & FAULT_FLAG_WRITE;
3334	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3335	pmd_t entry;
3336	int i, ret;
 
3337
3338	if (!transhuge_vma_suitable(vma, haddr))
3339		return VM_FAULT_FALLBACK;
3340
3341	ret = VM_FAULT_FALLBACK;
3342	page = compound_head(page);
3343
3344	/*
3345	 * Archs like ppc64 need additonal space to store information
3346	 * related to pte entry. Use the preallocated table for that.
3347	 */
3348	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3349		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3350		if (!vmf->prealloc_pte)
3351			return VM_FAULT_OOM;
3352		smp_wmb(); /* See comment in __pte_alloc() */
3353	}
3354
3355	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3356	if (unlikely(!pmd_none(*vmf->pmd)))
3357		goto out;
3358
3359	for (i = 0; i < HPAGE_PMD_NR; i++)
3360		flush_icache_page(vma, page + i);
3361
3362	entry = mk_huge_pmd(page, vma->vm_page_prot);
3363	if (write)
3364		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3365
3366	add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3367	page_add_file_rmap(page, true);
3368	/*
3369	 * deposit and withdraw with pmd lock held
3370	 */
3371	if (arch_needs_pgtable_deposit())
3372		deposit_prealloc_pte(vmf);
3373
3374	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3375
3376	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3377
3378	/* fault is handled */
3379	ret = 0;
3380	count_vm_event(THP_FILE_MAPPED);
3381out:
3382	spin_unlock(vmf->ptl);
3383	return ret;
3384}
3385#else
3386static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3387{
3388	BUILD_BUG();
3389	return 0;
3390}
3391#endif
3392
3393/**
3394 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3395 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3396 *
3397 * @vmf: fault environment
3398 * @memcg: memcg to charge page (only for private mappings)
3399 * @page: page to map
3400 *
3401 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3402 * return.
3403 *
3404 * Target users are page handler itself and implementations of
3405 * vm_ops->map_pages.
 
 
3406 */
3407int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3408		struct page *page)
3409{
3410	struct vm_area_struct *vma = vmf->vma;
3411	bool write = vmf->flags & FAULT_FLAG_WRITE;
3412	pte_t entry;
3413	int ret;
3414
3415	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3416			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3417		/* THP on COW? */
3418		VM_BUG_ON_PAGE(memcg, page);
3419
3420		ret = do_set_pmd(vmf, page);
3421		if (ret != VM_FAULT_FALLBACK)
3422			return ret;
3423	}
3424
3425	if (!vmf->pte) {
3426		ret = pte_alloc_one_map(vmf);
3427		if (ret)
3428			return ret;
3429	}
3430
3431	/* Re-check under ptl */
3432	if (unlikely(!pte_none(*vmf->pte)))
3433		return VM_FAULT_NOPAGE;
3434
3435	flush_icache_page(vma, page);
3436	entry = mk_pte(page, vma->vm_page_prot);
3437	if (write)
3438		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3439	/* copy-on-write page */
3440	if (write && !(vma->vm_flags & VM_SHARED)) {
3441		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3442		page_add_new_anon_rmap(page, vma, vmf->address, false);
3443		mem_cgroup_commit_charge(page, memcg, false, false);
3444		lru_cache_add_active_or_unevictable(page, vma);
3445	} else {
3446		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3447		page_add_file_rmap(page, false);
3448	}
3449	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3450
3451	/* no need to invalidate: a not-present page won't be cached */
3452	update_mmu_cache(vma, vmf->address, vmf->pte);
3453
3454	return 0;
3455}
3456
3457
3458/**
3459 * finish_fault - finish page fault once we have prepared the page to fault
3460 *
3461 * @vmf: structure describing the fault
3462 *
3463 * This function handles all that is needed to finish a page fault once the
3464 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3465 * given page, adds reverse page mapping, handles memcg charges and LRU
3466 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3467 * error.
3468 *
3469 * The function expects the page to be locked and on success it consumes a
3470 * reference of a page being mapped (for the PTE which maps it).
 
 
3471 */
3472int finish_fault(struct vm_fault *vmf)
3473{
3474	struct page *page;
3475	int ret = 0;
3476
3477	/* Did we COW the page? */
3478	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3479	    !(vmf->vma->vm_flags & VM_SHARED))
3480		page = vmf->cow_page;
3481	else
3482		page = vmf->page;
3483
3484	/*
3485	 * check even for read faults because we might have lost our CoWed
3486	 * page
3487	 */
3488	if (!(vmf->vma->vm_flags & VM_SHARED))
3489		ret = check_stable_address_space(vmf->vma->vm_mm);
3490	if (!ret)
3491		ret = alloc_set_pte(vmf, vmf->memcg, page);
3492	if (vmf->pte)
3493		pte_unmap_unlock(vmf->pte, vmf->ptl);
3494	return ret;
3495}
3496
3497static unsigned long fault_around_bytes __read_mostly =
3498	rounddown_pow_of_two(65536);
3499
3500#ifdef CONFIG_DEBUG_FS
3501static int fault_around_bytes_get(void *data, u64 *val)
3502{
3503	*val = fault_around_bytes;
3504	return 0;
3505}
3506
3507/*
3508 * fault_around_bytes must be rounded down to the nearest page order as it's
3509 * what do_fault_around() expects to see.
3510 */
3511static int fault_around_bytes_set(void *data, u64 val)
3512{
3513	if (val / PAGE_SIZE > PTRS_PER_PTE)
3514		return -EINVAL;
3515	if (val > PAGE_SIZE)
3516		fault_around_bytes = rounddown_pow_of_two(val);
3517	else
3518		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3519	return 0;
3520}
3521DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3522		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3523
3524static int __init fault_around_debugfs(void)
3525{
3526	void *ret;
3527
3528	ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3529			&fault_around_bytes_fops);
3530	if (!ret)
3531		pr_warn("Failed to create fault_around_bytes in debugfs");
3532	return 0;
3533}
3534late_initcall(fault_around_debugfs);
3535#endif
3536
3537/*
3538 * do_fault_around() tries to map few pages around the fault address. The hope
3539 * is that the pages will be needed soon and this will lower the number of
3540 * faults to handle.
3541 *
3542 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3543 * not ready to be mapped: not up-to-date, locked, etc.
3544 *
3545 * This function is called with the page table lock taken. In the split ptlock
3546 * case the page table lock only protects only those entries which belong to
3547 * the page table corresponding to the fault address.
3548 *
3549 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3550 * only once.
3551 *
3552 * fault_around_bytes defines how many bytes we'll try to map.
3553 * do_fault_around() expects it to be set to a power of two less than or equal
3554 * to PTRS_PER_PTE.
3555 *
3556 * The virtual address of the area that we map is naturally aligned to
3557 * fault_around_bytes rounded down to the machine page size
3558 * (and therefore to page order).  This way it's easier to guarantee
3559 * that we don't cross page table boundaries.
3560 */
3561static int do_fault_around(struct vm_fault *vmf)
3562{
3563	unsigned long address = vmf->address, nr_pages, mask;
3564	pgoff_t start_pgoff = vmf->pgoff;
3565	pgoff_t end_pgoff;
3566	int off, ret = 0;
 
3567
3568	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3569	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3570
3571	vmf->address = max(address & mask, vmf->vma->vm_start);
3572	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3573	start_pgoff -= off;
3574
3575	/*
3576	 *  end_pgoff is either the end of the page table, the end of
3577	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3578	 */
3579	end_pgoff = start_pgoff -
3580		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3581		PTRS_PER_PTE - 1;
3582	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3583			start_pgoff + nr_pages - 1);
3584
3585	if (pmd_none(*vmf->pmd)) {
3586		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3587						  vmf->address);
3588		if (!vmf->prealloc_pte)
3589			goto out;
3590		smp_wmb(); /* See comment in __pte_alloc() */
3591	}
3592
3593	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3594
3595	/* Huge page is mapped? Page fault is solved */
3596	if (pmd_trans_huge(*vmf->pmd)) {
3597		ret = VM_FAULT_NOPAGE;
3598		goto out;
3599	}
3600
3601	/* ->map_pages() haven't done anything useful. Cold page cache? */
3602	if (!vmf->pte)
3603		goto out;
3604
3605	/* check if the page fault is solved */
3606	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3607	if (!pte_none(*vmf->pte))
3608		ret = VM_FAULT_NOPAGE;
3609	pte_unmap_unlock(vmf->pte, vmf->ptl);
3610out:
3611	vmf->address = address;
3612	vmf->pte = NULL;
3613	return ret;
3614}
3615
3616static int do_read_fault(struct vm_fault *vmf)
3617{
3618	struct vm_area_struct *vma = vmf->vma;
3619	int ret = 0;
3620
3621	/*
3622	 * Let's call ->map_pages() first and use ->fault() as fallback
3623	 * if page by the offset is not ready to be mapped (cold cache or
3624	 * something).
3625	 */
3626	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3627		ret = do_fault_around(vmf);
3628		if (ret)
3629			return ret;
3630	}
3631
3632	ret = __do_fault(vmf);
3633	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3634		return ret;
3635
3636	ret |= finish_fault(vmf);
3637	unlock_page(vmf->page);
3638	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3639		put_page(vmf->page);
3640	return ret;
3641}
3642
3643static int do_cow_fault(struct vm_fault *vmf)
3644{
3645	struct vm_area_struct *vma = vmf->vma;
3646	int ret;
3647
3648	if (unlikely(anon_vma_prepare(vma)))
3649		return VM_FAULT_OOM;
3650
3651	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3652	if (!vmf->cow_page)
3653		return VM_FAULT_OOM;
3654
3655	if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3656				&vmf->memcg, false)) {
3657		put_page(vmf->cow_page);
3658		return VM_FAULT_OOM;
3659	}
3660
3661	ret = __do_fault(vmf);
3662	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3663		goto uncharge_out;
3664	if (ret & VM_FAULT_DONE_COW)
3665		return ret;
3666
3667	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3668	__SetPageUptodate(vmf->cow_page);
3669
3670	ret |= finish_fault(vmf);
3671	unlock_page(vmf->page);
3672	put_page(vmf->page);
3673	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3674		goto uncharge_out;
3675	return ret;
3676uncharge_out:
3677	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3678	put_page(vmf->cow_page);
3679	return ret;
3680}
3681
3682static int do_shared_fault(struct vm_fault *vmf)
3683{
3684	struct vm_area_struct *vma = vmf->vma;
3685	int ret, tmp;
3686
3687	ret = __do_fault(vmf);
3688	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3689		return ret;
3690
3691	/*
3692	 * Check if the backing address space wants to know that the page is
3693	 * about to become writable
3694	 */
3695	if (vma->vm_ops->page_mkwrite) {
3696		unlock_page(vmf->page);
3697		tmp = do_page_mkwrite(vmf);
3698		if (unlikely(!tmp ||
3699				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3700			put_page(vmf->page);
3701			return tmp;
3702		}
3703	}
3704
3705	ret |= finish_fault(vmf);
3706	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3707					VM_FAULT_RETRY))) {
3708		unlock_page(vmf->page);
3709		put_page(vmf->page);
3710		return ret;
3711	}
3712
3713	fault_dirty_shared_page(vma, vmf->page);
3714	return ret;
3715}
3716
3717/*
3718 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3719 * but allow concurrent faults).
3720 * The mmap_sem may have been released depending on flags and our
3721 * return value.  See filemap_fault() and __lock_page_or_retry().
 
 
3722 */
3723static int do_fault(struct vm_fault *vmf)
3724{
3725	struct vm_area_struct *vma = vmf->vma;
3726	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3727
3728	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3729	if (!vma->vm_ops->fault)
3730		ret = VM_FAULT_SIGBUS;
3731	else if (!(vmf->flags & FAULT_FLAG_WRITE))
3732		ret = do_read_fault(vmf);
3733	else if (!(vma->vm_flags & VM_SHARED))
3734		ret = do_cow_fault(vmf);
3735	else
3736		ret = do_shared_fault(vmf);
3737
3738	/* preallocated pagetable is unused: free it */
3739	if (vmf->prealloc_pte) {
3740		pte_free(vma->vm_mm, vmf->prealloc_pte);
3741		vmf->prealloc_pte = NULL;
3742	}
3743	return ret;
3744}
3745
3746static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3747				unsigned long addr, int page_nid,
3748				int *flags)
3749{
3750	get_page(page);
3751
3752	count_vm_numa_event(NUMA_HINT_FAULTS);
3753	if (page_nid == numa_node_id()) {
3754		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3755		*flags |= TNF_FAULT_LOCAL;
3756	}
3757
3758	return mpol_misplaced(page, vma, addr);
3759}
3760
3761static int do_numa_page(struct vm_fault *vmf)
3762{
3763	struct vm_area_struct *vma = vmf->vma;
3764	struct page *page = NULL;
3765	int page_nid = -1;
3766	int last_cpupid;
3767	int target_nid;
3768	bool migrated = false;
3769	pte_t pte;
3770	bool was_writable = pte_savedwrite(vmf->orig_pte);
3771	int flags = 0;
3772
3773	/*
3774	 * The "pte" at this point cannot be used safely without
3775	 * validation through pte_unmap_same(). It's of NUMA type but
3776	 * the pfn may be screwed if the read is non atomic.
3777	 */
3778	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3779	spin_lock(vmf->ptl);
3780	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3781		pte_unmap_unlock(vmf->pte, vmf->ptl);
3782		goto out;
3783	}
3784
3785	/*
3786	 * Make it present again, Depending on how arch implementes non
3787	 * accessible ptes, some can allow access by kernel mode.
3788	 */
3789	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3790	pte = pte_modify(pte, vma->vm_page_prot);
3791	pte = pte_mkyoung(pte);
3792	if (was_writable)
3793		pte = pte_mkwrite(pte);
3794	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3795	update_mmu_cache(vma, vmf->address, vmf->pte);
3796
3797	page = vm_normal_page(vma, vmf->address, pte);
3798	if (!page) {
3799		pte_unmap_unlock(vmf->pte, vmf->ptl);
3800		return 0;
3801	}
3802
3803	/* TODO: handle PTE-mapped THP */
3804	if (PageCompound(page)) {
3805		pte_unmap_unlock(vmf->pte, vmf->ptl);
3806		return 0;
3807	}
3808
3809	/*
3810	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3811	 * much anyway since they can be in shared cache state. This misses
3812	 * the case where a mapping is writable but the process never writes
3813	 * to it but pte_write gets cleared during protection updates and
3814	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3815	 * background writeback, dirty balancing and application behaviour.
3816	 */
3817	if (!pte_write(pte))
3818		flags |= TNF_NO_GROUP;
3819
3820	/*
3821	 * Flag if the page is shared between multiple address spaces. This
3822	 * is later used when determining whether to group tasks together
3823	 */
3824	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3825		flags |= TNF_SHARED;
3826
3827	last_cpupid = page_cpupid_last(page);
3828	page_nid = page_to_nid(page);
3829	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3830			&flags);
3831	pte_unmap_unlock(vmf->pte, vmf->ptl);
3832	if (target_nid == -1) {
3833		put_page(page);
3834		goto out;
3835	}
3836
3837	/* Migrate to the requested node */
3838	migrated = migrate_misplaced_page(page, vma, target_nid);
3839	if (migrated) {
3840		page_nid = target_nid;
3841		flags |= TNF_MIGRATED;
3842	} else
3843		flags |= TNF_MIGRATE_FAIL;
3844
3845out:
3846	if (page_nid != -1)
3847		task_numa_fault(last_cpupid, page_nid, 1, flags);
3848	return 0;
3849}
3850
3851static inline int create_huge_pmd(struct vm_fault *vmf)
3852{
3853	if (vma_is_anonymous(vmf->vma))
3854		return do_huge_pmd_anonymous_page(vmf);
3855	if (vmf->vma->vm_ops->huge_fault)
3856		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3857	return VM_FAULT_FALLBACK;
3858}
3859
3860/* `inline' is required to avoid gcc 4.1.2 build error */
3861static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3862{
3863	if (vma_is_anonymous(vmf->vma))
3864		return do_huge_pmd_wp_page(vmf, orig_pmd);
3865	if (vmf->vma->vm_ops->huge_fault)
3866		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3867
3868	/* COW handled on pte level: split pmd */
3869	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3870	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3871
3872	return VM_FAULT_FALLBACK;
3873}
3874
3875static inline bool vma_is_accessible(struct vm_area_struct *vma)
3876{
3877	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3878}
3879
3880static int create_huge_pud(struct vm_fault *vmf)
3881{
3882#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3883	/* No support for anonymous transparent PUD pages yet */
3884	if (vma_is_anonymous(vmf->vma))
3885		return VM_FAULT_FALLBACK;
3886	if (vmf->vma->vm_ops->huge_fault)
3887		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3888#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3889	return VM_FAULT_FALLBACK;
3890}
3891
3892static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3893{
3894#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3895	/* No support for anonymous transparent PUD pages yet */
3896	if (vma_is_anonymous(vmf->vma))
3897		return VM_FAULT_FALLBACK;
3898	if (vmf->vma->vm_ops->huge_fault)
3899		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3900#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3901	return VM_FAULT_FALLBACK;
3902}
3903
3904/*
3905 * These routines also need to handle stuff like marking pages dirty
3906 * and/or accessed for architectures that don't do it in hardware (most
3907 * RISC architectures).  The early dirtying is also good on the i386.
3908 *
3909 * There is also a hook called "update_mmu_cache()" that architectures
3910 * with external mmu caches can use to update those (ie the Sparc or
3911 * PowerPC hashed page tables that act as extended TLBs).
3912 *
3913 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3914 * concurrent faults).
3915 *
3916 * The mmap_sem may have been released depending on flags and our return value.
3917 * See filemap_fault() and __lock_page_or_retry().
3918 */
3919static int handle_pte_fault(struct vm_fault *vmf)
3920{
3921	pte_t entry;
3922
3923	if (unlikely(pmd_none(*vmf->pmd))) {
3924		/*
3925		 * Leave __pte_alloc() until later: because vm_ops->fault may
3926		 * want to allocate huge page, and if we expose page table
3927		 * for an instant, it will be difficult to retract from
3928		 * concurrent faults and from rmap lookups.
3929		 */
3930		vmf->pte = NULL;
3931	} else {
3932		/* See comment in pte_alloc_one_map() */
3933		if (pmd_devmap_trans_unstable(vmf->pmd))
3934			return 0;
3935		/*
3936		 * A regular pmd is established and it can't morph into a huge
3937		 * pmd from under us anymore at this point because we hold the
3938		 * mmap_sem read mode and khugepaged takes it in write mode.
3939		 * So now it's safe to run pte_offset_map().
3940		 */
3941		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3942		vmf->orig_pte = *vmf->pte;
3943
3944		/*
3945		 * some architectures can have larger ptes than wordsize,
3946		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3947		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3948		 * accesses.  The code below just needs a consistent view
3949		 * for the ifs and we later double check anyway with the
3950		 * ptl lock held. So here a barrier will do.
3951		 */
3952		barrier();
3953		if (pte_none(vmf->orig_pte)) {
3954			pte_unmap(vmf->pte);
3955			vmf->pte = NULL;
3956		}
3957	}
3958
3959	if (!vmf->pte) {
3960		if (vma_is_anonymous(vmf->vma))
3961			return do_anonymous_page(vmf);
3962		else
3963			return do_fault(vmf);
3964	}
3965
3966	if (!pte_present(vmf->orig_pte))
3967		return do_swap_page(vmf);
3968
3969	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3970		return do_numa_page(vmf);
3971
3972	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3973	spin_lock(vmf->ptl);
3974	entry = vmf->orig_pte;
3975	if (unlikely(!pte_same(*vmf->pte, entry)))
3976		goto unlock;
3977	if (vmf->flags & FAULT_FLAG_WRITE) {
3978		if (!pte_write(entry))
3979			return do_wp_page(vmf);
3980		entry = pte_mkdirty(entry);
3981	}
3982	entry = pte_mkyoung(entry);
3983	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3984				vmf->flags & FAULT_FLAG_WRITE)) {
3985		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3986	} else {
3987		/*
3988		 * This is needed only for protection faults but the arch code
3989		 * is not yet telling us if this is a protection fault or not.
3990		 * This still avoids useless tlb flushes for .text page faults
3991		 * with threads.
3992		 */
3993		if (vmf->flags & FAULT_FLAG_WRITE)
3994			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3995	}
3996unlock:
3997	pte_unmap_unlock(vmf->pte, vmf->ptl);
3998	return 0;
3999}
4000
4001/*
4002 * By the time we get here, we already hold the mm semaphore
4003 *
4004 * The mmap_sem may have been released depending on flags and our
4005 * return value.  See filemap_fault() and __lock_page_or_retry().
4006 */
4007static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4008		unsigned int flags)
4009{
4010	struct vm_fault vmf = {
4011		.vma = vma,
4012		.address = address & PAGE_MASK,
4013		.flags = flags,
4014		.pgoff = linear_page_index(vma, address),
4015		.gfp_mask = __get_fault_gfp_mask(vma),
4016	};
4017	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4018	struct mm_struct *mm = vma->vm_mm;
4019	pgd_t *pgd;
4020	p4d_t *p4d;
4021	int ret;
4022
4023	pgd = pgd_offset(mm, address);
4024	p4d = p4d_alloc(mm, pgd, address);
4025	if (!p4d)
4026		return VM_FAULT_OOM;
4027
4028	vmf.pud = pud_alloc(mm, p4d, address);
4029	if (!vmf.pud)
4030		return VM_FAULT_OOM;
4031	if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4032		ret = create_huge_pud(&vmf);
4033		if (!(ret & VM_FAULT_FALLBACK))
4034			return ret;
4035	} else {
4036		pud_t orig_pud = *vmf.pud;
4037
4038		barrier();
4039		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4040
4041			/* NUMA case for anonymous PUDs would go here */
4042
4043			if (dirty && !pud_write(orig_pud)) {
4044				ret = wp_huge_pud(&vmf, orig_pud);
4045				if (!(ret & VM_FAULT_FALLBACK))
4046					return ret;
4047			} else {
4048				huge_pud_set_accessed(&vmf, orig_pud);
4049				return 0;
4050			}
4051		}
4052	}
4053
4054	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4055	if (!vmf.pmd)
4056		return VM_FAULT_OOM;
4057	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4058		ret = create_huge_pmd(&vmf);
4059		if (!(ret & VM_FAULT_FALLBACK))
4060			return ret;
4061	} else {
4062		pmd_t orig_pmd = *vmf.pmd;
4063
4064		barrier();
4065		if (unlikely(is_swap_pmd(orig_pmd))) {
4066			VM_BUG_ON(thp_migration_supported() &&
4067					  !is_pmd_migration_entry(orig_pmd));
4068			if (is_pmd_migration_entry(orig_pmd))
4069				pmd_migration_entry_wait(mm, vmf.pmd);
4070			return 0;
4071		}
4072		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4073			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4074				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4075
4076			if (dirty && !pmd_write(orig_pmd)) {
4077				ret = wp_huge_pmd(&vmf, orig_pmd);
4078				if (!(ret & VM_FAULT_FALLBACK))
4079					return ret;
4080			} else {
4081				huge_pmd_set_accessed(&vmf, orig_pmd);
4082				return 0;
4083			}
4084		}
4085	}
4086
4087	return handle_pte_fault(&vmf);
4088}
4089
4090/*
4091 * By the time we get here, we already hold the mm semaphore
4092 *
4093 * The mmap_sem may have been released depending on flags and our
4094 * return value.  See filemap_fault() and __lock_page_or_retry().
4095 */
4096int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4097		unsigned int flags)
4098{
4099	int ret;
4100
4101	__set_current_state(TASK_RUNNING);
4102
4103	count_vm_event(PGFAULT);
4104	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4105
4106	/* do counter updates before entering really critical section. */
4107	check_sync_rss_stat(current);
4108
4109	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4110					    flags & FAULT_FLAG_INSTRUCTION,
4111					    flags & FAULT_FLAG_REMOTE))
4112		return VM_FAULT_SIGSEGV;
4113
4114	/*
4115	 * Enable the memcg OOM handling for faults triggered in user
4116	 * space.  Kernel faults are handled more gracefully.
4117	 */
4118	if (flags & FAULT_FLAG_USER)
4119		mem_cgroup_oom_enable();
4120
4121	if (unlikely(is_vm_hugetlb_page(vma)))
4122		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4123	else
4124		ret = __handle_mm_fault(vma, address, flags);
4125
4126	if (flags & FAULT_FLAG_USER) {
4127		mem_cgroup_oom_disable();
4128		/*
4129		 * The task may have entered a memcg OOM situation but
4130		 * if the allocation error was handled gracefully (no
4131		 * VM_FAULT_OOM), there is no need to kill anything.
4132		 * Just clean up the OOM state peacefully.
4133		 */
4134		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4135			mem_cgroup_oom_synchronize(false);
4136	}
4137
4138	return ret;
4139}
4140EXPORT_SYMBOL_GPL(handle_mm_fault);
4141
4142#ifndef __PAGETABLE_P4D_FOLDED
4143/*
4144 * Allocate p4d page table.
4145 * We've already handled the fast-path in-line.
4146 */
4147int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4148{
4149	p4d_t *new = p4d_alloc_one(mm, address);
4150	if (!new)
4151		return -ENOMEM;
4152
4153	smp_wmb(); /* See comment in __pte_alloc */
4154
4155	spin_lock(&mm->page_table_lock);
4156	if (pgd_present(*pgd))		/* Another has populated it */
4157		p4d_free(mm, new);
4158	else
4159		pgd_populate(mm, pgd, new);
4160	spin_unlock(&mm->page_table_lock);
4161	return 0;
4162}
4163#endif /* __PAGETABLE_P4D_FOLDED */
4164
4165#ifndef __PAGETABLE_PUD_FOLDED
4166/*
4167 * Allocate page upper directory.
4168 * We've already handled the fast-path in-line.
4169 */
4170int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4171{
4172	pud_t *new = pud_alloc_one(mm, address);
4173	if (!new)
4174		return -ENOMEM;
4175
4176	smp_wmb(); /* See comment in __pte_alloc */
4177
4178	spin_lock(&mm->page_table_lock);
4179#ifndef __ARCH_HAS_5LEVEL_HACK
4180	if (!p4d_present(*p4d)) {
4181		mm_inc_nr_puds(mm);
4182		p4d_populate(mm, p4d, new);
4183	} else	/* Another has populated it */
4184		pud_free(mm, new);
4185#else
4186	if (!pgd_present(*p4d)) {
4187		mm_inc_nr_puds(mm);
4188		pgd_populate(mm, p4d, new);
4189	} else	/* Another has populated it */
4190		pud_free(mm, new);
4191#endif /* __ARCH_HAS_5LEVEL_HACK */
4192	spin_unlock(&mm->page_table_lock);
4193	return 0;
4194}
4195#endif /* __PAGETABLE_PUD_FOLDED */
4196
4197#ifndef __PAGETABLE_PMD_FOLDED
4198/*
4199 * Allocate page middle directory.
4200 * We've already handled the fast-path in-line.
4201 */
4202int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4203{
4204	spinlock_t *ptl;
4205	pmd_t *new = pmd_alloc_one(mm, address);
4206	if (!new)
4207		return -ENOMEM;
4208
4209	smp_wmb(); /* See comment in __pte_alloc */
4210
4211	ptl = pud_lock(mm, pud);
4212#ifndef __ARCH_HAS_4LEVEL_HACK
4213	if (!pud_present(*pud)) {
4214		mm_inc_nr_pmds(mm);
4215		pud_populate(mm, pud, new);
4216	} else	/* Another has populated it */
4217		pmd_free(mm, new);
4218#else
4219	if (!pgd_present(*pud)) {
4220		mm_inc_nr_pmds(mm);
4221		pgd_populate(mm, pud, new);
4222	} else /* Another has populated it */
4223		pmd_free(mm, new);
4224#endif /* __ARCH_HAS_4LEVEL_HACK */
4225	spin_unlock(ptl);
4226	return 0;
4227}
4228#endif /* __PAGETABLE_PMD_FOLDED */
4229
4230static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4231			    unsigned long *start, unsigned long *end,
4232			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4233{
4234	pgd_t *pgd;
4235	p4d_t *p4d;
4236	pud_t *pud;
4237	pmd_t *pmd;
4238	pte_t *ptep;
4239
4240	pgd = pgd_offset(mm, address);
4241	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4242		goto out;
4243
4244	p4d = p4d_offset(pgd, address);
4245	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4246		goto out;
4247
4248	pud = pud_offset(p4d, address);
4249	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4250		goto out;
4251
4252	pmd = pmd_offset(pud, address);
4253	VM_BUG_ON(pmd_trans_huge(*pmd));
4254
4255	if (pmd_huge(*pmd)) {
4256		if (!pmdpp)
4257			goto out;
4258
4259		if (start && end) {
4260			*start = address & PMD_MASK;
4261			*end = *start + PMD_SIZE;
4262			mmu_notifier_invalidate_range_start(mm, *start, *end);
 
4263		}
4264		*ptlp = pmd_lock(mm, pmd);
4265		if (pmd_huge(*pmd)) {
4266			*pmdpp = pmd;
4267			return 0;
4268		}
4269		spin_unlock(*ptlp);
4270		if (start && end)
4271			mmu_notifier_invalidate_range_end(mm, *start, *end);
4272	}
4273
4274	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4275		goto out;
4276
4277	if (start && end) {
4278		*start = address & PAGE_MASK;
4279		*end = *start + PAGE_SIZE;
4280		mmu_notifier_invalidate_range_start(mm, *start, *end);
 
4281	}
4282	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4283	if (!pte_present(*ptep))
4284		goto unlock;
4285	*ptepp = ptep;
4286	return 0;
4287unlock:
4288	pte_unmap_unlock(ptep, *ptlp);
4289	if (start && end)
4290		mmu_notifier_invalidate_range_end(mm, *start, *end);
4291out:
4292	return -EINVAL;
4293}
4294
4295static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4296			     pte_t **ptepp, spinlock_t **ptlp)
4297{
4298	int res;
4299
4300	/* (void) is needed to make gcc happy */
4301	(void) __cond_lock(*ptlp,
4302			   !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4303						    ptepp, NULL, ptlp)));
4304	return res;
4305}
4306
4307int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4308			     unsigned long *start, unsigned long *end,
4309			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4310{
4311	int res;
4312
4313	/* (void) is needed to make gcc happy */
4314	(void) __cond_lock(*ptlp,
4315			   !(res = __follow_pte_pmd(mm, address, start, end,
4316						    ptepp, pmdpp, ptlp)));
4317	return res;
4318}
4319EXPORT_SYMBOL(follow_pte_pmd);
4320
4321/**
4322 * follow_pfn - look up PFN at a user virtual address
4323 * @vma: memory mapping
4324 * @address: user virtual address
4325 * @pfn: location to store found PFN
4326 *
4327 * Only IO mappings and raw PFN mappings are allowed.
4328 *
4329 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4330 */
4331int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4332	unsigned long *pfn)
4333{
4334	int ret = -EINVAL;
4335	spinlock_t *ptl;
4336	pte_t *ptep;
4337
4338	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4339		return ret;
4340
4341	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4342	if (ret)
4343		return ret;
4344	*pfn = pte_pfn(*ptep);
4345	pte_unmap_unlock(ptep, ptl);
4346	return 0;
4347}
4348EXPORT_SYMBOL(follow_pfn);
4349
4350#ifdef CONFIG_HAVE_IOREMAP_PROT
4351int follow_phys(struct vm_area_struct *vma,
4352		unsigned long address, unsigned int flags,
4353		unsigned long *prot, resource_size_t *phys)
4354{
4355	int ret = -EINVAL;
4356	pte_t *ptep, pte;
4357	spinlock_t *ptl;
4358
4359	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4360		goto out;
4361
4362	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4363		goto out;
4364	pte = *ptep;
4365
4366	if ((flags & FOLL_WRITE) && !pte_write(pte))
4367		goto unlock;
4368
4369	*prot = pgprot_val(pte_pgprot(pte));
4370	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4371
4372	ret = 0;
4373unlock:
4374	pte_unmap_unlock(ptep, ptl);
4375out:
4376	return ret;
4377}
4378
4379int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4380			void *buf, int len, int write)
4381{
4382	resource_size_t phys_addr;
4383	unsigned long prot = 0;
4384	void __iomem *maddr;
4385	int offset = addr & (PAGE_SIZE-1);
4386
4387	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4388		return -EINVAL;
4389
4390	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
 
 
 
4391	if (write)
4392		memcpy_toio(maddr + offset, buf, len);
4393	else
4394		memcpy_fromio(buf, maddr + offset, len);
4395	iounmap(maddr);
4396
4397	return len;
4398}
4399EXPORT_SYMBOL_GPL(generic_access_phys);
4400#endif
4401
4402/*
4403 * Access another process' address space as given in mm.  If non-NULL, use the
4404 * given task for page fault accounting.
4405 */
4406int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4407		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4408{
4409	struct vm_area_struct *vma;
4410	void *old_buf = buf;
4411	int write = gup_flags & FOLL_WRITE;
4412
4413	down_read(&mm->mmap_sem);
 
 
4414	/* ignore errors, just check how much was successfully transferred */
4415	while (len) {
4416		int bytes, ret, offset;
4417		void *maddr;
4418		struct page *page = NULL;
4419
4420		ret = get_user_pages_remote(tsk, mm, addr, 1,
4421				gup_flags, &page, &vma, NULL);
4422		if (ret <= 0) {
4423#ifndef CONFIG_HAVE_IOREMAP_PROT
4424			break;
4425#else
4426			/*
4427			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4428			 * we can access using slightly different code.
4429			 */
4430			vma = find_vma(mm, addr);
4431			if (!vma || vma->vm_start > addr)
4432				break;
4433			if (vma->vm_ops && vma->vm_ops->access)
4434				ret = vma->vm_ops->access(vma, addr, buf,
4435							  len, write);
4436			if (ret <= 0)
4437				break;
4438			bytes = ret;
4439#endif
4440		} else {
4441			bytes = len;
4442			offset = addr & (PAGE_SIZE-1);
4443			if (bytes > PAGE_SIZE-offset)
4444				bytes = PAGE_SIZE-offset;
4445
4446			maddr = kmap(page);
4447			if (write) {
4448				copy_to_user_page(vma, page, addr,
4449						  maddr + offset, buf, bytes);
4450				set_page_dirty_lock(page);
4451			} else {
4452				copy_from_user_page(vma, page, addr,
4453						    buf, maddr + offset, bytes);
4454			}
4455			kunmap(page);
4456			put_page(page);
4457		}
4458		len -= bytes;
4459		buf += bytes;
4460		addr += bytes;
4461	}
4462	up_read(&mm->mmap_sem);
4463
4464	return buf - old_buf;
4465}
4466
4467/**
4468 * access_remote_vm - access another process' address space
4469 * @mm:		the mm_struct of the target address space
4470 * @addr:	start address to access
4471 * @buf:	source or destination buffer
4472 * @len:	number of bytes to transfer
4473 * @gup_flags:	flags modifying lookup behaviour
4474 *
4475 * The caller must hold a reference on @mm.
 
 
4476 */
4477int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4478		void *buf, int len, unsigned int gup_flags)
4479{
4480	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4481}
4482
4483/*
4484 * Access another process' address space.
4485 * Source/target buffer must be kernel space,
4486 * Do not walk the page table directly, use get_user_pages
4487 */
4488int access_process_vm(struct task_struct *tsk, unsigned long addr,
4489		void *buf, int len, unsigned int gup_flags)
4490{
4491	struct mm_struct *mm;
4492	int ret;
4493
4494	mm = get_task_mm(tsk);
4495	if (!mm)
4496		return 0;
4497
4498	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4499
4500	mmput(mm);
4501
4502	return ret;
4503}
4504EXPORT_SYMBOL_GPL(access_process_vm);
4505
4506/*
4507 * Print the name of a VMA.
4508 */
4509void print_vma_addr(char *prefix, unsigned long ip)
4510{
4511	struct mm_struct *mm = current->mm;
4512	struct vm_area_struct *vma;
4513
4514	/*
4515	 * we might be running from an atomic context so we cannot sleep
4516	 */
4517	if (!down_read_trylock(&mm->mmap_sem))
4518		return;
4519
4520	vma = find_vma(mm, ip);
4521	if (vma && vma->vm_file) {
4522		struct file *f = vma->vm_file;
4523		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4524		if (buf) {
4525			char *p;
4526
4527			p = file_path(f, buf, PAGE_SIZE);
4528			if (IS_ERR(p))
4529				p = "?";
4530			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4531					vma->vm_start,
4532					vma->vm_end - vma->vm_start);
4533			free_page((unsigned long)buf);
4534		}
4535	}
4536	up_read(&mm->mmap_sem);
4537}
4538
4539#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4540void __might_fault(const char *file, int line)
4541{
4542	/*
4543	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4544	 * holding the mmap_sem, this is safe because kernel memory doesn't
4545	 * get paged out, therefore we'll never actually fault, and the
4546	 * below annotations will generate false positives.
4547	 */
4548	if (uaccess_kernel())
4549		return;
4550	if (pagefault_disabled())
4551		return;
4552	__might_sleep(file, line, 0);
4553#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4554	if (current->mm)
4555		might_lock_read(&current->mm->mmap_sem);
4556#endif
4557}
4558EXPORT_SYMBOL(__might_fault);
4559#endif
4560
4561#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4562static void clear_gigantic_page(struct page *page,
4563				unsigned long addr,
4564				unsigned int pages_per_huge_page)
4565{
4566	int i;
4567	struct page *p = page;
4568
4569	might_sleep();
4570	for (i = 0; i < pages_per_huge_page;
4571	     i++, p = mem_map_next(p, page, i)) {
4572		cond_resched();
4573		clear_user_highpage(p, addr + i * PAGE_SIZE);
4574	}
4575}
4576void clear_huge_page(struct page *page,
4577		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4578{
4579	int i, n, base, l;
4580	unsigned long addr = addr_hint &
4581		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4582
4583	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4584		clear_gigantic_page(page, addr, pages_per_huge_page);
4585		return;
4586	}
4587
4588	/* Clear sub-page to access last to keep its cache lines hot */
4589	might_sleep();
4590	n = (addr_hint - addr) / PAGE_SIZE;
4591	if (2 * n <= pages_per_huge_page) {
4592		/* If sub-page to access in first half of huge page */
4593		base = 0;
4594		l = n;
4595		/* Clear sub-pages at the end of huge page */
4596		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4597			cond_resched();
4598			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4599		}
4600	} else {
4601		/* If sub-page to access in second half of huge page */
4602		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4603		l = pages_per_huge_page - n;
4604		/* Clear sub-pages at the begin of huge page */
4605		for (i = 0; i < base; i++) {
4606			cond_resched();
4607			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4608		}
4609	}
4610	/*
4611	 * Clear remaining sub-pages in left-right-left-right pattern
4612	 * towards the sub-page to access
4613	 */
4614	for (i = 0; i < l; i++) {
4615		int left_idx = base + i;
4616		int right_idx = base + 2 * l - 1 - i;
4617
4618		cond_resched();
4619		clear_user_highpage(page + left_idx,
4620				    addr + left_idx * PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4621		cond_resched();
4622		clear_user_highpage(page + right_idx,
4623				    addr + right_idx * PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4624	}
 
 
4625}
4626
4627static void copy_user_gigantic_page(struct page *dst, struct page *src,
4628				    unsigned long addr,
4629				    struct vm_area_struct *vma,
4630				    unsigned int pages_per_huge_page)
4631{
4632	int i;
4633	struct page *dst_base = dst;
4634	struct page *src_base = src;
4635
4636	for (i = 0; i < pages_per_huge_page; ) {
4637		cond_resched();
4638		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4639
4640		i++;
4641		dst = mem_map_next(dst, dst_base, i);
4642		src = mem_map_next(src, src_base, i);
4643	}
4644}
4645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4646void copy_user_huge_page(struct page *dst, struct page *src,
4647			 unsigned long addr, struct vm_area_struct *vma,
4648			 unsigned int pages_per_huge_page)
4649{
4650	int i;
 
 
 
 
 
 
4651
4652	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4653		copy_user_gigantic_page(dst, src, addr, vma,
4654					pages_per_huge_page);
4655		return;
4656	}
4657
4658	might_sleep();
4659	for (i = 0; i < pages_per_huge_page; i++) {
4660		cond_resched();
4661		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4662	}
4663}
4664
4665long copy_huge_page_from_user(struct page *dst_page,
4666				const void __user *usr_src,
4667				unsigned int pages_per_huge_page,
4668				bool allow_pagefault)
4669{
4670	void *src = (void *)usr_src;
4671	void *page_kaddr;
4672	unsigned long i, rc = 0;
4673	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4674
4675	for (i = 0; i < pages_per_huge_page; i++) {
4676		if (allow_pagefault)
4677			page_kaddr = kmap(dst_page + i);
4678		else
4679			page_kaddr = kmap_atomic(dst_page + i);
4680		rc = copy_from_user(page_kaddr,
4681				(const void __user *)(src + i * PAGE_SIZE),
4682				PAGE_SIZE);
4683		if (allow_pagefault)
4684			kunmap(dst_page + i);
4685		else
4686			kunmap_atomic(page_kaddr);
4687
4688		ret_val -= (PAGE_SIZE - rc);
4689		if (rc)
4690			break;
4691
4692		cond_resched();
4693	}
4694	return ret_val;
4695}
4696#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4697
4698#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4699
4700static struct kmem_cache *page_ptl_cachep;
4701
4702void __init ptlock_cache_init(void)
4703{
4704	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4705			SLAB_PANIC, NULL);
4706}
4707
4708bool ptlock_alloc(struct page *page)
4709{
4710	spinlock_t *ptl;
4711
4712	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4713	if (!ptl)
4714		return false;
4715	page->ptl = ptl;
4716	return true;
4717}
4718
4719void ptlock_free(struct page *page)
4720{
4721	kmem_cache_free(page_ptl_cachep, page->ptl);
4722}
4723#endif