Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * demand-loading started 01.12.91 - seems it is high on the list of
  10 * things wanted, and it should be easy to implement. - Linus
  11 */
  12
  13/*
  14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  15 * pages started 02.12.91, seems to work. - Linus.
  16 *
  17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  18 * would have taken more than the 6M I have free, but it worked well as
  19 * far as I could see.
  20 *
  21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  22 */
  23
  24/*
  25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  26 * thought has to go into this. Oh, well..
  27 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  28 *		Found it. Everything seems to work now.
  29 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  30 */
  31
  32/*
  33 * 05.04.94  -  Multi-page memory management added for v1.1.
  34 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  35 *
  36 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  37 *		(Gerhard.Wichert@pdb.siemens.de)
  38 *
  39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  40 */
  41
  42#include <linux/kernel_stat.h>
  43#include <linux/mm.h>
  44#include <linux/sched/mm.h>
  45#include <linux/sched/coredump.h>
  46#include <linux/sched/numa_balancing.h>
  47#include <linux/sched/task.h>
  48#include <linux/hugetlb.h>
  49#include <linux/mman.h>
  50#include <linux/swap.h>
  51#include <linux/highmem.h>
  52#include <linux/pagemap.h>
  53#include <linux/memremap.h>
  54#include <linux/ksm.h>
  55#include <linux/rmap.h>
  56#include <linux/export.h>
  57#include <linux/delayacct.h>
  58#include <linux/init.h>
  59#include <linux/pfn_t.h>
  60#include <linux/writeback.h>
  61#include <linux/memcontrol.h>
  62#include <linux/mmu_notifier.h>
 
  63#include <linux/swapops.h>
  64#include <linux/elf.h>
  65#include <linux/gfp.h>
  66#include <linux/migrate.h>
  67#include <linux/string.h>
  68#include <linux/dma-debug.h>
  69#include <linux/debugfs.h>
  70#include <linux/userfaultfd_k.h>
  71#include <linux/dax.h>
  72#include <linux/oom.h>
  73#include <linux/numa.h>
  74
  75#include <asm/io.h>
  76#include <asm/mmu_context.h>
  77#include <asm/pgalloc.h>
  78#include <linux/uaccess.h>
  79#include <asm/tlb.h>
  80#include <asm/tlbflush.h>
  81#include <asm/pgtable.h>
  82
  83#include "internal.h"
  84
  85#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
  86#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  87#endif
  88
  89#ifndef CONFIG_NEED_MULTIPLE_NODES
  90/* use the per-pgdat data instead for discontigmem - mbligh */
  91unsigned long max_mapnr;
  92EXPORT_SYMBOL(max_mapnr);
  93
  94struct page *mem_map;
 
 
  95EXPORT_SYMBOL(mem_map);
  96#endif
  97
  98/*
  99 * A number of key systems in x86 including ioremap() rely on the assumption
 100 * that high_memory defines the upper bound on direct map memory, then end
 101 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 103 * and ZONE_HIGHMEM.
 104 */
 105void *high_memory;
 
 106EXPORT_SYMBOL(high_memory);
 107
 108/*
 109 * Randomize the address space (stacks, mmaps, brk, etc.).
 110 *
 111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 112 *   as ancient (libc5 based) binaries can segfault. )
 113 */
 114int randomize_va_space __read_mostly =
 115#ifdef CONFIG_COMPAT_BRK
 116					1;
 117#else
 118					2;
 119#endif
 120
 121static int __init disable_randmaps(char *s)
 122{
 123	randomize_va_space = 0;
 124	return 1;
 125}
 126__setup("norandmaps", disable_randmaps);
 127
 128unsigned long zero_pfn __read_mostly;
 129EXPORT_SYMBOL(zero_pfn);
 130
 131unsigned long highest_memmap_pfn __read_mostly;
 132
 133/*
 134 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 135 */
 136static int __init init_zero_pfn(void)
 137{
 138	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 139	return 0;
 140}
 141core_initcall(init_zero_pfn);
 142
 143
 144#if defined(SPLIT_RSS_COUNTING)
 145
 146void sync_mm_rss(struct mm_struct *mm)
 147{
 148	int i;
 149
 150	for (i = 0; i < NR_MM_COUNTERS; i++) {
 151		if (current->rss_stat.count[i]) {
 152			add_mm_counter(mm, i, current->rss_stat.count[i]);
 153			current->rss_stat.count[i] = 0;
 154		}
 155	}
 156	current->rss_stat.events = 0;
 157}
 158
 159static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 160{
 161	struct task_struct *task = current;
 162
 163	if (likely(task->mm == mm))
 164		task->rss_stat.count[member] += val;
 165	else
 166		add_mm_counter(mm, member, val);
 167}
 168#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 169#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 170
 171/* sync counter once per 64 page faults */
 172#define TASK_RSS_EVENTS_THRESH	(64)
 173static void check_sync_rss_stat(struct task_struct *task)
 174{
 175	if (unlikely(task != current))
 176		return;
 177	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 178		sync_mm_rss(task->mm);
 179}
 180#else /* SPLIT_RSS_COUNTING */
 181
 182#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 183#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 184
 185static void check_sync_rss_stat(struct task_struct *task)
 186{
 187}
 188
 189#endif /* SPLIT_RSS_COUNTING */
 190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191/*
 192 * Note: this doesn't free the actual pages themselves. That
 193 * has been handled earlier when unmapping all the memory regions.
 194 */
 195static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 196			   unsigned long addr)
 197{
 198	pgtable_t token = pmd_pgtable(*pmd);
 199	pmd_clear(pmd);
 200	pte_free_tlb(tlb, token, addr);
 201	mm_dec_nr_ptes(tlb->mm);
 202}
 203
 204static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 205				unsigned long addr, unsigned long end,
 206				unsigned long floor, unsigned long ceiling)
 207{
 208	pmd_t *pmd;
 209	unsigned long next;
 210	unsigned long start;
 211
 212	start = addr;
 213	pmd = pmd_offset(pud, addr);
 214	do {
 215		next = pmd_addr_end(addr, end);
 216		if (pmd_none_or_clear_bad(pmd))
 217			continue;
 218		free_pte_range(tlb, pmd, addr);
 219	} while (pmd++, addr = next, addr != end);
 220
 221	start &= PUD_MASK;
 222	if (start < floor)
 223		return;
 224	if (ceiling) {
 225		ceiling &= PUD_MASK;
 226		if (!ceiling)
 227			return;
 228	}
 229	if (end - 1 > ceiling - 1)
 230		return;
 231
 232	pmd = pmd_offset(pud, start);
 233	pud_clear(pud);
 234	pmd_free_tlb(tlb, pmd, start);
 235	mm_dec_nr_pmds(tlb->mm);
 236}
 237
 238static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
 239				unsigned long addr, unsigned long end,
 240				unsigned long floor, unsigned long ceiling)
 241{
 242	pud_t *pud;
 243	unsigned long next;
 244	unsigned long start;
 245
 246	start = addr;
 247	pud = pud_offset(p4d, addr);
 248	do {
 249		next = pud_addr_end(addr, end);
 250		if (pud_none_or_clear_bad(pud))
 251			continue;
 252		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 253	} while (pud++, addr = next, addr != end);
 254
 255	start &= P4D_MASK;
 256	if (start < floor)
 257		return;
 258	if (ceiling) {
 259		ceiling &= P4D_MASK;
 260		if (!ceiling)
 261			return;
 262	}
 263	if (end - 1 > ceiling - 1)
 264		return;
 265
 266	pud = pud_offset(p4d, start);
 267	p4d_clear(p4d);
 268	pud_free_tlb(tlb, pud, start);
 269	mm_dec_nr_puds(tlb->mm);
 270}
 271
 272static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
 273				unsigned long addr, unsigned long end,
 274				unsigned long floor, unsigned long ceiling)
 275{
 276	p4d_t *p4d;
 277	unsigned long next;
 278	unsigned long start;
 279
 280	start = addr;
 281	p4d = p4d_offset(pgd, addr);
 282	do {
 283		next = p4d_addr_end(addr, end);
 284		if (p4d_none_or_clear_bad(p4d))
 285			continue;
 286		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
 287	} while (p4d++, addr = next, addr != end);
 288
 289	start &= PGDIR_MASK;
 290	if (start < floor)
 291		return;
 292	if (ceiling) {
 293		ceiling &= PGDIR_MASK;
 294		if (!ceiling)
 295			return;
 296	}
 297	if (end - 1 > ceiling - 1)
 298		return;
 299
 300	p4d = p4d_offset(pgd, start);
 301	pgd_clear(pgd);
 302	p4d_free_tlb(tlb, p4d, start);
 303}
 304
 305/*
 306 * This function frees user-level page tables of a process.
 307 */
 308void free_pgd_range(struct mmu_gather *tlb,
 309			unsigned long addr, unsigned long end,
 310			unsigned long floor, unsigned long ceiling)
 311{
 312	pgd_t *pgd;
 313	unsigned long next;
 314
 315	/*
 316	 * The next few lines have given us lots of grief...
 317	 *
 318	 * Why are we testing PMD* at this top level?  Because often
 319	 * there will be no work to do at all, and we'd prefer not to
 320	 * go all the way down to the bottom just to discover that.
 321	 *
 322	 * Why all these "- 1"s?  Because 0 represents both the bottom
 323	 * of the address space and the top of it (using -1 for the
 324	 * top wouldn't help much: the masks would do the wrong thing).
 325	 * The rule is that addr 0 and floor 0 refer to the bottom of
 326	 * the address space, but end 0 and ceiling 0 refer to the top
 327	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 328	 * that end 0 case should be mythical).
 329	 *
 330	 * Wherever addr is brought up or ceiling brought down, we must
 331	 * be careful to reject "the opposite 0" before it confuses the
 332	 * subsequent tests.  But what about where end is brought down
 333	 * by PMD_SIZE below? no, end can't go down to 0 there.
 334	 *
 335	 * Whereas we round start (addr) and ceiling down, by different
 336	 * masks at different levels, in order to test whether a table
 337	 * now has no other vmas using it, so can be freed, we don't
 338	 * bother to round floor or end up - the tests don't need that.
 339	 */
 340
 341	addr &= PMD_MASK;
 342	if (addr < floor) {
 343		addr += PMD_SIZE;
 344		if (!addr)
 345			return;
 346	}
 347	if (ceiling) {
 348		ceiling &= PMD_MASK;
 349		if (!ceiling)
 350			return;
 351	}
 352	if (end - 1 > ceiling - 1)
 353		end -= PMD_SIZE;
 354	if (addr > end - 1)
 355		return;
 356	/*
 357	 * We add page table cache pages with PAGE_SIZE,
 358	 * (see pte_free_tlb()), flush the tlb if we need
 359	 */
 360	tlb_change_page_size(tlb, PAGE_SIZE);
 361	pgd = pgd_offset(tlb->mm, addr);
 362	do {
 363		next = pgd_addr_end(addr, end);
 364		if (pgd_none_or_clear_bad(pgd))
 365			continue;
 366		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
 367	} while (pgd++, addr = next, addr != end);
 368}
 369
 370void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 371		unsigned long floor, unsigned long ceiling)
 372{
 373	while (vma) {
 374		struct vm_area_struct *next = vma->vm_next;
 375		unsigned long addr = vma->vm_start;
 376
 377		/*
 378		 * Hide vma from rmap and truncate_pagecache before freeing
 379		 * pgtables
 380		 */
 381		unlink_anon_vmas(vma);
 382		unlink_file_vma(vma);
 383
 384		if (is_vm_hugetlb_page(vma)) {
 385			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 386				floor, next ? next->vm_start : ceiling);
 387		} else {
 388			/*
 389			 * Optimization: gather nearby vmas into one call down
 390			 */
 391			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 392			       && !is_vm_hugetlb_page(next)) {
 393				vma = next;
 394				next = vma->vm_next;
 395				unlink_anon_vmas(vma);
 396				unlink_file_vma(vma);
 397			}
 398			free_pgd_range(tlb, addr, vma->vm_end,
 399				floor, next ? next->vm_start : ceiling);
 400		}
 401		vma = next;
 402	}
 403}
 404
 405int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
 
 406{
 407	spinlock_t *ptl;
 408	pgtable_t new = pte_alloc_one(mm);
 
 409	if (!new)
 410		return -ENOMEM;
 411
 412	/*
 413	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 414	 * visible before the pte is made visible to other CPUs by being
 415	 * put into page tables.
 416	 *
 417	 * The other side of the story is the pointer chasing in the page
 418	 * table walking code (when walking the page table without locking;
 419	 * ie. most of the time). Fortunately, these data accesses consist
 420	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 421	 * being the notable exception) will already guarantee loads are
 422	 * seen in-order. See the alpha page table accessors for the
 423	 * smp_read_barrier_depends() barriers in page table walking code.
 424	 */
 425	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 426
 427	ptl = pmd_lock(mm, pmd);
 
 428	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 429		mm_inc_nr_ptes(mm);
 430		pmd_populate(mm, pmd, new);
 431		new = NULL;
 432	}
 
 433	spin_unlock(ptl);
 434	if (new)
 435		pte_free(mm, new);
 
 
 436	return 0;
 437}
 438
 439int __pte_alloc_kernel(pmd_t *pmd)
 440{
 441	pte_t *new = pte_alloc_one_kernel(&init_mm);
 442	if (!new)
 443		return -ENOMEM;
 444
 445	smp_wmb(); /* See comment in __pte_alloc */
 446
 447	spin_lock(&init_mm.page_table_lock);
 448	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 449		pmd_populate_kernel(&init_mm, pmd, new);
 450		new = NULL;
 451	}
 
 452	spin_unlock(&init_mm.page_table_lock);
 453	if (new)
 454		pte_free_kernel(&init_mm, new);
 455	return 0;
 456}
 457
 458static inline void init_rss_vec(int *rss)
 459{
 460	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 461}
 462
 463static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 464{
 465	int i;
 466
 467	if (current->mm == mm)
 468		sync_mm_rss(mm);
 469	for (i = 0; i < NR_MM_COUNTERS; i++)
 470		if (rss[i])
 471			add_mm_counter(mm, i, rss[i]);
 472}
 473
 474/*
 475 * This function is called to print an error when a bad pte
 476 * is found. For example, we might have a PFN-mapped pte in
 477 * a region that doesn't allow it.
 478 *
 479 * The calling function must still handle the error.
 480 */
 481static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 482			  pte_t pte, struct page *page)
 483{
 484	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 485	p4d_t *p4d = p4d_offset(pgd, addr);
 486	pud_t *pud = pud_offset(p4d, addr);
 487	pmd_t *pmd = pmd_offset(pud, addr);
 488	struct address_space *mapping;
 489	pgoff_t index;
 490	static unsigned long resume;
 491	static unsigned long nr_shown;
 492	static unsigned long nr_unshown;
 493
 494	/*
 495	 * Allow a burst of 60 reports, then keep quiet for that minute;
 496	 * or allow a steady drip of one report per second.
 497	 */
 498	if (nr_shown == 60) {
 499		if (time_before(jiffies, resume)) {
 500			nr_unshown++;
 501			return;
 502		}
 503		if (nr_unshown) {
 504			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 505				 nr_unshown);
 
 506			nr_unshown = 0;
 507		}
 508		nr_shown = 0;
 509	}
 510	if (nr_shown++ == 0)
 511		resume = jiffies + 60 * HZ;
 512
 513	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 514	index = linear_page_index(vma, addr);
 515
 516	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 517		 current->comm,
 518		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 
 519	if (page)
 520		dump_page(page, "bad pte");
 521	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
 522		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 523	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
 524		 vma->vm_file,
 525		 vma->vm_ops ? vma->vm_ops->fault : NULL,
 526		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 527		 mapping ? mapping->a_ops->readpage : NULL);
 
 
 
 
 
 528	dump_stack();
 529	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 530}
 531
 
 
 
 
 
 532/*
 533 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 534 *
 535 * "Special" mappings do not wish to be associated with a "struct page" (either
 536 * it doesn't exist, or it exists but they don't want to touch it). In this
 537 * case, NULL is returned here. "Normal" mappings do have a struct page.
 538 *
 539 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 540 * pte bit, in which case this function is trivial. Secondly, an architecture
 541 * may not have a spare pte bit, which requires a more complicated scheme,
 542 * described below.
 543 *
 544 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 545 * special mapping (even if there are underlying and valid "struct pages").
 546 * COWed pages of a VM_PFNMAP are always normal.
 547 *
 548 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 549 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 550 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 551 * mapping will always honor the rule
 552 *
 553 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 554 *
 555 * And for normal mappings this is false.
 556 *
 557 * This restricts such mappings to be a linear translation from virtual address
 558 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 559 * as the vma is not a COW mapping; in that case, we know that all ptes are
 560 * special (because none can have been COWed).
 561 *
 562 *
 563 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 564 *
 565 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 566 * page" backing, however the difference is that _all_ pages with a struct
 567 * page (that is, those where pfn_valid is true) are refcounted and considered
 568 * normal pages by the VM. The disadvantage is that pages are refcounted
 569 * (which can be slower and simply not an option for some PFNMAP users). The
 570 * advantage is that we don't have to follow the strict linearity rule of
 571 * PFNMAP mappings in order to support COWable mappings.
 572 *
 573 */
 
 
 
 
 
 574struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 575			    pte_t pte)
 576{
 577	unsigned long pfn = pte_pfn(pte);
 578
 579	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
 580		if (likely(!pte_special(pte)))
 581			goto check_pfn;
 582		if (vma->vm_ops && vma->vm_ops->find_special_page)
 583			return vma->vm_ops->find_special_page(vma, addr);
 584		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 585			return NULL;
 586		if (is_zero_pfn(pfn))
 587			return NULL;
 588		if (pte_devmap(pte))
 589			return NULL;
 590
 591		print_bad_pte(vma, addr, pte, NULL);
 592		return NULL;
 593	}
 594
 595	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
 596
 597	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 598		if (vma->vm_flags & VM_MIXEDMAP) {
 599			if (!pfn_valid(pfn))
 600				return NULL;
 601			goto out;
 602		} else {
 603			unsigned long off;
 604			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 605			if (pfn == vma->vm_pgoff + off)
 606				return NULL;
 607			if (!is_cow_mapping(vma->vm_flags))
 608				return NULL;
 609		}
 610	}
 611
 612	if (is_zero_pfn(pfn))
 613		return NULL;
 614
 615check_pfn:
 616	if (unlikely(pfn > highest_memmap_pfn)) {
 617		print_bad_pte(vma, addr, pte, NULL);
 618		return NULL;
 619	}
 620
 621	/*
 622	 * NOTE! We still have PageReserved() pages in the page tables.
 623	 * eg. VDSO mappings can cause them to exist.
 624	 */
 625out:
 626	return pfn_to_page(pfn);
 627}
 628
 629#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 630struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 631				pmd_t pmd)
 632{
 633	unsigned long pfn = pmd_pfn(pmd);
 634
 635	/*
 636	 * There is no pmd_special() but there may be special pmds, e.g.
 637	 * in a direct-access (dax) mapping, so let's just replicate the
 638	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
 639	 */
 640	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 641		if (vma->vm_flags & VM_MIXEDMAP) {
 642			if (!pfn_valid(pfn))
 643				return NULL;
 644			goto out;
 645		} else {
 646			unsigned long off;
 647			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 648			if (pfn == vma->vm_pgoff + off)
 649				return NULL;
 650			if (!is_cow_mapping(vma->vm_flags))
 651				return NULL;
 652		}
 653	}
 654
 655	if (pmd_devmap(pmd))
 656		return NULL;
 657	if (is_zero_pfn(pfn))
 658		return NULL;
 659	if (unlikely(pfn > highest_memmap_pfn))
 660		return NULL;
 661
 662	/*
 663	 * NOTE! We still have PageReserved() pages in the page tables.
 664	 * eg. VDSO mappings can cause them to exist.
 665	 */
 666out:
 667	return pfn_to_page(pfn);
 668}
 669#endif
 670
 671/*
 672 * copy one vm_area from one task to the other. Assumes the page tables
 673 * already present in the new task to be cleared in the whole range
 674 * covered by this vma.
 675 */
 676
 677static inline unsigned long
 678copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 679		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 680		unsigned long addr, int *rss)
 681{
 682	unsigned long vm_flags = vma->vm_flags;
 683	pte_t pte = *src_pte;
 684	struct page *page;
 685
 686	/* pte contains position in swap or file, so copy. */
 687	if (unlikely(!pte_present(pte))) {
 688		swp_entry_t entry = pte_to_swp_entry(pte);
 
 689
 690		if (likely(!non_swap_entry(entry))) {
 691			if (swap_duplicate(entry) < 0)
 692				return entry.val;
 693
 694			/* make sure dst_mm is on swapoff's mmlist. */
 695			if (unlikely(list_empty(&dst_mm->mmlist))) {
 696				spin_lock(&mmlist_lock);
 697				if (list_empty(&dst_mm->mmlist))
 698					list_add(&dst_mm->mmlist,
 699							&src_mm->mmlist);
 700				spin_unlock(&mmlist_lock);
 701			}
 702			rss[MM_SWAPENTS]++;
 703		} else if (is_migration_entry(entry)) {
 704			page = migration_entry_to_page(entry);
 705
 706			rss[mm_counter(page)]++;
 707
 708			if (is_write_migration_entry(entry) &&
 709					is_cow_mapping(vm_flags)) {
 710				/*
 711				 * COW mappings require pages in both
 712				 * parent and child to be set to read.
 713				 */
 714				make_migration_entry_read(&entry);
 715				pte = swp_entry_to_pte(entry);
 716				if (pte_swp_soft_dirty(*src_pte))
 717					pte = pte_swp_mksoft_dirty(pte);
 718				set_pte_at(src_mm, addr, src_pte, pte);
 719			}
 720		} else if (is_device_private_entry(entry)) {
 721			page = device_private_entry_to_page(entry);
 722
 723			/*
 724			 * Update rss count even for unaddressable pages, as
 725			 * they should treated just like normal pages in this
 726			 * respect.
 727			 *
 728			 * We will likely want to have some new rss counters
 729			 * for unaddressable pages, at some point. But for now
 730			 * keep things as they are.
 731			 */
 732			get_page(page);
 733			rss[mm_counter(page)]++;
 734			page_dup_rmap(page, false);
 735
 736			/*
 737			 * We do not preserve soft-dirty information, because so
 738			 * far, checkpoint/restore is the only feature that
 739			 * requires that. And checkpoint/restore does not work
 740			 * when a device driver is involved (you cannot easily
 741			 * save and restore device driver state).
 742			 */
 743			if (is_write_device_private_entry(entry) &&
 744			    is_cow_mapping(vm_flags)) {
 745				make_device_private_entry_read(&entry);
 746				pte = swp_entry_to_pte(entry);
 747				set_pte_at(src_mm, addr, src_pte, pte);
 748			}
 749		}
 750		goto out_set_pte;
 751	}
 752
 753	/*
 754	 * If it's a COW mapping, write protect it both
 755	 * in the parent and the child
 756	 */
 757	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
 758		ptep_set_wrprotect(src_mm, addr, src_pte);
 759		pte = pte_wrprotect(pte);
 760	}
 761
 762	/*
 763	 * If it's a shared mapping, mark it clean in
 764	 * the child
 765	 */
 766	if (vm_flags & VM_SHARED)
 767		pte = pte_mkclean(pte);
 768	pte = pte_mkold(pte);
 769
 770	page = vm_normal_page(vma, addr, pte);
 771	if (page) {
 772		get_page(page);
 773		page_dup_rmap(page, false);
 774		rss[mm_counter(page)]++;
 775	} else if (pte_devmap(pte)) {
 776		page = pte_page(pte);
 
 777	}
 778
 779out_set_pte:
 780	set_pte_at(dst_mm, addr, dst_pte, pte);
 781	return 0;
 782}
 783
 784static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 785		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 786		   unsigned long addr, unsigned long end)
 787{
 788	pte_t *orig_src_pte, *orig_dst_pte;
 789	pte_t *src_pte, *dst_pte;
 790	spinlock_t *src_ptl, *dst_ptl;
 791	int progress = 0;
 792	int rss[NR_MM_COUNTERS];
 793	swp_entry_t entry = (swp_entry_t){0};
 794
 795again:
 796	init_rss_vec(rss);
 797
 798	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 799	if (!dst_pte)
 800		return -ENOMEM;
 801	src_pte = pte_offset_map(src_pmd, addr);
 802	src_ptl = pte_lockptr(src_mm, src_pmd);
 803	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 804	orig_src_pte = src_pte;
 805	orig_dst_pte = dst_pte;
 806	arch_enter_lazy_mmu_mode();
 807
 808	do {
 809		/*
 810		 * We are holding two locks at this point - either of them
 811		 * could generate latencies in another task on another CPU.
 812		 */
 813		if (progress >= 32) {
 814			progress = 0;
 815			if (need_resched() ||
 816			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 817				break;
 818		}
 819		if (pte_none(*src_pte)) {
 820			progress++;
 821			continue;
 822		}
 823		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 824							vma, addr, rss);
 825		if (entry.val)
 826			break;
 827		progress += 8;
 828	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 829
 830	arch_leave_lazy_mmu_mode();
 831	spin_unlock(src_ptl);
 832	pte_unmap(orig_src_pte);
 833	add_mm_rss_vec(dst_mm, rss);
 834	pte_unmap_unlock(orig_dst_pte, dst_ptl);
 835	cond_resched();
 836
 837	if (entry.val) {
 838		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 839			return -ENOMEM;
 840		progress = 0;
 841	}
 842	if (addr != end)
 843		goto again;
 844	return 0;
 845}
 846
 847static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 848		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 849		unsigned long addr, unsigned long end)
 850{
 851	pmd_t *src_pmd, *dst_pmd;
 852	unsigned long next;
 853
 854	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 855	if (!dst_pmd)
 856		return -ENOMEM;
 857	src_pmd = pmd_offset(src_pud, addr);
 858	do {
 859		next = pmd_addr_end(addr, end);
 860		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
 861			|| pmd_devmap(*src_pmd)) {
 862			int err;
 863			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
 864			err = copy_huge_pmd(dst_mm, src_mm,
 865					    dst_pmd, src_pmd, addr, vma);
 866			if (err == -ENOMEM)
 867				return -ENOMEM;
 868			if (!err)
 869				continue;
 870			/* fall through */
 871		}
 872		if (pmd_none_or_clear_bad(src_pmd))
 873			continue;
 874		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
 875						vma, addr, next))
 876			return -ENOMEM;
 877	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
 878	return 0;
 879}
 880
 881static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 882		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
 883		unsigned long addr, unsigned long end)
 884{
 885	pud_t *src_pud, *dst_pud;
 886	unsigned long next;
 887
 888	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
 889	if (!dst_pud)
 890		return -ENOMEM;
 891	src_pud = pud_offset(src_p4d, addr);
 892	do {
 893		next = pud_addr_end(addr, end);
 894		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
 895			int err;
 896
 897			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
 898			err = copy_huge_pud(dst_mm, src_mm,
 899					    dst_pud, src_pud, addr, vma);
 900			if (err == -ENOMEM)
 901				return -ENOMEM;
 902			if (!err)
 903				continue;
 904			/* fall through */
 905		}
 906		if (pud_none_or_clear_bad(src_pud))
 907			continue;
 908		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
 909						vma, addr, next))
 910			return -ENOMEM;
 911	} while (dst_pud++, src_pud++, addr = next, addr != end);
 912	return 0;
 913}
 914
 915static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 916		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
 917		unsigned long addr, unsigned long end)
 918{
 919	p4d_t *src_p4d, *dst_p4d;
 920	unsigned long next;
 921
 922	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
 923	if (!dst_p4d)
 924		return -ENOMEM;
 925	src_p4d = p4d_offset(src_pgd, addr);
 926	do {
 927		next = p4d_addr_end(addr, end);
 928		if (p4d_none_or_clear_bad(src_p4d))
 929			continue;
 930		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
 931						vma, addr, next))
 932			return -ENOMEM;
 933	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
 934	return 0;
 935}
 936
 937int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 938		struct vm_area_struct *vma)
 939{
 940	pgd_t *src_pgd, *dst_pgd;
 941	unsigned long next;
 942	unsigned long addr = vma->vm_start;
 943	unsigned long end = vma->vm_end;
 944	struct mmu_notifier_range range;
 
 945	bool is_cow;
 946	int ret;
 947
 948	/*
 949	 * Don't copy ptes where a page fault will fill them correctly.
 950	 * Fork becomes much lighter when there are big shared or private
 951	 * readonly mappings. The tradeoff is that copy_page_range is more
 952	 * efficient than faulting.
 953	 */
 954	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
 955			!vma->anon_vma)
 956		return 0;
 
 
 957
 958	if (is_vm_hugetlb_page(vma))
 959		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
 960
 961	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
 962		/*
 963		 * We do not free on error cases below as remove_vma
 964		 * gets called on error from higher level routine
 965		 */
 966		ret = track_pfn_copy(vma);
 967		if (ret)
 968			return ret;
 969	}
 970
 971	/*
 972	 * We need to invalidate the secondary MMU mappings only when
 973	 * there could be a permission downgrade on the ptes of the
 974	 * parent mm. And a permission downgrade will only happen if
 975	 * is_cow_mapping() returns true.
 976	 */
 977	is_cow = is_cow_mapping(vma->vm_flags);
 978
 979	if (is_cow) {
 980		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
 981					0, vma, src_mm, addr, end);
 982		mmu_notifier_invalidate_range_start(&range);
 983	}
 984
 985	ret = 0;
 986	dst_pgd = pgd_offset(dst_mm, addr);
 987	src_pgd = pgd_offset(src_mm, addr);
 988	do {
 989		next = pgd_addr_end(addr, end);
 990		if (pgd_none_or_clear_bad(src_pgd))
 991			continue;
 992		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
 993					    vma, addr, next))) {
 994			ret = -ENOMEM;
 995			break;
 996		}
 997	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
 998
 999	if (is_cow)
1000		mmu_notifier_invalidate_range_end(&range);
1001	return ret;
1002}
1003
1004static unsigned long zap_pte_range(struct mmu_gather *tlb,
1005				struct vm_area_struct *vma, pmd_t *pmd,
1006				unsigned long addr, unsigned long end,
1007				struct zap_details *details)
1008{
1009	struct mm_struct *mm = tlb->mm;
1010	int force_flush = 0;
1011	int rss[NR_MM_COUNTERS];
1012	spinlock_t *ptl;
1013	pte_t *start_pte;
1014	pte_t *pte;
1015	swp_entry_t entry;
1016
1017	tlb_change_page_size(tlb, PAGE_SIZE);
1018again:
1019	init_rss_vec(rss);
1020	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1021	pte = start_pte;
1022	flush_tlb_batched_pending(mm);
1023	arch_enter_lazy_mmu_mode();
1024	do {
1025		pte_t ptent = *pte;
1026		if (pte_none(ptent))
1027			continue;
1028
1029		if (need_resched())
1030			break;
1031
1032		if (pte_present(ptent)) {
1033			struct page *page;
1034
1035			page = vm_normal_page(vma, addr, ptent);
1036			if (unlikely(details) && page) {
1037				/*
1038				 * unmap_shared_mapping_pages() wants to
1039				 * invalidate cache without truncating:
1040				 * unmap shared but keep private pages.
1041				 */
1042				if (details->check_mapping &&
1043				    details->check_mapping != page_rmapping(page))
 
 
 
 
 
 
 
 
1044					continue;
1045			}
1046			ptent = ptep_get_and_clear_full(mm, addr, pte,
1047							tlb->fullmm);
1048			tlb_remove_tlb_entry(tlb, pte, addr);
1049			if (unlikely(!page))
1050				continue;
1051
1052			if (!PageAnon(page)) {
 
 
 
 
 
 
 
 
 
1053				if (pte_dirty(ptent)) {
1054					force_flush = 1;
1055					set_page_dirty(page);
1056				}
1057				if (pte_young(ptent) &&
1058				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1059					mark_page_accessed(page);
 
1060			}
1061			rss[mm_counter(page)]--;
1062			page_remove_rmap(page, false);
1063			if (unlikely(page_mapcount(page) < 0))
1064				print_bad_pte(vma, addr, ptent, page);
1065			if (unlikely(__tlb_remove_page(tlb, page))) {
1066				force_flush = 1;
1067				addr += PAGE_SIZE;
1068				break;
1069			}
1070			continue;
1071		}
1072
1073		entry = pte_to_swp_entry(ptent);
1074		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1075			struct page *page = device_private_entry_to_page(entry);
1076
1077			if (unlikely(details && details->check_mapping)) {
1078				/*
1079				 * unmap_shared_mapping_pages() wants to
1080				 * invalidate cache without truncating:
1081				 * unmap shared but keep private pages.
1082				 */
1083				if (details->check_mapping !=
1084				    page_rmapping(page))
1085					continue;
1086			}
1087
1088			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1089			rss[mm_counter(page)]--;
1090			page_remove_rmap(page, false);
1091			put_page(page);
1092			continue;
1093		}
1094
1095		/* If details->check_mapping, we leave swap entries. */
1096		if (unlikely(details))
1097			continue;
 
 
 
 
 
1098
1099		if (!non_swap_entry(entry))
1100			rss[MM_SWAPENTS]--;
1101		else if (is_migration_entry(entry)) {
1102			struct page *page;
1103
1104			page = migration_entry_to_page(entry);
1105			rss[mm_counter(page)]--;
 
 
 
 
 
 
 
1106		}
1107		if (unlikely(!free_swap_and_cache(entry)))
1108			print_bad_pte(vma, addr, ptent, NULL);
1109		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1110	} while (pte++, addr += PAGE_SIZE, addr != end);
1111
1112	add_mm_rss_vec(mm, rss);
1113	arch_leave_lazy_mmu_mode();
1114
1115	/* Do the actual TLB flush before dropping ptl */
1116	if (force_flush)
 
 
 
 
 
 
 
 
 
1117		tlb_flush_mmu_tlbonly(tlb);
 
 
 
1118	pte_unmap_unlock(start_pte, ptl);
1119
1120	/*
1121	 * If we forced a TLB flush (either due to running out of
1122	 * batch buffers or because we needed to flush dirty TLB
1123	 * entries before releasing the ptl), free the batched
1124	 * memory too. Restart if we didn't do everything.
1125	 */
1126	if (force_flush) {
1127		force_flush = 0;
1128		tlb_flush_mmu(tlb);
1129	}
1130
1131	if (addr != end) {
1132		cond_resched();
1133		goto again;
1134	}
1135
1136	return addr;
1137}
1138
1139static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1140				struct vm_area_struct *vma, pud_t *pud,
1141				unsigned long addr, unsigned long end,
1142				struct zap_details *details)
1143{
1144	pmd_t *pmd;
1145	unsigned long next;
1146
1147	pmd = pmd_offset(pud, addr);
1148	do {
1149		next = pmd_addr_end(addr, end);
1150		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1151			if (next - addr != HPAGE_PMD_SIZE)
1152				__split_huge_pmd(vma, pmd, addr, false, NULL);
1153			else if (zap_huge_pmd(tlb, vma, pmd, addr))
 
 
 
 
 
 
 
 
 
1154				goto next;
1155			/* fall through */
1156		}
1157		/*
1158		 * Here there can be other concurrent MADV_DONTNEED or
1159		 * trans huge page faults running, and if the pmd is
1160		 * none or trans huge it can change under us. This is
1161		 * because MADV_DONTNEED holds the mmap_sem in read
1162		 * mode.
1163		 */
1164		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1165			goto next;
1166		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1167next:
1168		cond_resched();
1169	} while (pmd++, addr = next, addr != end);
1170
1171	return addr;
1172}
1173
1174static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1175				struct vm_area_struct *vma, p4d_t *p4d,
1176				unsigned long addr, unsigned long end,
1177				struct zap_details *details)
1178{
1179	pud_t *pud;
1180	unsigned long next;
1181
1182	pud = pud_offset(p4d, addr);
1183	do {
1184		next = pud_addr_end(addr, end);
1185		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1186			if (next - addr != HPAGE_PUD_SIZE) {
1187				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1188				split_huge_pud(vma, pud, addr);
1189			} else if (zap_huge_pud(tlb, vma, pud, addr))
1190				goto next;
1191			/* fall through */
1192		}
1193		if (pud_none_or_clear_bad(pud))
1194			continue;
1195		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1196next:
1197		cond_resched();
1198	} while (pud++, addr = next, addr != end);
1199
1200	return addr;
1201}
1202
1203static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1204				struct vm_area_struct *vma, pgd_t *pgd,
1205				unsigned long addr, unsigned long end,
1206				struct zap_details *details)
1207{
1208	p4d_t *p4d;
1209	unsigned long next;
1210
1211	p4d = p4d_offset(pgd, addr);
1212	do {
1213		next = p4d_addr_end(addr, end);
1214		if (p4d_none_or_clear_bad(p4d))
1215			continue;
1216		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1217	} while (p4d++, addr = next, addr != end);
1218
1219	return addr;
1220}
1221
1222void unmap_page_range(struct mmu_gather *tlb,
1223			     struct vm_area_struct *vma,
1224			     unsigned long addr, unsigned long end,
1225			     struct zap_details *details)
1226{
1227	pgd_t *pgd;
1228	unsigned long next;
1229
 
 
 
1230	BUG_ON(addr >= end);
 
1231	tlb_start_vma(tlb, vma);
1232	pgd = pgd_offset(vma->vm_mm, addr);
1233	do {
1234		next = pgd_addr_end(addr, end);
1235		if (pgd_none_or_clear_bad(pgd))
1236			continue;
1237		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1238	} while (pgd++, addr = next, addr != end);
1239	tlb_end_vma(tlb, vma);
 
1240}
1241
1242
1243static void unmap_single_vma(struct mmu_gather *tlb,
1244		struct vm_area_struct *vma, unsigned long start_addr,
1245		unsigned long end_addr,
1246		struct zap_details *details)
1247{
1248	unsigned long start = max(vma->vm_start, start_addr);
1249	unsigned long end;
1250
1251	if (start >= vma->vm_end)
1252		return;
1253	end = min(vma->vm_end, end_addr);
1254	if (end <= vma->vm_start)
1255		return;
1256
1257	if (vma->vm_file)
1258		uprobe_munmap(vma, start, end);
1259
1260	if (unlikely(vma->vm_flags & VM_PFNMAP))
1261		untrack_pfn(vma, 0, 0);
1262
1263	if (start != end) {
1264		if (unlikely(is_vm_hugetlb_page(vma))) {
1265			/*
1266			 * It is undesirable to test vma->vm_file as it
1267			 * should be non-null for valid hugetlb area.
1268			 * However, vm_file will be NULL in the error
1269			 * cleanup path of mmap_region. When
1270			 * hugetlbfs ->mmap method fails,
1271			 * mmap_region() nullifies vma->vm_file
1272			 * before calling this function to clean up.
1273			 * Since no pte has actually been setup, it is
1274			 * safe to do nothing in this case.
1275			 */
1276			if (vma->vm_file) {
1277				i_mmap_lock_write(vma->vm_file->f_mapping);
1278				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1279				i_mmap_unlock_write(vma->vm_file->f_mapping);
1280			}
1281		} else
1282			unmap_page_range(tlb, vma, start, end, details);
1283	}
1284}
1285
1286/**
1287 * unmap_vmas - unmap a range of memory covered by a list of vma's
1288 * @tlb: address of the caller's struct mmu_gather
1289 * @vma: the starting vma
1290 * @start_addr: virtual address at which to start unmapping
1291 * @end_addr: virtual address at which to end unmapping
1292 *
1293 * Unmap all pages in the vma list.
1294 *
1295 * Only addresses between `start' and `end' will be unmapped.
1296 *
1297 * The VMA list must be sorted in ascending virtual address order.
1298 *
1299 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1300 * range after unmap_vmas() returns.  So the only responsibility here is to
1301 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1302 * drops the lock and schedules.
1303 */
1304void unmap_vmas(struct mmu_gather *tlb,
1305		struct vm_area_struct *vma, unsigned long start_addr,
1306		unsigned long end_addr)
1307{
1308	struct mmu_notifier_range range;
1309
1310	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1311				start_addr, end_addr);
1312	mmu_notifier_invalidate_range_start(&range);
1313	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1314		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1315	mmu_notifier_invalidate_range_end(&range);
1316}
1317
1318/**
1319 * zap_page_range - remove user pages in a given range
1320 * @vma: vm_area_struct holding the applicable pages
1321 * @start: starting address of pages to zap
1322 * @size: number of bytes to zap
 
1323 *
1324 * Caller must protect the VMA list
1325 */
1326void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1327		unsigned long size)
1328{
1329	struct mmu_notifier_range range;
1330	struct mmu_gather tlb;
 
1331
1332	lru_add_drain();
1333	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1334				start, start + size);
1335	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1336	update_hiwater_rss(vma->vm_mm);
1337	mmu_notifier_invalidate_range_start(&range);
1338	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1339		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1340	mmu_notifier_invalidate_range_end(&range);
1341	tlb_finish_mmu(&tlb, start, range.end);
1342}
1343
1344/**
1345 * zap_page_range_single - remove user pages in a given range
1346 * @vma: vm_area_struct holding the applicable pages
1347 * @address: starting address of pages to zap
1348 * @size: number of bytes to zap
1349 * @details: details of shared cache invalidation
1350 *
1351 * The range must fit into one VMA.
1352 */
1353static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1354		unsigned long size, struct zap_details *details)
1355{
1356	struct mmu_notifier_range range;
1357	struct mmu_gather tlb;
 
1358
1359	lru_add_drain();
1360	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1361				address, address + size);
1362	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1363	update_hiwater_rss(vma->vm_mm);
1364	mmu_notifier_invalidate_range_start(&range);
1365	unmap_single_vma(&tlb, vma, address, range.end, details);
1366	mmu_notifier_invalidate_range_end(&range);
1367	tlb_finish_mmu(&tlb, address, range.end);
1368}
1369
1370/**
1371 * zap_vma_ptes - remove ptes mapping the vma
1372 * @vma: vm_area_struct holding ptes to be zapped
1373 * @address: starting address of pages to zap
1374 * @size: number of bytes to zap
1375 *
1376 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1377 *
1378 * The entire address range must be fully contained within the vma.
1379 *
 
1380 */
1381void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1382		unsigned long size)
1383{
1384	if (address < vma->vm_start || address + size > vma->vm_end ||
1385	    		!(vma->vm_flags & VM_PFNMAP))
1386		return;
1387
1388	zap_page_range_single(vma, address, size, NULL);
 
1389}
1390EXPORT_SYMBOL_GPL(zap_vma_ptes);
1391
1392pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1393			spinlock_t **ptl)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1394{
1395	pgd_t *pgd;
1396	p4d_t *p4d;
1397	pud_t *pud;
1398	pmd_t *pmd;
 
 
 
 
1399
1400	pgd = pgd_offset(mm, addr);
1401	p4d = p4d_alloc(mm, pgd, addr);
1402	if (!p4d)
1403		return NULL;
1404	pud = pud_alloc(mm, p4d, addr);
1405	if (!pud)
1406		return NULL;
1407	pmd = pmd_alloc(mm, pud, addr);
1408	if (!pmd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409		return NULL;
 
 
 
 
1410
1411	VM_BUG_ON(pmd_trans_huge(*pmd));
1412	return pte_alloc_map_lock(mm, pmd, addr, ptl);
 
 
 
 
 
 
 
 
 
 
 
1413}
1414
1415/*
1416 * This is the old fallback for page remapping.
1417 *
1418 * For historical reasons, it only allows reserved pages. Only
1419 * old drivers should use this, and they needed to mark their
1420 * pages reserved for the old functions anyway.
1421 */
1422static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1423			struct page *page, pgprot_t prot)
1424{
1425	struct mm_struct *mm = vma->vm_mm;
1426	int retval;
1427	pte_t *pte;
1428	spinlock_t *ptl;
1429
1430	retval = -EINVAL;
1431	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1432		goto out;
1433	retval = -ENOMEM;
1434	flush_dcache_page(page);
1435	pte = get_locked_pte(mm, addr, &ptl);
1436	if (!pte)
1437		goto out;
1438	retval = -EBUSY;
1439	if (!pte_none(*pte))
1440		goto out_unlock;
1441
1442	/* Ok, finally just insert the thing.. */
1443	get_page(page);
1444	inc_mm_counter_fast(mm, mm_counter_file(page));
1445	page_add_file_rmap(page, false);
1446	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1447
1448	retval = 0;
 
 
1449out_unlock:
1450	pte_unmap_unlock(pte, ptl);
1451out:
1452	return retval;
1453}
1454
1455/**
1456 * vm_insert_page - insert single page into user vma
1457 * @vma: user vma to map to
1458 * @addr: target user address of this page
1459 * @page: source kernel page
1460 *
1461 * This allows drivers to insert individual pages they've allocated
1462 * into a user vma.
1463 *
1464 * The page has to be a nice clean _individual_ kernel allocation.
1465 * If you allocate a compound page, you need to have marked it as
1466 * such (__GFP_COMP), or manually just split the page up yourself
1467 * (see split_page()).
1468 *
1469 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1470 * took an arbitrary page protection parameter. This doesn't allow
1471 * that. Your vma protection will have to be set up correctly, which
1472 * means that if you want a shared writable mapping, you'd better
1473 * ask for a shared writable mapping!
1474 *
1475 * The page does not need to be reserved.
1476 *
1477 * Usually this function is called from f_op->mmap() handler
1478 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1479 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1480 * function from other places, for example from page-fault handler.
1481 *
1482 * Return: %0 on success, negative error code otherwise.
1483 */
1484int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1485			struct page *page)
1486{
1487	if (addr < vma->vm_start || addr >= vma->vm_end)
1488		return -EFAULT;
1489	if (!page_count(page))
1490		return -EINVAL;
1491	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1492		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1493		BUG_ON(vma->vm_flags & VM_PFNMAP);
1494		vma->vm_flags |= VM_MIXEDMAP;
1495	}
1496	return insert_page(vma, addr, page, vma->vm_page_prot);
1497}
1498EXPORT_SYMBOL(vm_insert_page);
1499
1500/*
1501 * __vm_map_pages - maps range of kernel pages into user vma
1502 * @vma: user vma to map to
1503 * @pages: pointer to array of source kernel pages
1504 * @num: number of pages in page array
1505 * @offset: user's requested vm_pgoff
1506 *
1507 * This allows drivers to map range of kernel pages into a user vma.
1508 *
1509 * Return: 0 on success and error code otherwise.
1510 */
1511static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1512				unsigned long num, unsigned long offset)
1513{
1514	unsigned long count = vma_pages(vma);
1515	unsigned long uaddr = vma->vm_start;
1516	int ret, i;
1517
1518	/* Fail if the user requested offset is beyond the end of the object */
1519	if (offset >= num)
1520		return -ENXIO;
1521
1522	/* Fail if the user requested size exceeds available object size */
1523	if (count > num - offset)
1524		return -ENXIO;
1525
1526	for (i = 0; i < count; i++) {
1527		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1528		if (ret < 0)
1529			return ret;
1530		uaddr += PAGE_SIZE;
1531	}
1532
1533	return 0;
1534}
1535
1536/**
1537 * vm_map_pages - maps range of kernel pages starts with non zero offset
1538 * @vma: user vma to map to
1539 * @pages: pointer to array of source kernel pages
1540 * @num: number of pages in page array
1541 *
1542 * Maps an object consisting of @num pages, catering for the user's
1543 * requested vm_pgoff
1544 *
1545 * If we fail to insert any page into the vma, the function will return
1546 * immediately leaving any previously inserted pages present.  Callers
1547 * from the mmap handler may immediately return the error as their caller
1548 * will destroy the vma, removing any successfully inserted pages. Other
1549 * callers should make their own arrangements for calling unmap_region().
1550 *
1551 * Context: Process context. Called by mmap handlers.
1552 * Return: 0 on success and error code otherwise.
1553 */
1554int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1555				unsigned long num)
1556{
1557	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1558}
1559EXPORT_SYMBOL(vm_map_pages);
1560
1561/**
1562 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1563 * @vma: user vma to map to
1564 * @pages: pointer to array of source kernel pages
1565 * @num: number of pages in page array
1566 *
1567 * Similar to vm_map_pages(), except that it explicitly sets the offset
1568 * to 0. This function is intended for the drivers that did not consider
1569 * vm_pgoff.
1570 *
1571 * Context: Process context. Called by mmap handlers.
1572 * Return: 0 on success and error code otherwise.
1573 */
1574int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1575				unsigned long num)
1576{
1577	return __vm_map_pages(vma, pages, num, 0);
1578}
1579EXPORT_SYMBOL(vm_map_pages_zero);
1580
1581static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1582			pfn_t pfn, pgprot_t prot, bool mkwrite)
1583{
1584	struct mm_struct *mm = vma->vm_mm;
 
1585	pte_t *pte, entry;
1586	spinlock_t *ptl;
1587
 
1588	pte = get_locked_pte(mm, addr, &ptl);
1589	if (!pte)
1590		return VM_FAULT_OOM;
1591	if (!pte_none(*pte)) {
1592		if (mkwrite) {
1593			/*
1594			 * For read faults on private mappings the PFN passed
1595			 * in may not match the PFN we have mapped if the
1596			 * mapped PFN is a writeable COW page.  In the mkwrite
1597			 * case we are creating a writable PTE for a shared
1598			 * mapping and we expect the PFNs to match. If they
1599			 * don't match, we are likely racing with block
1600			 * allocation and mapping invalidation so just skip the
1601			 * update.
1602			 */
1603			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1604				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1605				goto out_unlock;
1606			}
1607			entry = pte_mkyoung(*pte);
1608			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1609			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1610				update_mmu_cache(vma, addr, pte);
1611		}
1612		goto out_unlock;
1613	}
1614
1615	/* Ok, finally just insert the thing.. */
1616	if (pfn_t_devmap(pfn))
1617		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1618	else
1619		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1620
1621	if (mkwrite) {
1622		entry = pte_mkyoung(entry);
1623		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1624	}
1625
1626	set_pte_at(mm, addr, pte, entry);
1627	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1628
 
1629out_unlock:
1630	pte_unmap_unlock(pte, ptl);
1631	return VM_FAULT_NOPAGE;
 
1632}
1633
1634/**
1635 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1636 * @vma: user vma to map to
1637 * @addr: target user address of this page
1638 * @pfn: source kernel pfn
1639 * @pgprot: pgprot flags for the inserted page
1640 *
1641 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1642 * to override pgprot on a per-page basis.
 
 
 
1643 *
1644 * This only makes sense for IO mappings, and it makes no sense for
1645 * COW mappings.  In general, using multiple vmas is preferable;
1646 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1647 * impractical.
1648 *
1649 * Context: Process context.  May allocate using %GFP_KERNEL.
1650 * Return: vm_fault_t value.
1651 */
1652vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1653			unsigned long pfn, pgprot_t pgprot)
1654{
 
 
1655	/*
1656	 * Technically, architectures with pte_special can avoid all these
1657	 * restrictions (same for remap_pfn_range).  However we would like
1658	 * consistency in testing and feature parity among all, so we should
1659	 * try to keep these invariants in place for everybody.
1660	 */
1661	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1662	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1663						(VM_PFNMAP|VM_MIXEDMAP));
1664	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1665	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1666
1667	if (addr < vma->vm_start || addr >= vma->vm_end)
1668		return VM_FAULT_SIGBUS;
1669
1670	if (!pfn_modify_allowed(pfn, pgprot))
1671		return VM_FAULT_SIGBUS;
1672
1673	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1674
1675	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1676			false);
1677}
1678EXPORT_SYMBOL(vmf_insert_pfn_prot);
1679
1680/**
1681 * vmf_insert_pfn - insert single pfn into user vma
1682 * @vma: user vma to map to
1683 * @addr: target user address of this page
1684 * @pfn: source kernel pfn
1685 *
1686 * Similar to vm_insert_page, this allows drivers to insert individual pages
1687 * they've allocated into a user vma. Same comments apply.
1688 *
1689 * This function should only be called from a vm_ops->fault handler, and
1690 * in that case the handler should return the result of this function.
1691 *
1692 * vma cannot be a COW mapping.
1693 *
1694 * As this is called only for pages that do not currently exist, we
1695 * do not need to flush old virtual caches or the TLB.
1696 *
1697 * Context: Process context.  May allocate using %GFP_KERNEL.
1698 * Return: vm_fault_t value.
1699 */
1700vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1701			unsigned long pfn)
1702{
1703	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1704}
1705EXPORT_SYMBOL(vmf_insert_pfn);
1706
1707static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1708{
1709	/* these checks mirror the abort conditions in vm_normal_page */
1710	if (vma->vm_flags & VM_MIXEDMAP)
1711		return true;
1712	if (pfn_t_devmap(pfn))
1713		return true;
1714	if (pfn_t_special(pfn))
1715		return true;
1716	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1717		return true;
1718	return false;
1719}
1720
1721static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1722		unsigned long addr, pfn_t pfn, bool mkwrite)
1723{
1724	pgprot_t pgprot = vma->vm_page_prot;
1725	int err;
1726
1727	BUG_ON(!vm_mixed_ok(vma, pfn));
1728
1729	if (addr < vma->vm_start || addr >= vma->vm_end)
1730		return VM_FAULT_SIGBUS;
1731
1732	track_pfn_insert(vma, &pgprot, pfn);
1733
1734	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1735		return VM_FAULT_SIGBUS;
1736
1737	/*
1738	 * If we don't have pte special, then we have to use the pfn_valid()
1739	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1740	 * refcount the page if pfn_valid is true (hence insert_page rather
1741	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1742	 * without pte special, it would there be refcounted as a normal page.
1743	 */
1744	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1745	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1746		struct page *page;
1747
1748		/*
1749		 * At this point we are committed to insert_page()
1750		 * regardless of whether the caller specified flags that
1751		 * result in pfn_t_has_page() == false.
1752		 */
1753		page = pfn_to_page(pfn_t_to_pfn(pfn));
1754		err = insert_page(vma, addr, page, pgprot);
1755	} else {
1756		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1757	}
1758
1759	if (err == -ENOMEM)
1760		return VM_FAULT_OOM;
1761	if (err < 0 && err != -EBUSY)
1762		return VM_FAULT_SIGBUS;
1763
1764	return VM_FAULT_NOPAGE;
1765}
1766
1767vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1768		pfn_t pfn)
1769{
1770	return __vm_insert_mixed(vma, addr, pfn, false);
1771}
1772EXPORT_SYMBOL(vmf_insert_mixed);
1773
1774/*
1775 *  If the insertion of PTE failed because someone else already added a
1776 *  different entry in the mean time, we treat that as success as we assume
1777 *  the same entry was actually inserted.
1778 */
1779vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1780		unsigned long addr, pfn_t pfn)
1781{
1782	return __vm_insert_mixed(vma, addr, pfn, true);
1783}
1784EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1785
1786/*
1787 * maps a range of physical memory into the requested pages. the old
1788 * mappings are removed. any references to nonexistent pages results
1789 * in null mappings (currently treated as "copy-on-access")
1790 */
1791static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1792			unsigned long addr, unsigned long end,
1793			unsigned long pfn, pgprot_t prot)
1794{
1795	pte_t *pte;
1796	spinlock_t *ptl;
1797	int err = 0;
1798
1799	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1800	if (!pte)
1801		return -ENOMEM;
1802	arch_enter_lazy_mmu_mode();
1803	do {
1804		BUG_ON(!pte_none(*pte));
1805		if (!pfn_modify_allowed(pfn, prot)) {
1806			err = -EACCES;
1807			break;
1808		}
1809		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1810		pfn++;
1811	} while (pte++, addr += PAGE_SIZE, addr != end);
1812	arch_leave_lazy_mmu_mode();
1813	pte_unmap_unlock(pte - 1, ptl);
1814	return err;
1815}
1816
1817static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1818			unsigned long addr, unsigned long end,
1819			unsigned long pfn, pgprot_t prot)
1820{
1821	pmd_t *pmd;
1822	unsigned long next;
1823	int err;
1824
1825	pfn -= addr >> PAGE_SHIFT;
1826	pmd = pmd_alloc(mm, pud, addr);
1827	if (!pmd)
1828		return -ENOMEM;
1829	VM_BUG_ON(pmd_trans_huge(*pmd));
1830	do {
1831		next = pmd_addr_end(addr, end);
1832		err = remap_pte_range(mm, pmd, addr, next,
1833				pfn + (addr >> PAGE_SHIFT), prot);
1834		if (err)
1835			return err;
1836	} while (pmd++, addr = next, addr != end);
1837	return 0;
1838}
1839
1840static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1841			unsigned long addr, unsigned long end,
1842			unsigned long pfn, pgprot_t prot)
1843{
1844	pud_t *pud;
1845	unsigned long next;
1846	int err;
1847
1848	pfn -= addr >> PAGE_SHIFT;
1849	pud = pud_alloc(mm, p4d, addr);
1850	if (!pud)
1851		return -ENOMEM;
1852	do {
1853		next = pud_addr_end(addr, end);
1854		err = remap_pmd_range(mm, pud, addr, next,
1855				pfn + (addr >> PAGE_SHIFT), prot);
1856		if (err)
1857			return err;
1858	} while (pud++, addr = next, addr != end);
1859	return 0;
1860}
1861
1862static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1863			unsigned long addr, unsigned long end,
1864			unsigned long pfn, pgprot_t prot)
1865{
1866	p4d_t *p4d;
1867	unsigned long next;
1868	int err;
1869
1870	pfn -= addr >> PAGE_SHIFT;
1871	p4d = p4d_alloc(mm, pgd, addr);
1872	if (!p4d)
1873		return -ENOMEM;
1874	do {
1875		next = p4d_addr_end(addr, end);
1876		err = remap_pud_range(mm, p4d, addr, next,
1877				pfn + (addr >> PAGE_SHIFT), prot);
1878		if (err)
1879			return err;
1880	} while (p4d++, addr = next, addr != end);
1881	return 0;
1882}
1883
1884/**
1885 * remap_pfn_range - remap kernel memory to userspace
1886 * @vma: user vma to map to
1887 * @addr: target user address to start at
1888 * @pfn: physical address of kernel memory
1889 * @size: size of map area
1890 * @prot: page protection flags for this mapping
1891 *
1892 * Note: this is only safe if the mm semaphore is held when called.
1893 *
1894 * Return: %0 on success, negative error code otherwise.
1895 */
1896int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1897		    unsigned long pfn, unsigned long size, pgprot_t prot)
1898{
1899	pgd_t *pgd;
1900	unsigned long next;
1901	unsigned long end = addr + PAGE_ALIGN(size);
1902	struct mm_struct *mm = vma->vm_mm;
1903	unsigned long remap_pfn = pfn;
1904	int err;
1905
1906	/*
1907	 * Physically remapped pages are special. Tell the
1908	 * rest of the world about it:
1909	 *   VM_IO tells people not to look at these pages
1910	 *	(accesses can have side effects).
1911	 *   VM_PFNMAP tells the core MM that the base pages are just
1912	 *	raw PFN mappings, and do not have a "struct page" associated
1913	 *	with them.
1914	 *   VM_DONTEXPAND
1915	 *      Disable vma merging and expanding with mremap().
1916	 *   VM_DONTDUMP
1917	 *      Omit vma from core dump, even when VM_IO turned off.
1918	 *
1919	 * There's a horrible special case to handle copy-on-write
1920	 * behaviour that some programs depend on. We mark the "original"
1921	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1922	 * See vm_normal_page() for details.
1923	 */
1924	if (is_cow_mapping(vma->vm_flags)) {
1925		if (addr != vma->vm_start || end != vma->vm_end)
1926			return -EINVAL;
1927		vma->vm_pgoff = pfn;
1928	}
1929
1930	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1931	if (err)
1932		return -EINVAL;
1933
1934	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1935
1936	BUG_ON(addr >= end);
1937	pfn -= addr >> PAGE_SHIFT;
1938	pgd = pgd_offset(mm, addr);
1939	flush_cache_range(vma, addr, end);
1940	do {
1941		next = pgd_addr_end(addr, end);
1942		err = remap_p4d_range(mm, pgd, addr, next,
1943				pfn + (addr >> PAGE_SHIFT), prot);
1944		if (err)
1945			break;
1946	} while (pgd++, addr = next, addr != end);
1947
1948	if (err)
1949		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1950
1951	return err;
1952}
1953EXPORT_SYMBOL(remap_pfn_range);
1954
1955/**
1956 * vm_iomap_memory - remap memory to userspace
1957 * @vma: user vma to map to
1958 * @start: start of area
1959 * @len: size of area
1960 *
1961 * This is a simplified io_remap_pfn_range() for common driver use. The
1962 * driver just needs to give us the physical memory range to be mapped,
1963 * we'll figure out the rest from the vma information.
1964 *
1965 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1966 * whatever write-combining details or similar.
1967 *
1968 * Return: %0 on success, negative error code otherwise.
1969 */
1970int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1971{
1972	unsigned long vm_len, pfn, pages;
1973
1974	/* Check that the physical memory area passed in looks valid */
1975	if (start + len < start)
1976		return -EINVAL;
1977	/*
1978	 * You *really* shouldn't map things that aren't page-aligned,
1979	 * but we've historically allowed it because IO memory might
1980	 * just have smaller alignment.
1981	 */
1982	len += start & ~PAGE_MASK;
1983	pfn = start >> PAGE_SHIFT;
1984	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1985	if (pfn + pages < pfn)
1986		return -EINVAL;
1987
1988	/* We start the mapping 'vm_pgoff' pages into the area */
1989	if (vma->vm_pgoff > pages)
1990		return -EINVAL;
1991	pfn += vma->vm_pgoff;
1992	pages -= vma->vm_pgoff;
1993
1994	/* Can we fit all of the mapping? */
1995	vm_len = vma->vm_end - vma->vm_start;
1996	if (vm_len >> PAGE_SHIFT > pages)
1997		return -EINVAL;
1998
1999	/* Ok, let it rip */
2000	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2001}
2002EXPORT_SYMBOL(vm_iomap_memory);
2003
2004static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2005				     unsigned long addr, unsigned long end,
2006				     pte_fn_t fn, void *data)
2007{
2008	pte_t *pte;
2009	int err;
 
2010	spinlock_t *uninitialized_var(ptl);
2011
2012	pte = (mm == &init_mm) ?
2013		pte_alloc_kernel(pmd, addr) :
2014		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2015	if (!pte)
2016		return -ENOMEM;
2017
2018	BUG_ON(pmd_huge(*pmd));
2019
2020	arch_enter_lazy_mmu_mode();
2021
 
 
2022	do {
2023		err = fn(pte++, addr, data);
2024		if (err)
2025			break;
2026	} while (addr += PAGE_SIZE, addr != end);
2027
2028	arch_leave_lazy_mmu_mode();
2029
2030	if (mm != &init_mm)
2031		pte_unmap_unlock(pte-1, ptl);
2032	return err;
2033}
2034
2035static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2036				     unsigned long addr, unsigned long end,
2037				     pte_fn_t fn, void *data)
2038{
2039	pmd_t *pmd;
2040	unsigned long next;
2041	int err;
2042
2043	BUG_ON(pud_huge(*pud));
2044
2045	pmd = pmd_alloc(mm, pud, addr);
2046	if (!pmd)
2047		return -ENOMEM;
2048	do {
2049		next = pmd_addr_end(addr, end);
2050		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2051		if (err)
2052			break;
2053	} while (pmd++, addr = next, addr != end);
2054	return err;
2055}
2056
2057static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2058				     unsigned long addr, unsigned long end,
2059				     pte_fn_t fn, void *data)
2060{
2061	pud_t *pud;
2062	unsigned long next;
2063	int err;
2064
2065	pud = pud_alloc(mm, p4d, addr);
2066	if (!pud)
2067		return -ENOMEM;
2068	do {
2069		next = pud_addr_end(addr, end);
2070		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2071		if (err)
2072			break;
2073	} while (pud++, addr = next, addr != end);
2074	return err;
2075}
2076
2077static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2078				     unsigned long addr, unsigned long end,
2079				     pte_fn_t fn, void *data)
2080{
2081	p4d_t *p4d;
2082	unsigned long next;
2083	int err;
2084
2085	p4d = p4d_alloc(mm, pgd, addr);
2086	if (!p4d)
2087		return -ENOMEM;
2088	do {
2089		next = p4d_addr_end(addr, end);
2090		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2091		if (err)
2092			break;
2093	} while (p4d++, addr = next, addr != end);
2094	return err;
2095}
2096
2097/*
2098 * Scan a region of virtual memory, filling in page tables as necessary
2099 * and calling a provided function on each leaf page table.
2100 */
2101int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2102			unsigned long size, pte_fn_t fn, void *data)
2103{
2104	pgd_t *pgd;
2105	unsigned long next;
2106	unsigned long end = addr + size;
2107	int err;
2108
2109	if (WARN_ON(addr >= end))
2110		return -EINVAL;
2111
2112	pgd = pgd_offset(mm, addr);
2113	do {
2114		next = pgd_addr_end(addr, end);
2115		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2116		if (err)
2117			break;
2118	} while (pgd++, addr = next, addr != end);
2119
2120	return err;
2121}
2122EXPORT_SYMBOL_GPL(apply_to_page_range);
2123
2124/*
2125 * handle_pte_fault chooses page fault handler according to an entry which was
2126 * read non-atomically.  Before making any commitment, on those architectures
2127 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2128 * parts, do_swap_page must check under lock before unmapping the pte and
2129 * proceeding (but do_wp_page is only called after already making such a check;
 
2130 * and do_anonymous_page can safely check later on).
2131 */
2132static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2133				pte_t *page_table, pte_t orig_pte)
2134{
2135	int same = 1;
2136#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2137	if (sizeof(pte_t) > sizeof(unsigned long)) {
2138		spinlock_t *ptl = pte_lockptr(mm, pmd);
2139		spin_lock(ptl);
2140		same = pte_same(*page_table, orig_pte);
2141		spin_unlock(ptl);
2142	}
2143#endif
2144	pte_unmap(page_table);
2145	return same;
2146}
2147
2148static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2149{
2150	debug_dma_assert_idle(src);
2151
2152	/*
2153	 * If the source page was a PFN mapping, we don't have
2154	 * a "struct page" for it. We do a best-effort copy by
2155	 * just copying from the original user address. If that
2156	 * fails, we just zero-fill it. Live with it.
2157	 */
2158	if (unlikely(!src)) {
2159		void *kaddr = kmap_atomic(dst);
2160		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2161
2162		/*
2163		 * This really shouldn't fail, because the page is there
2164		 * in the page tables. But it might just be unreadable,
2165		 * in which case we just give up and fill the result with
2166		 * zeroes.
2167		 */
2168		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2169			clear_page(kaddr);
2170		kunmap_atomic(kaddr);
2171		flush_dcache_page(dst);
2172	} else
2173		copy_user_highpage(dst, src, va, vma);
2174}
2175
2176static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2177{
2178	struct file *vm_file = vma->vm_file;
2179
2180	if (vm_file)
2181		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2182
2183	/*
2184	 * Special mappings (e.g. VDSO) do not have any file so fake
2185	 * a default GFP_KERNEL for them.
2186	 */
2187	return GFP_KERNEL;
2188}
2189
2190/*
2191 * Notify the address space that the page is about to become writable so that
2192 * it can prohibit this or wait for the page to get into an appropriate state.
2193 *
2194 * We do this without the lock held, so that it can sleep if it needs to.
2195 */
2196static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
 
2197{
2198	vm_fault_t ret;
2199	struct page *page = vmf->page;
2200	unsigned int old_flags = vmf->flags;
2201
2202	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2203
2204	if (vmf->vma->vm_file &&
2205	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2206		return VM_FAULT_SIGBUS;
 
2207
2208	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2209	/* Restore original flags so that caller is not surprised */
2210	vmf->flags = old_flags;
2211	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2212		return ret;
2213	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2214		lock_page(page);
2215		if (!page->mapping) {
2216			unlock_page(page);
2217			return 0; /* retry */
2218		}
2219		ret |= VM_FAULT_LOCKED;
2220	} else
2221		VM_BUG_ON_PAGE(!PageLocked(page), page);
2222	return ret;
2223}
2224
2225/*
2226 * Handle dirtying of a page in shared file mapping on a write fault.
 
 
 
 
 
 
 
2227 *
2228 * The function expects the page to be locked and unlocks it.
 
 
 
 
 
 
2229 */
2230static void fault_dirty_shared_page(struct vm_area_struct *vma,
2231				    struct page *page)
 
 
2232{
2233	struct address_space *mapping;
2234	bool dirtied;
2235	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2236
2237	dirtied = set_page_dirty(page);
2238	VM_BUG_ON_PAGE(PageAnon(page), page);
2239	/*
2240	 * Take a local copy of the address_space - page.mapping may be zeroed
2241	 * by truncate after unlock_page().   The address_space itself remains
2242	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2243	 * release semantics to prevent the compiler from undoing this copying.
2244	 */
2245	mapping = page_rmapping(page);
2246	unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2247
2248	if ((dirtied || page_mkwrite) && mapping) {
 
 
 
 
 
2249		/*
2250		 * Some device drivers do not set page.mapping
2251		 * but still dirty their pages
 
2252		 */
2253		balance_dirty_pages_ratelimited(mapping);
2254	}
2255
2256	if (!page_mkwrite)
2257		file_update_time(vma->vm_file);
2258}
 
 
 
 
2259
2260/*
2261 * Handle write page faults for pages that can be reused in the current vma
2262 *
2263 * This can happen either due to the mapping being with the VM_SHARED flag,
2264 * or due to us being the last reference standing to the page. In either
2265 * case, all we need to do here is to mark the page as writable and update
2266 * any related book-keeping.
2267 */
2268static inline void wp_page_reuse(struct vm_fault *vmf)
2269	__releases(vmf->ptl)
2270{
2271	struct vm_area_struct *vma = vmf->vma;
2272	struct page *page = vmf->page;
2273	pte_t entry;
2274	/*
2275	 * Clear the pages cpupid information as the existing
2276	 * information potentially belongs to a now completely
2277	 * unrelated process.
2278	 */
2279	if (page)
2280		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2281
2282	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2283	entry = pte_mkyoung(vmf->orig_pte);
2284	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2285	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2286		update_mmu_cache(vma, vmf->address, vmf->pte);
2287	pte_unmap_unlock(vmf->pte, vmf->ptl);
2288}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2289
2290/*
2291 * Handle the case of a page which we actually need to copy to a new page.
2292 *
2293 * Called with mmap_sem locked and the old page referenced, but
2294 * without the ptl held.
2295 *
2296 * High level logic flow:
2297 *
2298 * - Allocate a page, copy the content of the old page to the new one.
2299 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2300 * - Take the PTL. If the pte changed, bail out and release the allocated page
2301 * - If the pte is still the way we remember it, update the page table and all
2302 *   relevant references. This includes dropping the reference the page-table
2303 *   held to the old page, as well as updating the rmap.
2304 * - In any case, unlock the PTL and drop the reference we took to the old page.
2305 */
2306static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2307{
2308	struct vm_area_struct *vma = vmf->vma;
2309	struct mm_struct *mm = vma->vm_mm;
2310	struct page *old_page = vmf->page;
2311	struct page *new_page = NULL;
2312	pte_t entry;
2313	int page_copied = 0;
2314	struct mem_cgroup *memcg;
2315	struct mmu_notifier_range range;
2316
2317	if (unlikely(anon_vma_prepare(vma)))
2318		goto oom;
2319
2320	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2321		new_page = alloc_zeroed_user_highpage_movable(vma,
2322							      vmf->address);
2323		if (!new_page)
2324			goto oom;
2325	} else {
2326		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2327				vmf->address);
2328		if (!new_page)
2329			goto oom;
2330		cow_user_page(new_page, old_page, vmf->address, vma);
2331	}
 
2332
2333	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2334		goto oom_free_new;
2335
2336	__SetPageUptodate(new_page);
2337
2338	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2339				vmf->address & PAGE_MASK,
2340				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2341	mmu_notifier_invalidate_range_start(&range);
2342
2343	/*
2344	 * Re-check the pte - we dropped the lock
2345	 */
2346	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2347	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2348		if (old_page) {
2349			if (!PageAnon(old_page)) {
2350				dec_mm_counter_fast(mm,
2351						mm_counter_file(old_page));
2352				inc_mm_counter_fast(mm, MM_ANONPAGES);
2353			}
2354		} else {
2355			inc_mm_counter_fast(mm, MM_ANONPAGES);
2356		}
2357		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2358		entry = mk_pte(new_page, vma->vm_page_prot);
2359		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2360		/*
2361		 * Clear the pte entry and flush it first, before updating the
2362		 * pte with the new entry. This will avoid a race condition
2363		 * seen in the presence of one thread doing SMC and another
2364		 * thread doing COW.
2365		 */
2366		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2367		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2368		mem_cgroup_commit_charge(new_page, memcg, false, false);
2369		lru_cache_add_active_or_unevictable(new_page, vma);
2370		/*
2371		 * We call the notify macro here because, when using secondary
2372		 * mmu page tables (such as kvm shadow page tables), we want the
2373		 * new page to be mapped directly into the secondary page table.
2374		 */
2375		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2376		update_mmu_cache(vma, vmf->address, vmf->pte);
2377		if (old_page) {
2378			/*
2379			 * Only after switching the pte to the new page may
2380			 * we remove the mapcount here. Otherwise another
2381			 * process may come and find the rmap count decremented
2382			 * before the pte is switched to the new page, and
2383			 * "reuse" the old page writing into it while our pte
2384			 * here still points into it and can be read by other
2385			 * threads.
2386			 *
2387			 * The critical issue is to order this
2388			 * page_remove_rmap with the ptp_clear_flush above.
2389			 * Those stores are ordered by (if nothing else,)
2390			 * the barrier present in the atomic_add_negative
2391			 * in page_remove_rmap.
2392			 *
2393			 * Then the TLB flush in ptep_clear_flush ensures that
2394			 * no process can access the old page before the
2395			 * decremented mapcount is visible. And the old page
2396			 * cannot be reused until after the decremented
2397			 * mapcount is visible. So transitively, TLBs to
2398			 * old page will be flushed before it can be reused.
2399			 */
2400			page_remove_rmap(old_page, false);
2401		}
2402
2403		/* Free the old page.. */
2404		new_page = old_page;
2405		page_copied = 1;
2406	} else {
2407		mem_cgroup_cancel_charge(new_page, memcg, false);
2408	}
2409
2410	if (new_page)
2411		put_page(new_page);
2412
2413	pte_unmap_unlock(vmf->pte, vmf->ptl);
2414	/*
2415	 * No need to double call mmu_notifier->invalidate_range() callback as
2416	 * the above ptep_clear_flush_notify() did already call it.
2417	 */
2418	mmu_notifier_invalidate_range_only_end(&range);
2419	if (old_page) {
2420		/*
2421		 * Don't let another task, with possibly unlocked vma,
2422		 * keep the mlocked page.
2423		 */
2424		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2425			lock_page(old_page);	/* LRU manipulation */
2426			if (PageMlocked(old_page))
2427				munlock_vma_page(old_page);
2428			unlock_page(old_page);
2429		}
2430		put_page(old_page);
2431	}
2432	return page_copied ? VM_FAULT_WRITE : 0;
2433oom_free_new:
2434	put_page(new_page);
2435oom:
2436	if (old_page)
2437		put_page(old_page);
2438	return VM_FAULT_OOM;
2439}
2440
2441/**
2442 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2443 *			  writeable once the page is prepared
2444 *
2445 * @vmf: structure describing the fault
2446 *
2447 * This function handles all that is needed to finish a write page fault in a
2448 * shared mapping due to PTE being read-only once the mapped page is prepared.
2449 * It handles locking of PTE and modifying it.
2450 *
2451 * The function expects the page to be locked or other protection against
2452 * concurrent faults / writeback (such as DAX radix tree locks).
2453 *
2454 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2455 * we acquired PTE lock.
2456 */
2457vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2458{
2459	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2460	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2461				       &vmf->ptl);
2462	/*
2463	 * We might have raced with another page fault while we released the
2464	 * pte_offset_map_lock.
2465	 */
2466	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2467		pte_unmap_unlock(vmf->pte, vmf->ptl);
2468		return VM_FAULT_NOPAGE;
2469	}
2470	wp_page_reuse(vmf);
2471	return 0;
2472}
2473
2474/*
2475 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2476 * mapping
2477 */
2478static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2479{
2480	struct vm_area_struct *vma = vmf->vma;
2481
2482	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2483		vm_fault_t ret;
2484
2485		pte_unmap_unlock(vmf->pte, vmf->ptl);
2486		vmf->flags |= FAULT_FLAG_MKWRITE;
2487		ret = vma->vm_ops->pfn_mkwrite(vmf);
2488		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2489			return ret;
2490		return finish_mkwrite_fault(vmf);
2491	}
2492	wp_page_reuse(vmf);
2493	return VM_FAULT_WRITE;
2494}
2495
2496static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2497	__releases(vmf->ptl)
2498{
2499	struct vm_area_struct *vma = vmf->vma;
2500
2501	get_page(vmf->page);
2502
2503	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2504		vm_fault_t tmp;
2505
2506		pte_unmap_unlock(vmf->pte, vmf->ptl);
2507		tmp = do_page_mkwrite(vmf);
2508		if (unlikely(!tmp || (tmp &
2509				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2510			put_page(vmf->page);
2511			return tmp;
2512		}
2513		tmp = finish_mkwrite_fault(vmf);
2514		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2515			unlock_page(vmf->page);
2516			put_page(vmf->page);
2517			return tmp;
2518		}
2519	} else {
2520		wp_page_reuse(vmf);
2521		lock_page(vmf->page);
2522	}
2523	fault_dirty_shared_page(vma, vmf->page);
2524	put_page(vmf->page);
2525
2526	return VM_FAULT_WRITE;
2527}
2528
2529/*
2530 * This routine handles present pages, when users try to write
2531 * to a shared page. It is done by copying the page to a new address
2532 * and decrementing the shared-page counter for the old page.
2533 *
2534 * Note that this routine assumes that the protection checks have been
2535 * done by the caller (the low-level page fault routine in most cases).
2536 * Thus we can safely just mark it writable once we've done any necessary
2537 * COW.
2538 *
2539 * We also mark the page dirty at this point even though the page will
2540 * change only once the write actually happens. This avoids a few races,
2541 * and potentially makes it more efficient.
2542 *
2543 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544 * but allow concurrent faults), with pte both mapped and locked.
2545 * We return with mmap_sem still held, but pte unmapped and unlocked.
2546 */
2547static vm_fault_t do_wp_page(struct vm_fault *vmf)
2548	__releases(vmf->ptl)
2549{
2550	struct vm_area_struct *vma = vmf->vma;
2551
2552	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2553	if (!vmf->page) {
2554		/*
2555		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2556		 * VM_PFNMAP VMA.
2557		 *
2558		 * We should not cow pages in a shared writeable mapping.
2559		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2560		 */
2561		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2562				     (VM_WRITE|VM_SHARED))
2563			return wp_pfn_shared(vmf);
2564
2565		pte_unmap_unlock(vmf->pte, vmf->ptl);
2566		return wp_page_copy(vmf);
2567	}
2568
2569	/*
2570	 * Take out anonymous pages first, anonymous shared vmas are
2571	 * not dirty accountable.
2572	 */
2573	if (PageAnon(vmf->page)) {
2574		int total_map_swapcount;
2575		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2576					   page_count(vmf->page) != 1))
2577			goto copy;
2578		if (!trylock_page(vmf->page)) {
2579			get_page(vmf->page);
2580			pte_unmap_unlock(vmf->pte, vmf->ptl);
2581			lock_page(vmf->page);
2582			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2583					vmf->address, &vmf->ptl);
2584			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2585				unlock_page(vmf->page);
2586				pte_unmap_unlock(vmf->pte, vmf->ptl);
2587				put_page(vmf->page);
2588				return 0;
2589			}
2590			put_page(vmf->page);
2591		}
2592		if (PageKsm(vmf->page)) {
2593			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2594						     vmf->address);
2595			unlock_page(vmf->page);
2596			if (!reused)
2597				goto copy;
2598			wp_page_reuse(vmf);
2599			return VM_FAULT_WRITE;
2600		}
2601		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2602			if (total_map_swapcount == 1) {
2603				/*
2604				 * The page is all ours. Move it to
2605				 * our anon_vma so the rmap code will
2606				 * not search our parent or siblings.
2607				 * Protected against the rmap code by
2608				 * the page lock.
2609				 */
2610				page_move_anon_rmap(vmf->page, vma);
2611			}
2612			unlock_page(vmf->page);
2613			wp_page_reuse(vmf);
2614			return VM_FAULT_WRITE;
2615		}
2616		unlock_page(vmf->page);
2617	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2618					(VM_WRITE|VM_SHARED))) {
2619		return wp_page_shared(vmf);
2620	}
2621copy:
2622	/*
2623	 * Ok, we need to copy. Oh, well..
2624	 */
2625	get_page(vmf->page);
2626
2627	pte_unmap_unlock(vmf->pte, vmf->ptl);
2628	return wp_page_copy(vmf);
2629}
2630
2631static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2632		unsigned long start_addr, unsigned long end_addr,
2633		struct zap_details *details)
2634{
2635	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2636}
2637
2638static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2639					    struct zap_details *details)
2640{
2641	struct vm_area_struct *vma;
2642	pgoff_t vba, vea, zba, zea;
2643
2644	vma_interval_tree_foreach(vma, root,
2645			details->first_index, details->last_index) {
2646
2647		vba = vma->vm_pgoff;
2648		vea = vba + vma_pages(vma) - 1;
 
2649		zba = details->first_index;
2650		if (zba < vba)
2651			zba = vba;
2652		zea = details->last_index;
2653		if (zea > vea)
2654			zea = vea;
2655
2656		unmap_mapping_range_vma(vma,
2657			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2658			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2659				details);
2660	}
2661}
2662
2663/**
2664 * unmap_mapping_pages() - Unmap pages from processes.
2665 * @mapping: The address space containing pages to be unmapped.
2666 * @start: Index of first page to be unmapped.
2667 * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2668 * @even_cows: Whether to unmap even private COWed pages.
2669 *
2670 * Unmap the pages in this address space from any userspace process which
2671 * has them mmaped.  Generally, you want to remove COWed pages as well when
2672 * a file is being truncated, but not when invalidating pages from the page
2673 * cache.
2674 */
2675void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2676		pgoff_t nr, bool even_cows)
2677{
2678	struct zap_details details = { };
2679
2680	details.check_mapping = even_cows ? NULL : mapping;
2681	details.first_index = start;
2682	details.last_index = start + nr - 1;
2683	if (details.last_index < details.first_index)
2684		details.last_index = ULONG_MAX;
2685
2686	i_mmap_lock_write(mapping);
2687	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2688		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2689	i_mmap_unlock_write(mapping);
 
 
 
 
 
 
2690}
2691
2692/**
2693 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2694 * address_space corresponding to the specified byte range in the underlying
2695 * file.
2696 *
2697 * @mapping: the address space containing mmaps to be unmapped.
2698 * @holebegin: byte in first page to unmap, relative to the start of
2699 * the underlying file.  This will be rounded down to a PAGE_SIZE
2700 * boundary.  Note that this is different from truncate_pagecache(), which
2701 * must keep the partial page.  In contrast, we must get rid of
2702 * partial pages.
2703 * @holelen: size of prospective hole in bytes.  This will be rounded
2704 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2705 * end of the file.
2706 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2707 * but 0 when invalidating pagecache, don't throw away private data.
2708 */
2709void unmap_mapping_range(struct address_space *mapping,
2710		loff_t const holebegin, loff_t const holelen, int even_cows)
2711{
 
2712	pgoff_t hba = holebegin >> PAGE_SHIFT;
2713	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2714
2715	/* Check for overflow. */
2716	if (sizeof(holelen) > sizeof(hlen)) {
2717		long long holeend =
2718			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2719		if (holeend & ~(long long)ULONG_MAX)
2720			hlen = ULONG_MAX - hba + 1;
2721	}
2722
2723	unmap_mapping_pages(mapping, hba, hlen, even_cows);
 
 
 
 
 
 
 
 
 
 
 
 
 
2724}
2725EXPORT_SYMBOL(unmap_mapping_range);
2726
2727/*
2728 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2729 * but allow concurrent faults), and pte mapped but not yet locked.
2730 * We return with pte unmapped and unlocked.
2731 *
2732 * We return with the mmap_sem locked or unlocked in the same cases
2733 * as does filemap_fault().
2734 */
2735vm_fault_t do_swap_page(struct vm_fault *vmf)
 
 
2736{
2737	struct vm_area_struct *vma = vmf->vma;
2738	struct page *page = NULL, *swapcache;
2739	struct mem_cgroup *memcg;
2740	swp_entry_t entry;
2741	pte_t pte;
2742	int locked;
 
2743	int exclusive = 0;
2744	vm_fault_t ret = 0;
2745
2746	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2747		goto out;
2748
2749	entry = pte_to_swp_entry(vmf->orig_pte);
2750	if (unlikely(non_swap_entry(entry))) {
2751		if (is_migration_entry(entry)) {
2752			migration_entry_wait(vma->vm_mm, vmf->pmd,
2753					     vmf->address);
2754		} else if (is_device_private_entry(entry)) {
2755			vmf->page = device_private_entry_to_page(entry);
2756			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2757		} else if (is_hwpoison_entry(entry)) {
2758			ret = VM_FAULT_HWPOISON;
2759		} else {
2760			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2761			ret = VM_FAULT_SIGBUS;
2762		}
2763		goto out;
2764	}
2765
2766
2767	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2768	page = lookup_swap_cache(entry, vma, vmf->address);
2769	swapcache = page;
2770
2771	if (!page) {
2772		struct swap_info_struct *si = swp_swap_info(entry);
2773
2774		if (si->flags & SWP_SYNCHRONOUS_IO &&
2775				__swap_count(entry) == 1) {
2776			/* skip swapcache */
2777			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2778							vmf->address);
2779			if (page) {
2780				__SetPageLocked(page);
2781				__SetPageSwapBacked(page);
2782				set_page_private(page, entry.val);
2783				lru_cache_add_anon(page);
2784				swap_readpage(page, true);
2785			}
2786		} else {
2787			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2788						vmf);
2789			swapcache = page;
2790		}
2791
2792		if (!page) {
2793			/*
2794			 * Back out if somebody else faulted in this pte
2795			 * while we released the pte lock.
2796			 */
2797			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2798					vmf->address, &vmf->ptl);
2799			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2800				ret = VM_FAULT_OOM;
2801			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2802			goto unlock;
2803		}
2804
2805		/* Had to read the page from swap area: Major fault */
2806		ret = VM_FAULT_MAJOR;
2807		count_vm_event(PGMAJFAULT);
2808		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2809	} else if (PageHWPoison(page)) {
2810		/*
2811		 * hwpoisoned dirty swapcache pages are kept for killing
2812		 * owner processes (which may be unknown at hwpoison time)
2813		 */
2814		ret = VM_FAULT_HWPOISON;
2815		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
 
2816		goto out_release;
2817	}
2818
2819	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
 
2820
2821	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2822	if (!locked) {
2823		ret |= VM_FAULT_RETRY;
2824		goto out_release;
2825	}
2826
2827	/*
2828	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2829	 * release the swapcache from under us.  The page pin, and pte_same
2830	 * test below, are not enough to exclude that.  Even if it is still
2831	 * swapcache, we need to check that the page's swap has not changed.
2832	 */
2833	if (unlikely((!PageSwapCache(page) ||
2834			page_private(page) != entry.val)) && swapcache)
2835		goto out_page;
2836
2837	page = ksm_might_need_to_copy(page, vma, vmf->address);
2838	if (unlikely(!page)) {
2839		ret = VM_FAULT_OOM;
2840		page = swapcache;
2841		goto out_page;
2842	}
2843
2844	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2845					&memcg, false)) {
2846		ret = VM_FAULT_OOM;
2847		goto out_page;
2848	}
2849
2850	/*
2851	 * Back out if somebody else already faulted in this pte.
2852	 */
2853	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2854			&vmf->ptl);
2855	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2856		goto out_nomap;
2857
2858	if (unlikely(!PageUptodate(page))) {
2859		ret = VM_FAULT_SIGBUS;
2860		goto out_nomap;
2861	}
2862
2863	/*
2864	 * The page isn't present yet, go ahead with the fault.
2865	 *
2866	 * Be careful about the sequence of operations here.
2867	 * To get its accounting right, reuse_swap_page() must be called
2868	 * while the page is counted on swap but not yet in mapcount i.e.
2869	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2870	 * must be called after the swap_free(), or it will never succeed.
 
 
 
 
2871	 */
2872
2873	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2874	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2875	pte = mk_pte(page, vma->vm_page_prot);
2876	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2877		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2878		vmf->flags &= ~FAULT_FLAG_WRITE;
2879		ret |= VM_FAULT_WRITE;
2880		exclusive = RMAP_EXCLUSIVE;
2881	}
2882	flush_icache_page(vma, page);
2883	if (pte_swp_soft_dirty(vmf->orig_pte))
2884		pte = pte_mksoft_dirty(pte);
2885	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2886	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2887	vmf->orig_pte = pte;
2888
2889	/* ksm created a completely new copy */
2890	if (unlikely(page != swapcache && swapcache)) {
2891		page_add_new_anon_rmap(page, vma, vmf->address, false);
2892		mem_cgroup_commit_charge(page, memcg, false, false);
2893		lru_cache_add_active_or_unevictable(page, vma);
2894	} else {
2895		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2896		mem_cgroup_commit_charge(page, memcg, true, false);
2897		activate_page(page);
2898	}
2899
2900	swap_free(entry);
2901	if (mem_cgroup_swap_full(page) ||
2902	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2903		try_to_free_swap(page);
2904	unlock_page(page);
2905	if (page != swapcache && swapcache) {
2906		/*
2907		 * Hold the lock to avoid the swap entry to be reused
2908		 * until we take the PT lock for the pte_same() check
2909		 * (to avoid false positives from pte_same). For
2910		 * further safety release the lock after the swap_free
2911		 * so that the swap count won't change under a
2912		 * parallel locked swapcache.
2913		 */
2914		unlock_page(swapcache);
2915		put_page(swapcache);
2916	}
2917
2918	if (vmf->flags & FAULT_FLAG_WRITE) {
2919		ret |= do_wp_page(vmf);
2920		if (ret & VM_FAULT_ERROR)
2921			ret &= VM_FAULT_ERROR;
2922		goto out;
2923	}
2924
2925	/* No need to invalidate - it was non-present before */
2926	update_mmu_cache(vma, vmf->address, vmf->pte);
2927unlock:
2928	pte_unmap_unlock(vmf->pte, vmf->ptl);
2929out:
2930	return ret;
2931out_nomap:
2932	mem_cgroup_cancel_charge(page, memcg, false);
2933	pte_unmap_unlock(vmf->pte, vmf->ptl);
2934out_page:
2935	unlock_page(page);
2936out_release:
2937	put_page(page);
2938	if (page != swapcache && swapcache) {
2939		unlock_page(swapcache);
2940		put_page(swapcache);
2941	}
2942	return ret;
2943}
2944
2945/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2946 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2947 * but allow concurrent faults), and pte mapped but not yet locked.
2948 * We return with mmap_sem still held, but pte unmapped and unlocked.
2949 */
2950static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
 
 
2951{
2952	struct vm_area_struct *vma = vmf->vma;
2953	struct mem_cgroup *memcg;
2954	struct page *page;
2955	vm_fault_t ret = 0;
2956	pte_t entry;
2957
2958	/* File mapping without ->vm_ops ? */
2959	if (vma->vm_flags & VM_SHARED)
2960		return VM_FAULT_SIGBUS;
2961
2962	/*
2963	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2964	 * pte_offset_map() on pmds where a huge pmd might be created
2965	 * from a different thread.
2966	 *
2967	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2968	 * parallel threads are excluded by other means.
2969	 *
2970	 * Here we only have down_read(mmap_sem).
2971	 */
2972	if (pte_alloc(vma->vm_mm, vmf->pmd))
2973		return VM_FAULT_OOM;
2974
2975	/* See the comment in pte_alloc_one_map() */
2976	if (unlikely(pmd_trans_unstable(vmf->pmd)))
2977		return 0;
2978
2979	/* Use the zero-page for reads */
2980	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2981			!mm_forbids_zeropage(vma->vm_mm)) {
2982		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2983						vma->vm_page_prot));
2984		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2985				vmf->address, &vmf->ptl);
2986		if (!pte_none(*vmf->pte))
2987			goto unlock;
2988		ret = check_stable_address_space(vma->vm_mm);
2989		if (ret)
2990			goto unlock;
2991		/* Deliver the page fault to userland, check inside PT lock */
2992		if (userfaultfd_missing(vma)) {
2993			pte_unmap_unlock(vmf->pte, vmf->ptl);
2994			return handle_userfault(vmf, VM_UFFD_MISSING);
2995		}
2996		goto setpte;
2997	}
2998
2999	/* Allocate our own private page. */
3000	if (unlikely(anon_vma_prepare(vma)))
3001		goto oom;
3002	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3003	if (!page)
3004		goto oom;
3005
3006	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3007					false))
3008		goto oom_free_page;
3009
3010	/*
3011	 * The memory barrier inside __SetPageUptodate makes sure that
3012	 * preceeding stores to the page contents become visible before
3013	 * the set_pte_at() write.
3014	 */
3015	__SetPageUptodate(page);
3016
 
 
 
3017	entry = mk_pte(page, vma->vm_page_prot);
3018	if (vma->vm_flags & VM_WRITE)
3019		entry = pte_mkwrite(pte_mkdirty(entry));
3020
3021	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3022			&vmf->ptl);
3023	if (!pte_none(*vmf->pte))
3024		goto release;
3025
3026	ret = check_stable_address_space(vma->vm_mm);
3027	if (ret)
3028		goto release;
3029
3030	/* Deliver the page fault to userland, check inside PT lock */
3031	if (userfaultfd_missing(vma)) {
3032		pte_unmap_unlock(vmf->pte, vmf->ptl);
3033		mem_cgroup_cancel_charge(page, memcg, false);
3034		put_page(page);
3035		return handle_userfault(vmf, VM_UFFD_MISSING);
3036	}
3037
3038	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3039	page_add_new_anon_rmap(page, vma, vmf->address, false);
3040	mem_cgroup_commit_charge(page, memcg, false, false);
3041	lru_cache_add_active_or_unevictable(page, vma);
3042setpte:
3043	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3044
3045	/* No need to invalidate - it was non-present before */
3046	update_mmu_cache(vma, vmf->address, vmf->pte);
3047unlock:
3048	pte_unmap_unlock(vmf->pte, vmf->ptl);
3049	return ret;
3050release:
3051	mem_cgroup_cancel_charge(page, memcg, false);
3052	put_page(page);
3053	goto unlock;
3054oom_free_page:
3055	put_page(page);
3056oom:
3057	return VM_FAULT_OOM;
3058}
3059
3060/*
3061 * The mmap_sem must have been held on entry, and may have been
3062 * released depending on flags and vma->vm_ops->fault() return value.
3063 * See filemap_fault() and __lock_page_retry().
3064 */
3065static vm_fault_t __do_fault(struct vm_fault *vmf)
3066{
3067	struct vm_area_struct *vma = vmf->vma;
3068	vm_fault_t ret;
3069
3070	/*
3071	 * Preallocate pte before we take page_lock because this might lead to
3072	 * deadlocks for memcg reclaim which waits for pages under writeback:
3073	 *				lock_page(A)
3074	 *				SetPageWriteback(A)
3075	 *				unlock_page(A)
3076	 * lock_page(B)
3077	 *				lock_page(B)
3078	 * pte_alloc_pne
3079	 *   shrink_page_list
3080	 *     wait_on_page_writeback(A)
3081	 *				SetPageWriteback(B)
3082	 *				unlock_page(B)
3083	 *				# flush A, B to clear the writeback
3084	 */
3085	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3086		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3087		if (!vmf->prealloc_pte)
3088			return VM_FAULT_OOM;
3089		smp_wmb(); /* See comment in __pte_alloc() */
3090	}
3091
3092	ret = vma->vm_ops->fault(vmf);
3093	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3094			    VM_FAULT_DONE_COW)))
3095		return ret;
3096
3097	if (unlikely(PageHWPoison(vmf->page))) {
3098		if (ret & VM_FAULT_LOCKED)
3099			unlock_page(vmf->page);
3100		put_page(vmf->page);
3101		vmf->page = NULL;
3102		return VM_FAULT_HWPOISON;
3103	}
3104
3105	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3106		lock_page(vmf->page);
3107	else
3108		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3109
 
3110	return ret;
3111}
3112
3113/*
3114 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3115 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3116 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3117 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3118 */
3119static int pmd_devmap_trans_unstable(pmd_t *pmd)
3120{
3121	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3122}
3123
3124static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3125{
3126	struct vm_area_struct *vma = vmf->vma;
3127
3128	if (!pmd_none(*vmf->pmd))
3129		goto map_pte;
3130	if (vmf->prealloc_pte) {
3131		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3132		if (unlikely(!pmd_none(*vmf->pmd))) {
3133			spin_unlock(vmf->ptl);
3134			goto map_pte;
3135		}
3136
3137		mm_inc_nr_ptes(vma->vm_mm);
3138		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3139		spin_unlock(vmf->ptl);
3140		vmf->prealloc_pte = NULL;
3141	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3142		return VM_FAULT_OOM;
3143	}
3144map_pte:
3145	/*
3146	 * If a huge pmd materialized under us just retry later.  Use
3147	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3148	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3149	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3150	 * running immediately after a huge pmd fault in a different thread of
3151	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3152	 * All we have to ensure is that it is a regular pmd that we can walk
3153	 * with pte_offset_map() and we can do that through an atomic read in
3154	 * C, which is what pmd_trans_unstable() provides.
3155	 */
3156	if (pmd_devmap_trans_unstable(vmf->pmd))
3157		return VM_FAULT_NOPAGE;
3158
3159	/*
3160	 * At this point we know that our vmf->pmd points to a page of ptes
3161	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3162	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3163	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3164	 * be valid and we will re-check to make sure the vmf->pte isn't
3165	 * pte_none() under vmf->ptl protection when we return to
3166	 * alloc_set_pte().
3167	 */
3168	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3169			&vmf->ptl);
3170	return 0;
3171}
3172
3173#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3174static void deposit_prealloc_pte(struct vm_fault *vmf)
3175{
3176	struct vm_area_struct *vma = vmf->vma;
3177
3178	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3179	/*
3180	 * We are going to consume the prealloc table,
3181	 * count that as nr_ptes.
3182	 */
3183	mm_inc_nr_ptes(vma->vm_mm);
3184	vmf->prealloc_pte = NULL;
3185}
3186
3187static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3188{
3189	struct vm_area_struct *vma = vmf->vma;
3190	bool write = vmf->flags & FAULT_FLAG_WRITE;
3191	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3192	pmd_t entry;
3193	int i;
3194	vm_fault_t ret;
3195
3196	if (!transhuge_vma_suitable(vma, haddr))
3197		return VM_FAULT_FALLBACK;
3198
3199	ret = VM_FAULT_FALLBACK;
3200	page = compound_head(page);
3201
3202	/*
3203	 * Archs like ppc64 need additonal space to store information
3204	 * related to pte entry. Use the preallocated table for that.
3205	 */
3206	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3207		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3208		if (!vmf->prealloc_pte)
3209			return VM_FAULT_OOM;
3210		smp_wmb(); /* See comment in __pte_alloc() */
3211	}
3212
3213	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3214	if (unlikely(!pmd_none(*vmf->pmd)))
3215		goto out;
3216
3217	for (i = 0; i < HPAGE_PMD_NR; i++)
3218		flush_icache_page(vma, page + i);
3219
3220	entry = mk_huge_pmd(page, vma->vm_page_prot);
3221	if (write)
3222		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3223
3224	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3225	page_add_file_rmap(page, true);
3226	/*
3227	 * deposit and withdraw with pmd lock held
3228	 */
3229	if (arch_needs_pgtable_deposit())
3230		deposit_prealloc_pte(vmf);
3231
3232	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3233
3234	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3235
3236	/* fault is handled */
3237	ret = 0;
3238	count_vm_event(THP_FILE_MAPPED);
3239out:
3240	spin_unlock(vmf->ptl);
3241	return ret;
3242}
3243#else
3244static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3245{
3246	BUILD_BUG();
3247	return 0;
3248}
3249#endif
3250
3251/**
3252 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3253 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3254 *
3255 * @vmf: fault environment
3256 * @memcg: memcg to charge page (only for private mappings)
3257 * @page: page to map
 
 
 
3258 *
3259 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3260 * return.
3261 *
3262 * Target users are page handler itself and implementations of
3263 * vm_ops->map_pages.
3264 *
3265 * Return: %0 on success, %VM_FAULT_ code in case of error.
3266 */
3267vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3268		struct page *page)
3269{
3270	struct vm_area_struct *vma = vmf->vma;
3271	bool write = vmf->flags & FAULT_FLAG_WRITE;
3272	pte_t entry;
3273	vm_fault_t ret;
3274
3275	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3276			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3277		/* THP on COW? */
3278		VM_BUG_ON_PAGE(memcg, page);
3279
3280		ret = do_set_pmd(vmf, page);
3281		if (ret != VM_FAULT_FALLBACK)
3282			return ret;
3283	}
3284
3285	if (!vmf->pte) {
3286		ret = pte_alloc_one_map(vmf);
3287		if (ret)
3288			return ret;
3289	}
3290
3291	/* Re-check under ptl */
3292	if (unlikely(!pte_none(*vmf->pte)))
3293		return VM_FAULT_NOPAGE;
3294
3295	flush_icache_page(vma, page);
3296	entry = mk_pte(page, vma->vm_page_prot);
3297	if (write)
3298		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3299	/* copy-on-write page */
3300	if (write && !(vma->vm_flags & VM_SHARED)) {
 
3301		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3302		page_add_new_anon_rmap(page, vma, vmf->address, false);
3303		mem_cgroup_commit_charge(page, memcg, false, false);
3304		lru_cache_add_active_or_unevictable(page, vma);
3305	} else {
3306		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3307		page_add_file_rmap(page, false);
3308	}
3309	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3310
3311	/* no need to invalidate: a not-present page won't be cached */
3312	update_mmu_cache(vma, vmf->address, vmf->pte);
3313
3314	return 0;
3315}
3316
3317
3318/**
3319 * finish_fault - finish page fault once we have prepared the page to fault
3320 *
3321 * @vmf: structure describing the fault
3322 *
3323 * This function handles all that is needed to finish a page fault once the
3324 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3325 * given page, adds reverse page mapping, handles memcg charges and LRU
3326 * addition.
3327 *
3328 * The function expects the page to be locked and on success it consumes a
3329 * reference of a page being mapped (for the PTE which maps it).
3330 *
3331 * Return: %0 on success, %VM_FAULT_ code in case of error.
3332 */
3333vm_fault_t finish_fault(struct vm_fault *vmf)
3334{
3335	struct page *page;
3336	vm_fault_t ret = 0;
3337
3338	/* Did we COW the page? */
3339	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3340	    !(vmf->vma->vm_flags & VM_SHARED))
3341		page = vmf->cow_page;
3342	else
3343		page = vmf->page;
3344
3345	/*
3346	 * check even for read faults because we might have lost our CoWed
3347	 * page
3348	 */
3349	if (!(vmf->vma->vm_flags & VM_SHARED))
3350		ret = check_stable_address_space(vmf->vma->vm_mm);
3351	if (!ret)
3352		ret = alloc_set_pte(vmf, vmf->memcg, page);
3353	if (vmf->pte)
3354		pte_unmap_unlock(vmf->pte, vmf->ptl);
3355	return ret;
3356}
3357
3358static unsigned long fault_around_bytes __read_mostly =
3359	rounddown_pow_of_two(65536);
3360
3361#ifdef CONFIG_DEBUG_FS
3362static int fault_around_bytes_get(void *data, u64 *val)
 
 
3363{
3364	*val = fault_around_bytes;
3365	return 0;
3366}
3367
3368/*
3369 * fault_around_bytes must be rounded down to the nearest page order as it's
3370 * what do_fault_around() expects to see.
3371 */
3372static int fault_around_bytes_set(void *data, u64 val)
3373{
3374	if (val / PAGE_SIZE > PTRS_PER_PTE)
 
3375		return -EINVAL;
3376	if (val > PAGE_SIZE)
3377		fault_around_bytes = rounddown_pow_of_two(val);
3378	else
3379		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3380	return 0;
3381}
3382DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3383		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3384
3385static int __init fault_around_debugfs(void)
3386{
3387	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3388				   &fault_around_bytes_fops);
 
 
 
 
3389	return 0;
3390}
3391late_initcall(fault_around_debugfs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3392#endif
3393
3394/*
3395 * do_fault_around() tries to map few pages around the fault address. The hope
3396 * is that the pages will be needed soon and this will lower the number of
3397 * faults to handle.
3398 *
3399 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3400 * not ready to be mapped: not up-to-date, locked, etc.
3401 *
3402 * This function is called with the page table lock taken. In the split ptlock
3403 * case the page table lock only protects only those entries which belong to
3404 * the page table corresponding to the fault address.
3405 *
3406 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3407 * only once.
3408 *
3409 * fault_around_bytes defines how many bytes we'll try to map.
3410 * do_fault_around() expects it to be set to a power of two less than or equal
3411 * to PTRS_PER_PTE.
3412 *
3413 * The virtual address of the area that we map is naturally aligned to
3414 * fault_around_bytes rounded down to the machine page size
3415 * (and therefore to page order).  This way it's easier to guarantee
3416 * that we don't cross page table boundaries.
3417 */
3418static vm_fault_t do_fault_around(struct vm_fault *vmf)
3419{
3420	unsigned long address = vmf->address, nr_pages, mask;
3421	pgoff_t start_pgoff = vmf->pgoff;
3422	pgoff_t end_pgoff;
3423	int off;
3424	vm_fault_t ret = 0;
3425
3426	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3427	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3428
3429	vmf->address = max(address & mask, vmf->vma->vm_start);
3430	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3431	start_pgoff -= off;
 
3432
3433	/*
3434	 *  end_pgoff is either the end of the page table, the end of
3435	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3436	 */
3437	end_pgoff = start_pgoff -
3438		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3439		PTRS_PER_PTE - 1;
3440	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3441			start_pgoff + nr_pages - 1);
3442
3443	if (pmd_none(*vmf->pmd)) {
3444		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3445		if (!vmf->prealloc_pte)
3446			goto out;
3447		smp_wmb(); /* See comment in __pte_alloc() */
3448	}
3449
3450	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3451
3452	/* Huge page is mapped? Page fault is solved */
3453	if (pmd_trans_huge(*vmf->pmd)) {
3454		ret = VM_FAULT_NOPAGE;
3455		goto out;
 
 
3456	}
3457
3458	/* ->map_pages() haven't done anything useful. Cold page cache? */
3459	if (!vmf->pte)
3460		goto out;
3461
3462	/* check if the page fault is solved */
3463	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3464	if (!pte_none(*vmf->pte))
3465		ret = VM_FAULT_NOPAGE;
3466	pte_unmap_unlock(vmf->pte, vmf->ptl);
3467out:
3468	vmf->address = address;
3469	vmf->pte = NULL;
3470	return ret;
3471}
3472
3473static vm_fault_t do_read_fault(struct vm_fault *vmf)
 
 
3474{
3475	struct vm_area_struct *vma = vmf->vma;
3476	vm_fault_t ret = 0;
 
 
3477
3478	/*
3479	 * Let's call ->map_pages() first and use ->fault() as fallback
3480	 * if page by the offset is not ready to be mapped (cold cache or
3481	 * something).
3482	 */
3483	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3484		ret = do_fault_around(vmf);
3485		if (ret)
3486			return ret;
 
 
3487	}
3488
3489	ret = __do_fault(vmf);
3490	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3491		return ret;
3492
3493	ret |= finish_fault(vmf);
3494	unlock_page(vmf->page);
3495	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3496		put_page(vmf->page);
 
 
 
 
 
 
 
3497	return ret;
3498}
3499
3500static vm_fault_t do_cow_fault(struct vm_fault *vmf)
 
 
3501{
3502	struct vm_area_struct *vma = vmf->vma;
3503	vm_fault_t ret;
 
 
3504
3505	if (unlikely(anon_vma_prepare(vma)))
3506		return VM_FAULT_OOM;
3507
3508	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3509	if (!vmf->cow_page)
3510		return VM_FAULT_OOM;
3511
3512	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3513				&vmf->memcg, false)) {
3514		put_page(vmf->cow_page);
3515		return VM_FAULT_OOM;
3516	}
3517
3518	ret = __do_fault(vmf);
3519	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3520		goto uncharge_out;
3521	if (ret & VM_FAULT_DONE_COW)
3522		return ret;
3523
3524	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3525	__SetPageUptodate(vmf->cow_page);
3526
3527	ret |= finish_fault(vmf);
3528	unlock_page(vmf->page);
3529	put_page(vmf->page);
3530	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
 
3531		goto uncharge_out;
 
 
 
 
 
3532	return ret;
3533uncharge_out:
3534	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3535	put_page(vmf->cow_page);
3536	return ret;
3537}
3538
3539static vm_fault_t do_shared_fault(struct vm_fault *vmf)
 
 
3540{
3541	struct vm_area_struct *vma = vmf->vma;
3542	vm_fault_t ret, tmp;
 
 
 
 
3543
3544	ret = __do_fault(vmf);
3545	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3546		return ret;
3547
3548	/*
3549	 * Check if the backing address space wants to know that the page is
3550	 * about to become writable
3551	 */
3552	if (vma->vm_ops->page_mkwrite) {
3553		unlock_page(vmf->page);
3554		tmp = do_page_mkwrite(vmf);
3555		if (unlikely(!tmp ||
3556				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3557			put_page(vmf->page);
3558			return tmp;
3559		}
3560	}
3561
3562	ret |= finish_fault(vmf);
3563	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3564					VM_FAULT_RETRY))) {
3565		unlock_page(vmf->page);
3566		put_page(vmf->page);
3567		return ret;
3568	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3569
3570	fault_dirty_shared_page(vma, vmf->page);
3571	return ret;
3572}
3573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3574/*
 
 
 
 
3575 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3576 * but allow concurrent faults).
3577 * The mmap_sem may have been released depending on flags and our
3578 * return value.  See filemap_fault() and __lock_page_or_retry().
3579 * If mmap_sem is released, vma may become invalid (for example
3580 * by other thread calling munmap()).
3581 */
3582static vm_fault_t do_fault(struct vm_fault *vmf)
3583{
3584	struct vm_area_struct *vma = vmf->vma;
3585	struct mm_struct *vm_mm = vma->vm_mm;
3586	vm_fault_t ret;
3587
3588	/*
3589	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3590	 */
3591	if (!vma->vm_ops->fault) {
3592		/*
3593		 * If we find a migration pmd entry or a none pmd entry, which
3594		 * should never happen, return SIGBUS
3595		 */
3596		if (unlikely(!pmd_present(*vmf->pmd)))
3597			ret = VM_FAULT_SIGBUS;
3598		else {
3599			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3600						       vmf->pmd,
3601						       vmf->address,
3602						       &vmf->ptl);
3603			/*
3604			 * Make sure this is not a temporary clearing of pte
3605			 * by holding ptl and checking again. A R/M/W update
3606			 * of pte involves: take ptl, clearing the pte so that
3607			 * we don't have concurrent modification by hardware
3608			 * followed by an update.
3609			 */
3610			if (unlikely(pte_none(*vmf->pte)))
3611				ret = VM_FAULT_SIGBUS;
3612			else
3613				ret = VM_FAULT_NOPAGE;
3614
3615			pte_unmap_unlock(vmf->pte, vmf->ptl);
3616		}
3617	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3618		ret = do_read_fault(vmf);
3619	else if (!(vma->vm_flags & VM_SHARED))
3620		ret = do_cow_fault(vmf);
3621	else
3622		ret = do_shared_fault(vmf);
3623
3624	/* preallocated pagetable is unused: free it */
3625	if (vmf->prealloc_pte) {
3626		pte_free(vm_mm, vmf->prealloc_pte);
3627		vmf->prealloc_pte = NULL;
 
 
3628	}
3629	return ret;
 
 
 
 
 
 
 
 
3630}
3631
3632static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3633				unsigned long addr, int page_nid,
3634				int *flags)
3635{
3636	get_page(page);
3637
3638	count_vm_numa_event(NUMA_HINT_FAULTS);
3639	if (page_nid == numa_node_id()) {
3640		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3641		*flags |= TNF_FAULT_LOCAL;
3642	}
3643
3644	return mpol_misplaced(page, vma, addr);
3645}
3646
3647static vm_fault_t do_numa_page(struct vm_fault *vmf)
 
3648{
3649	struct vm_area_struct *vma = vmf->vma;
3650	struct page *page = NULL;
3651	int page_nid = NUMA_NO_NODE;
 
3652	int last_cpupid;
3653	int target_nid;
3654	bool migrated = false;
3655	pte_t pte, old_pte;
3656	bool was_writable = pte_savedwrite(vmf->orig_pte);
3657	int flags = 0;
3658
3659	/*
3660	 * The "pte" at this point cannot be used safely without
3661	 * validation through pte_unmap_same(). It's of NUMA type but
3662	 * the pfn may be screwed if the read is non atomic.
3663	 */
3664	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3665	spin_lock(vmf->ptl);
3666	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3667		pte_unmap_unlock(vmf->pte, vmf->ptl);
 
 
 
 
3668		goto out;
3669	}
3670
3671	/*
3672	 * Make it present again, Depending on how arch implementes non
3673	 * accessible ptes, some can allow access by kernel mode.
3674	 */
3675	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3676	pte = pte_modify(old_pte, vma->vm_page_prot);
3677	pte = pte_mkyoung(pte);
3678	if (was_writable)
3679		pte = pte_mkwrite(pte);
3680	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3681	update_mmu_cache(vma, vmf->address, vmf->pte);
3682
3683	page = vm_normal_page(vma, vmf->address, pte);
3684	if (!page) {
3685		pte_unmap_unlock(vmf->pte, vmf->ptl);
3686		return 0;
3687	}
3688
3689	/* TODO: handle PTE-mapped THP */
3690	if (PageCompound(page)) {
3691		pte_unmap_unlock(vmf->pte, vmf->ptl);
3692		return 0;
3693	}
 
3694
3695	/*
3696	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3697	 * much anyway since they can be in shared cache state. This misses
3698	 * the case where a mapping is writable but the process never writes
3699	 * to it but pte_write gets cleared during protection updates and
3700	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3701	 * background writeback, dirty balancing and application behaviour.
3702	 */
3703	if (!pte_write(pte))
3704		flags |= TNF_NO_GROUP;
3705
3706	/*
3707	 * Flag if the page is shared between multiple address spaces. This
3708	 * is later used when determining whether to group tasks together
3709	 */
3710	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3711		flags |= TNF_SHARED;
3712
3713	last_cpupid = page_cpupid_last(page);
3714	page_nid = page_to_nid(page);
3715	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3716			&flags);
3717	pte_unmap_unlock(vmf->pte, vmf->ptl);
3718	if (target_nid == NUMA_NO_NODE) {
3719		put_page(page);
3720		goto out;
3721	}
3722
3723	/* Migrate to the requested node */
3724	migrated = migrate_misplaced_page(page, vma, target_nid);
3725	if (migrated) {
3726		page_nid = target_nid;
3727		flags |= TNF_MIGRATED;
3728	} else
3729		flags |= TNF_MIGRATE_FAIL;
3730
3731out:
3732	if (page_nid != NUMA_NO_NODE)
3733		task_numa_fault(last_cpupid, page_nid, 1, flags);
3734	return 0;
3735}
3736
3737static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3738{
3739	if (vma_is_anonymous(vmf->vma))
3740		return do_huge_pmd_anonymous_page(vmf);
3741	if (vmf->vma->vm_ops->huge_fault)
3742		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3743	return VM_FAULT_FALLBACK;
3744}
3745
3746/* `inline' is required to avoid gcc 4.1.2 build error */
3747static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3748{
3749	if (vma_is_anonymous(vmf->vma))
3750		return do_huge_pmd_wp_page(vmf, orig_pmd);
3751	if (vmf->vma->vm_ops->huge_fault)
3752		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3753
3754	/* COW handled on pte level: split pmd */
3755	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3756	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3757
3758	return VM_FAULT_FALLBACK;
3759}
3760
3761static inline bool vma_is_accessible(struct vm_area_struct *vma)
3762{
3763	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3764}
3765
3766static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3767{
3768#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3769	/* No support for anonymous transparent PUD pages yet */
3770	if (vma_is_anonymous(vmf->vma))
3771		return VM_FAULT_FALLBACK;
3772	if (vmf->vma->vm_ops->huge_fault)
3773		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3774#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3775	return VM_FAULT_FALLBACK;
3776}
3777
3778static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3779{
3780#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3781	/* No support for anonymous transparent PUD pages yet */
3782	if (vma_is_anonymous(vmf->vma))
3783		return VM_FAULT_FALLBACK;
3784	if (vmf->vma->vm_ops->huge_fault)
3785		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3786#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3787	return VM_FAULT_FALLBACK;
3788}
3789
3790/*
3791 * These routines also need to handle stuff like marking pages dirty
3792 * and/or accessed for architectures that don't do it in hardware (most
3793 * RISC architectures).  The early dirtying is also good on the i386.
3794 *
3795 * There is also a hook called "update_mmu_cache()" that architectures
3796 * with external mmu caches can use to update those (ie the Sparc or
3797 * PowerPC hashed page tables that act as extended TLBs).
3798 *
3799 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3800 * concurrent faults).
3801 *
3802 * The mmap_sem may have been released depending on flags and our return value.
3803 * See filemap_fault() and __lock_page_or_retry().
3804 */
3805static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
 
 
3806{
3807	pte_t entry;
 
3808
3809	if (unlikely(pmd_none(*vmf->pmd))) {
3810		/*
3811		 * Leave __pte_alloc() until later: because vm_ops->fault may
3812		 * want to allocate huge page, and if we expose page table
3813		 * for an instant, it will be difficult to retract from
3814		 * concurrent faults and from rmap lookups.
3815		 */
3816		vmf->pte = NULL;
3817	} else {
3818		/* See comment in pte_alloc_one_map() */
3819		if (pmd_devmap_trans_unstable(vmf->pmd))
3820			return 0;
3821		/*
3822		 * A regular pmd is established and it can't morph into a huge
3823		 * pmd from under us anymore at this point because we hold the
3824		 * mmap_sem read mode and khugepaged takes it in write mode.
3825		 * So now it's safe to run pte_offset_map().
3826		 */
3827		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3828		vmf->orig_pte = *vmf->pte;
3829
3830		/*
3831		 * some architectures can have larger ptes than wordsize,
3832		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3833		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3834		 * accesses.  The code below just needs a consistent view
3835		 * for the ifs and we later double check anyway with the
3836		 * ptl lock held. So here a barrier will do.
3837		 */
3838		barrier();
3839		if (pte_none(vmf->orig_pte)) {
3840			pte_unmap(vmf->pte);
3841			vmf->pte = NULL;
3842		}
3843	}
3844
3845	if (!vmf->pte) {
3846		if (vma_is_anonymous(vmf->vma))
3847			return do_anonymous_page(vmf);
3848		else
3849			return do_fault(vmf);
3850	}
3851
3852	if (!pte_present(vmf->orig_pte))
3853		return do_swap_page(vmf);
3854
3855	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3856		return do_numa_page(vmf);
3857
3858	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3859	spin_lock(vmf->ptl);
3860	entry = vmf->orig_pte;
3861	if (unlikely(!pte_same(*vmf->pte, entry)))
3862		goto unlock;
3863	if (vmf->flags & FAULT_FLAG_WRITE) {
3864		if (!pte_write(entry))
3865			return do_wp_page(vmf);
 
3866		entry = pte_mkdirty(entry);
3867	}
3868	entry = pte_mkyoung(entry);
3869	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3870				vmf->flags & FAULT_FLAG_WRITE)) {
3871		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3872	} else {
3873		/*
3874		 * This is needed only for protection faults but the arch code
3875		 * is not yet telling us if this is a protection fault or not.
3876		 * This still avoids useless tlb flushes for .text page faults
3877		 * with threads.
3878		 */
3879		if (vmf->flags & FAULT_FLAG_WRITE)
3880			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3881	}
3882unlock:
3883	pte_unmap_unlock(vmf->pte, vmf->ptl);
3884	return 0;
3885}
3886
3887/*
3888 * By the time we get here, we already hold the mm semaphore
3889 *
3890 * The mmap_sem may have been released depending on flags and our
3891 * return value.  See filemap_fault() and __lock_page_or_retry().
3892 */
3893static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3894		unsigned long address, unsigned int flags)
3895{
3896	struct vm_fault vmf = {
3897		.vma = vma,
3898		.address = address & PAGE_MASK,
3899		.flags = flags,
3900		.pgoff = linear_page_index(vma, address),
3901		.gfp_mask = __get_fault_gfp_mask(vma),
3902	};
3903	unsigned int dirty = flags & FAULT_FLAG_WRITE;
3904	struct mm_struct *mm = vma->vm_mm;
3905	pgd_t *pgd;
3906	p4d_t *p4d;
3907	vm_fault_t ret;
 
 
 
 
3908
3909	pgd = pgd_offset(mm, address);
3910	p4d = p4d_alloc(mm, pgd, address);
3911	if (!p4d)
3912		return VM_FAULT_OOM;
3913
3914	vmf.pud = pud_alloc(mm, p4d, address);
3915	if (!vmf.pud)
3916		return VM_FAULT_OOM;
3917	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3918		ret = create_huge_pud(&vmf);
 
 
 
3919		if (!(ret & VM_FAULT_FALLBACK))
3920			return ret;
3921	} else {
3922		pud_t orig_pud = *vmf.pud;
 
3923
3924		barrier();
3925		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
 
3926
3927			/* NUMA case for anonymous PUDs would go here */
3928
3929			if (dirty && !pud_write(orig_pud)) {
3930				ret = wp_huge_pud(&vmf, orig_pud);
3931				if (!(ret & VM_FAULT_FALLBACK))
3932					return ret;
3933			} else {
3934				huge_pud_set_accessed(&vmf, orig_pud);
3935				return 0;
3936			}
3937		}
3938	}
3939
3940	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3941	if (!vmf.pmd)
3942		return VM_FAULT_OOM;
3943	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3944		ret = create_huge_pmd(&vmf);
3945		if (!(ret & VM_FAULT_FALLBACK))
3946			return ret;
3947	} else {
3948		pmd_t orig_pmd = *vmf.pmd;
3949
3950		barrier();
3951		if (unlikely(is_swap_pmd(orig_pmd))) {
3952			VM_BUG_ON(thp_migration_supported() &&
3953					  !is_pmd_migration_entry(orig_pmd));
3954			if (is_pmd_migration_entry(orig_pmd))
3955				pmd_migration_entry_wait(mm, vmf.pmd);
3956			return 0;
3957		}
3958		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3959			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3960				return do_huge_pmd_numa_page(&vmf, orig_pmd);
3961
3962			if (dirty && !pmd_write(orig_pmd)) {
3963				ret = wp_huge_pmd(&vmf, orig_pmd);
 
3964				if (!(ret & VM_FAULT_FALLBACK))
3965					return ret;
3966			} else {
3967				huge_pmd_set_accessed(&vmf, orig_pmd);
 
3968				return 0;
3969			}
3970		}
3971	}
3972
3973	return handle_pte_fault(&vmf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3974}
3975
3976/*
3977 * By the time we get here, we already hold the mm semaphore
3978 *
3979 * The mmap_sem may have been released depending on flags and our
3980 * return value.  See filemap_fault() and __lock_page_or_retry().
3981 */
3982vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3983		unsigned int flags)
3984{
3985	vm_fault_t ret;
3986
3987	__set_current_state(TASK_RUNNING);
3988
3989	count_vm_event(PGFAULT);
3990	count_memcg_event_mm(vma->vm_mm, PGFAULT);
3991
3992	/* do counter updates before entering really critical section. */
3993	check_sync_rss_stat(current);
3994
3995	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3996					    flags & FAULT_FLAG_INSTRUCTION,
3997					    flags & FAULT_FLAG_REMOTE))
3998		return VM_FAULT_SIGSEGV;
3999
4000	/*
4001	 * Enable the memcg OOM handling for faults triggered in user
4002	 * space.  Kernel faults are handled more gracefully.
4003	 */
4004	if (flags & FAULT_FLAG_USER)
4005		mem_cgroup_enter_user_fault();
4006
4007	if (unlikely(is_vm_hugetlb_page(vma)))
4008		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4009	else
4010		ret = __handle_mm_fault(vma, address, flags);
4011
4012	if (flags & FAULT_FLAG_USER) {
4013		mem_cgroup_exit_user_fault();
4014		/*
4015		 * The task may have entered a memcg OOM situation but
4016		 * if the allocation error was handled gracefully (no
4017		 * VM_FAULT_OOM), there is no need to kill anything.
4018		 * Just clean up the OOM state peacefully.
4019		 */
4020		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4021			mem_cgroup_oom_synchronize(false);
4022	}
4023
4024	return ret;
4025}
4026EXPORT_SYMBOL_GPL(handle_mm_fault);
4027
4028#ifndef __PAGETABLE_P4D_FOLDED
4029/*
4030 * Allocate p4d page table.
4031 * We've already handled the fast-path in-line.
4032 */
4033int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4034{
4035	p4d_t *new = p4d_alloc_one(mm, address);
4036	if (!new)
4037		return -ENOMEM;
4038
4039	smp_wmb(); /* See comment in __pte_alloc */
4040
4041	spin_lock(&mm->page_table_lock);
4042	if (pgd_present(*pgd))		/* Another has populated it */
4043		p4d_free(mm, new);
4044	else
4045		pgd_populate(mm, pgd, new);
4046	spin_unlock(&mm->page_table_lock);
4047	return 0;
4048}
4049#endif /* __PAGETABLE_P4D_FOLDED */
4050
4051#ifndef __PAGETABLE_PUD_FOLDED
4052/*
4053 * Allocate page upper directory.
4054 * We've already handled the fast-path in-line.
4055 */
4056int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4057{
4058	pud_t *new = pud_alloc_one(mm, address);
4059	if (!new)
4060		return -ENOMEM;
4061
4062	smp_wmb(); /* See comment in __pte_alloc */
4063
4064	spin_lock(&mm->page_table_lock);
4065#ifndef __ARCH_HAS_5LEVEL_HACK
4066	if (!p4d_present(*p4d)) {
4067		mm_inc_nr_puds(mm);
4068		p4d_populate(mm, p4d, new);
4069	} else	/* Another has populated it */
4070		pud_free(mm, new);
4071#else
4072	if (!pgd_present(*p4d)) {
4073		mm_inc_nr_puds(mm);
4074		pgd_populate(mm, p4d, new);
4075	} else	/* Another has populated it */
4076		pud_free(mm, new);
4077#endif /* __ARCH_HAS_5LEVEL_HACK */
 
4078	spin_unlock(&mm->page_table_lock);
4079	return 0;
4080}
4081#endif /* __PAGETABLE_PUD_FOLDED */
4082
4083#ifndef __PAGETABLE_PMD_FOLDED
4084/*
4085 * Allocate page middle directory.
4086 * We've already handled the fast-path in-line.
4087 */
4088int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4089{
4090	spinlock_t *ptl;
4091	pmd_t *new = pmd_alloc_one(mm, address);
4092	if (!new)
4093		return -ENOMEM;
4094
4095	smp_wmb(); /* See comment in __pte_alloc */
4096
4097	ptl = pud_lock(mm, pud);
4098#ifndef __ARCH_HAS_4LEVEL_HACK
4099	if (!pud_present(*pud)) {
4100		mm_inc_nr_pmds(mm);
4101		pud_populate(mm, pud, new);
4102	} else	/* Another has populated it */
4103		pmd_free(mm, new);
 
 
4104#else
4105	if (!pgd_present(*pud)) {
4106		mm_inc_nr_pmds(mm);
4107		pgd_populate(mm, pud, new);
4108	} else /* Another has populated it */
4109		pmd_free(mm, new);
 
 
4110#endif /* __ARCH_HAS_4LEVEL_HACK */
4111	spin_unlock(ptl);
4112	return 0;
4113}
4114#endif /* __PAGETABLE_PMD_FOLDED */
4115
4116static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4117			    struct mmu_notifier_range *range,
4118			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4119{
4120	pgd_t *pgd;
4121	p4d_t *p4d;
4122	pud_t *pud;
4123	pmd_t *pmd;
4124	pte_t *ptep;
4125
4126	pgd = pgd_offset(mm, address);
4127	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4128		goto out;
4129
4130	p4d = p4d_offset(pgd, address);
4131	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4132		goto out;
4133
4134	pud = pud_offset(p4d, address);
4135	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4136		goto out;
4137
4138	pmd = pmd_offset(pud, address);
4139	VM_BUG_ON(pmd_trans_huge(*pmd));
4140
4141	if (pmd_huge(*pmd)) {
4142		if (!pmdpp)
4143			goto out;
4144
4145		if (range) {
4146			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4147						NULL, mm, address & PMD_MASK,
4148						(address & PMD_MASK) + PMD_SIZE);
4149			mmu_notifier_invalidate_range_start(range);
4150		}
4151		*ptlp = pmd_lock(mm, pmd);
4152		if (pmd_huge(*pmd)) {
4153			*pmdpp = pmd;
4154			return 0;
4155		}
4156		spin_unlock(*ptlp);
4157		if (range)
4158			mmu_notifier_invalidate_range_end(range);
4159	}
4160
4161	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4162		goto out;
4163
4164	if (range) {
4165		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4166					address & PAGE_MASK,
4167					(address & PAGE_MASK) + PAGE_SIZE);
4168		mmu_notifier_invalidate_range_start(range);
4169	}
4170	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
 
 
4171	if (!pte_present(*ptep))
4172		goto unlock;
4173	*ptepp = ptep;
4174	return 0;
4175unlock:
4176	pte_unmap_unlock(ptep, *ptlp);
4177	if (range)
4178		mmu_notifier_invalidate_range_end(range);
4179out:
4180	return -EINVAL;
4181}
4182
4183static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4184			     pte_t **ptepp, spinlock_t **ptlp)
4185{
4186	int res;
4187
4188	/* (void) is needed to make gcc happy */
4189	(void) __cond_lock(*ptlp,
4190			   !(res = __follow_pte_pmd(mm, address, NULL,
4191						    ptepp, NULL, ptlp)));
4192	return res;
4193}
4194
4195int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4196		   struct mmu_notifier_range *range,
4197		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4198{
4199	int res;
4200
4201	/* (void) is needed to make gcc happy */
4202	(void) __cond_lock(*ptlp,
4203			   !(res = __follow_pte_pmd(mm, address, range,
4204						    ptepp, pmdpp, ptlp)));
4205	return res;
4206}
4207EXPORT_SYMBOL(follow_pte_pmd);
4208
4209/**
4210 * follow_pfn - look up PFN at a user virtual address
4211 * @vma: memory mapping
4212 * @address: user virtual address
4213 * @pfn: location to store found PFN
4214 *
4215 * Only IO mappings and raw PFN mappings are allowed.
4216 *
4217 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4218 */
4219int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4220	unsigned long *pfn)
4221{
4222	int ret = -EINVAL;
4223	spinlock_t *ptl;
4224	pte_t *ptep;
4225
4226	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4227		return ret;
4228
4229	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4230	if (ret)
4231		return ret;
4232	*pfn = pte_pfn(*ptep);
4233	pte_unmap_unlock(ptep, ptl);
4234	return 0;
4235}
4236EXPORT_SYMBOL(follow_pfn);
4237
4238#ifdef CONFIG_HAVE_IOREMAP_PROT
4239int follow_phys(struct vm_area_struct *vma,
4240		unsigned long address, unsigned int flags,
4241		unsigned long *prot, resource_size_t *phys)
4242{
4243	int ret = -EINVAL;
4244	pte_t *ptep, pte;
4245	spinlock_t *ptl;
4246
4247	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4248		goto out;
4249
4250	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4251		goto out;
4252	pte = *ptep;
4253
4254	if ((flags & FOLL_WRITE) && !pte_write(pte))
4255		goto unlock;
4256
4257	*prot = pgprot_val(pte_pgprot(pte));
4258	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4259
4260	ret = 0;
4261unlock:
4262	pte_unmap_unlock(ptep, ptl);
4263out:
4264	return ret;
4265}
4266
4267int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4268			void *buf, int len, int write)
4269{
4270	resource_size_t phys_addr;
4271	unsigned long prot = 0;
4272	void __iomem *maddr;
4273	int offset = addr & (PAGE_SIZE-1);
4274
4275	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4276		return -EINVAL;
4277
4278	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4279	if (!maddr)
4280		return -ENOMEM;
4281
4282	if (write)
4283		memcpy_toio(maddr + offset, buf, len);
4284	else
4285		memcpy_fromio(buf, maddr + offset, len);
4286	iounmap(maddr);
4287
4288	return len;
4289}
4290EXPORT_SYMBOL_GPL(generic_access_phys);
4291#endif
4292
4293/*
4294 * Access another process' address space as given in mm.  If non-NULL, use the
4295 * given task for page fault accounting.
4296 */
4297int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4298		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4299{
4300	struct vm_area_struct *vma;
4301	void *old_buf = buf;
4302	int write = gup_flags & FOLL_WRITE;
4303
4304	if (down_read_killable(&mm->mmap_sem))
4305		return 0;
4306
 
4307	/* ignore errors, just check how much was successfully transferred */
4308	while (len) {
4309		int bytes, ret, offset;
4310		void *maddr;
4311		struct page *page = NULL;
4312
4313		ret = get_user_pages_remote(tsk, mm, addr, 1,
4314				gup_flags, &page, &vma, NULL);
4315		if (ret <= 0) {
4316#ifndef CONFIG_HAVE_IOREMAP_PROT
4317			break;
4318#else
4319			/*
4320			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4321			 * we can access using slightly different code.
4322			 */
 
4323			vma = find_vma(mm, addr);
4324			if (!vma || vma->vm_start > addr)
4325				break;
4326			if (vma->vm_ops && vma->vm_ops->access)
4327				ret = vma->vm_ops->access(vma, addr, buf,
4328							  len, write);
4329			if (ret <= 0)
 
4330				break;
4331			bytes = ret;
4332#endif
4333		} else {
4334			bytes = len;
4335			offset = addr & (PAGE_SIZE-1);
4336			if (bytes > PAGE_SIZE-offset)
4337				bytes = PAGE_SIZE-offset;
4338
4339			maddr = kmap(page);
4340			if (write) {
4341				copy_to_user_page(vma, page, addr,
4342						  maddr + offset, buf, bytes);
4343				set_page_dirty_lock(page);
4344			} else {
4345				copy_from_user_page(vma, page, addr,
4346						    buf, maddr + offset, bytes);
4347			}
4348			kunmap(page);
4349			put_page(page);
4350		}
4351		len -= bytes;
4352		buf += bytes;
4353		addr += bytes;
4354	}
4355	up_read(&mm->mmap_sem);
4356
4357	return buf - old_buf;
4358}
4359
4360/**
4361 * access_remote_vm - access another process' address space
4362 * @mm:		the mm_struct of the target address space
4363 * @addr:	start address to access
4364 * @buf:	source or destination buffer
4365 * @len:	number of bytes to transfer
4366 * @gup_flags:	flags modifying lookup behaviour
4367 *
4368 * The caller must hold a reference on @mm.
4369 *
4370 * Return: number of bytes copied from source to destination.
4371 */
4372int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4373		void *buf, int len, unsigned int gup_flags)
4374{
4375	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4376}
4377
4378/*
4379 * Access another process' address space.
4380 * Source/target buffer must be kernel space,
4381 * Do not walk the page table directly, use get_user_pages
4382 */
4383int access_process_vm(struct task_struct *tsk, unsigned long addr,
4384		void *buf, int len, unsigned int gup_flags)
4385{
4386	struct mm_struct *mm;
4387	int ret;
4388
4389	mm = get_task_mm(tsk);
4390	if (!mm)
4391		return 0;
4392
4393	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4394
4395	mmput(mm);
4396
4397	return ret;
4398}
4399EXPORT_SYMBOL_GPL(access_process_vm);
4400
4401/*
4402 * Print the name of a VMA.
4403 */
4404void print_vma_addr(char *prefix, unsigned long ip)
4405{
4406	struct mm_struct *mm = current->mm;
4407	struct vm_area_struct *vma;
4408
4409	/*
4410	 * we might be running from an atomic context so we cannot sleep
 
4411	 */
4412	if (!down_read_trylock(&mm->mmap_sem))
4413		return;
4414
 
4415	vma = find_vma(mm, ip);
4416	if (vma && vma->vm_file) {
4417		struct file *f = vma->vm_file;
4418		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4419		if (buf) {
4420			char *p;
4421
4422			p = file_path(f, buf, PAGE_SIZE);
4423			if (IS_ERR(p))
4424				p = "?";
4425			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4426					vma->vm_start,
4427					vma->vm_end - vma->vm_start);
4428			free_page((unsigned long)buf);
4429		}
4430	}
4431	up_read(&mm->mmap_sem);
4432}
4433
4434#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4435void __might_fault(const char *file, int line)
4436{
4437	/*
4438	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4439	 * holding the mmap_sem, this is safe because kernel memory doesn't
4440	 * get paged out, therefore we'll never actually fault, and the
4441	 * below annotations will generate false positives.
4442	 */
4443	if (uaccess_kernel())
4444		return;
4445	if (pagefault_disabled())
 
 
 
 
 
 
4446		return;
4447	__might_sleep(file, line, 0);
4448#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
 
4449	if (current->mm)
4450		might_lock_read(&current->mm->mmap_sem);
4451#endif
4452}
4453EXPORT_SYMBOL(__might_fault);
4454#endif
4455
4456#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4457/*
4458 * Process all subpages of the specified huge page with the specified
4459 * operation.  The target subpage will be processed last to keep its
4460 * cache lines hot.
4461 */
4462static inline void process_huge_page(
4463	unsigned long addr_hint, unsigned int pages_per_huge_page,
4464	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4465	void *arg)
4466{
4467	int i, n, base, l;
4468	unsigned long addr = addr_hint &
4469		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4470
4471	/* Process target subpage last to keep its cache lines hot */
4472	might_sleep();
4473	n = (addr_hint - addr) / PAGE_SIZE;
4474	if (2 * n <= pages_per_huge_page) {
4475		/* If target subpage in first half of huge page */
4476		base = 0;
4477		l = n;
4478		/* Process subpages at the end of huge page */
4479		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4480			cond_resched();
4481			process_subpage(addr + i * PAGE_SIZE, i, arg);
4482		}
4483	} else {
4484		/* If target subpage in second half of huge page */
4485		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4486		l = pages_per_huge_page - n;
4487		/* Process subpages at the begin of huge page */
4488		for (i = 0; i < base; i++) {
4489			cond_resched();
4490			process_subpage(addr + i * PAGE_SIZE, i, arg);
4491		}
4492	}
4493	/*
4494	 * Process remaining subpages in left-right-left-right pattern
4495	 * towards the target subpage
4496	 */
4497	for (i = 0; i < l; i++) {
4498		int left_idx = base + i;
4499		int right_idx = base + 2 * l - 1 - i;
4500
4501		cond_resched();
4502		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4503		cond_resched();
4504		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4505	}
4506}
4507
4508static void clear_gigantic_page(struct page *page,
4509				unsigned long addr,
4510				unsigned int pages_per_huge_page)
4511{
4512	int i;
4513	struct page *p = page;
4514
4515	might_sleep();
4516	for (i = 0; i < pages_per_huge_page;
4517	     i++, p = mem_map_next(p, page, i)) {
4518		cond_resched();
4519		clear_user_highpage(p, addr + i * PAGE_SIZE);
4520	}
4521}
4522
4523static void clear_subpage(unsigned long addr, int idx, void *arg)
4524{
4525	struct page *page = arg;
4526
4527	clear_user_highpage(page + idx, addr);
4528}
4529
4530void clear_huge_page(struct page *page,
4531		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4532{
4533	unsigned long addr = addr_hint &
4534		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4535
4536	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4537		clear_gigantic_page(page, addr, pages_per_huge_page);
4538		return;
4539	}
4540
4541	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
 
 
 
 
4542}
4543
4544static void copy_user_gigantic_page(struct page *dst, struct page *src,
4545				    unsigned long addr,
4546				    struct vm_area_struct *vma,
4547				    unsigned int pages_per_huge_page)
4548{
4549	int i;
4550	struct page *dst_base = dst;
4551	struct page *src_base = src;
4552
4553	for (i = 0; i < pages_per_huge_page; ) {
4554		cond_resched();
4555		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4556
4557		i++;
4558		dst = mem_map_next(dst, dst_base, i);
4559		src = mem_map_next(src, src_base, i);
4560	}
4561}
4562
4563struct copy_subpage_arg {
4564	struct page *dst;
4565	struct page *src;
4566	struct vm_area_struct *vma;
4567};
4568
4569static void copy_subpage(unsigned long addr, int idx, void *arg)
4570{
4571	struct copy_subpage_arg *copy_arg = arg;
4572
4573	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4574			   addr, copy_arg->vma);
4575}
4576
4577void copy_user_huge_page(struct page *dst, struct page *src,
4578			 unsigned long addr_hint, struct vm_area_struct *vma,
4579			 unsigned int pages_per_huge_page)
4580{
4581	unsigned long addr = addr_hint &
4582		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4583	struct copy_subpage_arg arg = {
4584		.dst = dst,
4585		.src = src,
4586		.vma = vma,
4587	};
4588
4589	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4590		copy_user_gigantic_page(dst, src, addr, vma,
4591					pages_per_huge_page);
4592		return;
4593	}
4594
4595	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4596}
4597
4598long copy_huge_page_from_user(struct page *dst_page,
4599				const void __user *usr_src,
4600				unsigned int pages_per_huge_page,
4601				bool allow_pagefault)
4602{
4603	void *src = (void *)usr_src;
4604	void *page_kaddr;
4605	unsigned long i, rc = 0;
4606	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4607
4608	for (i = 0; i < pages_per_huge_page; i++) {
4609		if (allow_pagefault)
4610			page_kaddr = kmap(dst_page + i);
4611		else
4612			page_kaddr = kmap_atomic(dst_page + i);
4613		rc = copy_from_user(page_kaddr,
4614				(const void __user *)(src + i * PAGE_SIZE),
4615				PAGE_SIZE);
4616		if (allow_pagefault)
4617			kunmap(dst_page + i);
4618		else
4619			kunmap_atomic(page_kaddr);
4620
4621		ret_val -= (PAGE_SIZE - rc);
4622		if (rc)
4623			break;
4624
4625		cond_resched();
 
4626	}
4627	return ret_val;
4628}
4629#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4630
4631#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4632
4633static struct kmem_cache *page_ptl_cachep;
4634
4635void __init ptlock_cache_init(void)
4636{
4637	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4638			SLAB_PANIC, NULL);
4639}
4640
4641bool ptlock_alloc(struct page *page)
4642{
4643	spinlock_t *ptl;
4644
4645	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4646	if (!ptl)
4647		return false;
4648	page->ptl = ptl;
4649	return true;
4650}
4651
4652void ptlock_free(struct page *page)
4653{
4654	kmem_cache_free(page_ptl_cachep, page->ptl);
4655}
4656#endif
v3.15
 
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *		Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *		(Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
 
 
 
 
  43#include <linux/hugetlb.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/highmem.h>
  47#include <linux/pagemap.h>
 
  48#include <linux/ksm.h>
  49#include <linux/rmap.h>
  50#include <linux/export.h>
  51#include <linux/delayacct.h>
  52#include <linux/init.h>
 
  53#include <linux/writeback.h>
  54#include <linux/memcontrol.h>
  55#include <linux/mmu_notifier.h>
  56#include <linux/kallsyms.h>
  57#include <linux/swapops.h>
  58#include <linux/elf.h>
  59#include <linux/gfp.h>
  60#include <linux/migrate.h>
  61#include <linux/string.h>
  62#include <linux/dma-debug.h>
  63#include <linux/debugfs.h>
 
 
 
 
  64
  65#include <asm/io.h>
 
  66#include <asm/pgalloc.h>
  67#include <asm/uaccess.h>
  68#include <asm/tlb.h>
  69#include <asm/tlbflush.h>
  70#include <asm/pgtable.h>
  71
  72#include "internal.h"
  73
  74#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  75#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  76#endif
  77
  78#ifndef CONFIG_NEED_MULTIPLE_NODES
  79/* use the per-pgdat data instead for discontigmem - mbligh */
  80unsigned long max_mapnr;
 
 
  81struct page *mem_map;
  82
  83EXPORT_SYMBOL(max_mapnr);
  84EXPORT_SYMBOL(mem_map);
  85#endif
  86
  87/*
  88 * A number of key systems in x86 including ioremap() rely on the assumption
  89 * that high_memory defines the upper bound on direct map memory, then end
  90 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
  91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  92 * and ZONE_HIGHMEM.
  93 */
  94void * high_memory;
  95
  96EXPORT_SYMBOL(high_memory);
  97
  98/*
  99 * Randomize the address space (stacks, mmaps, brk, etc.).
 100 *
 101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 102 *   as ancient (libc5 based) binaries can segfault. )
 103 */
 104int randomize_va_space __read_mostly =
 105#ifdef CONFIG_COMPAT_BRK
 106					1;
 107#else
 108					2;
 109#endif
 110
 111static int __init disable_randmaps(char *s)
 112{
 113	randomize_va_space = 0;
 114	return 1;
 115}
 116__setup("norandmaps", disable_randmaps);
 117
 118unsigned long zero_pfn __read_mostly;
 
 
 119unsigned long highest_memmap_pfn __read_mostly;
 120
 121/*
 122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 123 */
 124static int __init init_zero_pfn(void)
 125{
 126	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 127	return 0;
 128}
 129core_initcall(init_zero_pfn);
 130
 131
 132#if defined(SPLIT_RSS_COUNTING)
 133
 134void sync_mm_rss(struct mm_struct *mm)
 135{
 136	int i;
 137
 138	for (i = 0; i < NR_MM_COUNTERS; i++) {
 139		if (current->rss_stat.count[i]) {
 140			add_mm_counter(mm, i, current->rss_stat.count[i]);
 141			current->rss_stat.count[i] = 0;
 142		}
 143	}
 144	current->rss_stat.events = 0;
 145}
 146
 147static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 148{
 149	struct task_struct *task = current;
 150
 151	if (likely(task->mm == mm))
 152		task->rss_stat.count[member] += val;
 153	else
 154		add_mm_counter(mm, member, val);
 155}
 156#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 157#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 158
 159/* sync counter once per 64 page faults */
 160#define TASK_RSS_EVENTS_THRESH	(64)
 161static void check_sync_rss_stat(struct task_struct *task)
 162{
 163	if (unlikely(task != current))
 164		return;
 165	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 166		sync_mm_rss(task->mm);
 167}
 168#else /* SPLIT_RSS_COUNTING */
 169
 170#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 171#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 172
 173static void check_sync_rss_stat(struct task_struct *task)
 174{
 175}
 176
 177#endif /* SPLIT_RSS_COUNTING */
 178
 179#ifdef HAVE_GENERIC_MMU_GATHER
 180
 181static int tlb_next_batch(struct mmu_gather *tlb)
 182{
 183	struct mmu_gather_batch *batch;
 184
 185	batch = tlb->active;
 186	if (batch->next) {
 187		tlb->active = batch->next;
 188		return 1;
 189	}
 190
 191	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
 192		return 0;
 193
 194	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 195	if (!batch)
 196		return 0;
 197
 198	tlb->batch_count++;
 199	batch->next = NULL;
 200	batch->nr   = 0;
 201	batch->max  = MAX_GATHER_BATCH;
 202
 203	tlb->active->next = batch;
 204	tlb->active = batch;
 205
 206	return 1;
 207}
 208
 209/* tlb_gather_mmu
 210 *	Called to initialize an (on-stack) mmu_gather structure for page-table
 211 *	tear-down from @mm. The @fullmm argument is used when @mm is without
 212 *	users and we're going to destroy the full address space (exit/execve).
 213 */
 214void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
 215{
 216	tlb->mm = mm;
 217
 218	/* Is it from 0 to ~0? */
 219	tlb->fullmm     = !(start | (end+1));
 220	tlb->need_flush_all = 0;
 221	tlb->start	= start;
 222	tlb->end	= end;
 223	tlb->need_flush = 0;
 224	tlb->local.next = NULL;
 225	tlb->local.nr   = 0;
 226	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 227	tlb->active     = &tlb->local;
 228	tlb->batch_count = 0;
 229
 230#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 231	tlb->batch = NULL;
 232#endif
 233}
 234
 235static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
 236{
 237	tlb->need_flush = 0;
 238	tlb_flush(tlb);
 239#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 240	tlb_table_flush(tlb);
 241#endif
 242}
 243
 244static void tlb_flush_mmu_free(struct mmu_gather *tlb)
 245{
 246	struct mmu_gather_batch *batch;
 247
 248	for (batch = &tlb->local; batch; batch = batch->next) {
 249		free_pages_and_swap_cache(batch->pages, batch->nr);
 250		batch->nr = 0;
 251	}
 252	tlb->active = &tlb->local;
 253}
 254
 255void tlb_flush_mmu(struct mmu_gather *tlb)
 256{
 257	if (!tlb->need_flush)
 258		return;
 259	tlb_flush_mmu_tlbonly(tlb);
 260	tlb_flush_mmu_free(tlb);
 261}
 262
 263/* tlb_finish_mmu
 264 *	Called at the end of the shootdown operation to free up any resources
 265 *	that were required.
 266 */
 267void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
 268{
 269	struct mmu_gather_batch *batch, *next;
 270
 271	tlb_flush_mmu(tlb);
 272
 273	/* keep the page table cache within bounds */
 274	check_pgt_cache();
 275
 276	for (batch = tlb->local.next; batch; batch = next) {
 277		next = batch->next;
 278		free_pages((unsigned long)batch, 0);
 279	}
 280	tlb->local.next = NULL;
 281}
 282
 283/* __tlb_remove_page
 284 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 285 *	handling the additional races in SMP caused by other CPUs caching valid
 286 *	mappings in their TLBs. Returns the number of free page slots left.
 287 *	When out of page slots we must call tlb_flush_mmu().
 288 */
 289int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
 290{
 291	struct mmu_gather_batch *batch;
 292
 293	VM_BUG_ON(!tlb->need_flush);
 294
 295	batch = tlb->active;
 296	batch->pages[batch->nr++] = page;
 297	if (batch->nr == batch->max) {
 298		if (!tlb_next_batch(tlb))
 299			return 0;
 300		batch = tlb->active;
 301	}
 302	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
 303
 304	return batch->max - batch->nr;
 305}
 306
 307#endif /* HAVE_GENERIC_MMU_GATHER */
 308
 309#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 310
 311/*
 312 * See the comment near struct mmu_table_batch.
 313 */
 314
 315static void tlb_remove_table_smp_sync(void *arg)
 316{
 317	/* Simply deliver the interrupt */
 318}
 319
 320static void tlb_remove_table_one(void *table)
 321{
 322	/*
 323	 * This isn't an RCU grace period and hence the page-tables cannot be
 324	 * assumed to be actually RCU-freed.
 325	 *
 326	 * It is however sufficient for software page-table walkers that rely on
 327	 * IRQ disabling. See the comment near struct mmu_table_batch.
 328	 */
 329	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 330	__tlb_remove_table(table);
 331}
 332
 333static void tlb_remove_table_rcu(struct rcu_head *head)
 334{
 335	struct mmu_table_batch *batch;
 336	int i;
 337
 338	batch = container_of(head, struct mmu_table_batch, rcu);
 339
 340	for (i = 0; i < batch->nr; i++)
 341		__tlb_remove_table(batch->tables[i]);
 342
 343	free_page((unsigned long)batch);
 344}
 345
 346void tlb_table_flush(struct mmu_gather *tlb)
 347{
 348	struct mmu_table_batch **batch = &tlb->batch;
 349
 350	if (*batch) {
 351		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 352		*batch = NULL;
 353	}
 354}
 355
 356void tlb_remove_table(struct mmu_gather *tlb, void *table)
 357{
 358	struct mmu_table_batch **batch = &tlb->batch;
 359
 360	tlb->need_flush = 1;
 361
 362	/*
 363	 * When there's less then two users of this mm there cannot be a
 364	 * concurrent page-table walk.
 365	 */
 366	if (atomic_read(&tlb->mm->mm_users) < 2) {
 367		__tlb_remove_table(table);
 368		return;
 369	}
 370
 371	if (*batch == NULL) {
 372		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 373		if (*batch == NULL) {
 374			tlb_remove_table_one(table);
 375			return;
 376		}
 377		(*batch)->nr = 0;
 378	}
 379	(*batch)->tables[(*batch)->nr++] = table;
 380	if ((*batch)->nr == MAX_TABLE_BATCH)
 381		tlb_table_flush(tlb);
 382}
 383
 384#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 385
 386/*
 387 * Note: this doesn't free the actual pages themselves. That
 388 * has been handled earlier when unmapping all the memory regions.
 389 */
 390static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 391			   unsigned long addr)
 392{
 393	pgtable_t token = pmd_pgtable(*pmd);
 394	pmd_clear(pmd);
 395	pte_free_tlb(tlb, token, addr);
 396	atomic_long_dec(&tlb->mm->nr_ptes);
 397}
 398
 399static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 400				unsigned long addr, unsigned long end,
 401				unsigned long floor, unsigned long ceiling)
 402{
 403	pmd_t *pmd;
 404	unsigned long next;
 405	unsigned long start;
 406
 407	start = addr;
 408	pmd = pmd_offset(pud, addr);
 409	do {
 410		next = pmd_addr_end(addr, end);
 411		if (pmd_none_or_clear_bad(pmd))
 412			continue;
 413		free_pte_range(tlb, pmd, addr);
 414	} while (pmd++, addr = next, addr != end);
 415
 416	start &= PUD_MASK;
 417	if (start < floor)
 418		return;
 419	if (ceiling) {
 420		ceiling &= PUD_MASK;
 421		if (!ceiling)
 422			return;
 423	}
 424	if (end - 1 > ceiling - 1)
 425		return;
 426
 427	pmd = pmd_offset(pud, start);
 428	pud_clear(pud);
 429	pmd_free_tlb(tlb, pmd, start);
 
 430}
 431
 432static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 433				unsigned long addr, unsigned long end,
 434				unsigned long floor, unsigned long ceiling)
 435{
 436	pud_t *pud;
 437	unsigned long next;
 438	unsigned long start;
 439
 440	start = addr;
 441	pud = pud_offset(pgd, addr);
 442	do {
 443		next = pud_addr_end(addr, end);
 444		if (pud_none_or_clear_bad(pud))
 445			continue;
 446		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 447	} while (pud++, addr = next, addr != end);
 448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 449	start &= PGDIR_MASK;
 450	if (start < floor)
 451		return;
 452	if (ceiling) {
 453		ceiling &= PGDIR_MASK;
 454		if (!ceiling)
 455			return;
 456	}
 457	if (end - 1 > ceiling - 1)
 458		return;
 459
 460	pud = pud_offset(pgd, start);
 461	pgd_clear(pgd);
 462	pud_free_tlb(tlb, pud, start);
 463}
 464
 465/*
 466 * This function frees user-level page tables of a process.
 467 */
 468void free_pgd_range(struct mmu_gather *tlb,
 469			unsigned long addr, unsigned long end,
 470			unsigned long floor, unsigned long ceiling)
 471{
 472	pgd_t *pgd;
 473	unsigned long next;
 474
 475	/*
 476	 * The next few lines have given us lots of grief...
 477	 *
 478	 * Why are we testing PMD* at this top level?  Because often
 479	 * there will be no work to do at all, and we'd prefer not to
 480	 * go all the way down to the bottom just to discover that.
 481	 *
 482	 * Why all these "- 1"s?  Because 0 represents both the bottom
 483	 * of the address space and the top of it (using -1 for the
 484	 * top wouldn't help much: the masks would do the wrong thing).
 485	 * The rule is that addr 0 and floor 0 refer to the bottom of
 486	 * the address space, but end 0 and ceiling 0 refer to the top
 487	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 488	 * that end 0 case should be mythical).
 489	 *
 490	 * Wherever addr is brought up or ceiling brought down, we must
 491	 * be careful to reject "the opposite 0" before it confuses the
 492	 * subsequent tests.  But what about where end is brought down
 493	 * by PMD_SIZE below? no, end can't go down to 0 there.
 494	 *
 495	 * Whereas we round start (addr) and ceiling down, by different
 496	 * masks at different levels, in order to test whether a table
 497	 * now has no other vmas using it, so can be freed, we don't
 498	 * bother to round floor or end up - the tests don't need that.
 499	 */
 500
 501	addr &= PMD_MASK;
 502	if (addr < floor) {
 503		addr += PMD_SIZE;
 504		if (!addr)
 505			return;
 506	}
 507	if (ceiling) {
 508		ceiling &= PMD_MASK;
 509		if (!ceiling)
 510			return;
 511	}
 512	if (end - 1 > ceiling - 1)
 513		end -= PMD_SIZE;
 514	if (addr > end - 1)
 515		return;
 516
 
 
 
 
 517	pgd = pgd_offset(tlb->mm, addr);
 518	do {
 519		next = pgd_addr_end(addr, end);
 520		if (pgd_none_or_clear_bad(pgd))
 521			continue;
 522		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 523	} while (pgd++, addr = next, addr != end);
 524}
 525
 526void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 527		unsigned long floor, unsigned long ceiling)
 528{
 529	while (vma) {
 530		struct vm_area_struct *next = vma->vm_next;
 531		unsigned long addr = vma->vm_start;
 532
 533		/*
 534		 * Hide vma from rmap and truncate_pagecache before freeing
 535		 * pgtables
 536		 */
 537		unlink_anon_vmas(vma);
 538		unlink_file_vma(vma);
 539
 540		if (is_vm_hugetlb_page(vma)) {
 541			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 542				floor, next? next->vm_start: ceiling);
 543		} else {
 544			/*
 545			 * Optimization: gather nearby vmas into one call down
 546			 */
 547			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 548			       && !is_vm_hugetlb_page(next)) {
 549				vma = next;
 550				next = vma->vm_next;
 551				unlink_anon_vmas(vma);
 552				unlink_file_vma(vma);
 553			}
 554			free_pgd_range(tlb, addr, vma->vm_end,
 555				floor, next? next->vm_start: ceiling);
 556		}
 557		vma = next;
 558	}
 559}
 560
 561int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
 562		pmd_t *pmd, unsigned long address)
 563{
 564	spinlock_t *ptl;
 565	pgtable_t new = pte_alloc_one(mm, address);
 566	int wait_split_huge_page;
 567	if (!new)
 568		return -ENOMEM;
 569
 570	/*
 571	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 572	 * visible before the pte is made visible to other CPUs by being
 573	 * put into page tables.
 574	 *
 575	 * The other side of the story is the pointer chasing in the page
 576	 * table walking code (when walking the page table without locking;
 577	 * ie. most of the time). Fortunately, these data accesses consist
 578	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 579	 * being the notable exception) will already guarantee loads are
 580	 * seen in-order. See the alpha page table accessors for the
 581	 * smp_read_barrier_depends() barriers in page table walking code.
 582	 */
 583	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 584
 585	ptl = pmd_lock(mm, pmd);
 586	wait_split_huge_page = 0;
 587	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 588		atomic_long_inc(&mm->nr_ptes);
 589		pmd_populate(mm, pmd, new);
 590		new = NULL;
 591	} else if (unlikely(pmd_trans_splitting(*pmd)))
 592		wait_split_huge_page = 1;
 593	spin_unlock(ptl);
 594	if (new)
 595		pte_free(mm, new);
 596	if (wait_split_huge_page)
 597		wait_split_huge_page(vma->anon_vma, pmd);
 598	return 0;
 599}
 600
 601int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 602{
 603	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 604	if (!new)
 605		return -ENOMEM;
 606
 607	smp_wmb(); /* See comment in __pte_alloc */
 608
 609	spin_lock(&init_mm.page_table_lock);
 610	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 611		pmd_populate_kernel(&init_mm, pmd, new);
 612		new = NULL;
 613	} else
 614		VM_BUG_ON(pmd_trans_splitting(*pmd));
 615	spin_unlock(&init_mm.page_table_lock);
 616	if (new)
 617		pte_free_kernel(&init_mm, new);
 618	return 0;
 619}
 620
 621static inline void init_rss_vec(int *rss)
 622{
 623	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 624}
 625
 626static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 627{
 628	int i;
 629
 630	if (current->mm == mm)
 631		sync_mm_rss(mm);
 632	for (i = 0; i < NR_MM_COUNTERS; i++)
 633		if (rss[i])
 634			add_mm_counter(mm, i, rss[i]);
 635}
 636
 637/*
 638 * This function is called to print an error when a bad pte
 639 * is found. For example, we might have a PFN-mapped pte in
 640 * a region that doesn't allow it.
 641 *
 642 * The calling function must still handle the error.
 643 */
 644static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 645			  pte_t pte, struct page *page)
 646{
 647	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 648	pud_t *pud = pud_offset(pgd, addr);
 
 649	pmd_t *pmd = pmd_offset(pud, addr);
 650	struct address_space *mapping;
 651	pgoff_t index;
 652	static unsigned long resume;
 653	static unsigned long nr_shown;
 654	static unsigned long nr_unshown;
 655
 656	/*
 657	 * Allow a burst of 60 reports, then keep quiet for that minute;
 658	 * or allow a steady drip of one report per second.
 659	 */
 660	if (nr_shown == 60) {
 661		if (time_before(jiffies, resume)) {
 662			nr_unshown++;
 663			return;
 664		}
 665		if (nr_unshown) {
 666			printk(KERN_ALERT
 667				"BUG: Bad page map: %lu messages suppressed\n",
 668				nr_unshown);
 669			nr_unshown = 0;
 670		}
 671		nr_shown = 0;
 672	}
 673	if (nr_shown++ == 0)
 674		resume = jiffies + 60 * HZ;
 675
 676	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 677	index = linear_page_index(vma, addr);
 678
 679	printk(KERN_ALERT
 680		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 681		current->comm,
 682		(long long)pte_val(pte), (long long)pmd_val(*pmd));
 683	if (page)
 684		dump_page(page, "bad pte");
 685	printk(KERN_ALERT
 686		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 687		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 688	/*
 689	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 690	 */
 691	if (vma->vm_ops)
 692		printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
 693		       vma->vm_ops->fault);
 694	if (vma->vm_file)
 695		printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
 696		       vma->vm_file->f_op->mmap);
 697	dump_stack();
 698	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 699}
 700
 701static inline bool is_cow_mapping(vm_flags_t flags)
 702{
 703	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
 704}
 705
 706/*
 707 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 708 *
 709 * "Special" mappings do not wish to be associated with a "struct page" (either
 710 * it doesn't exist, or it exists but they don't want to touch it). In this
 711 * case, NULL is returned here. "Normal" mappings do have a struct page.
 712 *
 713 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 714 * pte bit, in which case this function is trivial. Secondly, an architecture
 715 * may not have a spare pte bit, which requires a more complicated scheme,
 716 * described below.
 717 *
 718 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 719 * special mapping (even if there are underlying and valid "struct pages").
 720 * COWed pages of a VM_PFNMAP are always normal.
 721 *
 722 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 723 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 724 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 725 * mapping will always honor the rule
 726 *
 727 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 728 *
 729 * And for normal mappings this is false.
 730 *
 731 * This restricts such mappings to be a linear translation from virtual address
 732 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 733 * as the vma is not a COW mapping; in that case, we know that all ptes are
 734 * special (because none can have been COWed).
 735 *
 736 *
 737 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 738 *
 739 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 740 * page" backing, however the difference is that _all_ pages with a struct
 741 * page (that is, those where pfn_valid is true) are refcounted and considered
 742 * normal pages by the VM. The disadvantage is that pages are refcounted
 743 * (which can be slower and simply not an option for some PFNMAP users). The
 744 * advantage is that we don't have to follow the strict linearity rule of
 745 * PFNMAP mappings in order to support COWable mappings.
 746 *
 747 */
 748#ifdef __HAVE_ARCH_PTE_SPECIAL
 749# define HAVE_PTE_SPECIAL 1
 750#else
 751# define HAVE_PTE_SPECIAL 0
 752#endif
 753struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 754				pte_t pte)
 755{
 756	unsigned long pfn = pte_pfn(pte);
 757
 758	if (HAVE_PTE_SPECIAL) {
 759		if (likely(!pte_special(pte)))
 760			goto check_pfn;
 
 
 761		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 762			return NULL;
 763		if (!is_zero_pfn(pfn))
 764			print_bad_pte(vma, addr, pte, NULL);
 
 
 
 
 765		return NULL;
 766	}
 767
 768	/* !HAVE_PTE_SPECIAL case follows: */
 769
 770	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 771		if (vma->vm_flags & VM_MIXEDMAP) {
 772			if (!pfn_valid(pfn))
 773				return NULL;
 774			goto out;
 775		} else {
 776			unsigned long off;
 777			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 778			if (pfn == vma->vm_pgoff + off)
 779				return NULL;
 780			if (!is_cow_mapping(vma->vm_flags))
 781				return NULL;
 782		}
 783	}
 784
 785	if (is_zero_pfn(pfn))
 786		return NULL;
 
 787check_pfn:
 788	if (unlikely(pfn > highest_memmap_pfn)) {
 789		print_bad_pte(vma, addr, pte, NULL);
 790		return NULL;
 791	}
 792
 793	/*
 794	 * NOTE! We still have PageReserved() pages in the page tables.
 795	 * eg. VDSO mappings can cause them to exist.
 796	 */
 797out:
 798	return pfn_to_page(pfn);
 799}
 800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 801/*
 802 * copy one vm_area from one task to the other. Assumes the page tables
 803 * already present in the new task to be cleared in the whole range
 804 * covered by this vma.
 805 */
 806
 807static inline unsigned long
 808copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 809		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 810		unsigned long addr, int *rss)
 811{
 812	unsigned long vm_flags = vma->vm_flags;
 813	pte_t pte = *src_pte;
 814	struct page *page;
 815
 816	/* pte contains position in swap or file, so copy. */
 817	if (unlikely(!pte_present(pte))) {
 818		if (!pte_file(pte)) {
 819			swp_entry_t entry = pte_to_swp_entry(pte);
 820
 
 821			if (swap_duplicate(entry) < 0)
 822				return entry.val;
 823
 824			/* make sure dst_mm is on swapoff's mmlist. */
 825			if (unlikely(list_empty(&dst_mm->mmlist))) {
 826				spin_lock(&mmlist_lock);
 827				if (list_empty(&dst_mm->mmlist))
 828					list_add(&dst_mm->mmlist,
 829						 &src_mm->mmlist);
 830				spin_unlock(&mmlist_lock);
 831			}
 832			if (likely(!non_swap_entry(entry)))
 833				rss[MM_SWAPENTS]++;
 834			else if (is_migration_entry(entry)) {
 835				page = migration_entry_to_page(entry);
 836
 837				if (PageAnon(page))
 838					rss[MM_ANONPAGES]++;
 839				else
 840					rss[MM_FILEPAGES]++;
 841
 842				if (is_write_migration_entry(entry) &&
 843				    is_cow_mapping(vm_flags)) {
 844					/*
 845					 * COW mappings require pages in both
 846					 * parent and child to be set to read.
 847					 */
 848					make_migration_entry_read(&entry);
 849					pte = swp_entry_to_pte(entry);
 850					if (pte_swp_soft_dirty(*src_pte))
 851						pte = pte_swp_mksoft_dirty(pte);
 852					set_pte_at(src_mm, addr, src_pte, pte);
 853				}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854			}
 855		}
 856		goto out_set_pte;
 857	}
 858
 859	/*
 860	 * If it's a COW mapping, write protect it both
 861	 * in the parent and the child
 862	 */
 863	if (is_cow_mapping(vm_flags)) {
 864		ptep_set_wrprotect(src_mm, addr, src_pte);
 865		pte = pte_wrprotect(pte);
 866	}
 867
 868	/*
 869	 * If it's a shared mapping, mark it clean in
 870	 * the child
 871	 */
 872	if (vm_flags & VM_SHARED)
 873		pte = pte_mkclean(pte);
 874	pte = pte_mkold(pte);
 875
 876	page = vm_normal_page(vma, addr, pte);
 877	if (page) {
 878		get_page(page);
 879		page_dup_rmap(page);
 880		if (PageAnon(page))
 881			rss[MM_ANONPAGES]++;
 882		else
 883			rss[MM_FILEPAGES]++;
 884	}
 885
 886out_set_pte:
 887	set_pte_at(dst_mm, addr, dst_pte, pte);
 888	return 0;
 889}
 890
 891int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 892		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 893		   unsigned long addr, unsigned long end)
 894{
 895	pte_t *orig_src_pte, *orig_dst_pte;
 896	pte_t *src_pte, *dst_pte;
 897	spinlock_t *src_ptl, *dst_ptl;
 898	int progress = 0;
 899	int rss[NR_MM_COUNTERS];
 900	swp_entry_t entry = (swp_entry_t){0};
 901
 902again:
 903	init_rss_vec(rss);
 904
 905	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 906	if (!dst_pte)
 907		return -ENOMEM;
 908	src_pte = pte_offset_map(src_pmd, addr);
 909	src_ptl = pte_lockptr(src_mm, src_pmd);
 910	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 911	orig_src_pte = src_pte;
 912	orig_dst_pte = dst_pte;
 913	arch_enter_lazy_mmu_mode();
 914
 915	do {
 916		/*
 917		 * We are holding two locks at this point - either of them
 918		 * could generate latencies in another task on another CPU.
 919		 */
 920		if (progress >= 32) {
 921			progress = 0;
 922			if (need_resched() ||
 923			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 924				break;
 925		}
 926		if (pte_none(*src_pte)) {
 927			progress++;
 928			continue;
 929		}
 930		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 931							vma, addr, rss);
 932		if (entry.val)
 933			break;
 934		progress += 8;
 935	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 936
 937	arch_leave_lazy_mmu_mode();
 938	spin_unlock(src_ptl);
 939	pte_unmap(orig_src_pte);
 940	add_mm_rss_vec(dst_mm, rss);
 941	pte_unmap_unlock(orig_dst_pte, dst_ptl);
 942	cond_resched();
 943
 944	if (entry.val) {
 945		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 946			return -ENOMEM;
 947		progress = 0;
 948	}
 949	if (addr != end)
 950		goto again;
 951	return 0;
 952}
 953
 954static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 955		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 956		unsigned long addr, unsigned long end)
 957{
 958	pmd_t *src_pmd, *dst_pmd;
 959	unsigned long next;
 960
 961	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 962	if (!dst_pmd)
 963		return -ENOMEM;
 964	src_pmd = pmd_offset(src_pud, addr);
 965	do {
 966		next = pmd_addr_end(addr, end);
 967		if (pmd_trans_huge(*src_pmd)) {
 
 968			int err;
 969			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
 970			err = copy_huge_pmd(dst_mm, src_mm,
 971					    dst_pmd, src_pmd, addr, vma);
 972			if (err == -ENOMEM)
 973				return -ENOMEM;
 974			if (!err)
 975				continue;
 976			/* fall through */
 977		}
 978		if (pmd_none_or_clear_bad(src_pmd))
 979			continue;
 980		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
 981						vma, addr, next))
 982			return -ENOMEM;
 983	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
 984	return 0;
 985}
 986
 987static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 988		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
 989		unsigned long addr, unsigned long end)
 990{
 991	pud_t *src_pud, *dst_pud;
 992	unsigned long next;
 993
 994	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
 995	if (!dst_pud)
 996		return -ENOMEM;
 997	src_pud = pud_offset(src_pgd, addr);
 998	do {
 999		next = pud_addr_end(addr, end);
 
 
 
 
 
 
 
 
 
 
 
 
1000		if (pud_none_or_clear_bad(src_pud))
1001			continue;
1002		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1003						vma, addr, next))
1004			return -ENOMEM;
1005	} while (dst_pud++, src_pud++, addr = next, addr != end);
1006	return 0;
1007}
1008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1010		struct vm_area_struct *vma)
1011{
1012	pgd_t *src_pgd, *dst_pgd;
1013	unsigned long next;
1014	unsigned long addr = vma->vm_start;
1015	unsigned long end = vma->vm_end;
1016	unsigned long mmun_start;	/* For mmu_notifiers */
1017	unsigned long mmun_end;		/* For mmu_notifiers */
1018	bool is_cow;
1019	int ret;
1020
1021	/*
1022	 * Don't copy ptes where a page fault will fill them correctly.
1023	 * Fork becomes much lighter when there are big shared or private
1024	 * readonly mappings. The tradeoff is that copy_page_range is more
1025	 * efficient than faulting.
1026	 */
1027	if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1028			       VM_PFNMAP | VM_MIXEDMAP))) {
1029		if (!vma->anon_vma)
1030			return 0;
1031	}
1032
1033	if (is_vm_hugetlb_page(vma))
1034		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1035
1036	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1037		/*
1038		 * We do not free on error cases below as remove_vma
1039		 * gets called on error from higher level routine
1040		 */
1041		ret = track_pfn_copy(vma);
1042		if (ret)
1043			return ret;
1044	}
1045
1046	/*
1047	 * We need to invalidate the secondary MMU mappings only when
1048	 * there could be a permission downgrade on the ptes of the
1049	 * parent mm. And a permission downgrade will only happen if
1050	 * is_cow_mapping() returns true.
1051	 */
1052	is_cow = is_cow_mapping(vma->vm_flags);
1053	mmun_start = addr;
1054	mmun_end   = end;
1055	if (is_cow)
1056		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1057						    mmun_end);
 
1058
1059	ret = 0;
1060	dst_pgd = pgd_offset(dst_mm, addr);
1061	src_pgd = pgd_offset(src_mm, addr);
1062	do {
1063		next = pgd_addr_end(addr, end);
1064		if (pgd_none_or_clear_bad(src_pgd))
1065			continue;
1066		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1067					    vma, addr, next))) {
1068			ret = -ENOMEM;
1069			break;
1070		}
1071	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1072
1073	if (is_cow)
1074		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1075	return ret;
1076}
1077
1078static unsigned long zap_pte_range(struct mmu_gather *tlb,
1079				struct vm_area_struct *vma, pmd_t *pmd,
1080				unsigned long addr, unsigned long end,
1081				struct zap_details *details)
1082{
1083	struct mm_struct *mm = tlb->mm;
1084	int force_flush = 0;
1085	int rss[NR_MM_COUNTERS];
1086	spinlock_t *ptl;
1087	pte_t *start_pte;
1088	pte_t *pte;
 
1089
 
1090again:
1091	init_rss_vec(rss);
1092	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1093	pte = start_pte;
 
1094	arch_enter_lazy_mmu_mode();
1095	do {
1096		pte_t ptent = *pte;
1097		if (pte_none(ptent)) {
1098			continue;
1099		}
 
 
1100
1101		if (pte_present(ptent)) {
1102			struct page *page;
1103
1104			page = vm_normal_page(vma, addr, ptent);
1105			if (unlikely(details) && page) {
1106				/*
1107				 * unmap_shared_mapping_pages() wants to
1108				 * invalidate cache without truncating:
1109				 * unmap shared but keep private pages.
1110				 */
1111				if (details->check_mapping &&
1112				    details->check_mapping != page->mapping)
1113					continue;
1114				/*
1115				 * Each page->index must be checked when
1116				 * invalidating or truncating nonlinear.
1117				 */
1118				if (details->nonlinear_vma &&
1119				    (page->index < details->first_index ||
1120				     page->index > details->last_index))
1121					continue;
1122			}
1123			ptent = ptep_get_and_clear_full(mm, addr, pte,
1124							tlb->fullmm);
1125			tlb_remove_tlb_entry(tlb, pte, addr);
1126			if (unlikely(!page))
1127				continue;
1128			if (unlikely(details) && details->nonlinear_vma
1129			    && linear_page_index(details->nonlinear_vma,
1130						addr) != page->index) {
1131				pte_t ptfile = pgoff_to_pte(page->index);
1132				if (pte_soft_dirty(ptent))
1133					pte_file_mksoft_dirty(ptfile);
1134				set_pte_at(mm, addr, pte, ptfile);
1135			}
1136			if (PageAnon(page))
1137				rss[MM_ANONPAGES]--;
1138			else {
1139				if (pte_dirty(ptent)) {
1140					force_flush = 1;
1141					set_page_dirty(page);
1142				}
1143				if (pte_young(ptent) &&
1144				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1145					mark_page_accessed(page);
1146				rss[MM_FILEPAGES]--;
1147			}
1148			page_remove_rmap(page);
 
1149			if (unlikely(page_mapcount(page) < 0))
1150				print_bad_pte(vma, addr, ptent, page);
1151			if (unlikely(!__tlb_remove_page(tlb, page))) {
1152				force_flush = 1;
 
1153				break;
1154			}
1155			continue;
1156		}
1157		/*
1158		 * If details->check_mapping, we leave swap entries;
1159		 * if details->nonlinear_vma, we leave file entries.
1160		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1161		if (unlikely(details))
1162			continue;
1163		if (pte_file(ptent)) {
1164			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1165				print_bad_pte(vma, addr, ptent, NULL);
1166		} else {
1167			swp_entry_t entry = pte_to_swp_entry(ptent);
1168
1169			if (!non_swap_entry(entry))
1170				rss[MM_SWAPENTS]--;
1171			else if (is_migration_entry(entry)) {
1172				struct page *page;
1173
1174				page = migration_entry_to_page(entry);
1175
1176				if (PageAnon(page))
1177					rss[MM_ANONPAGES]--;
1178				else
1179					rss[MM_FILEPAGES]--;
1180			}
1181			if (unlikely(!free_swap_and_cache(entry)))
1182				print_bad_pte(vma, addr, ptent, NULL);
1183		}
 
 
1184		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1185	} while (pte++, addr += PAGE_SIZE, addr != end);
1186
1187	add_mm_rss_vec(mm, rss);
1188	arch_leave_lazy_mmu_mode();
1189
1190	/* Do the actual TLB flush before dropping ptl */
1191	if (force_flush) {
1192		unsigned long old_end;
1193
1194		/*
1195		 * Flush the TLB just for the previous segment,
1196		 * then update the range to be the remaining
1197		 * TLB range.
1198		 */
1199		old_end = tlb->end;
1200		tlb->end = addr;
1201		tlb_flush_mmu_tlbonly(tlb);
1202		tlb->start = addr;
1203		tlb->end = old_end;
1204	}
1205	pte_unmap_unlock(start_pte, ptl);
1206
1207	/*
1208	 * If we forced a TLB flush (either due to running out of
1209	 * batch buffers or because we needed to flush dirty TLB
1210	 * entries before releasing the ptl), free the batched
1211	 * memory too. Restart if we didn't do everything.
1212	 */
1213	if (force_flush) {
1214		force_flush = 0;
1215		tlb_flush_mmu_free(tlb);
 
1216
1217		if (addr != end)
1218			goto again;
 
1219	}
1220
1221	return addr;
1222}
1223
1224static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1225				struct vm_area_struct *vma, pud_t *pud,
1226				unsigned long addr, unsigned long end,
1227				struct zap_details *details)
1228{
1229	pmd_t *pmd;
1230	unsigned long next;
1231
1232	pmd = pmd_offset(pud, addr);
1233	do {
1234		next = pmd_addr_end(addr, end);
1235		if (pmd_trans_huge(*pmd)) {
1236			if (next - addr != HPAGE_PMD_SIZE) {
1237#ifdef CONFIG_DEBUG_VM
1238				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1239					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1240						__func__, addr, end,
1241						vma->vm_start,
1242						vma->vm_end);
1243					BUG();
1244				}
1245#endif
1246				split_huge_page_pmd(vma, addr, pmd);
1247			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1248				goto next;
1249			/* fall through */
1250		}
1251		/*
1252		 * Here there can be other concurrent MADV_DONTNEED or
1253		 * trans huge page faults running, and if the pmd is
1254		 * none or trans huge it can change under us. This is
1255		 * because MADV_DONTNEED holds the mmap_sem in read
1256		 * mode.
1257		 */
1258		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1259			goto next;
1260		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1261next:
1262		cond_resched();
1263	} while (pmd++, addr = next, addr != end);
1264
1265	return addr;
1266}
1267
1268static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1269				struct vm_area_struct *vma, pgd_t *pgd,
1270				unsigned long addr, unsigned long end,
1271				struct zap_details *details)
1272{
1273	pud_t *pud;
1274	unsigned long next;
1275
1276	pud = pud_offset(pgd, addr);
1277	do {
1278		next = pud_addr_end(addr, end);
 
 
 
 
 
 
 
 
1279		if (pud_none_or_clear_bad(pud))
1280			continue;
1281		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
 
 
1282	} while (pud++, addr = next, addr != end);
1283
1284	return addr;
1285}
1286
1287static void unmap_page_range(struct mmu_gather *tlb,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1288			     struct vm_area_struct *vma,
1289			     unsigned long addr, unsigned long end,
1290			     struct zap_details *details)
1291{
1292	pgd_t *pgd;
1293	unsigned long next;
1294
1295	if (details && !details->check_mapping && !details->nonlinear_vma)
1296		details = NULL;
1297
1298	BUG_ON(addr >= end);
1299	mem_cgroup_uncharge_start();
1300	tlb_start_vma(tlb, vma);
1301	pgd = pgd_offset(vma->vm_mm, addr);
1302	do {
1303		next = pgd_addr_end(addr, end);
1304		if (pgd_none_or_clear_bad(pgd))
1305			continue;
1306		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1307	} while (pgd++, addr = next, addr != end);
1308	tlb_end_vma(tlb, vma);
1309	mem_cgroup_uncharge_end();
1310}
1311
1312
1313static void unmap_single_vma(struct mmu_gather *tlb,
1314		struct vm_area_struct *vma, unsigned long start_addr,
1315		unsigned long end_addr,
1316		struct zap_details *details)
1317{
1318	unsigned long start = max(vma->vm_start, start_addr);
1319	unsigned long end;
1320
1321	if (start >= vma->vm_end)
1322		return;
1323	end = min(vma->vm_end, end_addr);
1324	if (end <= vma->vm_start)
1325		return;
1326
1327	if (vma->vm_file)
1328		uprobe_munmap(vma, start, end);
1329
1330	if (unlikely(vma->vm_flags & VM_PFNMAP))
1331		untrack_pfn(vma, 0, 0);
1332
1333	if (start != end) {
1334		if (unlikely(is_vm_hugetlb_page(vma))) {
1335			/*
1336			 * It is undesirable to test vma->vm_file as it
1337			 * should be non-null for valid hugetlb area.
1338			 * However, vm_file will be NULL in the error
1339			 * cleanup path of mmap_region. When
1340			 * hugetlbfs ->mmap method fails,
1341			 * mmap_region() nullifies vma->vm_file
1342			 * before calling this function to clean up.
1343			 * Since no pte has actually been setup, it is
1344			 * safe to do nothing in this case.
1345			 */
1346			if (vma->vm_file) {
1347				mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1348				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1349				mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1350			}
1351		} else
1352			unmap_page_range(tlb, vma, start, end, details);
1353	}
1354}
1355
1356/**
1357 * unmap_vmas - unmap a range of memory covered by a list of vma's
1358 * @tlb: address of the caller's struct mmu_gather
1359 * @vma: the starting vma
1360 * @start_addr: virtual address at which to start unmapping
1361 * @end_addr: virtual address at which to end unmapping
1362 *
1363 * Unmap all pages in the vma list.
1364 *
1365 * Only addresses between `start' and `end' will be unmapped.
1366 *
1367 * The VMA list must be sorted in ascending virtual address order.
1368 *
1369 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1370 * range after unmap_vmas() returns.  So the only responsibility here is to
1371 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1372 * drops the lock and schedules.
1373 */
1374void unmap_vmas(struct mmu_gather *tlb,
1375		struct vm_area_struct *vma, unsigned long start_addr,
1376		unsigned long end_addr)
1377{
1378	struct mm_struct *mm = vma->vm_mm;
1379
1380	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
 
 
1381	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1382		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1383	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1384}
1385
1386/**
1387 * zap_page_range - remove user pages in a given range
1388 * @vma: vm_area_struct holding the applicable pages
1389 * @start: starting address of pages to zap
1390 * @size: number of bytes to zap
1391 * @details: details of nonlinear truncation or shared cache invalidation
1392 *
1393 * Caller must protect the VMA list
1394 */
1395void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1396		unsigned long size, struct zap_details *details)
1397{
1398	struct mm_struct *mm = vma->vm_mm;
1399	struct mmu_gather tlb;
1400	unsigned long end = start + size;
1401
1402	lru_add_drain();
1403	tlb_gather_mmu(&tlb, mm, start, end);
1404	update_hiwater_rss(mm);
1405	mmu_notifier_invalidate_range_start(mm, start, end);
1406	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1407		unmap_single_vma(&tlb, vma, start, end, details);
1408	mmu_notifier_invalidate_range_end(mm, start, end);
1409	tlb_finish_mmu(&tlb, start, end);
 
 
1410}
1411
1412/**
1413 * zap_page_range_single - remove user pages in a given range
1414 * @vma: vm_area_struct holding the applicable pages
1415 * @address: starting address of pages to zap
1416 * @size: number of bytes to zap
1417 * @details: details of nonlinear truncation or shared cache invalidation
1418 *
1419 * The range must fit into one VMA.
1420 */
1421static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1422		unsigned long size, struct zap_details *details)
1423{
1424	struct mm_struct *mm = vma->vm_mm;
1425	struct mmu_gather tlb;
1426	unsigned long end = address + size;
1427
1428	lru_add_drain();
1429	tlb_gather_mmu(&tlb, mm, address, end);
1430	update_hiwater_rss(mm);
1431	mmu_notifier_invalidate_range_start(mm, address, end);
1432	unmap_single_vma(&tlb, vma, address, end, details);
1433	mmu_notifier_invalidate_range_end(mm, address, end);
1434	tlb_finish_mmu(&tlb, address, end);
 
 
1435}
1436
1437/**
1438 * zap_vma_ptes - remove ptes mapping the vma
1439 * @vma: vm_area_struct holding ptes to be zapped
1440 * @address: starting address of pages to zap
1441 * @size: number of bytes to zap
1442 *
1443 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1444 *
1445 * The entire address range must be fully contained within the vma.
1446 *
1447 * Returns 0 if successful.
1448 */
1449int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1450		unsigned long size)
1451{
1452	if (address < vma->vm_start || address + size > vma->vm_end ||
1453	    		!(vma->vm_flags & VM_PFNMAP))
1454		return -1;
 
1455	zap_page_range_single(vma, address, size, NULL);
1456	return 0;
1457}
1458EXPORT_SYMBOL_GPL(zap_vma_ptes);
1459
1460/**
1461 * follow_page_mask - look up a page descriptor from a user-virtual address
1462 * @vma: vm_area_struct mapping @address
1463 * @address: virtual address to look up
1464 * @flags: flags modifying lookup behaviour
1465 * @page_mask: on output, *page_mask is set according to the size of the page
1466 *
1467 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1468 *
1469 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1470 * an error pointer if there is a mapping to something not represented
1471 * by a page descriptor (see also vm_normal_page()).
1472 */
1473struct page *follow_page_mask(struct vm_area_struct *vma,
1474			      unsigned long address, unsigned int flags,
1475			      unsigned int *page_mask)
1476{
1477	pgd_t *pgd;
 
1478	pud_t *pud;
1479	pmd_t *pmd;
1480	pte_t *ptep, pte;
1481	spinlock_t *ptl;
1482	struct page *page;
1483	struct mm_struct *mm = vma->vm_mm;
1484
1485	*page_mask = 0;
1486
1487	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1488	if (!IS_ERR(page)) {
1489		BUG_ON(flags & FOLL_GET);
1490		goto out;
1491	}
1492
1493	page = NULL;
1494	pgd = pgd_offset(mm, address);
1495	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1496		goto no_page_table;
1497
1498	pud = pud_offset(pgd, address);
1499	if (pud_none(*pud))
1500		goto no_page_table;
1501	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1502		if (flags & FOLL_GET)
1503			goto out;
1504		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1505		goto out;
1506	}
1507	if (unlikely(pud_bad(*pud)))
1508		goto no_page_table;
1509
1510	pmd = pmd_offset(pud, address);
1511	if (pmd_none(*pmd))
1512		goto no_page_table;
1513	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1514		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1515		if (flags & FOLL_GET) {
1516			/*
1517			 * Refcount on tail pages are not well-defined and
1518			 * shouldn't be taken. The caller should handle a NULL
1519			 * return when trying to follow tail pages.
1520			 */
1521			if (PageHead(page))
1522				get_page(page);
1523			else {
1524				page = NULL;
1525				goto out;
1526			}
1527		}
1528		goto out;
1529	}
1530	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1531		goto no_page_table;
1532	if (pmd_trans_huge(*pmd)) {
1533		if (flags & FOLL_SPLIT) {
1534			split_huge_page_pmd(vma, address, pmd);
1535			goto split_fallthrough;
1536		}
1537		ptl = pmd_lock(mm, pmd);
1538		if (likely(pmd_trans_huge(*pmd))) {
1539			if (unlikely(pmd_trans_splitting(*pmd))) {
1540				spin_unlock(ptl);
1541				wait_split_huge_page(vma->anon_vma, pmd);
1542			} else {
1543				page = follow_trans_huge_pmd(vma, address,
1544							     pmd, flags);
1545				spin_unlock(ptl);
1546				*page_mask = HPAGE_PMD_NR - 1;
1547				goto out;
1548			}
1549		} else
1550			spin_unlock(ptl);
1551		/* fall through */
1552	}
1553split_fallthrough:
1554	if (unlikely(pmd_bad(*pmd)))
1555		goto no_page_table;
1556
1557	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1558
1559	pte = *ptep;
1560	if (!pte_present(pte)) {
1561		swp_entry_t entry;
1562		/*
1563		 * KSM's break_ksm() relies upon recognizing a ksm page
1564		 * even while it is being migrated, so for that case we
1565		 * need migration_entry_wait().
1566		 */
1567		if (likely(!(flags & FOLL_MIGRATION)))
1568			goto no_page;
1569		if (pte_none(pte) || pte_file(pte))
1570			goto no_page;
1571		entry = pte_to_swp_entry(pte);
1572		if (!is_migration_entry(entry))
1573			goto no_page;
1574		pte_unmap_unlock(ptep, ptl);
1575		migration_entry_wait(mm, pmd, address);
1576		goto split_fallthrough;
1577	}
1578	if ((flags & FOLL_NUMA) && pte_numa(pte))
1579		goto no_page;
1580	if ((flags & FOLL_WRITE) && !pte_write(pte))
1581		goto unlock;
1582
1583	page = vm_normal_page(vma, address, pte);
1584	if (unlikely(!page)) {
1585		if ((flags & FOLL_DUMP) ||
1586		    !is_zero_pfn(pte_pfn(pte)))
1587			goto bad_page;
1588		page = pte_page(pte);
1589	}
1590
1591	if (flags & FOLL_GET)
1592		get_page_foll(page);
1593	if (flags & FOLL_TOUCH) {
1594		if ((flags & FOLL_WRITE) &&
1595		    !pte_dirty(pte) && !PageDirty(page))
1596			set_page_dirty(page);
1597		/*
1598		 * pte_mkyoung() would be more correct here, but atomic care
1599		 * is needed to avoid losing the dirty bit: it is easier to use
1600		 * mark_page_accessed().
1601		 */
1602		mark_page_accessed(page);
1603	}
1604	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1605		/*
1606		 * The preliminary mapping check is mainly to avoid the
1607		 * pointless overhead of lock_page on the ZERO_PAGE
1608		 * which might bounce very badly if there is contention.
1609		 *
1610		 * If the page is already locked, we don't need to
1611		 * handle it now - vmscan will handle it later if and
1612		 * when it attempts to reclaim the page.
1613		 */
1614		if (page->mapping && trylock_page(page)) {
1615			lru_add_drain();  /* push cached pages to LRU */
1616			/*
1617			 * Because we lock page here, and migration is
1618			 * blocked by the pte's page reference, and we
1619			 * know the page is still mapped, we don't even
1620			 * need to check for file-cache page truncation.
1621			 */
1622			mlock_vma_page(page);
1623			unlock_page(page);
1624		}
1625	}
1626unlock:
1627	pte_unmap_unlock(ptep, ptl);
1628out:
1629	return page;
1630
1631bad_page:
1632	pte_unmap_unlock(ptep, ptl);
1633	return ERR_PTR(-EFAULT);
1634
1635no_page:
1636	pte_unmap_unlock(ptep, ptl);
1637	if (!pte_none(pte))
1638		return page;
1639
1640no_page_table:
1641	/*
1642	 * When core dumping an enormous anonymous area that nobody
1643	 * has touched so far, we don't want to allocate unnecessary pages or
1644	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1645	 * then get_dump_page() will return NULL to leave a hole in the dump.
1646	 * But we can only make this optimization where a hole would surely
1647	 * be zero-filled if handle_mm_fault() actually did handle it.
1648	 */
1649	if ((flags & FOLL_DUMP) &&
1650	    (!vma->vm_ops || !vma->vm_ops->fault))
1651		return ERR_PTR(-EFAULT);
1652	return page;
1653}
1654
1655static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1656{
1657	return stack_guard_page_start(vma, addr) ||
1658	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1659}
1660
1661/**
1662 * __get_user_pages() - pin user pages in memory
1663 * @tsk:	task_struct of target task
1664 * @mm:		mm_struct of target mm
1665 * @start:	starting user address
1666 * @nr_pages:	number of pages from start to pin
1667 * @gup_flags:	flags modifying pin behaviour
1668 * @pages:	array that receives pointers to the pages pinned.
1669 *		Should be at least nr_pages long. Or NULL, if caller
1670 *		only intends to ensure the pages are faulted in.
1671 * @vmas:	array of pointers to vmas corresponding to each page.
1672 *		Or NULL if the caller does not require them.
1673 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1674 *
1675 * Returns number of pages pinned. This may be fewer than the number
1676 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1677 * were pinned, returns -errno. Each page returned must be released
1678 * with a put_page() call when it is finished with. vmas will only
1679 * remain valid while mmap_sem is held.
1680 *
1681 * Must be called with mmap_sem held for read or write.
1682 *
1683 * __get_user_pages walks a process's page tables and takes a reference to
1684 * each struct page that each user address corresponds to at a given
1685 * instant. That is, it takes the page that would be accessed if a user
1686 * thread accesses the given user virtual address at that instant.
1687 *
1688 * This does not guarantee that the page exists in the user mappings when
1689 * __get_user_pages returns, and there may even be a completely different
1690 * page there in some cases (eg. if mmapped pagecache has been invalidated
1691 * and subsequently re faulted). However it does guarantee that the page
1692 * won't be freed completely. And mostly callers simply care that the page
1693 * contains data that was valid *at some point in time*. Typically, an IO
1694 * or similar operation cannot guarantee anything stronger anyway because
1695 * locks can't be held over the syscall boundary.
1696 *
1697 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1698 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1699 * appropriate) must be called after the page is finished with, and
1700 * before put_page is called.
1701 *
1702 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1703 * or mmap_sem contention, and if waiting is needed to pin all pages,
1704 * *@nonblocking will be set to 0.
1705 *
1706 * In most cases, get_user_pages or get_user_pages_fast should be used
1707 * instead of __get_user_pages. __get_user_pages should be used only if
1708 * you need some special @gup_flags.
1709 */
1710long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1711		unsigned long start, unsigned long nr_pages,
1712		unsigned int gup_flags, struct page **pages,
1713		struct vm_area_struct **vmas, int *nonblocking)
1714{
1715	long i;
1716	unsigned long vm_flags;
1717	unsigned int page_mask;
1718
1719	if (!nr_pages)
1720		return 0;
1721
1722	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1723
1724	/*
1725	 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1726	 * would be called on PROT_NONE ranges. We must never invoke
1727	 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1728	 * page faults would unprotect the PROT_NONE ranges if
1729	 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1730	 * bitflag. So to avoid that, don't set FOLL_NUMA if
1731	 * FOLL_FORCE is set.
1732	 */
1733	if (!(gup_flags & FOLL_FORCE))
1734		gup_flags |= FOLL_NUMA;
1735
1736	i = 0;
1737
1738	do {
1739		struct vm_area_struct *vma;
1740
1741		vma = find_extend_vma(mm, start);
1742		if (!vma && in_gate_area(mm, start)) {
1743			unsigned long pg = start & PAGE_MASK;
1744			pgd_t *pgd;
1745			pud_t *pud;
1746			pmd_t *pmd;
1747			pte_t *pte;
1748
1749			/* user gate pages are read-only */
1750			if (gup_flags & FOLL_WRITE)
1751				goto efault;
1752			if (pg > TASK_SIZE)
1753				pgd = pgd_offset_k(pg);
1754			else
1755				pgd = pgd_offset_gate(mm, pg);
1756			BUG_ON(pgd_none(*pgd));
1757			pud = pud_offset(pgd, pg);
1758			BUG_ON(pud_none(*pud));
1759			pmd = pmd_offset(pud, pg);
1760			if (pmd_none(*pmd))
1761				goto efault;
1762			VM_BUG_ON(pmd_trans_huge(*pmd));
1763			pte = pte_offset_map(pmd, pg);
1764			if (pte_none(*pte)) {
1765				pte_unmap(pte);
1766				goto efault;
1767			}
1768			vma = get_gate_vma(mm);
1769			if (pages) {
1770				struct page *page;
1771
1772				page = vm_normal_page(vma, start, *pte);
1773				if (!page) {
1774					if (!(gup_flags & FOLL_DUMP) &&
1775					     is_zero_pfn(pte_pfn(*pte)))
1776						page = pte_page(*pte);
1777					else {
1778						pte_unmap(pte);
1779						goto efault;
1780					}
1781				}
1782				pages[i] = page;
1783				get_page(page);
1784			}
1785			pte_unmap(pte);
1786			page_mask = 0;
1787			goto next_page;
1788		}
1789
1790		if (!vma)
1791			goto efault;
1792		vm_flags = vma->vm_flags;
1793		if (vm_flags & (VM_IO | VM_PFNMAP))
1794			goto efault;
1795
1796		if (gup_flags & FOLL_WRITE) {
1797			if (!(vm_flags & VM_WRITE)) {
1798				if (!(gup_flags & FOLL_FORCE))
1799					goto efault;
1800				/*
1801				 * We used to let the write,force case do COW
1802				 * in a VM_MAYWRITE VM_SHARED !VM_WRITE vma, so
1803				 * ptrace could set a breakpoint in a read-only
1804				 * mapping of an executable, without corrupting
1805				 * the file (yet only when that file had been
1806				 * opened for writing!).  Anon pages in shared
1807				 * mappings are surprising: now just reject it.
1808				 */
1809				if (!is_cow_mapping(vm_flags)) {
1810					WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
1811					goto efault;
1812				}
1813			}
1814		} else {
1815			if (!(vm_flags & VM_READ)) {
1816				if (!(gup_flags & FOLL_FORCE))
1817					goto efault;
1818				/*
1819				 * Is there actually any vma we can reach here
1820				 * which does not have VM_MAYREAD set?
1821				 */
1822				if (!(vm_flags & VM_MAYREAD))
1823					goto efault;
1824			}
1825		}
1826
1827		if (is_vm_hugetlb_page(vma)) {
1828			i = follow_hugetlb_page(mm, vma, pages, vmas,
1829					&start, &nr_pages, i, gup_flags);
1830			continue;
1831		}
1832
1833		do {
1834			struct page *page;
1835			unsigned int foll_flags = gup_flags;
1836			unsigned int page_increm;
1837
1838			/*
1839			 * If we have a pending SIGKILL, don't keep faulting
1840			 * pages and potentially allocating memory.
1841			 */
1842			if (unlikely(fatal_signal_pending(current)))
1843				return i ? i : -ERESTARTSYS;
1844
1845			cond_resched();
1846			while (!(page = follow_page_mask(vma, start,
1847						foll_flags, &page_mask))) {
1848				int ret;
1849				unsigned int fault_flags = 0;
1850
1851				/* For mlock, just skip the stack guard page. */
1852				if (foll_flags & FOLL_MLOCK) {
1853					if (stack_guard_page(vma, start))
1854						goto next_page;
1855				}
1856				if (foll_flags & FOLL_WRITE)
1857					fault_flags |= FAULT_FLAG_WRITE;
1858				if (nonblocking)
1859					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1860				if (foll_flags & FOLL_NOWAIT)
1861					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1862
1863				ret = handle_mm_fault(mm, vma, start,
1864							fault_flags);
1865
1866				if (ret & VM_FAULT_ERROR) {
1867					if (ret & VM_FAULT_OOM)
1868						return i ? i : -ENOMEM;
1869					if (ret & (VM_FAULT_HWPOISON |
1870						   VM_FAULT_HWPOISON_LARGE)) {
1871						if (i)
1872							return i;
1873						else if (gup_flags & FOLL_HWPOISON)
1874							return -EHWPOISON;
1875						else
1876							return -EFAULT;
1877					}
1878					if (ret & VM_FAULT_SIGBUS)
1879						goto efault;
1880					BUG();
1881				}
1882
1883				if (tsk) {
1884					if (ret & VM_FAULT_MAJOR)
1885						tsk->maj_flt++;
1886					else
1887						tsk->min_flt++;
1888				}
1889
1890				if (ret & VM_FAULT_RETRY) {
1891					if (nonblocking)
1892						*nonblocking = 0;
1893					return i;
1894				}
1895
1896				/*
1897				 * The VM_FAULT_WRITE bit tells us that
1898				 * do_wp_page has broken COW when necessary,
1899				 * even if maybe_mkwrite decided not to set
1900				 * pte_write. We can thus safely do subsequent
1901				 * page lookups as if they were reads. But only
1902				 * do so when looping for pte_write is futile:
1903				 * in some cases userspace may also be wanting
1904				 * to write to the gotten user page, which a
1905				 * read fault here might prevent (a readonly
1906				 * page might get reCOWed by userspace write).
1907				 */
1908				if ((ret & VM_FAULT_WRITE) &&
1909				    !(vma->vm_flags & VM_WRITE))
1910					foll_flags &= ~FOLL_WRITE;
1911
1912				cond_resched();
1913			}
1914			if (IS_ERR(page))
1915				return i ? i : PTR_ERR(page);
1916			if (pages) {
1917				pages[i] = page;
1918
1919				flush_anon_page(vma, page, start);
1920				flush_dcache_page(page);
1921				page_mask = 0;
1922			}
1923next_page:
1924			if (vmas) {
1925				vmas[i] = vma;
1926				page_mask = 0;
1927			}
1928			page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1929			if (page_increm > nr_pages)
1930				page_increm = nr_pages;
1931			i += page_increm;
1932			start += page_increm * PAGE_SIZE;
1933			nr_pages -= page_increm;
1934		} while (nr_pages && start < vma->vm_end);
1935	} while (nr_pages);
1936	return i;
1937efault:
1938	return i ? : -EFAULT;
1939}
1940EXPORT_SYMBOL(__get_user_pages);
1941
1942/*
1943 * fixup_user_fault() - manually resolve a user page fault
1944 * @tsk:	the task_struct to use for page fault accounting, or
1945 *		NULL if faults are not to be recorded.
1946 * @mm:		mm_struct of target mm
1947 * @address:	user address
1948 * @fault_flags:flags to pass down to handle_mm_fault()
1949 *
1950 * This is meant to be called in the specific scenario where for locking reasons
1951 * we try to access user memory in atomic context (within a pagefault_disable()
1952 * section), this returns -EFAULT, and we want to resolve the user fault before
1953 * trying again.
1954 *
1955 * Typically this is meant to be used by the futex code.
1956 *
1957 * The main difference with get_user_pages() is that this function will
1958 * unconditionally call handle_mm_fault() which will in turn perform all the
1959 * necessary SW fixup of the dirty and young bits in the PTE, while
1960 * handle_mm_fault() only guarantees to update these in the struct page.
1961 *
1962 * This is important for some architectures where those bits also gate the
1963 * access permission to the page because they are maintained in software.  On
1964 * such architectures, gup() will not be enough to make a subsequent access
1965 * succeed.
1966 *
1967 * This should be called with the mm_sem held for read.
1968 */
1969int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1970		     unsigned long address, unsigned int fault_flags)
1971{
1972	struct vm_area_struct *vma;
1973	vm_flags_t vm_flags;
1974	int ret;
1975
1976	vma = find_extend_vma(mm, address);
1977	if (!vma || address < vma->vm_start)
1978		return -EFAULT;
1979
1980	vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1981	if (!(vm_flags & vma->vm_flags))
1982		return -EFAULT;
1983
1984	ret = handle_mm_fault(mm, vma, address, fault_flags);
1985	if (ret & VM_FAULT_ERROR) {
1986		if (ret & VM_FAULT_OOM)
1987			return -ENOMEM;
1988		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1989			return -EHWPOISON;
1990		if (ret & VM_FAULT_SIGBUS)
1991			return -EFAULT;
1992		BUG();
1993	}
1994	if (tsk) {
1995		if (ret & VM_FAULT_MAJOR)
1996			tsk->maj_flt++;
1997		else
1998			tsk->min_flt++;
1999	}
2000	return 0;
2001}
2002
2003/*
2004 * get_user_pages() - pin user pages in memory
2005 * @tsk:	the task_struct to use for page fault accounting, or
2006 *		NULL if faults are not to be recorded.
2007 * @mm:		mm_struct of target mm
2008 * @start:	starting user address
2009 * @nr_pages:	number of pages from start to pin
2010 * @write:	whether pages will be written to by the caller
2011 * @force:	whether to force access even when user mapping is currently
2012 *		protected (but never forces write access to shared mapping).
2013 * @pages:	array that receives pointers to the pages pinned.
2014 *		Should be at least nr_pages long. Or NULL, if caller
2015 *		only intends to ensure the pages are faulted in.
2016 * @vmas:	array of pointers to vmas corresponding to each page.
2017 *		Or NULL if the caller does not require them.
2018 *
2019 * Returns number of pages pinned. This may be fewer than the number
2020 * requested. If nr_pages is 0 or negative, returns 0. If no pages
2021 * were pinned, returns -errno. Each page returned must be released
2022 * with a put_page() call when it is finished with. vmas will only
2023 * remain valid while mmap_sem is held.
2024 *
2025 * Must be called with mmap_sem held for read or write.
2026 *
2027 * get_user_pages walks a process's page tables and takes a reference to
2028 * each struct page that each user address corresponds to at a given
2029 * instant. That is, it takes the page that would be accessed if a user
2030 * thread accesses the given user virtual address at that instant.
2031 *
2032 * This does not guarantee that the page exists in the user mappings when
2033 * get_user_pages returns, and there may even be a completely different
2034 * page there in some cases (eg. if mmapped pagecache has been invalidated
2035 * and subsequently re faulted). However it does guarantee that the page
2036 * won't be freed completely. And mostly callers simply care that the page
2037 * contains data that was valid *at some point in time*. Typically, an IO
2038 * or similar operation cannot guarantee anything stronger anyway because
2039 * locks can't be held over the syscall boundary.
2040 *
2041 * If write=0, the page must not be written to. If the page is written to,
2042 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2043 * after the page is finished with, and before put_page is called.
2044 *
2045 * get_user_pages is typically used for fewer-copy IO operations, to get a
2046 * handle on the memory by some means other than accesses via the user virtual
2047 * addresses. The pages may be submitted for DMA to devices or accessed via
2048 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2049 * use the correct cache flushing APIs.
2050 *
2051 * See also get_user_pages_fast, for performance critical applications.
2052 */
2053long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2054		unsigned long start, unsigned long nr_pages, int write,
2055		int force, struct page **pages, struct vm_area_struct **vmas)
2056{
2057	int flags = FOLL_TOUCH;
2058
2059	if (pages)
2060		flags |= FOLL_GET;
2061	if (write)
2062		flags |= FOLL_WRITE;
2063	if (force)
2064		flags |= FOLL_FORCE;
2065
2066	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2067				NULL);
2068}
2069EXPORT_SYMBOL(get_user_pages);
2070
2071/**
2072 * get_dump_page() - pin user page in memory while writing it to core dump
2073 * @addr: user address
2074 *
2075 * Returns struct page pointer of user page pinned for dump,
2076 * to be freed afterwards by page_cache_release() or put_page().
2077 *
2078 * Returns NULL on any kind of failure - a hole must then be inserted into
2079 * the corefile, to preserve alignment with its headers; and also returns
2080 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2081 * allowing a hole to be left in the corefile to save diskspace.
2082 *
2083 * Called without mmap_sem, but after all other threads have been killed.
2084 */
2085#ifdef CONFIG_ELF_CORE
2086struct page *get_dump_page(unsigned long addr)
2087{
2088	struct vm_area_struct *vma;
2089	struct page *page;
2090
2091	if (__get_user_pages(current, current->mm, addr, 1,
2092			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2093			     NULL) < 1)
2094		return NULL;
2095	flush_cache_page(vma, addr, page_to_pfn(page));
2096	return page;
2097}
2098#endif /* CONFIG_ELF_CORE */
2099
2100pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2101			spinlock_t **ptl)
2102{
2103	pgd_t * pgd = pgd_offset(mm, addr);
2104	pud_t * pud = pud_alloc(mm, pgd, addr);
2105	if (pud) {
2106		pmd_t * pmd = pmd_alloc(mm, pud, addr);
2107		if (pmd) {
2108			VM_BUG_ON(pmd_trans_huge(*pmd));
2109			return pte_alloc_map_lock(mm, pmd, addr, ptl);
2110		}
2111	}
2112	return NULL;
2113}
2114
2115/*
2116 * This is the old fallback for page remapping.
2117 *
2118 * For historical reasons, it only allows reserved pages. Only
2119 * old drivers should use this, and they needed to mark their
2120 * pages reserved for the old functions anyway.
2121 */
2122static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2123			struct page *page, pgprot_t prot)
2124{
2125	struct mm_struct *mm = vma->vm_mm;
2126	int retval;
2127	pte_t *pte;
2128	spinlock_t *ptl;
2129
2130	retval = -EINVAL;
2131	if (PageAnon(page))
2132		goto out;
2133	retval = -ENOMEM;
2134	flush_dcache_page(page);
2135	pte = get_locked_pte(mm, addr, &ptl);
2136	if (!pte)
2137		goto out;
2138	retval = -EBUSY;
2139	if (!pte_none(*pte))
2140		goto out_unlock;
2141
2142	/* Ok, finally just insert the thing.. */
2143	get_page(page);
2144	inc_mm_counter_fast(mm, MM_FILEPAGES);
2145	page_add_file_rmap(page);
2146	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2147
2148	retval = 0;
2149	pte_unmap_unlock(pte, ptl);
2150	return retval;
2151out_unlock:
2152	pte_unmap_unlock(pte, ptl);
2153out:
2154	return retval;
2155}
2156
2157/**
2158 * vm_insert_page - insert single page into user vma
2159 * @vma: user vma to map to
2160 * @addr: target user address of this page
2161 * @page: source kernel page
2162 *
2163 * This allows drivers to insert individual pages they've allocated
2164 * into a user vma.
2165 *
2166 * The page has to be a nice clean _individual_ kernel allocation.
2167 * If you allocate a compound page, you need to have marked it as
2168 * such (__GFP_COMP), or manually just split the page up yourself
2169 * (see split_page()).
2170 *
2171 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2172 * took an arbitrary page protection parameter. This doesn't allow
2173 * that. Your vma protection will have to be set up correctly, which
2174 * means that if you want a shared writable mapping, you'd better
2175 * ask for a shared writable mapping!
2176 *
2177 * The page does not need to be reserved.
2178 *
2179 * Usually this function is called from f_op->mmap() handler
2180 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2181 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2182 * function from other places, for example from page-fault handler.
 
 
2183 */
2184int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2185			struct page *page)
2186{
2187	if (addr < vma->vm_start || addr >= vma->vm_end)
2188		return -EFAULT;
2189	if (!page_count(page))
2190		return -EINVAL;
2191	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2192		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2193		BUG_ON(vma->vm_flags & VM_PFNMAP);
2194		vma->vm_flags |= VM_MIXEDMAP;
2195	}
2196	return insert_page(vma, addr, page, vma->vm_page_prot);
2197}
2198EXPORT_SYMBOL(vm_insert_page);
2199
2200static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2201			unsigned long pfn, pgprot_t prot)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2202{
2203	struct mm_struct *mm = vma->vm_mm;
2204	int retval;
2205	pte_t *pte, entry;
2206	spinlock_t *ptl;
2207
2208	retval = -ENOMEM;
2209	pte = get_locked_pte(mm, addr, &ptl);
2210	if (!pte)
2211		goto out;
2212	retval = -EBUSY;
2213	if (!pte_none(*pte))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2214		goto out_unlock;
 
2215
2216	/* Ok, finally just insert the thing.. */
2217	entry = pte_mkspecial(pfn_pte(pfn, prot));
 
 
 
 
 
 
 
 
 
2218	set_pte_at(mm, addr, pte, entry);
2219	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2220
2221	retval = 0;
2222out_unlock:
2223	pte_unmap_unlock(pte, ptl);
2224out:
2225	return retval;
2226}
2227
2228/**
2229 * vm_insert_pfn - insert single pfn into user vma
2230 * @vma: user vma to map to
2231 * @addr: target user address of this page
2232 * @pfn: source kernel pfn
 
2233 *
2234 * Similar to vm_insert_page, this allows drivers to insert individual pages
2235 * they've allocated into a user vma. Same comments apply.
2236 *
2237 * This function should only be called from a vm_ops->fault handler, and
2238 * in that case the handler should return NULL.
2239 *
2240 * vma cannot be a COW mapping.
 
 
 
2241 *
2242 * As this is called only for pages that do not currently exist, we
2243 * do not need to flush old virtual caches or the TLB.
2244 */
2245int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2246			unsigned long pfn)
2247{
2248	int ret;
2249	pgprot_t pgprot = vma->vm_page_prot;
2250	/*
2251	 * Technically, architectures with pte_special can avoid all these
2252	 * restrictions (same for remap_pfn_range).  However we would like
2253	 * consistency in testing and feature parity among all, so we should
2254	 * try to keep these invariants in place for everybody.
2255	 */
2256	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2257	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2258						(VM_PFNMAP|VM_MIXEDMAP));
2259	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2260	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2261
2262	if (addr < vma->vm_start || addr >= vma->vm_end)
2263		return -EFAULT;
2264	if (track_pfn_insert(vma, &pgprot, pfn))
2265		return -EINVAL;
 
2266
2267	ret = insert_pfn(vma, addr, pfn, pgprot);
2268
2269	return ret;
 
2270}
2271EXPORT_SYMBOL(vm_insert_pfn);
2272
2273int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2274			unsigned long pfn)
2275{
2276	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2277
2278	if (addr < vma->vm_start || addr >= vma->vm_end)
2279		return -EFAULT;
 
 
 
 
 
2280
2281	/*
2282	 * If we don't have pte special, then we have to use the pfn_valid()
2283	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2284	 * refcount the page if pfn_valid is true (hence insert_page rather
2285	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2286	 * without pte special, it would there be refcounted as a normal page.
2287	 */
2288	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
 
2289		struct page *page;
2290
2291		page = pfn_to_page(pfn);
2292		return insert_page(vma, addr, page, vma->vm_page_prot);
 
 
 
 
 
 
 
2293	}
2294	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2295}
2296EXPORT_SYMBOL(vm_insert_mixed);
2297
2298/*
2299 * maps a range of physical memory into the requested pages. the old
2300 * mappings are removed. any references to nonexistent pages results
2301 * in null mappings (currently treated as "copy-on-access")
2302 */
2303static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2304			unsigned long addr, unsigned long end,
2305			unsigned long pfn, pgprot_t prot)
2306{
2307	pte_t *pte;
2308	spinlock_t *ptl;
 
2309
2310	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2311	if (!pte)
2312		return -ENOMEM;
2313	arch_enter_lazy_mmu_mode();
2314	do {
2315		BUG_ON(!pte_none(*pte));
 
 
 
 
2316		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2317		pfn++;
2318	} while (pte++, addr += PAGE_SIZE, addr != end);
2319	arch_leave_lazy_mmu_mode();
2320	pte_unmap_unlock(pte - 1, ptl);
2321	return 0;
2322}
2323
2324static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2325			unsigned long addr, unsigned long end,
2326			unsigned long pfn, pgprot_t prot)
2327{
2328	pmd_t *pmd;
2329	unsigned long next;
 
2330
2331	pfn -= addr >> PAGE_SHIFT;
2332	pmd = pmd_alloc(mm, pud, addr);
2333	if (!pmd)
2334		return -ENOMEM;
2335	VM_BUG_ON(pmd_trans_huge(*pmd));
2336	do {
2337		next = pmd_addr_end(addr, end);
2338		if (remap_pte_range(mm, pmd, addr, next,
2339				pfn + (addr >> PAGE_SHIFT), prot))
2340			return -ENOMEM;
 
2341	} while (pmd++, addr = next, addr != end);
2342	return 0;
2343}
2344
2345static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2346			unsigned long addr, unsigned long end,
2347			unsigned long pfn, pgprot_t prot)
2348{
2349	pud_t *pud;
2350	unsigned long next;
 
2351
2352	pfn -= addr >> PAGE_SHIFT;
2353	pud = pud_alloc(mm, pgd, addr);
2354	if (!pud)
2355		return -ENOMEM;
2356	do {
2357		next = pud_addr_end(addr, end);
2358		if (remap_pmd_range(mm, pud, addr, next,
2359				pfn + (addr >> PAGE_SHIFT), prot))
2360			return -ENOMEM;
 
2361	} while (pud++, addr = next, addr != end);
2362	return 0;
2363}
2364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2365/**
2366 * remap_pfn_range - remap kernel memory to userspace
2367 * @vma: user vma to map to
2368 * @addr: target user address to start at
2369 * @pfn: physical address of kernel memory
2370 * @size: size of map area
2371 * @prot: page protection flags for this mapping
2372 *
2373 *  Note: this is only safe if the mm semaphore is held when called.
 
 
2374 */
2375int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2376		    unsigned long pfn, unsigned long size, pgprot_t prot)
2377{
2378	pgd_t *pgd;
2379	unsigned long next;
2380	unsigned long end = addr + PAGE_ALIGN(size);
2381	struct mm_struct *mm = vma->vm_mm;
 
2382	int err;
2383
2384	/*
2385	 * Physically remapped pages are special. Tell the
2386	 * rest of the world about it:
2387	 *   VM_IO tells people not to look at these pages
2388	 *	(accesses can have side effects).
2389	 *   VM_PFNMAP tells the core MM that the base pages are just
2390	 *	raw PFN mappings, and do not have a "struct page" associated
2391	 *	with them.
2392	 *   VM_DONTEXPAND
2393	 *      Disable vma merging and expanding with mremap().
2394	 *   VM_DONTDUMP
2395	 *      Omit vma from core dump, even when VM_IO turned off.
2396	 *
2397	 * There's a horrible special case to handle copy-on-write
2398	 * behaviour that some programs depend on. We mark the "original"
2399	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2400	 * See vm_normal_page() for details.
2401	 */
2402	if (is_cow_mapping(vma->vm_flags)) {
2403		if (addr != vma->vm_start || end != vma->vm_end)
2404			return -EINVAL;
2405		vma->vm_pgoff = pfn;
2406	}
2407
2408	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2409	if (err)
2410		return -EINVAL;
2411
2412	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2413
2414	BUG_ON(addr >= end);
2415	pfn -= addr >> PAGE_SHIFT;
2416	pgd = pgd_offset(mm, addr);
2417	flush_cache_range(vma, addr, end);
2418	do {
2419		next = pgd_addr_end(addr, end);
2420		err = remap_pud_range(mm, pgd, addr, next,
2421				pfn + (addr >> PAGE_SHIFT), prot);
2422		if (err)
2423			break;
2424	} while (pgd++, addr = next, addr != end);
2425
2426	if (err)
2427		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2428
2429	return err;
2430}
2431EXPORT_SYMBOL(remap_pfn_range);
2432
2433/**
2434 * vm_iomap_memory - remap memory to userspace
2435 * @vma: user vma to map to
2436 * @start: start of area
2437 * @len: size of area
2438 *
2439 * This is a simplified io_remap_pfn_range() for common driver use. The
2440 * driver just needs to give us the physical memory range to be mapped,
2441 * we'll figure out the rest from the vma information.
2442 *
2443 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2444 * whatever write-combining details or similar.
 
 
2445 */
2446int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2447{
2448	unsigned long vm_len, pfn, pages;
2449
2450	/* Check that the physical memory area passed in looks valid */
2451	if (start + len < start)
2452		return -EINVAL;
2453	/*
2454	 * You *really* shouldn't map things that aren't page-aligned,
2455	 * but we've historically allowed it because IO memory might
2456	 * just have smaller alignment.
2457	 */
2458	len += start & ~PAGE_MASK;
2459	pfn = start >> PAGE_SHIFT;
2460	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2461	if (pfn + pages < pfn)
2462		return -EINVAL;
2463
2464	/* We start the mapping 'vm_pgoff' pages into the area */
2465	if (vma->vm_pgoff > pages)
2466		return -EINVAL;
2467	pfn += vma->vm_pgoff;
2468	pages -= vma->vm_pgoff;
2469
2470	/* Can we fit all of the mapping? */
2471	vm_len = vma->vm_end - vma->vm_start;
2472	if (vm_len >> PAGE_SHIFT > pages)
2473		return -EINVAL;
2474
2475	/* Ok, let it rip */
2476	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2477}
2478EXPORT_SYMBOL(vm_iomap_memory);
2479
2480static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2481				     unsigned long addr, unsigned long end,
2482				     pte_fn_t fn, void *data)
2483{
2484	pte_t *pte;
2485	int err;
2486	pgtable_t token;
2487	spinlock_t *uninitialized_var(ptl);
2488
2489	pte = (mm == &init_mm) ?
2490		pte_alloc_kernel(pmd, addr) :
2491		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2492	if (!pte)
2493		return -ENOMEM;
2494
2495	BUG_ON(pmd_huge(*pmd));
2496
2497	arch_enter_lazy_mmu_mode();
2498
2499	token = pmd_pgtable(*pmd);
2500
2501	do {
2502		err = fn(pte++, token, addr, data);
2503		if (err)
2504			break;
2505	} while (addr += PAGE_SIZE, addr != end);
2506
2507	arch_leave_lazy_mmu_mode();
2508
2509	if (mm != &init_mm)
2510		pte_unmap_unlock(pte-1, ptl);
2511	return err;
2512}
2513
2514static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2515				     unsigned long addr, unsigned long end,
2516				     pte_fn_t fn, void *data)
2517{
2518	pmd_t *pmd;
2519	unsigned long next;
2520	int err;
2521
2522	BUG_ON(pud_huge(*pud));
2523
2524	pmd = pmd_alloc(mm, pud, addr);
2525	if (!pmd)
2526		return -ENOMEM;
2527	do {
2528		next = pmd_addr_end(addr, end);
2529		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2530		if (err)
2531			break;
2532	} while (pmd++, addr = next, addr != end);
2533	return err;
2534}
2535
2536static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2537				     unsigned long addr, unsigned long end,
2538				     pte_fn_t fn, void *data)
2539{
2540	pud_t *pud;
2541	unsigned long next;
2542	int err;
2543
2544	pud = pud_alloc(mm, pgd, addr);
2545	if (!pud)
2546		return -ENOMEM;
2547	do {
2548		next = pud_addr_end(addr, end);
2549		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2550		if (err)
2551			break;
2552	} while (pud++, addr = next, addr != end);
2553	return err;
2554}
2555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2556/*
2557 * Scan a region of virtual memory, filling in page tables as necessary
2558 * and calling a provided function on each leaf page table.
2559 */
2560int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2561			unsigned long size, pte_fn_t fn, void *data)
2562{
2563	pgd_t *pgd;
2564	unsigned long next;
2565	unsigned long end = addr + size;
2566	int err;
2567
2568	BUG_ON(addr >= end);
 
 
2569	pgd = pgd_offset(mm, addr);
2570	do {
2571		next = pgd_addr_end(addr, end);
2572		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2573		if (err)
2574			break;
2575	} while (pgd++, addr = next, addr != end);
2576
2577	return err;
2578}
2579EXPORT_SYMBOL_GPL(apply_to_page_range);
2580
2581/*
2582 * handle_pte_fault chooses page fault handler according to an entry
2583 * which was read non-atomically.  Before making any commitment, on
2584 * those architectures or configurations (e.g. i386 with PAE) which
2585 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2586 * must check under lock before unmapping the pte and proceeding
2587 * (but do_wp_page is only called after already making such a check;
2588 * and do_anonymous_page can safely check later on).
2589 */
2590static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2591				pte_t *page_table, pte_t orig_pte)
2592{
2593	int same = 1;
2594#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2595	if (sizeof(pte_t) > sizeof(unsigned long)) {
2596		spinlock_t *ptl = pte_lockptr(mm, pmd);
2597		spin_lock(ptl);
2598		same = pte_same(*page_table, orig_pte);
2599		spin_unlock(ptl);
2600	}
2601#endif
2602	pte_unmap(page_table);
2603	return same;
2604}
2605
2606static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2607{
2608	debug_dma_assert_idle(src);
2609
2610	/*
2611	 * If the source page was a PFN mapping, we don't have
2612	 * a "struct page" for it. We do a best-effort copy by
2613	 * just copying from the original user address. If that
2614	 * fails, we just zero-fill it. Live with it.
2615	 */
2616	if (unlikely(!src)) {
2617		void *kaddr = kmap_atomic(dst);
2618		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2619
2620		/*
2621		 * This really shouldn't fail, because the page is there
2622		 * in the page tables. But it might just be unreadable,
2623		 * in which case we just give up and fill the result with
2624		 * zeroes.
2625		 */
2626		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2627			clear_page(kaddr);
2628		kunmap_atomic(kaddr);
2629		flush_dcache_page(dst);
2630	} else
2631		copy_user_highpage(dst, src, va, vma);
2632}
2633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2634/*
2635 * Notify the address space that the page is about to become writable so that
2636 * it can prohibit this or wait for the page to get into an appropriate state.
2637 *
2638 * We do this without the lock held, so that it can sleep if it needs to.
2639 */
2640static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2641	       unsigned long address)
2642{
2643	struct vm_fault vmf;
2644	int ret;
 
 
 
2645
2646	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2647	vmf.pgoff = page->index;
2648	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2649	vmf.page = page;
2650
2651	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
 
 
2652	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2653		return ret;
2654	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2655		lock_page(page);
2656		if (!page->mapping) {
2657			unlock_page(page);
2658			return 0; /* retry */
2659		}
2660		ret |= VM_FAULT_LOCKED;
2661	} else
2662		VM_BUG_ON_PAGE(!PageLocked(page), page);
2663	return ret;
2664}
2665
2666/*
2667 * This routine handles present pages, when users try to write
2668 * to a shared page. It is done by copying the page to a new address
2669 * and decrementing the shared-page counter for the old page.
2670 *
2671 * Note that this routine assumes that the protection checks have been
2672 * done by the caller (the low-level page fault routine in most cases).
2673 * Thus we can safely just mark it writable once we've done any necessary
2674 * COW.
2675 *
2676 * We also mark the page dirty at this point even though the page will
2677 * change only once the write actually happens. This avoids a few races,
2678 * and potentially makes it more efficient.
2679 *
2680 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2681 * but allow concurrent faults), with pte both mapped and locked.
2682 * We return with mmap_sem still held, but pte unmapped and unlocked.
2683 */
2684static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2685		unsigned long address, pte_t *page_table, pmd_t *pmd,
2686		spinlock_t *ptl, pte_t orig_pte)
2687	__releases(ptl)
2688{
2689	struct page *old_page, *new_page = NULL;
2690	pte_t entry;
2691	int ret = 0;
2692	int page_mkwrite = 0;
2693	struct page *dirty_page = NULL;
2694	unsigned long mmun_start = 0;	/* For mmu_notifiers */
2695	unsigned long mmun_end = 0;	/* For mmu_notifiers */
2696
2697	old_page = vm_normal_page(vma, address, orig_pte);
2698	if (!old_page) {
2699		/*
2700		 * VM_MIXEDMAP !pfn_valid() case
2701		 *
2702		 * We should not cow pages in a shared writeable mapping.
2703		 * Just mark the pages writable as we can't do any dirty
2704		 * accounting on raw pfn maps.
2705		 */
2706		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2707				     (VM_WRITE|VM_SHARED))
2708			goto reuse;
2709		goto gotten;
2710	}
2711
 
 
2712	/*
2713	 * Take out anonymous pages first, anonymous shared vmas are
2714	 * not dirty accountable.
 
 
2715	 */
2716	if (PageAnon(old_page) && !PageKsm(old_page)) {
2717		if (!trylock_page(old_page)) {
2718			page_cache_get(old_page);
2719			pte_unmap_unlock(page_table, ptl);
2720			lock_page(old_page);
2721			page_table = pte_offset_map_lock(mm, pmd, address,
2722							 &ptl);
2723			if (!pte_same(*page_table, orig_pte)) {
2724				unlock_page(old_page);
2725				goto unlock;
2726			}
2727			page_cache_release(old_page);
2728		}
2729		if (reuse_swap_page(old_page)) {
2730			/*
2731			 * The page is all ours.  Move it to our anon_vma so
2732			 * the rmap code will not search our parent or siblings.
2733			 * Protected against the rmap code by the page lock.
2734			 */
2735			page_move_anon_rmap(old_page, vma, address);
2736			unlock_page(old_page);
2737			goto reuse;
2738		}
2739		unlock_page(old_page);
2740	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2741					(VM_WRITE|VM_SHARED))) {
2742		/*
2743		 * Only catch write-faults on shared writable pages,
2744		 * read-only shared pages can get COWed by
2745		 * get_user_pages(.write=1, .force=1).
2746		 */
2747		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2748			int tmp;
2749			page_cache_get(old_page);
2750			pte_unmap_unlock(page_table, ptl);
2751			tmp = do_page_mkwrite(vma, old_page, address);
2752			if (unlikely(!tmp || (tmp &
2753					(VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2754				page_cache_release(old_page);
2755				return tmp;
2756			}
2757			/*
2758			 * Since we dropped the lock we need to revalidate
2759			 * the PTE as someone else may have changed it.  If
2760			 * they did, we just return, as we can count on the
2761			 * MMU to tell us if they didn't also make it writable.
2762			 */
2763			page_table = pte_offset_map_lock(mm, pmd, address,
2764							 &ptl);
2765			if (!pte_same(*page_table, orig_pte)) {
2766				unlock_page(old_page);
2767				goto unlock;
2768			}
2769
2770			page_mkwrite = 1;
2771		}
2772		dirty_page = old_page;
2773		get_page(dirty_page);
2774
2775reuse:
2776		/*
2777		 * Clear the pages cpupid information as the existing
2778		 * information potentially belongs to a now completely
2779		 * unrelated process.
2780		 */
2781		if (old_page)
2782			page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2783
2784		flush_cache_page(vma, address, pte_pfn(orig_pte));
2785		entry = pte_mkyoung(orig_pte);
2786		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2787		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2788			update_mmu_cache(vma, address, page_table);
2789		pte_unmap_unlock(page_table, ptl);
2790		ret |= VM_FAULT_WRITE;
2791
2792		if (!dirty_page)
2793			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2794
2795		/*
2796		 * Yes, Virginia, this is actually required to prevent a race
2797		 * with clear_page_dirty_for_io() from clearing the page dirty
2798		 * bit after it clear all dirty ptes, but before a racing
2799		 * do_wp_page installs a dirty pte.
2800		 *
2801		 * do_shared_fault is protected similarly.
2802		 */
2803		if (!page_mkwrite) {
2804			wait_on_page_locked(dirty_page);
2805			set_page_dirty_balance(dirty_page);
2806			/* file_update_time outside page_lock */
2807			if (vma->vm_file)
2808				file_update_time(vma->vm_file);
2809		}
2810		put_page(dirty_page);
2811		if (page_mkwrite) {
2812			struct address_space *mapping = dirty_page->mapping;
2813
2814			set_page_dirty(dirty_page);
2815			unlock_page(dirty_page);
2816			page_cache_release(dirty_page);
2817			if (mapping)	{
2818				/*
2819				 * Some device drivers do not set page.mapping
2820				 * but still dirty their pages
2821				 */
2822				balance_dirty_pages_ratelimited(mapping);
2823			}
2824		}
2825
2826		return ret;
2827	}
2828
2829	/*
2830	 * Ok, we need to copy. Oh, well..
2831	 */
2832	page_cache_get(old_page);
2833gotten:
2834	pte_unmap_unlock(page_table, ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2835
2836	if (unlikely(anon_vma_prepare(vma)))
2837		goto oom;
2838
2839	if (is_zero_pfn(pte_pfn(orig_pte))) {
2840		new_page = alloc_zeroed_user_highpage_movable(vma, address);
 
2841		if (!new_page)
2842			goto oom;
2843	} else {
2844		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
 
2845		if (!new_page)
2846			goto oom;
2847		cow_user_page(new_page, old_page, address, vma);
2848	}
2849	__SetPageUptodate(new_page);
2850
2851	if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))
2852		goto oom_free_new;
2853
2854	mmun_start  = address & PAGE_MASK;
2855	mmun_end    = mmun_start + PAGE_SIZE;
2856	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 
 
 
2857
2858	/*
2859	 * Re-check the pte - we dropped the lock
2860	 */
2861	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2862	if (likely(pte_same(*page_table, orig_pte))) {
2863		if (old_page) {
2864			if (!PageAnon(old_page)) {
2865				dec_mm_counter_fast(mm, MM_FILEPAGES);
 
2866				inc_mm_counter_fast(mm, MM_ANONPAGES);
2867			}
2868		} else
2869			inc_mm_counter_fast(mm, MM_ANONPAGES);
2870		flush_cache_page(vma, address, pte_pfn(orig_pte));
 
2871		entry = mk_pte(new_page, vma->vm_page_prot);
2872		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2873		/*
2874		 * Clear the pte entry and flush it first, before updating the
2875		 * pte with the new entry. This will avoid a race condition
2876		 * seen in the presence of one thread doing SMC and another
2877		 * thread doing COW.
2878		 */
2879		ptep_clear_flush(vma, address, page_table);
2880		page_add_new_anon_rmap(new_page, vma, address);
 
 
2881		/*
2882		 * We call the notify macro here because, when using secondary
2883		 * mmu page tables (such as kvm shadow page tables), we want the
2884		 * new page to be mapped directly into the secondary page table.
2885		 */
2886		set_pte_at_notify(mm, address, page_table, entry);
2887		update_mmu_cache(vma, address, page_table);
2888		if (old_page) {
2889			/*
2890			 * Only after switching the pte to the new page may
2891			 * we remove the mapcount here. Otherwise another
2892			 * process may come and find the rmap count decremented
2893			 * before the pte is switched to the new page, and
2894			 * "reuse" the old page writing into it while our pte
2895			 * here still points into it and can be read by other
2896			 * threads.
2897			 *
2898			 * The critical issue is to order this
2899			 * page_remove_rmap with the ptp_clear_flush above.
2900			 * Those stores are ordered by (if nothing else,)
2901			 * the barrier present in the atomic_add_negative
2902			 * in page_remove_rmap.
2903			 *
2904			 * Then the TLB flush in ptep_clear_flush ensures that
2905			 * no process can access the old page before the
2906			 * decremented mapcount is visible. And the old page
2907			 * cannot be reused until after the decremented
2908			 * mapcount is visible. So transitively, TLBs to
2909			 * old page will be flushed before it can be reused.
2910			 */
2911			page_remove_rmap(old_page);
2912		}
2913
2914		/* Free the old page.. */
2915		new_page = old_page;
2916		ret |= VM_FAULT_WRITE;
2917	} else
2918		mem_cgroup_uncharge_page(new_page);
 
2919
2920	if (new_page)
2921		page_cache_release(new_page);
2922unlock:
2923	pte_unmap_unlock(page_table, ptl);
2924	if (mmun_end > mmun_start)
2925		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 
 
 
2926	if (old_page) {
2927		/*
2928		 * Don't let another task, with possibly unlocked vma,
2929		 * keep the mlocked page.
2930		 */
2931		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2932			lock_page(old_page);	/* LRU manipulation */
2933			munlock_vma_page(old_page);
 
2934			unlock_page(old_page);
2935		}
2936		page_cache_release(old_page);
2937	}
2938	return ret;
2939oom_free_new:
2940	page_cache_release(new_page);
2941oom:
2942	if (old_page)
2943		page_cache_release(old_page);
2944	return VM_FAULT_OOM;
2945}
2946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2947static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2948		unsigned long start_addr, unsigned long end_addr,
2949		struct zap_details *details)
2950{
2951	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2952}
2953
2954static inline void unmap_mapping_range_tree(struct rb_root *root,
2955					    struct zap_details *details)
2956{
2957	struct vm_area_struct *vma;
2958	pgoff_t vba, vea, zba, zea;
2959
2960	vma_interval_tree_foreach(vma, root,
2961			details->first_index, details->last_index) {
2962
2963		vba = vma->vm_pgoff;
2964		vea = vba + vma_pages(vma) - 1;
2965		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2966		zba = details->first_index;
2967		if (zba < vba)
2968			zba = vba;
2969		zea = details->last_index;
2970		if (zea > vea)
2971			zea = vea;
2972
2973		unmap_mapping_range_vma(vma,
2974			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2975			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2976				details);
2977	}
2978}
2979
2980static inline void unmap_mapping_range_list(struct list_head *head,
2981					    struct zap_details *details)
2982{
2983	struct vm_area_struct *vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2984
2985	/*
2986	 * In nonlinear VMAs there is no correspondence between virtual address
2987	 * offset and file offset.  So we must perform an exhaustive search
2988	 * across *all* the pages in each nonlinear VMA, not just the pages
2989	 * whose virtual address lies outside the file truncation point.
2990	 */
2991	list_for_each_entry(vma, head, shared.nonlinear) {
2992		details->nonlinear_vma = vma;
2993		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2994	}
2995}
2996
2997/**
2998 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
 
 
 
2999 * @mapping: the address space containing mmaps to be unmapped.
3000 * @holebegin: byte in first page to unmap, relative to the start of
3001 * the underlying file.  This will be rounded down to a PAGE_SIZE
3002 * boundary.  Note that this is different from truncate_pagecache(), which
3003 * must keep the partial page.  In contrast, we must get rid of
3004 * partial pages.
3005 * @holelen: size of prospective hole in bytes.  This will be rounded
3006 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3007 * end of the file.
3008 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3009 * but 0 when invalidating pagecache, don't throw away private data.
3010 */
3011void unmap_mapping_range(struct address_space *mapping,
3012		loff_t const holebegin, loff_t const holelen, int even_cows)
3013{
3014	struct zap_details details;
3015	pgoff_t hba = holebegin >> PAGE_SHIFT;
3016	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3017
3018	/* Check for overflow. */
3019	if (sizeof(holelen) > sizeof(hlen)) {
3020		long long holeend =
3021			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3022		if (holeend & ~(long long)ULONG_MAX)
3023			hlen = ULONG_MAX - hba + 1;
3024	}
3025
3026	details.check_mapping = even_cows? NULL: mapping;
3027	details.nonlinear_vma = NULL;
3028	details.first_index = hba;
3029	details.last_index = hba + hlen - 1;
3030	if (details.last_index < details.first_index)
3031		details.last_index = ULONG_MAX;
3032
3033
3034	mutex_lock(&mapping->i_mmap_mutex);
3035	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
3036		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3037	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
3038		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3039	mutex_unlock(&mapping->i_mmap_mutex);
3040}
3041EXPORT_SYMBOL(unmap_mapping_range);
3042
3043/*
3044 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3045 * but allow concurrent faults), and pte mapped but not yet locked.
3046 * We return with mmap_sem still held, but pte unmapped and unlocked.
 
 
 
3047 */
3048static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3049		unsigned long address, pte_t *page_table, pmd_t *pmd,
3050		unsigned int flags, pte_t orig_pte)
3051{
3052	spinlock_t *ptl;
3053	struct page *page, *swapcache;
 
3054	swp_entry_t entry;
3055	pte_t pte;
3056	int locked;
3057	struct mem_cgroup *ptr;
3058	int exclusive = 0;
3059	int ret = 0;
3060
3061	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3062		goto out;
3063
3064	entry = pte_to_swp_entry(orig_pte);
3065	if (unlikely(non_swap_entry(entry))) {
3066		if (is_migration_entry(entry)) {
3067			migration_entry_wait(mm, pmd, address);
 
 
 
 
3068		} else if (is_hwpoison_entry(entry)) {
3069			ret = VM_FAULT_HWPOISON;
3070		} else {
3071			print_bad_pte(vma, address, orig_pte, NULL);
3072			ret = VM_FAULT_SIGBUS;
3073		}
3074		goto out;
3075	}
 
 
3076	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3077	page = lookup_swap_cache(entry);
 
 
3078	if (!page) {
3079		page = swapin_readahead(entry,
3080					GFP_HIGHUSER_MOVABLE, vma, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3081		if (!page) {
3082			/*
3083			 * Back out if somebody else faulted in this pte
3084			 * while we released the pte lock.
3085			 */
3086			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3087			if (likely(pte_same(*page_table, orig_pte)))
 
3088				ret = VM_FAULT_OOM;
3089			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3090			goto unlock;
3091		}
3092
3093		/* Had to read the page from swap area: Major fault */
3094		ret = VM_FAULT_MAJOR;
3095		count_vm_event(PGMAJFAULT);
3096		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3097	} else if (PageHWPoison(page)) {
3098		/*
3099		 * hwpoisoned dirty swapcache pages are kept for killing
3100		 * owner processes (which may be unknown at hwpoison time)
3101		 */
3102		ret = VM_FAULT_HWPOISON;
3103		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3104		swapcache = page;
3105		goto out_release;
3106	}
3107
3108	swapcache = page;
3109	locked = lock_page_or_retry(page, mm, flags);
3110
3111	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3112	if (!locked) {
3113		ret |= VM_FAULT_RETRY;
3114		goto out_release;
3115	}
3116
3117	/*
3118	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3119	 * release the swapcache from under us.  The page pin, and pte_same
3120	 * test below, are not enough to exclude that.  Even if it is still
3121	 * swapcache, we need to check that the page's swap has not changed.
3122	 */
3123	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
 
3124		goto out_page;
3125
3126	page = ksm_might_need_to_copy(page, vma, address);
3127	if (unlikely(!page)) {
3128		ret = VM_FAULT_OOM;
3129		page = swapcache;
3130		goto out_page;
3131	}
3132
3133	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
 
3134		ret = VM_FAULT_OOM;
3135		goto out_page;
3136	}
3137
3138	/*
3139	 * Back out if somebody else already faulted in this pte.
3140	 */
3141	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3142	if (unlikely(!pte_same(*page_table, orig_pte)))
 
3143		goto out_nomap;
3144
3145	if (unlikely(!PageUptodate(page))) {
3146		ret = VM_FAULT_SIGBUS;
3147		goto out_nomap;
3148	}
3149
3150	/*
3151	 * The page isn't present yet, go ahead with the fault.
3152	 *
3153	 * Be careful about the sequence of operations here.
3154	 * To get its accounting right, reuse_swap_page() must be called
3155	 * while the page is counted on swap but not yet in mapcount i.e.
3156	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3157	 * must be called after the swap_free(), or it will never succeed.
3158	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3159	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3160	 * in page->private. In this case, a record in swap_cgroup  is silently
3161	 * discarded at swap_free().
3162	 */
3163
3164	inc_mm_counter_fast(mm, MM_ANONPAGES);
3165	dec_mm_counter_fast(mm, MM_SWAPENTS);
3166	pte = mk_pte(page, vma->vm_page_prot);
3167	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3168		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3169		flags &= ~FAULT_FLAG_WRITE;
3170		ret |= VM_FAULT_WRITE;
3171		exclusive = 1;
3172	}
3173	flush_icache_page(vma, page);
3174	if (pte_swp_soft_dirty(orig_pte))
3175		pte = pte_mksoft_dirty(pte);
3176	set_pte_at(mm, address, page_table, pte);
3177	if (page == swapcache)
3178		do_page_add_anon_rmap(page, vma, address, exclusive);
3179	else /* ksm created a completely new copy */
3180		page_add_new_anon_rmap(page, vma, address);
3181	/* It's better to call commit-charge after rmap is established */
3182	mem_cgroup_commit_charge_swapin(page, ptr);
 
 
 
 
 
 
 
3183
3184	swap_free(entry);
3185	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
 
3186		try_to_free_swap(page);
3187	unlock_page(page);
3188	if (page != swapcache) {
3189		/*
3190		 * Hold the lock to avoid the swap entry to be reused
3191		 * until we take the PT lock for the pte_same() check
3192		 * (to avoid false positives from pte_same). For
3193		 * further safety release the lock after the swap_free
3194		 * so that the swap count won't change under a
3195		 * parallel locked swapcache.
3196		 */
3197		unlock_page(swapcache);
3198		page_cache_release(swapcache);
3199	}
3200
3201	if (flags & FAULT_FLAG_WRITE) {
3202		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3203		if (ret & VM_FAULT_ERROR)
3204			ret &= VM_FAULT_ERROR;
3205		goto out;
3206	}
3207
3208	/* No need to invalidate - it was non-present before */
3209	update_mmu_cache(vma, address, page_table);
3210unlock:
3211	pte_unmap_unlock(page_table, ptl);
3212out:
3213	return ret;
3214out_nomap:
3215	mem_cgroup_cancel_charge_swapin(ptr);
3216	pte_unmap_unlock(page_table, ptl);
3217out_page:
3218	unlock_page(page);
3219out_release:
3220	page_cache_release(page);
3221	if (page != swapcache) {
3222		unlock_page(swapcache);
3223		page_cache_release(swapcache);
3224	}
3225	return ret;
3226}
3227
3228/*
3229 * This is like a special single-page "expand_{down|up}wards()",
3230 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3231 * doesn't hit another vma.
3232 */
3233static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3234{
3235	address &= PAGE_MASK;
3236	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3237		struct vm_area_struct *prev = vma->vm_prev;
3238
3239		/*
3240		 * Is there a mapping abutting this one below?
3241		 *
3242		 * That's only ok if it's the same stack mapping
3243		 * that has gotten split..
3244		 */
3245		if (prev && prev->vm_end == address)
3246			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3247
3248		expand_downwards(vma, address - PAGE_SIZE);
3249	}
3250	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3251		struct vm_area_struct *next = vma->vm_next;
3252
3253		/* As VM_GROWSDOWN but s/below/above/ */
3254		if (next && next->vm_start == address + PAGE_SIZE)
3255			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3256
3257		expand_upwards(vma, address + PAGE_SIZE);
3258	}
3259	return 0;
3260}
3261
3262/*
3263 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3264 * but allow concurrent faults), and pte mapped but not yet locked.
3265 * We return with mmap_sem still held, but pte unmapped and unlocked.
3266 */
3267static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3268		unsigned long address, pte_t *page_table, pmd_t *pmd,
3269		unsigned int flags)
3270{
 
 
3271	struct page *page;
3272	spinlock_t *ptl;
3273	pte_t entry;
3274
3275	pte_unmap(page_table);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3276
3277	/* Check if we need to add a guard page to the stack */
3278	if (check_stack_guard_page(vma, address) < 0)
3279		return VM_FAULT_SIGBUS;
3280
3281	/* Use the zero-page for reads */
3282	if (!(flags & FAULT_FLAG_WRITE)) {
3283		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
 
3284						vma->vm_page_prot));
3285		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3286		if (!pte_none(*page_table))
 
 
 
 
3287			goto unlock;
 
 
 
 
 
3288		goto setpte;
3289	}
3290
3291	/* Allocate our own private page. */
3292	if (unlikely(anon_vma_prepare(vma)))
3293		goto oom;
3294	page = alloc_zeroed_user_highpage_movable(vma, address);
3295	if (!page)
3296		goto oom;
 
 
 
 
 
3297	/*
3298	 * The memory barrier inside __SetPageUptodate makes sure that
3299	 * preceeding stores to the page contents become visible before
3300	 * the set_pte_at() write.
3301	 */
3302	__SetPageUptodate(page);
3303
3304	if (mem_cgroup_charge_anon(page, mm, GFP_KERNEL))
3305		goto oom_free_page;
3306
3307	entry = mk_pte(page, vma->vm_page_prot);
3308	if (vma->vm_flags & VM_WRITE)
3309		entry = pte_mkwrite(pte_mkdirty(entry));
3310
3311	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3312	if (!pte_none(*page_table))
 
 
 
 
 
3313		goto release;
3314
3315	inc_mm_counter_fast(mm, MM_ANONPAGES);
3316	page_add_new_anon_rmap(page, vma, address);
 
 
 
 
 
 
 
 
 
 
3317setpte:
3318	set_pte_at(mm, address, page_table, entry);
3319
3320	/* No need to invalidate - it was non-present before */
3321	update_mmu_cache(vma, address, page_table);
3322unlock:
3323	pte_unmap_unlock(page_table, ptl);
3324	return 0;
3325release:
3326	mem_cgroup_uncharge_page(page);
3327	page_cache_release(page);
3328	goto unlock;
3329oom_free_page:
3330	page_cache_release(page);
3331oom:
3332	return VM_FAULT_OOM;
3333}
3334
3335static int __do_fault(struct vm_area_struct *vma, unsigned long address,
3336		pgoff_t pgoff, unsigned int flags, struct page **page)
 
 
 
 
3337{
3338	struct vm_fault vmf;
3339	int ret;
3340
3341	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3342	vmf.pgoff = pgoff;
3343	vmf.flags = flags;
3344	vmf.page = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3345
3346	ret = vma->vm_ops->fault(vma, &vmf);
3347	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
 
3348		return ret;
3349
3350	if (unlikely(PageHWPoison(vmf.page))) {
3351		if (ret & VM_FAULT_LOCKED)
3352			unlock_page(vmf.page);
3353		page_cache_release(vmf.page);
 
3354		return VM_FAULT_HWPOISON;
3355	}
3356
3357	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3358		lock_page(vmf.page);
3359	else
3360		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
3361
3362	*page = vmf.page;
3363	return ret;
3364}
3365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3366/**
3367 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
 
3368 *
3369 * @vma: virtual memory area
3370 * @address: user virtual address
3371 * @page: page to map
3372 * @pte: pointer to target page table entry
3373 * @write: true, if new entry is writable
3374 * @anon: true, if it's anonymous page
3375 *
3376 * Caller must hold page table lock relevant for @pte.
 
3377 *
3378 * Target users are page handler itself and implementations of
3379 * vm_ops->map_pages.
 
 
3380 */
3381void do_set_pte(struct vm_area_struct *vma, unsigned long address,
3382		struct page *page, pte_t *pte, bool write, bool anon)
3383{
 
 
3384	pte_t entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3385
3386	flush_icache_page(vma, page);
3387	entry = mk_pte(page, vma->vm_page_prot);
3388	if (write)
3389		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3390	else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
3391		pte_mksoft_dirty(entry);
3392	if (anon) {
3393		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3394		page_add_new_anon_rmap(page, vma, address);
 
 
3395	} else {
3396		inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
3397		page_add_file_rmap(page);
3398	}
3399	set_pte_at(vma->vm_mm, address, pte, entry);
3400
3401	/* no need to invalidate: a not-present page won't be cached */
3402	update_mmu_cache(vma, address, pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3403}
3404
3405#define FAULT_AROUND_ORDER 4
 
3406
3407#ifdef CONFIG_DEBUG_FS
3408static unsigned int fault_around_order = FAULT_AROUND_ORDER;
3409
3410static int fault_around_order_get(void *data, u64 *val)
3411{
3412	*val = fault_around_order;
3413	return 0;
3414}
3415
3416static int fault_around_order_set(void *data, u64 val)
 
 
 
 
3417{
3418	BUILD_BUG_ON((1UL << FAULT_AROUND_ORDER) > PTRS_PER_PTE);
3419	if (1UL << val > PTRS_PER_PTE)
3420		return -EINVAL;
3421	fault_around_order = val;
 
 
 
3422	return 0;
3423}
3424DEFINE_SIMPLE_ATTRIBUTE(fault_around_order_fops,
3425		fault_around_order_get, fault_around_order_set, "%llu\n");
3426
3427static int __init fault_around_debugfs(void)
3428{
3429	void *ret;
3430
3431	ret = debugfs_create_file("fault_around_order",	0644, NULL, NULL,
3432			&fault_around_order_fops);
3433	if (!ret)
3434		pr_warn("Failed to create fault_around_order in debugfs");
3435	return 0;
3436}
3437late_initcall(fault_around_debugfs);
3438
3439static inline unsigned long fault_around_pages(void)
3440{
3441	return 1UL << fault_around_order;
3442}
3443
3444static inline unsigned long fault_around_mask(void)
3445{
3446	return ~((1UL << (PAGE_SHIFT + fault_around_order)) - 1);
3447}
3448#else
3449static inline unsigned long fault_around_pages(void)
3450{
3451	unsigned long nr_pages;
3452
3453	nr_pages = 1UL << FAULT_AROUND_ORDER;
3454	BUILD_BUG_ON(nr_pages > PTRS_PER_PTE);
3455	return nr_pages;
3456}
3457
3458static inline unsigned long fault_around_mask(void)
3459{
3460	return ~((1UL << (PAGE_SHIFT + FAULT_AROUND_ORDER)) - 1);
3461}
3462#endif
3463
3464static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
3465		pte_t *pte, pgoff_t pgoff, unsigned int flags)
3466{
3467	unsigned long start_addr;
3468	pgoff_t max_pgoff;
3469	struct vm_fault vmf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3470	int off;
 
 
 
 
3471
3472	start_addr = max(address & fault_around_mask(), vma->vm_start);
3473	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3474	pte -= off;
3475	pgoff -= off;
3476
3477	/*
3478	 *  max_pgoff is either end of page table or end of vma
3479	 *  or fault_around_pages() from pgoff, depending what is neast.
3480	 */
3481	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
 
3482		PTRS_PER_PTE - 1;
3483	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
3484			pgoff + fault_around_pages() - 1);
 
 
 
 
 
 
 
3485
3486	/* Check if it makes any sense to call ->map_pages */
3487	while (!pte_none(*pte)) {
3488		if (++pgoff > max_pgoff)
3489			return;
3490		start_addr += PAGE_SIZE;
3491		if (start_addr >= vma->vm_end)
3492			return;
3493		pte++;
3494	}
3495
3496	vmf.virtual_address = (void __user *) start_addr;
3497	vmf.pte = pte;
3498	vmf.pgoff = pgoff;
3499	vmf.max_pgoff = max_pgoff;
3500	vmf.flags = flags;
3501	vma->vm_ops->map_pages(vma, &vmf);
 
 
 
 
 
 
 
3502}
3503
3504static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3505		unsigned long address, pmd_t *pmd,
3506		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3507{
3508	struct page *fault_page;
3509	spinlock_t *ptl;
3510	pte_t *pte;
3511	int ret = 0;
3512
3513	/*
3514	 * Let's call ->map_pages() first and use ->fault() as fallback
3515	 * if page by the offset is not ready to be mapped (cold cache or
3516	 * something).
3517	 */
3518	if (vma->vm_ops->map_pages) {
3519		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3520		do_fault_around(vma, address, pte, pgoff, flags);
3521		if (!pte_same(*pte, orig_pte))
3522			goto unlock_out;
3523		pte_unmap_unlock(pte, ptl);
3524	}
3525
3526	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3527	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3528		return ret;
3529
3530	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3531	if (unlikely(!pte_same(*pte, orig_pte))) {
3532		pte_unmap_unlock(pte, ptl);
3533		unlock_page(fault_page);
3534		page_cache_release(fault_page);
3535		return ret;
3536	}
3537	do_set_pte(vma, address, fault_page, pte, false, false);
3538	unlock_page(fault_page);
3539unlock_out:
3540	pte_unmap_unlock(pte, ptl);
3541	return ret;
3542}
3543
3544static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3545		unsigned long address, pmd_t *pmd,
3546		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3547{
3548	struct page *fault_page, *new_page;
3549	spinlock_t *ptl;
3550	pte_t *pte;
3551	int ret;
3552
3553	if (unlikely(anon_vma_prepare(vma)))
3554		return VM_FAULT_OOM;
3555
3556	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3557	if (!new_page)
3558		return VM_FAULT_OOM;
3559
3560	if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)) {
3561		page_cache_release(new_page);
 
3562		return VM_FAULT_OOM;
3563	}
3564
3565	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3566	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3567		goto uncharge_out;
 
 
3568
3569	copy_user_highpage(new_page, fault_page, address, vma);
3570	__SetPageUptodate(new_page);
3571
3572	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3573	if (unlikely(!pte_same(*pte, orig_pte))) {
3574		pte_unmap_unlock(pte, ptl);
3575		unlock_page(fault_page);
3576		page_cache_release(fault_page);
3577		goto uncharge_out;
3578	}
3579	do_set_pte(vma, address, new_page, pte, true, true);
3580	pte_unmap_unlock(pte, ptl);
3581	unlock_page(fault_page);
3582	page_cache_release(fault_page);
3583	return ret;
3584uncharge_out:
3585	mem_cgroup_uncharge_page(new_page);
3586	page_cache_release(new_page);
3587	return ret;
3588}
3589
3590static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3591		unsigned long address, pmd_t *pmd,
3592		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3593{
3594	struct page *fault_page;
3595	struct address_space *mapping;
3596	spinlock_t *ptl;
3597	pte_t *pte;
3598	int dirtied = 0;
3599	int ret, tmp;
3600
3601	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3602	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3603		return ret;
3604
3605	/*
3606	 * Check if the backing address space wants to know that the page is
3607	 * about to become writable
3608	 */
3609	if (vma->vm_ops->page_mkwrite) {
3610		unlock_page(fault_page);
3611		tmp = do_page_mkwrite(vma, fault_page, address);
3612		if (unlikely(!tmp ||
3613				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3614			page_cache_release(fault_page);
3615			return tmp;
3616		}
3617	}
3618
3619	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3620	if (unlikely(!pte_same(*pte, orig_pte))) {
3621		pte_unmap_unlock(pte, ptl);
3622		unlock_page(fault_page);
3623		page_cache_release(fault_page);
3624		return ret;
3625	}
3626	do_set_pte(vma, address, fault_page, pte, true, false);
3627	pte_unmap_unlock(pte, ptl);
3628
3629	if (set_page_dirty(fault_page))
3630		dirtied = 1;
3631	mapping = fault_page->mapping;
3632	unlock_page(fault_page);
3633	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3634		/*
3635		 * Some device drivers do not set page.mapping but still
3636		 * dirty their pages
3637		 */
3638		balance_dirty_pages_ratelimited(mapping);
3639	}
3640
3641	/* file_update_time outside page_lock */
3642	if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3643		file_update_time(vma->vm_file);
3644
 
3645	return ret;
3646}
3647
3648static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3649		unsigned long address, pte_t *page_table, pmd_t *pmd,
3650		unsigned int flags, pte_t orig_pte)
3651{
3652	pgoff_t pgoff = (((address & PAGE_MASK)
3653			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3654
3655	pte_unmap(page_table);
3656	if (!(flags & FAULT_FLAG_WRITE))
3657		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3658				orig_pte);
3659	if (!(vma->vm_flags & VM_SHARED))
3660		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3661				orig_pte);
3662	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3663}
3664
3665/*
3666 * Fault of a previously existing named mapping. Repopulate the pte
3667 * from the encoded file_pte if possible. This enables swappable
3668 * nonlinear vmas.
3669 *
3670 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3671 * but allow concurrent faults), and pte mapped but not yet locked.
3672 * We return with mmap_sem still held, but pte unmapped and unlocked.
3673 */
3674static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3675		unsigned long address, pte_t *page_table, pmd_t *pmd,
3676		unsigned int flags, pte_t orig_pte)
3677{
3678	pgoff_t pgoff;
 
 
 
3679
3680	flags |= FAULT_FLAG_NONLINEAR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3681
3682	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3683		return 0;
 
 
 
 
 
 
3684
3685	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3686		/*
3687		 * Page table corrupted: show pte and kill process.
3688		 */
3689		print_bad_pte(vma, address, orig_pte, NULL);
3690		return VM_FAULT_SIGBUS;
3691	}
3692
3693	pgoff = pte_to_pgoff(orig_pte);
3694	if (!(flags & FAULT_FLAG_WRITE))
3695		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3696				orig_pte);
3697	if (!(vma->vm_flags & VM_SHARED))
3698		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3699				orig_pte);
3700	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3701}
3702
3703static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3704				unsigned long addr, int page_nid,
3705				int *flags)
3706{
3707	get_page(page);
3708
3709	count_vm_numa_event(NUMA_HINT_FAULTS);
3710	if (page_nid == numa_node_id()) {
3711		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3712		*flags |= TNF_FAULT_LOCAL;
3713	}
3714
3715	return mpol_misplaced(page, vma, addr);
3716}
3717
3718static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3719		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3720{
 
3721	struct page *page = NULL;
3722	spinlock_t *ptl;
3723	int page_nid = -1;
3724	int last_cpupid;
3725	int target_nid;
3726	bool migrated = false;
 
 
3727	int flags = 0;
3728
3729	/*
3730	* The "pte" at this point cannot be used safely without
3731	* validation through pte_unmap_same(). It's of NUMA type but
3732	* the pfn may be screwed if the read is non atomic.
3733	*
3734	* ptep_modify_prot_start is not called as this is clearing
3735	* the _PAGE_NUMA bit and it is not really expected that there
3736	* would be concurrent hardware modifications to the PTE.
3737	*/
3738	ptl = pte_lockptr(mm, pmd);
3739	spin_lock(ptl);
3740	if (unlikely(!pte_same(*ptep, pte))) {
3741		pte_unmap_unlock(ptep, ptl);
3742		goto out;
3743	}
3744
3745	pte = pte_mknonnuma(pte);
3746	set_pte_at(mm, addr, ptep, pte);
3747	update_mmu_cache(vma, addr, ptep);
 
 
 
 
 
 
 
 
3748
3749	page = vm_normal_page(vma, addr, pte);
3750	if (!page) {
3751		pte_unmap_unlock(ptep, ptl);
 
 
 
 
 
 
3752		return 0;
3753	}
3754	BUG_ON(is_zero_pfn(page_to_pfn(page)));
3755
3756	/*
3757	 * Avoid grouping on DSO/COW pages in specific and RO pages
3758	 * in general, RO pages shouldn't hurt as much anyway since
3759	 * they can be in shared cache state.
 
 
 
3760	 */
3761	if (!pte_write(pte))
3762		flags |= TNF_NO_GROUP;
3763
3764	/*
3765	 * Flag if the page is shared between multiple address spaces. This
3766	 * is later used when determining whether to group tasks together
3767	 */
3768	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3769		flags |= TNF_SHARED;
3770
3771	last_cpupid = page_cpupid_last(page);
3772	page_nid = page_to_nid(page);
3773	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3774	pte_unmap_unlock(ptep, ptl);
3775	if (target_nid == -1) {
 
3776		put_page(page);
3777		goto out;
3778	}
3779
3780	/* Migrate to the requested node */
3781	migrated = migrate_misplaced_page(page, vma, target_nid);
3782	if (migrated) {
3783		page_nid = target_nid;
3784		flags |= TNF_MIGRATED;
3785	}
 
3786
3787out:
3788	if (page_nid != -1)
3789		task_numa_fault(last_cpupid, page_nid, 1, flags);
3790	return 0;
3791}
3792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3793/*
3794 * These routines also need to handle stuff like marking pages dirty
3795 * and/or accessed for architectures that don't do it in hardware (most
3796 * RISC architectures).  The early dirtying is also good on the i386.
3797 *
3798 * There is also a hook called "update_mmu_cache()" that architectures
3799 * with external mmu caches can use to update those (ie the Sparc or
3800 * PowerPC hashed page tables that act as extended TLBs).
3801 *
3802 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3803 * but allow concurrent faults), and pte mapped but not yet locked.
3804 * We return with mmap_sem still held, but pte unmapped and unlocked.
 
 
3805 */
3806static int handle_pte_fault(struct mm_struct *mm,
3807		     struct vm_area_struct *vma, unsigned long address,
3808		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3809{
3810	pte_t entry;
3811	spinlock_t *ptl;
3812
3813	entry = *pte;
3814	if (!pte_present(entry)) {
3815		if (pte_none(entry)) {
3816			if (vma->vm_ops) {
3817				if (likely(vma->vm_ops->fault))
3818					return do_linear_fault(mm, vma, address,
3819						pte, pmd, flags, entry);
3820			}
3821			return do_anonymous_page(mm, vma, address,
3822						 pte, pmd, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3823		}
3824		if (pte_file(entry))
3825			return do_nonlinear_fault(mm, vma, address,
3826					pte, pmd, flags, entry);
3827		return do_swap_page(mm, vma, address,
3828					pte, pmd, flags, entry);
3829	}
3830
3831	if (pte_numa(entry))
3832		return do_numa_page(mm, vma, address, entry, pte, pmd);
3833
3834	ptl = pte_lockptr(mm, pmd);
3835	spin_lock(ptl);
3836	if (unlikely(!pte_same(*pte, entry)))
 
 
 
 
 
 
3837		goto unlock;
3838	if (flags & FAULT_FLAG_WRITE) {
3839		if (!pte_write(entry))
3840			return do_wp_page(mm, vma, address,
3841					pte, pmd, ptl, entry);
3842		entry = pte_mkdirty(entry);
3843	}
3844	entry = pte_mkyoung(entry);
3845	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3846		update_mmu_cache(vma, address, pte);
 
3847	} else {
3848		/*
3849		 * This is needed only for protection faults but the arch code
3850		 * is not yet telling us if this is a protection fault or not.
3851		 * This still avoids useless tlb flushes for .text page faults
3852		 * with threads.
3853		 */
3854		if (flags & FAULT_FLAG_WRITE)
3855			flush_tlb_fix_spurious_fault(vma, address);
3856	}
3857unlock:
3858	pte_unmap_unlock(pte, ptl);
3859	return 0;
3860}
3861
3862/*
3863 * By the time we get here, we already hold the mm semaphore
 
 
 
3864 */
3865static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3866			     unsigned long address, unsigned int flags)
3867{
 
 
 
 
 
 
 
 
 
3868	pgd_t *pgd;
3869	pud_t *pud;
3870	pmd_t *pmd;
3871	pte_t *pte;
3872
3873	if (unlikely(is_vm_hugetlb_page(vma)))
3874		return hugetlb_fault(mm, vma, address, flags);
3875
3876	pgd = pgd_offset(mm, address);
3877	pud = pud_alloc(mm, pgd, address);
3878	if (!pud)
3879		return VM_FAULT_OOM;
3880	pmd = pmd_alloc(mm, pud, address);
3881	if (!pmd)
 
3882		return VM_FAULT_OOM;
3883	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3884		int ret = VM_FAULT_FALLBACK;
3885		if (!vma->vm_ops)
3886			ret = do_huge_pmd_anonymous_page(mm, vma, address,
3887					pmd, flags);
3888		if (!(ret & VM_FAULT_FALLBACK))
3889			return ret;
3890	} else {
3891		pmd_t orig_pmd = *pmd;
3892		int ret;
3893
3894		barrier();
3895		if (pmd_trans_huge(orig_pmd)) {
3896			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3897
3898			/*
3899			 * If the pmd is splitting, return and retry the
3900			 * the fault.  Alternative: wait until the split
3901			 * is done, and goto retry.
3902			 */
3903			if (pmd_trans_splitting(orig_pmd))
 
 
3904				return 0;
 
 
 
3905
3906			if (pmd_numa(orig_pmd))
3907				return do_huge_pmd_numa_page(mm, vma, address,
3908							     orig_pmd, pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3909
3910			if (dirty && !pmd_write(orig_pmd)) {
3911				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3912							  orig_pmd);
3913				if (!(ret & VM_FAULT_FALLBACK))
3914					return ret;
3915			} else {
3916				huge_pmd_set_accessed(mm, vma, address, pmd,
3917						      orig_pmd, dirty);
3918				return 0;
3919			}
3920		}
3921	}
3922
3923	/* THP should already have been handled */
3924	BUG_ON(pmd_numa(*pmd));
3925
3926	/*
3927	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3928	 * run pte_offset_map on the pmd, if an huge pmd could
3929	 * materialize from under us from a different thread.
3930	 */
3931	if (unlikely(pmd_none(*pmd)) &&
3932	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3933		return VM_FAULT_OOM;
3934	/* if an huge pmd materialized from under us just retry later */
3935	if (unlikely(pmd_trans_huge(*pmd)))
3936		return 0;
3937	/*
3938	 * A regular pmd is established and it can't morph into a huge pmd
3939	 * from under us anymore at this point because we hold the mmap_sem
3940	 * read mode and khugepaged takes it in write mode. So now it's
3941	 * safe to run pte_offset_map().
3942	 */
3943	pte = pte_offset_map(pmd, address);
3944
3945	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3946}
3947
3948int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3949		    unsigned long address, unsigned int flags)
 
 
 
 
 
 
3950{
3951	int ret;
3952
3953	__set_current_state(TASK_RUNNING);
3954
3955	count_vm_event(PGFAULT);
3956	mem_cgroup_count_vm_event(mm, PGFAULT);
3957
3958	/* do counter updates before entering really critical section. */
3959	check_sync_rss_stat(current);
3960
 
 
 
 
 
3961	/*
3962	 * Enable the memcg OOM handling for faults triggered in user
3963	 * space.  Kernel faults are handled more gracefully.
3964	 */
3965	if (flags & FAULT_FLAG_USER)
3966		mem_cgroup_oom_enable();
3967
3968	ret = __handle_mm_fault(mm, vma, address, flags);
 
 
 
3969
3970	if (flags & FAULT_FLAG_USER) {
3971		mem_cgroup_oom_disable();
3972                /*
3973                 * The task may have entered a memcg OOM situation but
3974                 * if the allocation error was handled gracefully (no
3975                 * VM_FAULT_OOM), there is no need to kill anything.
3976                 * Just clean up the OOM state peacefully.
3977                 */
3978                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3979                        mem_cgroup_oom_synchronize(false);
3980	}
3981
3982	return ret;
3983}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3984
3985#ifndef __PAGETABLE_PUD_FOLDED
3986/*
3987 * Allocate page upper directory.
3988 * We've already handled the fast-path in-line.
3989 */
3990int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3991{
3992	pud_t *new = pud_alloc_one(mm, address);
3993	if (!new)
3994		return -ENOMEM;
3995
3996	smp_wmb(); /* See comment in __pte_alloc */
3997
3998	spin_lock(&mm->page_table_lock);
3999	if (pgd_present(*pgd))		/* Another has populated it */
 
 
 
 
 
 
 
 
 
 
4000		pud_free(mm, new);
4001	else
4002		pgd_populate(mm, pgd, new);
4003	spin_unlock(&mm->page_table_lock);
4004	return 0;
4005}
4006#endif /* __PAGETABLE_PUD_FOLDED */
4007
4008#ifndef __PAGETABLE_PMD_FOLDED
4009/*
4010 * Allocate page middle directory.
4011 * We've already handled the fast-path in-line.
4012 */
4013int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4014{
 
4015	pmd_t *new = pmd_alloc_one(mm, address);
4016	if (!new)
4017		return -ENOMEM;
4018
4019	smp_wmb(); /* See comment in __pte_alloc */
4020
4021	spin_lock(&mm->page_table_lock);
4022#ifndef __ARCH_HAS_4LEVEL_HACK
4023	if (pud_present(*pud))		/* Another has populated it */
 
 
 
4024		pmd_free(mm, new);
4025	else
4026		pud_populate(mm, pud, new);
4027#else
4028	if (pgd_present(*pud))		/* Another has populated it */
 
 
 
4029		pmd_free(mm, new);
4030	else
4031		pgd_populate(mm, pud, new);
4032#endif /* __ARCH_HAS_4LEVEL_HACK */
4033	spin_unlock(&mm->page_table_lock);
4034	return 0;
4035}
4036#endif /* __PAGETABLE_PMD_FOLDED */
4037
4038#if !defined(__HAVE_ARCH_GATE_AREA)
4039
4040#if defined(AT_SYSINFO_EHDR)
4041static struct vm_area_struct gate_vma;
4042
4043static int __init gate_vma_init(void)
4044{
4045	gate_vma.vm_mm = NULL;
4046	gate_vma.vm_start = FIXADDR_USER_START;
4047	gate_vma.vm_end = FIXADDR_USER_END;
4048	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
4049	gate_vma.vm_page_prot = __P101;
4050
4051	return 0;
4052}
4053__initcall(gate_vma_init);
4054#endif
4055
4056struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
4057{
4058#ifdef AT_SYSINFO_EHDR
4059	return &gate_vma;
4060#else
4061	return NULL;
4062#endif
4063}
4064
4065int in_gate_area_no_mm(unsigned long addr)
4066{
4067#ifdef AT_SYSINFO_EHDR
4068	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
4069		return 1;
4070#endif
4071	return 0;
4072}
4073
4074#endif	/* __HAVE_ARCH_GATE_AREA */
4075
4076static int __follow_pte(struct mm_struct *mm, unsigned long address,
4077		pte_t **ptepp, spinlock_t **ptlp)
4078{
4079	pgd_t *pgd;
 
4080	pud_t *pud;
4081	pmd_t *pmd;
4082	pte_t *ptep;
4083
4084	pgd = pgd_offset(mm, address);
4085	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4086		goto out;
4087
4088	pud = pud_offset(pgd, address);
 
 
 
 
4089	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4090		goto out;
4091
4092	pmd = pmd_offset(pud, address);
4093	VM_BUG_ON(pmd_trans_huge(*pmd));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4094	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4095		goto out;
4096
4097	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
4098	if (pmd_huge(*pmd))
4099		goto out;
4100
 
 
4101	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4102	if (!ptep)
4103		goto out;
4104	if (!pte_present(*ptep))
4105		goto unlock;
4106	*ptepp = ptep;
4107	return 0;
4108unlock:
4109	pte_unmap_unlock(ptep, *ptlp);
 
 
4110out:
4111	return -EINVAL;
4112}
4113
4114static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4115			     pte_t **ptepp, spinlock_t **ptlp)
4116{
4117	int res;
4118
4119	/* (void) is needed to make gcc happy */
4120	(void) __cond_lock(*ptlp,
4121			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4122	return res;
4123}
 
4124
4125/**
4126 * follow_pfn - look up PFN at a user virtual address
4127 * @vma: memory mapping
4128 * @address: user virtual address
4129 * @pfn: location to store found PFN
4130 *
4131 * Only IO mappings and raw PFN mappings are allowed.
4132 *
4133 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4134 */
4135int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4136	unsigned long *pfn)
4137{
4138	int ret = -EINVAL;
4139	spinlock_t *ptl;
4140	pte_t *ptep;
4141
4142	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4143		return ret;
4144
4145	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4146	if (ret)
4147		return ret;
4148	*pfn = pte_pfn(*ptep);
4149	pte_unmap_unlock(ptep, ptl);
4150	return 0;
4151}
4152EXPORT_SYMBOL(follow_pfn);
4153
4154#ifdef CONFIG_HAVE_IOREMAP_PROT
4155int follow_phys(struct vm_area_struct *vma,
4156		unsigned long address, unsigned int flags,
4157		unsigned long *prot, resource_size_t *phys)
4158{
4159	int ret = -EINVAL;
4160	pte_t *ptep, pte;
4161	spinlock_t *ptl;
4162
4163	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4164		goto out;
4165
4166	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4167		goto out;
4168	pte = *ptep;
4169
4170	if ((flags & FOLL_WRITE) && !pte_write(pte))
4171		goto unlock;
4172
4173	*prot = pgprot_val(pte_pgprot(pte));
4174	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4175
4176	ret = 0;
4177unlock:
4178	pte_unmap_unlock(ptep, ptl);
4179out:
4180	return ret;
4181}
4182
4183int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4184			void *buf, int len, int write)
4185{
4186	resource_size_t phys_addr;
4187	unsigned long prot = 0;
4188	void __iomem *maddr;
4189	int offset = addr & (PAGE_SIZE-1);
4190
4191	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4192		return -EINVAL;
4193
4194	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
 
 
 
4195	if (write)
4196		memcpy_toio(maddr + offset, buf, len);
4197	else
4198		memcpy_fromio(buf, maddr + offset, len);
4199	iounmap(maddr);
4200
4201	return len;
4202}
4203EXPORT_SYMBOL_GPL(generic_access_phys);
4204#endif
4205
4206/*
4207 * Access another process' address space as given in mm.  If non-NULL, use the
4208 * given task for page fault accounting.
4209 */
4210static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4211		unsigned long addr, void *buf, int len, int write)
4212{
4213	struct vm_area_struct *vma;
4214	void *old_buf = buf;
 
 
 
 
4215
4216	down_read(&mm->mmap_sem);
4217	/* ignore errors, just check how much was successfully transferred */
4218	while (len) {
4219		int bytes, ret, offset;
4220		void *maddr;
4221		struct page *page = NULL;
4222
4223		ret = get_user_pages(tsk, mm, addr, 1,
4224				write, 1, &page, &vma);
4225		if (ret <= 0) {
 
 
 
4226			/*
4227			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4228			 * we can access using slightly different code.
4229			 */
4230#ifdef CONFIG_HAVE_IOREMAP_PROT
4231			vma = find_vma(mm, addr);
4232			if (!vma || vma->vm_start > addr)
4233				break;
4234			if (vma->vm_ops && vma->vm_ops->access)
4235				ret = vma->vm_ops->access(vma, addr, buf,
4236							  len, write);
4237			if (ret <= 0)
4238#endif
4239				break;
4240			bytes = ret;
 
4241		} else {
4242			bytes = len;
4243			offset = addr & (PAGE_SIZE-1);
4244			if (bytes > PAGE_SIZE-offset)
4245				bytes = PAGE_SIZE-offset;
4246
4247			maddr = kmap(page);
4248			if (write) {
4249				copy_to_user_page(vma, page, addr,
4250						  maddr + offset, buf, bytes);
4251				set_page_dirty_lock(page);
4252			} else {
4253				copy_from_user_page(vma, page, addr,
4254						    buf, maddr + offset, bytes);
4255			}
4256			kunmap(page);
4257			page_cache_release(page);
4258		}
4259		len -= bytes;
4260		buf += bytes;
4261		addr += bytes;
4262	}
4263	up_read(&mm->mmap_sem);
4264
4265	return buf - old_buf;
4266}
4267
4268/**
4269 * access_remote_vm - access another process' address space
4270 * @mm:		the mm_struct of the target address space
4271 * @addr:	start address to access
4272 * @buf:	source or destination buffer
4273 * @len:	number of bytes to transfer
4274 * @write:	whether the access is a write
4275 *
4276 * The caller must hold a reference on @mm.
 
 
4277 */
4278int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4279		void *buf, int len, int write)
4280{
4281	return __access_remote_vm(NULL, mm, addr, buf, len, write);
4282}
4283
4284/*
4285 * Access another process' address space.
4286 * Source/target buffer must be kernel space,
4287 * Do not walk the page table directly, use get_user_pages
4288 */
4289int access_process_vm(struct task_struct *tsk, unsigned long addr,
4290		void *buf, int len, int write)
4291{
4292	struct mm_struct *mm;
4293	int ret;
4294
4295	mm = get_task_mm(tsk);
4296	if (!mm)
4297		return 0;
4298
4299	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
 
4300	mmput(mm);
4301
4302	return ret;
4303}
 
4304
4305/*
4306 * Print the name of a VMA.
4307 */
4308void print_vma_addr(char *prefix, unsigned long ip)
4309{
4310	struct mm_struct *mm = current->mm;
4311	struct vm_area_struct *vma;
4312
4313	/*
4314	 * Do not print if we are in atomic
4315	 * contexts (in exception stacks, etc.):
4316	 */
4317	if (preempt_count())
4318		return;
4319
4320	down_read(&mm->mmap_sem);
4321	vma = find_vma(mm, ip);
4322	if (vma && vma->vm_file) {
4323		struct file *f = vma->vm_file;
4324		char *buf = (char *)__get_free_page(GFP_KERNEL);
4325		if (buf) {
4326			char *p;
4327
4328			p = d_path(&f->f_path, buf, PAGE_SIZE);
4329			if (IS_ERR(p))
4330				p = "?";
4331			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4332					vma->vm_start,
4333					vma->vm_end - vma->vm_start);
4334			free_page((unsigned long)buf);
4335		}
4336	}
4337	up_read(&mm->mmap_sem);
4338}
4339
4340#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4341void might_fault(void)
4342{
4343	/*
4344	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4345	 * holding the mmap_sem, this is safe because kernel memory doesn't
4346	 * get paged out, therefore we'll never actually fault, and the
4347	 * below annotations will generate false positives.
4348	 */
4349	if (segment_eq(get_fs(), KERNEL_DS))
4350		return;
4351
4352	/*
4353	 * it would be nicer only to annotate paths which are not under
4354	 * pagefault_disable, however that requires a larger audit and
4355	 * providing helpers like get_user_atomic.
4356	 */
4357	if (in_atomic())
4358		return;
4359
4360	__might_sleep(__FILE__, __LINE__, 0);
4361
4362	if (current->mm)
4363		might_lock_read(&current->mm->mmap_sem);
 
4364}
4365EXPORT_SYMBOL(might_fault);
4366#endif
4367
4368#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4369static void clear_gigantic_page(struct page *page,
4370				unsigned long addr,
4371				unsigned int pages_per_huge_page)
4372{
4373	int i;
4374	struct page *p = page;
4375
4376	might_sleep();
4377	for (i = 0; i < pages_per_huge_page;
4378	     i++, p = mem_map_next(p, page, i)) {
4379		cond_resched();
4380		clear_user_highpage(p, addr + i * PAGE_SIZE);
4381	}
4382}
 
 
 
 
 
 
 
 
4383void clear_huge_page(struct page *page,
4384		     unsigned long addr, unsigned int pages_per_huge_page)
4385{
4386	int i;
 
4387
4388	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4389		clear_gigantic_page(page, addr, pages_per_huge_page);
4390		return;
4391	}
4392
4393	might_sleep();
4394	for (i = 0; i < pages_per_huge_page; i++) {
4395		cond_resched();
4396		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4397	}
4398}
4399
4400static void copy_user_gigantic_page(struct page *dst, struct page *src,
4401				    unsigned long addr,
4402				    struct vm_area_struct *vma,
4403				    unsigned int pages_per_huge_page)
4404{
4405	int i;
4406	struct page *dst_base = dst;
4407	struct page *src_base = src;
4408
4409	for (i = 0; i < pages_per_huge_page; ) {
4410		cond_resched();
4411		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4412
4413		i++;
4414		dst = mem_map_next(dst, dst_base, i);
4415		src = mem_map_next(src, src_base, i);
4416	}
4417}
4418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4419void copy_user_huge_page(struct page *dst, struct page *src,
4420			 unsigned long addr, struct vm_area_struct *vma,
4421			 unsigned int pages_per_huge_page)
4422{
4423	int i;
 
 
 
 
 
 
4424
4425	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4426		copy_user_gigantic_page(dst, src, addr, vma,
4427					pages_per_huge_page);
4428		return;
4429	}
4430
4431	might_sleep();
 
 
 
 
 
 
 
 
 
 
 
 
4432	for (i = 0; i < pages_per_huge_page; i++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4433		cond_resched();
4434		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4435	}
 
4436}
4437#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4438
4439#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4440
4441static struct kmem_cache *page_ptl_cachep;
4442
4443void __init ptlock_cache_init(void)
4444{
4445	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4446			SLAB_PANIC, NULL);
4447}
4448
4449bool ptlock_alloc(struct page *page)
4450{
4451	spinlock_t *ptl;
4452
4453	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4454	if (!ptl)
4455		return false;
4456	page->ptl = ptl;
4457	return true;
4458}
4459
4460void ptlock_free(struct page *page)
4461{
4462	kmem_cache_free(page_ptl_cachep, page->ptl);
4463}
4464#endif