Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
   4 *
   5 * Scatterlist handling helpers.
   6 */
   7#include <linux/export.h>
   8#include <linux/slab.h>
   9#include <linux/scatterlist.h>
  10#include <linux/highmem.h>
  11#include <linux/kmemleak.h>
 
 
  12
  13/**
  14 * sg_next - return the next scatterlist entry in a list
  15 * @sg:		The current sg entry
  16 *
  17 * Description:
  18 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
  19 *   of a chained scatterlist, it could jump to the start of a new
  20 *   scatterlist array.
  21 *
  22 **/
  23struct scatterlist *sg_next(struct scatterlist *sg)
  24{
  25	if (sg_is_last(sg))
  26		return NULL;
  27
  28	sg++;
  29	if (unlikely(sg_is_chain(sg)))
  30		sg = sg_chain_ptr(sg);
  31
  32	return sg;
  33}
  34EXPORT_SYMBOL(sg_next);
  35
  36/**
  37 * sg_nents - return total count of entries in scatterlist
  38 * @sg:		The scatterlist
  39 *
  40 * Description:
  41 * Allows to know how many entries are in sg, taking into account
  42 * chaining as well
  43 *
  44 **/
  45int sg_nents(struct scatterlist *sg)
  46{
  47	int nents;
  48	for (nents = 0; sg; sg = sg_next(sg))
  49		nents++;
  50	return nents;
  51}
  52EXPORT_SYMBOL(sg_nents);
  53
  54/**
  55 * sg_nents_for_len - return total count of entries in scatterlist
  56 *                    needed to satisfy the supplied length
  57 * @sg:		The scatterlist
  58 * @len:	The total required length
  59 *
  60 * Description:
  61 * Determines the number of entries in sg that are required to meet
  62 * the supplied length, taking into account chaining as well
  63 *
  64 * Returns:
  65 *   the number of sg entries needed, negative error on failure
  66 *
  67 **/
  68int sg_nents_for_len(struct scatterlist *sg, u64 len)
  69{
  70	int nents;
  71	u64 total;
  72
  73	if (!len)
  74		return 0;
  75
  76	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
  77		nents++;
  78		total += sg->length;
  79		if (total >= len)
  80			return nents;
  81	}
  82
  83	return -EINVAL;
  84}
  85EXPORT_SYMBOL(sg_nents_for_len);
  86
  87/**
  88 * sg_last - return the last scatterlist entry in a list
  89 * @sgl:	First entry in the scatterlist
  90 * @nents:	Number of entries in the scatterlist
  91 *
  92 * Description:
  93 *   Should only be used casually, it (currently) scans the entire list
  94 *   to get the last entry.
  95 *
  96 *   Note that the @sgl@ pointer passed in need not be the first one,
  97 *   the important bit is that @nents@ denotes the number of entries that
  98 *   exist from @sgl@.
  99 *
 100 **/
 101struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
 102{
 103	struct scatterlist *sg, *ret = NULL;
 104	unsigned int i;
 105
 106	for_each_sg(sgl, sg, nents, i)
 107		ret = sg;
 108
 109	BUG_ON(!sg_is_last(ret));
 110	return ret;
 111}
 112EXPORT_SYMBOL(sg_last);
 113
 114/**
 115 * sg_init_table - Initialize SG table
 116 * @sgl:	   The SG table
 117 * @nents:	   Number of entries in table
 118 *
 119 * Notes:
 120 *   If this is part of a chained sg table, sg_mark_end() should be
 121 *   used only on the last table part.
 122 *
 123 **/
 124void sg_init_table(struct scatterlist *sgl, unsigned int nents)
 125{
 126	memset(sgl, 0, sizeof(*sgl) * nents);
 127	sg_init_marker(sgl, nents);
 128}
 129EXPORT_SYMBOL(sg_init_table);
 130
 131/**
 132 * sg_init_one - Initialize a single entry sg list
 133 * @sg:		 SG entry
 134 * @buf:	 Virtual address for IO
 135 * @buflen:	 IO length
 136 *
 137 **/
 138void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
 139{
 140	sg_init_table(sg, 1);
 141	sg_set_buf(sg, buf, buflen);
 142}
 143EXPORT_SYMBOL(sg_init_one);
 144
 145/*
 146 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
 147 * helpers.
 148 */
 149static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
 150{
 151	if (nents == SG_MAX_SINGLE_ALLOC) {
 152		/*
 153		 * Kmemleak doesn't track page allocations as they are not
 154		 * commonly used (in a raw form) for kernel data structures.
 155		 * As we chain together a list of pages and then a normal
 156		 * kmalloc (tracked by kmemleak), in order to for that last
 157		 * allocation not to become decoupled (and thus a
 158		 * false-positive) we need to inform kmemleak of all the
 159		 * intermediate allocations.
 160		 */
 161		void *ptr = (void *) __get_free_page(gfp_mask);
 162		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
 163		return ptr;
 164	} else
 165		return kmalloc_array(nents, sizeof(struct scatterlist),
 166				     gfp_mask);
 167}
 168
 169static void sg_kfree(struct scatterlist *sg, unsigned int nents)
 170{
 171	if (nents == SG_MAX_SINGLE_ALLOC) {
 172		kmemleak_free(sg);
 173		free_page((unsigned long) sg);
 174	} else
 175		kfree(sg);
 176}
 177
 178/**
 179 * __sg_free_table - Free a previously mapped sg table
 180 * @table:	The sg table header to use
 181 * @max_ents:	The maximum number of entries per single scatterlist
 182 * @nents_first_chunk: Number of entries int the (preallocated) first
 183 * 	scatterlist chunk, 0 means no such preallocated first chunk
 184 * @free_fn:	Free function
 
 185 *
 186 *  Description:
 187 *    Free an sg table previously allocated and setup with
 188 *    __sg_alloc_table().  The @max_ents value must be identical to
 189 *    that previously used with __sg_alloc_table().
 190 *
 191 **/
 192void __sg_free_table(struct sg_table *table, unsigned int max_ents,
 193		     unsigned int nents_first_chunk, sg_free_fn *free_fn)
 
 194{
 195	struct scatterlist *sgl, *next;
 196	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
 197
 198	if (unlikely(!table->sgl))
 199		return;
 200
 201	sgl = table->sgl;
 202	while (table->orig_nents) {
 203		unsigned int alloc_size = table->orig_nents;
 204		unsigned int sg_size;
 205
 206		/*
 207		 * If we have more than max_ents segments left,
 208		 * then assign 'next' to the sg table after the current one.
 209		 * sg_size is then one less than alloc size, since the last
 210		 * element is the chain pointer.
 211		 */
 212		if (alloc_size > curr_max_ents) {
 213			next = sg_chain_ptr(&sgl[curr_max_ents - 1]);
 214			alloc_size = curr_max_ents;
 215			sg_size = alloc_size - 1;
 216		} else {
 217			sg_size = alloc_size;
 218			next = NULL;
 219		}
 220
 221		table->orig_nents -= sg_size;
 222		if (nents_first_chunk)
 223			nents_first_chunk = 0;
 224		else
 225			free_fn(sgl, alloc_size);
 226		sgl = next;
 227		curr_max_ents = max_ents;
 228	}
 229
 230	table->sgl = NULL;
 231}
 232EXPORT_SYMBOL(__sg_free_table);
 233
 234/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 235 * sg_free_table - Free a previously allocated sg table
 236 * @table:	The mapped sg table header
 237 *
 238 **/
 239void sg_free_table(struct sg_table *table)
 240{
 241	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
 
 242}
 243EXPORT_SYMBOL(sg_free_table);
 244
 245/**
 246 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
 247 * @table:	The sg table header to use
 248 * @nents:	Number of entries in sg list
 249 * @max_ents:	The maximum number of entries the allocator returns per call
 250 * @nents_first_chunk: Number of entries int the (preallocated) first
 
 251 * 	scatterlist chunk, 0 means no such preallocated chunk provided by user
 252 * @gfp_mask:	GFP allocation mask
 253 * @alloc_fn:	Allocator to use
 254 *
 255 * Description:
 256 *   This function returns a @table @nents long. The allocator is
 257 *   defined to return scatterlist chunks of maximum size @max_ents.
 258 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
 259 *   chained in units of @max_ents.
 260 *
 261 * Notes:
 262 *   If this function returns non-0 (eg failure), the caller must call
 263 *   __sg_free_table() to cleanup any leftover allocations.
 264 *
 265 **/
 266int __sg_alloc_table(struct sg_table *table, unsigned int nents,
 267		     unsigned int max_ents, struct scatterlist *first_chunk,
 268		     unsigned int nents_first_chunk, gfp_t gfp_mask,
 269		     sg_alloc_fn *alloc_fn)
 270{
 271	struct scatterlist *sg, *prv;
 272	unsigned int left;
 273	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
 274	unsigned prv_max_ents;
 275
 276	memset(table, 0, sizeof(*table));
 277
 278	if (nents == 0)
 279		return -EINVAL;
 280#ifdef CONFIG_ARCH_NO_SG_CHAIN
 281	if (WARN_ON_ONCE(nents > max_ents))
 282		return -EINVAL;
 283#endif
 284
 285	left = nents;
 286	prv = NULL;
 287	do {
 288		unsigned int sg_size, alloc_size = left;
 289
 290		if (alloc_size > curr_max_ents) {
 291			alloc_size = curr_max_ents;
 292			sg_size = alloc_size - 1;
 293		} else
 294			sg_size = alloc_size;
 295
 296		left -= sg_size;
 297
 298		if (first_chunk) {
 299			sg = first_chunk;
 300			first_chunk = NULL;
 301		} else {
 302			sg = alloc_fn(alloc_size, gfp_mask);
 303		}
 304		if (unlikely(!sg)) {
 305			/*
 306			 * Adjust entry count to reflect that the last
 307			 * entry of the previous table won't be used for
 308			 * linkage.  Without this, sg_kfree() may get
 309			 * confused.
 310			 */
 311			if (prv)
 312				table->nents = ++table->orig_nents;
 313
 314			return -ENOMEM;
 315		}
 316
 317		sg_init_table(sg, alloc_size);
 318		table->nents = table->orig_nents += sg_size;
 319
 320		/*
 321		 * If this is the first mapping, assign the sg table header.
 322		 * If this is not the first mapping, chain previous part.
 323		 */
 324		if (prv)
 325			sg_chain(prv, prv_max_ents, sg);
 326		else
 327			table->sgl = sg;
 328
 329		/*
 330		 * If no more entries after this one, mark the end
 331		 */
 332		if (!left)
 333			sg_mark_end(&sg[sg_size - 1]);
 334
 335		prv = sg;
 336		prv_max_ents = curr_max_ents;
 337		curr_max_ents = max_ents;
 338	} while (left);
 339
 340	return 0;
 341}
 342EXPORT_SYMBOL(__sg_alloc_table);
 343
 344/**
 345 * sg_alloc_table - Allocate and initialize an sg table
 346 * @table:	The sg table header to use
 347 * @nents:	Number of entries in sg list
 348 * @gfp_mask:	GFP allocation mask
 349 *
 350 *  Description:
 351 *    Allocate and initialize an sg table. If @nents@ is larger than
 352 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
 353 *
 354 **/
 355int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
 356{
 357	int ret;
 358
 359	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
 360			       NULL, 0, gfp_mask, sg_kmalloc);
 361	if (unlikely(ret))
 362		__sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree);
 363
 364	return ret;
 365}
 366EXPORT_SYMBOL(sg_alloc_table);
 367
 368static struct scatterlist *get_next_sg(struct sg_table *table,
 369				       struct scatterlist *cur,
 370				       unsigned long needed_sges,
 371				       gfp_t gfp_mask)
 372{
 373	struct scatterlist *new_sg, *next_sg;
 374	unsigned int alloc_size;
 375
 376	if (cur) {
 377		next_sg = sg_next(cur);
 378		/* Check if last entry should be keeped for chainning */
 379		if (!sg_is_last(next_sg) || needed_sges == 1)
 380			return next_sg;
 381	}
 382
 383	alloc_size = min_t(unsigned long, needed_sges, SG_MAX_SINGLE_ALLOC);
 384	new_sg = sg_kmalloc(alloc_size, gfp_mask);
 385	if (!new_sg)
 386		return ERR_PTR(-ENOMEM);
 387	sg_init_table(new_sg, alloc_size);
 388	if (cur) {
 
 389		__sg_chain(next_sg, new_sg);
 390		table->orig_nents += alloc_size - 1;
 391	} else {
 392		table->sgl = new_sg;
 393		table->orig_nents = alloc_size;
 394		table->nents = 0;
 395	}
 396	return new_sg;
 397}
 398
 
 
 
 
 
 
 
 
 
 399/**
 400 * __sg_alloc_table_from_pages - Allocate and initialize an sg table from
 401 *			         an array of pages
 402 * @sgt:	 The sg table header to use
 403 * @pages:	 Pointer to an array of page pointers
 404 * @n_pages:	 Number of pages in the pages array
 405 * @offset:      Offset from start of the first page to the start of a buffer
 406 * @size:        Number of valid bytes in the buffer (after offset)
 407 * @max_segment: Maximum size of a scatterlist element in bytes
 408 * @prv:	 Last populated sge in sgt
 409 * @left_pages:  Left pages caller have to set after this call
 410 * @gfp_mask:	 GFP allocation mask
 411 *
 412 * Description:
 413 *    If @prv is NULL, allocate and initialize an sg table from a list of pages,
 414 *    else reuse the scatterlist passed in at @prv.
 415 *    Contiguous ranges of the pages are squashed into a single scatterlist
 416 *    entry up to the maximum size specified in @max_segment.  A user may
 417 *    provide an offset at a start and a size of valid data in a buffer
 418 *    specified by the page array.
 419 *
 420 * Returns:
 421 *   Last SGE in sgt on success, PTR_ERR on otherwise.
 422 *   The allocation in @sgt must be released by sg_free_table.
 423 *
 424 * Notes:
 425 *   If this function returns non-0 (eg failure), the caller must call
 426 *   sg_free_table() to cleanup any leftover allocations.
 
 
 427 */
 428struct scatterlist *__sg_alloc_table_from_pages(struct sg_table *sgt,
 429		struct page **pages, unsigned int n_pages, unsigned int offset,
 430		unsigned long size, unsigned int max_segment,
 431		struct scatterlist *prv, unsigned int left_pages,
 432		gfp_t gfp_mask)
 433{
 434	unsigned int chunks, cur_page, seg_len, i, prv_len = 0;
 435	unsigned int added_nents = 0;
 436	struct scatterlist *s = prv;
 
 437
 438	/*
 439	 * The algorithm below requires max_segment to be aligned to PAGE_SIZE
 440	 * otherwise it can overshoot.
 441	 */
 442	max_segment = ALIGN_DOWN(max_segment, PAGE_SIZE);
 443	if (WARN_ON(max_segment < PAGE_SIZE))
 444		return ERR_PTR(-EINVAL);
 445
 446	if (IS_ENABLED(CONFIG_ARCH_NO_SG_CHAIN) && prv)
 447		return ERR_PTR(-EOPNOTSUPP);
 448
 449	if (prv) {
 450		unsigned long paddr = (page_to_pfn(sg_page(prv)) * PAGE_SIZE +
 451				       prv->offset + prv->length) /
 452				      PAGE_SIZE;
 453
 454		if (WARN_ON(offset))
 455			return ERR_PTR(-EINVAL);
 456
 457		/* Merge contiguous pages into the last SG */
 458		prv_len = prv->length;
 459		while (n_pages && page_to_pfn(pages[0]) == paddr) {
 460			if (prv->length + PAGE_SIZE > max_segment)
 461				break;
 462			prv->length += PAGE_SIZE;
 463			paddr++;
 464			pages++;
 465			n_pages--;
 
 
 
 
 
 466		}
 467		if (!n_pages)
 468			goto out;
 469	}
 470
 471	/* compute number of contiguous chunks */
 472	chunks = 1;
 473	seg_len = 0;
 474	for (i = 1; i < n_pages; i++) {
 475		seg_len += PAGE_SIZE;
 476		if (seg_len >= max_segment ||
 477		    page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1) {
 478			chunks++;
 479			seg_len = 0;
 480		}
 481	}
 482
 483	/* merging chunks and putting them into the scatterlist */
 484	cur_page = 0;
 485	for (i = 0; i < chunks; i++) {
 486		unsigned int j, chunk_size;
 487
 488		/* look for the end of the current chunk */
 489		seg_len = 0;
 490		for (j = cur_page + 1; j < n_pages; j++) {
 491			seg_len += PAGE_SIZE;
 492			if (seg_len >= max_segment ||
 493			    page_to_pfn(pages[j]) !=
 494			    page_to_pfn(pages[j - 1]) + 1)
 495				break;
 496		}
 497
 498		/* Pass how many chunks might be left */
 499		s = get_next_sg(sgt, s, chunks - i + left_pages, gfp_mask);
 
 500		if (IS_ERR(s)) {
 501			/*
 502			 * Adjust entry length to be as before function was
 503			 * called.
 504			 */
 505			if (prv)
 506				prv->length = prv_len;
 507			return s;
 508		}
 509		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
 510		sg_set_page(s, pages[cur_page],
 511			    min_t(unsigned long, size, chunk_size), offset);
 512		added_nents++;
 513		size -= chunk_size;
 514		offset = 0;
 515		cur_page = j;
 516	}
 517	sgt->nents += added_nents;
 
 
 518out:
 519	if (!left_pages)
 520		sg_mark_end(s);
 521	return s;
 522}
 523EXPORT_SYMBOL(__sg_alloc_table_from_pages);
 524
 525/**
 526 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
 527 *			       an array of pages
 
 528 * @sgt:	 The sg table header to use
 529 * @pages:	 Pointer to an array of page pointers
 530 * @n_pages:	 Number of pages in the pages array
 531 * @offset:      Offset from start of the first page to the start of a buffer
 532 * @size:        Number of valid bytes in the buffer (after offset)
 
 533 * @gfp_mask:	 GFP allocation mask
 534 *
 535 *  Description:
 536 *    Allocate and initialize an sg table from a list of pages. Contiguous
 537 *    ranges of the pages are squashed into a single scatterlist node. A user
 538 *    may provide an offset at a start and a size of valid data in a buffer
 539 *    specified by the page array. The returned sg table is released by
 540 *    sg_free_table.
 541 *
 542 * Returns:
 
 
 543 *   0 on success, negative error on failure
 544 */
 545int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
 546			      unsigned int n_pages, unsigned int offset,
 547			      unsigned long size, gfp_t gfp_mask)
 548{
 549	return PTR_ERR_OR_ZERO(__sg_alloc_table_from_pages(sgt, pages, n_pages,
 550			offset, size, UINT_MAX, NULL, 0, gfp_mask));
 
 
 
 
 
 
 
 
 
 
 
 551}
 552EXPORT_SYMBOL(sg_alloc_table_from_pages);
 553
 554#ifdef CONFIG_SGL_ALLOC
 555
 556/**
 557 * sgl_alloc_order - allocate a scatterlist and its pages
 558 * @length: Length in bytes of the scatterlist. Must be at least one
 559 * @order: Second argument for alloc_pages()
 560 * @chainable: Whether or not to allocate an extra element in the scatterlist
 561 *	for scatterlist chaining purposes
 562 * @gfp: Memory allocation flags
 563 * @nent_p: [out] Number of entries in the scatterlist that have pages
 564 *
 565 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 566 */
 567struct scatterlist *sgl_alloc_order(unsigned long long length,
 568				    unsigned int order, bool chainable,
 569				    gfp_t gfp, unsigned int *nent_p)
 570{
 571	struct scatterlist *sgl, *sg;
 572	struct page *page;
 573	unsigned int nent, nalloc;
 574	u32 elem_len;
 575
 576	nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
 577	/* Check for integer overflow */
 578	if (length > (nent << (PAGE_SHIFT + order)))
 579		return NULL;
 580	nalloc = nent;
 581	if (chainable) {
 582		/* Check for integer overflow */
 583		if (nalloc + 1 < nalloc)
 584			return NULL;
 585		nalloc++;
 586	}
 587	sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
 588			    gfp & ~GFP_DMA);
 589	if (!sgl)
 590		return NULL;
 591
 592	sg_init_table(sgl, nalloc);
 593	sg = sgl;
 594	while (length) {
 595		elem_len = min_t(u64, length, PAGE_SIZE << order);
 596		page = alloc_pages(gfp, order);
 597		if (!page) {
 598			sgl_free_order(sgl, order);
 599			return NULL;
 600		}
 601
 602		sg_set_page(sg, page, elem_len, 0);
 603		length -= elem_len;
 604		sg = sg_next(sg);
 605	}
 606	WARN_ONCE(length, "length = %lld\n", length);
 607	if (nent_p)
 608		*nent_p = nent;
 609	return sgl;
 610}
 611EXPORT_SYMBOL(sgl_alloc_order);
 612
 613/**
 614 * sgl_alloc - allocate a scatterlist and its pages
 615 * @length: Length in bytes of the scatterlist
 616 * @gfp: Memory allocation flags
 617 * @nent_p: [out] Number of entries in the scatterlist
 618 *
 619 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 620 */
 621struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
 622			      unsigned int *nent_p)
 623{
 624	return sgl_alloc_order(length, 0, false, gfp, nent_p);
 625}
 626EXPORT_SYMBOL(sgl_alloc);
 627
 628/**
 629 * sgl_free_n_order - free a scatterlist and its pages
 630 * @sgl: Scatterlist with one or more elements
 631 * @nents: Maximum number of elements to free
 632 * @order: Second argument for __free_pages()
 633 *
 634 * Notes:
 635 * - If several scatterlists have been chained and each chain element is
 636 *   freed separately then it's essential to set nents correctly to avoid that a
 637 *   page would get freed twice.
 638 * - All pages in a chained scatterlist can be freed at once by setting @nents
 639 *   to a high number.
 640 */
 641void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
 642{
 643	struct scatterlist *sg;
 644	struct page *page;
 645	int i;
 646
 647	for_each_sg(sgl, sg, nents, i) {
 648		if (!sg)
 649			break;
 650		page = sg_page(sg);
 651		if (page)
 652			__free_pages(page, order);
 653	}
 654	kfree(sgl);
 655}
 656EXPORT_SYMBOL(sgl_free_n_order);
 657
 658/**
 659 * sgl_free_order - free a scatterlist and its pages
 660 * @sgl: Scatterlist with one or more elements
 661 * @order: Second argument for __free_pages()
 662 */
 663void sgl_free_order(struct scatterlist *sgl, int order)
 664{
 665	sgl_free_n_order(sgl, INT_MAX, order);
 666}
 667EXPORT_SYMBOL(sgl_free_order);
 668
 669/**
 670 * sgl_free - free a scatterlist and its pages
 671 * @sgl: Scatterlist with one or more elements
 672 */
 673void sgl_free(struct scatterlist *sgl)
 674{
 675	sgl_free_order(sgl, 0);
 676}
 677EXPORT_SYMBOL(sgl_free);
 678
 679#endif /* CONFIG_SGL_ALLOC */
 680
 681void __sg_page_iter_start(struct sg_page_iter *piter,
 682			  struct scatterlist *sglist, unsigned int nents,
 683			  unsigned long pgoffset)
 684{
 685	piter->__pg_advance = 0;
 686	piter->__nents = nents;
 687
 688	piter->sg = sglist;
 689	piter->sg_pgoffset = pgoffset;
 690}
 691EXPORT_SYMBOL(__sg_page_iter_start);
 692
 693static int sg_page_count(struct scatterlist *sg)
 694{
 695	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
 696}
 697
 698bool __sg_page_iter_next(struct sg_page_iter *piter)
 699{
 700	if (!piter->__nents || !piter->sg)
 701		return false;
 702
 703	piter->sg_pgoffset += piter->__pg_advance;
 704	piter->__pg_advance = 1;
 705
 706	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
 707		piter->sg_pgoffset -= sg_page_count(piter->sg);
 708		piter->sg = sg_next(piter->sg);
 709		if (!--piter->__nents || !piter->sg)
 710			return false;
 711	}
 712
 713	return true;
 714}
 715EXPORT_SYMBOL(__sg_page_iter_next);
 716
 717static int sg_dma_page_count(struct scatterlist *sg)
 718{
 719	return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
 720}
 721
 722bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
 723{
 724	struct sg_page_iter *piter = &dma_iter->base;
 725
 726	if (!piter->__nents || !piter->sg)
 727		return false;
 728
 729	piter->sg_pgoffset += piter->__pg_advance;
 730	piter->__pg_advance = 1;
 731
 732	while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
 733		piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
 734		piter->sg = sg_next(piter->sg);
 735		if (!--piter->__nents || !piter->sg)
 736			return false;
 737	}
 738
 739	return true;
 740}
 741EXPORT_SYMBOL(__sg_page_iter_dma_next);
 742
 743/**
 744 * sg_miter_start - start mapping iteration over a sg list
 745 * @miter: sg mapping iter to be started
 746 * @sgl: sg list to iterate over
 747 * @nents: number of sg entries
 
 748 *
 749 * Description:
 750 *   Starts mapping iterator @miter.
 751 *
 752 * Context:
 753 *   Don't care.
 754 */
 755void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
 756		    unsigned int nents, unsigned int flags)
 757{
 758	memset(miter, 0, sizeof(struct sg_mapping_iter));
 759
 760	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
 761	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
 762	miter->__flags = flags;
 763}
 764EXPORT_SYMBOL(sg_miter_start);
 765
 766static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
 767{
 768	if (!miter->__remaining) {
 769		struct scatterlist *sg;
 770
 771		if (!__sg_page_iter_next(&miter->piter))
 772			return false;
 773
 774		sg = miter->piter.sg;
 775
 776		miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
 777		miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
 778		miter->__offset &= PAGE_SIZE - 1;
 779		miter->__remaining = sg->offset + sg->length -
 780				     (miter->piter.sg_pgoffset << PAGE_SHIFT) -
 781				     miter->__offset;
 782		miter->__remaining = min_t(unsigned long, miter->__remaining,
 783					   PAGE_SIZE - miter->__offset);
 784	}
 785
 786	return true;
 787}
 788
 789/**
 790 * sg_miter_skip - reposition mapping iterator
 791 * @miter: sg mapping iter to be skipped
 792 * @offset: number of bytes to plus the current location
 793 *
 794 * Description:
 795 *   Sets the offset of @miter to its current location plus @offset bytes.
 796 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
 797 *   stops @miter.
 798 *
 799 * Context:
 800 *   Don't care if @miter is stopped, or not proceeded yet.
 801 *   Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
 802 *
 803 * Returns:
 804 *   true if @miter contains the valid mapping.  false if end of sg
 805 *   list is reached.
 806 */
 807bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
 808{
 809	sg_miter_stop(miter);
 810
 811	while (offset) {
 812		off_t consumed;
 813
 814		if (!sg_miter_get_next_page(miter))
 815			return false;
 816
 817		consumed = min_t(off_t, offset, miter->__remaining);
 818		miter->__offset += consumed;
 819		miter->__remaining -= consumed;
 820		offset -= consumed;
 821	}
 822
 823	return true;
 824}
 825EXPORT_SYMBOL(sg_miter_skip);
 826
 827/**
 828 * sg_miter_next - proceed mapping iterator to the next mapping
 829 * @miter: sg mapping iter to proceed
 830 *
 831 * Description:
 832 *   Proceeds @miter to the next mapping.  @miter should have been started
 833 *   using sg_miter_start().  On successful return, @miter->page,
 834 *   @miter->addr and @miter->length point to the current mapping.
 835 *
 836 * Context:
 837 *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
 838 *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
 839 *
 840 * Returns:
 841 *   true if @miter contains the next mapping.  false if end of sg
 842 *   list is reached.
 843 */
 844bool sg_miter_next(struct sg_mapping_iter *miter)
 845{
 846	sg_miter_stop(miter);
 847
 848	/*
 849	 * Get to the next page if necessary.
 850	 * __remaining, __offset is adjusted by sg_miter_stop
 851	 */
 852	if (!sg_miter_get_next_page(miter))
 853		return false;
 854
 855	miter->page = sg_page_iter_page(&miter->piter);
 856	miter->consumed = miter->length = miter->__remaining;
 857
 858	if (miter->__flags & SG_MITER_ATOMIC)
 859		miter->addr = kmap_atomic(miter->page) + miter->__offset;
 860	else
 861		miter->addr = kmap(miter->page) + miter->__offset;
 862
 863	return true;
 864}
 865EXPORT_SYMBOL(sg_miter_next);
 866
 867/**
 868 * sg_miter_stop - stop mapping iteration
 869 * @miter: sg mapping iter to be stopped
 870 *
 871 * Description:
 872 *   Stops mapping iterator @miter.  @miter should have been started
 873 *   using sg_miter_start().  A stopped iteration can be resumed by
 874 *   calling sg_miter_next() on it.  This is useful when resources (kmap)
 875 *   need to be released during iteration.
 876 *
 877 * Context:
 878 *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
 879 *   otherwise.
 880 */
 881void sg_miter_stop(struct sg_mapping_iter *miter)
 882{
 883	WARN_ON(miter->consumed > miter->length);
 884
 885	/* drop resources from the last iteration */
 886	if (miter->addr) {
 887		miter->__offset += miter->consumed;
 888		miter->__remaining -= miter->consumed;
 889
 890		if ((miter->__flags & SG_MITER_TO_SG) &&
 891		    !PageSlab(miter->page))
 892			flush_kernel_dcache_page(miter->page);
 893
 894		if (miter->__flags & SG_MITER_ATOMIC) {
 895			WARN_ON_ONCE(preemptible());
 896			kunmap_atomic(miter->addr);
 897		} else
 898			kunmap(miter->page);
 899
 900		miter->page = NULL;
 901		miter->addr = NULL;
 902		miter->length = 0;
 903		miter->consumed = 0;
 904	}
 905}
 906EXPORT_SYMBOL(sg_miter_stop);
 907
 908/**
 909 * sg_copy_buffer - Copy data between a linear buffer and an SG list
 910 * @sgl:		 The SG list
 911 * @nents:		 Number of SG entries
 912 * @buf:		 Where to copy from
 913 * @buflen:		 The number of bytes to copy
 914 * @skip:		 Number of bytes to skip before copying
 915 * @to_buffer:		 transfer direction (true == from an sg list to a
 916 *			 buffer, false == from a buffer to an sg list)
 917 *
 918 * Returns the number of copied bytes.
 919 *
 920 **/
 921size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
 922		      size_t buflen, off_t skip, bool to_buffer)
 923{
 924	unsigned int offset = 0;
 925	struct sg_mapping_iter miter;
 926	unsigned int sg_flags = SG_MITER_ATOMIC;
 927
 928	if (to_buffer)
 929		sg_flags |= SG_MITER_FROM_SG;
 930	else
 931		sg_flags |= SG_MITER_TO_SG;
 932
 933	sg_miter_start(&miter, sgl, nents, sg_flags);
 934
 935	if (!sg_miter_skip(&miter, skip))
 936		return 0;
 937
 938	while ((offset < buflen) && sg_miter_next(&miter)) {
 939		unsigned int len;
 940
 941		len = min(miter.length, buflen - offset);
 942
 943		if (to_buffer)
 944			memcpy(buf + offset, miter.addr, len);
 945		else
 946			memcpy(miter.addr, buf + offset, len);
 947
 948		offset += len;
 949	}
 950
 951	sg_miter_stop(&miter);
 952
 953	return offset;
 954}
 955EXPORT_SYMBOL(sg_copy_buffer);
 956
 957/**
 958 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
 959 * @sgl:		 The SG list
 960 * @nents:		 Number of SG entries
 961 * @buf:		 Where to copy from
 962 * @buflen:		 The number of bytes to copy
 963 *
 964 * Returns the number of copied bytes.
 965 *
 966 **/
 967size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
 968			   const void *buf, size_t buflen)
 969{
 970	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
 971}
 972EXPORT_SYMBOL(sg_copy_from_buffer);
 973
 974/**
 975 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
 976 * @sgl:		 The SG list
 977 * @nents:		 Number of SG entries
 978 * @buf:		 Where to copy to
 979 * @buflen:		 The number of bytes to copy
 980 *
 981 * Returns the number of copied bytes.
 982 *
 983 **/
 984size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
 985			 void *buf, size_t buflen)
 986{
 987	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
 988}
 989EXPORT_SYMBOL(sg_copy_to_buffer);
 990
 991/**
 992 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
 993 * @sgl:		 The SG list
 994 * @nents:		 Number of SG entries
 995 * @buf:		 Where to copy from
 996 * @buflen:		 The number of bytes to copy
 997 * @skip:		 Number of bytes to skip before copying
 998 *
 999 * Returns the number of copied bytes.
1000 *
1001 **/
1002size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1003			    const void *buf, size_t buflen, off_t skip)
1004{
1005	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
1006}
1007EXPORT_SYMBOL(sg_pcopy_from_buffer);
1008
1009/**
1010 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
1011 * @sgl:		 The SG list
1012 * @nents:		 Number of SG entries
1013 * @buf:		 Where to copy to
1014 * @buflen:		 The number of bytes to copy
1015 * @skip:		 Number of bytes to skip before copying
1016 *
1017 * Returns the number of copied bytes.
1018 *
1019 **/
1020size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1021			  void *buf, size_t buflen, off_t skip)
1022{
1023	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
1024}
1025EXPORT_SYMBOL(sg_pcopy_to_buffer);
1026
1027/**
1028 * sg_zero_buffer - Zero-out a part of a SG list
1029 * @sgl:		 The SG list
1030 * @nents:		 Number of SG entries
1031 * @buflen:		 The number of bytes to zero out
1032 * @skip:		 Number of bytes to skip before zeroing
1033 *
1034 * Returns the number of bytes zeroed.
1035 **/
1036size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
1037		       size_t buflen, off_t skip)
1038{
1039	unsigned int offset = 0;
1040	struct sg_mapping_iter miter;
1041	unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
1042
1043	sg_miter_start(&miter, sgl, nents, sg_flags);
1044
1045	if (!sg_miter_skip(&miter, skip))
1046		return false;
1047
1048	while (offset < buflen && sg_miter_next(&miter)) {
1049		unsigned int len;
1050
1051		len = min(miter.length, buflen - offset);
1052		memset(miter.addr, 0, len);
1053
1054		offset += len;
1055	}
1056
1057	sg_miter_stop(&miter);
1058	return offset;
1059}
1060EXPORT_SYMBOL(sg_zero_buffer);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
   4 *
   5 * Scatterlist handling helpers.
   6 */
   7#include <linux/export.h>
   8#include <linux/slab.h>
   9#include <linux/scatterlist.h>
  10#include <linux/highmem.h>
  11#include <linux/kmemleak.h>
  12#include <linux/bvec.h>
  13#include <linux/uio.h>
  14
  15/**
  16 * sg_next - return the next scatterlist entry in a list
  17 * @sg:		The current sg entry
  18 *
  19 * Description:
  20 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
  21 *   of a chained scatterlist, it could jump to the start of a new
  22 *   scatterlist array.
  23 *
  24 **/
  25struct scatterlist *sg_next(struct scatterlist *sg)
  26{
  27	if (sg_is_last(sg))
  28		return NULL;
  29
  30	sg++;
  31	if (unlikely(sg_is_chain(sg)))
  32		sg = sg_chain_ptr(sg);
  33
  34	return sg;
  35}
  36EXPORT_SYMBOL(sg_next);
  37
  38/**
  39 * sg_nents - return total count of entries in scatterlist
  40 * @sg:		The scatterlist
  41 *
  42 * Description:
  43 * Allows to know how many entries are in sg, taking into account
  44 * chaining as well
  45 *
  46 **/
  47int sg_nents(struct scatterlist *sg)
  48{
  49	int nents;
  50	for (nents = 0; sg; sg = sg_next(sg))
  51		nents++;
  52	return nents;
  53}
  54EXPORT_SYMBOL(sg_nents);
  55
  56/**
  57 * sg_nents_for_len - return total count of entries in scatterlist
  58 *                    needed to satisfy the supplied length
  59 * @sg:		The scatterlist
  60 * @len:	The total required length
  61 *
  62 * Description:
  63 * Determines the number of entries in sg that are required to meet
  64 * the supplied length, taking into account chaining as well
  65 *
  66 * Returns:
  67 *   the number of sg entries needed, negative error on failure
  68 *
  69 **/
  70int sg_nents_for_len(struct scatterlist *sg, u64 len)
  71{
  72	int nents;
  73	u64 total;
  74
  75	if (!len)
  76		return 0;
  77
  78	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
  79		nents++;
  80		total += sg->length;
  81		if (total >= len)
  82			return nents;
  83	}
  84
  85	return -EINVAL;
  86}
  87EXPORT_SYMBOL(sg_nents_for_len);
  88
  89/**
  90 * sg_last - return the last scatterlist entry in a list
  91 * @sgl:	First entry in the scatterlist
  92 * @nents:	Number of entries in the scatterlist
  93 *
  94 * Description:
  95 *   Should only be used casually, it (currently) scans the entire list
  96 *   to get the last entry.
  97 *
  98 *   Note that the @sgl@ pointer passed in need not be the first one,
  99 *   the important bit is that @nents@ denotes the number of entries that
 100 *   exist from @sgl@.
 101 *
 102 **/
 103struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
 104{
 105	struct scatterlist *sg, *ret = NULL;
 106	unsigned int i;
 107
 108	for_each_sg(sgl, sg, nents, i)
 109		ret = sg;
 110
 111	BUG_ON(!sg_is_last(ret));
 112	return ret;
 113}
 114EXPORT_SYMBOL(sg_last);
 115
 116/**
 117 * sg_init_table - Initialize SG table
 118 * @sgl:	   The SG table
 119 * @nents:	   Number of entries in table
 120 *
 121 * Notes:
 122 *   If this is part of a chained sg table, sg_mark_end() should be
 123 *   used only on the last table part.
 124 *
 125 **/
 126void sg_init_table(struct scatterlist *sgl, unsigned int nents)
 127{
 128	memset(sgl, 0, sizeof(*sgl) * nents);
 129	sg_init_marker(sgl, nents);
 130}
 131EXPORT_SYMBOL(sg_init_table);
 132
 133/**
 134 * sg_init_one - Initialize a single entry sg list
 135 * @sg:		 SG entry
 136 * @buf:	 Virtual address for IO
 137 * @buflen:	 IO length
 138 *
 139 **/
 140void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
 141{
 142	sg_init_table(sg, 1);
 143	sg_set_buf(sg, buf, buflen);
 144}
 145EXPORT_SYMBOL(sg_init_one);
 146
 147/*
 148 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
 149 * helpers.
 150 */
 151static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
 152{
 153	if (nents == SG_MAX_SINGLE_ALLOC) {
 154		/*
 155		 * Kmemleak doesn't track page allocations as they are not
 156		 * commonly used (in a raw form) for kernel data structures.
 157		 * As we chain together a list of pages and then a normal
 158		 * kmalloc (tracked by kmemleak), in order to for that last
 159		 * allocation not to become decoupled (and thus a
 160		 * false-positive) we need to inform kmemleak of all the
 161		 * intermediate allocations.
 162		 */
 163		void *ptr = (void *) __get_free_page(gfp_mask);
 164		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
 165		return ptr;
 166	} else
 167		return kmalloc_array(nents, sizeof(struct scatterlist),
 168				     gfp_mask);
 169}
 170
 171static void sg_kfree(struct scatterlist *sg, unsigned int nents)
 172{
 173	if (nents == SG_MAX_SINGLE_ALLOC) {
 174		kmemleak_free(sg);
 175		free_page((unsigned long) sg);
 176	} else
 177		kfree(sg);
 178}
 179
 180/**
 181 * __sg_free_table - Free a previously mapped sg table
 182 * @table:	The sg table header to use
 183 * @max_ents:	The maximum number of entries per single scatterlist
 184 * @nents_first_chunk: Number of entries int the (preallocated) first
 185 * 	scatterlist chunk, 0 means no such preallocated first chunk
 186 * @free_fn:	Free function
 187 * @num_ents:	Number of entries in the table
 188 *
 189 *  Description:
 190 *    Free an sg table previously allocated and setup with
 191 *    __sg_alloc_table().  The @max_ents value must be identical to
 192 *    that previously used with __sg_alloc_table().
 193 *
 194 **/
 195void __sg_free_table(struct sg_table *table, unsigned int max_ents,
 196		     unsigned int nents_first_chunk, sg_free_fn *free_fn,
 197		     unsigned int num_ents)
 198{
 199	struct scatterlist *sgl, *next;
 200	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
 201
 202	if (unlikely(!table->sgl))
 203		return;
 204
 205	sgl = table->sgl;
 206	while (num_ents) {
 207		unsigned int alloc_size = num_ents;
 208		unsigned int sg_size;
 209
 210		/*
 211		 * If we have more than max_ents segments left,
 212		 * then assign 'next' to the sg table after the current one.
 213		 * sg_size is then one less than alloc size, since the last
 214		 * element is the chain pointer.
 215		 */
 216		if (alloc_size > curr_max_ents) {
 217			next = sg_chain_ptr(&sgl[curr_max_ents - 1]);
 218			alloc_size = curr_max_ents;
 219			sg_size = alloc_size - 1;
 220		} else {
 221			sg_size = alloc_size;
 222			next = NULL;
 223		}
 224
 225		num_ents -= sg_size;
 226		if (nents_first_chunk)
 227			nents_first_chunk = 0;
 228		else
 229			free_fn(sgl, alloc_size);
 230		sgl = next;
 231		curr_max_ents = max_ents;
 232	}
 233
 234	table->sgl = NULL;
 235}
 236EXPORT_SYMBOL(__sg_free_table);
 237
 238/**
 239 * sg_free_append_table - Free a previously allocated append sg table.
 240 * @table:	 The mapped sg append table header
 241 *
 242 **/
 243void sg_free_append_table(struct sg_append_table *table)
 244{
 245	__sg_free_table(&table->sgt, SG_MAX_SINGLE_ALLOC, 0, sg_kfree,
 246			table->total_nents);
 247}
 248EXPORT_SYMBOL(sg_free_append_table);
 249
 250
 251/**
 252 * sg_free_table - Free a previously allocated sg table
 253 * @table:	The mapped sg table header
 254 *
 255 **/
 256void sg_free_table(struct sg_table *table)
 257{
 258	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree,
 259			table->orig_nents);
 260}
 261EXPORT_SYMBOL(sg_free_table);
 262
 263/**
 264 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
 265 * @table:	The sg table header to use
 266 * @nents:	Number of entries in sg list
 267 * @max_ents:	The maximum number of entries the allocator returns per call
 268 * @first_chunk: first SGL if preallocated (may be %NULL)
 269 * @nents_first_chunk: Number of entries in the (preallocated) first
 270 * 	scatterlist chunk, 0 means no such preallocated chunk provided by user
 271 * @gfp_mask:	GFP allocation mask
 272 * @alloc_fn:	Allocator to use
 273 *
 274 * Description:
 275 *   This function returns a @table @nents long. The allocator is
 276 *   defined to return scatterlist chunks of maximum size @max_ents.
 277 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
 278 *   chained in units of @max_ents.
 279 *
 280 * Notes:
 281 *   If this function returns non-0 (eg failure), the caller must call
 282 *   __sg_free_table() to cleanup any leftover allocations.
 283 *
 284 **/
 285int __sg_alloc_table(struct sg_table *table, unsigned int nents,
 286		     unsigned int max_ents, struct scatterlist *first_chunk,
 287		     unsigned int nents_first_chunk, gfp_t gfp_mask,
 288		     sg_alloc_fn *alloc_fn)
 289{
 290	struct scatterlist *sg, *prv;
 291	unsigned int left;
 292	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
 293	unsigned prv_max_ents;
 294
 295	memset(table, 0, sizeof(*table));
 296
 297	if (nents == 0)
 298		return -EINVAL;
 299#ifdef CONFIG_ARCH_NO_SG_CHAIN
 300	if (WARN_ON_ONCE(nents > max_ents))
 301		return -EINVAL;
 302#endif
 303
 304	left = nents;
 305	prv = NULL;
 306	do {
 307		unsigned int sg_size, alloc_size = left;
 308
 309		if (alloc_size > curr_max_ents) {
 310			alloc_size = curr_max_ents;
 311			sg_size = alloc_size - 1;
 312		} else
 313			sg_size = alloc_size;
 314
 315		left -= sg_size;
 316
 317		if (first_chunk) {
 318			sg = first_chunk;
 319			first_chunk = NULL;
 320		} else {
 321			sg = alloc_fn(alloc_size, gfp_mask);
 322		}
 323		if (unlikely(!sg)) {
 324			/*
 325			 * Adjust entry count to reflect that the last
 326			 * entry of the previous table won't be used for
 327			 * linkage.  Without this, sg_kfree() may get
 328			 * confused.
 329			 */
 330			if (prv)
 331				table->nents = ++table->orig_nents;
 332
 333			return -ENOMEM;
 334		}
 335
 336		sg_init_table(sg, alloc_size);
 337		table->nents = table->orig_nents += sg_size;
 338
 339		/*
 340		 * If this is the first mapping, assign the sg table header.
 341		 * If this is not the first mapping, chain previous part.
 342		 */
 343		if (prv)
 344			sg_chain(prv, prv_max_ents, sg);
 345		else
 346			table->sgl = sg;
 347
 348		/*
 349		 * If no more entries after this one, mark the end
 350		 */
 351		if (!left)
 352			sg_mark_end(&sg[sg_size - 1]);
 353
 354		prv = sg;
 355		prv_max_ents = curr_max_ents;
 356		curr_max_ents = max_ents;
 357	} while (left);
 358
 359	return 0;
 360}
 361EXPORT_SYMBOL(__sg_alloc_table);
 362
 363/**
 364 * sg_alloc_table - Allocate and initialize an sg table
 365 * @table:	The sg table header to use
 366 * @nents:	Number of entries in sg list
 367 * @gfp_mask:	GFP allocation mask
 368 *
 369 *  Description:
 370 *    Allocate and initialize an sg table. If @nents@ is larger than
 371 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
 372 *
 373 **/
 374int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
 375{
 376	int ret;
 377
 378	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
 379			       NULL, 0, gfp_mask, sg_kmalloc);
 380	if (unlikely(ret))
 381		sg_free_table(table);
 
 382	return ret;
 383}
 384EXPORT_SYMBOL(sg_alloc_table);
 385
 386static struct scatterlist *get_next_sg(struct sg_append_table *table,
 387				       struct scatterlist *cur,
 388				       unsigned long needed_sges,
 389				       gfp_t gfp_mask)
 390{
 391	struct scatterlist *new_sg, *next_sg;
 392	unsigned int alloc_size;
 393
 394	if (cur) {
 395		next_sg = sg_next(cur);
 396		/* Check if last entry should be keeped for chainning */
 397		if (!sg_is_last(next_sg) || needed_sges == 1)
 398			return next_sg;
 399	}
 400
 401	alloc_size = min_t(unsigned long, needed_sges, SG_MAX_SINGLE_ALLOC);
 402	new_sg = sg_kmalloc(alloc_size, gfp_mask);
 403	if (!new_sg)
 404		return ERR_PTR(-ENOMEM);
 405	sg_init_table(new_sg, alloc_size);
 406	if (cur) {
 407		table->total_nents += alloc_size - 1;
 408		__sg_chain(next_sg, new_sg);
 
 409	} else {
 410		table->sgt.sgl = new_sg;
 411		table->total_nents = alloc_size;
 
 412	}
 413	return new_sg;
 414}
 415
 416static bool pages_are_mergeable(struct page *a, struct page *b)
 417{
 418	if (page_to_pfn(a) != page_to_pfn(b) + 1)
 419		return false;
 420	if (!zone_device_pages_have_same_pgmap(a, b))
 421		return false;
 422	return true;
 423}
 424
 425/**
 426 * sg_alloc_append_table_from_pages - Allocate and initialize an append sg
 427 *                                    table from an array of pages
 428 * @sgt_append:  The sg append table to use
 429 * @pages:       Pointer to an array of page pointers
 430 * @n_pages:     Number of pages in the pages array
 431 * @offset:      Offset from start of the first page to the start of a buffer
 432 * @size:        Number of valid bytes in the buffer (after offset)
 433 * @max_segment: Maximum size of a scatterlist element in bytes
 
 434 * @left_pages:  Left pages caller have to set after this call
 435 * @gfp_mask:	 GFP allocation mask
 436 *
 437 * Description:
 438 *    In the first call it allocate and initialize an sg table from a list of
 439 *    pages, else reuse the scatterlist from sgt_append. Contiguous ranges of
 440 *    the pages are squashed into a single scatterlist entry up to the maximum
 441 *    size specified in @max_segment.  A user may provide an offset at a start
 442 *    and a size of valid data in a buffer specified by the page array. The
 443 *    returned sg table is released by sg_free_append_table
 444 *
 445 * Returns:
 446 *   0 on success, negative error on failure
 
 447 *
 448 * Notes:
 449 *   If this function returns non-0 (eg failure), the caller must call
 450 *   sg_free_append_table() to cleanup any leftover allocations.
 451 *
 452 *   In the fist call, sgt_append must by initialized.
 453 */
 454int sg_alloc_append_table_from_pages(struct sg_append_table *sgt_append,
 455		struct page **pages, unsigned int n_pages, unsigned int offset,
 456		unsigned long size, unsigned int max_segment,
 457		unsigned int left_pages, gfp_t gfp_mask)
 
 458{
 459	unsigned int chunks, cur_page, seg_len, i, prv_len = 0;
 460	unsigned int added_nents = 0;
 461	struct scatterlist *s = sgt_append->prv;
 462	struct page *last_pg;
 463
 464	/*
 465	 * The algorithm below requires max_segment to be aligned to PAGE_SIZE
 466	 * otherwise it can overshoot.
 467	 */
 468	max_segment = ALIGN_DOWN(max_segment, PAGE_SIZE);
 469	if (WARN_ON(max_segment < PAGE_SIZE))
 470		return -EINVAL;
 471
 472	if (IS_ENABLED(CONFIG_ARCH_NO_SG_CHAIN) && sgt_append->prv)
 473		return -EOPNOTSUPP;
 474
 475	if (sgt_append->prv) {
 476		unsigned long next_pfn = (page_to_phys(sg_page(sgt_append->prv)) +
 477			sgt_append->prv->offset + sgt_append->prv->length) / PAGE_SIZE;
 
 478
 479		if (WARN_ON(offset))
 480			return -EINVAL;
 481
 482		/* Merge contiguous pages into the last SG */
 483		prv_len = sgt_append->prv->length;
 484		if (page_to_pfn(pages[0]) == next_pfn) {
 485			last_pg = pfn_to_page(next_pfn - 1);
 486			while (n_pages && pages_are_mergeable(pages[0], last_pg)) {
 487				if (sgt_append->prv->length + PAGE_SIZE > max_segment)
 488					break;
 489				sgt_append->prv->length += PAGE_SIZE;
 490				last_pg = pages[0];
 491				pages++;
 492				n_pages--;
 493			}
 494			if (!n_pages)
 495				goto out;
 496		}
 
 
 497	}
 498
 499	/* compute number of contiguous chunks */
 500	chunks = 1;
 501	seg_len = 0;
 502	for (i = 1; i < n_pages; i++) {
 503		seg_len += PAGE_SIZE;
 504		if (seg_len >= max_segment ||
 505		    !pages_are_mergeable(pages[i], pages[i - 1])) {
 506			chunks++;
 507			seg_len = 0;
 508		}
 509	}
 510
 511	/* merging chunks and putting them into the scatterlist */
 512	cur_page = 0;
 513	for (i = 0; i < chunks; i++) {
 514		unsigned int j, chunk_size;
 515
 516		/* look for the end of the current chunk */
 517		seg_len = 0;
 518		for (j = cur_page + 1; j < n_pages; j++) {
 519			seg_len += PAGE_SIZE;
 520			if (seg_len >= max_segment ||
 521			    !pages_are_mergeable(pages[j], pages[j - 1]))
 
 522				break;
 523		}
 524
 525		/* Pass how many chunks might be left */
 526		s = get_next_sg(sgt_append, s, chunks - i + left_pages,
 527				gfp_mask);
 528		if (IS_ERR(s)) {
 529			/*
 530			 * Adjust entry length to be as before function was
 531			 * called.
 532			 */
 533			if (sgt_append->prv)
 534				sgt_append->prv->length = prv_len;
 535			return PTR_ERR(s);
 536		}
 537		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
 538		sg_set_page(s, pages[cur_page],
 539			    min_t(unsigned long, size, chunk_size), offset);
 540		added_nents++;
 541		size -= chunk_size;
 542		offset = 0;
 543		cur_page = j;
 544	}
 545	sgt_append->sgt.nents += added_nents;
 546	sgt_append->sgt.orig_nents = sgt_append->sgt.nents;
 547	sgt_append->prv = s;
 548out:
 549	if (!left_pages)
 550		sg_mark_end(s);
 551	return 0;
 552}
 553EXPORT_SYMBOL(sg_alloc_append_table_from_pages);
 554
 555/**
 556 * sg_alloc_table_from_pages_segment - Allocate and initialize an sg table from
 557 *                                     an array of pages and given maximum
 558 *                                     segment.
 559 * @sgt:	 The sg table header to use
 560 * @pages:	 Pointer to an array of page pointers
 561 * @n_pages:	 Number of pages in the pages array
 562 * @offset:      Offset from start of the first page to the start of a buffer
 563 * @size:        Number of valid bytes in the buffer (after offset)
 564 * @max_segment: Maximum size of a scatterlist element in bytes
 565 * @gfp_mask:	 GFP allocation mask
 566 *
 567 *  Description:
 568 *    Allocate and initialize an sg table from a list of pages. Contiguous
 569 *    ranges of the pages are squashed into a single scatterlist node up to the
 570 *    maximum size specified in @max_segment. A user may provide an offset at a
 571 *    start and a size of valid data in a buffer specified by the page array.
 
 572 *
 573 *    The returned sg table is released by sg_free_table.
 574 *
 575 *  Returns:
 576 *   0 on success, negative error on failure
 577 */
 578int sg_alloc_table_from_pages_segment(struct sg_table *sgt, struct page **pages,
 579				unsigned int n_pages, unsigned int offset,
 580				unsigned long size, unsigned int max_segment,
 581				gfp_t gfp_mask)
 582{
 583	struct sg_append_table append = {};
 584	int err;
 585
 586	err = sg_alloc_append_table_from_pages(&append, pages, n_pages, offset,
 587					       size, max_segment, 0, gfp_mask);
 588	if (err) {
 589		sg_free_append_table(&append);
 590		return err;
 591	}
 592	memcpy(sgt, &append.sgt, sizeof(*sgt));
 593	WARN_ON(append.total_nents != sgt->orig_nents);
 594	return 0;
 595}
 596EXPORT_SYMBOL(sg_alloc_table_from_pages_segment);
 597
 598#ifdef CONFIG_SGL_ALLOC
 599
 600/**
 601 * sgl_alloc_order - allocate a scatterlist and its pages
 602 * @length: Length in bytes of the scatterlist. Must be at least one
 603 * @order: Second argument for alloc_pages()
 604 * @chainable: Whether or not to allocate an extra element in the scatterlist
 605 *	for scatterlist chaining purposes
 606 * @gfp: Memory allocation flags
 607 * @nent_p: [out] Number of entries in the scatterlist that have pages
 608 *
 609 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 610 */
 611struct scatterlist *sgl_alloc_order(unsigned long long length,
 612				    unsigned int order, bool chainable,
 613				    gfp_t gfp, unsigned int *nent_p)
 614{
 615	struct scatterlist *sgl, *sg;
 616	struct page *page;
 617	unsigned int nent, nalloc;
 618	u32 elem_len;
 619
 620	nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
 621	/* Check for integer overflow */
 622	if (length > (nent << (PAGE_SHIFT + order)))
 623		return NULL;
 624	nalloc = nent;
 625	if (chainable) {
 626		/* Check for integer overflow */
 627		if (nalloc + 1 < nalloc)
 628			return NULL;
 629		nalloc++;
 630	}
 631	sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
 632			    gfp & ~GFP_DMA);
 633	if (!sgl)
 634		return NULL;
 635
 636	sg_init_table(sgl, nalloc);
 637	sg = sgl;
 638	while (length) {
 639		elem_len = min_t(u64, length, PAGE_SIZE << order);
 640		page = alloc_pages(gfp, order);
 641		if (!page) {
 642			sgl_free_order(sgl, order);
 643			return NULL;
 644		}
 645
 646		sg_set_page(sg, page, elem_len, 0);
 647		length -= elem_len;
 648		sg = sg_next(sg);
 649	}
 650	WARN_ONCE(length, "length = %lld\n", length);
 651	if (nent_p)
 652		*nent_p = nent;
 653	return sgl;
 654}
 655EXPORT_SYMBOL(sgl_alloc_order);
 656
 657/**
 658 * sgl_alloc - allocate a scatterlist and its pages
 659 * @length: Length in bytes of the scatterlist
 660 * @gfp: Memory allocation flags
 661 * @nent_p: [out] Number of entries in the scatterlist
 662 *
 663 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 664 */
 665struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
 666			      unsigned int *nent_p)
 667{
 668	return sgl_alloc_order(length, 0, false, gfp, nent_p);
 669}
 670EXPORT_SYMBOL(sgl_alloc);
 671
 672/**
 673 * sgl_free_n_order - free a scatterlist and its pages
 674 * @sgl: Scatterlist with one or more elements
 675 * @nents: Maximum number of elements to free
 676 * @order: Second argument for __free_pages()
 677 *
 678 * Notes:
 679 * - If several scatterlists have been chained and each chain element is
 680 *   freed separately then it's essential to set nents correctly to avoid that a
 681 *   page would get freed twice.
 682 * - All pages in a chained scatterlist can be freed at once by setting @nents
 683 *   to a high number.
 684 */
 685void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
 686{
 687	struct scatterlist *sg;
 688	struct page *page;
 689	int i;
 690
 691	for_each_sg(sgl, sg, nents, i) {
 692		if (!sg)
 693			break;
 694		page = sg_page(sg);
 695		if (page)
 696			__free_pages(page, order);
 697	}
 698	kfree(sgl);
 699}
 700EXPORT_SYMBOL(sgl_free_n_order);
 701
 702/**
 703 * sgl_free_order - free a scatterlist and its pages
 704 * @sgl: Scatterlist with one or more elements
 705 * @order: Second argument for __free_pages()
 706 */
 707void sgl_free_order(struct scatterlist *sgl, int order)
 708{
 709	sgl_free_n_order(sgl, INT_MAX, order);
 710}
 711EXPORT_SYMBOL(sgl_free_order);
 712
 713/**
 714 * sgl_free - free a scatterlist and its pages
 715 * @sgl: Scatterlist with one or more elements
 716 */
 717void sgl_free(struct scatterlist *sgl)
 718{
 719	sgl_free_order(sgl, 0);
 720}
 721EXPORT_SYMBOL(sgl_free);
 722
 723#endif /* CONFIG_SGL_ALLOC */
 724
 725void __sg_page_iter_start(struct sg_page_iter *piter,
 726			  struct scatterlist *sglist, unsigned int nents,
 727			  unsigned long pgoffset)
 728{
 729	piter->__pg_advance = 0;
 730	piter->__nents = nents;
 731
 732	piter->sg = sglist;
 733	piter->sg_pgoffset = pgoffset;
 734}
 735EXPORT_SYMBOL(__sg_page_iter_start);
 736
 737static int sg_page_count(struct scatterlist *sg)
 738{
 739	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
 740}
 741
 742bool __sg_page_iter_next(struct sg_page_iter *piter)
 743{
 744	if (!piter->__nents || !piter->sg)
 745		return false;
 746
 747	piter->sg_pgoffset += piter->__pg_advance;
 748	piter->__pg_advance = 1;
 749
 750	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
 751		piter->sg_pgoffset -= sg_page_count(piter->sg);
 752		piter->sg = sg_next(piter->sg);
 753		if (!--piter->__nents || !piter->sg)
 754			return false;
 755	}
 756
 757	return true;
 758}
 759EXPORT_SYMBOL(__sg_page_iter_next);
 760
 761static int sg_dma_page_count(struct scatterlist *sg)
 762{
 763	return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
 764}
 765
 766bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
 767{
 768	struct sg_page_iter *piter = &dma_iter->base;
 769
 770	if (!piter->__nents || !piter->sg)
 771		return false;
 772
 773	piter->sg_pgoffset += piter->__pg_advance;
 774	piter->__pg_advance = 1;
 775
 776	while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
 777		piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
 778		piter->sg = sg_next(piter->sg);
 779		if (!--piter->__nents || !piter->sg)
 780			return false;
 781	}
 782
 783	return true;
 784}
 785EXPORT_SYMBOL(__sg_page_iter_dma_next);
 786
 787/**
 788 * sg_miter_start - start mapping iteration over a sg list
 789 * @miter: sg mapping iter to be started
 790 * @sgl: sg list to iterate over
 791 * @nents: number of sg entries
 792 * @flags: sg iterator flags
 793 *
 794 * Description:
 795 *   Starts mapping iterator @miter.
 796 *
 797 * Context:
 798 *   Don't care.
 799 */
 800void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
 801		    unsigned int nents, unsigned int flags)
 802{
 803	memset(miter, 0, sizeof(struct sg_mapping_iter));
 804
 805	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
 806	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
 807	miter->__flags = flags;
 808}
 809EXPORT_SYMBOL(sg_miter_start);
 810
 811static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
 812{
 813	if (!miter->__remaining) {
 814		struct scatterlist *sg;
 815
 816		if (!__sg_page_iter_next(&miter->piter))
 817			return false;
 818
 819		sg = miter->piter.sg;
 820
 821		miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
 822		miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
 823		miter->__offset &= PAGE_SIZE - 1;
 824		miter->__remaining = sg->offset + sg->length -
 825				     (miter->piter.sg_pgoffset << PAGE_SHIFT) -
 826				     miter->__offset;
 827		miter->__remaining = min_t(unsigned long, miter->__remaining,
 828					   PAGE_SIZE - miter->__offset);
 829	}
 830
 831	return true;
 832}
 833
 834/**
 835 * sg_miter_skip - reposition mapping iterator
 836 * @miter: sg mapping iter to be skipped
 837 * @offset: number of bytes to plus the current location
 838 *
 839 * Description:
 840 *   Sets the offset of @miter to its current location plus @offset bytes.
 841 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
 842 *   stops @miter.
 843 *
 844 * Context:
 845 *   Don't care.
 
 846 *
 847 * Returns:
 848 *   true if @miter contains the valid mapping.  false if end of sg
 849 *   list is reached.
 850 */
 851bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
 852{
 853	sg_miter_stop(miter);
 854
 855	while (offset) {
 856		off_t consumed;
 857
 858		if (!sg_miter_get_next_page(miter))
 859			return false;
 860
 861		consumed = min_t(off_t, offset, miter->__remaining);
 862		miter->__offset += consumed;
 863		miter->__remaining -= consumed;
 864		offset -= consumed;
 865	}
 866
 867	return true;
 868}
 869EXPORT_SYMBOL(sg_miter_skip);
 870
 871/**
 872 * sg_miter_next - proceed mapping iterator to the next mapping
 873 * @miter: sg mapping iter to proceed
 874 *
 875 * Description:
 876 *   Proceeds @miter to the next mapping.  @miter should have been started
 877 *   using sg_miter_start().  On successful return, @miter->page,
 878 *   @miter->addr and @miter->length point to the current mapping.
 879 *
 880 * Context:
 881 *   May sleep if !SG_MITER_ATOMIC.
 
 882 *
 883 * Returns:
 884 *   true if @miter contains the next mapping.  false if end of sg
 885 *   list is reached.
 886 */
 887bool sg_miter_next(struct sg_mapping_iter *miter)
 888{
 889	sg_miter_stop(miter);
 890
 891	/*
 892	 * Get to the next page if necessary.
 893	 * __remaining, __offset is adjusted by sg_miter_stop
 894	 */
 895	if (!sg_miter_get_next_page(miter))
 896		return false;
 897
 898	miter->page = sg_page_iter_page(&miter->piter);
 899	miter->consumed = miter->length = miter->__remaining;
 900
 901	if (miter->__flags & SG_MITER_ATOMIC)
 902		miter->addr = kmap_atomic(miter->page) + miter->__offset;
 903	else
 904		miter->addr = kmap(miter->page) + miter->__offset;
 905
 906	return true;
 907}
 908EXPORT_SYMBOL(sg_miter_next);
 909
 910/**
 911 * sg_miter_stop - stop mapping iteration
 912 * @miter: sg mapping iter to be stopped
 913 *
 914 * Description:
 915 *   Stops mapping iterator @miter.  @miter should have been started
 916 *   using sg_miter_start().  A stopped iteration can be resumed by
 917 *   calling sg_miter_next() on it.  This is useful when resources (kmap)
 918 *   need to be released during iteration.
 919 *
 920 * Context:
 921 *   Don't care otherwise.
 
 922 */
 923void sg_miter_stop(struct sg_mapping_iter *miter)
 924{
 925	WARN_ON(miter->consumed > miter->length);
 926
 927	/* drop resources from the last iteration */
 928	if (miter->addr) {
 929		miter->__offset += miter->consumed;
 930		miter->__remaining -= miter->consumed;
 931
 932		if (miter->__flags & SG_MITER_TO_SG)
 933			flush_dcache_page(miter->page);
 
 934
 935		if (miter->__flags & SG_MITER_ATOMIC) {
 936			WARN_ON_ONCE(!pagefault_disabled());
 937			kunmap_atomic(miter->addr);
 938		} else
 939			kunmap(miter->page);
 940
 941		miter->page = NULL;
 942		miter->addr = NULL;
 943		miter->length = 0;
 944		miter->consumed = 0;
 945	}
 946}
 947EXPORT_SYMBOL(sg_miter_stop);
 948
 949/**
 950 * sg_copy_buffer - Copy data between a linear buffer and an SG list
 951 * @sgl:		 The SG list
 952 * @nents:		 Number of SG entries
 953 * @buf:		 Where to copy from
 954 * @buflen:		 The number of bytes to copy
 955 * @skip:		 Number of bytes to skip before copying
 956 * @to_buffer:		 transfer direction (true == from an sg list to a
 957 *			 buffer, false == from a buffer to an sg list)
 958 *
 959 * Returns the number of copied bytes.
 960 *
 961 **/
 962size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
 963		      size_t buflen, off_t skip, bool to_buffer)
 964{
 965	unsigned int offset = 0;
 966	struct sg_mapping_iter miter;
 967	unsigned int sg_flags = SG_MITER_ATOMIC;
 968
 969	if (to_buffer)
 970		sg_flags |= SG_MITER_FROM_SG;
 971	else
 972		sg_flags |= SG_MITER_TO_SG;
 973
 974	sg_miter_start(&miter, sgl, nents, sg_flags);
 975
 976	if (!sg_miter_skip(&miter, skip))
 977		return 0;
 978
 979	while ((offset < buflen) && sg_miter_next(&miter)) {
 980		unsigned int len;
 981
 982		len = min(miter.length, buflen - offset);
 983
 984		if (to_buffer)
 985			memcpy(buf + offset, miter.addr, len);
 986		else
 987			memcpy(miter.addr, buf + offset, len);
 988
 989		offset += len;
 990	}
 991
 992	sg_miter_stop(&miter);
 993
 994	return offset;
 995}
 996EXPORT_SYMBOL(sg_copy_buffer);
 997
 998/**
 999 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
1000 * @sgl:		 The SG list
1001 * @nents:		 Number of SG entries
1002 * @buf:		 Where to copy from
1003 * @buflen:		 The number of bytes to copy
1004 *
1005 * Returns the number of copied bytes.
1006 *
1007 **/
1008size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1009			   const void *buf, size_t buflen)
1010{
1011	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
1012}
1013EXPORT_SYMBOL(sg_copy_from_buffer);
1014
1015/**
1016 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
1017 * @sgl:		 The SG list
1018 * @nents:		 Number of SG entries
1019 * @buf:		 Where to copy to
1020 * @buflen:		 The number of bytes to copy
1021 *
1022 * Returns the number of copied bytes.
1023 *
1024 **/
1025size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1026			 void *buf, size_t buflen)
1027{
1028	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
1029}
1030EXPORT_SYMBOL(sg_copy_to_buffer);
1031
1032/**
1033 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
1034 * @sgl:		 The SG list
1035 * @nents:		 Number of SG entries
1036 * @buf:		 Where to copy from
1037 * @buflen:		 The number of bytes to copy
1038 * @skip:		 Number of bytes to skip before copying
1039 *
1040 * Returns the number of copied bytes.
1041 *
1042 **/
1043size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1044			    const void *buf, size_t buflen, off_t skip)
1045{
1046	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
1047}
1048EXPORT_SYMBOL(sg_pcopy_from_buffer);
1049
1050/**
1051 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
1052 * @sgl:		 The SG list
1053 * @nents:		 Number of SG entries
1054 * @buf:		 Where to copy to
1055 * @buflen:		 The number of bytes to copy
1056 * @skip:		 Number of bytes to skip before copying
1057 *
1058 * Returns the number of copied bytes.
1059 *
1060 **/
1061size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1062			  void *buf, size_t buflen, off_t skip)
1063{
1064	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
1065}
1066EXPORT_SYMBOL(sg_pcopy_to_buffer);
1067
1068/**
1069 * sg_zero_buffer - Zero-out a part of a SG list
1070 * @sgl:		 The SG list
1071 * @nents:		 Number of SG entries
1072 * @buflen:		 The number of bytes to zero out
1073 * @skip:		 Number of bytes to skip before zeroing
1074 *
1075 * Returns the number of bytes zeroed.
1076 **/
1077size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
1078		       size_t buflen, off_t skip)
1079{
1080	unsigned int offset = 0;
1081	struct sg_mapping_iter miter;
1082	unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
1083
1084	sg_miter_start(&miter, sgl, nents, sg_flags);
1085
1086	if (!sg_miter_skip(&miter, skip))
1087		return false;
1088
1089	while (offset < buflen && sg_miter_next(&miter)) {
1090		unsigned int len;
1091
1092		len = min(miter.length, buflen - offset);
1093		memset(miter.addr, 0, len);
1094
1095		offset += len;
1096	}
1097
1098	sg_miter_stop(&miter);
1099	return offset;
1100}
1101EXPORT_SYMBOL(sg_zero_buffer);
1102
1103/*
1104 * Extract and pin a list of up to sg_max pages from UBUF- or IOVEC-class
1105 * iterators, and add them to the scatterlist.
1106 */
1107static ssize_t extract_user_to_sg(struct iov_iter *iter,
1108				  ssize_t maxsize,
1109				  struct sg_table *sgtable,
1110				  unsigned int sg_max,
1111				  iov_iter_extraction_t extraction_flags)
1112{
1113	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1114	struct page **pages;
1115	unsigned int npages;
1116	ssize_t ret = 0, res;
1117	size_t len, off;
1118
1119	/* We decant the page list into the tail of the scatterlist */
1120	pages = (void *)sgtable->sgl +
1121		array_size(sg_max, sizeof(struct scatterlist));
1122	pages -= sg_max;
1123
1124	do {
1125		res = iov_iter_extract_pages(iter, &pages, maxsize, sg_max,
1126					     extraction_flags, &off);
1127		if (res <= 0)
1128			goto failed;
1129
1130		len = res;
1131		maxsize -= len;
1132		ret += len;
1133		npages = DIV_ROUND_UP(off + len, PAGE_SIZE);
1134		sg_max -= npages;
1135
1136		for (; npages > 0; npages--) {
1137			struct page *page = *pages;
1138			size_t seg = min_t(size_t, PAGE_SIZE - off, len);
1139
1140			*pages++ = NULL;
1141			sg_set_page(sg, page, seg, off);
1142			sgtable->nents++;
1143			sg++;
1144			len -= seg;
1145			off = 0;
1146		}
1147	} while (maxsize > 0 && sg_max > 0);
1148
1149	return ret;
1150
1151failed:
1152	while (sgtable->nents > sgtable->orig_nents)
1153		unpin_user_page(sg_page(&sgtable->sgl[--sgtable->nents]));
1154	return res;
1155}
1156
1157/*
1158 * Extract up to sg_max pages from a BVEC-type iterator and add them to the
1159 * scatterlist.  The pages are not pinned.
1160 */
1161static ssize_t extract_bvec_to_sg(struct iov_iter *iter,
1162				  ssize_t maxsize,
1163				  struct sg_table *sgtable,
1164				  unsigned int sg_max,
1165				  iov_iter_extraction_t extraction_flags)
1166{
1167	const struct bio_vec *bv = iter->bvec;
1168	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1169	unsigned long start = iter->iov_offset;
1170	unsigned int i;
1171	ssize_t ret = 0;
1172
1173	for (i = 0; i < iter->nr_segs; i++) {
1174		size_t off, len;
1175
1176		len = bv[i].bv_len;
1177		if (start >= len) {
1178			start -= len;
1179			continue;
1180		}
1181
1182		len = min_t(size_t, maxsize, len - start);
1183		off = bv[i].bv_offset + start;
1184
1185		sg_set_page(sg, bv[i].bv_page, len, off);
1186		sgtable->nents++;
1187		sg++;
1188		sg_max--;
1189
1190		ret += len;
1191		maxsize -= len;
1192		if (maxsize <= 0 || sg_max == 0)
1193			break;
1194		start = 0;
1195	}
1196
1197	if (ret > 0)
1198		iov_iter_advance(iter, ret);
1199	return ret;
1200}
1201
1202/*
1203 * Extract up to sg_max pages from a KVEC-type iterator and add them to the
1204 * scatterlist.  This can deal with vmalloc'd buffers as well as kmalloc'd or
1205 * static buffers.  The pages are not pinned.
1206 */
1207static ssize_t extract_kvec_to_sg(struct iov_iter *iter,
1208				  ssize_t maxsize,
1209				  struct sg_table *sgtable,
1210				  unsigned int sg_max,
1211				  iov_iter_extraction_t extraction_flags)
1212{
1213	const struct kvec *kv = iter->kvec;
1214	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1215	unsigned long start = iter->iov_offset;
1216	unsigned int i;
1217	ssize_t ret = 0;
1218
1219	for (i = 0; i < iter->nr_segs; i++) {
1220		struct page *page;
1221		unsigned long kaddr;
1222		size_t off, len, seg;
1223
1224		len = kv[i].iov_len;
1225		if (start >= len) {
1226			start -= len;
1227			continue;
1228		}
1229
1230		kaddr = (unsigned long)kv[i].iov_base + start;
1231		off = kaddr & ~PAGE_MASK;
1232		len = min_t(size_t, maxsize, len - start);
1233		kaddr &= PAGE_MASK;
1234
1235		maxsize -= len;
1236		ret += len;
1237		do {
1238			seg = min_t(size_t, len, PAGE_SIZE - off);
1239			if (is_vmalloc_or_module_addr((void *)kaddr))
1240				page = vmalloc_to_page((void *)kaddr);
1241			else
1242				page = virt_to_page((void *)kaddr);
1243
1244			sg_set_page(sg, page, len, off);
1245			sgtable->nents++;
1246			sg++;
1247			sg_max--;
1248
1249			len -= seg;
1250			kaddr += PAGE_SIZE;
1251			off = 0;
1252		} while (len > 0 && sg_max > 0);
1253
1254		if (maxsize <= 0 || sg_max == 0)
1255			break;
1256		start = 0;
1257	}
1258
1259	if (ret > 0)
1260		iov_iter_advance(iter, ret);
1261	return ret;
1262}
1263
1264/*
1265 * Extract up to sg_max folios from an XARRAY-type iterator and add them to
1266 * the scatterlist.  The pages are not pinned.
1267 */
1268static ssize_t extract_xarray_to_sg(struct iov_iter *iter,
1269				    ssize_t maxsize,
1270				    struct sg_table *sgtable,
1271				    unsigned int sg_max,
1272				    iov_iter_extraction_t extraction_flags)
1273{
1274	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1275	struct xarray *xa = iter->xarray;
1276	struct folio *folio;
1277	loff_t start = iter->xarray_start + iter->iov_offset;
1278	pgoff_t index = start / PAGE_SIZE;
1279	ssize_t ret = 0;
1280	size_t offset, len;
1281	XA_STATE(xas, xa, index);
1282
1283	rcu_read_lock();
1284
1285	xas_for_each(&xas, folio, ULONG_MAX) {
1286		if (xas_retry(&xas, folio))
1287			continue;
1288		if (WARN_ON(xa_is_value(folio)))
1289			break;
1290		if (WARN_ON(folio_test_hugetlb(folio)))
1291			break;
1292
1293		offset = offset_in_folio(folio, start);
1294		len = min_t(size_t, maxsize, folio_size(folio) - offset);
1295
1296		sg_set_page(sg, folio_page(folio, 0), len, offset);
1297		sgtable->nents++;
1298		sg++;
1299		sg_max--;
1300
1301		maxsize -= len;
1302		ret += len;
1303		if (maxsize <= 0 || sg_max == 0)
1304			break;
1305	}
1306
1307	rcu_read_unlock();
1308	if (ret > 0)
1309		iov_iter_advance(iter, ret);
1310	return ret;
1311}
1312
1313/**
1314 * extract_iter_to_sg - Extract pages from an iterator and add to an sglist
1315 * @iter: The iterator to extract from
1316 * @maxsize: The amount of iterator to copy
1317 * @sgtable: The scatterlist table to fill in
1318 * @sg_max: Maximum number of elements in @sgtable that may be filled
1319 * @extraction_flags: Flags to qualify the request
1320 *
1321 * Extract the page fragments from the given amount of the source iterator and
1322 * add them to a scatterlist that refers to all of those bits, to a maximum
1323 * addition of @sg_max elements.
1324 *
1325 * The pages referred to by UBUF- and IOVEC-type iterators are extracted and
1326 * pinned; BVEC-, KVEC- and XARRAY-type are extracted but aren't pinned; PIPE-
1327 * and DISCARD-type are not supported.
1328 *
1329 * No end mark is placed on the scatterlist; that's left to the caller.
1330 *
1331 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1332 * be allowed on the pages extracted.
1333 *
1334 * If successful, @sgtable->nents is updated to include the number of elements
1335 * added and the number of bytes added is returned.  @sgtable->orig_nents is
1336 * left unaltered.
1337 *
1338 * The iov_iter_extract_mode() function should be used to query how cleanup
1339 * should be performed.
1340 */
1341ssize_t extract_iter_to_sg(struct iov_iter *iter, size_t maxsize,
1342			   struct sg_table *sgtable, unsigned int sg_max,
1343			   iov_iter_extraction_t extraction_flags)
1344{
1345	if (maxsize == 0)
1346		return 0;
1347
1348	switch (iov_iter_type(iter)) {
1349	case ITER_UBUF:
1350	case ITER_IOVEC:
1351		return extract_user_to_sg(iter, maxsize, sgtable, sg_max,
1352					  extraction_flags);
1353	case ITER_BVEC:
1354		return extract_bvec_to_sg(iter, maxsize, sgtable, sg_max,
1355					  extraction_flags);
1356	case ITER_KVEC:
1357		return extract_kvec_to_sg(iter, maxsize, sgtable, sg_max,
1358					  extraction_flags);
1359	case ITER_XARRAY:
1360		return extract_xarray_to_sg(iter, maxsize, sgtable, sg_max,
1361					    extraction_flags);
1362	default:
1363		pr_err("%s(%u) unsupported\n", __func__, iov_iter_type(iter));
1364		WARN_ON_ONCE(1);
1365		return -EIO;
1366	}
1367}
1368EXPORT_SYMBOL_GPL(extract_iter_to_sg);