Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
4 *
5 * Scatterlist handling helpers.
6 */
7#include <linux/export.h>
8#include <linux/slab.h>
9#include <linux/scatterlist.h>
10#include <linux/highmem.h>
11#include <linux/kmemleak.h>
12
13/**
14 * sg_next - return the next scatterlist entry in a list
15 * @sg: The current sg entry
16 *
17 * Description:
18 * Usually the next entry will be @sg@ + 1, but if this sg element is part
19 * of a chained scatterlist, it could jump to the start of a new
20 * scatterlist array.
21 *
22 **/
23struct scatterlist *sg_next(struct scatterlist *sg)
24{
25 if (sg_is_last(sg))
26 return NULL;
27
28 sg++;
29 if (unlikely(sg_is_chain(sg)))
30 sg = sg_chain_ptr(sg);
31
32 return sg;
33}
34EXPORT_SYMBOL(sg_next);
35
36/**
37 * sg_nents - return total count of entries in scatterlist
38 * @sg: The scatterlist
39 *
40 * Description:
41 * Allows to know how many entries are in sg, taking into account
42 * chaining as well
43 *
44 **/
45int sg_nents(struct scatterlist *sg)
46{
47 int nents;
48 for (nents = 0; sg; sg = sg_next(sg))
49 nents++;
50 return nents;
51}
52EXPORT_SYMBOL(sg_nents);
53
54/**
55 * sg_nents_for_len - return total count of entries in scatterlist
56 * needed to satisfy the supplied length
57 * @sg: The scatterlist
58 * @len: The total required length
59 *
60 * Description:
61 * Determines the number of entries in sg that are required to meet
62 * the supplied length, taking into account chaining as well
63 *
64 * Returns:
65 * the number of sg entries needed, negative error on failure
66 *
67 **/
68int sg_nents_for_len(struct scatterlist *sg, u64 len)
69{
70 int nents;
71 u64 total;
72
73 if (!len)
74 return 0;
75
76 for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
77 nents++;
78 total += sg->length;
79 if (total >= len)
80 return nents;
81 }
82
83 return -EINVAL;
84}
85EXPORT_SYMBOL(sg_nents_for_len);
86
87/**
88 * sg_last - return the last scatterlist entry in a list
89 * @sgl: First entry in the scatterlist
90 * @nents: Number of entries in the scatterlist
91 *
92 * Description:
93 * Should only be used casually, it (currently) scans the entire list
94 * to get the last entry.
95 *
96 * Note that the @sgl@ pointer passed in need not be the first one,
97 * the important bit is that @nents@ denotes the number of entries that
98 * exist from @sgl@.
99 *
100 **/
101struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
102{
103 struct scatterlist *sg, *ret = NULL;
104 unsigned int i;
105
106 for_each_sg(sgl, sg, nents, i)
107 ret = sg;
108
109 BUG_ON(!sg_is_last(ret));
110 return ret;
111}
112EXPORT_SYMBOL(sg_last);
113
114/**
115 * sg_init_table - Initialize SG table
116 * @sgl: The SG table
117 * @nents: Number of entries in table
118 *
119 * Notes:
120 * If this is part of a chained sg table, sg_mark_end() should be
121 * used only on the last table part.
122 *
123 **/
124void sg_init_table(struct scatterlist *sgl, unsigned int nents)
125{
126 memset(sgl, 0, sizeof(*sgl) * nents);
127 sg_init_marker(sgl, nents);
128}
129EXPORT_SYMBOL(sg_init_table);
130
131/**
132 * sg_init_one - Initialize a single entry sg list
133 * @sg: SG entry
134 * @buf: Virtual address for IO
135 * @buflen: IO length
136 *
137 **/
138void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
139{
140 sg_init_table(sg, 1);
141 sg_set_buf(sg, buf, buflen);
142}
143EXPORT_SYMBOL(sg_init_one);
144
145/*
146 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
147 * helpers.
148 */
149static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
150{
151 if (nents == SG_MAX_SINGLE_ALLOC) {
152 /*
153 * Kmemleak doesn't track page allocations as they are not
154 * commonly used (in a raw form) for kernel data structures.
155 * As we chain together a list of pages and then a normal
156 * kmalloc (tracked by kmemleak), in order to for that last
157 * allocation not to become decoupled (and thus a
158 * false-positive) we need to inform kmemleak of all the
159 * intermediate allocations.
160 */
161 void *ptr = (void *) __get_free_page(gfp_mask);
162 kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
163 return ptr;
164 } else
165 return kmalloc_array(nents, sizeof(struct scatterlist),
166 gfp_mask);
167}
168
169static void sg_kfree(struct scatterlist *sg, unsigned int nents)
170{
171 if (nents == SG_MAX_SINGLE_ALLOC) {
172 kmemleak_free(sg);
173 free_page((unsigned long) sg);
174 } else
175 kfree(sg);
176}
177
178/**
179 * __sg_free_table - Free a previously mapped sg table
180 * @table: The sg table header to use
181 * @max_ents: The maximum number of entries per single scatterlist
182 * @nents_first_chunk: Number of entries int the (preallocated) first
183 * scatterlist chunk, 0 means no such preallocated first chunk
184 * @free_fn: Free function
185 *
186 * Description:
187 * Free an sg table previously allocated and setup with
188 * __sg_alloc_table(). The @max_ents value must be identical to
189 * that previously used with __sg_alloc_table().
190 *
191 **/
192void __sg_free_table(struct sg_table *table, unsigned int max_ents,
193 unsigned int nents_first_chunk, sg_free_fn *free_fn)
194{
195 struct scatterlist *sgl, *next;
196 unsigned curr_max_ents = nents_first_chunk ?: max_ents;
197
198 if (unlikely(!table->sgl))
199 return;
200
201 sgl = table->sgl;
202 while (table->orig_nents) {
203 unsigned int alloc_size = table->orig_nents;
204 unsigned int sg_size;
205
206 /*
207 * If we have more than max_ents segments left,
208 * then assign 'next' to the sg table after the current one.
209 * sg_size is then one less than alloc size, since the last
210 * element is the chain pointer.
211 */
212 if (alloc_size > curr_max_ents) {
213 next = sg_chain_ptr(&sgl[curr_max_ents - 1]);
214 alloc_size = curr_max_ents;
215 sg_size = alloc_size - 1;
216 } else {
217 sg_size = alloc_size;
218 next = NULL;
219 }
220
221 table->orig_nents -= sg_size;
222 if (nents_first_chunk)
223 nents_first_chunk = 0;
224 else
225 free_fn(sgl, alloc_size);
226 sgl = next;
227 curr_max_ents = max_ents;
228 }
229
230 table->sgl = NULL;
231}
232EXPORT_SYMBOL(__sg_free_table);
233
234/**
235 * sg_free_table - Free a previously allocated sg table
236 * @table: The mapped sg table header
237 *
238 **/
239void sg_free_table(struct sg_table *table)
240{
241 __sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
242}
243EXPORT_SYMBOL(sg_free_table);
244
245/**
246 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
247 * @table: The sg table header to use
248 * @nents: Number of entries in sg list
249 * @max_ents: The maximum number of entries the allocator returns per call
250 * @nents_first_chunk: Number of entries int the (preallocated) first
251 * scatterlist chunk, 0 means no such preallocated chunk provided by user
252 * @gfp_mask: GFP allocation mask
253 * @alloc_fn: Allocator to use
254 *
255 * Description:
256 * This function returns a @table @nents long. The allocator is
257 * defined to return scatterlist chunks of maximum size @max_ents.
258 * Thus if @nents is bigger than @max_ents, the scatterlists will be
259 * chained in units of @max_ents.
260 *
261 * Notes:
262 * If this function returns non-0 (eg failure), the caller must call
263 * __sg_free_table() to cleanup any leftover allocations.
264 *
265 **/
266int __sg_alloc_table(struct sg_table *table, unsigned int nents,
267 unsigned int max_ents, struct scatterlist *first_chunk,
268 unsigned int nents_first_chunk, gfp_t gfp_mask,
269 sg_alloc_fn *alloc_fn)
270{
271 struct scatterlist *sg, *prv;
272 unsigned int left;
273 unsigned curr_max_ents = nents_first_chunk ?: max_ents;
274 unsigned prv_max_ents;
275
276 memset(table, 0, sizeof(*table));
277
278 if (nents == 0)
279 return -EINVAL;
280#ifdef CONFIG_ARCH_NO_SG_CHAIN
281 if (WARN_ON_ONCE(nents > max_ents))
282 return -EINVAL;
283#endif
284
285 left = nents;
286 prv = NULL;
287 do {
288 unsigned int sg_size, alloc_size = left;
289
290 if (alloc_size > curr_max_ents) {
291 alloc_size = curr_max_ents;
292 sg_size = alloc_size - 1;
293 } else
294 sg_size = alloc_size;
295
296 left -= sg_size;
297
298 if (first_chunk) {
299 sg = first_chunk;
300 first_chunk = NULL;
301 } else {
302 sg = alloc_fn(alloc_size, gfp_mask);
303 }
304 if (unlikely(!sg)) {
305 /*
306 * Adjust entry count to reflect that the last
307 * entry of the previous table won't be used for
308 * linkage. Without this, sg_kfree() may get
309 * confused.
310 */
311 if (prv)
312 table->nents = ++table->orig_nents;
313
314 return -ENOMEM;
315 }
316
317 sg_init_table(sg, alloc_size);
318 table->nents = table->orig_nents += sg_size;
319
320 /*
321 * If this is the first mapping, assign the sg table header.
322 * If this is not the first mapping, chain previous part.
323 */
324 if (prv)
325 sg_chain(prv, prv_max_ents, sg);
326 else
327 table->sgl = sg;
328
329 /*
330 * If no more entries after this one, mark the end
331 */
332 if (!left)
333 sg_mark_end(&sg[sg_size - 1]);
334
335 prv = sg;
336 prv_max_ents = curr_max_ents;
337 curr_max_ents = max_ents;
338 } while (left);
339
340 return 0;
341}
342EXPORT_SYMBOL(__sg_alloc_table);
343
344/**
345 * sg_alloc_table - Allocate and initialize an sg table
346 * @table: The sg table header to use
347 * @nents: Number of entries in sg list
348 * @gfp_mask: GFP allocation mask
349 *
350 * Description:
351 * Allocate and initialize an sg table. If @nents@ is larger than
352 * SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
353 *
354 **/
355int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
356{
357 int ret;
358
359 ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
360 NULL, 0, gfp_mask, sg_kmalloc);
361 if (unlikely(ret))
362 __sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree);
363
364 return ret;
365}
366EXPORT_SYMBOL(sg_alloc_table);
367
368static struct scatterlist *get_next_sg(struct sg_table *table,
369 struct scatterlist *cur,
370 unsigned long needed_sges,
371 gfp_t gfp_mask)
372{
373 struct scatterlist *new_sg, *next_sg;
374 unsigned int alloc_size;
375
376 if (cur) {
377 next_sg = sg_next(cur);
378 /* Check if last entry should be keeped for chainning */
379 if (!sg_is_last(next_sg) || needed_sges == 1)
380 return next_sg;
381 }
382
383 alloc_size = min_t(unsigned long, needed_sges, SG_MAX_SINGLE_ALLOC);
384 new_sg = sg_kmalloc(alloc_size, gfp_mask);
385 if (!new_sg)
386 return ERR_PTR(-ENOMEM);
387 sg_init_table(new_sg, alloc_size);
388 if (cur) {
389 __sg_chain(next_sg, new_sg);
390 table->orig_nents += alloc_size - 1;
391 } else {
392 table->sgl = new_sg;
393 table->orig_nents = alloc_size;
394 table->nents = 0;
395 }
396 return new_sg;
397}
398
399/**
400 * __sg_alloc_table_from_pages - Allocate and initialize an sg table from
401 * an array of pages
402 * @sgt: The sg table header to use
403 * @pages: Pointer to an array of page pointers
404 * @n_pages: Number of pages in the pages array
405 * @offset: Offset from start of the first page to the start of a buffer
406 * @size: Number of valid bytes in the buffer (after offset)
407 * @max_segment: Maximum size of a scatterlist element in bytes
408 * @prv: Last populated sge in sgt
409 * @left_pages: Left pages caller have to set after this call
410 * @gfp_mask: GFP allocation mask
411 *
412 * Description:
413 * If @prv is NULL, allocate and initialize an sg table from a list of pages,
414 * else reuse the scatterlist passed in at @prv.
415 * Contiguous ranges of the pages are squashed into a single scatterlist
416 * entry up to the maximum size specified in @max_segment. A user may
417 * provide an offset at a start and a size of valid data in a buffer
418 * specified by the page array.
419 *
420 * Returns:
421 * Last SGE in sgt on success, PTR_ERR on otherwise.
422 * The allocation in @sgt must be released by sg_free_table.
423 *
424 * Notes:
425 * If this function returns non-0 (eg failure), the caller must call
426 * sg_free_table() to cleanup any leftover allocations.
427 */
428struct scatterlist *__sg_alloc_table_from_pages(struct sg_table *sgt,
429 struct page **pages, unsigned int n_pages, unsigned int offset,
430 unsigned long size, unsigned int max_segment,
431 struct scatterlist *prv, unsigned int left_pages,
432 gfp_t gfp_mask)
433{
434 unsigned int chunks, cur_page, seg_len, i, prv_len = 0;
435 unsigned int added_nents = 0;
436 struct scatterlist *s = prv;
437
438 /*
439 * The algorithm below requires max_segment to be aligned to PAGE_SIZE
440 * otherwise it can overshoot.
441 */
442 max_segment = ALIGN_DOWN(max_segment, PAGE_SIZE);
443 if (WARN_ON(max_segment < PAGE_SIZE))
444 return ERR_PTR(-EINVAL);
445
446 if (IS_ENABLED(CONFIG_ARCH_NO_SG_CHAIN) && prv)
447 return ERR_PTR(-EOPNOTSUPP);
448
449 if (prv) {
450 unsigned long paddr = (page_to_pfn(sg_page(prv)) * PAGE_SIZE +
451 prv->offset + prv->length) /
452 PAGE_SIZE;
453
454 if (WARN_ON(offset))
455 return ERR_PTR(-EINVAL);
456
457 /* Merge contiguous pages into the last SG */
458 prv_len = prv->length;
459 while (n_pages && page_to_pfn(pages[0]) == paddr) {
460 if (prv->length + PAGE_SIZE > max_segment)
461 break;
462 prv->length += PAGE_SIZE;
463 paddr++;
464 pages++;
465 n_pages--;
466 }
467 if (!n_pages)
468 goto out;
469 }
470
471 /* compute number of contiguous chunks */
472 chunks = 1;
473 seg_len = 0;
474 for (i = 1; i < n_pages; i++) {
475 seg_len += PAGE_SIZE;
476 if (seg_len >= max_segment ||
477 page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1) {
478 chunks++;
479 seg_len = 0;
480 }
481 }
482
483 /* merging chunks and putting them into the scatterlist */
484 cur_page = 0;
485 for (i = 0; i < chunks; i++) {
486 unsigned int j, chunk_size;
487
488 /* look for the end of the current chunk */
489 seg_len = 0;
490 for (j = cur_page + 1; j < n_pages; j++) {
491 seg_len += PAGE_SIZE;
492 if (seg_len >= max_segment ||
493 page_to_pfn(pages[j]) !=
494 page_to_pfn(pages[j - 1]) + 1)
495 break;
496 }
497
498 /* Pass how many chunks might be left */
499 s = get_next_sg(sgt, s, chunks - i + left_pages, gfp_mask);
500 if (IS_ERR(s)) {
501 /*
502 * Adjust entry length to be as before function was
503 * called.
504 */
505 if (prv)
506 prv->length = prv_len;
507 return s;
508 }
509 chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
510 sg_set_page(s, pages[cur_page],
511 min_t(unsigned long, size, chunk_size), offset);
512 added_nents++;
513 size -= chunk_size;
514 offset = 0;
515 cur_page = j;
516 }
517 sgt->nents += added_nents;
518out:
519 if (!left_pages)
520 sg_mark_end(s);
521 return s;
522}
523EXPORT_SYMBOL(__sg_alloc_table_from_pages);
524
525/**
526 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
527 * an array of pages
528 * @sgt: The sg table header to use
529 * @pages: Pointer to an array of page pointers
530 * @n_pages: Number of pages in the pages array
531 * @offset: Offset from start of the first page to the start of a buffer
532 * @size: Number of valid bytes in the buffer (after offset)
533 * @gfp_mask: GFP allocation mask
534 *
535 * Description:
536 * Allocate and initialize an sg table from a list of pages. Contiguous
537 * ranges of the pages are squashed into a single scatterlist node. A user
538 * may provide an offset at a start and a size of valid data in a buffer
539 * specified by the page array. The returned sg table is released by
540 * sg_free_table.
541 *
542 * Returns:
543 * 0 on success, negative error on failure
544 */
545int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
546 unsigned int n_pages, unsigned int offset,
547 unsigned long size, gfp_t gfp_mask)
548{
549 return PTR_ERR_OR_ZERO(__sg_alloc_table_from_pages(sgt, pages, n_pages,
550 offset, size, UINT_MAX, NULL, 0, gfp_mask));
551}
552EXPORT_SYMBOL(sg_alloc_table_from_pages);
553
554#ifdef CONFIG_SGL_ALLOC
555
556/**
557 * sgl_alloc_order - allocate a scatterlist and its pages
558 * @length: Length in bytes of the scatterlist. Must be at least one
559 * @order: Second argument for alloc_pages()
560 * @chainable: Whether or not to allocate an extra element in the scatterlist
561 * for scatterlist chaining purposes
562 * @gfp: Memory allocation flags
563 * @nent_p: [out] Number of entries in the scatterlist that have pages
564 *
565 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
566 */
567struct scatterlist *sgl_alloc_order(unsigned long long length,
568 unsigned int order, bool chainable,
569 gfp_t gfp, unsigned int *nent_p)
570{
571 struct scatterlist *sgl, *sg;
572 struct page *page;
573 unsigned int nent, nalloc;
574 u32 elem_len;
575
576 nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
577 /* Check for integer overflow */
578 if (length > (nent << (PAGE_SHIFT + order)))
579 return NULL;
580 nalloc = nent;
581 if (chainable) {
582 /* Check for integer overflow */
583 if (nalloc + 1 < nalloc)
584 return NULL;
585 nalloc++;
586 }
587 sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
588 gfp & ~GFP_DMA);
589 if (!sgl)
590 return NULL;
591
592 sg_init_table(sgl, nalloc);
593 sg = sgl;
594 while (length) {
595 elem_len = min_t(u64, length, PAGE_SIZE << order);
596 page = alloc_pages(gfp, order);
597 if (!page) {
598 sgl_free_order(sgl, order);
599 return NULL;
600 }
601
602 sg_set_page(sg, page, elem_len, 0);
603 length -= elem_len;
604 sg = sg_next(sg);
605 }
606 WARN_ONCE(length, "length = %lld\n", length);
607 if (nent_p)
608 *nent_p = nent;
609 return sgl;
610}
611EXPORT_SYMBOL(sgl_alloc_order);
612
613/**
614 * sgl_alloc - allocate a scatterlist and its pages
615 * @length: Length in bytes of the scatterlist
616 * @gfp: Memory allocation flags
617 * @nent_p: [out] Number of entries in the scatterlist
618 *
619 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
620 */
621struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
622 unsigned int *nent_p)
623{
624 return sgl_alloc_order(length, 0, false, gfp, nent_p);
625}
626EXPORT_SYMBOL(sgl_alloc);
627
628/**
629 * sgl_free_n_order - free a scatterlist and its pages
630 * @sgl: Scatterlist with one or more elements
631 * @nents: Maximum number of elements to free
632 * @order: Second argument for __free_pages()
633 *
634 * Notes:
635 * - If several scatterlists have been chained and each chain element is
636 * freed separately then it's essential to set nents correctly to avoid that a
637 * page would get freed twice.
638 * - All pages in a chained scatterlist can be freed at once by setting @nents
639 * to a high number.
640 */
641void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
642{
643 struct scatterlist *sg;
644 struct page *page;
645 int i;
646
647 for_each_sg(sgl, sg, nents, i) {
648 if (!sg)
649 break;
650 page = sg_page(sg);
651 if (page)
652 __free_pages(page, order);
653 }
654 kfree(sgl);
655}
656EXPORT_SYMBOL(sgl_free_n_order);
657
658/**
659 * sgl_free_order - free a scatterlist and its pages
660 * @sgl: Scatterlist with one or more elements
661 * @order: Second argument for __free_pages()
662 */
663void sgl_free_order(struct scatterlist *sgl, int order)
664{
665 sgl_free_n_order(sgl, INT_MAX, order);
666}
667EXPORT_SYMBOL(sgl_free_order);
668
669/**
670 * sgl_free - free a scatterlist and its pages
671 * @sgl: Scatterlist with one or more elements
672 */
673void sgl_free(struct scatterlist *sgl)
674{
675 sgl_free_order(sgl, 0);
676}
677EXPORT_SYMBOL(sgl_free);
678
679#endif /* CONFIG_SGL_ALLOC */
680
681void __sg_page_iter_start(struct sg_page_iter *piter,
682 struct scatterlist *sglist, unsigned int nents,
683 unsigned long pgoffset)
684{
685 piter->__pg_advance = 0;
686 piter->__nents = nents;
687
688 piter->sg = sglist;
689 piter->sg_pgoffset = pgoffset;
690}
691EXPORT_SYMBOL(__sg_page_iter_start);
692
693static int sg_page_count(struct scatterlist *sg)
694{
695 return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
696}
697
698bool __sg_page_iter_next(struct sg_page_iter *piter)
699{
700 if (!piter->__nents || !piter->sg)
701 return false;
702
703 piter->sg_pgoffset += piter->__pg_advance;
704 piter->__pg_advance = 1;
705
706 while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
707 piter->sg_pgoffset -= sg_page_count(piter->sg);
708 piter->sg = sg_next(piter->sg);
709 if (!--piter->__nents || !piter->sg)
710 return false;
711 }
712
713 return true;
714}
715EXPORT_SYMBOL(__sg_page_iter_next);
716
717static int sg_dma_page_count(struct scatterlist *sg)
718{
719 return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
720}
721
722bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
723{
724 struct sg_page_iter *piter = &dma_iter->base;
725
726 if (!piter->__nents || !piter->sg)
727 return false;
728
729 piter->sg_pgoffset += piter->__pg_advance;
730 piter->__pg_advance = 1;
731
732 while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
733 piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
734 piter->sg = sg_next(piter->sg);
735 if (!--piter->__nents || !piter->sg)
736 return false;
737 }
738
739 return true;
740}
741EXPORT_SYMBOL(__sg_page_iter_dma_next);
742
743/**
744 * sg_miter_start - start mapping iteration over a sg list
745 * @miter: sg mapping iter to be started
746 * @sgl: sg list to iterate over
747 * @nents: number of sg entries
748 *
749 * Description:
750 * Starts mapping iterator @miter.
751 *
752 * Context:
753 * Don't care.
754 */
755void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
756 unsigned int nents, unsigned int flags)
757{
758 memset(miter, 0, sizeof(struct sg_mapping_iter));
759
760 __sg_page_iter_start(&miter->piter, sgl, nents, 0);
761 WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
762 miter->__flags = flags;
763}
764EXPORT_SYMBOL(sg_miter_start);
765
766static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
767{
768 if (!miter->__remaining) {
769 struct scatterlist *sg;
770
771 if (!__sg_page_iter_next(&miter->piter))
772 return false;
773
774 sg = miter->piter.sg;
775
776 miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
777 miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
778 miter->__offset &= PAGE_SIZE - 1;
779 miter->__remaining = sg->offset + sg->length -
780 (miter->piter.sg_pgoffset << PAGE_SHIFT) -
781 miter->__offset;
782 miter->__remaining = min_t(unsigned long, miter->__remaining,
783 PAGE_SIZE - miter->__offset);
784 }
785
786 return true;
787}
788
789/**
790 * sg_miter_skip - reposition mapping iterator
791 * @miter: sg mapping iter to be skipped
792 * @offset: number of bytes to plus the current location
793 *
794 * Description:
795 * Sets the offset of @miter to its current location plus @offset bytes.
796 * If mapping iterator @miter has been proceeded by sg_miter_next(), this
797 * stops @miter.
798 *
799 * Context:
800 * Don't care if @miter is stopped, or not proceeded yet.
801 * Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
802 *
803 * Returns:
804 * true if @miter contains the valid mapping. false if end of sg
805 * list is reached.
806 */
807bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
808{
809 sg_miter_stop(miter);
810
811 while (offset) {
812 off_t consumed;
813
814 if (!sg_miter_get_next_page(miter))
815 return false;
816
817 consumed = min_t(off_t, offset, miter->__remaining);
818 miter->__offset += consumed;
819 miter->__remaining -= consumed;
820 offset -= consumed;
821 }
822
823 return true;
824}
825EXPORT_SYMBOL(sg_miter_skip);
826
827/**
828 * sg_miter_next - proceed mapping iterator to the next mapping
829 * @miter: sg mapping iter to proceed
830 *
831 * Description:
832 * Proceeds @miter to the next mapping. @miter should have been started
833 * using sg_miter_start(). On successful return, @miter->page,
834 * @miter->addr and @miter->length point to the current mapping.
835 *
836 * Context:
837 * Preemption disabled if SG_MITER_ATOMIC. Preemption must stay disabled
838 * till @miter is stopped. May sleep if !SG_MITER_ATOMIC.
839 *
840 * Returns:
841 * true if @miter contains the next mapping. false if end of sg
842 * list is reached.
843 */
844bool sg_miter_next(struct sg_mapping_iter *miter)
845{
846 sg_miter_stop(miter);
847
848 /*
849 * Get to the next page if necessary.
850 * __remaining, __offset is adjusted by sg_miter_stop
851 */
852 if (!sg_miter_get_next_page(miter))
853 return false;
854
855 miter->page = sg_page_iter_page(&miter->piter);
856 miter->consumed = miter->length = miter->__remaining;
857
858 if (miter->__flags & SG_MITER_ATOMIC)
859 miter->addr = kmap_atomic(miter->page) + miter->__offset;
860 else
861 miter->addr = kmap(miter->page) + miter->__offset;
862
863 return true;
864}
865EXPORT_SYMBOL(sg_miter_next);
866
867/**
868 * sg_miter_stop - stop mapping iteration
869 * @miter: sg mapping iter to be stopped
870 *
871 * Description:
872 * Stops mapping iterator @miter. @miter should have been started
873 * using sg_miter_start(). A stopped iteration can be resumed by
874 * calling sg_miter_next() on it. This is useful when resources (kmap)
875 * need to be released during iteration.
876 *
877 * Context:
878 * Preemption disabled if the SG_MITER_ATOMIC is set. Don't care
879 * otherwise.
880 */
881void sg_miter_stop(struct sg_mapping_iter *miter)
882{
883 WARN_ON(miter->consumed > miter->length);
884
885 /* drop resources from the last iteration */
886 if (miter->addr) {
887 miter->__offset += miter->consumed;
888 miter->__remaining -= miter->consumed;
889
890 if ((miter->__flags & SG_MITER_TO_SG) &&
891 !PageSlab(miter->page))
892 flush_kernel_dcache_page(miter->page);
893
894 if (miter->__flags & SG_MITER_ATOMIC) {
895 WARN_ON_ONCE(preemptible());
896 kunmap_atomic(miter->addr);
897 } else
898 kunmap(miter->page);
899
900 miter->page = NULL;
901 miter->addr = NULL;
902 miter->length = 0;
903 miter->consumed = 0;
904 }
905}
906EXPORT_SYMBOL(sg_miter_stop);
907
908/**
909 * sg_copy_buffer - Copy data between a linear buffer and an SG list
910 * @sgl: The SG list
911 * @nents: Number of SG entries
912 * @buf: Where to copy from
913 * @buflen: The number of bytes to copy
914 * @skip: Number of bytes to skip before copying
915 * @to_buffer: transfer direction (true == from an sg list to a
916 * buffer, false == from a buffer to an sg list)
917 *
918 * Returns the number of copied bytes.
919 *
920 **/
921size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
922 size_t buflen, off_t skip, bool to_buffer)
923{
924 unsigned int offset = 0;
925 struct sg_mapping_iter miter;
926 unsigned int sg_flags = SG_MITER_ATOMIC;
927
928 if (to_buffer)
929 sg_flags |= SG_MITER_FROM_SG;
930 else
931 sg_flags |= SG_MITER_TO_SG;
932
933 sg_miter_start(&miter, sgl, nents, sg_flags);
934
935 if (!sg_miter_skip(&miter, skip))
936 return 0;
937
938 while ((offset < buflen) && sg_miter_next(&miter)) {
939 unsigned int len;
940
941 len = min(miter.length, buflen - offset);
942
943 if (to_buffer)
944 memcpy(buf + offset, miter.addr, len);
945 else
946 memcpy(miter.addr, buf + offset, len);
947
948 offset += len;
949 }
950
951 sg_miter_stop(&miter);
952
953 return offset;
954}
955EXPORT_SYMBOL(sg_copy_buffer);
956
957/**
958 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
959 * @sgl: The SG list
960 * @nents: Number of SG entries
961 * @buf: Where to copy from
962 * @buflen: The number of bytes to copy
963 *
964 * Returns the number of copied bytes.
965 *
966 **/
967size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
968 const void *buf, size_t buflen)
969{
970 return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
971}
972EXPORT_SYMBOL(sg_copy_from_buffer);
973
974/**
975 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
976 * @sgl: The SG list
977 * @nents: Number of SG entries
978 * @buf: Where to copy to
979 * @buflen: The number of bytes to copy
980 *
981 * Returns the number of copied bytes.
982 *
983 **/
984size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
985 void *buf, size_t buflen)
986{
987 return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
988}
989EXPORT_SYMBOL(sg_copy_to_buffer);
990
991/**
992 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
993 * @sgl: The SG list
994 * @nents: Number of SG entries
995 * @buf: Where to copy from
996 * @buflen: The number of bytes to copy
997 * @skip: Number of bytes to skip before copying
998 *
999 * Returns the number of copied bytes.
1000 *
1001 **/
1002size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1003 const void *buf, size_t buflen, off_t skip)
1004{
1005 return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
1006}
1007EXPORT_SYMBOL(sg_pcopy_from_buffer);
1008
1009/**
1010 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
1011 * @sgl: The SG list
1012 * @nents: Number of SG entries
1013 * @buf: Where to copy to
1014 * @buflen: The number of bytes to copy
1015 * @skip: Number of bytes to skip before copying
1016 *
1017 * Returns the number of copied bytes.
1018 *
1019 **/
1020size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1021 void *buf, size_t buflen, off_t skip)
1022{
1023 return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
1024}
1025EXPORT_SYMBOL(sg_pcopy_to_buffer);
1026
1027/**
1028 * sg_zero_buffer - Zero-out a part of a SG list
1029 * @sgl: The SG list
1030 * @nents: Number of SG entries
1031 * @buflen: The number of bytes to zero out
1032 * @skip: Number of bytes to skip before zeroing
1033 *
1034 * Returns the number of bytes zeroed.
1035 **/
1036size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
1037 size_t buflen, off_t skip)
1038{
1039 unsigned int offset = 0;
1040 struct sg_mapping_iter miter;
1041 unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
1042
1043 sg_miter_start(&miter, sgl, nents, sg_flags);
1044
1045 if (!sg_miter_skip(&miter, skip))
1046 return false;
1047
1048 while (offset < buflen && sg_miter_next(&miter)) {
1049 unsigned int len;
1050
1051 len = min(miter.length, buflen - offset);
1052 memset(miter.addr, 0, len);
1053
1054 offset += len;
1055 }
1056
1057 sg_miter_stop(&miter);
1058 return offset;
1059}
1060EXPORT_SYMBOL(sg_zero_buffer);
1/*
2 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
3 *
4 * Scatterlist handling helpers.
5 *
6 * This source code is licensed under the GNU General Public License,
7 * Version 2. See the file COPYING for more details.
8 */
9#include <linux/export.h>
10#include <linux/slab.h>
11#include <linux/scatterlist.h>
12#include <linux/highmem.h>
13#include <linux/kmemleak.h>
14
15/**
16 * sg_next - return the next scatterlist entry in a list
17 * @sg: The current sg entry
18 *
19 * Description:
20 * Usually the next entry will be @sg@ + 1, but if this sg element is part
21 * of a chained scatterlist, it could jump to the start of a new
22 * scatterlist array.
23 *
24 **/
25struct scatterlist *sg_next(struct scatterlist *sg)
26{
27#ifdef CONFIG_DEBUG_SG
28 BUG_ON(sg->sg_magic != SG_MAGIC);
29#endif
30 if (sg_is_last(sg))
31 return NULL;
32
33 sg++;
34 if (unlikely(sg_is_chain(sg)))
35 sg = sg_chain_ptr(sg);
36
37 return sg;
38}
39EXPORT_SYMBOL(sg_next);
40
41/**
42 * sg_nents - return total count of entries in scatterlist
43 * @sg: The scatterlist
44 *
45 * Description:
46 * Allows to know how many entries are in sg, taking into acount
47 * chaining as well
48 *
49 **/
50int sg_nents(struct scatterlist *sg)
51{
52 int nents;
53 for (nents = 0; sg; sg = sg_next(sg))
54 nents++;
55 return nents;
56}
57EXPORT_SYMBOL(sg_nents);
58
59
60/**
61 * sg_last - return the last scatterlist entry in a list
62 * @sgl: First entry in the scatterlist
63 * @nents: Number of entries in the scatterlist
64 *
65 * Description:
66 * Should only be used casually, it (currently) scans the entire list
67 * to get the last entry.
68 *
69 * Note that the @sgl@ pointer passed in need not be the first one,
70 * the important bit is that @nents@ denotes the number of entries that
71 * exist from @sgl@.
72 *
73 **/
74struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
75{
76#ifndef ARCH_HAS_SG_CHAIN
77 struct scatterlist *ret = &sgl[nents - 1];
78#else
79 struct scatterlist *sg, *ret = NULL;
80 unsigned int i;
81
82 for_each_sg(sgl, sg, nents, i)
83 ret = sg;
84
85#endif
86#ifdef CONFIG_DEBUG_SG
87 BUG_ON(sgl[0].sg_magic != SG_MAGIC);
88 BUG_ON(!sg_is_last(ret));
89#endif
90 return ret;
91}
92EXPORT_SYMBOL(sg_last);
93
94/**
95 * sg_init_table - Initialize SG table
96 * @sgl: The SG table
97 * @nents: Number of entries in table
98 *
99 * Notes:
100 * If this is part of a chained sg table, sg_mark_end() should be
101 * used only on the last table part.
102 *
103 **/
104void sg_init_table(struct scatterlist *sgl, unsigned int nents)
105{
106 memset(sgl, 0, sizeof(*sgl) * nents);
107#ifdef CONFIG_DEBUG_SG
108 {
109 unsigned int i;
110 for (i = 0; i < nents; i++)
111 sgl[i].sg_magic = SG_MAGIC;
112 }
113#endif
114 sg_mark_end(&sgl[nents - 1]);
115}
116EXPORT_SYMBOL(sg_init_table);
117
118/**
119 * sg_init_one - Initialize a single entry sg list
120 * @sg: SG entry
121 * @buf: Virtual address for IO
122 * @buflen: IO length
123 *
124 **/
125void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
126{
127 sg_init_table(sg, 1);
128 sg_set_buf(sg, buf, buflen);
129}
130EXPORT_SYMBOL(sg_init_one);
131
132/*
133 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
134 * helpers.
135 */
136static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
137{
138 if (nents == SG_MAX_SINGLE_ALLOC) {
139 /*
140 * Kmemleak doesn't track page allocations as they are not
141 * commonly used (in a raw form) for kernel data structures.
142 * As we chain together a list of pages and then a normal
143 * kmalloc (tracked by kmemleak), in order to for that last
144 * allocation not to become decoupled (and thus a
145 * false-positive) we need to inform kmemleak of all the
146 * intermediate allocations.
147 */
148 void *ptr = (void *) __get_free_page(gfp_mask);
149 kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
150 return ptr;
151 } else
152 return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
153}
154
155static void sg_kfree(struct scatterlist *sg, unsigned int nents)
156{
157 if (nents == SG_MAX_SINGLE_ALLOC) {
158 kmemleak_free(sg);
159 free_page((unsigned long) sg);
160 } else
161 kfree(sg);
162}
163
164/**
165 * __sg_free_table - Free a previously mapped sg table
166 * @table: The sg table header to use
167 * @max_ents: The maximum number of entries per single scatterlist
168 * @free_fn: Free function
169 *
170 * Description:
171 * Free an sg table previously allocated and setup with
172 * __sg_alloc_table(). The @max_ents value must be identical to
173 * that previously used with __sg_alloc_table().
174 *
175 **/
176void __sg_free_table(struct sg_table *table, unsigned int max_ents,
177 sg_free_fn *free_fn)
178{
179 struct scatterlist *sgl, *next;
180
181 if (unlikely(!table->sgl))
182 return;
183
184 sgl = table->sgl;
185 while (table->orig_nents) {
186 unsigned int alloc_size = table->orig_nents;
187 unsigned int sg_size;
188
189 /*
190 * If we have more than max_ents segments left,
191 * then assign 'next' to the sg table after the current one.
192 * sg_size is then one less than alloc size, since the last
193 * element is the chain pointer.
194 */
195 if (alloc_size > max_ents) {
196 next = sg_chain_ptr(&sgl[max_ents - 1]);
197 alloc_size = max_ents;
198 sg_size = alloc_size - 1;
199 } else {
200 sg_size = alloc_size;
201 next = NULL;
202 }
203
204 table->orig_nents -= sg_size;
205 free_fn(sgl, alloc_size);
206 sgl = next;
207 }
208
209 table->sgl = NULL;
210}
211EXPORT_SYMBOL(__sg_free_table);
212
213/**
214 * sg_free_table - Free a previously allocated sg table
215 * @table: The mapped sg table header
216 *
217 **/
218void sg_free_table(struct sg_table *table)
219{
220 __sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree);
221}
222EXPORT_SYMBOL(sg_free_table);
223
224/**
225 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
226 * @table: The sg table header to use
227 * @nents: Number of entries in sg list
228 * @max_ents: The maximum number of entries the allocator returns per call
229 * @gfp_mask: GFP allocation mask
230 * @alloc_fn: Allocator to use
231 *
232 * Description:
233 * This function returns a @table @nents long. The allocator is
234 * defined to return scatterlist chunks of maximum size @max_ents.
235 * Thus if @nents is bigger than @max_ents, the scatterlists will be
236 * chained in units of @max_ents.
237 *
238 * Notes:
239 * If this function returns non-0 (eg failure), the caller must call
240 * __sg_free_table() to cleanup any leftover allocations.
241 *
242 **/
243int __sg_alloc_table(struct sg_table *table, unsigned int nents,
244 unsigned int max_ents, gfp_t gfp_mask,
245 sg_alloc_fn *alloc_fn)
246{
247 struct scatterlist *sg, *prv;
248 unsigned int left;
249
250 memset(table, 0, sizeof(*table));
251
252 if (nents == 0)
253 return -EINVAL;
254#ifndef ARCH_HAS_SG_CHAIN
255 if (WARN_ON_ONCE(nents > max_ents))
256 return -EINVAL;
257#endif
258
259 left = nents;
260 prv = NULL;
261 do {
262 unsigned int sg_size, alloc_size = left;
263
264 if (alloc_size > max_ents) {
265 alloc_size = max_ents;
266 sg_size = alloc_size - 1;
267 } else
268 sg_size = alloc_size;
269
270 left -= sg_size;
271
272 sg = alloc_fn(alloc_size, gfp_mask);
273 if (unlikely(!sg)) {
274 /*
275 * Adjust entry count to reflect that the last
276 * entry of the previous table won't be used for
277 * linkage. Without this, sg_kfree() may get
278 * confused.
279 */
280 if (prv)
281 table->nents = ++table->orig_nents;
282
283 return -ENOMEM;
284 }
285
286 sg_init_table(sg, alloc_size);
287 table->nents = table->orig_nents += sg_size;
288
289 /*
290 * If this is the first mapping, assign the sg table header.
291 * If this is not the first mapping, chain previous part.
292 */
293 if (prv)
294 sg_chain(prv, max_ents, sg);
295 else
296 table->sgl = sg;
297
298 /*
299 * If no more entries after this one, mark the end
300 */
301 if (!left)
302 sg_mark_end(&sg[sg_size - 1]);
303
304 prv = sg;
305 } while (left);
306
307 return 0;
308}
309EXPORT_SYMBOL(__sg_alloc_table);
310
311/**
312 * sg_alloc_table - Allocate and initialize an sg table
313 * @table: The sg table header to use
314 * @nents: Number of entries in sg list
315 * @gfp_mask: GFP allocation mask
316 *
317 * Description:
318 * Allocate and initialize an sg table. If @nents@ is larger than
319 * SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
320 *
321 **/
322int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
323{
324 int ret;
325
326 ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
327 gfp_mask, sg_kmalloc);
328 if (unlikely(ret))
329 __sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree);
330
331 return ret;
332}
333EXPORT_SYMBOL(sg_alloc_table);
334
335/**
336 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
337 * an array of pages
338 * @sgt: The sg table header to use
339 * @pages: Pointer to an array of page pointers
340 * @n_pages: Number of pages in the pages array
341 * @offset: Offset from start of the first page to the start of a buffer
342 * @size: Number of valid bytes in the buffer (after offset)
343 * @gfp_mask: GFP allocation mask
344 *
345 * Description:
346 * Allocate and initialize an sg table from a list of pages. Contiguous
347 * ranges of the pages are squashed into a single scatterlist node. A user
348 * may provide an offset at a start and a size of valid data in a buffer
349 * specified by the page array. The returned sg table is released by
350 * sg_free_table.
351 *
352 * Returns:
353 * 0 on success, negative error on failure
354 */
355int sg_alloc_table_from_pages(struct sg_table *sgt,
356 struct page **pages, unsigned int n_pages,
357 unsigned long offset, unsigned long size,
358 gfp_t gfp_mask)
359{
360 unsigned int chunks;
361 unsigned int i;
362 unsigned int cur_page;
363 int ret;
364 struct scatterlist *s;
365
366 /* compute number of contiguous chunks */
367 chunks = 1;
368 for (i = 1; i < n_pages; ++i)
369 if (page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1)
370 ++chunks;
371
372 ret = sg_alloc_table(sgt, chunks, gfp_mask);
373 if (unlikely(ret))
374 return ret;
375
376 /* merging chunks and putting them into the scatterlist */
377 cur_page = 0;
378 for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
379 unsigned long chunk_size;
380 unsigned int j;
381
382 /* look for the end of the current chunk */
383 for (j = cur_page + 1; j < n_pages; ++j)
384 if (page_to_pfn(pages[j]) !=
385 page_to_pfn(pages[j - 1]) + 1)
386 break;
387
388 chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
389 sg_set_page(s, pages[cur_page], min(size, chunk_size), offset);
390 size -= chunk_size;
391 offset = 0;
392 cur_page = j;
393 }
394
395 return 0;
396}
397EXPORT_SYMBOL(sg_alloc_table_from_pages);
398
399void __sg_page_iter_start(struct sg_page_iter *piter,
400 struct scatterlist *sglist, unsigned int nents,
401 unsigned long pgoffset)
402{
403 piter->__pg_advance = 0;
404 piter->__nents = nents;
405
406 piter->sg = sglist;
407 piter->sg_pgoffset = pgoffset;
408}
409EXPORT_SYMBOL(__sg_page_iter_start);
410
411static int sg_page_count(struct scatterlist *sg)
412{
413 return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
414}
415
416bool __sg_page_iter_next(struct sg_page_iter *piter)
417{
418 if (!piter->__nents || !piter->sg)
419 return false;
420
421 piter->sg_pgoffset += piter->__pg_advance;
422 piter->__pg_advance = 1;
423
424 while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
425 piter->sg_pgoffset -= sg_page_count(piter->sg);
426 piter->sg = sg_next(piter->sg);
427 if (!--piter->__nents || !piter->sg)
428 return false;
429 }
430
431 return true;
432}
433EXPORT_SYMBOL(__sg_page_iter_next);
434
435/**
436 * sg_miter_start - start mapping iteration over a sg list
437 * @miter: sg mapping iter to be started
438 * @sgl: sg list to iterate over
439 * @nents: number of sg entries
440 *
441 * Description:
442 * Starts mapping iterator @miter.
443 *
444 * Context:
445 * Don't care.
446 */
447void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
448 unsigned int nents, unsigned int flags)
449{
450 memset(miter, 0, sizeof(struct sg_mapping_iter));
451
452 __sg_page_iter_start(&miter->piter, sgl, nents, 0);
453 WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
454 miter->__flags = flags;
455}
456EXPORT_SYMBOL(sg_miter_start);
457
458static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
459{
460 if (!miter->__remaining) {
461 struct scatterlist *sg;
462 unsigned long pgoffset;
463
464 if (!__sg_page_iter_next(&miter->piter))
465 return false;
466
467 sg = miter->piter.sg;
468 pgoffset = miter->piter.sg_pgoffset;
469
470 miter->__offset = pgoffset ? 0 : sg->offset;
471 miter->__remaining = sg->offset + sg->length -
472 (pgoffset << PAGE_SHIFT) - miter->__offset;
473 miter->__remaining = min_t(unsigned long, miter->__remaining,
474 PAGE_SIZE - miter->__offset);
475 }
476
477 return true;
478}
479
480/**
481 * sg_miter_skip - reposition mapping iterator
482 * @miter: sg mapping iter to be skipped
483 * @offset: number of bytes to plus the current location
484 *
485 * Description:
486 * Sets the offset of @miter to its current location plus @offset bytes.
487 * If mapping iterator @miter has been proceeded by sg_miter_next(), this
488 * stops @miter.
489 *
490 * Context:
491 * Don't care if @miter is stopped, or not proceeded yet.
492 * Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
493 *
494 * Returns:
495 * true if @miter contains the valid mapping. false if end of sg
496 * list is reached.
497 */
498bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
499{
500 sg_miter_stop(miter);
501
502 while (offset) {
503 off_t consumed;
504
505 if (!sg_miter_get_next_page(miter))
506 return false;
507
508 consumed = min_t(off_t, offset, miter->__remaining);
509 miter->__offset += consumed;
510 miter->__remaining -= consumed;
511 offset -= consumed;
512 }
513
514 return true;
515}
516EXPORT_SYMBOL(sg_miter_skip);
517
518/**
519 * sg_miter_next - proceed mapping iterator to the next mapping
520 * @miter: sg mapping iter to proceed
521 *
522 * Description:
523 * Proceeds @miter to the next mapping. @miter should have been started
524 * using sg_miter_start(). On successful return, @miter->page,
525 * @miter->addr and @miter->length point to the current mapping.
526 *
527 * Context:
528 * Preemption disabled if SG_MITER_ATOMIC. Preemption must stay disabled
529 * till @miter is stopped. May sleep if !SG_MITER_ATOMIC.
530 *
531 * Returns:
532 * true if @miter contains the next mapping. false if end of sg
533 * list is reached.
534 */
535bool sg_miter_next(struct sg_mapping_iter *miter)
536{
537 sg_miter_stop(miter);
538
539 /*
540 * Get to the next page if necessary.
541 * __remaining, __offset is adjusted by sg_miter_stop
542 */
543 if (!sg_miter_get_next_page(miter))
544 return false;
545
546 miter->page = sg_page_iter_page(&miter->piter);
547 miter->consumed = miter->length = miter->__remaining;
548
549 if (miter->__flags & SG_MITER_ATOMIC)
550 miter->addr = kmap_atomic(miter->page) + miter->__offset;
551 else
552 miter->addr = kmap(miter->page) + miter->__offset;
553
554 return true;
555}
556EXPORT_SYMBOL(sg_miter_next);
557
558/**
559 * sg_miter_stop - stop mapping iteration
560 * @miter: sg mapping iter to be stopped
561 *
562 * Description:
563 * Stops mapping iterator @miter. @miter should have been started
564 * started using sg_miter_start(). A stopped iteration can be
565 * resumed by calling sg_miter_next() on it. This is useful when
566 * resources (kmap) need to be released during iteration.
567 *
568 * Context:
569 * Preemption disabled if the SG_MITER_ATOMIC is set. Don't care
570 * otherwise.
571 */
572void sg_miter_stop(struct sg_mapping_iter *miter)
573{
574 WARN_ON(miter->consumed > miter->length);
575
576 /* drop resources from the last iteration */
577 if (miter->addr) {
578 miter->__offset += miter->consumed;
579 miter->__remaining -= miter->consumed;
580
581 if ((miter->__flags & SG_MITER_TO_SG) &&
582 !PageSlab(miter->page))
583 flush_kernel_dcache_page(miter->page);
584
585 if (miter->__flags & SG_MITER_ATOMIC) {
586 WARN_ON_ONCE(preemptible());
587 kunmap_atomic(miter->addr);
588 } else
589 kunmap(miter->page);
590
591 miter->page = NULL;
592 miter->addr = NULL;
593 miter->length = 0;
594 miter->consumed = 0;
595 }
596}
597EXPORT_SYMBOL(sg_miter_stop);
598
599/**
600 * sg_copy_buffer - Copy data between a linear buffer and an SG list
601 * @sgl: The SG list
602 * @nents: Number of SG entries
603 * @buf: Where to copy from
604 * @buflen: The number of bytes to copy
605 * @skip: Number of bytes to skip before copying
606 * @to_buffer: transfer direction (true == from an sg list to a
607 * buffer, false == from a buffer to an sg list
608 *
609 * Returns the number of copied bytes.
610 *
611 **/
612static size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents,
613 void *buf, size_t buflen, off_t skip,
614 bool to_buffer)
615{
616 unsigned int offset = 0;
617 struct sg_mapping_iter miter;
618 unsigned long flags;
619 unsigned int sg_flags = SG_MITER_ATOMIC;
620
621 if (to_buffer)
622 sg_flags |= SG_MITER_FROM_SG;
623 else
624 sg_flags |= SG_MITER_TO_SG;
625
626 sg_miter_start(&miter, sgl, nents, sg_flags);
627
628 if (!sg_miter_skip(&miter, skip))
629 return false;
630
631 local_irq_save(flags);
632
633 while (sg_miter_next(&miter) && offset < buflen) {
634 unsigned int len;
635
636 len = min(miter.length, buflen - offset);
637
638 if (to_buffer)
639 memcpy(buf + offset, miter.addr, len);
640 else
641 memcpy(miter.addr, buf + offset, len);
642
643 offset += len;
644 }
645
646 sg_miter_stop(&miter);
647
648 local_irq_restore(flags);
649 return offset;
650}
651
652/**
653 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
654 * @sgl: The SG list
655 * @nents: Number of SG entries
656 * @buf: Where to copy from
657 * @buflen: The number of bytes to copy
658 *
659 * Returns the number of copied bytes.
660 *
661 **/
662size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
663 void *buf, size_t buflen)
664{
665 return sg_copy_buffer(sgl, nents, buf, buflen, 0, false);
666}
667EXPORT_SYMBOL(sg_copy_from_buffer);
668
669/**
670 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
671 * @sgl: The SG list
672 * @nents: Number of SG entries
673 * @buf: Where to copy to
674 * @buflen: The number of bytes to copy
675 *
676 * Returns the number of copied bytes.
677 *
678 **/
679size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
680 void *buf, size_t buflen)
681{
682 return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
683}
684EXPORT_SYMBOL(sg_copy_to_buffer);
685
686/**
687 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
688 * @sgl: The SG list
689 * @nents: Number of SG entries
690 * @buf: Where to copy from
691 * @skip: Number of bytes to skip before copying
692 * @buflen: The number of bytes to copy
693 *
694 * Returns the number of copied bytes.
695 *
696 **/
697size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
698 void *buf, size_t buflen, off_t skip)
699{
700 return sg_copy_buffer(sgl, nents, buf, buflen, skip, false);
701}
702EXPORT_SYMBOL(sg_pcopy_from_buffer);
703
704/**
705 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
706 * @sgl: The SG list
707 * @nents: Number of SG entries
708 * @buf: Where to copy to
709 * @skip: Number of bytes to skip before copying
710 * @buflen: The number of bytes to copy
711 *
712 * Returns the number of copied bytes.
713 *
714 **/
715size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
716 void *buf, size_t buflen, off_t skip)
717{
718 return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
719}
720EXPORT_SYMBOL(sg_pcopy_to_buffer);