Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
   4 *
   5 * Scatterlist handling helpers.
 
 
 
   6 */
   7#include <linux/export.h>
   8#include <linux/slab.h>
   9#include <linux/scatterlist.h>
  10#include <linux/highmem.h>
  11#include <linux/kmemleak.h>
  12
  13/**
  14 * sg_next - return the next scatterlist entry in a list
  15 * @sg:		The current sg entry
  16 *
  17 * Description:
  18 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
  19 *   of a chained scatterlist, it could jump to the start of a new
  20 *   scatterlist array.
  21 *
  22 **/
  23struct scatterlist *sg_next(struct scatterlist *sg)
  24{
 
 
 
  25	if (sg_is_last(sg))
  26		return NULL;
  27
  28	sg++;
  29	if (unlikely(sg_is_chain(sg)))
  30		sg = sg_chain_ptr(sg);
  31
  32	return sg;
  33}
  34EXPORT_SYMBOL(sg_next);
  35
  36/**
  37 * sg_nents - return total count of entries in scatterlist
  38 * @sg:		The scatterlist
  39 *
  40 * Description:
  41 * Allows to know how many entries are in sg, taking into account
  42 * chaining as well
  43 *
  44 **/
  45int sg_nents(struct scatterlist *sg)
  46{
  47	int nents;
  48	for (nents = 0; sg; sg = sg_next(sg))
  49		nents++;
  50	return nents;
  51}
  52EXPORT_SYMBOL(sg_nents);
  53
  54/**
  55 * sg_nents_for_len - return total count of entries in scatterlist
  56 *                    needed to satisfy the supplied length
  57 * @sg:		The scatterlist
  58 * @len:	The total required length
  59 *
  60 * Description:
  61 * Determines the number of entries in sg that are required to meet
  62 * the supplied length, taking into account chaining as well
  63 *
  64 * Returns:
  65 *   the number of sg entries needed, negative error on failure
  66 *
  67 **/
  68int sg_nents_for_len(struct scatterlist *sg, u64 len)
  69{
  70	int nents;
  71	u64 total;
  72
  73	if (!len)
  74		return 0;
  75
  76	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
  77		nents++;
  78		total += sg->length;
  79		if (total >= len)
  80			return nents;
  81	}
  82
  83	return -EINVAL;
  84}
  85EXPORT_SYMBOL(sg_nents_for_len);
  86
  87/**
  88 * sg_last - return the last scatterlist entry in a list
  89 * @sgl:	First entry in the scatterlist
  90 * @nents:	Number of entries in the scatterlist
  91 *
  92 * Description:
  93 *   Should only be used casually, it (currently) scans the entire list
  94 *   to get the last entry.
  95 *
  96 *   Note that the @sgl@ pointer passed in need not be the first one,
  97 *   the important bit is that @nents@ denotes the number of entries that
  98 *   exist from @sgl@.
  99 *
 100 **/
 101struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
 102{
 
 
 
 103	struct scatterlist *sg, *ret = NULL;
 104	unsigned int i;
 105
 106	for_each_sg(sgl, sg, nents, i)
 107		ret = sg;
 108
 
 
 
 109	BUG_ON(!sg_is_last(ret));
 
 110	return ret;
 111}
 112EXPORT_SYMBOL(sg_last);
 113
 114/**
 115 * sg_init_table - Initialize SG table
 116 * @sgl:	   The SG table
 117 * @nents:	   Number of entries in table
 118 *
 119 * Notes:
 120 *   If this is part of a chained sg table, sg_mark_end() should be
 121 *   used only on the last table part.
 122 *
 123 **/
 124void sg_init_table(struct scatterlist *sgl, unsigned int nents)
 125{
 126	memset(sgl, 0, sizeof(*sgl) * nents);
 127	sg_init_marker(sgl, nents);
 
 
 
 
 
 
 
 128}
 129EXPORT_SYMBOL(sg_init_table);
 130
 131/**
 132 * sg_init_one - Initialize a single entry sg list
 133 * @sg:		 SG entry
 134 * @buf:	 Virtual address for IO
 135 * @buflen:	 IO length
 136 *
 137 **/
 138void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
 139{
 140	sg_init_table(sg, 1);
 141	sg_set_buf(sg, buf, buflen);
 142}
 143EXPORT_SYMBOL(sg_init_one);
 144
 145/*
 146 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
 147 * helpers.
 148 */
 149static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
 150{
 151	if (nents == SG_MAX_SINGLE_ALLOC) {
 152		/*
 153		 * Kmemleak doesn't track page allocations as they are not
 154		 * commonly used (in a raw form) for kernel data structures.
 155		 * As we chain together a list of pages and then a normal
 156		 * kmalloc (tracked by kmemleak), in order to for that last
 157		 * allocation not to become decoupled (and thus a
 158		 * false-positive) we need to inform kmemleak of all the
 159		 * intermediate allocations.
 160		 */
 161		void *ptr = (void *) __get_free_page(gfp_mask);
 162		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
 163		return ptr;
 164	} else
 165		return kmalloc_array(nents, sizeof(struct scatterlist),
 166				     gfp_mask);
 167}
 168
 169static void sg_kfree(struct scatterlist *sg, unsigned int nents)
 170{
 171	if (nents == SG_MAX_SINGLE_ALLOC) {
 172		kmemleak_free(sg);
 173		free_page((unsigned long) sg);
 174	} else
 175		kfree(sg);
 176}
 177
 178/**
 179 * __sg_free_table - Free a previously mapped sg table
 180 * @table:	The sg table header to use
 181 * @max_ents:	The maximum number of entries per single scatterlist
 182 * @nents_first_chunk: Number of entries int the (preallocated) first
 183 * 	scatterlist chunk, 0 means no such preallocated first chunk
 184 * @free_fn:	Free function
 185 *
 186 *  Description:
 187 *    Free an sg table previously allocated and setup with
 188 *    __sg_alloc_table().  The @max_ents value must be identical to
 189 *    that previously used with __sg_alloc_table().
 190 *
 191 **/
 192void __sg_free_table(struct sg_table *table, unsigned int max_ents,
 193		     unsigned int nents_first_chunk, sg_free_fn *free_fn)
 194{
 195	struct scatterlist *sgl, *next;
 196	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
 197
 198	if (unlikely(!table->sgl))
 199		return;
 200
 201	sgl = table->sgl;
 202	while (table->orig_nents) {
 203		unsigned int alloc_size = table->orig_nents;
 204		unsigned int sg_size;
 205
 206		/*
 207		 * If we have more than max_ents segments left,
 208		 * then assign 'next' to the sg table after the current one.
 209		 * sg_size is then one less than alloc size, since the last
 210		 * element is the chain pointer.
 211		 */
 212		if (alloc_size > curr_max_ents) {
 213			next = sg_chain_ptr(&sgl[curr_max_ents - 1]);
 214			alloc_size = curr_max_ents;
 215			sg_size = alloc_size - 1;
 216		} else {
 217			sg_size = alloc_size;
 218			next = NULL;
 219		}
 220
 221		table->orig_nents -= sg_size;
 222		if (nents_first_chunk)
 223			nents_first_chunk = 0;
 224		else
 225			free_fn(sgl, alloc_size);
 226		sgl = next;
 227		curr_max_ents = max_ents;
 228	}
 229
 230	table->sgl = NULL;
 231}
 232EXPORT_SYMBOL(__sg_free_table);
 233
 234/**
 235 * sg_free_table - Free a previously allocated sg table
 236 * @table:	The mapped sg table header
 237 *
 238 **/
 239void sg_free_table(struct sg_table *table)
 240{
 241	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
 242}
 243EXPORT_SYMBOL(sg_free_table);
 244
 245/**
 246 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
 247 * @table:	The sg table header to use
 248 * @nents:	Number of entries in sg list
 249 * @max_ents:	The maximum number of entries the allocator returns per call
 250 * @nents_first_chunk: Number of entries int the (preallocated) first
 251 * 	scatterlist chunk, 0 means no such preallocated chunk provided by user
 252 * @gfp_mask:	GFP allocation mask
 253 * @alloc_fn:	Allocator to use
 254 *
 255 * Description:
 256 *   This function returns a @table @nents long. The allocator is
 257 *   defined to return scatterlist chunks of maximum size @max_ents.
 258 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
 259 *   chained in units of @max_ents.
 260 *
 261 * Notes:
 262 *   If this function returns non-0 (eg failure), the caller must call
 263 *   __sg_free_table() to cleanup any leftover allocations.
 264 *
 265 **/
 266int __sg_alloc_table(struct sg_table *table, unsigned int nents,
 267		     unsigned int max_ents, struct scatterlist *first_chunk,
 268		     unsigned int nents_first_chunk, gfp_t gfp_mask,
 269		     sg_alloc_fn *alloc_fn)
 270{
 271	struct scatterlist *sg, *prv;
 272	unsigned int left;
 273	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
 274	unsigned prv_max_ents;
 275
 276	memset(table, 0, sizeof(*table));
 277
 278	if (nents == 0)
 279		return -EINVAL;
 280#ifdef CONFIG_ARCH_NO_SG_CHAIN
 281	if (WARN_ON_ONCE(nents > max_ents))
 282		return -EINVAL;
 283#endif
 284
 
 
 285	left = nents;
 286	prv = NULL;
 287	do {
 288		unsigned int sg_size, alloc_size = left;
 289
 290		if (alloc_size > curr_max_ents) {
 291			alloc_size = curr_max_ents;
 292			sg_size = alloc_size - 1;
 293		} else
 294			sg_size = alloc_size;
 295
 296		left -= sg_size;
 297
 298		if (first_chunk) {
 299			sg = first_chunk;
 300			first_chunk = NULL;
 301		} else {
 302			sg = alloc_fn(alloc_size, gfp_mask);
 303		}
 304		if (unlikely(!sg)) {
 305			/*
 306			 * Adjust entry count to reflect that the last
 307			 * entry of the previous table won't be used for
 308			 * linkage.  Without this, sg_kfree() may get
 309			 * confused.
 310			 */
 311			if (prv)
 312				table->nents = ++table->orig_nents;
 313
 314			return -ENOMEM;
 315		}
 316
 317		sg_init_table(sg, alloc_size);
 318		table->nents = table->orig_nents += sg_size;
 319
 320		/*
 321		 * If this is the first mapping, assign the sg table header.
 322		 * If this is not the first mapping, chain previous part.
 323		 */
 324		if (prv)
 325			sg_chain(prv, prv_max_ents, sg);
 326		else
 327			table->sgl = sg;
 328
 329		/*
 330		 * If no more entries after this one, mark the end
 331		 */
 332		if (!left)
 333			sg_mark_end(&sg[sg_size - 1]);
 334
 
 
 
 
 
 
 
 
 335		prv = sg;
 336		prv_max_ents = curr_max_ents;
 337		curr_max_ents = max_ents;
 338	} while (left);
 339
 340	return 0;
 341}
 342EXPORT_SYMBOL(__sg_alloc_table);
 343
 344/**
 345 * sg_alloc_table - Allocate and initialize an sg table
 346 * @table:	The sg table header to use
 347 * @nents:	Number of entries in sg list
 348 * @gfp_mask:	GFP allocation mask
 349 *
 350 *  Description:
 351 *    Allocate and initialize an sg table. If @nents@ is larger than
 352 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
 353 *
 354 **/
 355int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
 356{
 357	int ret;
 358
 359	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
 360			       NULL, 0, gfp_mask, sg_kmalloc);
 361	if (unlikely(ret))
 362		__sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree);
 363
 364	return ret;
 365}
 366EXPORT_SYMBOL(sg_alloc_table);
 367
 368static struct scatterlist *get_next_sg(struct sg_table *table,
 369				       struct scatterlist *cur,
 370				       unsigned long needed_sges,
 371				       gfp_t gfp_mask)
 372{
 373	struct scatterlist *new_sg, *next_sg;
 374	unsigned int alloc_size;
 375
 376	if (cur) {
 377		next_sg = sg_next(cur);
 378		/* Check if last entry should be keeped for chainning */
 379		if (!sg_is_last(next_sg) || needed_sges == 1)
 380			return next_sg;
 381	}
 382
 383	alloc_size = min_t(unsigned long, needed_sges, SG_MAX_SINGLE_ALLOC);
 384	new_sg = sg_kmalloc(alloc_size, gfp_mask);
 385	if (!new_sg)
 386		return ERR_PTR(-ENOMEM);
 387	sg_init_table(new_sg, alloc_size);
 388	if (cur) {
 389		__sg_chain(next_sg, new_sg);
 390		table->orig_nents += alloc_size - 1;
 391	} else {
 392		table->sgl = new_sg;
 393		table->orig_nents = alloc_size;
 394		table->nents = 0;
 395	}
 396	return new_sg;
 397}
 398
 399/**
 400 * __sg_alloc_table_from_pages - Allocate and initialize an sg table from
 401 *			         an array of pages
 402 * @sgt:	 The sg table header to use
 403 * @pages:	 Pointer to an array of page pointers
 404 * @n_pages:	 Number of pages in the pages array
 405 * @offset:      Offset from start of the first page to the start of a buffer
 406 * @size:        Number of valid bytes in the buffer (after offset)
 407 * @max_segment: Maximum size of a scatterlist element in bytes
 408 * @prv:	 Last populated sge in sgt
 409 * @left_pages:  Left pages caller have to set after this call
 410 * @gfp_mask:	 GFP allocation mask
 411 *
 412 * Description:
 413 *    If @prv is NULL, allocate and initialize an sg table from a list of pages,
 414 *    else reuse the scatterlist passed in at @prv.
 415 *    Contiguous ranges of the pages are squashed into a single scatterlist
 416 *    entry up to the maximum size specified in @max_segment.  A user may
 417 *    provide an offset at a start and a size of valid data in a buffer
 418 *    specified by the page array.
 419 *
 420 * Returns:
 421 *   Last SGE in sgt on success, PTR_ERR on otherwise.
 422 *   The allocation in @sgt must be released by sg_free_table.
 423 *
 424 * Notes:
 425 *   If this function returns non-0 (eg failure), the caller must call
 426 *   sg_free_table() to cleanup any leftover allocations.
 427 */
 428struct scatterlist *__sg_alloc_table_from_pages(struct sg_table *sgt,
 429		struct page **pages, unsigned int n_pages, unsigned int offset,
 430		unsigned long size, unsigned int max_segment,
 431		struct scatterlist *prv, unsigned int left_pages,
 432		gfp_t gfp_mask)
 433{
 434	unsigned int chunks, cur_page, seg_len, i, prv_len = 0;
 435	unsigned int added_nents = 0;
 436	struct scatterlist *s = prv;
 437
 438	/*
 439	 * The algorithm below requires max_segment to be aligned to PAGE_SIZE
 440	 * otherwise it can overshoot.
 441	 */
 442	max_segment = ALIGN_DOWN(max_segment, PAGE_SIZE);
 443	if (WARN_ON(max_segment < PAGE_SIZE))
 444		return ERR_PTR(-EINVAL);
 445
 446	if (IS_ENABLED(CONFIG_ARCH_NO_SG_CHAIN) && prv)
 447		return ERR_PTR(-EOPNOTSUPP);
 448
 449	if (prv) {
 450		unsigned long paddr = (page_to_pfn(sg_page(prv)) * PAGE_SIZE +
 451				       prv->offset + prv->length) /
 452				      PAGE_SIZE;
 453
 454		if (WARN_ON(offset))
 455			return ERR_PTR(-EINVAL);
 456
 457		/* Merge contiguous pages into the last SG */
 458		prv_len = prv->length;
 459		while (n_pages && page_to_pfn(pages[0]) == paddr) {
 460			if (prv->length + PAGE_SIZE > max_segment)
 461				break;
 462			prv->length += PAGE_SIZE;
 463			paddr++;
 464			pages++;
 465			n_pages--;
 466		}
 467		if (!n_pages)
 468			goto out;
 469	}
 470
 471	/* compute number of contiguous chunks */
 472	chunks = 1;
 473	seg_len = 0;
 474	for (i = 1; i < n_pages; i++) {
 475		seg_len += PAGE_SIZE;
 476		if (seg_len >= max_segment ||
 477		    page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1) {
 478			chunks++;
 479			seg_len = 0;
 480		}
 481	}
 482
 483	/* merging chunks and putting them into the scatterlist */
 484	cur_page = 0;
 485	for (i = 0; i < chunks; i++) {
 486		unsigned int j, chunk_size;
 487
 488		/* look for the end of the current chunk */
 489		seg_len = 0;
 490		for (j = cur_page + 1; j < n_pages; j++) {
 491			seg_len += PAGE_SIZE;
 492			if (seg_len >= max_segment ||
 493			    page_to_pfn(pages[j]) !=
 494			    page_to_pfn(pages[j - 1]) + 1)
 495				break;
 496		}
 497
 498		/* Pass how many chunks might be left */
 499		s = get_next_sg(sgt, s, chunks - i + left_pages, gfp_mask);
 500		if (IS_ERR(s)) {
 501			/*
 502			 * Adjust entry length to be as before function was
 503			 * called.
 504			 */
 505			if (prv)
 506				prv->length = prv_len;
 507			return s;
 508		}
 509		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
 510		sg_set_page(s, pages[cur_page],
 511			    min_t(unsigned long, size, chunk_size), offset);
 512		added_nents++;
 513		size -= chunk_size;
 514		offset = 0;
 515		cur_page = j;
 516	}
 517	sgt->nents += added_nents;
 518out:
 519	if (!left_pages)
 520		sg_mark_end(s);
 521	return s;
 522}
 523EXPORT_SYMBOL(__sg_alloc_table_from_pages);
 524
 525/**
 526 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
 527 *			       an array of pages
 528 * @sgt:	 The sg table header to use
 529 * @pages:	 Pointer to an array of page pointers
 530 * @n_pages:	 Number of pages in the pages array
 531 * @offset:      Offset from start of the first page to the start of a buffer
 532 * @size:        Number of valid bytes in the buffer (after offset)
 533 * @gfp_mask:	 GFP allocation mask
 534 *
 535 *  Description:
 536 *    Allocate and initialize an sg table from a list of pages. Contiguous
 537 *    ranges of the pages are squashed into a single scatterlist node. A user
 538 *    may provide an offset at a start and a size of valid data in a buffer
 539 *    specified by the page array. The returned sg table is released by
 540 *    sg_free_table.
 541 *
 542 * Returns:
 543 *   0 on success, negative error on failure
 544 */
 545int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
 546			      unsigned int n_pages, unsigned int offset,
 547			      unsigned long size, gfp_t gfp_mask)
 548{
 549	return PTR_ERR_OR_ZERO(__sg_alloc_table_from_pages(sgt, pages, n_pages,
 550			offset, size, UINT_MAX, NULL, 0, gfp_mask));
 551}
 552EXPORT_SYMBOL(sg_alloc_table_from_pages);
 553
 554#ifdef CONFIG_SGL_ALLOC
 555
 556/**
 557 * sgl_alloc_order - allocate a scatterlist and its pages
 558 * @length: Length in bytes of the scatterlist. Must be at least one
 559 * @order: Second argument for alloc_pages()
 560 * @chainable: Whether or not to allocate an extra element in the scatterlist
 561 *	for scatterlist chaining purposes
 562 * @gfp: Memory allocation flags
 563 * @nent_p: [out] Number of entries in the scatterlist that have pages
 564 *
 565 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 566 */
 567struct scatterlist *sgl_alloc_order(unsigned long long length,
 568				    unsigned int order, bool chainable,
 569				    gfp_t gfp, unsigned int *nent_p)
 570{
 571	struct scatterlist *sgl, *sg;
 572	struct page *page;
 573	unsigned int nent, nalloc;
 574	u32 elem_len;
 575
 576	nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
 577	/* Check for integer overflow */
 578	if (length > (nent << (PAGE_SHIFT + order)))
 579		return NULL;
 580	nalloc = nent;
 581	if (chainable) {
 582		/* Check for integer overflow */
 583		if (nalloc + 1 < nalloc)
 584			return NULL;
 585		nalloc++;
 586	}
 587	sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
 588			    gfp & ~GFP_DMA);
 589	if (!sgl)
 590		return NULL;
 591
 592	sg_init_table(sgl, nalloc);
 593	sg = sgl;
 594	while (length) {
 595		elem_len = min_t(u64, length, PAGE_SIZE << order);
 596		page = alloc_pages(gfp, order);
 597		if (!page) {
 598			sgl_free_order(sgl, order);
 599			return NULL;
 600		}
 601
 602		sg_set_page(sg, page, elem_len, 0);
 603		length -= elem_len;
 604		sg = sg_next(sg);
 605	}
 606	WARN_ONCE(length, "length = %lld\n", length);
 607	if (nent_p)
 608		*nent_p = nent;
 609	return sgl;
 610}
 611EXPORT_SYMBOL(sgl_alloc_order);
 612
 613/**
 614 * sgl_alloc - allocate a scatterlist and its pages
 615 * @length: Length in bytes of the scatterlist
 616 * @gfp: Memory allocation flags
 617 * @nent_p: [out] Number of entries in the scatterlist
 618 *
 619 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 620 */
 621struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
 622			      unsigned int *nent_p)
 623{
 624	return sgl_alloc_order(length, 0, false, gfp, nent_p);
 625}
 626EXPORT_SYMBOL(sgl_alloc);
 627
 628/**
 629 * sgl_free_n_order - free a scatterlist and its pages
 630 * @sgl: Scatterlist with one or more elements
 631 * @nents: Maximum number of elements to free
 632 * @order: Second argument for __free_pages()
 633 *
 634 * Notes:
 635 * - If several scatterlists have been chained and each chain element is
 636 *   freed separately then it's essential to set nents correctly to avoid that a
 637 *   page would get freed twice.
 638 * - All pages in a chained scatterlist can be freed at once by setting @nents
 639 *   to a high number.
 640 */
 641void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
 642{
 643	struct scatterlist *sg;
 644	struct page *page;
 645	int i;
 646
 647	for_each_sg(sgl, sg, nents, i) {
 648		if (!sg)
 649			break;
 650		page = sg_page(sg);
 651		if (page)
 652			__free_pages(page, order);
 653	}
 654	kfree(sgl);
 655}
 656EXPORT_SYMBOL(sgl_free_n_order);
 657
 658/**
 659 * sgl_free_order - free a scatterlist and its pages
 660 * @sgl: Scatterlist with one or more elements
 661 * @order: Second argument for __free_pages()
 662 */
 663void sgl_free_order(struct scatterlist *sgl, int order)
 664{
 665	sgl_free_n_order(sgl, INT_MAX, order);
 666}
 667EXPORT_SYMBOL(sgl_free_order);
 668
 669/**
 670 * sgl_free - free a scatterlist and its pages
 671 * @sgl: Scatterlist with one or more elements
 672 */
 673void sgl_free(struct scatterlist *sgl)
 674{
 675	sgl_free_order(sgl, 0);
 676}
 677EXPORT_SYMBOL(sgl_free);
 678
 679#endif /* CONFIG_SGL_ALLOC */
 680
 681void __sg_page_iter_start(struct sg_page_iter *piter,
 682			  struct scatterlist *sglist, unsigned int nents,
 683			  unsigned long pgoffset)
 684{
 685	piter->__pg_advance = 0;
 686	piter->__nents = nents;
 687
 688	piter->sg = sglist;
 689	piter->sg_pgoffset = pgoffset;
 690}
 691EXPORT_SYMBOL(__sg_page_iter_start);
 692
 693static int sg_page_count(struct scatterlist *sg)
 694{
 695	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
 696}
 697
 698bool __sg_page_iter_next(struct sg_page_iter *piter)
 699{
 700	if (!piter->__nents || !piter->sg)
 701		return false;
 702
 703	piter->sg_pgoffset += piter->__pg_advance;
 704	piter->__pg_advance = 1;
 705
 706	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
 707		piter->sg_pgoffset -= sg_page_count(piter->sg);
 708		piter->sg = sg_next(piter->sg);
 709		if (!--piter->__nents || !piter->sg)
 710			return false;
 711	}
 712
 713	return true;
 714}
 715EXPORT_SYMBOL(__sg_page_iter_next);
 716
 717static int sg_dma_page_count(struct scatterlist *sg)
 718{
 719	return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
 720}
 721
 722bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
 723{
 724	struct sg_page_iter *piter = &dma_iter->base;
 725
 726	if (!piter->__nents || !piter->sg)
 727		return false;
 728
 729	piter->sg_pgoffset += piter->__pg_advance;
 730	piter->__pg_advance = 1;
 731
 732	while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
 733		piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
 734		piter->sg = sg_next(piter->sg);
 735		if (!--piter->__nents || !piter->sg)
 736			return false;
 737	}
 738
 739	return true;
 740}
 741EXPORT_SYMBOL(__sg_page_iter_dma_next);
 742
 743/**
 744 * sg_miter_start - start mapping iteration over a sg list
 745 * @miter: sg mapping iter to be started
 746 * @sgl: sg list to iterate over
 747 * @nents: number of sg entries
 748 *
 749 * Description:
 750 *   Starts mapping iterator @miter.
 751 *
 752 * Context:
 753 *   Don't care.
 754 */
 755void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
 756		    unsigned int nents, unsigned int flags)
 757{
 758	memset(miter, 0, sizeof(struct sg_mapping_iter));
 759
 760	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
 
 
 761	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
 762	miter->__flags = flags;
 763}
 764EXPORT_SYMBOL(sg_miter_start);
 765
 766static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
 767{
 768	if (!miter->__remaining) {
 769		struct scatterlist *sg;
 770
 771		if (!__sg_page_iter_next(&miter->piter))
 772			return false;
 773
 774		sg = miter->piter.sg;
 775
 776		miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
 777		miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
 778		miter->__offset &= PAGE_SIZE - 1;
 779		miter->__remaining = sg->offset + sg->length -
 780				     (miter->piter.sg_pgoffset << PAGE_SHIFT) -
 781				     miter->__offset;
 782		miter->__remaining = min_t(unsigned long, miter->__remaining,
 783					   PAGE_SIZE - miter->__offset);
 784	}
 785
 786	return true;
 787}
 788
 789/**
 790 * sg_miter_skip - reposition mapping iterator
 791 * @miter: sg mapping iter to be skipped
 792 * @offset: number of bytes to plus the current location
 793 *
 794 * Description:
 795 *   Sets the offset of @miter to its current location plus @offset bytes.
 796 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
 797 *   stops @miter.
 798 *
 799 * Context:
 800 *   Don't care if @miter is stopped, or not proceeded yet.
 801 *   Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
 802 *
 803 * Returns:
 804 *   true if @miter contains the valid mapping.  false if end of sg
 805 *   list is reached.
 806 */
 807bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
 808{
 809	sg_miter_stop(miter);
 810
 811	while (offset) {
 812		off_t consumed;
 813
 814		if (!sg_miter_get_next_page(miter))
 815			return false;
 816
 817		consumed = min_t(off_t, offset, miter->__remaining);
 818		miter->__offset += consumed;
 819		miter->__remaining -= consumed;
 820		offset -= consumed;
 821	}
 822
 823	return true;
 824}
 825EXPORT_SYMBOL(sg_miter_skip);
 826
 827/**
 828 * sg_miter_next - proceed mapping iterator to the next mapping
 829 * @miter: sg mapping iter to proceed
 830 *
 831 * Description:
 832 *   Proceeds @miter to the next mapping.  @miter should have been started
 833 *   using sg_miter_start().  On successful return, @miter->page,
 834 *   @miter->addr and @miter->length point to the current mapping.
 
 835 *
 836 * Context:
 837 *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
 838 *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
 839 *
 840 * Returns:
 841 *   true if @miter contains the next mapping.  false if end of sg
 842 *   list is reached.
 843 */
 844bool sg_miter_next(struct sg_mapping_iter *miter)
 845{
 846	sg_miter_stop(miter);
 847
 848	/*
 849	 * Get to the next page if necessary.
 850	 * __remaining, __offset is adjusted by sg_miter_stop
 851	 */
 852	if (!sg_miter_get_next_page(miter))
 853		return false;
 854
 855	miter->page = sg_page_iter_page(&miter->piter);
 856	miter->consumed = miter->length = miter->__remaining;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857
 858	if (miter->__flags & SG_MITER_ATOMIC)
 859		miter->addr = kmap_atomic(miter->page) + miter->__offset;
 860	else
 861		miter->addr = kmap(miter->page) + miter->__offset;
 862
 863	return true;
 864}
 865EXPORT_SYMBOL(sg_miter_next);
 866
 867/**
 868 * sg_miter_stop - stop mapping iteration
 869 * @miter: sg mapping iter to be stopped
 870 *
 871 * Description:
 872 *   Stops mapping iterator @miter.  @miter should have been started
 873 *   using sg_miter_start().  A stopped iteration can be resumed by
 874 *   calling sg_miter_next() on it.  This is useful when resources (kmap)
 875 *   need to be released during iteration.
 876 *
 877 * Context:
 878 *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
 879 *   otherwise.
 880 */
 881void sg_miter_stop(struct sg_mapping_iter *miter)
 882{
 883	WARN_ON(miter->consumed > miter->length);
 884
 885	/* drop resources from the last iteration */
 886	if (miter->addr) {
 887		miter->__offset += miter->consumed;
 888		miter->__remaining -= miter->consumed;
 889
 890		if ((miter->__flags & SG_MITER_TO_SG) &&
 891		    !PageSlab(miter->page))
 892			flush_kernel_dcache_page(miter->page);
 893
 894		if (miter->__flags & SG_MITER_ATOMIC) {
 895			WARN_ON_ONCE(preemptible());
 896			kunmap_atomic(miter->addr);
 897		} else
 898			kunmap(miter->page);
 899
 900		miter->page = NULL;
 901		miter->addr = NULL;
 902		miter->length = 0;
 903		miter->consumed = 0;
 904	}
 905}
 906EXPORT_SYMBOL(sg_miter_stop);
 907
 908/**
 909 * sg_copy_buffer - Copy data between a linear buffer and an SG list
 910 * @sgl:		 The SG list
 911 * @nents:		 Number of SG entries
 912 * @buf:		 Where to copy from
 913 * @buflen:		 The number of bytes to copy
 914 * @skip:		 Number of bytes to skip before copying
 915 * @to_buffer:		 transfer direction (true == from an sg list to a
 916 *			 buffer, false == from a buffer to an sg list)
 917 *
 918 * Returns the number of copied bytes.
 919 *
 920 **/
 921size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
 922		      size_t buflen, off_t skip, bool to_buffer)
 923{
 924	unsigned int offset = 0;
 925	struct sg_mapping_iter miter;
 
 926	unsigned int sg_flags = SG_MITER_ATOMIC;
 927
 928	if (to_buffer)
 929		sg_flags |= SG_MITER_FROM_SG;
 930	else
 931		sg_flags |= SG_MITER_TO_SG;
 932
 933	sg_miter_start(&miter, sgl, nents, sg_flags);
 934
 935	if (!sg_miter_skip(&miter, skip))
 936		return 0;
 937
 938	while ((offset < buflen) && sg_miter_next(&miter)) {
 939		unsigned int len;
 940
 941		len = min(miter.length, buflen - offset);
 942
 943		if (to_buffer)
 944			memcpy(buf + offset, miter.addr, len);
 945		else
 946			memcpy(miter.addr, buf + offset, len);
 947
 948		offset += len;
 949	}
 950
 951	sg_miter_stop(&miter);
 952
 
 953	return offset;
 954}
 955EXPORT_SYMBOL(sg_copy_buffer);
 956
 957/**
 958 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
 959 * @sgl:		 The SG list
 960 * @nents:		 Number of SG entries
 961 * @buf:		 Where to copy from
 962 * @buflen:		 The number of bytes to copy
 963 *
 964 * Returns the number of copied bytes.
 965 *
 966 **/
 967size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
 968			   const void *buf, size_t buflen)
 969{
 970	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
 971}
 972EXPORT_SYMBOL(sg_copy_from_buffer);
 973
 974/**
 975 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
 976 * @sgl:		 The SG list
 977 * @nents:		 Number of SG entries
 978 * @buf:		 Where to copy to
 979 * @buflen:		 The number of bytes to copy
 980 *
 981 * Returns the number of copied bytes.
 982 *
 983 **/
 984size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
 985			 void *buf, size_t buflen)
 986{
 987	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
 988}
 989EXPORT_SYMBOL(sg_copy_to_buffer);
 990
 991/**
 992 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
 993 * @sgl:		 The SG list
 994 * @nents:		 Number of SG entries
 995 * @buf:		 Where to copy from
 996 * @buflen:		 The number of bytes to copy
 997 * @skip:		 Number of bytes to skip before copying
 998 *
 999 * Returns the number of copied bytes.
1000 *
1001 **/
1002size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1003			    const void *buf, size_t buflen, off_t skip)
1004{
1005	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
1006}
1007EXPORT_SYMBOL(sg_pcopy_from_buffer);
1008
1009/**
1010 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
1011 * @sgl:		 The SG list
1012 * @nents:		 Number of SG entries
1013 * @buf:		 Where to copy to
1014 * @buflen:		 The number of bytes to copy
1015 * @skip:		 Number of bytes to skip before copying
1016 *
1017 * Returns the number of copied bytes.
1018 *
1019 **/
1020size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1021			  void *buf, size_t buflen, off_t skip)
1022{
1023	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
1024}
1025EXPORT_SYMBOL(sg_pcopy_to_buffer);
1026
1027/**
1028 * sg_zero_buffer - Zero-out a part of a SG list
1029 * @sgl:		 The SG list
1030 * @nents:		 Number of SG entries
1031 * @buflen:		 The number of bytes to zero out
1032 * @skip:		 Number of bytes to skip before zeroing
1033 *
1034 * Returns the number of bytes zeroed.
1035 **/
1036size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
1037		       size_t buflen, off_t skip)
1038{
1039	unsigned int offset = 0;
1040	struct sg_mapping_iter miter;
1041	unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
1042
1043	sg_miter_start(&miter, sgl, nents, sg_flags);
1044
1045	if (!sg_miter_skip(&miter, skip))
1046		return false;
1047
1048	while (offset < buflen && sg_miter_next(&miter)) {
1049		unsigned int len;
1050
1051		len = min(miter.length, buflen - offset);
1052		memset(miter.addr, 0, len);
1053
1054		offset += len;
1055	}
1056
1057	sg_miter_stop(&miter);
1058	return offset;
1059}
1060EXPORT_SYMBOL(sg_zero_buffer);
v3.1
 
  1/*
  2 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
  3 *
  4 * Scatterlist handling helpers.
  5 *
  6 * This source code is licensed under the GNU General Public License,
  7 * Version 2. See the file COPYING for more details.
  8 */
  9#include <linux/module.h>
 10#include <linux/slab.h>
 11#include <linux/scatterlist.h>
 12#include <linux/highmem.h>
 13#include <linux/kmemleak.h>
 14
 15/**
 16 * sg_next - return the next scatterlist entry in a list
 17 * @sg:		The current sg entry
 18 *
 19 * Description:
 20 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
 21 *   of a chained scatterlist, it could jump to the start of a new
 22 *   scatterlist array.
 23 *
 24 **/
 25struct scatterlist *sg_next(struct scatterlist *sg)
 26{
 27#ifdef CONFIG_DEBUG_SG
 28	BUG_ON(sg->sg_magic != SG_MAGIC);
 29#endif
 30	if (sg_is_last(sg))
 31		return NULL;
 32
 33	sg++;
 34	if (unlikely(sg_is_chain(sg)))
 35		sg = sg_chain_ptr(sg);
 36
 37	return sg;
 38}
 39EXPORT_SYMBOL(sg_next);
 40
 41/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 42 * sg_last - return the last scatterlist entry in a list
 43 * @sgl:	First entry in the scatterlist
 44 * @nents:	Number of entries in the scatterlist
 45 *
 46 * Description:
 47 *   Should only be used casually, it (currently) scans the entire list
 48 *   to get the last entry.
 49 *
 50 *   Note that the @sgl@ pointer passed in need not be the first one,
 51 *   the important bit is that @nents@ denotes the number of entries that
 52 *   exist from @sgl@.
 53 *
 54 **/
 55struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
 56{
 57#ifndef ARCH_HAS_SG_CHAIN
 58	struct scatterlist *ret = &sgl[nents - 1];
 59#else
 60	struct scatterlist *sg, *ret = NULL;
 61	unsigned int i;
 62
 63	for_each_sg(sgl, sg, nents, i)
 64		ret = sg;
 65
 66#endif
 67#ifdef CONFIG_DEBUG_SG
 68	BUG_ON(sgl[0].sg_magic != SG_MAGIC);
 69	BUG_ON(!sg_is_last(ret));
 70#endif
 71	return ret;
 72}
 73EXPORT_SYMBOL(sg_last);
 74
 75/**
 76 * sg_init_table - Initialize SG table
 77 * @sgl:	   The SG table
 78 * @nents:	   Number of entries in table
 79 *
 80 * Notes:
 81 *   If this is part of a chained sg table, sg_mark_end() should be
 82 *   used only on the last table part.
 83 *
 84 **/
 85void sg_init_table(struct scatterlist *sgl, unsigned int nents)
 86{
 87	memset(sgl, 0, sizeof(*sgl) * nents);
 88#ifdef CONFIG_DEBUG_SG
 89	{
 90		unsigned int i;
 91		for (i = 0; i < nents; i++)
 92			sgl[i].sg_magic = SG_MAGIC;
 93	}
 94#endif
 95	sg_mark_end(&sgl[nents - 1]);
 96}
 97EXPORT_SYMBOL(sg_init_table);
 98
 99/**
100 * sg_init_one - Initialize a single entry sg list
101 * @sg:		 SG entry
102 * @buf:	 Virtual address for IO
103 * @buflen:	 IO length
104 *
105 **/
106void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
107{
108	sg_init_table(sg, 1);
109	sg_set_buf(sg, buf, buflen);
110}
111EXPORT_SYMBOL(sg_init_one);
112
113/*
114 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
115 * helpers.
116 */
117static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
118{
119	if (nents == SG_MAX_SINGLE_ALLOC) {
120		/*
121		 * Kmemleak doesn't track page allocations as they are not
122		 * commonly used (in a raw form) for kernel data structures.
123		 * As we chain together a list of pages and then a normal
124		 * kmalloc (tracked by kmemleak), in order to for that last
125		 * allocation not to become decoupled (and thus a
126		 * false-positive) we need to inform kmemleak of all the
127		 * intermediate allocations.
128		 */
129		void *ptr = (void *) __get_free_page(gfp_mask);
130		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
131		return ptr;
132	} else
133		return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
 
134}
135
136static void sg_kfree(struct scatterlist *sg, unsigned int nents)
137{
138	if (nents == SG_MAX_SINGLE_ALLOC) {
139		kmemleak_free(sg);
140		free_page((unsigned long) sg);
141	} else
142		kfree(sg);
143}
144
145/**
146 * __sg_free_table - Free a previously mapped sg table
147 * @table:	The sg table header to use
148 * @max_ents:	The maximum number of entries per single scatterlist
 
 
149 * @free_fn:	Free function
150 *
151 *  Description:
152 *    Free an sg table previously allocated and setup with
153 *    __sg_alloc_table().  The @max_ents value must be identical to
154 *    that previously used with __sg_alloc_table().
155 *
156 **/
157void __sg_free_table(struct sg_table *table, unsigned int max_ents,
158		     sg_free_fn *free_fn)
159{
160	struct scatterlist *sgl, *next;
 
161
162	if (unlikely(!table->sgl))
163		return;
164
165	sgl = table->sgl;
166	while (table->orig_nents) {
167		unsigned int alloc_size = table->orig_nents;
168		unsigned int sg_size;
169
170		/*
171		 * If we have more than max_ents segments left,
172		 * then assign 'next' to the sg table after the current one.
173		 * sg_size is then one less than alloc size, since the last
174		 * element is the chain pointer.
175		 */
176		if (alloc_size > max_ents) {
177			next = sg_chain_ptr(&sgl[max_ents - 1]);
178			alloc_size = max_ents;
179			sg_size = alloc_size - 1;
180		} else {
181			sg_size = alloc_size;
182			next = NULL;
183		}
184
185		table->orig_nents -= sg_size;
186		free_fn(sgl, alloc_size);
 
 
 
187		sgl = next;
 
188	}
189
190	table->sgl = NULL;
191}
192EXPORT_SYMBOL(__sg_free_table);
193
194/**
195 * sg_free_table - Free a previously allocated sg table
196 * @table:	The mapped sg table header
197 *
198 **/
199void sg_free_table(struct sg_table *table)
200{
201	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree);
202}
203EXPORT_SYMBOL(sg_free_table);
204
205/**
206 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
207 * @table:	The sg table header to use
208 * @nents:	Number of entries in sg list
209 * @max_ents:	The maximum number of entries the allocator returns per call
 
 
210 * @gfp_mask:	GFP allocation mask
211 * @alloc_fn:	Allocator to use
212 *
213 * Description:
214 *   This function returns a @table @nents long. The allocator is
215 *   defined to return scatterlist chunks of maximum size @max_ents.
216 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
217 *   chained in units of @max_ents.
218 *
219 * Notes:
220 *   If this function returns non-0 (eg failure), the caller must call
221 *   __sg_free_table() to cleanup any leftover allocations.
222 *
223 **/
224int __sg_alloc_table(struct sg_table *table, unsigned int nents,
225		     unsigned int max_ents, gfp_t gfp_mask,
 
226		     sg_alloc_fn *alloc_fn)
227{
228	struct scatterlist *sg, *prv;
229	unsigned int left;
 
 
230
231#ifndef ARCH_HAS_SG_CHAIN
232	BUG_ON(nents > max_ents);
 
 
 
 
 
233#endif
234
235	memset(table, 0, sizeof(*table));
236
237	left = nents;
238	prv = NULL;
239	do {
240		unsigned int sg_size, alloc_size = left;
241
242		if (alloc_size > max_ents) {
243			alloc_size = max_ents;
244			sg_size = alloc_size - 1;
245		} else
246			sg_size = alloc_size;
247
248		left -= sg_size;
249
250		sg = alloc_fn(alloc_size, gfp_mask);
 
 
 
 
 
251		if (unlikely(!sg)) {
252			/*
253			 * Adjust entry count to reflect that the last
254			 * entry of the previous table won't be used for
255			 * linkage.  Without this, sg_kfree() may get
256			 * confused.
257			 */
258			if (prv)
259				table->nents = ++table->orig_nents;
260
261 			return -ENOMEM;
262		}
263
264		sg_init_table(sg, alloc_size);
265		table->nents = table->orig_nents += sg_size;
266
267		/*
268		 * If this is the first mapping, assign the sg table header.
269		 * If this is not the first mapping, chain previous part.
270		 */
271		if (prv)
272			sg_chain(prv, max_ents, sg);
273		else
274			table->sgl = sg;
275
276		/*
277		 * If no more entries after this one, mark the end
278		 */
279		if (!left)
280			sg_mark_end(&sg[sg_size - 1]);
281
282		/*
283		 * only really needed for mempool backed sg allocations (like
284		 * SCSI), a possible improvement here would be to pass the
285		 * table pointer into the allocator and let that clear these
286		 * flags
287		 */
288		gfp_mask &= ~__GFP_WAIT;
289		gfp_mask |= __GFP_HIGH;
290		prv = sg;
 
 
291	} while (left);
292
293	return 0;
294}
295EXPORT_SYMBOL(__sg_alloc_table);
296
297/**
298 * sg_alloc_table - Allocate and initialize an sg table
299 * @table:	The sg table header to use
300 * @nents:	Number of entries in sg list
301 * @gfp_mask:	GFP allocation mask
302 *
303 *  Description:
304 *    Allocate and initialize an sg table. If @nents@ is larger than
305 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
306 *
307 **/
308int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
309{
310	int ret;
311
312	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
313			       gfp_mask, sg_kmalloc);
314	if (unlikely(ret))
315		__sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree);
316
317	return ret;
318}
319EXPORT_SYMBOL(sg_alloc_table);
320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321/**
322 * sg_miter_start - start mapping iteration over a sg list
323 * @miter: sg mapping iter to be started
324 * @sgl: sg list to iterate over
325 * @nents: number of sg entries
326 *
327 * Description:
328 *   Starts mapping iterator @miter.
329 *
330 * Context:
331 *   Don't care.
332 */
333void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
334		    unsigned int nents, unsigned int flags)
335{
336	memset(miter, 0, sizeof(struct sg_mapping_iter));
337
338	miter->__sg = sgl;
339	miter->__nents = nents;
340	miter->__offset = 0;
341	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
342	miter->__flags = flags;
343}
344EXPORT_SYMBOL(sg_miter_start);
345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
346/**
347 * sg_miter_next - proceed mapping iterator to the next mapping
348 * @miter: sg mapping iter to proceed
349 *
350 * Description:
351 *   Proceeds @miter@ to the next mapping.  @miter@ should have been
352 *   started using sg_miter_start().  On successful return,
353 *   @miter@->page, @miter@->addr and @miter@->length point to the
354 *   current mapping.
355 *
356 * Context:
357 *   IRQ disabled if SG_MITER_ATOMIC.  IRQ must stay disabled till
358 *   @miter@ is stopped.  May sleep if !SG_MITER_ATOMIC.
359 *
360 * Returns:
361 *   true if @miter contains the next mapping.  false if end of sg
362 *   list is reached.
363 */
364bool sg_miter_next(struct sg_mapping_iter *miter)
365{
366	unsigned int off, len;
367
368	/* check for end and drop resources from the last iteration */
369	if (!miter->__nents)
 
 
 
370		return false;
371
372	sg_miter_stop(miter);
373
374	/* get to the next sg if necessary.  __offset is adjusted by stop */
375	while (miter->__offset == miter->__sg->length) {
376		if (--miter->__nents) {
377			miter->__sg = sg_next(miter->__sg);
378			miter->__offset = 0;
379		} else
380			return false;
381	}
382
383	/* map the next page */
384	off = miter->__sg->offset + miter->__offset;
385	len = miter->__sg->length - miter->__offset;
386
387	miter->page = nth_page(sg_page(miter->__sg), off >> PAGE_SHIFT);
388	off &= ~PAGE_MASK;
389	miter->length = min_t(unsigned int, len, PAGE_SIZE - off);
390	miter->consumed = miter->length;
391
392	if (miter->__flags & SG_MITER_ATOMIC)
393		miter->addr = kmap_atomic(miter->page, KM_BIO_SRC_IRQ) + off;
394	else
395		miter->addr = kmap(miter->page) + off;
396
397	return true;
398}
399EXPORT_SYMBOL(sg_miter_next);
400
401/**
402 * sg_miter_stop - stop mapping iteration
403 * @miter: sg mapping iter to be stopped
404 *
405 * Description:
406 *   Stops mapping iterator @miter.  @miter should have been started
407 *   started using sg_miter_start().  A stopped iteration can be
408 *   resumed by calling sg_miter_next() on it.  This is useful when
409 *   resources (kmap) need to be released during iteration.
410 *
411 * Context:
412 *   IRQ disabled if the SG_MITER_ATOMIC is set.  Don't care otherwise.
 
413 */
414void sg_miter_stop(struct sg_mapping_iter *miter)
415{
416	WARN_ON(miter->consumed > miter->length);
417
418	/* drop resources from the last iteration */
419	if (miter->addr) {
420		miter->__offset += miter->consumed;
 
421
422		if (miter->__flags & SG_MITER_TO_SG)
 
423			flush_kernel_dcache_page(miter->page);
424
425		if (miter->__flags & SG_MITER_ATOMIC) {
426			WARN_ON(!irqs_disabled());
427			kunmap_atomic(miter->addr, KM_BIO_SRC_IRQ);
428		} else
429			kunmap(miter->page);
430
431		miter->page = NULL;
432		miter->addr = NULL;
433		miter->length = 0;
434		miter->consumed = 0;
435	}
436}
437EXPORT_SYMBOL(sg_miter_stop);
438
439/**
440 * sg_copy_buffer - Copy data between a linear buffer and an SG list
441 * @sgl:		 The SG list
442 * @nents:		 Number of SG entries
443 * @buf:		 Where to copy from
444 * @buflen:		 The number of bytes to copy
445 * @to_buffer: 		 transfer direction (non zero == from an sg list to a
446 * 			 buffer, 0 == from a buffer to an sg list
 
447 *
448 * Returns the number of copied bytes.
449 *
450 **/
451static size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents,
452			     void *buf, size_t buflen, int to_buffer)
453{
454	unsigned int offset = 0;
455	struct sg_mapping_iter miter;
456	unsigned long flags;
457	unsigned int sg_flags = SG_MITER_ATOMIC;
458
459	if (to_buffer)
460		sg_flags |= SG_MITER_FROM_SG;
461	else
462		sg_flags |= SG_MITER_TO_SG;
463
464	sg_miter_start(&miter, sgl, nents, sg_flags);
465
466	local_irq_save(flags);
 
467
468	while (sg_miter_next(&miter) && offset < buflen) {
469		unsigned int len;
470
471		len = min(miter.length, buflen - offset);
472
473		if (to_buffer)
474			memcpy(buf + offset, miter.addr, len);
475		else
476			memcpy(miter.addr, buf + offset, len);
477
478		offset += len;
479	}
480
481	sg_miter_stop(&miter);
482
483	local_irq_restore(flags);
484	return offset;
485}
 
486
487/**
488 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
489 * @sgl:		 The SG list
490 * @nents:		 Number of SG entries
491 * @buf:		 Where to copy from
492 * @buflen:		 The number of bytes to copy
493 *
494 * Returns the number of copied bytes.
495 *
496 **/
497size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
498			   void *buf, size_t buflen)
499{
500	return sg_copy_buffer(sgl, nents, buf, buflen, 0);
501}
502EXPORT_SYMBOL(sg_copy_from_buffer);
503
504/**
505 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
506 * @sgl:		 The SG list
507 * @nents:		 Number of SG entries
508 * @buf:		 Where to copy to
509 * @buflen:		 The number of bytes to copy
510 *
511 * Returns the number of copied bytes.
512 *
513 **/
514size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
515			 void *buf, size_t buflen)
516{
517	return sg_copy_buffer(sgl, nents, buf, buflen, 1);
518}
519EXPORT_SYMBOL(sg_copy_to_buffer);