Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
4 *
5 * Scatterlist handling helpers.
6 */
7#include <linux/export.h>
8#include <linux/slab.h>
9#include <linux/scatterlist.h>
10#include <linux/highmem.h>
11#include <linux/kmemleak.h>
12
13/**
14 * sg_next - return the next scatterlist entry in a list
15 * @sg: The current sg entry
16 *
17 * Description:
18 * Usually the next entry will be @sg@ + 1, but if this sg element is part
19 * of a chained scatterlist, it could jump to the start of a new
20 * scatterlist array.
21 *
22 **/
23struct scatterlist *sg_next(struct scatterlist *sg)
24{
25 if (sg_is_last(sg))
26 return NULL;
27
28 sg++;
29 if (unlikely(sg_is_chain(sg)))
30 sg = sg_chain_ptr(sg);
31
32 return sg;
33}
34EXPORT_SYMBOL(sg_next);
35
36/**
37 * sg_nents - return total count of entries in scatterlist
38 * @sg: The scatterlist
39 *
40 * Description:
41 * Allows to know how many entries are in sg, taking into account
42 * chaining as well
43 *
44 **/
45int sg_nents(struct scatterlist *sg)
46{
47 int nents;
48 for (nents = 0; sg; sg = sg_next(sg))
49 nents++;
50 return nents;
51}
52EXPORT_SYMBOL(sg_nents);
53
54/**
55 * sg_nents_for_len - return total count of entries in scatterlist
56 * needed to satisfy the supplied length
57 * @sg: The scatterlist
58 * @len: The total required length
59 *
60 * Description:
61 * Determines the number of entries in sg that are required to meet
62 * the supplied length, taking into account chaining as well
63 *
64 * Returns:
65 * the number of sg entries needed, negative error on failure
66 *
67 **/
68int sg_nents_for_len(struct scatterlist *sg, u64 len)
69{
70 int nents;
71 u64 total;
72
73 if (!len)
74 return 0;
75
76 for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
77 nents++;
78 total += sg->length;
79 if (total >= len)
80 return nents;
81 }
82
83 return -EINVAL;
84}
85EXPORT_SYMBOL(sg_nents_for_len);
86
87/**
88 * sg_last - return the last scatterlist entry in a list
89 * @sgl: First entry in the scatterlist
90 * @nents: Number of entries in the scatterlist
91 *
92 * Description:
93 * Should only be used casually, it (currently) scans the entire list
94 * to get the last entry.
95 *
96 * Note that the @sgl@ pointer passed in need not be the first one,
97 * the important bit is that @nents@ denotes the number of entries that
98 * exist from @sgl@.
99 *
100 **/
101struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
102{
103 struct scatterlist *sg, *ret = NULL;
104 unsigned int i;
105
106 for_each_sg(sgl, sg, nents, i)
107 ret = sg;
108
109 BUG_ON(!sg_is_last(ret));
110 return ret;
111}
112EXPORT_SYMBOL(sg_last);
113
114/**
115 * sg_init_table - Initialize SG table
116 * @sgl: The SG table
117 * @nents: Number of entries in table
118 *
119 * Notes:
120 * If this is part of a chained sg table, sg_mark_end() should be
121 * used only on the last table part.
122 *
123 **/
124void sg_init_table(struct scatterlist *sgl, unsigned int nents)
125{
126 memset(sgl, 0, sizeof(*sgl) * nents);
127 sg_init_marker(sgl, nents);
128}
129EXPORT_SYMBOL(sg_init_table);
130
131/**
132 * sg_init_one - Initialize a single entry sg list
133 * @sg: SG entry
134 * @buf: Virtual address for IO
135 * @buflen: IO length
136 *
137 **/
138void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
139{
140 sg_init_table(sg, 1);
141 sg_set_buf(sg, buf, buflen);
142}
143EXPORT_SYMBOL(sg_init_one);
144
145/*
146 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
147 * helpers.
148 */
149static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
150{
151 if (nents == SG_MAX_SINGLE_ALLOC) {
152 /*
153 * Kmemleak doesn't track page allocations as they are not
154 * commonly used (in a raw form) for kernel data structures.
155 * As we chain together a list of pages and then a normal
156 * kmalloc (tracked by kmemleak), in order to for that last
157 * allocation not to become decoupled (and thus a
158 * false-positive) we need to inform kmemleak of all the
159 * intermediate allocations.
160 */
161 void *ptr = (void *) __get_free_page(gfp_mask);
162 kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
163 return ptr;
164 } else
165 return kmalloc_array(nents, sizeof(struct scatterlist),
166 gfp_mask);
167}
168
169static void sg_kfree(struct scatterlist *sg, unsigned int nents)
170{
171 if (nents == SG_MAX_SINGLE_ALLOC) {
172 kmemleak_free(sg);
173 free_page((unsigned long) sg);
174 } else
175 kfree(sg);
176}
177
178/**
179 * __sg_free_table - Free a previously mapped sg table
180 * @table: The sg table header to use
181 * @max_ents: The maximum number of entries per single scatterlist
182 * @nents_first_chunk: Number of entries int the (preallocated) first
183 * scatterlist chunk, 0 means no such preallocated first chunk
184 * @free_fn: Free function
185 *
186 * Description:
187 * Free an sg table previously allocated and setup with
188 * __sg_alloc_table(). The @max_ents value must be identical to
189 * that previously used with __sg_alloc_table().
190 *
191 **/
192void __sg_free_table(struct sg_table *table, unsigned int max_ents,
193 unsigned int nents_first_chunk, sg_free_fn *free_fn)
194{
195 struct scatterlist *sgl, *next;
196 unsigned curr_max_ents = nents_first_chunk ?: max_ents;
197
198 if (unlikely(!table->sgl))
199 return;
200
201 sgl = table->sgl;
202 while (table->orig_nents) {
203 unsigned int alloc_size = table->orig_nents;
204 unsigned int sg_size;
205
206 /*
207 * If we have more than max_ents segments left,
208 * then assign 'next' to the sg table after the current one.
209 * sg_size is then one less than alloc size, since the last
210 * element is the chain pointer.
211 */
212 if (alloc_size > curr_max_ents) {
213 next = sg_chain_ptr(&sgl[curr_max_ents - 1]);
214 alloc_size = curr_max_ents;
215 sg_size = alloc_size - 1;
216 } else {
217 sg_size = alloc_size;
218 next = NULL;
219 }
220
221 table->orig_nents -= sg_size;
222 if (nents_first_chunk)
223 nents_first_chunk = 0;
224 else
225 free_fn(sgl, alloc_size);
226 sgl = next;
227 curr_max_ents = max_ents;
228 }
229
230 table->sgl = NULL;
231}
232EXPORT_SYMBOL(__sg_free_table);
233
234/**
235 * sg_free_table - Free a previously allocated sg table
236 * @table: The mapped sg table header
237 *
238 **/
239void sg_free_table(struct sg_table *table)
240{
241 __sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
242}
243EXPORT_SYMBOL(sg_free_table);
244
245/**
246 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
247 * @table: The sg table header to use
248 * @nents: Number of entries in sg list
249 * @max_ents: The maximum number of entries the allocator returns per call
250 * @nents_first_chunk: Number of entries int the (preallocated) first
251 * scatterlist chunk, 0 means no such preallocated chunk provided by user
252 * @gfp_mask: GFP allocation mask
253 * @alloc_fn: Allocator to use
254 *
255 * Description:
256 * This function returns a @table @nents long. The allocator is
257 * defined to return scatterlist chunks of maximum size @max_ents.
258 * Thus if @nents is bigger than @max_ents, the scatterlists will be
259 * chained in units of @max_ents.
260 *
261 * Notes:
262 * If this function returns non-0 (eg failure), the caller must call
263 * __sg_free_table() to cleanup any leftover allocations.
264 *
265 **/
266int __sg_alloc_table(struct sg_table *table, unsigned int nents,
267 unsigned int max_ents, struct scatterlist *first_chunk,
268 unsigned int nents_first_chunk, gfp_t gfp_mask,
269 sg_alloc_fn *alloc_fn)
270{
271 struct scatterlist *sg, *prv;
272 unsigned int left;
273 unsigned curr_max_ents = nents_first_chunk ?: max_ents;
274 unsigned prv_max_ents;
275
276 memset(table, 0, sizeof(*table));
277
278 if (nents == 0)
279 return -EINVAL;
280#ifdef CONFIG_ARCH_NO_SG_CHAIN
281 if (WARN_ON_ONCE(nents > max_ents))
282 return -EINVAL;
283#endif
284
285 left = nents;
286 prv = NULL;
287 do {
288 unsigned int sg_size, alloc_size = left;
289
290 if (alloc_size > curr_max_ents) {
291 alloc_size = curr_max_ents;
292 sg_size = alloc_size - 1;
293 } else
294 sg_size = alloc_size;
295
296 left -= sg_size;
297
298 if (first_chunk) {
299 sg = first_chunk;
300 first_chunk = NULL;
301 } else {
302 sg = alloc_fn(alloc_size, gfp_mask);
303 }
304 if (unlikely(!sg)) {
305 /*
306 * Adjust entry count to reflect that the last
307 * entry of the previous table won't be used for
308 * linkage. Without this, sg_kfree() may get
309 * confused.
310 */
311 if (prv)
312 table->nents = ++table->orig_nents;
313
314 return -ENOMEM;
315 }
316
317 sg_init_table(sg, alloc_size);
318 table->nents = table->orig_nents += sg_size;
319
320 /*
321 * If this is the first mapping, assign the sg table header.
322 * If this is not the first mapping, chain previous part.
323 */
324 if (prv)
325 sg_chain(prv, prv_max_ents, sg);
326 else
327 table->sgl = sg;
328
329 /*
330 * If no more entries after this one, mark the end
331 */
332 if (!left)
333 sg_mark_end(&sg[sg_size - 1]);
334
335 prv = sg;
336 prv_max_ents = curr_max_ents;
337 curr_max_ents = max_ents;
338 } while (left);
339
340 return 0;
341}
342EXPORT_SYMBOL(__sg_alloc_table);
343
344/**
345 * sg_alloc_table - Allocate and initialize an sg table
346 * @table: The sg table header to use
347 * @nents: Number of entries in sg list
348 * @gfp_mask: GFP allocation mask
349 *
350 * Description:
351 * Allocate and initialize an sg table. If @nents@ is larger than
352 * SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
353 *
354 **/
355int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
356{
357 int ret;
358
359 ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
360 NULL, 0, gfp_mask, sg_kmalloc);
361 if (unlikely(ret))
362 __sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree);
363
364 return ret;
365}
366EXPORT_SYMBOL(sg_alloc_table);
367
368static struct scatterlist *get_next_sg(struct sg_table *table,
369 struct scatterlist *cur,
370 unsigned long needed_sges,
371 gfp_t gfp_mask)
372{
373 struct scatterlist *new_sg, *next_sg;
374 unsigned int alloc_size;
375
376 if (cur) {
377 next_sg = sg_next(cur);
378 /* Check if last entry should be keeped for chainning */
379 if (!sg_is_last(next_sg) || needed_sges == 1)
380 return next_sg;
381 }
382
383 alloc_size = min_t(unsigned long, needed_sges, SG_MAX_SINGLE_ALLOC);
384 new_sg = sg_kmalloc(alloc_size, gfp_mask);
385 if (!new_sg)
386 return ERR_PTR(-ENOMEM);
387 sg_init_table(new_sg, alloc_size);
388 if (cur) {
389 __sg_chain(next_sg, new_sg);
390 table->orig_nents += alloc_size - 1;
391 } else {
392 table->sgl = new_sg;
393 table->orig_nents = alloc_size;
394 table->nents = 0;
395 }
396 return new_sg;
397}
398
399/**
400 * __sg_alloc_table_from_pages - Allocate and initialize an sg table from
401 * an array of pages
402 * @sgt: The sg table header to use
403 * @pages: Pointer to an array of page pointers
404 * @n_pages: Number of pages in the pages array
405 * @offset: Offset from start of the first page to the start of a buffer
406 * @size: Number of valid bytes in the buffer (after offset)
407 * @max_segment: Maximum size of a scatterlist element in bytes
408 * @prv: Last populated sge in sgt
409 * @left_pages: Left pages caller have to set after this call
410 * @gfp_mask: GFP allocation mask
411 *
412 * Description:
413 * If @prv is NULL, allocate and initialize an sg table from a list of pages,
414 * else reuse the scatterlist passed in at @prv.
415 * Contiguous ranges of the pages are squashed into a single scatterlist
416 * entry up to the maximum size specified in @max_segment. A user may
417 * provide an offset at a start and a size of valid data in a buffer
418 * specified by the page array.
419 *
420 * Returns:
421 * Last SGE in sgt on success, PTR_ERR on otherwise.
422 * The allocation in @sgt must be released by sg_free_table.
423 *
424 * Notes:
425 * If this function returns non-0 (eg failure), the caller must call
426 * sg_free_table() to cleanup any leftover allocations.
427 */
428struct scatterlist *__sg_alloc_table_from_pages(struct sg_table *sgt,
429 struct page **pages, unsigned int n_pages, unsigned int offset,
430 unsigned long size, unsigned int max_segment,
431 struct scatterlist *prv, unsigned int left_pages,
432 gfp_t gfp_mask)
433{
434 unsigned int chunks, cur_page, seg_len, i, prv_len = 0;
435 unsigned int added_nents = 0;
436 struct scatterlist *s = prv;
437
438 /*
439 * The algorithm below requires max_segment to be aligned to PAGE_SIZE
440 * otherwise it can overshoot.
441 */
442 max_segment = ALIGN_DOWN(max_segment, PAGE_SIZE);
443 if (WARN_ON(max_segment < PAGE_SIZE))
444 return ERR_PTR(-EINVAL);
445
446 if (IS_ENABLED(CONFIG_ARCH_NO_SG_CHAIN) && prv)
447 return ERR_PTR(-EOPNOTSUPP);
448
449 if (prv) {
450 unsigned long paddr = (page_to_pfn(sg_page(prv)) * PAGE_SIZE +
451 prv->offset + prv->length) /
452 PAGE_SIZE;
453
454 if (WARN_ON(offset))
455 return ERR_PTR(-EINVAL);
456
457 /* Merge contiguous pages into the last SG */
458 prv_len = prv->length;
459 while (n_pages && page_to_pfn(pages[0]) == paddr) {
460 if (prv->length + PAGE_SIZE > max_segment)
461 break;
462 prv->length += PAGE_SIZE;
463 paddr++;
464 pages++;
465 n_pages--;
466 }
467 if (!n_pages)
468 goto out;
469 }
470
471 /* compute number of contiguous chunks */
472 chunks = 1;
473 seg_len = 0;
474 for (i = 1; i < n_pages; i++) {
475 seg_len += PAGE_SIZE;
476 if (seg_len >= max_segment ||
477 page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1) {
478 chunks++;
479 seg_len = 0;
480 }
481 }
482
483 /* merging chunks and putting them into the scatterlist */
484 cur_page = 0;
485 for (i = 0; i < chunks; i++) {
486 unsigned int j, chunk_size;
487
488 /* look for the end of the current chunk */
489 seg_len = 0;
490 for (j = cur_page + 1; j < n_pages; j++) {
491 seg_len += PAGE_SIZE;
492 if (seg_len >= max_segment ||
493 page_to_pfn(pages[j]) !=
494 page_to_pfn(pages[j - 1]) + 1)
495 break;
496 }
497
498 /* Pass how many chunks might be left */
499 s = get_next_sg(sgt, s, chunks - i + left_pages, gfp_mask);
500 if (IS_ERR(s)) {
501 /*
502 * Adjust entry length to be as before function was
503 * called.
504 */
505 if (prv)
506 prv->length = prv_len;
507 return s;
508 }
509 chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
510 sg_set_page(s, pages[cur_page],
511 min_t(unsigned long, size, chunk_size), offset);
512 added_nents++;
513 size -= chunk_size;
514 offset = 0;
515 cur_page = j;
516 }
517 sgt->nents += added_nents;
518out:
519 if (!left_pages)
520 sg_mark_end(s);
521 return s;
522}
523EXPORT_SYMBOL(__sg_alloc_table_from_pages);
524
525/**
526 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
527 * an array of pages
528 * @sgt: The sg table header to use
529 * @pages: Pointer to an array of page pointers
530 * @n_pages: Number of pages in the pages array
531 * @offset: Offset from start of the first page to the start of a buffer
532 * @size: Number of valid bytes in the buffer (after offset)
533 * @gfp_mask: GFP allocation mask
534 *
535 * Description:
536 * Allocate and initialize an sg table from a list of pages. Contiguous
537 * ranges of the pages are squashed into a single scatterlist node. A user
538 * may provide an offset at a start and a size of valid data in a buffer
539 * specified by the page array. The returned sg table is released by
540 * sg_free_table.
541 *
542 * Returns:
543 * 0 on success, negative error on failure
544 */
545int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
546 unsigned int n_pages, unsigned int offset,
547 unsigned long size, gfp_t gfp_mask)
548{
549 return PTR_ERR_OR_ZERO(__sg_alloc_table_from_pages(sgt, pages, n_pages,
550 offset, size, UINT_MAX, NULL, 0, gfp_mask));
551}
552EXPORT_SYMBOL(sg_alloc_table_from_pages);
553
554#ifdef CONFIG_SGL_ALLOC
555
556/**
557 * sgl_alloc_order - allocate a scatterlist and its pages
558 * @length: Length in bytes of the scatterlist. Must be at least one
559 * @order: Second argument for alloc_pages()
560 * @chainable: Whether or not to allocate an extra element in the scatterlist
561 * for scatterlist chaining purposes
562 * @gfp: Memory allocation flags
563 * @nent_p: [out] Number of entries in the scatterlist that have pages
564 *
565 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
566 */
567struct scatterlist *sgl_alloc_order(unsigned long long length,
568 unsigned int order, bool chainable,
569 gfp_t gfp, unsigned int *nent_p)
570{
571 struct scatterlist *sgl, *sg;
572 struct page *page;
573 unsigned int nent, nalloc;
574 u32 elem_len;
575
576 nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
577 /* Check for integer overflow */
578 if (length > (nent << (PAGE_SHIFT + order)))
579 return NULL;
580 nalloc = nent;
581 if (chainable) {
582 /* Check for integer overflow */
583 if (nalloc + 1 < nalloc)
584 return NULL;
585 nalloc++;
586 }
587 sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
588 gfp & ~GFP_DMA);
589 if (!sgl)
590 return NULL;
591
592 sg_init_table(sgl, nalloc);
593 sg = sgl;
594 while (length) {
595 elem_len = min_t(u64, length, PAGE_SIZE << order);
596 page = alloc_pages(gfp, order);
597 if (!page) {
598 sgl_free_order(sgl, order);
599 return NULL;
600 }
601
602 sg_set_page(sg, page, elem_len, 0);
603 length -= elem_len;
604 sg = sg_next(sg);
605 }
606 WARN_ONCE(length, "length = %lld\n", length);
607 if (nent_p)
608 *nent_p = nent;
609 return sgl;
610}
611EXPORT_SYMBOL(sgl_alloc_order);
612
613/**
614 * sgl_alloc - allocate a scatterlist and its pages
615 * @length: Length in bytes of the scatterlist
616 * @gfp: Memory allocation flags
617 * @nent_p: [out] Number of entries in the scatterlist
618 *
619 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
620 */
621struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
622 unsigned int *nent_p)
623{
624 return sgl_alloc_order(length, 0, false, gfp, nent_p);
625}
626EXPORT_SYMBOL(sgl_alloc);
627
628/**
629 * sgl_free_n_order - free a scatterlist and its pages
630 * @sgl: Scatterlist with one or more elements
631 * @nents: Maximum number of elements to free
632 * @order: Second argument for __free_pages()
633 *
634 * Notes:
635 * - If several scatterlists have been chained and each chain element is
636 * freed separately then it's essential to set nents correctly to avoid that a
637 * page would get freed twice.
638 * - All pages in a chained scatterlist can be freed at once by setting @nents
639 * to a high number.
640 */
641void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
642{
643 struct scatterlist *sg;
644 struct page *page;
645 int i;
646
647 for_each_sg(sgl, sg, nents, i) {
648 if (!sg)
649 break;
650 page = sg_page(sg);
651 if (page)
652 __free_pages(page, order);
653 }
654 kfree(sgl);
655}
656EXPORT_SYMBOL(sgl_free_n_order);
657
658/**
659 * sgl_free_order - free a scatterlist and its pages
660 * @sgl: Scatterlist with one or more elements
661 * @order: Second argument for __free_pages()
662 */
663void sgl_free_order(struct scatterlist *sgl, int order)
664{
665 sgl_free_n_order(sgl, INT_MAX, order);
666}
667EXPORT_SYMBOL(sgl_free_order);
668
669/**
670 * sgl_free - free a scatterlist and its pages
671 * @sgl: Scatterlist with one or more elements
672 */
673void sgl_free(struct scatterlist *sgl)
674{
675 sgl_free_order(sgl, 0);
676}
677EXPORT_SYMBOL(sgl_free);
678
679#endif /* CONFIG_SGL_ALLOC */
680
681void __sg_page_iter_start(struct sg_page_iter *piter,
682 struct scatterlist *sglist, unsigned int nents,
683 unsigned long pgoffset)
684{
685 piter->__pg_advance = 0;
686 piter->__nents = nents;
687
688 piter->sg = sglist;
689 piter->sg_pgoffset = pgoffset;
690}
691EXPORT_SYMBOL(__sg_page_iter_start);
692
693static int sg_page_count(struct scatterlist *sg)
694{
695 return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
696}
697
698bool __sg_page_iter_next(struct sg_page_iter *piter)
699{
700 if (!piter->__nents || !piter->sg)
701 return false;
702
703 piter->sg_pgoffset += piter->__pg_advance;
704 piter->__pg_advance = 1;
705
706 while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
707 piter->sg_pgoffset -= sg_page_count(piter->sg);
708 piter->sg = sg_next(piter->sg);
709 if (!--piter->__nents || !piter->sg)
710 return false;
711 }
712
713 return true;
714}
715EXPORT_SYMBOL(__sg_page_iter_next);
716
717static int sg_dma_page_count(struct scatterlist *sg)
718{
719 return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
720}
721
722bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
723{
724 struct sg_page_iter *piter = &dma_iter->base;
725
726 if (!piter->__nents || !piter->sg)
727 return false;
728
729 piter->sg_pgoffset += piter->__pg_advance;
730 piter->__pg_advance = 1;
731
732 while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
733 piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
734 piter->sg = sg_next(piter->sg);
735 if (!--piter->__nents || !piter->sg)
736 return false;
737 }
738
739 return true;
740}
741EXPORT_SYMBOL(__sg_page_iter_dma_next);
742
743/**
744 * sg_miter_start - start mapping iteration over a sg list
745 * @miter: sg mapping iter to be started
746 * @sgl: sg list to iterate over
747 * @nents: number of sg entries
748 *
749 * Description:
750 * Starts mapping iterator @miter.
751 *
752 * Context:
753 * Don't care.
754 */
755void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
756 unsigned int nents, unsigned int flags)
757{
758 memset(miter, 0, sizeof(struct sg_mapping_iter));
759
760 __sg_page_iter_start(&miter->piter, sgl, nents, 0);
761 WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
762 miter->__flags = flags;
763}
764EXPORT_SYMBOL(sg_miter_start);
765
766static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
767{
768 if (!miter->__remaining) {
769 struct scatterlist *sg;
770
771 if (!__sg_page_iter_next(&miter->piter))
772 return false;
773
774 sg = miter->piter.sg;
775
776 miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
777 miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
778 miter->__offset &= PAGE_SIZE - 1;
779 miter->__remaining = sg->offset + sg->length -
780 (miter->piter.sg_pgoffset << PAGE_SHIFT) -
781 miter->__offset;
782 miter->__remaining = min_t(unsigned long, miter->__remaining,
783 PAGE_SIZE - miter->__offset);
784 }
785
786 return true;
787}
788
789/**
790 * sg_miter_skip - reposition mapping iterator
791 * @miter: sg mapping iter to be skipped
792 * @offset: number of bytes to plus the current location
793 *
794 * Description:
795 * Sets the offset of @miter to its current location plus @offset bytes.
796 * If mapping iterator @miter has been proceeded by sg_miter_next(), this
797 * stops @miter.
798 *
799 * Context:
800 * Don't care if @miter is stopped, or not proceeded yet.
801 * Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
802 *
803 * Returns:
804 * true if @miter contains the valid mapping. false if end of sg
805 * list is reached.
806 */
807bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
808{
809 sg_miter_stop(miter);
810
811 while (offset) {
812 off_t consumed;
813
814 if (!sg_miter_get_next_page(miter))
815 return false;
816
817 consumed = min_t(off_t, offset, miter->__remaining);
818 miter->__offset += consumed;
819 miter->__remaining -= consumed;
820 offset -= consumed;
821 }
822
823 return true;
824}
825EXPORT_SYMBOL(sg_miter_skip);
826
827/**
828 * sg_miter_next - proceed mapping iterator to the next mapping
829 * @miter: sg mapping iter to proceed
830 *
831 * Description:
832 * Proceeds @miter to the next mapping. @miter should have been started
833 * using sg_miter_start(). On successful return, @miter->page,
834 * @miter->addr and @miter->length point to the current mapping.
835 *
836 * Context:
837 * Preemption disabled if SG_MITER_ATOMIC. Preemption must stay disabled
838 * till @miter is stopped. May sleep if !SG_MITER_ATOMIC.
839 *
840 * Returns:
841 * true if @miter contains the next mapping. false if end of sg
842 * list is reached.
843 */
844bool sg_miter_next(struct sg_mapping_iter *miter)
845{
846 sg_miter_stop(miter);
847
848 /*
849 * Get to the next page if necessary.
850 * __remaining, __offset is adjusted by sg_miter_stop
851 */
852 if (!sg_miter_get_next_page(miter))
853 return false;
854
855 miter->page = sg_page_iter_page(&miter->piter);
856 miter->consumed = miter->length = miter->__remaining;
857
858 if (miter->__flags & SG_MITER_ATOMIC)
859 miter->addr = kmap_atomic(miter->page) + miter->__offset;
860 else
861 miter->addr = kmap(miter->page) + miter->__offset;
862
863 return true;
864}
865EXPORT_SYMBOL(sg_miter_next);
866
867/**
868 * sg_miter_stop - stop mapping iteration
869 * @miter: sg mapping iter to be stopped
870 *
871 * Description:
872 * Stops mapping iterator @miter. @miter should have been started
873 * using sg_miter_start(). A stopped iteration can be resumed by
874 * calling sg_miter_next() on it. This is useful when resources (kmap)
875 * need to be released during iteration.
876 *
877 * Context:
878 * Preemption disabled if the SG_MITER_ATOMIC is set. Don't care
879 * otherwise.
880 */
881void sg_miter_stop(struct sg_mapping_iter *miter)
882{
883 WARN_ON(miter->consumed > miter->length);
884
885 /* drop resources from the last iteration */
886 if (miter->addr) {
887 miter->__offset += miter->consumed;
888 miter->__remaining -= miter->consumed;
889
890 if ((miter->__flags & SG_MITER_TO_SG) &&
891 !PageSlab(miter->page))
892 flush_kernel_dcache_page(miter->page);
893
894 if (miter->__flags & SG_MITER_ATOMIC) {
895 WARN_ON_ONCE(preemptible());
896 kunmap_atomic(miter->addr);
897 } else
898 kunmap(miter->page);
899
900 miter->page = NULL;
901 miter->addr = NULL;
902 miter->length = 0;
903 miter->consumed = 0;
904 }
905}
906EXPORT_SYMBOL(sg_miter_stop);
907
908/**
909 * sg_copy_buffer - Copy data between a linear buffer and an SG list
910 * @sgl: The SG list
911 * @nents: Number of SG entries
912 * @buf: Where to copy from
913 * @buflen: The number of bytes to copy
914 * @skip: Number of bytes to skip before copying
915 * @to_buffer: transfer direction (true == from an sg list to a
916 * buffer, false == from a buffer to an sg list)
917 *
918 * Returns the number of copied bytes.
919 *
920 **/
921size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
922 size_t buflen, off_t skip, bool to_buffer)
923{
924 unsigned int offset = 0;
925 struct sg_mapping_iter miter;
926 unsigned int sg_flags = SG_MITER_ATOMIC;
927
928 if (to_buffer)
929 sg_flags |= SG_MITER_FROM_SG;
930 else
931 sg_flags |= SG_MITER_TO_SG;
932
933 sg_miter_start(&miter, sgl, nents, sg_flags);
934
935 if (!sg_miter_skip(&miter, skip))
936 return 0;
937
938 while ((offset < buflen) && sg_miter_next(&miter)) {
939 unsigned int len;
940
941 len = min(miter.length, buflen - offset);
942
943 if (to_buffer)
944 memcpy(buf + offset, miter.addr, len);
945 else
946 memcpy(miter.addr, buf + offset, len);
947
948 offset += len;
949 }
950
951 sg_miter_stop(&miter);
952
953 return offset;
954}
955EXPORT_SYMBOL(sg_copy_buffer);
956
957/**
958 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
959 * @sgl: The SG list
960 * @nents: Number of SG entries
961 * @buf: Where to copy from
962 * @buflen: The number of bytes to copy
963 *
964 * Returns the number of copied bytes.
965 *
966 **/
967size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
968 const void *buf, size_t buflen)
969{
970 return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
971}
972EXPORT_SYMBOL(sg_copy_from_buffer);
973
974/**
975 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
976 * @sgl: The SG list
977 * @nents: Number of SG entries
978 * @buf: Where to copy to
979 * @buflen: The number of bytes to copy
980 *
981 * Returns the number of copied bytes.
982 *
983 **/
984size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
985 void *buf, size_t buflen)
986{
987 return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
988}
989EXPORT_SYMBOL(sg_copy_to_buffer);
990
991/**
992 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
993 * @sgl: The SG list
994 * @nents: Number of SG entries
995 * @buf: Where to copy from
996 * @buflen: The number of bytes to copy
997 * @skip: Number of bytes to skip before copying
998 *
999 * Returns the number of copied bytes.
1000 *
1001 **/
1002size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1003 const void *buf, size_t buflen, off_t skip)
1004{
1005 return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
1006}
1007EXPORT_SYMBOL(sg_pcopy_from_buffer);
1008
1009/**
1010 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
1011 * @sgl: The SG list
1012 * @nents: Number of SG entries
1013 * @buf: Where to copy to
1014 * @buflen: The number of bytes to copy
1015 * @skip: Number of bytes to skip before copying
1016 *
1017 * Returns the number of copied bytes.
1018 *
1019 **/
1020size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1021 void *buf, size_t buflen, off_t skip)
1022{
1023 return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
1024}
1025EXPORT_SYMBOL(sg_pcopy_to_buffer);
1026
1027/**
1028 * sg_zero_buffer - Zero-out a part of a SG list
1029 * @sgl: The SG list
1030 * @nents: Number of SG entries
1031 * @buflen: The number of bytes to zero out
1032 * @skip: Number of bytes to skip before zeroing
1033 *
1034 * Returns the number of bytes zeroed.
1035 **/
1036size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
1037 size_t buflen, off_t skip)
1038{
1039 unsigned int offset = 0;
1040 struct sg_mapping_iter miter;
1041 unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
1042
1043 sg_miter_start(&miter, sgl, nents, sg_flags);
1044
1045 if (!sg_miter_skip(&miter, skip))
1046 return false;
1047
1048 while (offset < buflen && sg_miter_next(&miter)) {
1049 unsigned int len;
1050
1051 len = min(miter.length, buflen - offset);
1052 memset(miter.addr, 0, len);
1053
1054 offset += len;
1055 }
1056
1057 sg_miter_stop(&miter);
1058 return offset;
1059}
1060EXPORT_SYMBOL(sg_zero_buffer);
1/*
2 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
3 *
4 * Scatterlist handling helpers.
5 *
6 * This source code is licensed under the GNU General Public License,
7 * Version 2. See the file COPYING for more details.
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/scatterlist.h>
12#include <linux/highmem.h>
13#include <linux/kmemleak.h>
14
15/**
16 * sg_next - return the next scatterlist entry in a list
17 * @sg: The current sg entry
18 *
19 * Description:
20 * Usually the next entry will be @sg@ + 1, but if this sg element is part
21 * of a chained scatterlist, it could jump to the start of a new
22 * scatterlist array.
23 *
24 **/
25struct scatterlist *sg_next(struct scatterlist *sg)
26{
27#ifdef CONFIG_DEBUG_SG
28 BUG_ON(sg->sg_magic != SG_MAGIC);
29#endif
30 if (sg_is_last(sg))
31 return NULL;
32
33 sg++;
34 if (unlikely(sg_is_chain(sg)))
35 sg = sg_chain_ptr(sg);
36
37 return sg;
38}
39EXPORT_SYMBOL(sg_next);
40
41/**
42 * sg_last - return the last scatterlist entry in a list
43 * @sgl: First entry in the scatterlist
44 * @nents: Number of entries in the scatterlist
45 *
46 * Description:
47 * Should only be used casually, it (currently) scans the entire list
48 * to get the last entry.
49 *
50 * Note that the @sgl@ pointer passed in need not be the first one,
51 * the important bit is that @nents@ denotes the number of entries that
52 * exist from @sgl@.
53 *
54 **/
55struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
56{
57#ifndef ARCH_HAS_SG_CHAIN
58 struct scatterlist *ret = &sgl[nents - 1];
59#else
60 struct scatterlist *sg, *ret = NULL;
61 unsigned int i;
62
63 for_each_sg(sgl, sg, nents, i)
64 ret = sg;
65
66#endif
67#ifdef CONFIG_DEBUG_SG
68 BUG_ON(sgl[0].sg_magic != SG_MAGIC);
69 BUG_ON(!sg_is_last(ret));
70#endif
71 return ret;
72}
73EXPORT_SYMBOL(sg_last);
74
75/**
76 * sg_init_table - Initialize SG table
77 * @sgl: The SG table
78 * @nents: Number of entries in table
79 *
80 * Notes:
81 * If this is part of a chained sg table, sg_mark_end() should be
82 * used only on the last table part.
83 *
84 **/
85void sg_init_table(struct scatterlist *sgl, unsigned int nents)
86{
87 memset(sgl, 0, sizeof(*sgl) * nents);
88#ifdef CONFIG_DEBUG_SG
89 {
90 unsigned int i;
91 for (i = 0; i < nents; i++)
92 sgl[i].sg_magic = SG_MAGIC;
93 }
94#endif
95 sg_mark_end(&sgl[nents - 1]);
96}
97EXPORT_SYMBOL(sg_init_table);
98
99/**
100 * sg_init_one - Initialize a single entry sg list
101 * @sg: SG entry
102 * @buf: Virtual address for IO
103 * @buflen: IO length
104 *
105 **/
106void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
107{
108 sg_init_table(sg, 1);
109 sg_set_buf(sg, buf, buflen);
110}
111EXPORT_SYMBOL(sg_init_one);
112
113/*
114 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
115 * helpers.
116 */
117static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
118{
119 if (nents == SG_MAX_SINGLE_ALLOC) {
120 /*
121 * Kmemleak doesn't track page allocations as they are not
122 * commonly used (in a raw form) for kernel data structures.
123 * As we chain together a list of pages and then a normal
124 * kmalloc (tracked by kmemleak), in order to for that last
125 * allocation not to become decoupled (and thus a
126 * false-positive) we need to inform kmemleak of all the
127 * intermediate allocations.
128 */
129 void *ptr = (void *) __get_free_page(gfp_mask);
130 kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
131 return ptr;
132 } else
133 return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
134}
135
136static void sg_kfree(struct scatterlist *sg, unsigned int nents)
137{
138 if (nents == SG_MAX_SINGLE_ALLOC) {
139 kmemleak_free(sg);
140 free_page((unsigned long) sg);
141 } else
142 kfree(sg);
143}
144
145/**
146 * __sg_free_table - Free a previously mapped sg table
147 * @table: The sg table header to use
148 * @max_ents: The maximum number of entries per single scatterlist
149 * @free_fn: Free function
150 *
151 * Description:
152 * Free an sg table previously allocated and setup with
153 * __sg_alloc_table(). The @max_ents value must be identical to
154 * that previously used with __sg_alloc_table().
155 *
156 **/
157void __sg_free_table(struct sg_table *table, unsigned int max_ents,
158 sg_free_fn *free_fn)
159{
160 struct scatterlist *sgl, *next;
161
162 if (unlikely(!table->sgl))
163 return;
164
165 sgl = table->sgl;
166 while (table->orig_nents) {
167 unsigned int alloc_size = table->orig_nents;
168 unsigned int sg_size;
169
170 /*
171 * If we have more than max_ents segments left,
172 * then assign 'next' to the sg table after the current one.
173 * sg_size is then one less than alloc size, since the last
174 * element is the chain pointer.
175 */
176 if (alloc_size > max_ents) {
177 next = sg_chain_ptr(&sgl[max_ents - 1]);
178 alloc_size = max_ents;
179 sg_size = alloc_size - 1;
180 } else {
181 sg_size = alloc_size;
182 next = NULL;
183 }
184
185 table->orig_nents -= sg_size;
186 free_fn(sgl, alloc_size);
187 sgl = next;
188 }
189
190 table->sgl = NULL;
191}
192EXPORT_SYMBOL(__sg_free_table);
193
194/**
195 * sg_free_table - Free a previously allocated sg table
196 * @table: The mapped sg table header
197 *
198 **/
199void sg_free_table(struct sg_table *table)
200{
201 __sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree);
202}
203EXPORT_SYMBOL(sg_free_table);
204
205/**
206 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
207 * @table: The sg table header to use
208 * @nents: Number of entries in sg list
209 * @max_ents: The maximum number of entries the allocator returns per call
210 * @gfp_mask: GFP allocation mask
211 * @alloc_fn: Allocator to use
212 *
213 * Description:
214 * This function returns a @table @nents long. The allocator is
215 * defined to return scatterlist chunks of maximum size @max_ents.
216 * Thus if @nents is bigger than @max_ents, the scatterlists will be
217 * chained in units of @max_ents.
218 *
219 * Notes:
220 * If this function returns non-0 (eg failure), the caller must call
221 * __sg_free_table() to cleanup any leftover allocations.
222 *
223 **/
224int __sg_alloc_table(struct sg_table *table, unsigned int nents,
225 unsigned int max_ents, gfp_t gfp_mask,
226 sg_alloc_fn *alloc_fn)
227{
228 struct scatterlist *sg, *prv;
229 unsigned int left;
230
231#ifndef ARCH_HAS_SG_CHAIN
232 BUG_ON(nents > max_ents);
233#endif
234
235 memset(table, 0, sizeof(*table));
236
237 left = nents;
238 prv = NULL;
239 do {
240 unsigned int sg_size, alloc_size = left;
241
242 if (alloc_size > max_ents) {
243 alloc_size = max_ents;
244 sg_size = alloc_size - 1;
245 } else
246 sg_size = alloc_size;
247
248 left -= sg_size;
249
250 sg = alloc_fn(alloc_size, gfp_mask);
251 if (unlikely(!sg)) {
252 /*
253 * Adjust entry count to reflect that the last
254 * entry of the previous table won't be used for
255 * linkage. Without this, sg_kfree() may get
256 * confused.
257 */
258 if (prv)
259 table->nents = ++table->orig_nents;
260
261 return -ENOMEM;
262 }
263
264 sg_init_table(sg, alloc_size);
265 table->nents = table->orig_nents += sg_size;
266
267 /*
268 * If this is the first mapping, assign the sg table header.
269 * If this is not the first mapping, chain previous part.
270 */
271 if (prv)
272 sg_chain(prv, max_ents, sg);
273 else
274 table->sgl = sg;
275
276 /*
277 * If no more entries after this one, mark the end
278 */
279 if (!left)
280 sg_mark_end(&sg[sg_size - 1]);
281
282 /*
283 * only really needed for mempool backed sg allocations (like
284 * SCSI), a possible improvement here would be to pass the
285 * table pointer into the allocator and let that clear these
286 * flags
287 */
288 gfp_mask &= ~__GFP_WAIT;
289 gfp_mask |= __GFP_HIGH;
290 prv = sg;
291 } while (left);
292
293 return 0;
294}
295EXPORT_SYMBOL(__sg_alloc_table);
296
297/**
298 * sg_alloc_table - Allocate and initialize an sg table
299 * @table: The sg table header to use
300 * @nents: Number of entries in sg list
301 * @gfp_mask: GFP allocation mask
302 *
303 * Description:
304 * Allocate and initialize an sg table. If @nents@ is larger than
305 * SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
306 *
307 **/
308int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
309{
310 int ret;
311
312 ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
313 gfp_mask, sg_kmalloc);
314 if (unlikely(ret))
315 __sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree);
316
317 return ret;
318}
319EXPORT_SYMBOL(sg_alloc_table);
320
321/**
322 * sg_miter_start - start mapping iteration over a sg list
323 * @miter: sg mapping iter to be started
324 * @sgl: sg list to iterate over
325 * @nents: number of sg entries
326 *
327 * Description:
328 * Starts mapping iterator @miter.
329 *
330 * Context:
331 * Don't care.
332 */
333void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
334 unsigned int nents, unsigned int flags)
335{
336 memset(miter, 0, sizeof(struct sg_mapping_iter));
337
338 miter->__sg = sgl;
339 miter->__nents = nents;
340 miter->__offset = 0;
341 WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
342 miter->__flags = flags;
343}
344EXPORT_SYMBOL(sg_miter_start);
345
346/**
347 * sg_miter_next - proceed mapping iterator to the next mapping
348 * @miter: sg mapping iter to proceed
349 *
350 * Description:
351 * Proceeds @miter@ to the next mapping. @miter@ should have been
352 * started using sg_miter_start(). On successful return,
353 * @miter@->page, @miter@->addr and @miter@->length point to the
354 * current mapping.
355 *
356 * Context:
357 * IRQ disabled if SG_MITER_ATOMIC. IRQ must stay disabled till
358 * @miter@ is stopped. May sleep if !SG_MITER_ATOMIC.
359 *
360 * Returns:
361 * true if @miter contains the next mapping. false if end of sg
362 * list is reached.
363 */
364bool sg_miter_next(struct sg_mapping_iter *miter)
365{
366 unsigned int off, len;
367
368 /* check for end and drop resources from the last iteration */
369 if (!miter->__nents)
370 return false;
371
372 sg_miter_stop(miter);
373
374 /* get to the next sg if necessary. __offset is adjusted by stop */
375 while (miter->__offset == miter->__sg->length) {
376 if (--miter->__nents) {
377 miter->__sg = sg_next(miter->__sg);
378 miter->__offset = 0;
379 } else
380 return false;
381 }
382
383 /* map the next page */
384 off = miter->__sg->offset + miter->__offset;
385 len = miter->__sg->length - miter->__offset;
386
387 miter->page = nth_page(sg_page(miter->__sg), off >> PAGE_SHIFT);
388 off &= ~PAGE_MASK;
389 miter->length = min_t(unsigned int, len, PAGE_SIZE - off);
390 miter->consumed = miter->length;
391
392 if (miter->__flags & SG_MITER_ATOMIC)
393 miter->addr = kmap_atomic(miter->page, KM_BIO_SRC_IRQ) + off;
394 else
395 miter->addr = kmap(miter->page) + off;
396
397 return true;
398}
399EXPORT_SYMBOL(sg_miter_next);
400
401/**
402 * sg_miter_stop - stop mapping iteration
403 * @miter: sg mapping iter to be stopped
404 *
405 * Description:
406 * Stops mapping iterator @miter. @miter should have been started
407 * started using sg_miter_start(). A stopped iteration can be
408 * resumed by calling sg_miter_next() on it. This is useful when
409 * resources (kmap) need to be released during iteration.
410 *
411 * Context:
412 * IRQ disabled if the SG_MITER_ATOMIC is set. Don't care otherwise.
413 */
414void sg_miter_stop(struct sg_mapping_iter *miter)
415{
416 WARN_ON(miter->consumed > miter->length);
417
418 /* drop resources from the last iteration */
419 if (miter->addr) {
420 miter->__offset += miter->consumed;
421
422 if (miter->__flags & SG_MITER_TO_SG)
423 flush_kernel_dcache_page(miter->page);
424
425 if (miter->__flags & SG_MITER_ATOMIC) {
426 WARN_ON(!irqs_disabled());
427 kunmap_atomic(miter->addr, KM_BIO_SRC_IRQ);
428 } else
429 kunmap(miter->page);
430
431 miter->page = NULL;
432 miter->addr = NULL;
433 miter->length = 0;
434 miter->consumed = 0;
435 }
436}
437EXPORT_SYMBOL(sg_miter_stop);
438
439/**
440 * sg_copy_buffer - Copy data between a linear buffer and an SG list
441 * @sgl: The SG list
442 * @nents: Number of SG entries
443 * @buf: Where to copy from
444 * @buflen: The number of bytes to copy
445 * @to_buffer: transfer direction (non zero == from an sg list to a
446 * buffer, 0 == from a buffer to an sg list
447 *
448 * Returns the number of copied bytes.
449 *
450 **/
451static size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents,
452 void *buf, size_t buflen, int to_buffer)
453{
454 unsigned int offset = 0;
455 struct sg_mapping_iter miter;
456 unsigned long flags;
457 unsigned int sg_flags = SG_MITER_ATOMIC;
458
459 if (to_buffer)
460 sg_flags |= SG_MITER_FROM_SG;
461 else
462 sg_flags |= SG_MITER_TO_SG;
463
464 sg_miter_start(&miter, sgl, nents, sg_flags);
465
466 local_irq_save(flags);
467
468 while (sg_miter_next(&miter) && offset < buflen) {
469 unsigned int len;
470
471 len = min(miter.length, buflen - offset);
472
473 if (to_buffer)
474 memcpy(buf + offset, miter.addr, len);
475 else
476 memcpy(miter.addr, buf + offset, len);
477
478 offset += len;
479 }
480
481 sg_miter_stop(&miter);
482
483 local_irq_restore(flags);
484 return offset;
485}
486
487/**
488 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
489 * @sgl: The SG list
490 * @nents: Number of SG entries
491 * @buf: Where to copy from
492 * @buflen: The number of bytes to copy
493 *
494 * Returns the number of copied bytes.
495 *
496 **/
497size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
498 void *buf, size_t buflen)
499{
500 return sg_copy_buffer(sgl, nents, buf, buflen, 0);
501}
502EXPORT_SYMBOL(sg_copy_from_buffer);
503
504/**
505 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
506 * @sgl: The SG list
507 * @nents: Number of SG entries
508 * @buf: Where to copy to
509 * @buflen: The number of bytes to copy
510 *
511 * Returns the number of copied bytes.
512 *
513 **/
514size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
515 void *buf, size_t buflen)
516{
517 return sg_copy_buffer(sgl, nents, buf, buflen, 1);
518}
519EXPORT_SYMBOL(sg_copy_to_buffer);