Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
   4 *
   5 * Scatterlist handling helpers.
   6 */
   7#include <linux/export.h>
   8#include <linux/slab.h>
   9#include <linux/scatterlist.h>
  10#include <linux/highmem.h>
  11#include <linux/kmemleak.h>
  12
  13/**
  14 * sg_next - return the next scatterlist entry in a list
  15 * @sg:		The current sg entry
  16 *
  17 * Description:
  18 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
  19 *   of a chained scatterlist, it could jump to the start of a new
  20 *   scatterlist array.
  21 *
  22 **/
  23struct scatterlist *sg_next(struct scatterlist *sg)
  24{
  25	if (sg_is_last(sg))
  26		return NULL;
  27
  28	sg++;
  29	if (unlikely(sg_is_chain(sg)))
  30		sg = sg_chain_ptr(sg);
  31
  32	return sg;
  33}
  34EXPORT_SYMBOL(sg_next);
  35
  36/**
  37 * sg_nents - return total count of entries in scatterlist
  38 * @sg:		The scatterlist
  39 *
  40 * Description:
  41 * Allows to know how many entries are in sg, taking into account
  42 * chaining as well
  43 *
  44 **/
  45int sg_nents(struct scatterlist *sg)
  46{
  47	int nents;
  48	for (nents = 0; sg; sg = sg_next(sg))
  49		nents++;
  50	return nents;
  51}
  52EXPORT_SYMBOL(sg_nents);
  53
  54/**
  55 * sg_nents_for_len - return total count of entries in scatterlist
  56 *                    needed to satisfy the supplied length
  57 * @sg:		The scatterlist
  58 * @len:	The total required length
  59 *
  60 * Description:
  61 * Determines the number of entries in sg that are required to meet
  62 * the supplied length, taking into account chaining as well
  63 *
  64 * Returns:
  65 *   the number of sg entries needed, negative error on failure
  66 *
  67 **/
  68int sg_nents_for_len(struct scatterlist *sg, u64 len)
  69{
  70	int nents;
  71	u64 total;
  72
  73	if (!len)
  74		return 0;
  75
  76	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
  77		nents++;
  78		total += sg->length;
  79		if (total >= len)
  80			return nents;
  81	}
  82
  83	return -EINVAL;
  84}
  85EXPORT_SYMBOL(sg_nents_for_len);
  86
  87/**
  88 * sg_last - return the last scatterlist entry in a list
  89 * @sgl:	First entry in the scatterlist
  90 * @nents:	Number of entries in the scatterlist
  91 *
  92 * Description:
  93 *   Should only be used casually, it (currently) scans the entire list
  94 *   to get the last entry.
  95 *
  96 *   Note that the @sgl@ pointer passed in need not be the first one,
  97 *   the important bit is that @nents@ denotes the number of entries that
  98 *   exist from @sgl@.
  99 *
 100 **/
 101struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
 102{
 103	struct scatterlist *sg, *ret = NULL;
 104	unsigned int i;
 105
 106	for_each_sg(sgl, sg, nents, i)
 107		ret = sg;
 108
 109	BUG_ON(!sg_is_last(ret));
 110	return ret;
 111}
 112EXPORT_SYMBOL(sg_last);
 113
 114/**
 115 * sg_init_table - Initialize SG table
 116 * @sgl:	   The SG table
 117 * @nents:	   Number of entries in table
 118 *
 119 * Notes:
 120 *   If this is part of a chained sg table, sg_mark_end() should be
 121 *   used only on the last table part.
 122 *
 123 **/
 124void sg_init_table(struct scatterlist *sgl, unsigned int nents)
 125{
 126	memset(sgl, 0, sizeof(*sgl) * nents);
 127	sg_init_marker(sgl, nents);
 128}
 129EXPORT_SYMBOL(sg_init_table);
 130
 131/**
 132 * sg_init_one - Initialize a single entry sg list
 133 * @sg:		 SG entry
 134 * @buf:	 Virtual address for IO
 135 * @buflen:	 IO length
 136 *
 137 **/
 138void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
 139{
 140	sg_init_table(sg, 1);
 141	sg_set_buf(sg, buf, buflen);
 142}
 143EXPORT_SYMBOL(sg_init_one);
 144
 145/*
 146 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
 147 * helpers.
 148 */
 149static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
 150{
 151	if (nents == SG_MAX_SINGLE_ALLOC) {
 152		/*
 153		 * Kmemleak doesn't track page allocations as they are not
 154		 * commonly used (in a raw form) for kernel data structures.
 155		 * As we chain together a list of pages and then a normal
 156		 * kmalloc (tracked by kmemleak), in order to for that last
 157		 * allocation not to become decoupled (and thus a
 158		 * false-positive) we need to inform kmemleak of all the
 159		 * intermediate allocations.
 160		 */
 161		void *ptr = (void *) __get_free_page(gfp_mask);
 162		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
 163		return ptr;
 164	} else
 165		return kmalloc_array(nents, sizeof(struct scatterlist),
 166				     gfp_mask);
 167}
 168
 169static void sg_kfree(struct scatterlist *sg, unsigned int nents)
 170{
 171	if (nents == SG_MAX_SINGLE_ALLOC) {
 172		kmemleak_free(sg);
 173		free_page((unsigned long) sg);
 174	} else
 175		kfree(sg);
 176}
 177
 178/**
 179 * __sg_free_table - Free a previously mapped sg table
 180 * @table:	The sg table header to use
 181 * @max_ents:	The maximum number of entries per single scatterlist
 182 * @nents_first_chunk: Number of entries int the (preallocated) first
 183 * 	scatterlist chunk, 0 means no such preallocated first chunk
 184 * @free_fn:	Free function
 
 185 *
 186 *  Description:
 187 *    Free an sg table previously allocated and setup with
 188 *    __sg_alloc_table().  The @max_ents value must be identical to
 189 *    that previously used with __sg_alloc_table().
 190 *
 191 **/
 192void __sg_free_table(struct sg_table *table, unsigned int max_ents,
 193		     unsigned int nents_first_chunk, sg_free_fn *free_fn)
 
 194{
 195	struct scatterlist *sgl, *next;
 196	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
 197
 198	if (unlikely(!table->sgl))
 199		return;
 200
 201	sgl = table->sgl;
 202	while (table->orig_nents) {
 203		unsigned int alloc_size = table->orig_nents;
 204		unsigned int sg_size;
 205
 206		/*
 207		 * If we have more than max_ents segments left,
 208		 * then assign 'next' to the sg table after the current one.
 209		 * sg_size is then one less than alloc size, since the last
 210		 * element is the chain pointer.
 211		 */
 212		if (alloc_size > curr_max_ents) {
 213			next = sg_chain_ptr(&sgl[curr_max_ents - 1]);
 214			alloc_size = curr_max_ents;
 215			sg_size = alloc_size - 1;
 216		} else {
 217			sg_size = alloc_size;
 218			next = NULL;
 219		}
 220
 221		table->orig_nents -= sg_size;
 222		if (nents_first_chunk)
 223			nents_first_chunk = 0;
 224		else
 225			free_fn(sgl, alloc_size);
 226		sgl = next;
 227		curr_max_ents = max_ents;
 228	}
 229
 230	table->sgl = NULL;
 231}
 232EXPORT_SYMBOL(__sg_free_table);
 233
 234/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 235 * sg_free_table - Free a previously allocated sg table
 236 * @table:	The mapped sg table header
 237 *
 238 **/
 239void sg_free_table(struct sg_table *table)
 240{
 241	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
 
 242}
 243EXPORT_SYMBOL(sg_free_table);
 244
 245/**
 246 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
 247 * @table:	The sg table header to use
 248 * @nents:	Number of entries in sg list
 249 * @max_ents:	The maximum number of entries the allocator returns per call
 250 * @nents_first_chunk: Number of entries int the (preallocated) first
 251 * 	scatterlist chunk, 0 means no such preallocated chunk provided by user
 252 * @gfp_mask:	GFP allocation mask
 253 * @alloc_fn:	Allocator to use
 254 *
 255 * Description:
 256 *   This function returns a @table @nents long. The allocator is
 257 *   defined to return scatterlist chunks of maximum size @max_ents.
 258 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
 259 *   chained in units of @max_ents.
 260 *
 261 * Notes:
 262 *   If this function returns non-0 (eg failure), the caller must call
 263 *   __sg_free_table() to cleanup any leftover allocations.
 264 *
 265 **/
 266int __sg_alloc_table(struct sg_table *table, unsigned int nents,
 267		     unsigned int max_ents, struct scatterlist *first_chunk,
 268		     unsigned int nents_first_chunk, gfp_t gfp_mask,
 269		     sg_alloc_fn *alloc_fn)
 270{
 271	struct scatterlist *sg, *prv;
 272	unsigned int left;
 273	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
 274	unsigned prv_max_ents;
 275
 276	memset(table, 0, sizeof(*table));
 277
 278	if (nents == 0)
 279		return -EINVAL;
 280#ifdef CONFIG_ARCH_NO_SG_CHAIN
 281	if (WARN_ON_ONCE(nents > max_ents))
 282		return -EINVAL;
 283#endif
 284
 285	left = nents;
 286	prv = NULL;
 287	do {
 288		unsigned int sg_size, alloc_size = left;
 289
 290		if (alloc_size > curr_max_ents) {
 291			alloc_size = curr_max_ents;
 292			sg_size = alloc_size - 1;
 293		} else
 294			sg_size = alloc_size;
 295
 296		left -= sg_size;
 297
 298		if (first_chunk) {
 299			sg = first_chunk;
 300			first_chunk = NULL;
 301		} else {
 302			sg = alloc_fn(alloc_size, gfp_mask);
 303		}
 304		if (unlikely(!sg)) {
 305			/*
 306			 * Adjust entry count to reflect that the last
 307			 * entry of the previous table won't be used for
 308			 * linkage.  Without this, sg_kfree() may get
 309			 * confused.
 310			 */
 311			if (prv)
 312				table->nents = ++table->orig_nents;
 313
 314			return -ENOMEM;
 315		}
 316
 317		sg_init_table(sg, alloc_size);
 318		table->nents = table->orig_nents += sg_size;
 319
 320		/*
 321		 * If this is the first mapping, assign the sg table header.
 322		 * If this is not the first mapping, chain previous part.
 323		 */
 324		if (prv)
 325			sg_chain(prv, prv_max_ents, sg);
 326		else
 327			table->sgl = sg;
 328
 329		/*
 330		 * If no more entries after this one, mark the end
 331		 */
 332		if (!left)
 333			sg_mark_end(&sg[sg_size - 1]);
 334
 335		prv = sg;
 336		prv_max_ents = curr_max_ents;
 337		curr_max_ents = max_ents;
 338	} while (left);
 339
 340	return 0;
 341}
 342EXPORT_SYMBOL(__sg_alloc_table);
 343
 344/**
 345 * sg_alloc_table - Allocate and initialize an sg table
 346 * @table:	The sg table header to use
 347 * @nents:	Number of entries in sg list
 348 * @gfp_mask:	GFP allocation mask
 349 *
 350 *  Description:
 351 *    Allocate and initialize an sg table. If @nents@ is larger than
 352 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
 353 *
 354 **/
 355int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
 356{
 357	int ret;
 358
 359	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
 360			       NULL, 0, gfp_mask, sg_kmalloc);
 361	if (unlikely(ret))
 362		__sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree);
 363
 364	return ret;
 365}
 366EXPORT_SYMBOL(sg_alloc_table);
 367
 368static struct scatterlist *get_next_sg(struct sg_table *table,
 369				       struct scatterlist *cur,
 370				       unsigned long needed_sges,
 371				       gfp_t gfp_mask)
 372{
 373	struct scatterlist *new_sg, *next_sg;
 374	unsigned int alloc_size;
 375
 376	if (cur) {
 377		next_sg = sg_next(cur);
 378		/* Check if last entry should be keeped for chainning */
 379		if (!sg_is_last(next_sg) || needed_sges == 1)
 380			return next_sg;
 381	}
 382
 383	alloc_size = min_t(unsigned long, needed_sges, SG_MAX_SINGLE_ALLOC);
 384	new_sg = sg_kmalloc(alloc_size, gfp_mask);
 385	if (!new_sg)
 386		return ERR_PTR(-ENOMEM);
 387	sg_init_table(new_sg, alloc_size);
 388	if (cur) {
 
 389		__sg_chain(next_sg, new_sg);
 390		table->orig_nents += alloc_size - 1;
 391	} else {
 392		table->sgl = new_sg;
 393		table->orig_nents = alloc_size;
 394		table->nents = 0;
 395	}
 396	return new_sg;
 397}
 398
 
 
 
 
 
 
 
 
 
 399/**
 400 * __sg_alloc_table_from_pages - Allocate and initialize an sg table from
 401 *			         an array of pages
 402 * @sgt:	 The sg table header to use
 403 * @pages:	 Pointer to an array of page pointers
 404 * @n_pages:	 Number of pages in the pages array
 405 * @offset:      Offset from start of the first page to the start of a buffer
 406 * @size:        Number of valid bytes in the buffer (after offset)
 407 * @max_segment: Maximum size of a scatterlist element in bytes
 408 * @prv:	 Last populated sge in sgt
 409 * @left_pages:  Left pages caller have to set after this call
 410 * @gfp_mask:	 GFP allocation mask
 411 *
 412 * Description:
 413 *    If @prv is NULL, allocate and initialize an sg table from a list of pages,
 414 *    else reuse the scatterlist passed in at @prv.
 415 *    Contiguous ranges of the pages are squashed into a single scatterlist
 416 *    entry up to the maximum size specified in @max_segment.  A user may
 417 *    provide an offset at a start and a size of valid data in a buffer
 418 *    specified by the page array.
 419 *
 420 * Returns:
 421 *   Last SGE in sgt on success, PTR_ERR on otherwise.
 422 *   The allocation in @sgt must be released by sg_free_table.
 423 *
 424 * Notes:
 425 *   If this function returns non-0 (eg failure), the caller must call
 426 *   sg_free_table() to cleanup any leftover allocations.
 
 
 427 */
 428struct scatterlist *__sg_alloc_table_from_pages(struct sg_table *sgt,
 429		struct page **pages, unsigned int n_pages, unsigned int offset,
 430		unsigned long size, unsigned int max_segment,
 431		struct scatterlist *prv, unsigned int left_pages,
 432		gfp_t gfp_mask)
 433{
 434	unsigned int chunks, cur_page, seg_len, i, prv_len = 0;
 435	unsigned int added_nents = 0;
 436	struct scatterlist *s = prv;
 
 437
 438	/*
 439	 * The algorithm below requires max_segment to be aligned to PAGE_SIZE
 440	 * otherwise it can overshoot.
 441	 */
 442	max_segment = ALIGN_DOWN(max_segment, PAGE_SIZE);
 443	if (WARN_ON(max_segment < PAGE_SIZE))
 444		return ERR_PTR(-EINVAL);
 445
 446	if (IS_ENABLED(CONFIG_ARCH_NO_SG_CHAIN) && prv)
 447		return ERR_PTR(-EOPNOTSUPP);
 448
 449	if (prv) {
 450		unsigned long paddr = (page_to_pfn(sg_page(prv)) * PAGE_SIZE +
 451				       prv->offset + prv->length) /
 452				      PAGE_SIZE;
 453
 454		if (WARN_ON(offset))
 455			return ERR_PTR(-EINVAL);
 456
 457		/* Merge contiguous pages into the last SG */
 458		prv_len = prv->length;
 459		while (n_pages && page_to_pfn(pages[0]) == paddr) {
 460			if (prv->length + PAGE_SIZE > max_segment)
 461				break;
 462			prv->length += PAGE_SIZE;
 463			paddr++;
 464			pages++;
 465			n_pages--;
 
 
 
 
 
 466		}
 467		if (!n_pages)
 468			goto out;
 469	}
 470
 471	/* compute number of contiguous chunks */
 472	chunks = 1;
 473	seg_len = 0;
 474	for (i = 1; i < n_pages; i++) {
 475		seg_len += PAGE_SIZE;
 476		if (seg_len >= max_segment ||
 477		    page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1) {
 478			chunks++;
 479			seg_len = 0;
 480		}
 481	}
 482
 483	/* merging chunks and putting them into the scatterlist */
 484	cur_page = 0;
 485	for (i = 0; i < chunks; i++) {
 486		unsigned int j, chunk_size;
 487
 488		/* look for the end of the current chunk */
 489		seg_len = 0;
 490		for (j = cur_page + 1; j < n_pages; j++) {
 491			seg_len += PAGE_SIZE;
 492			if (seg_len >= max_segment ||
 493			    page_to_pfn(pages[j]) !=
 494			    page_to_pfn(pages[j - 1]) + 1)
 495				break;
 496		}
 497
 498		/* Pass how many chunks might be left */
 499		s = get_next_sg(sgt, s, chunks - i + left_pages, gfp_mask);
 
 500		if (IS_ERR(s)) {
 501			/*
 502			 * Adjust entry length to be as before function was
 503			 * called.
 504			 */
 505			if (prv)
 506				prv->length = prv_len;
 507			return s;
 508		}
 509		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
 510		sg_set_page(s, pages[cur_page],
 511			    min_t(unsigned long, size, chunk_size), offset);
 512		added_nents++;
 513		size -= chunk_size;
 514		offset = 0;
 515		cur_page = j;
 516	}
 517	sgt->nents += added_nents;
 
 
 518out:
 519	if (!left_pages)
 520		sg_mark_end(s);
 521	return s;
 522}
 523EXPORT_SYMBOL(__sg_alloc_table_from_pages);
 524
 525/**
 526 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
 527 *			       an array of pages
 
 528 * @sgt:	 The sg table header to use
 529 * @pages:	 Pointer to an array of page pointers
 530 * @n_pages:	 Number of pages in the pages array
 531 * @offset:      Offset from start of the first page to the start of a buffer
 532 * @size:        Number of valid bytes in the buffer (after offset)
 
 533 * @gfp_mask:	 GFP allocation mask
 534 *
 535 *  Description:
 536 *    Allocate and initialize an sg table from a list of pages. Contiguous
 537 *    ranges of the pages are squashed into a single scatterlist node. A user
 538 *    may provide an offset at a start and a size of valid data in a buffer
 539 *    specified by the page array. The returned sg table is released by
 540 *    sg_free_table.
 541 *
 542 * Returns:
 
 
 543 *   0 on success, negative error on failure
 544 */
 545int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
 546			      unsigned int n_pages, unsigned int offset,
 547			      unsigned long size, gfp_t gfp_mask)
 548{
 549	return PTR_ERR_OR_ZERO(__sg_alloc_table_from_pages(sgt, pages, n_pages,
 550			offset, size, UINT_MAX, NULL, 0, gfp_mask));
 
 
 
 
 
 
 
 
 
 
 
 551}
 552EXPORT_SYMBOL(sg_alloc_table_from_pages);
 553
 554#ifdef CONFIG_SGL_ALLOC
 555
 556/**
 557 * sgl_alloc_order - allocate a scatterlist and its pages
 558 * @length: Length in bytes of the scatterlist. Must be at least one
 559 * @order: Second argument for alloc_pages()
 560 * @chainable: Whether or not to allocate an extra element in the scatterlist
 561 *	for scatterlist chaining purposes
 562 * @gfp: Memory allocation flags
 563 * @nent_p: [out] Number of entries in the scatterlist that have pages
 564 *
 565 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 566 */
 567struct scatterlist *sgl_alloc_order(unsigned long long length,
 568				    unsigned int order, bool chainable,
 569				    gfp_t gfp, unsigned int *nent_p)
 570{
 571	struct scatterlist *sgl, *sg;
 572	struct page *page;
 573	unsigned int nent, nalloc;
 574	u32 elem_len;
 575
 576	nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
 577	/* Check for integer overflow */
 578	if (length > (nent << (PAGE_SHIFT + order)))
 579		return NULL;
 580	nalloc = nent;
 581	if (chainable) {
 582		/* Check for integer overflow */
 583		if (nalloc + 1 < nalloc)
 584			return NULL;
 585		nalloc++;
 586	}
 587	sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
 588			    gfp & ~GFP_DMA);
 589	if (!sgl)
 590		return NULL;
 591
 592	sg_init_table(sgl, nalloc);
 593	sg = sgl;
 594	while (length) {
 595		elem_len = min_t(u64, length, PAGE_SIZE << order);
 596		page = alloc_pages(gfp, order);
 597		if (!page) {
 598			sgl_free_order(sgl, order);
 599			return NULL;
 600		}
 601
 602		sg_set_page(sg, page, elem_len, 0);
 603		length -= elem_len;
 604		sg = sg_next(sg);
 605	}
 606	WARN_ONCE(length, "length = %lld\n", length);
 607	if (nent_p)
 608		*nent_p = nent;
 609	return sgl;
 610}
 611EXPORT_SYMBOL(sgl_alloc_order);
 612
 613/**
 614 * sgl_alloc - allocate a scatterlist and its pages
 615 * @length: Length in bytes of the scatterlist
 616 * @gfp: Memory allocation flags
 617 * @nent_p: [out] Number of entries in the scatterlist
 618 *
 619 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 620 */
 621struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
 622			      unsigned int *nent_p)
 623{
 624	return sgl_alloc_order(length, 0, false, gfp, nent_p);
 625}
 626EXPORT_SYMBOL(sgl_alloc);
 627
 628/**
 629 * sgl_free_n_order - free a scatterlist and its pages
 630 * @sgl: Scatterlist with one or more elements
 631 * @nents: Maximum number of elements to free
 632 * @order: Second argument for __free_pages()
 633 *
 634 * Notes:
 635 * - If several scatterlists have been chained and each chain element is
 636 *   freed separately then it's essential to set nents correctly to avoid that a
 637 *   page would get freed twice.
 638 * - All pages in a chained scatterlist can be freed at once by setting @nents
 639 *   to a high number.
 640 */
 641void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
 642{
 643	struct scatterlist *sg;
 644	struct page *page;
 645	int i;
 646
 647	for_each_sg(sgl, sg, nents, i) {
 648		if (!sg)
 649			break;
 650		page = sg_page(sg);
 651		if (page)
 652			__free_pages(page, order);
 653	}
 654	kfree(sgl);
 655}
 656EXPORT_SYMBOL(sgl_free_n_order);
 657
 658/**
 659 * sgl_free_order - free a scatterlist and its pages
 660 * @sgl: Scatterlist with one or more elements
 661 * @order: Second argument for __free_pages()
 662 */
 663void sgl_free_order(struct scatterlist *sgl, int order)
 664{
 665	sgl_free_n_order(sgl, INT_MAX, order);
 666}
 667EXPORT_SYMBOL(sgl_free_order);
 668
 669/**
 670 * sgl_free - free a scatterlist and its pages
 671 * @sgl: Scatterlist with one or more elements
 672 */
 673void sgl_free(struct scatterlist *sgl)
 674{
 675	sgl_free_order(sgl, 0);
 676}
 677EXPORT_SYMBOL(sgl_free);
 678
 679#endif /* CONFIG_SGL_ALLOC */
 680
 681void __sg_page_iter_start(struct sg_page_iter *piter,
 682			  struct scatterlist *sglist, unsigned int nents,
 683			  unsigned long pgoffset)
 684{
 685	piter->__pg_advance = 0;
 686	piter->__nents = nents;
 687
 688	piter->sg = sglist;
 689	piter->sg_pgoffset = pgoffset;
 690}
 691EXPORT_SYMBOL(__sg_page_iter_start);
 692
 693static int sg_page_count(struct scatterlist *sg)
 694{
 695	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
 696}
 697
 698bool __sg_page_iter_next(struct sg_page_iter *piter)
 699{
 700	if (!piter->__nents || !piter->sg)
 701		return false;
 702
 703	piter->sg_pgoffset += piter->__pg_advance;
 704	piter->__pg_advance = 1;
 705
 706	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
 707		piter->sg_pgoffset -= sg_page_count(piter->sg);
 708		piter->sg = sg_next(piter->sg);
 709		if (!--piter->__nents || !piter->sg)
 710			return false;
 711	}
 712
 713	return true;
 714}
 715EXPORT_SYMBOL(__sg_page_iter_next);
 716
 717static int sg_dma_page_count(struct scatterlist *sg)
 718{
 719	return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
 720}
 721
 722bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
 723{
 724	struct sg_page_iter *piter = &dma_iter->base;
 725
 726	if (!piter->__nents || !piter->sg)
 727		return false;
 728
 729	piter->sg_pgoffset += piter->__pg_advance;
 730	piter->__pg_advance = 1;
 731
 732	while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
 733		piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
 734		piter->sg = sg_next(piter->sg);
 735		if (!--piter->__nents || !piter->sg)
 736			return false;
 737	}
 738
 739	return true;
 740}
 741EXPORT_SYMBOL(__sg_page_iter_dma_next);
 742
 743/**
 744 * sg_miter_start - start mapping iteration over a sg list
 745 * @miter: sg mapping iter to be started
 746 * @sgl: sg list to iterate over
 747 * @nents: number of sg entries
 748 *
 749 * Description:
 750 *   Starts mapping iterator @miter.
 751 *
 752 * Context:
 753 *   Don't care.
 754 */
 755void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
 756		    unsigned int nents, unsigned int flags)
 757{
 758	memset(miter, 0, sizeof(struct sg_mapping_iter));
 759
 760	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
 761	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
 762	miter->__flags = flags;
 763}
 764EXPORT_SYMBOL(sg_miter_start);
 765
 766static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
 767{
 768	if (!miter->__remaining) {
 769		struct scatterlist *sg;
 770
 771		if (!__sg_page_iter_next(&miter->piter))
 772			return false;
 773
 774		sg = miter->piter.sg;
 775
 776		miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
 777		miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
 778		miter->__offset &= PAGE_SIZE - 1;
 779		miter->__remaining = sg->offset + sg->length -
 780				     (miter->piter.sg_pgoffset << PAGE_SHIFT) -
 781				     miter->__offset;
 782		miter->__remaining = min_t(unsigned long, miter->__remaining,
 783					   PAGE_SIZE - miter->__offset);
 784	}
 785
 786	return true;
 787}
 788
 789/**
 790 * sg_miter_skip - reposition mapping iterator
 791 * @miter: sg mapping iter to be skipped
 792 * @offset: number of bytes to plus the current location
 793 *
 794 * Description:
 795 *   Sets the offset of @miter to its current location plus @offset bytes.
 796 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
 797 *   stops @miter.
 798 *
 799 * Context:
 800 *   Don't care if @miter is stopped, or not proceeded yet.
 801 *   Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
 802 *
 803 * Returns:
 804 *   true if @miter contains the valid mapping.  false if end of sg
 805 *   list is reached.
 806 */
 807bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
 808{
 809	sg_miter_stop(miter);
 810
 811	while (offset) {
 812		off_t consumed;
 813
 814		if (!sg_miter_get_next_page(miter))
 815			return false;
 816
 817		consumed = min_t(off_t, offset, miter->__remaining);
 818		miter->__offset += consumed;
 819		miter->__remaining -= consumed;
 820		offset -= consumed;
 821	}
 822
 823	return true;
 824}
 825EXPORT_SYMBOL(sg_miter_skip);
 826
 827/**
 828 * sg_miter_next - proceed mapping iterator to the next mapping
 829 * @miter: sg mapping iter to proceed
 830 *
 831 * Description:
 832 *   Proceeds @miter to the next mapping.  @miter should have been started
 833 *   using sg_miter_start().  On successful return, @miter->page,
 834 *   @miter->addr and @miter->length point to the current mapping.
 835 *
 836 * Context:
 837 *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
 838 *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
 839 *
 840 * Returns:
 841 *   true if @miter contains the next mapping.  false if end of sg
 842 *   list is reached.
 843 */
 844bool sg_miter_next(struct sg_mapping_iter *miter)
 845{
 846	sg_miter_stop(miter);
 847
 848	/*
 849	 * Get to the next page if necessary.
 850	 * __remaining, __offset is adjusted by sg_miter_stop
 851	 */
 852	if (!sg_miter_get_next_page(miter))
 853		return false;
 854
 855	miter->page = sg_page_iter_page(&miter->piter);
 856	miter->consumed = miter->length = miter->__remaining;
 857
 858	if (miter->__flags & SG_MITER_ATOMIC)
 859		miter->addr = kmap_atomic(miter->page) + miter->__offset;
 860	else
 861		miter->addr = kmap(miter->page) + miter->__offset;
 862
 863	return true;
 864}
 865EXPORT_SYMBOL(sg_miter_next);
 866
 867/**
 868 * sg_miter_stop - stop mapping iteration
 869 * @miter: sg mapping iter to be stopped
 870 *
 871 * Description:
 872 *   Stops mapping iterator @miter.  @miter should have been started
 873 *   using sg_miter_start().  A stopped iteration can be resumed by
 874 *   calling sg_miter_next() on it.  This is useful when resources (kmap)
 875 *   need to be released during iteration.
 876 *
 877 * Context:
 878 *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
 879 *   otherwise.
 880 */
 881void sg_miter_stop(struct sg_mapping_iter *miter)
 882{
 883	WARN_ON(miter->consumed > miter->length);
 884
 885	/* drop resources from the last iteration */
 886	if (miter->addr) {
 887		miter->__offset += miter->consumed;
 888		miter->__remaining -= miter->consumed;
 889
 890		if ((miter->__flags & SG_MITER_TO_SG) &&
 891		    !PageSlab(miter->page))
 892			flush_kernel_dcache_page(miter->page);
 893
 894		if (miter->__flags & SG_MITER_ATOMIC) {
 895			WARN_ON_ONCE(preemptible());
 896			kunmap_atomic(miter->addr);
 897		} else
 898			kunmap(miter->page);
 899
 900		miter->page = NULL;
 901		miter->addr = NULL;
 902		miter->length = 0;
 903		miter->consumed = 0;
 904	}
 905}
 906EXPORT_SYMBOL(sg_miter_stop);
 907
 908/**
 909 * sg_copy_buffer - Copy data between a linear buffer and an SG list
 910 * @sgl:		 The SG list
 911 * @nents:		 Number of SG entries
 912 * @buf:		 Where to copy from
 913 * @buflen:		 The number of bytes to copy
 914 * @skip:		 Number of bytes to skip before copying
 915 * @to_buffer:		 transfer direction (true == from an sg list to a
 916 *			 buffer, false == from a buffer to an sg list)
 917 *
 918 * Returns the number of copied bytes.
 919 *
 920 **/
 921size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
 922		      size_t buflen, off_t skip, bool to_buffer)
 923{
 924	unsigned int offset = 0;
 925	struct sg_mapping_iter miter;
 926	unsigned int sg_flags = SG_MITER_ATOMIC;
 927
 928	if (to_buffer)
 929		sg_flags |= SG_MITER_FROM_SG;
 930	else
 931		sg_flags |= SG_MITER_TO_SG;
 932
 933	sg_miter_start(&miter, sgl, nents, sg_flags);
 934
 935	if (!sg_miter_skip(&miter, skip))
 936		return 0;
 937
 938	while ((offset < buflen) && sg_miter_next(&miter)) {
 939		unsigned int len;
 940
 941		len = min(miter.length, buflen - offset);
 942
 943		if (to_buffer)
 944			memcpy(buf + offset, miter.addr, len);
 945		else
 946			memcpy(miter.addr, buf + offset, len);
 947
 948		offset += len;
 949	}
 950
 951	sg_miter_stop(&miter);
 952
 953	return offset;
 954}
 955EXPORT_SYMBOL(sg_copy_buffer);
 956
 957/**
 958 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
 959 * @sgl:		 The SG list
 960 * @nents:		 Number of SG entries
 961 * @buf:		 Where to copy from
 962 * @buflen:		 The number of bytes to copy
 963 *
 964 * Returns the number of copied bytes.
 965 *
 966 **/
 967size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
 968			   const void *buf, size_t buflen)
 969{
 970	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
 971}
 972EXPORT_SYMBOL(sg_copy_from_buffer);
 973
 974/**
 975 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
 976 * @sgl:		 The SG list
 977 * @nents:		 Number of SG entries
 978 * @buf:		 Where to copy to
 979 * @buflen:		 The number of bytes to copy
 980 *
 981 * Returns the number of copied bytes.
 982 *
 983 **/
 984size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
 985			 void *buf, size_t buflen)
 986{
 987	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
 988}
 989EXPORT_SYMBOL(sg_copy_to_buffer);
 990
 991/**
 992 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
 993 * @sgl:		 The SG list
 994 * @nents:		 Number of SG entries
 995 * @buf:		 Where to copy from
 996 * @buflen:		 The number of bytes to copy
 997 * @skip:		 Number of bytes to skip before copying
 998 *
 999 * Returns the number of copied bytes.
1000 *
1001 **/
1002size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1003			    const void *buf, size_t buflen, off_t skip)
1004{
1005	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
1006}
1007EXPORT_SYMBOL(sg_pcopy_from_buffer);
1008
1009/**
1010 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
1011 * @sgl:		 The SG list
1012 * @nents:		 Number of SG entries
1013 * @buf:		 Where to copy to
1014 * @buflen:		 The number of bytes to copy
1015 * @skip:		 Number of bytes to skip before copying
1016 *
1017 * Returns the number of copied bytes.
1018 *
1019 **/
1020size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1021			  void *buf, size_t buflen, off_t skip)
1022{
1023	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
1024}
1025EXPORT_SYMBOL(sg_pcopy_to_buffer);
1026
1027/**
1028 * sg_zero_buffer - Zero-out a part of a SG list
1029 * @sgl:		 The SG list
1030 * @nents:		 Number of SG entries
1031 * @buflen:		 The number of bytes to zero out
1032 * @skip:		 Number of bytes to skip before zeroing
1033 *
1034 * Returns the number of bytes zeroed.
1035 **/
1036size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
1037		       size_t buflen, off_t skip)
1038{
1039	unsigned int offset = 0;
1040	struct sg_mapping_iter miter;
1041	unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
1042
1043	sg_miter_start(&miter, sgl, nents, sg_flags);
1044
1045	if (!sg_miter_skip(&miter, skip))
1046		return false;
1047
1048	while (offset < buflen && sg_miter_next(&miter)) {
1049		unsigned int len;
1050
1051		len = min(miter.length, buflen - offset);
1052		memset(miter.addr, 0, len);
1053
1054		offset += len;
1055	}
1056
1057	sg_miter_stop(&miter);
1058	return offset;
1059}
1060EXPORT_SYMBOL(sg_zero_buffer);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
   4 *
   5 * Scatterlist handling helpers.
   6 */
   7#include <linux/export.h>
   8#include <linux/slab.h>
   9#include <linux/scatterlist.h>
  10#include <linux/highmem.h>
  11#include <linux/kmemleak.h>
  12
  13/**
  14 * sg_next - return the next scatterlist entry in a list
  15 * @sg:		The current sg entry
  16 *
  17 * Description:
  18 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
  19 *   of a chained scatterlist, it could jump to the start of a new
  20 *   scatterlist array.
  21 *
  22 **/
  23struct scatterlist *sg_next(struct scatterlist *sg)
  24{
  25	if (sg_is_last(sg))
  26		return NULL;
  27
  28	sg++;
  29	if (unlikely(sg_is_chain(sg)))
  30		sg = sg_chain_ptr(sg);
  31
  32	return sg;
  33}
  34EXPORT_SYMBOL(sg_next);
  35
  36/**
  37 * sg_nents - return total count of entries in scatterlist
  38 * @sg:		The scatterlist
  39 *
  40 * Description:
  41 * Allows to know how many entries are in sg, taking into account
  42 * chaining as well
  43 *
  44 **/
  45int sg_nents(struct scatterlist *sg)
  46{
  47	int nents;
  48	for (nents = 0; sg; sg = sg_next(sg))
  49		nents++;
  50	return nents;
  51}
  52EXPORT_SYMBOL(sg_nents);
  53
  54/**
  55 * sg_nents_for_len - return total count of entries in scatterlist
  56 *                    needed to satisfy the supplied length
  57 * @sg:		The scatterlist
  58 * @len:	The total required length
  59 *
  60 * Description:
  61 * Determines the number of entries in sg that are required to meet
  62 * the supplied length, taking into account chaining as well
  63 *
  64 * Returns:
  65 *   the number of sg entries needed, negative error on failure
  66 *
  67 **/
  68int sg_nents_for_len(struct scatterlist *sg, u64 len)
  69{
  70	int nents;
  71	u64 total;
  72
  73	if (!len)
  74		return 0;
  75
  76	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
  77		nents++;
  78		total += sg->length;
  79		if (total >= len)
  80			return nents;
  81	}
  82
  83	return -EINVAL;
  84}
  85EXPORT_SYMBOL(sg_nents_for_len);
  86
  87/**
  88 * sg_last - return the last scatterlist entry in a list
  89 * @sgl:	First entry in the scatterlist
  90 * @nents:	Number of entries in the scatterlist
  91 *
  92 * Description:
  93 *   Should only be used casually, it (currently) scans the entire list
  94 *   to get the last entry.
  95 *
  96 *   Note that the @sgl@ pointer passed in need not be the first one,
  97 *   the important bit is that @nents@ denotes the number of entries that
  98 *   exist from @sgl@.
  99 *
 100 **/
 101struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
 102{
 103	struct scatterlist *sg, *ret = NULL;
 104	unsigned int i;
 105
 106	for_each_sg(sgl, sg, nents, i)
 107		ret = sg;
 108
 109	BUG_ON(!sg_is_last(ret));
 110	return ret;
 111}
 112EXPORT_SYMBOL(sg_last);
 113
 114/**
 115 * sg_init_table - Initialize SG table
 116 * @sgl:	   The SG table
 117 * @nents:	   Number of entries in table
 118 *
 119 * Notes:
 120 *   If this is part of a chained sg table, sg_mark_end() should be
 121 *   used only on the last table part.
 122 *
 123 **/
 124void sg_init_table(struct scatterlist *sgl, unsigned int nents)
 125{
 126	memset(sgl, 0, sizeof(*sgl) * nents);
 127	sg_init_marker(sgl, nents);
 128}
 129EXPORT_SYMBOL(sg_init_table);
 130
 131/**
 132 * sg_init_one - Initialize a single entry sg list
 133 * @sg:		 SG entry
 134 * @buf:	 Virtual address for IO
 135 * @buflen:	 IO length
 136 *
 137 **/
 138void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
 139{
 140	sg_init_table(sg, 1);
 141	sg_set_buf(sg, buf, buflen);
 142}
 143EXPORT_SYMBOL(sg_init_one);
 144
 145/*
 146 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
 147 * helpers.
 148 */
 149static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
 150{
 151	if (nents == SG_MAX_SINGLE_ALLOC) {
 152		/*
 153		 * Kmemleak doesn't track page allocations as they are not
 154		 * commonly used (in a raw form) for kernel data structures.
 155		 * As we chain together a list of pages and then a normal
 156		 * kmalloc (tracked by kmemleak), in order to for that last
 157		 * allocation not to become decoupled (and thus a
 158		 * false-positive) we need to inform kmemleak of all the
 159		 * intermediate allocations.
 160		 */
 161		void *ptr = (void *) __get_free_page(gfp_mask);
 162		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
 163		return ptr;
 164	} else
 165		return kmalloc_array(nents, sizeof(struct scatterlist),
 166				     gfp_mask);
 167}
 168
 169static void sg_kfree(struct scatterlist *sg, unsigned int nents)
 170{
 171	if (nents == SG_MAX_SINGLE_ALLOC) {
 172		kmemleak_free(sg);
 173		free_page((unsigned long) sg);
 174	} else
 175		kfree(sg);
 176}
 177
 178/**
 179 * __sg_free_table - Free a previously mapped sg table
 180 * @table:	The sg table header to use
 181 * @max_ents:	The maximum number of entries per single scatterlist
 182 * @nents_first_chunk: Number of entries int the (preallocated) first
 183 * 	scatterlist chunk, 0 means no such preallocated first chunk
 184 * @free_fn:	Free function
 185 * @num_ents:	Number of entries in the table
 186 *
 187 *  Description:
 188 *    Free an sg table previously allocated and setup with
 189 *    __sg_alloc_table().  The @max_ents value must be identical to
 190 *    that previously used with __sg_alloc_table().
 191 *
 192 **/
 193void __sg_free_table(struct sg_table *table, unsigned int max_ents,
 194		     unsigned int nents_first_chunk, sg_free_fn *free_fn,
 195		     unsigned int num_ents)
 196{
 197	struct scatterlist *sgl, *next;
 198	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
 199
 200	if (unlikely(!table->sgl))
 201		return;
 202
 203	sgl = table->sgl;
 204	while (num_ents) {
 205		unsigned int alloc_size = num_ents;
 206		unsigned int sg_size;
 207
 208		/*
 209		 * If we have more than max_ents segments left,
 210		 * then assign 'next' to the sg table after the current one.
 211		 * sg_size is then one less than alloc size, since the last
 212		 * element is the chain pointer.
 213		 */
 214		if (alloc_size > curr_max_ents) {
 215			next = sg_chain_ptr(&sgl[curr_max_ents - 1]);
 216			alloc_size = curr_max_ents;
 217			sg_size = alloc_size - 1;
 218		} else {
 219			sg_size = alloc_size;
 220			next = NULL;
 221		}
 222
 223		num_ents -= sg_size;
 224		if (nents_first_chunk)
 225			nents_first_chunk = 0;
 226		else
 227			free_fn(sgl, alloc_size);
 228		sgl = next;
 229		curr_max_ents = max_ents;
 230	}
 231
 232	table->sgl = NULL;
 233}
 234EXPORT_SYMBOL(__sg_free_table);
 235
 236/**
 237 * sg_free_append_table - Free a previously allocated append sg table.
 238 * @table:	 The mapped sg append table header
 239 *
 240 **/
 241void sg_free_append_table(struct sg_append_table *table)
 242{
 243	__sg_free_table(&table->sgt, SG_MAX_SINGLE_ALLOC, 0, sg_kfree,
 244			table->total_nents);
 245}
 246EXPORT_SYMBOL(sg_free_append_table);
 247
 248
 249/**
 250 * sg_free_table - Free a previously allocated sg table
 251 * @table:	The mapped sg table header
 252 *
 253 **/
 254void sg_free_table(struct sg_table *table)
 255{
 256	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree,
 257			table->orig_nents);
 258}
 259EXPORT_SYMBOL(sg_free_table);
 260
 261/**
 262 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
 263 * @table:	The sg table header to use
 264 * @nents:	Number of entries in sg list
 265 * @max_ents:	The maximum number of entries the allocator returns per call
 266 * @nents_first_chunk: Number of entries int the (preallocated) first
 267 * 	scatterlist chunk, 0 means no such preallocated chunk provided by user
 268 * @gfp_mask:	GFP allocation mask
 269 * @alloc_fn:	Allocator to use
 270 *
 271 * Description:
 272 *   This function returns a @table @nents long. The allocator is
 273 *   defined to return scatterlist chunks of maximum size @max_ents.
 274 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
 275 *   chained in units of @max_ents.
 276 *
 277 * Notes:
 278 *   If this function returns non-0 (eg failure), the caller must call
 279 *   __sg_free_table() to cleanup any leftover allocations.
 280 *
 281 **/
 282int __sg_alloc_table(struct sg_table *table, unsigned int nents,
 283		     unsigned int max_ents, struct scatterlist *first_chunk,
 284		     unsigned int nents_first_chunk, gfp_t gfp_mask,
 285		     sg_alloc_fn *alloc_fn)
 286{
 287	struct scatterlist *sg, *prv;
 288	unsigned int left;
 289	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
 290	unsigned prv_max_ents;
 291
 292	memset(table, 0, sizeof(*table));
 293
 294	if (nents == 0)
 295		return -EINVAL;
 296#ifdef CONFIG_ARCH_NO_SG_CHAIN
 297	if (WARN_ON_ONCE(nents > max_ents))
 298		return -EINVAL;
 299#endif
 300
 301	left = nents;
 302	prv = NULL;
 303	do {
 304		unsigned int sg_size, alloc_size = left;
 305
 306		if (alloc_size > curr_max_ents) {
 307			alloc_size = curr_max_ents;
 308			sg_size = alloc_size - 1;
 309		} else
 310			sg_size = alloc_size;
 311
 312		left -= sg_size;
 313
 314		if (first_chunk) {
 315			sg = first_chunk;
 316			first_chunk = NULL;
 317		} else {
 318			sg = alloc_fn(alloc_size, gfp_mask);
 319		}
 320		if (unlikely(!sg)) {
 321			/*
 322			 * Adjust entry count to reflect that the last
 323			 * entry of the previous table won't be used for
 324			 * linkage.  Without this, sg_kfree() may get
 325			 * confused.
 326			 */
 327			if (prv)
 328				table->nents = ++table->orig_nents;
 329
 330			return -ENOMEM;
 331		}
 332
 333		sg_init_table(sg, alloc_size);
 334		table->nents = table->orig_nents += sg_size;
 335
 336		/*
 337		 * If this is the first mapping, assign the sg table header.
 338		 * If this is not the first mapping, chain previous part.
 339		 */
 340		if (prv)
 341			sg_chain(prv, prv_max_ents, sg);
 342		else
 343			table->sgl = sg;
 344
 345		/*
 346		 * If no more entries after this one, mark the end
 347		 */
 348		if (!left)
 349			sg_mark_end(&sg[sg_size - 1]);
 350
 351		prv = sg;
 352		prv_max_ents = curr_max_ents;
 353		curr_max_ents = max_ents;
 354	} while (left);
 355
 356	return 0;
 357}
 358EXPORT_SYMBOL(__sg_alloc_table);
 359
 360/**
 361 * sg_alloc_table - Allocate and initialize an sg table
 362 * @table:	The sg table header to use
 363 * @nents:	Number of entries in sg list
 364 * @gfp_mask:	GFP allocation mask
 365 *
 366 *  Description:
 367 *    Allocate and initialize an sg table. If @nents@ is larger than
 368 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
 369 *
 370 **/
 371int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
 372{
 373	int ret;
 374
 375	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
 376			       NULL, 0, gfp_mask, sg_kmalloc);
 377	if (unlikely(ret))
 378		sg_free_table(table);
 
 379	return ret;
 380}
 381EXPORT_SYMBOL(sg_alloc_table);
 382
 383static struct scatterlist *get_next_sg(struct sg_append_table *table,
 384				       struct scatterlist *cur,
 385				       unsigned long needed_sges,
 386				       gfp_t gfp_mask)
 387{
 388	struct scatterlist *new_sg, *next_sg;
 389	unsigned int alloc_size;
 390
 391	if (cur) {
 392		next_sg = sg_next(cur);
 393		/* Check if last entry should be keeped for chainning */
 394		if (!sg_is_last(next_sg) || needed_sges == 1)
 395			return next_sg;
 396	}
 397
 398	alloc_size = min_t(unsigned long, needed_sges, SG_MAX_SINGLE_ALLOC);
 399	new_sg = sg_kmalloc(alloc_size, gfp_mask);
 400	if (!new_sg)
 401		return ERR_PTR(-ENOMEM);
 402	sg_init_table(new_sg, alloc_size);
 403	if (cur) {
 404		table->total_nents += alloc_size - 1;
 405		__sg_chain(next_sg, new_sg);
 
 406	} else {
 407		table->sgt.sgl = new_sg;
 408		table->total_nents = alloc_size;
 
 409	}
 410	return new_sg;
 411}
 412
 413static bool pages_are_mergeable(struct page *a, struct page *b)
 414{
 415	if (page_to_pfn(a) != page_to_pfn(b) + 1)
 416		return false;
 417	if (!zone_device_pages_have_same_pgmap(a, b))
 418		return false;
 419	return true;
 420}
 421
 422/**
 423 * sg_alloc_append_table_from_pages - Allocate and initialize an append sg
 424 *                                    table from an array of pages
 425 * @sgt_append:  The sg append table to use
 426 * @pages:       Pointer to an array of page pointers
 427 * @n_pages:     Number of pages in the pages array
 428 * @offset:      Offset from start of the first page to the start of a buffer
 429 * @size:        Number of valid bytes in the buffer (after offset)
 430 * @max_segment: Maximum size of a scatterlist element in bytes
 
 431 * @left_pages:  Left pages caller have to set after this call
 432 * @gfp_mask:	 GFP allocation mask
 433 *
 434 * Description:
 435 *    In the first call it allocate and initialize an sg table from a list of
 436 *    pages, else reuse the scatterlist from sgt_append. Contiguous ranges of
 437 *    the pages are squashed into a single scatterlist entry up to the maximum
 438 *    size specified in @max_segment.  A user may provide an offset at a start
 439 *    and a size of valid data in a buffer specified by the page array. The
 440 *    returned sg table is released by sg_free_append_table
 441 *
 442 * Returns:
 443 *   0 on success, negative error on failure
 
 444 *
 445 * Notes:
 446 *   If this function returns non-0 (eg failure), the caller must call
 447 *   sg_free_append_table() to cleanup any leftover allocations.
 448 *
 449 *   In the fist call, sgt_append must by initialized.
 450 */
 451int sg_alloc_append_table_from_pages(struct sg_append_table *sgt_append,
 452		struct page **pages, unsigned int n_pages, unsigned int offset,
 453		unsigned long size, unsigned int max_segment,
 454		unsigned int left_pages, gfp_t gfp_mask)
 
 455{
 456	unsigned int chunks, cur_page, seg_len, i, prv_len = 0;
 457	unsigned int added_nents = 0;
 458	struct scatterlist *s = sgt_append->prv;
 459	struct page *last_pg;
 460
 461	/*
 462	 * The algorithm below requires max_segment to be aligned to PAGE_SIZE
 463	 * otherwise it can overshoot.
 464	 */
 465	max_segment = ALIGN_DOWN(max_segment, PAGE_SIZE);
 466	if (WARN_ON(max_segment < PAGE_SIZE))
 467		return -EINVAL;
 468
 469	if (IS_ENABLED(CONFIG_ARCH_NO_SG_CHAIN) && sgt_append->prv)
 470		return -EOPNOTSUPP;
 471
 472	if (sgt_append->prv) {
 473		unsigned long next_pfn = (page_to_phys(sg_page(sgt_append->prv)) +
 474			sgt_append->prv->offset + sgt_append->prv->length) / PAGE_SIZE;
 
 475
 476		if (WARN_ON(offset))
 477			return -EINVAL;
 478
 479		/* Merge contiguous pages into the last SG */
 480		prv_len = sgt_append->prv->length;
 481		if (page_to_pfn(pages[0]) == next_pfn) {
 482			last_pg = pfn_to_page(next_pfn - 1);
 483			while (n_pages && pages_are_mergeable(pages[0], last_pg)) {
 484				if (sgt_append->prv->length + PAGE_SIZE > max_segment)
 485					break;
 486				sgt_append->prv->length += PAGE_SIZE;
 487				last_pg = pages[0];
 488				pages++;
 489				n_pages--;
 490			}
 491			if (!n_pages)
 492				goto out;
 493		}
 
 
 494	}
 495
 496	/* compute number of contiguous chunks */
 497	chunks = 1;
 498	seg_len = 0;
 499	for (i = 1; i < n_pages; i++) {
 500		seg_len += PAGE_SIZE;
 501		if (seg_len >= max_segment ||
 502		    !pages_are_mergeable(pages[i], pages[i - 1])) {
 503			chunks++;
 504			seg_len = 0;
 505		}
 506	}
 507
 508	/* merging chunks and putting them into the scatterlist */
 509	cur_page = 0;
 510	for (i = 0; i < chunks; i++) {
 511		unsigned int j, chunk_size;
 512
 513		/* look for the end of the current chunk */
 514		seg_len = 0;
 515		for (j = cur_page + 1; j < n_pages; j++) {
 516			seg_len += PAGE_SIZE;
 517			if (seg_len >= max_segment ||
 518			    !pages_are_mergeable(pages[j], pages[j - 1]))
 
 519				break;
 520		}
 521
 522		/* Pass how many chunks might be left */
 523		s = get_next_sg(sgt_append, s, chunks - i + left_pages,
 524				gfp_mask);
 525		if (IS_ERR(s)) {
 526			/*
 527			 * Adjust entry length to be as before function was
 528			 * called.
 529			 */
 530			if (sgt_append->prv)
 531				sgt_append->prv->length = prv_len;
 532			return PTR_ERR(s);
 533		}
 534		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
 535		sg_set_page(s, pages[cur_page],
 536			    min_t(unsigned long, size, chunk_size), offset);
 537		added_nents++;
 538		size -= chunk_size;
 539		offset = 0;
 540		cur_page = j;
 541	}
 542	sgt_append->sgt.nents += added_nents;
 543	sgt_append->sgt.orig_nents = sgt_append->sgt.nents;
 544	sgt_append->prv = s;
 545out:
 546	if (!left_pages)
 547		sg_mark_end(s);
 548	return 0;
 549}
 550EXPORT_SYMBOL(sg_alloc_append_table_from_pages);
 551
 552/**
 553 * sg_alloc_table_from_pages_segment - Allocate and initialize an sg table from
 554 *                                     an array of pages and given maximum
 555 *                                     segment.
 556 * @sgt:	 The sg table header to use
 557 * @pages:	 Pointer to an array of page pointers
 558 * @n_pages:	 Number of pages in the pages array
 559 * @offset:      Offset from start of the first page to the start of a buffer
 560 * @size:        Number of valid bytes in the buffer (after offset)
 561 * @max_segment: Maximum size of a scatterlist element in bytes
 562 * @gfp_mask:	 GFP allocation mask
 563 *
 564 *  Description:
 565 *    Allocate and initialize an sg table from a list of pages. Contiguous
 566 *    ranges of the pages are squashed into a single scatterlist node up to the
 567 *    maximum size specified in @max_segment. A user may provide an offset at a
 568 *    start and a size of valid data in a buffer specified by the page array.
 
 569 *
 570 *    The returned sg table is released by sg_free_table.
 571 *
 572 *  Returns:
 573 *   0 on success, negative error on failure
 574 */
 575int sg_alloc_table_from_pages_segment(struct sg_table *sgt, struct page **pages,
 576				unsigned int n_pages, unsigned int offset,
 577				unsigned long size, unsigned int max_segment,
 578				gfp_t gfp_mask)
 579{
 580	struct sg_append_table append = {};
 581	int err;
 582
 583	err = sg_alloc_append_table_from_pages(&append, pages, n_pages, offset,
 584					       size, max_segment, 0, gfp_mask);
 585	if (err) {
 586		sg_free_append_table(&append);
 587		return err;
 588	}
 589	memcpy(sgt, &append.sgt, sizeof(*sgt));
 590	WARN_ON(append.total_nents != sgt->orig_nents);
 591	return 0;
 592}
 593EXPORT_SYMBOL(sg_alloc_table_from_pages_segment);
 594
 595#ifdef CONFIG_SGL_ALLOC
 596
 597/**
 598 * sgl_alloc_order - allocate a scatterlist and its pages
 599 * @length: Length in bytes of the scatterlist. Must be at least one
 600 * @order: Second argument for alloc_pages()
 601 * @chainable: Whether or not to allocate an extra element in the scatterlist
 602 *	for scatterlist chaining purposes
 603 * @gfp: Memory allocation flags
 604 * @nent_p: [out] Number of entries in the scatterlist that have pages
 605 *
 606 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 607 */
 608struct scatterlist *sgl_alloc_order(unsigned long long length,
 609				    unsigned int order, bool chainable,
 610				    gfp_t gfp, unsigned int *nent_p)
 611{
 612	struct scatterlist *sgl, *sg;
 613	struct page *page;
 614	unsigned int nent, nalloc;
 615	u32 elem_len;
 616
 617	nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
 618	/* Check for integer overflow */
 619	if (length > (nent << (PAGE_SHIFT + order)))
 620		return NULL;
 621	nalloc = nent;
 622	if (chainable) {
 623		/* Check for integer overflow */
 624		if (nalloc + 1 < nalloc)
 625			return NULL;
 626		nalloc++;
 627	}
 628	sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
 629			    gfp & ~GFP_DMA);
 630	if (!sgl)
 631		return NULL;
 632
 633	sg_init_table(sgl, nalloc);
 634	sg = sgl;
 635	while (length) {
 636		elem_len = min_t(u64, length, PAGE_SIZE << order);
 637		page = alloc_pages(gfp, order);
 638		if (!page) {
 639			sgl_free_order(sgl, order);
 640			return NULL;
 641		}
 642
 643		sg_set_page(sg, page, elem_len, 0);
 644		length -= elem_len;
 645		sg = sg_next(sg);
 646	}
 647	WARN_ONCE(length, "length = %lld\n", length);
 648	if (nent_p)
 649		*nent_p = nent;
 650	return sgl;
 651}
 652EXPORT_SYMBOL(sgl_alloc_order);
 653
 654/**
 655 * sgl_alloc - allocate a scatterlist and its pages
 656 * @length: Length in bytes of the scatterlist
 657 * @gfp: Memory allocation flags
 658 * @nent_p: [out] Number of entries in the scatterlist
 659 *
 660 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 661 */
 662struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
 663			      unsigned int *nent_p)
 664{
 665	return sgl_alloc_order(length, 0, false, gfp, nent_p);
 666}
 667EXPORT_SYMBOL(sgl_alloc);
 668
 669/**
 670 * sgl_free_n_order - free a scatterlist and its pages
 671 * @sgl: Scatterlist with one or more elements
 672 * @nents: Maximum number of elements to free
 673 * @order: Second argument for __free_pages()
 674 *
 675 * Notes:
 676 * - If several scatterlists have been chained and each chain element is
 677 *   freed separately then it's essential to set nents correctly to avoid that a
 678 *   page would get freed twice.
 679 * - All pages in a chained scatterlist can be freed at once by setting @nents
 680 *   to a high number.
 681 */
 682void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
 683{
 684	struct scatterlist *sg;
 685	struct page *page;
 686	int i;
 687
 688	for_each_sg(sgl, sg, nents, i) {
 689		if (!sg)
 690			break;
 691		page = sg_page(sg);
 692		if (page)
 693			__free_pages(page, order);
 694	}
 695	kfree(sgl);
 696}
 697EXPORT_SYMBOL(sgl_free_n_order);
 698
 699/**
 700 * sgl_free_order - free a scatterlist and its pages
 701 * @sgl: Scatterlist with one or more elements
 702 * @order: Second argument for __free_pages()
 703 */
 704void sgl_free_order(struct scatterlist *sgl, int order)
 705{
 706	sgl_free_n_order(sgl, INT_MAX, order);
 707}
 708EXPORT_SYMBOL(sgl_free_order);
 709
 710/**
 711 * sgl_free - free a scatterlist and its pages
 712 * @sgl: Scatterlist with one or more elements
 713 */
 714void sgl_free(struct scatterlist *sgl)
 715{
 716	sgl_free_order(sgl, 0);
 717}
 718EXPORT_SYMBOL(sgl_free);
 719
 720#endif /* CONFIG_SGL_ALLOC */
 721
 722void __sg_page_iter_start(struct sg_page_iter *piter,
 723			  struct scatterlist *sglist, unsigned int nents,
 724			  unsigned long pgoffset)
 725{
 726	piter->__pg_advance = 0;
 727	piter->__nents = nents;
 728
 729	piter->sg = sglist;
 730	piter->sg_pgoffset = pgoffset;
 731}
 732EXPORT_SYMBOL(__sg_page_iter_start);
 733
 734static int sg_page_count(struct scatterlist *sg)
 735{
 736	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
 737}
 738
 739bool __sg_page_iter_next(struct sg_page_iter *piter)
 740{
 741	if (!piter->__nents || !piter->sg)
 742		return false;
 743
 744	piter->sg_pgoffset += piter->__pg_advance;
 745	piter->__pg_advance = 1;
 746
 747	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
 748		piter->sg_pgoffset -= sg_page_count(piter->sg);
 749		piter->sg = sg_next(piter->sg);
 750		if (!--piter->__nents || !piter->sg)
 751			return false;
 752	}
 753
 754	return true;
 755}
 756EXPORT_SYMBOL(__sg_page_iter_next);
 757
 758static int sg_dma_page_count(struct scatterlist *sg)
 759{
 760	return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
 761}
 762
 763bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
 764{
 765	struct sg_page_iter *piter = &dma_iter->base;
 766
 767	if (!piter->__nents || !piter->sg)
 768		return false;
 769
 770	piter->sg_pgoffset += piter->__pg_advance;
 771	piter->__pg_advance = 1;
 772
 773	while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
 774		piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
 775		piter->sg = sg_next(piter->sg);
 776		if (!--piter->__nents || !piter->sg)
 777			return false;
 778	}
 779
 780	return true;
 781}
 782EXPORT_SYMBOL(__sg_page_iter_dma_next);
 783
 784/**
 785 * sg_miter_start - start mapping iteration over a sg list
 786 * @miter: sg mapping iter to be started
 787 * @sgl: sg list to iterate over
 788 * @nents: number of sg entries
 789 *
 790 * Description:
 791 *   Starts mapping iterator @miter.
 792 *
 793 * Context:
 794 *   Don't care.
 795 */
 796void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
 797		    unsigned int nents, unsigned int flags)
 798{
 799	memset(miter, 0, sizeof(struct sg_mapping_iter));
 800
 801	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
 802	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
 803	miter->__flags = flags;
 804}
 805EXPORT_SYMBOL(sg_miter_start);
 806
 807static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
 808{
 809	if (!miter->__remaining) {
 810		struct scatterlist *sg;
 811
 812		if (!__sg_page_iter_next(&miter->piter))
 813			return false;
 814
 815		sg = miter->piter.sg;
 816
 817		miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
 818		miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
 819		miter->__offset &= PAGE_SIZE - 1;
 820		miter->__remaining = sg->offset + sg->length -
 821				     (miter->piter.sg_pgoffset << PAGE_SHIFT) -
 822				     miter->__offset;
 823		miter->__remaining = min_t(unsigned long, miter->__remaining,
 824					   PAGE_SIZE - miter->__offset);
 825	}
 826
 827	return true;
 828}
 829
 830/**
 831 * sg_miter_skip - reposition mapping iterator
 832 * @miter: sg mapping iter to be skipped
 833 * @offset: number of bytes to plus the current location
 834 *
 835 * Description:
 836 *   Sets the offset of @miter to its current location plus @offset bytes.
 837 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
 838 *   stops @miter.
 839 *
 840 * Context:
 841 *   Don't care.
 
 842 *
 843 * Returns:
 844 *   true if @miter contains the valid mapping.  false if end of sg
 845 *   list is reached.
 846 */
 847bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
 848{
 849	sg_miter_stop(miter);
 850
 851	while (offset) {
 852		off_t consumed;
 853
 854		if (!sg_miter_get_next_page(miter))
 855			return false;
 856
 857		consumed = min_t(off_t, offset, miter->__remaining);
 858		miter->__offset += consumed;
 859		miter->__remaining -= consumed;
 860		offset -= consumed;
 861	}
 862
 863	return true;
 864}
 865EXPORT_SYMBOL(sg_miter_skip);
 866
 867/**
 868 * sg_miter_next - proceed mapping iterator to the next mapping
 869 * @miter: sg mapping iter to proceed
 870 *
 871 * Description:
 872 *   Proceeds @miter to the next mapping.  @miter should have been started
 873 *   using sg_miter_start().  On successful return, @miter->page,
 874 *   @miter->addr and @miter->length point to the current mapping.
 875 *
 876 * Context:
 877 *   May sleep if !SG_MITER_ATOMIC.
 
 878 *
 879 * Returns:
 880 *   true if @miter contains the next mapping.  false if end of sg
 881 *   list is reached.
 882 */
 883bool sg_miter_next(struct sg_mapping_iter *miter)
 884{
 885	sg_miter_stop(miter);
 886
 887	/*
 888	 * Get to the next page if necessary.
 889	 * __remaining, __offset is adjusted by sg_miter_stop
 890	 */
 891	if (!sg_miter_get_next_page(miter))
 892		return false;
 893
 894	miter->page = sg_page_iter_page(&miter->piter);
 895	miter->consumed = miter->length = miter->__remaining;
 896
 897	if (miter->__flags & SG_MITER_ATOMIC)
 898		miter->addr = kmap_atomic(miter->page) + miter->__offset;
 899	else
 900		miter->addr = kmap(miter->page) + miter->__offset;
 901
 902	return true;
 903}
 904EXPORT_SYMBOL(sg_miter_next);
 905
 906/**
 907 * sg_miter_stop - stop mapping iteration
 908 * @miter: sg mapping iter to be stopped
 909 *
 910 * Description:
 911 *   Stops mapping iterator @miter.  @miter should have been started
 912 *   using sg_miter_start().  A stopped iteration can be resumed by
 913 *   calling sg_miter_next() on it.  This is useful when resources (kmap)
 914 *   need to be released during iteration.
 915 *
 916 * Context:
 917 *   Don't care otherwise.
 
 918 */
 919void sg_miter_stop(struct sg_mapping_iter *miter)
 920{
 921	WARN_ON(miter->consumed > miter->length);
 922
 923	/* drop resources from the last iteration */
 924	if (miter->addr) {
 925		miter->__offset += miter->consumed;
 926		miter->__remaining -= miter->consumed;
 927
 928		if (miter->__flags & SG_MITER_TO_SG)
 929			flush_dcache_page(miter->page);
 
 930
 931		if (miter->__flags & SG_MITER_ATOMIC) {
 932			WARN_ON_ONCE(!pagefault_disabled());
 933			kunmap_atomic(miter->addr);
 934		} else
 935			kunmap(miter->page);
 936
 937		miter->page = NULL;
 938		miter->addr = NULL;
 939		miter->length = 0;
 940		miter->consumed = 0;
 941	}
 942}
 943EXPORT_SYMBOL(sg_miter_stop);
 944
 945/**
 946 * sg_copy_buffer - Copy data between a linear buffer and an SG list
 947 * @sgl:		 The SG list
 948 * @nents:		 Number of SG entries
 949 * @buf:		 Where to copy from
 950 * @buflen:		 The number of bytes to copy
 951 * @skip:		 Number of bytes to skip before copying
 952 * @to_buffer:		 transfer direction (true == from an sg list to a
 953 *			 buffer, false == from a buffer to an sg list)
 954 *
 955 * Returns the number of copied bytes.
 956 *
 957 **/
 958size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
 959		      size_t buflen, off_t skip, bool to_buffer)
 960{
 961	unsigned int offset = 0;
 962	struct sg_mapping_iter miter;
 963	unsigned int sg_flags = SG_MITER_ATOMIC;
 964
 965	if (to_buffer)
 966		sg_flags |= SG_MITER_FROM_SG;
 967	else
 968		sg_flags |= SG_MITER_TO_SG;
 969
 970	sg_miter_start(&miter, sgl, nents, sg_flags);
 971
 972	if (!sg_miter_skip(&miter, skip))
 973		return 0;
 974
 975	while ((offset < buflen) && sg_miter_next(&miter)) {
 976		unsigned int len;
 977
 978		len = min(miter.length, buflen - offset);
 979
 980		if (to_buffer)
 981			memcpy(buf + offset, miter.addr, len);
 982		else
 983			memcpy(miter.addr, buf + offset, len);
 984
 985		offset += len;
 986	}
 987
 988	sg_miter_stop(&miter);
 989
 990	return offset;
 991}
 992EXPORT_SYMBOL(sg_copy_buffer);
 993
 994/**
 995 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
 996 * @sgl:		 The SG list
 997 * @nents:		 Number of SG entries
 998 * @buf:		 Where to copy from
 999 * @buflen:		 The number of bytes to copy
1000 *
1001 * Returns the number of copied bytes.
1002 *
1003 **/
1004size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1005			   const void *buf, size_t buflen)
1006{
1007	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
1008}
1009EXPORT_SYMBOL(sg_copy_from_buffer);
1010
1011/**
1012 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
1013 * @sgl:		 The SG list
1014 * @nents:		 Number of SG entries
1015 * @buf:		 Where to copy to
1016 * @buflen:		 The number of bytes to copy
1017 *
1018 * Returns the number of copied bytes.
1019 *
1020 **/
1021size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1022			 void *buf, size_t buflen)
1023{
1024	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
1025}
1026EXPORT_SYMBOL(sg_copy_to_buffer);
1027
1028/**
1029 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
1030 * @sgl:		 The SG list
1031 * @nents:		 Number of SG entries
1032 * @buf:		 Where to copy from
1033 * @buflen:		 The number of bytes to copy
1034 * @skip:		 Number of bytes to skip before copying
1035 *
1036 * Returns the number of copied bytes.
1037 *
1038 **/
1039size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1040			    const void *buf, size_t buflen, off_t skip)
1041{
1042	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
1043}
1044EXPORT_SYMBOL(sg_pcopy_from_buffer);
1045
1046/**
1047 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
1048 * @sgl:		 The SG list
1049 * @nents:		 Number of SG entries
1050 * @buf:		 Where to copy to
1051 * @buflen:		 The number of bytes to copy
1052 * @skip:		 Number of bytes to skip before copying
1053 *
1054 * Returns the number of copied bytes.
1055 *
1056 **/
1057size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1058			  void *buf, size_t buflen, off_t skip)
1059{
1060	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
1061}
1062EXPORT_SYMBOL(sg_pcopy_to_buffer);
1063
1064/**
1065 * sg_zero_buffer - Zero-out a part of a SG list
1066 * @sgl:		 The SG list
1067 * @nents:		 Number of SG entries
1068 * @buflen:		 The number of bytes to zero out
1069 * @skip:		 Number of bytes to skip before zeroing
1070 *
1071 * Returns the number of bytes zeroed.
1072 **/
1073size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
1074		       size_t buflen, off_t skip)
1075{
1076	unsigned int offset = 0;
1077	struct sg_mapping_iter miter;
1078	unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
1079
1080	sg_miter_start(&miter, sgl, nents, sg_flags);
1081
1082	if (!sg_miter_skip(&miter, skip))
1083		return false;
1084
1085	while (offset < buflen && sg_miter_next(&miter)) {
1086		unsigned int len;
1087
1088		len = min(miter.length, buflen - offset);
1089		memset(miter.addr, 0, len);
1090
1091		offset += len;
1092	}
1093
1094	sg_miter_stop(&miter);
1095	return offset;
1096}
1097EXPORT_SYMBOL(sg_zero_buffer);